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1 Introduction

1 Introduction

This paper discusses a Matlab implementation of the Advanced Encryption Standard
(AES) [7]. AES is based on the block cipher Rijndael [4] [5] and became the designated
successor of the Data Encryption Standard (DES) [8] which has been implemented in
a tremendous number of cryptographic modules worldwide since 1977. Matlab [1]
is a matrix-oriented programming language, perfectly suited for the matrix-based data
structure of AES.

Even though this implementation is fully operational, (i. e. it can be utilized to encrypt
arbitrarily chosen plaintext into ciphertext and vice versa), the main optimization pa-
rameter of this implementation has not been execution speed but understandability.
Assembler programmers might throw their hands up in horror, looking at shifting or
substitution functions that have been coded algorithmically step-by-step instead of us-
ing a simple predefined lookup table; the primary goal of this ”educational” paper is to
explain in greater detail what has to be done, rather than how it could be done for speed
optimization reasons.

Also the question why certain algorithms have been chosen, e. g. with respect to the resis-
tance against differential and linear cryptanalysis, is far beyond the scope of this paper.
Interested readers are referred to the annex of the AES proposal [6] or a good book on
cryptography [9]. Even Galois fields, the workhorse of modern cryptography, are intro-
duced in a very pragmatic, engineer-friendly way, touching only as much mathematical
background as necessary.

Furthermore, in order to minimize the number of if-then-else-conditions, a key length
of 128 bits (16 bytes) has been implemented only; the extension to 24 or 32 bytes key
lengths, as defined in [7], can easily be realized by altering the corresponding constants.
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2 Finite Field Arithmetics

2 Finite Field Arithmetics

The following section introduces the different representation forms of a byte and discusses
the basic arithmetics of finite fields.

A finite field, also called a Galois Field [3], [2], is a field with only finitely many elements.
The finite field GF(28) e. g. consists of the 28 = 256 different numbers (0 . . . 255)
represented by one byte (8 bits). Special xor- and modulo-operations, explained in
detail in the following sections, make sure that the sum and the product of two finite
field elements remain within the range of the original finite field.

2.1 Byte Representation Forms

The following four sections convert an example through the four usual representation
forms of a finite field element.

2.1.1 Binary Representation

A byte consists of 8 bits, leading to the binary representation (index b) of an arbitrarily
chosen example:

10100011b (1)

2.1.2 Decimal Representation

This example can be represented in decimal form (index d) by multiplying every bit by
its corresponding power of two:

1 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 1 · 20 = 27 + 25 + 21 + 20

= 128 + 32 + 2 + 1

= 163d

(2)

Matlab uses the predefined function bin2dec (”binary to decimal”) to perform this
conversion. Note the use of single quotation marks to input the binary representation
as a string (character array):

>> bin2dec (’10100011’)

ans =

163

Example 1: Matlab example of bin2dec
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2 Finite Field Arithmetics

2.1.3 Hexadecimal Representation

The numbers 0 . . . 15 can be expressed by a group of four bits called a nibble. The
numbers 10 . . . 15 cannot be represented by a single decimal digit (0 . . . 9) and are
therefore ”abbreviated” by the letters A . . . F in hexadecimal notation (index h):

0000b = 0d = 0h

0001b = 1d = 1h

0010b = 2d = 2h

0011b = 3d = 3h

0100b = 4d = 4h

0101b = 5d = 5h

0110b = 6d = 6h

0111b = 7d = 7h

1000b = 8d = 8h

1001b = 9d = 9h

1010b = 10d = Ah

1011b = 11d = Bh

1100b = 12d = Ch

1101b = 13d = Dh

1110b = 14d = Eh

1111b = 15d = Fh

The conversion from binary to hexadecimal is now very straightforward. The byte is
divided into two nibbles and each nibble is represented by its hexadecimal digit:

10100011b = 1010︸︷︷︸
Ah

0011︸︷︷︸
3h

b = A3h (3)

For the conversion from hexadecimal back to decimal every hexadecimal digit is multi-
plied by its valence: The left digit is multiplied by 16, while the right one is multiplied
by 1 and is therefore just added:

A3h = A · 24 + 3 · 20 = 10 · 16 + 3 · 1 = 160 + 3 = 163d (4)

Matlab offers the predefined function hex2dec to convert hexadecimal numbers back
to their decimal representation:
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2 Finite Field Arithmetics

>> hex2dec (’A3’)

ans =

163

Example 2: Matlab example of hex2dec

2.1.4 Polynomial Representation

The polynomial representation of a byte is very similar to the conversion from binary to
decimal in Equation (2). Substituting every 2 on the left hand side of Equation (2) by
an x defines a polynomial using the bits of the binary form as coefficients of the powers
of x:

1 · x7 + 0 · x6 + 1 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 1 · x1 + 1 · x0 = x7 + x5 + x + 1 (5)

Note the fact, that the coefficients of this polynomial (representing a byte or GF(28)
element) can only be 1 (or 0 respectively).

2.2 Polynomial Addition

”Usually” two polynomials are added by adding the coefficients of like powers of x ac-
cording to Figure 1.
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Figure 1: ”Classical” polynomial addition

Since this might lead to some coefficients of the resulting polynomial not being 0 or 1
(e. g. 2x and 2 in Figure 1), this ”classical” sum does not represent a byte (i. e. an element
of the original finite field).

In order to make sure that the resulting polynomial has only binary coefficients, the xor
(exclusive or) operation depicted in Table 1 is used for the addition. Since the xor-”sum”
of two 1’s is not 2 but 0 (1 xor 1 = 0), no 2-coefficient can appear.
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2 Finite Field Arithmetics

x y x xor y

0 0 0

0 1 1

1 0 1

1 1 0

Table 1: xor operation

Figure 2 shows the bit-wise xor of two bytes (finite field elements), always resulting in
another byte (element of the same finite field).
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Figure 2: Binary polynomial addition

The resulting byte

244d = F4h = 11110100b = x7 + x6 + x5 + x4 + x2 (6)

directly corresponds to the polynomial of Figure 1, if the ”non-binary” terms 2x and 2
are omitted there.

The bit-wise xor operation bitxor is a build-in function of Matlab and is used through-
out AES, whenever two bytes are added:

>> bitxor (87, 163)

ans =

244

Example 3: Matlab example of bitxor
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2.3 Polynomial Multiplication

Two polynomials are multiplied by multiplying each summand of the first polynomial
by (every summand of) the second polynomial and adding the coefficients of like powers
(see Figure 3).
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Figure 3: ”Classical” polynomial multiplication

Once again, some coefficients of the resulting polynomial in Figure 3 are 2 or even 3 and
have to be treated differently. The generalization of the xor-concept would now omit
every power having an even coefficient and reduce every odd coefficient to 1, leading to
a polynomial of

x13 + x8 + x7 + x4 + x3 + 1 (7)

On the bit level (see Figure 4) the same result is achieved by shifting the second byte
one bit to the left for every bit in the first byte. If a bit in the first byte is 0, a 0-byte is
used instead of the second byte. Finally all corresponding bits are xor’ed.
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Figure 4: Binary polynomial multiplication

Unfortunately the resulting polynomial (7) has a degree greater than 7, can therefore
not be expressed in one byte (i. e. it is not a GF(28) element) and has to be transformed
back into the ”byte range” by the modulo division described in the next section.

2.4 Polynomial Division

The manual algorithm to divide two polynomials is depicted in Figure 5.
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Figure 5: ”Classical” polynomial division

The greatest power of the numerator (x13) is divided by the greatest power of the denom-
inator (x8) yielding the first resulting term (x5). This term is multiplied by the complete
denominator (→ x13 + x9 + x8 + x6 + x5) and subtracted from the numerator, resulting
in a new numerator (−x9 + x7− x6− x5 + x4 + x3 + 1). This procedure is repeated until
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2 Finite Field Arithmetics

the greatest power of the new numerator has become less than the greatest power of the
denominator. The final numerator (x7 − x6 + 2x4 + x3 + x2 + x + 1) is the remainder of
this modulo operation. Applying the ”generalized xor-rules” (even coefficients → 0, odd
coefficients → 1) to the remainder leaves the desired byte-conform polynomial:

x7 + x6 + x3 + x2 + x + 1 (8)

The bit level operations illustrated in Figure 6 achieve the same result by bit-wise shift
and xor operations: The denominator is shifted to the left until its most significant bit
(MSB) matches the MSB of the numerator. The subtraction is then performed via xor,
resulting in a new, smaller numerator. The shifting and xor-ing is repeated, until the
resulting numerator (the remainder) fits into one byte.
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Figure 6: Binary polynomial division

2.5 poly_mult Implementation

The AES-function poly_mult (Listing 1) performs the multiplication of two polynomials
(a and b) in GF(28) using a third polynomial (mod_pol) for the modular reduction.
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2 Finite Field Arithmetics

1 function ab = poly_mult (a, b, mod_pol)

2 ab = 0;

3 for i_bit = 1 : 8

4 if bitget (a, i_bit)

5 b_shift = bitshift (b, i_bit - 1);

6 ab = bitxor (ab, b_shift);

7 end

8 end

9 for i_bit = 16 : -1 : 9

10 if bitget (ab, i_bit)

11 mod_pol_shift = bitshift (mod_pol, i_bit - 9);

12 ab = bitxor (ab, mod_pol_shift);

13 end

14 end

Listing 1: Matlab function poly_mult

After the initialization (Line 2) poly_mult accomplishes the multiplication (Lines 3 . . . 8)
and the modular reduction (Line 9 . . . 14) in two very similar loops.

For the multiplication (compare Figure 4) every bit (Line 3) of the first factor a is tested
(Line 4) and if it is present, the second factor b is shifted to the left (Line 5) and xor-ed
to the accumulating result ab (Line 6).

The modular reduction (compare Figure 6) interprets the intermediate result ab as the
numerator, loops through all the bits of the numerator, starting with the MSB (Line 9)
and shifts (Line 11) the modulo polynomial mod_pol ”under” detected (Line 10) bits of
the numerator, in order to perform the appropriate xor-operation (Line 12).

The Matlab Example 4 summarizes the operations depicted in the previous sections
by multiplying the bytes

87d = 1010111b = x6 + x4 + x2 + x + 1 (9)

and
163d = 10100011b = x7 + x5 + x + 1 (10)

using the standard AES modulo polynomial

283d = 100011011b = x8 + x4 + x3 + x + 1 (11)

resulting in
87d • 163d mod 283d = 207d (12)

by a call to the function poly_mult:
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2 Finite Field Arithmetics

>> poly_mult (87, 163, 283)

ans =

207

Example 4: Matlab example of poly_mult
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3 aes_demo

3 aes_demo

The Matlab program aes_demo demonstrates the use of the AES-package.

cipher

aes_init

inv_cipher

aes_demo

ciphertext

1

2 3

0

plaintext

re_plaintext

poly_mat,
s_box,

w

inv_poly_mat,
inv_s_box,

w

Figure 7: ”Main” AES demonstration program aes_demo

As depicted in Figure 7 and Listing 2 the first task of the ”main” program aes_demo is
a call to aes_init in Line 1. This initialization routine supplies 1 the actual en- and
decryption functions (cipher and inv_cipher) with the expanded key schedule w, the
substitution tables s_box and inv_s_box, and the polynomial matrices poly_mat and
inv_poly_mat. These quantities have to be generated only once and can be used by any
subsequent en- or decipher call.

The Lines 2 . . . 4 define the 16 byte (128 bit) of exemplary plaintext to be encrypted.
In Line 5 this input block is passed to the encryption function cipher, which returns
the corresponding 16 byte of ciphertext.

In order to demonstrate the decryption process too, the ciphertext is then forwarded
to the decipher function inv_cipher in Line 6, resulting in the reprocessed plaintext
block re_plaintext, which can be compared to and certainly has to equal the original
plaintext.

1Figure 7 indicates that aes_init directly passes its parameters to cipher and inv_cipher. This is
not really the case. In the actual implementation, the parameters are first returned from aes_init
to aes_demo and then passed to cipher and inv_cipher by aes_demo.
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3 aes_demo

1 [s_box, inv_s_box, w, poly_mat, inv_poly_mat] = aes_init;

2 plaintext_hex = {’00’ ’11’ ’22’ ’33’ ’44’ ’55’ ’66’ ’77’ ...

3 ’88’ ’99’ ’aa’ ’bb’ ’cc’ ’dd’ ’ee’ ’ff’};

4 plaintext = hex2dec (plaintext_hex);

5 ciphertext = cipher (plaintext, w, s_box, poly_mat);

6 re_plaintext = inv_cipher (ciphertext, w, inv_s_box, inv_poly_mat);

Listing 2: ”Main” program aes_demo
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4 aes_init

4 aes_init

Before doing any actual en- or decryption, the initialization function aes_init has to
be called once.

s_box_gen rcon_gen

aes_init

key_expansion poly_mat_gen

rcon

key

1.21.1 1.3 1.4

1.0

inv_s_box s_box w poly_mat,
inv_poly_mat

s_box

Figure 8: Initialization function aes_init

aes_init (Figure 8 and Listing 3) generates the two substitution tables s_box and
inv_s_box by a call to s_box_gen (Line 2), defines the round constant vector rcon

(Line 3) and an exemplary key (Lines 4 . . . 6) and computes the expanded key schedule
w (Line 7). Additionally the two polynomial matrices poly_mat and inv_poly_mat are
generated (Line 8).

1 function [s_box, inv_s_box, w, poly_mat, inv_poly_mat] = aes_init

2 [s_box, inv_s_box] = s_box_gen;

3 rcon = rcon_gen;

4 key_hex = {’00’ ’01’ ’02’ ’03’ ’04’ ’05’ ’06’ ’07’ ...

5 ’08’ ’09’ ’0a’ ’0b’ ’0c’ ’0d’ ’0e’ ’0f’};

6 key = hex2dec(key_hex); w = key_expansion (key, s_box, rcon);

7 [poly_mat, inv_poly_mat]= poly_mat_gen;

Listing 3: Initialization function aes_init
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5 s_box_gen

5 s_box_gen

The substitution tables (S-boxes) s_box and inv_s_box are used by the expanded key
schedule function key_expansion and the en- and decrypting functions cipher and
inv_cipher to directly substitute a byte (element of GF(28)) by another byte of the
same finite field.

In any speed optimized real-world application the substitution tables would definitely be
hard coded a priori in a constant (see Example 7); but in the scope of this educational
paper it seems to be interesting, how the S-boxes can be generated.

s_box_gen

aff_transfind_inverse s_box_inversion
1.1.21.1.1 1.1.3

1.1.0

s_boxinverse

s_box inv_s_box

mod_pol

Figure 9: S-box generation function s_box_gen

The function s_box_gen (Figure 9 and Listing 4) creates the S-boxes (Line 1) by search-
ing for the inverses of all elements of GF(28) (Lines 4 . . . 6) by the use of find_inverse
(Line 5) and by applying affine transformations to all inverses (Lines 7 . . . 9) via
aff_trans (Line 8). Finally the inverse S-Box inv_s_box, to be used in inv_cipher, is
constructed from s_box by s_box_inversion (Line 10).

Line 2 defines the standard AES modular reduction polynomial mod_pol declared in
Equation (11) and Line 3 takes care of the fact that the inverse of 0 is defined as 0. Note
that Matlab arrays (vectors and matrices) start with an index of 1.
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5 s_box_gen

1 function [s_box, inv_s_box] = s_box_gen

2 mod_pol = bin2dec (’100011011’);

3 inverse(1) = 0;

4 for i = 1 : 255

5 inverse(i + 1) = find_inverse (i, mod_pol);

6 end

7 for i = 1 : 256

8 s_box(i) = aff_trans (inverse(i));

9 end

10 inv_s_box = s_box_inversion (s_box);

Listing 4: S-box generation function s_box_gen

5.1 find_inverse

The first step in the S-box generating process is to search for the multiplicative inverses
of all elements of the finite field GF(28). In other words: For all possible 256 byte values
b, find the byte b−1 that satisfies

b • b−1 = 1 (13)

where • denotes the polynomial multiplication defined in poly_mult.

The standard algorithm to perform such an inversion is called extended Euclidean algo-
rithm, a C++ implementation of which can be found e. g. in [9]. This educational paper
chooses a different, more pragmatic inversion approach, that is extremely slow on the
one hand but very straightforward on the other hand:

Line 1 of Listing 5 declares the function find_inverse that is called with the input
parameters b_in, which is the byte to be inverted and the modulo polynomial mod_pol,
with respect to which the inversion has to take place.

The algorithm itself simply loops (Lines 2 . . . 8) through all possible byte values and
test-wise computes the product of the byte to be inverted (b_in) and the current test
candidate (i) in Line 3. If the product ”accidently” equals 1 (Line 4), Equation (13) is
met, the inverse is found (Line 5) and the loop (and the function) enjoys its well deserved
break (Line 6).

18



5 s_box_gen

1 function b_inv = find_inverse (b_in, mod_pol)

2 for i = 1 : 255

3 prod = poly_mult (b_in, i, mod_pol);

4 if prod == 1

5 b_inv = i;

6 break

7 end

8 end

Listing 5: Inverse finding function find_inverse

The functionality of find_inverse is demonstrated in Example 5. The AES-Matlab
function find_inverse is called in order to search for the inverse of 152d with respect
to AES’ standard modulo polynomial 283d. The answer is 42d, which is immediately
proven by multiplying 152d by 42d with a result of 1.

>> find_inverse (152, 283)

ans =

42

>> poly_mult (152, 42, 283)

ans =

1

Example 5: Matlab example of find_inverse

5.2 aff_trans

After the inverses of all bytes have been found, the second step of the S-box creation
process is an affine transformation, consisting of a polynomial multiplication with a
specific constant (31d = 00011111b) modulo another constant (257d = 100000001b) and
the xor-addition of a third constant (99d = 01100011b):

bout = bin • 31d mod 257d ⊕ 99d (14)

where bin represents the input byte to be transformed, ⊕ denotes the bit-wise xor oper-
ation, and the output byte after the transformation is returned in bout.

Line 1 of Listing 6 declares the Matlab function aff_trans transforming the input
byte b_in into the output byte b_out. The three constants are defined in binary form
in Lines 2 . . . 4, Line 5 does the modulo multiplication and in Line 6 the bit-wise xor
operation is performed.
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5 s_box_gen

1 function b_out = aff_trans (b_in)

2 mod_pol = bin2dec (’100000001’);

3 mult_pol = bin2dec (’00011111’);

4 add_pol = bin2dec (’01100011’);

5 temp = poly_mult (b_in, mult_pol, mod_pol);

6 b_out = bitxor (temp, add_pol);

Listing 6: Affine transformation function aff_trans

Example 6 shows the affine transformation of 42d (which is the result of the inverse
finding Example 5) into 70d.

>> aff_trans (42)

ans =

70

Example 6: Matlab example of aff_trans

5.3 s_box_inversion

The inverse S-box is used in the decrypting function inv_cipher to revert the substitu-
tion carried out via the S-box.

The corresponding AES-Matlab function declared in Line 1 of Listing 7 takes the S-
box (s_box) as its input and generates the inverse S-box inv_s_box in a single loop
(Lines 2 . . . 4). The loop runs through all elements of the S-box, interprets the current
S-box element value as an index into the inverse S-box and inserts the values 0 . . . 255
at the appropriate places in the inverse S-box (Line 3).

Note the ±1 offsets in Line 3, once again resulting from the fact, that Matlab arrays
start with an index of 1.

1 function inv_s_box = s_box_inversion (s_box)

2 for i = 1 : 256

3 inv_s_box(s_box(i) + 1) = i - 1;

4 end

Listing 7: S-box inversion function s_box_inversion

Example 7 presents AES’ S-box and inverse S-box, resulting from a call to s_box_gen.
The 1 in the parameter list of s_box_gen(1) switches the verbose mode of the actually
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5 s_box_gen

implemented version of s_box_gen on, persuading the function to display intermediate
results.

In order to use the S-box e. g. to substitute the byte 152d by 70d according to Example 5
and Example 6, the element of the S-box with an index of 152 has to be found. Keeping
in mind that the indexing starts at 0 and that one row of the S-box in Example 7 holds
16 elements, the hexadecimal value 46h (which indeed represents the expected decimal
value of 70d) can be found in the tenth row and the ninth column:

152 = (10− 1) · 16 + (9− 1)

The backsubstitution from 70d back to 152d finds the value 98h = 152d in the fifth row
and the seventh column of the inverse S-box inv_s_box:

70 = (5− 1) · 16 + (7− 1)
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5 s_box_gen

>> s_box_gen(1);

********************************************

* *

* S - B O X C R E A T I O N *

* *

* (this might take a few seconds ;-)) *

* *

********************************************

s_box : 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

inv_s_box : 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Example 7: Matlab call to s_box_gen
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6 rcon_gen

6 rcon_gen

The round constant matrix is used in the key expansion scheme (key_expansion). It is
a 10×4 matrix of zeros except for the first column, which contains byte-conform powers
of 2 (see Example 9).

Listing 8 defines the standard AES modulo polynomial mod_pol in Line 2 and a round
constant initial value of 1 in Line 3. The remaining powers of 2 are then iteratively
(Lines 4 . . . 6) computed by polynomial multiplication of the previous value by 2 in
Line 5. Finally three zero columns are appended in Line 7.

1 function rcon = rcon_gen

2 mod_pol = bin2dec (’100011011’);

3 rcon(1) = 1;

4 for i = 2 : 10

5 rcon(i) = poly_mult (rcon(i-1), 2, mod_pol);

6 end

7 rcon = [rcon(:), zeros(10, 3)];

Listing 8: Round constant generation function rcon_gen

The polynomial nature of this multiplication by 2 (which actually is just a bit-shifting
to the left) does not have any influence on the result as long as the product does not
exceed a value of 255 (one byte). Therefore the first 8 elements of the first column of
rcon are (compare to Example 9):

1d = 01h = 00000001b

2d = 02h = 00000010b

4d = 04h = 00000100b

8d = 08h = 00001000b

16d = 10h = 00010000b

32d = 20h = 00100000b

64d = 40h = 01000000b

128d = 80h = 10000000b

The ninth element would ”normally” be

128d · 2 = 256d = 100h = 100000000b

which cannot be represented in one byte and is therefore ”folded back” into byte range
by modular reduction, as demonstrated in Example 8.
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6 rcon_gen

>> poly_mult (128, 2, 283)

ans =

27

>> dec2hex (ans)

ans =

1B

Example 8: Modular reduction of the ninth element of rcon

Example 9 demonstrates the call to rcon_gen in verbose mode.

>> rcon_gen(1);

********************************************

* *

* R C O N C R E A T I O N *

* *

********************************************

rcon : 01 00 00 00

02 00 00 00

04 00 00 00

08 00 00 00

10 00 00 00

20 00 00 00

40 00 00 00

80 00 00 00

1b 00 00 00

36 00 00 00

Example 9: Matlab call to rcon_gen
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7 key_expansion

7 key_expansion

The key expansion function (Figure 10) takes the user supplied 16 bytes long key and
utilizes the previously created round constant matrix rcon and the substitution table
s_box to generate a 176 byte long key schedule w, which will be used during the en- and
decryption processes.

The blue arrowed closed loop in Figure 10 indicates that the functions rot_word and
sub_bytes are called iteratively by the key expansion function.

key_expansion

sub_bytesrot_word
1.3.21.3.1

1.3.0

temp

temp

temp

w

rconkey s_box

s_box

Figure 10: Key expansion function key_expansion

As depicted in Figure 11 the 16 bytes of the key vector are rearranged (row-wise) into a
4× 4 initial key matrix (k11 . . . k44).

k11

k11

k41

k41

k31

k21
k14

k14

k44

k44

k34

k24
k12

k12

k42

k42

k32

k22
k13

k13

k43

k43

k33

k23{ {key vector

initial key matrix

Figure 11: Row-wise reshape of the key row vector into the initial key matrix

The basic principle of the key expansion (Figure 12) is an element-wise xor-sum of two
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7 key_expansion

previous rows; the direct predecessor row and the row four rows up. The seventh row
(k71 . . . k74) e. g. results from xor-ing the sixth row (k61 . . . k64) and the third row
(k31 . . . k34).

Additionally every fourth row (row 5, row 9, . . . ) is created differently. Before applying
the xor, the predecessor row is ”rotated”, ”substituted” and ”xor-ed”with its correspond-
ing round constant (see Listing 9).

k11

k51

k91

k31

k71

k41

rcon1

rcon2

k81

k42

k82

k43

k83

k44

k84

k32

k72

k33

k73

k34

k74

k12

k52

k92

k13

k53

k93

k14

k54

k94

k23

k63

k24

k64

k22k21

k61 k62

Figure 12: Key expansion

In Line 1 of Listing 9 the key expansion function with its input parameters key (user sup-
plied key), s_box (substitution table), and rcon (round constant) is declared, returning
the expanded key schedule w.

Line 2 utilizes the Matlab command reshape to rearrange the 16 bytes of the key into
a quadratic matrix of four rows, each holding four elements.

The effect of reshape is demonstrated in Example 10, rearranging the 4 elements of a
row vector into a 2× 2 matrix. Note the single quote character (’), which is Matlab’s
transpose-operator, resulting in a row-wise insertion of the vector elements into the
matrix.
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7 key_expansion

>> 1:4

ans =

1 2 3 4

>> reshape (ans, 2, 2)’

ans =

1 2

3 4

Example 10: Matlab example of reshape

A loop (Lines 3 . . . 12) creates the remaining 40 rows of the key schedule. In Line 4
a buffer (temp) is filled with the previous row, which is xor-ed with the row four rows
before in Line 11. Note the colon (:) as column index, which indicates that a complete
row is addressed.

Line 5 checks if the row index matches 5, 9, 13, . . . . If this is the case, the buffered row
is cyclically permuted (Line 6), substituted (Line 7) and xor-ed with the appropriate
round constant (Lines 8 . . . 9), before it is finally xor-ed in Line 11 too.

1 function w = key_expansion (key, s_box, rcon)

2 w = (reshape (key, 4, 4))’;

3 for i = 5 : 44

4 temp = w(i - 1, :);

5 if mod (i, 4) == 1

6 temp = rot_word (temp);

7 temp = sub_bytes (temp, s_box);

8 r = rcon ((i - 1)/4, :);

9 temp = bitxor (temp, r);

10 end

11 w(i, :) = bitxor (w(i - 4, :), temp);

12 end

Listing 9: Key expansion function key_expansion

7.1 rot_word

The permutation function rot_word is declared in Line 1 of Listing 10. The input ”word”
w_in is a row vector of four bytes and is cyclically permuted according to Figure 13. In
Matlab the permutation can easily be achieved by utilizing the new index vector in
Line 2.
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7 key_expansion

b1 b1b2 b2b3 b3b4 b4

Figure 13: Word rotating

1 function w_out = rot_word (w_in)

2 w_out = w_in([2 3 4 1]);

Listing 10: Word rotating function rot_word

7.2 sub_bytes

The substitution function sub_bytes (Line 1 of Listing 11) applies the S-box to one
or more input bytes bytes_in and truly manifests Matlab’s marvellous matrix ma-
nipulation mastery: In just one line of code (Line 2) the S-box is applied to a byte, a
vector of bytes or even a complete matrix of bytes. This nice feature makes it feasible to
utilize the same simple substitution function both for the substitution of a row vector in
key_expansion and for the substitution of the state matrix in the encryption function
cipher.

1 function bytes_out = sub_bytes (bytes_in, s_box)

2 bytes_out = s_box(bytes_in + 1);

Listing 11: Byte substitution function sub_bytes

Example 11 illustrates a call to key_expansion in verbose mode. The 16 bytes of the
user supplied key can be found in the 4 × 4 initial key matrix (w(1:4, :)). The next
output demonstrates the cyclic permutation of the fourth row (After rot_word). After
the application of the S-box, the current round constant is xor-ed and the fifth row of
the key schedule (w(05, :)) is finally computed by another xor with the first row.

For the determination of the sixth row (w(06, :)) all that rotating, substituting and
rcon xor-ing does not have to take place. The sixth row is just the xor-sum of the fifth
and the second row.
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7 key_expansion

>> key_expansion (key, s_box, rcon, 1);

********************************************

* *

* K E Y E X P A N S I O N *

* *

********************************************

w(1:4, :) : 00 01 02 03

04 05 06 07

08 09 0a 0b

0c 0d 0e 0f

After rot_word : 0d 0e 0f 0c

After sub_bytes : d7 ab 76 fe

rcon(05, :) : 01 00 00 00

After rcon xor : d6 ab 76 fe

w(05, :) : d6 aa 74 fd

w(06, :) : d2 af 72 fa

w(07, :) : da a6 78 f1

w(08, :) : d6 ab 76 fe

After rot_word : ab 76 fe d6 ...

Example 11: Matlab call to key_expansion
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8 poly_mat_gen

8 poly_mat_gen

The polynomial matrices poly_mat and inv_poly_mat are used in the mix_columns

function called by the en- and decryption functions cipher and inv_cipher respectively.
Both matrices have a size of 4× 4 and every row is a cyclic permutation (right shift) of
the previous row (see Example 14).

The function poly_mat_gen (Listing 12) achieves the row-wise permutation of such a
circulant matrix by a call to the cycle function in Line 5 and 9. The matrix to be
permuted is assembled in Lines 2 . . . 4 and Lines 6 . . . 8 by defining its first row in
hexadecimal representation in Lines 2 and 6, by converting the row to decimal (Lines 3
and 7) and by quadruplicating the row into a 4 × 4 matrix in Lines 4 and 8.

1 function [poly_mat, inv_poly_mat] = poly_mat_gen

2 row_hex = {’02’ ’03’ ’01’ ’01’};

3 row = hex2dec (row_hex)’;

4 rows = repmat (row, 4, 1);

5 poly_mat = cycle (rows, ’right’);

6 inv_row_hex = {’0e’ ’0b’ ’0d’ ’09’};

7 inv_row = hex2dec (inv_row_hex)’;

8 inv_rows = repmat (inv_row, 4, 1);

9 inv_poly_mat = cycle (inv_rows, ’right’);

Listing 12: Polynomial matrix generating function poly_mat_gen

The quadruplication process via the use of the Matlab function repmat is illustrated
in Example 12.

>> row = [2 3 1 1]

row =

2 3 1 1

>> rows = repmat (row, 4, 1)

rows =

2 3 1 1

2 3 1 1

2 3 1 1

2 3 1 1

Example 12: Row quadruplication via repmat
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8 poly_mat_gen

8.1 cycle

The cyclic permutation of the matrix has been outsourced into the function cycle,
enabling other functions like shift_rows and inv_shift_rows to use this functionality
too.

As illustrated in Figure 14 the function cycle (called with the parameter ’right’)
cyclically permutes the rows of the input matrix. The first row is not shifted at all,
the elements of the second row are shifted one position to the right (with the former
right-most element reentering as the left-most one), and the elements of the third and
fourth rows are shifted two and three positions to the right respectively.

m11 m11

m31 m31

m41 m41m42 m42m43 m43m44 m44

m32 m32m33 m33m34 m34

m12 m12m13 m13m14 m14

m23 m23m24 m24m21 m21m22 m22

Figure 14: Cyclic permutation function cycle performs a row-wise right shift

Once again, the algorithm used in Listing 13 is pure overkill for a 4 × 4 matrix; a simple
look-up table would do a much better job in an operational system. On the other hand,
the code demonstrates Matlab’s interesting indexing capabilities to formulate a closed
solution without a single for-loop.

The input parameters of the function cycle in Line 1 of Listing 13 are the matrix
(matrix_in) to be permuted and the direction (’left’ or ’right’) into which the
shifting has to take place.

In Lines 2 . . . 6 a shift direction depending column vector (col) is defined (compare
to Example 13). The appropriate row vector (row) is defined in Line 7. Both vec-
tors are expanded (quadruplicated) into the corresponding matrices (rows and cols) in
Lines 8 . . . 9. In Line 10 an index matrix (ind_mat) is created by adding both matrices
and ”folding back” the result into the 1 . . . 16 range via the modulo operator (mod).
The index matrix is finally applied to the matrix to be permuted in Line 11, resulting
in the permuted matrix matrix_out.
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8 poly_mat_gen

1 function matrix_out = cycle (matrix_in, direction)

2 if strcmp (direction, ’left’)

3 col = (0 : 5 : 15)’;

4 else

5 col = (16 : -3 : 7)’;

6 end

7 row = 0 : 4 : 12;

8 cols = repmat (col, 1, 4);

9 rows = repmat (row, 4, 1);

10 ind_mat = mod (rows + cols, 16) + 1;

11 matrix_out = matrix_in (ind_mat);

Listing 13: Cyclic permutation function cycle

The elements of the index matrix are interpreted as linear indices into the two-dimensional
matrix, as if the columns of the matrix were concatenated vertically. The element 7 in the
third row and the fourth column of ind_mat in Example 13 e. g. addresses the element
in the third row and the second column of the input matrix:

7 = (2− 1) · 4 + 3
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8 poly_mat_gen

>> col = (0 : 5 : 15)’

col =

0

5

10

15

>> row = 0 : 4 : 12

row =

0 4 8 12

>> cols = repmat (col, 1, 4);

cols =

0 0 0 0

5 5 5 5

10 10 10 10

15 15 15 15

>> rows = repmat (row, 4, 1);

rows =

0 4 8 12

0 4 8 12

0 4 8 12

0 4 8 12

>> ind_mat = mod (rows + cols, 16) + 1

ind_mat =

1 5 9 13

6 10 14 2

11 15 3 7

16 4 8 12

Example 13: Generation of an index matrix
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8 poly_mat_gen

>> poly_mat_gen (1);

********************************************

* *

* P O L Y _ M A T C R E A T I O N *

* *

********************************************

poly_mat : 02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

inv_poly_mat : 0e 0b 0d 09

09 0e 0b 0d

0d 09 0e 0b

0b 0d 09 0e

Example 14: Matlab call to poly_mat_gen
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9 cipher

The function cipher is the real McCoy, doing the actual encryption of the 16 byte long
input vector of plaintext into the output ciphertext vector as illustrated in Figure 15.
Further input parameters of cipher, that have been created by the initialization function
aes_init, are the substitution table s_box, the key schedule w, and the polynomial
matrix poly_mat.

cipher rearranges the plaintext vector into the state matrix and iteratively loops the
state through add_round_key, sub_bytes, shift_rows, and mix_columns.

add_round_key sub_bytes

cipher

shift_rows mix_columnsstate state

state

ciphertext

state
2.22.1 2.3 2.4

2.0

s_boxstate,
round_key

poly_mat

s_box

plaintext

poly_matw

Figure 15: Encryption function cipher

Line 2 of Listing 14 column-wise rearranges the 16 elements (bytes) of the plaintext vec-
tor, which is illustrated in Figure 16 and demonstrated in Example 15 (Initial_state).

b1

b1

b3

b4

b4

b8 b12 b16

b16
b7 b11 b15

b15b2

b5

b3

b9 b13

b13

b10 b14
b14

b2 b6{
plaintext vector {state matrix

Figure 16: Column-wise reshape of the plaintext row vector into the state matrix
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9 cipher

Line 3 extracts the first 4 × 4 matrix from the key schedule w. In order to match the
column-oriented state matrix, this first round key (matrix) has to be transposed and is
added to the initial state in Line 4 (compare to Example 15).

The state transformations inside the loop (Lines 5 . . . 11) are repeated nine times. They
consist of an application of the S-box in Line 6, a cyclical permutation of the state row
elements in Line 7, a polynomial matrix multiplication in Line 8, the extraction of the
current round key matrix in Line 9, and the binary addition of the round key in Line 10.

In the final round, which has been coded separately in Lines 12 . . . 15, the mix_columns
operation is missing.

Line 16 reshapes the final state (i. e. the ciphertext) back into a 16 byte long row
vector.

1 function ciphertext = cipher (plaintext, w, s_box, poly_mat)

2 state = reshape (plaintext, 4, 4);

3 round_key = (w(1:4, :))’;

4 state = add_round_key (state, round_key);

5 for i_round = 1 : 9

6 state = sub_bytes (state, s_box);

7 state = shift_rows (state);

8 state = mix_columns (state, poly_mat);

9 round_key = (w((1:4) + 4*i_round, :))’;

10 state = add_round_key (state, round_key);

11 end

12 state = sub_bytes (state, s_box);

13 state = shift_rows (state);

14 round_key = (w(41:44, :))’;

15 state = add_round_key (state, round_key);

16 ciphertext = reshape (state, 1, 16);

Listing 14: Encryption function cipher

9.1 add_round_key

The add_round_key function declared in Line 1 of Listing 15 just has to perform a bit-
wise xor of the state matrix and the round key matrix. Matlab can do this matrix
operation in just one line of code (Line 2).
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9 cipher

1 function state_out = add_round_key (state_in, round_key)

2 state_out = bitxor (state_in, round_key);

Listing 15: Round key adding function add_round_key

The functionality of add_round_key can be verified in Example 15 (State at start

of round 1).

9.2 shift_rows

As illustrated in Figure 17 the function shift_rows cyclically permutes (shifts) the rows
of the state matrix to the left.

s11 s11

s31 s31

s41 s41s42 s42s43 s43s44 s44

s32 s32s33 s33s34 s34

s12 s12s13 s13s14 s14

s23 s23s24 s24s21 s21s22 s22

Figure 17: Row shifting function shift_rows

Fortunately, the cyclic permutation algorithm has already be defined in function cycle.
Therefore, the function shift_rows, declared in Line 1 of Listing 16, simply has to call
cycle with the appropriate shift direction parameter (’left’) in Line 2.

1 function state_out = shift_rows (state_in)

2 state_out = cycle (state_in, ’left’);

Listing 16: Row shifting function shift_rows

Once again, Example 15 (After shift_rows) demonstrates the operation of shift_rows.

9.3 mix_columns

The mix_columns transformation computes the new state matrix S′ by left-multiplying
the current state matrix S by the polynomial matrix P:

S′ = P • S (15)
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9 cipher

The polynomial matrix P has already been defined in poly_mat_gen:
s′11 s′12 s′13 s′14

s′21 s′22 s′23 s′24

s′31 s′32 s′33 s′34

s′41 s′42 s′43 s′44

 =


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

 •


s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44

 (16)

Every element of the left hand side matrix is the scalar product of the corresponding
row of P and the column of S, e. g.:

s′23 =
[
1 2 3 1

]
•


s13

s23

s33

s43

 = 1 • s13 ⊕ 2 • s23 ⊕ 3 • s33 ⊕ 1 • s43 (17)

where • denotes the binary polynomial modulo multiplication (poly_mult) and ⊕ rep-
resents the corresponding bit-wise xor operation.

Since the declaration and definition of polynomial matrices as Matlab-objects, having
their own methods for multiplication, would go beyond the scope of this paper, the
function mix_columns, declared in Line 1 of Listing 17, has to perform a complete
standard matrix-matrix-multiplication involving the usual three nested loops (Lines 3,
4, and 6).

The input parameters of mix_columns are the state matrix (state_in) to be transformed
(S in Equation 15) and the polynomial matrix P (poly_mat), which has been created
in poly_mat_gen. Line 2 defines the AES modulo polynomial to be used in the inner
polynomial multiplication in Lines 7 . . . 10.

The double loop in Lines 3 . . . 4 addresses every single element of the transformed
matrix state S′ (as in Equation 16) via its row and column indices. Line 5 initializes
the state buffer temp_state which holds the cumulative sum during the element-wise
computation of the right hand side expression of Equation 17 (e. g. 1• s13⊕2• s23). The
inner loop (Lines 6 . . . 12) loops through all summands of Equation 17 (e. g. 3 • s33),
buffers every single product in temp_prod (Lines 7 . . . 10) and accumulates (bit-wise
xor) the current product to the state buffer in Line 11, which is finally inserted into the
transformed state matrix (state_out) in Line 13.
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1 function state_out = mix_columns (state_in, poly_mat)

2 mod_pol = bin2dec (’100011011’);

3 for i_col_state = 1 : 4

4 for i_row_state = 1 : 4

5 temp_state = 0;

6 for i_inner = 1 : 4

7 temp_prod = poly_mult (...

8 poly_mat(i_row_state, i_inner), ...

9 state_in(i_inner, i_col_state), ...

10 mod_pol);

11 temp_state = bitxor (temp_state, temp_prod);

12 end

13 state_out(i_row_state, i_col_state) = temp_state;

14 end

15 end

Listing 17: Column mixing function mix_columns

Due to the intricate nature of the mix_columns function, its functionality cannot be
verified in Example 15 at a glance.
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>> cipher (in, w, s_box, poly_mat, 1);

********************************************

* *

* C I P H E R *

* *

********************************************

Initial state : 00 44 88 cc

11 55 99 dd

22 66 aa ee

33 77 bb ff

Initial round key : 00 04 08 0c

01 05 09 0d

02 06 0a 0e

03 07 0b 0f

State at start of round 1 : 00 40 80 c0

10 50 90 d0

20 60 a0 e0

30 70 b0 f0

After sub_bytes : 63 09 cd ba

ca 53 60 70

b7 d0 e0 e1

04 51 e7 8c

After shift_rows : 63 09 cd ba

53 60 70 ca

e0 e1 b7 d0

8c 04 51 e7

After mix_columns : 5f 57 f7 1d

72 f5 be b9

64 bc 3b f9

15 92 29 1a

Round key : d6 d2 da d6

aa af a6 ab

74 72 78 76

fd fa f1 fe ...

Example 15: Matlab call to cipher
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10 inv_cipher

The decryption function inv_cipher (Figure 18) step-by-step reverses the transforma-
tions of the encryption process. The input parameter of inv_cipher are the ciphertext
to be decrypted (back) into plaintext, the inverse S-box (inv_s_box), the key schedule
w, and the inverse polynomial matrix inv_poly_mat.

add_round_keysub_bytes

inv_cipher

inv_shift_rows mix_columnsstate state

state

plaintext

state
3.23.1 3.3 3.4

3.0

inv_s_box round_keystate inv_poly_mat

ciphertext

inv_s_box inv_poly_matw

Figure 18: Decryption function inv_cipher

Listing 18 reveals the substantial similarity between the en- and the decryption function.
The ciphertext is reshaped into the state matrix in Line 2. The first round key to be
used here (Line 3) is the last one that has been used in cipher. As a consequence,
the xor operation in Line 4 directly reverses the final add_round_key call in cipher.
The last but one operation of cipher was a call to shift_rows, the effect of which is
neutralized by the call to inv_shift_rows in Line 6. The sub_bytes transformation
in Line 7 utilizes the inverse substitution table inv_s_box, reversing the substitution in
cipher. The same is true for the call to mix_columns in Line 10, which uses the inverse
polynomial matrix inv_poly_mat and therefore compensates the corresponding call in
cipher.

As in cipher, but in the opposite chronological order, it takes nine identical rounds
(Line 5) of row shifting, byte substituting and column mixing and a final tenth round
(again with a missing mix_columns call) to end up with the reshaped plaintext in Line 16.
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10 inv_cipher

1 function plaintext = inv_cipher (ciphertext, w, inv_s_box, inv_poly_mat)

2 state = reshape (ciphertext, 4, 4);

3 round_key = (w(41:44, :))’;

4 state = add_round_key (state, round_key);

5 for i_round = 9 : -1 : 1

6 state = inv_shift_rows (state);

7 state = sub_bytes (state, inv_s_box);

8 round_key = (w((1:4) + 4*i_round, :))’;

9 state = add_round_key (state, round_key);

10 state = mix_columns (state, inv_poly_mat);

11 end

12 state = inv_shift_rows (state);

13 state = sub_bytes (state, inv_s_box);

14 round_key = (w(1:4, :))’;

15 state = add_round_key (state, round_key);

16 plaintext = reshape (state, 1, 16);

Listing 18: Decryption function inv_cipher

10.1 inv_shift_rows

The function inv_shift_rows is supposed to reverse the effect of the corresponding
function shift_rows in the encryption process. Since shift_rows performs left shifts,
inv_shift_rows (Listing 19) simply has to shift all rows of the state matrix (back) to
the right.

1 function state_out = inv_shift_rows (state_in)

2 state_out = cycle (state_in, ’right’);

Listing 19: Inverse row shifting function inv_shift_rows

Example 16 demonstrates the application of inv_cipher to the ciphertext resulting from
a previous call to cipher.
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10 inv_cipher

>> inv_cipher (out, w, inv_s_box, inv_poly_mat, 1);

********************************************

* *

* I N V E R S E C I P H E R *

* *

********************************************

Initial state : 69 6a d8 70

c4 7b cd b4

e0 04 b7 c5

d8 30 80 5a

Initial round key : 13 e3 f3 4d

11 94 07 2b

1d 4a a7 30

7f 17 8b c5

State at start of round 9 : 7a 89 2b 3d

d5 ef ca 9f

fd 4e 10 f5

a7 27 0b 9f

After inv_shift_rows : 7a 89 2b 3d

9f d5 ef ca

10 f5 fd 4e

27 0b 9f a7

After inv_sub_bytes : bd f2 0b 8b

6e b5 61 10

7c 77 21 b6

3d 9e 6e 89

Round key : 54 f0 10 be

99 85 93 2c

32 57 ed 97

d1 68 9c 4e

After add_round_key : e9 02 1b 35

f7 30 f2 3c

4e 20 cc 21

ec f6 f2 c7 ...

Example 16: Matlab call to inv_cipher
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