

Matlab Implementation of the

Advanced Encryption Standard

Jörg J. Buchholz
http://buchholz.hs-bremen.de

December 19, 2001

Contents

1 Introduction 4
2 Finite Field Arithmetics 5
2.1 Byte Representation Forms 5
2.1.1 Binary Representation 5
2.1.2 Decimal Representation 5
2.1.3 Hexadecimal Representation 6
2.1.4 Polynomial Representation 7
2.2 Polynomial Addition 7
2.3 Polynomial Multiplication 9
2.4 Polynomial Division 10
2.5 poly_mult Implementation 11
3 aes_demo 14
4 aes_init 16
5 s_box_gen 17
5.1 find_inverse 18
5.2 aff_trans 19
5.3 s_box_inversion 20
6 rcon_gen 23
7 key_expansion 25
7.1 rot_word 27
7.2 sub_bytes 28
8 poly_mat_gen 30
8.1 cycle 31
9 cipher 35
9.1 add_round_key 36
9.2 shift_rows 37
9.3 mix_columns 37
10 inv_cipher 41
10.1 inv_shift_rows 42

1 Introduction

This paper discusses a Matlab implementation of the Advanced Encryption Standard (AES) [7]. AES is based on the block cipher Rijndael [4] [5] and became the designated successor of the Data Encryption Standard (DES) [8] which has been implemented in a tremendous number of cryptographic modules worldwide since 1977. Matlab [1] is a matrix-oriented programming language, perfectly suited for the matrix-based data structure of AES.

Even though this implementation is fully operational, (i. e. it can be utilized to encrypt arbitrarily chosen plaintext into ciphertext and vice versa), the main optimization parameter of this implementation has not been execution speed but understandability. Assembler programmers might throw their hands up in horror, looking at shifting or substitution functions that have been coded algorithmically step-by-step instead of using a simple predefined lookup table; the primary goal of this "educational" paper is to explain in greater detail what has to be done, rather than how it could be done for speed optimization reasons.
Also the question why certain algorithms have been chosen, e.g. with respect to the resistance against differential and linear cryptanalysis, is far beyond the scope of this paper. Interested readers are referred to the annex of the AES proposal [6] or a good book on cryptography [9]. Even Galois fields, the workhorse of modern cryptography, are introduced in a very pragmatic, engineer-friendly way, touching only as much mathematical background as necessary.
Furthermore, in order to minimize the number of if-then-else-conditions, a key length of 128 bits (16 bytes) has been implemented only; the extension to 24 or 32 bytes key lengths, as defined in [7], can easily be realized by altering the corresponding constants.

2 Finite Field Arithmetics

The following section introduces the different representation forms of a byte and discusses the basic arithmetics of finite fields.

A finite field, also called a Galois Field [3], [2], is a field with only finitely many elements. The finite field $\mathrm{GF}\left(2^{8}\right)$ e.g. consists of the $2^{8}=256$ different numbers ($0 \ldots 255$) represented by one byte (8 bits). Special xor- and modulo-operations, explained in detail in the following sections, make sure that the sum and the product of two finite field elements remain within the range of the original finite field.

2.1 Byte Representation Forms

The following four sections convert an example through the four usual representation forms of a finite field element.

2.1.1 Binary Representation

A byte consists of 8 bits, leading to the binary representation (index b) of an arbitrarily chosen example:

$$
\begin{equation*}
10100011_{b} \tag{1}
\end{equation*}
$$

2.1.2 Decimal Representation

This example can be represented in decimal form (index d) by multiplying every bit by its corresponding power of two:

$$
\begin{align*}
1 \cdot 2^{7}+0 \cdot 2^{6}+1 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0} & =2^{7}+2^{5}+2^{1}+2^{0} \\
& =128+32+2+1 \tag{2}\\
& =163_{d}
\end{align*}
$$

Matlab uses the predefined function bin2dec ("binary to decimal") to perform this conversion. Note the use of single quotation marks to input the binary representation as a string (character array):

```
>> bin2dec ('10100011')
ans =
    1 6 3
```

Example 1: Matlab example of bin2dec

2.1.3 Hexadecimal Representation

The numbers $0 \ldots 15$ can be expressed by a group of four bits called a nibble. The numbers $10 \ldots 15$ cannot be represented by a single decimal digit $(0 \ldots 9)$ and are therefore "abbreviated" by the letters A ... F in hexadecimal notation (index h):

$$
\begin{aligned}
& 0000_{b}=0_{d}=0_{h} \\
& 0001_{b}=1_{d}=1_{h} \\
& 0010_{b}=2_{d}=2_{h} \\
& 0011_{b}=3_{d}=3_{h} \\
& 0100_{b}=4_{d}=4_{h} \\
& 0101_{b}=5_{d}=5_{h} \\
& 0110_{b}=6_{d}=6_{h} \\
& 0111_{b}=7_{d}=7_{h} \\
& 1000_{b}=8_{d}=8_{h} \\
& 1001_{b}=9_{d}=9_{h} \\
& 1010_{b}=10_{d}=\mathrm{A}_{h} \\
& 1011_{b}=11_{d}=\mathrm{B}_{h} \\
& 1100_{b}=12_{d}=\mathrm{C}_{h} \\
& 1101_{b}=13_{d}=\mathrm{D}_{h} \\
& 1110_{b}=14_{d}=\mathrm{E}_{h} \\
& 1111_{b}=15_{d}=\mathrm{F}_{h}
\end{aligned}
$$

The conversion from binary to hexadecimal is now very straightforward. The byte is divided into two nibbles and each nibble is represented by its hexadecimal digit:

$$
\begin{equation*}
10100011_{b}=\underbrace{1010}_{\mathrm{A}_{h}} \underbrace{0011}_{3_{h}} b=\mathrm{A} 3_{h} \tag{3}
\end{equation*}
$$

For the conversion from hexadecimal back to decimal every hexadecimal digit is multiplied by its valence: The left digit is multiplied by 16 , while the right one is multiplied by 1 and is therefore just added:

$$
\begin{equation*}
\mathrm{A} 3_{h}=\mathrm{A} \cdot 2^{4}+3 \cdot 2^{0}=10 \cdot 16+3 \cdot 1=160+3=163_{d} \tag{4}
\end{equation*}
$$

Matlab offers the predefined function hex2dec to convert hexadecimal numbers back to their decimal representation:

```
>> hex2dec ('A3')
ans =
    1 6 3
```

Example 2: Matlab example of hex2dec

2.1.4 Polynomial Representation

The polynomial representation of a byte is very similar to the conversion from binary to decimal in Equation (2). Substituting every 2 on the left hand side of Equation (2) by an x defines a polynomial using the bits of the binary form as coefficients of the powers of x :

$$
\begin{equation*}
1 \cdot x^{7}+0 \cdot x^{6}+1 \cdot x^{5}+0 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+1 \cdot x^{1}+1 \cdot x^{0}=x^{7}+x^{5}+x+1 \tag{5}
\end{equation*}
$$

Note the fact, that the coefficients of this polynomial (representing a byte or $\mathrm{GF}\left(2^{8}\right)$ element) can only be 1 (or 0 respectively).

2.2 Polynomial Addition

"Usually" two polynomials are added by adding the coefficients of like powers of x according to Figure 1.

Figure 1: "Classical" polynomial addition

Since this might lead to some coefficients of the resulting polynomial not being 0 or 1 (e. g. $2 x$ and 2 in Figure 1), this "classical" sum does not represent a byte (i. e. an element of the original finite field).
In order to make sure that the resulting polynomial has only binary coefficients, the xor (exclusive or) operation depicted in Table 1 is used for the addition. Since the xor-"sum" of two 1 's is not 2 but $0(1$ xor $1=0)$, no 2 -coefficient can appear.

x	y	x xor y
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: xor operation

Figure 2 shows the bit-wise xor of two bytes (finite field elements), always resulting in another byte (element of the same finite field).

Figure 2: Binary polynomial addition

The resulting byte

$$
\begin{equation*}
244_{d}=\mathrm{F} 4_{h}=11110100_{b}=x^{7}+x^{6}+x^{5}+x^{4}+x^{2} \tag{6}
\end{equation*}
$$

directly corresponds to the polynomial of Figure 1, if the "non-binary" terms $2 x$ and 2 are omitted there.

The bit-wise xor operation bitxor is a build-in function of MATLAB and is used throughout AES, whenever two bytes are added:

```
>> bitxor (87, 163)
ans =
    244
```

Example 3: Matlab example of bitxor

2.3 Polynomial Multiplication

Two polynomials are multiplied by multiplying each summand of the first polynomial by (every summand of) the second polynomial and adding the coefficients of like powers (see Figure 3).

Figure 3: "Classical" polynomial multiplication

Once again, some coefficients of the resulting polynomial in Figure 3 are 2 or even 3 and have to be treated differently. The generalization of the xor-concept would now omit every power having an even coefficient and reduce every odd coefficient to 1, leading to a polynomial of

$$
\begin{equation*}
x^{13}+x^{8}+x^{7}+x^{4}+x^{3}+1 \tag{7}
\end{equation*}
$$

On the bit level (see Figure 4) the same result is achieved by shifting the second byte one bit to the left for every bit in the first byte. If a bit in the first byte is 0 , a 0 -byte is used instead of the second byte. Finally all corresponding bits are xor'ed.

Figure 4: Binary polynomial multiplication

Unfortunately the resulting polynomial (7) has a degree greater than 7, can therefore not be expressed in one byte (i. e. it is not a $\operatorname{GF}\left(2^{8}\right)$ element) and has to be transformed back into the "byte range" by the modulo division described in the next section.

2.4 Polynomial Division

The manual algorithm to divide two polynomials is depicted in Figure 5.

Figure 5: "Classical" polynomial division

The greatest power of the numerator $\left(x^{13}\right)$ is divided by the greatest power of the denominator $\left(x^{8}\right)$ yielding the first resulting term $\left(x^{5}\right)$. This term is multiplied by the complete denominator $\left(\rightarrow x^{13}+x^{9}+x^{8}+x^{6}+x^{5}\right.$) and subtracted from the numerator, resulting in a new numerator ($-x^{9}+x^{7}-x^{6}-x^{5}+x^{4}+x^{3}+1$). This procedure is repeated until
the greatest power of the new numerator has become less than the greatest power of the denominator. The final numerator $\left(x^{7}-x^{6}+2 x^{4}+x^{3}+x^{2}+x+1\right)$ is the remainder of this modulo operation. Applying the "generalized xor-rules" (even coefficients $\rightarrow 0$, odd coefficients $\rightarrow 1$) to the remainder leaves the desired byte-conform polynomial:

$$
\begin{equation*}
x^{7}+x^{6}+x^{3}+x^{2}+x+1 \tag{8}
\end{equation*}
$$

The bit level operations illustrated in Figure 6 achieve the same result by bit-wise shift and xor operations: The denominator is shifted to the left until its most significant bit (MSB) matches the MSB of the numerator. The subtraction is then performed via xor, resulting in a new, smaller numerator. The shifting and xor-ing is repeated, until the resulting numerator (the remainder) fits into one byte.

Figure 6: Binary polynomial division

2.5 poly_mult Implementation

The AES-function poly_mult (Listing 1) performs the multiplication of two polynomials (a and b) in $\mathrm{GF}\left(2^{8}\right)$ using a third polynomial (mod_pol) for the modular reduction.

```
function ab = poly_mult (a, b, mod_pol)
ab = 0;
for i_bit = 1 : 8
    if bitget (a, i_bit)
        b_shift = bitshift (b, i_bit - 1);
        ab = bitxor (ab, b_shift);
    end
end
for i_bit = 16 : -1 : 9
    if bitget (ab, i_bit)
        mod_pol_shift = bitshift (mod_pol, i_bit - 9);
        ab = bitxor (ab, mod_pol_shift);
    end
end
```


Listing 1: MatLab function poly_mult

After the initialization (Line 2) poly_mult accomplishes the multiplication (Lines $3 \ldots 8$) and the modular reduction (Line $9 \ldots$ 14) in two very similar loops.

For the multiplication (compare Figure 4) every bit (Line 3) of the first factor a is tested (Line 4) and if it is present, the second factor b is shifted to the left (Line 5) and xor-ed to the accumulating result ab (Line 6).
The modular reduction (compare Figure 6) interprets the intermediate result ab as the numerator, loops through all the bits of the numerator, starting with the MSB (Line 9) and shifts (Line 11) the modulo polynomial mod_pol "under" detected (Line 10) bits of the numerator, in order to perform the appropriate xor-operation (Line 12).
The Matlab Example 4 summarizes the operations depicted in the previous sections by multiplying the bytes

$$
\begin{equation*}
87_{d}=1010111_{b}=x^{6}+x^{4}+x^{2}+x+1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
163_{d}=10100011_{b}=x^{7}+x^{5}+x+1 \tag{10}
\end{equation*}
$$

using the standard AES modulo polynomial

$$
\begin{equation*}
283_{d}=100011011_{b}=x^{8}+x^{4}+x^{3}+x+1 \tag{11}
\end{equation*}
$$

resulting in

$$
\begin{equation*}
87_{d} \bullet 163_{d} \bmod 283_{d}=207_{d} \tag{12}
\end{equation*}
$$

by a call to the function poly_mult:

```
>> poly_mult (87, 163, 283)
ans =
    207
```

Example 4: Matlab example of poly_mult

3 aes_demo

The Matlab program aes_demo demonstrates the use of the AES-package.

Figure 7: "Main" AES demonstration program aes_demo

As depicted in Figure 7 and Listing 2 the first task of the "main" program aes_demo is a call to aes_init in Line 1. This initialization routine supplies ${ }^{1}$ the actual en- and decryption functions (cipher and inv_cipher) with the expanded key schedule w, the substitution tables s_box and inv_s_box, and the polynomial matrices poly_mat and inv_poly_mat. These quantities have to be generated only once and can be used by any subsequent en- or decipher call.
The Lines $2 \ldots 4$ define the 16 byte (128 bit) of exemplary plaintext to be encrypted. In Line 5 this input block is passed to the encryption function cipher, which returns the corresponding 16 byte of ciphertext.
In order to demonstrate the decryption process too, the ciphertext is then forwarded to the decipher function inv_cipher in Line 6, resulting in the reprocessed plaintext block re_plaintext, which can be compared to and certainly has to equal the original plaintext.

[^0]```
1 [s_box, inv_s_box, w, poly_mat, inv_poly_mat] = aes_init;
2 plaintext_hex = {'00' '11' '22' '33' '44' '55' '66' '77' ...
 '88' '99' 'aa' 'bb' 'cc' 'dd' 'ee' 'ff'};
4 plaintext = hex2dec (plaintext_hex);
5 ciphertext = cipher (plaintext, w, s_box, poly_mat);
6 re_plaintext = inv_cipher (ciphertext, w, inv_s_box, inv_poly_mat);
```

Listing 2: "Main" program aes_demo

## 4 aes_init

Before doing any actual en- or decryption, the initialization function aes_init has to be called once.


Figure 8: Initialization function aes_init
aes_init (Figure 8 and Listing 3) generates the two substitution tables s_box and inv_s_box by a call to s_box_gen (Line 2), defines the round constant vector rcon (Line 3) and an exemplary key (Lines $4 \ldots 6$ ) and computes the expanded key schedule w (Line 7). Additionally the two polynomial matrices poly_mat and inv_poly_mat are generated (Line 8).

1 function [s_box, inv_s_box, w, poly_mat, inv_poly_mat] = aes_init
2 [s_box, inv_s_box] = s_box_gen;
3 rcon = rcon_gen;
4 key_hex = \{'00' '01' '02' '03' '04' '05' '06' '07' ...
'08' '09' '0a' 'Ob' '0c' 'Od' 'Oe' 'Of'\};
6 key = hex2dec(key_hex); w = key_expansion (key, s_box, rcon);
7 [poly_mat, inv_poly_mat]= poly_mat_gen;
Listing 3: Initialization function aes_init

## 5 s_box_gen

The substitution tables (S-boxes) s_box and inv_s_box are used by the expanded key schedule function key_expansion and the en- and decrypting functions cipher and inv_cipher to directly substitute a byte (element of GF $\left(2^{8}\right)$ ) by another byte of the same finite field.
In any speed optimized real-world application the substitution tables would definitely be hard coded a priori in a constant (see Example 7); but in the scope of this educational paper it seems to be interesting, how the S-boxes can be generated.


Figure 9: S-box generation function s_box_gen

The function s_box_gen (Figure 9 and Listing 4) creates the S-boxes (Line 1) by searching for the inverses of all elements of $\operatorname{GF}\left(2^{8}\right)($ Lines $4 \ldots 6)$ by the use of find_inverse (Line 5) and by applying affine transformations to all inverses (Lines $7 \ldots 9$ ) via aff_trans (Line 8). Finally the inverse S-Box inv_s_box, to be used in inv_cipher, is constructed from s_box by s_box_inversion (Line 10).
Line 2 defines the standard AES modular reduction polynomial mod_pol declared in Equation (11) and Line 3 takes care of the fact that the inverse of 0 is defined as 0 . Note that Matlab arrays (vectors and matrices) start with an index of 1 .

```
function [s_box, inv_s_box] = s_box_gen
mod_pol = bin2dec ('100011011');
inverse(1) = 0;
for i = 1 : 255
 inverse(i + 1) = find_inverse (i, mod_pol);
end
for i = 1 : 256
 s_box(i) = aff_trans (inverse(i));
end
inv_s_box = s_box_inversion (s_box);
```

Listing 4: S-box generation function s_box_gen

## 5.1 find_inverse

The first step in the S-box generating process is to search for the multiplicative inverses of all elements of the finite field $\operatorname{GF}\left(2^{8}\right)$. In other words: For all possible 256 byte values $b$, find the byte $b^{-1}$ that satisfies

$$
\begin{equation*}
b \bullet b^{-1}=1 \tag{13}
\end{equation*}
$$

where • denotes the polynomial multiplication defined in poly_mult.
The standard algorithm to perform such an inversion is called extended Euclidean algorithm, a C++ implementation of which can be found e.g. in [9]. This educational paper chooses a different, more pragmatic inversion approach, that is extremely slow on the one hand but very straightforward on the other hand:

Line 1 of Listing 5 declares the function find_inverse that is called with the input parameters b_in, which is the byte to be inverted and the modulo polynomial mod_pol, with respect to which the inversion has to take place.
The algorithm itself simply loops (Lines $2 \ldots 8$ ) through all possible byte values and test-wise computes the product of the byte to be inverted (b_in) and the current test candidate (i) in Line 3. If the product "accidently" equals 1 (Line 4), Equation (13) is met, the inverse is found (Line 5) and the loop (and the function) enjoys its well deserved break (Line 6).

```
function b_inv = find_inverse (b_in, mod_pol)
for i = 1 : 255
 prod = poly_mult (b_in, i, mod_pol);
 if prod == 1
 b_inv = i;
 break
 end
end
```

Listing 5: Inverse finding function find_inverse

The functionality of find_inverse is demonstrated in Example 5. The AES-Matlab function find_inverse is called in order to search for the inverse of $152_{d}$ with respect to AES' standard modulo polynomial $283_{d}$. The answer is $42_{d}$, which is immediately proven by multiplying $152_{d}$ by $42_{d}$ with a result of 1 .

```
>> find_inverse (152, 283)
ans =
 4 2
>> poly_mult (152, 42, 283)
ans =
```

    1
    Example 5: Matlab example of find_inverse

## 5.2 aff_trans

After the inverses of all bytes have been found, the second step of the S-box creation process is an affine transformation, consisting of a polynomial multiplication with a specific constant ( $31_{d}=00011111_{b}$ ) modulo another constant $\left(257_{d}=100000001_{b}\right)$ and the xor-addition of a third constant $\left(99_{d}=01100011_{b}\right)$ :

$$
\begin{equation*}
b_{\text {out }}=b_{\text {in }} \bullet 31_{d} \quad \bmod 257_{d} \oplus 99_{d} \tag{14}
\end{equation*}
$$

where $b_{i n}$ represents the input byte to be transformed, $\oplus$ denotes the bit-wise xor operation, and the output byte after the transformation is returned in $b_{\text {out }}$.
Line 1 of Listing 6 declares the Matlab function aff_trans transforming the input byte $\mathrm{b}_{\text {_ }}$ in into the output byte $\mathrm{b}_{\text {_out. }}$. The three constants are defined in binary form in Lines $2 \ldots 4$, Line 5 does the modulo multiplication and in Line 6 the bit-wise xor operation is performed.

```
1 function b_out = aff_trans (b_in)
2 mod_pol = bin2dec ('100000001');
3 mult_pol = bin2dec ('00011111');
4 add_pol = bin2dec ('01100011');
5 temp = poly_mult (b_in, mult_pol, mod_pol);
6 b_out = bitxor (temp, add_pol);
```

Listing 6: Affine transformation function aff_trans

Example 6 shows the affine transformation of $42_{d}$ (which is the result of the inverse finding Example 5) into $70_{d}$.

```
>> aff_trans (42)
ans =
 7 0
```

Example 6: Matlab example of aff_trans

## 5.3 s_box_inversion

The inverse S-box is used in the decrypting function inv_cipher to revert the substitution carried out via the S-box.

The corresponding AES-Matlab function declared in Line 1 of Listing 7 takes the Sbox (s_box) as its input and generates the inverse S-box inv_s_box in a single loop (Lines $2 \ldots 4$ ). The loop runs through all elements of the S-box, interprets the current S-box element value as an index into the inverse S-box and inserts the values $0 \ldots 255$ at the appropriate places in the inverse S-box (Line 3).

Note the $\pm 1$ offsets in Line 3, once again resulting from the fact, that Matlab arrays start with an index of 1 .

```
function inv_s_box = s_box_inversion (s_box)
for i = 1 : 256
 inv_s_box(s_box(i) + 1) = i - 1;
end
```

Listing 7: S-box inversion function s_box_inversion

Example 7 presents AES' S-box and inverse S-box, resulting from a call to s_box_gen. The 1 in the parameter list of s_box_gen(1) switches the verbose mode of the actually
implemented version of s_box_gen on, persuading the function to display intermediate results.

In order to use the S-box e.g. to substitute the byte $152_{d}$ by $70_{d}$ according to Example 5 and Example 6, the element of the S-box with an index of 152 has to be found. Keeping in mind that the indexing starts at 0 and that one row of the S-box in Example 7 holds 16 elements, the hexadecimal value $46_{h}$ (which indeed represents the expected decimal value of $70_{d}$ ) can be found in the tenth row and the ninth column:

$$
152=(10-1) \cdot 16+(9-1)
$$

The backsubstitution from $70_{d}$ back to $152_{d}$ finds the value $98_{h}=152_{d}$ in the fifth row and the seventh column of the inverse S-box inv_s_box:

$$
70=(5-1) \cdot 16+(7-1)
$$

```
>> s_box_gen(1);

```

        s_box : 63 7c 77 7b f2 6b 6f c5 300167 2b fe d7 ab 76
            ca 82 c9 7d fa 5947 f0 ad d4 a2 af 9c a4 72 c0
            b7 fd 932636 3f f7 cc 34 a5 e5 f1 71 d8 3115
                        04 c7 23 c3 1896059 a 071280 e2 eb 27 b2 75
                        0983 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
                        53 d1 00 ed 20 fc b1 5b 6a cb be \(394 a 4 c 58\) cf
                        d0 ef aa fb 43 4d 338545 f9 \(027 f 50\) 3c \(9 f\) a8
                        51 a3 40 8f 92 9d 38 f5 bc b6 da 2110 ff f3 d2
                        cd 0c 13 ec 5f 974417 c4 a7 7e 3d 64 5d 1973
                        60814 f dc 22 2a 908846 ee b8 14 de 5 e 0 b db
                        e0 32 3a 0a 490624 5c c2 d3 ac 629195 e4 79
                        e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 657 a ae 08
                        ba 7825 2e 1c a6 b4 c6 e8 dd 74 1f \(4 b\) bd \(8 b 8 a\)
                        70 3e b5 664803 f6 0e 613557 b9 86 c1 1d 9e
                        e1 f8 981169 d9 8e \(949 b 1 e 87\) e9 ce 5528 df
                        8c a1 89 Od bf e6 42684199 2d Of b0 54 bb 16
    inv_s_box : 52 09 6a d5 3036 a5 38 bf 40 a3 9e 81 f3 d7 fb
$7 c$ e3 3982 9b 2f ff 87348 8 4344 c4 de e9 cb
54 7b 9432 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
08 2e a1 6628 d9 24 b2 76 5b a2 $496 d 8 b$ d1 25
72 f8 f6 6486689816 d4 a4 5c cc 5d 65 b6 92
6 c 704850 fd ed b9 da 5 e 154657 a7 8d 9d 84
90 d8 ab 00 8c bc d3 0a f7 e4 5805 b8 b3 4506
d0 2c 1e 8f ca 3f 0f 02 c1 af bd 0301138 ab 6b
3a $9111414 f 67 \mathrm{dc}$ ea 97 f2 cf ce f0 b4 e6 73
96 ac 7422 e7 ad 3585 e2 f9 37 e8 1c 75 df 6e
47 f1 1a 71 1d 29 c5 $896 f$ b7 620 e aa 18 be 1 b
fc 56 3e $4 b$ c6 d2 $79209 a \operatorname{db} c 0$ fe 78 cd 5a f4
$1 f$ dd a8 338807 c7 31 b1 1210592780 ec $5 f$
$60517 f$ a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83539961
17 2b 047 e ba 77 d6 26 e1 6914635521 0c 7d

Example 7: Matlab call to s_box_gen

## 6 rcon_gen

The round constant matrix is used in the key expansion scheme (key_expansion). It is a $10 \times 4$ matrix of zeros except for the first column, which contains byte-conform powers of 2 (see Example 9).
Listing 8 defines the standard AES modulo polynomial mod_pol in Line 2 and a round constant initial value of 1 in Line 3. The remaining powers of 2 are then iteratively (Lines $4 \ldots 6$ ) computed by polynomial multiplication of the previous value by 2 in Line 5. Finally three zero columns are appended in Line 7.

```
function rcon = rcon_gen
mod_pol = bin2dec ('100011011');
rcon(1) = 1;
for i = 2 : 10
 rcon(i) = poly_mult (rcon(i-1), 2, mod_pol);
end
rcon = [rcon(:), zeros(10, 3)];
```

Listing 8: Round constant generation function rcon_gen

The polynomial nature of this multiplication by 2 (which actually is just a bit-shifting to the left) does not have any influence on the result as long as the product does not exceed a value of 255 (one byte). Therefore the first 8 elements of the first column of rcon are (compare to Example 9):

$$
\begin{aligned}
& 1_{d}=01_{h}=00000001_{b} \\
& 2_{d}=02_{h}=00000010_{b} \\
& 4_{d}=04_{h}=00000100_{b} \\
& 8_{d}=08_{h}=00001000_{b} \\
& 16_{d}=10_{h}=00010000_{b} \\
& 32_{d}=20_{h}=00100000_{b} \\
& 64_{d}=40_{h}=01000000_{b} \\
& 128_{d}=80_{h}=10000000_{b}
\end{aligned}
$$

The ninth element would "normally" be

$$
128_{d} \cdot 2=256_{d}=100_{h}=100000000_{b}
$$

which cannot be represented in one byte and is therefore "folded back" into byte range by modular reduction, as demonstrated in Example 8.

```
>> poly_mult (128, 2, 283)
ans =
 2 7
>> dec2hex (ans)
ans =
1B
```

Example 8: Modular reduction of the ninth element of rcon

Example 9 demonstrates the call to rcon_gen in verbose mode.

```
>> rcon_gen(1);

* *
* R C O N C R E A T I O N *
* *
```

rcon : 01000000
02000000
04000000
08000000
10000000
20000000
40000000
80000000
$1 b 000000$
36000000

Example 9: Matlab call to rcon_gen

## 7 key_expansion

The key expansion function (Figure 10) takes the user supplied 16 bytes long key and utilizes the previously created round constant matrix rcon and the substitution table s_box to generate a 176 byte long key schedule w, which will be used during the en- and decryption processes.
The blue arrowed closed loop in Figure 10 indicates that the functions rot_word and sub_bytes are called iteratively by the key expansion function.


Figure 10: Key expansion function key_expansion
As depicted in Figure 11 the 16 bytes of the key vector are rearranged (row-wise) into a $4 \times 4$ initial key matrix $\left(k_{11} \ldots k_{44}\right)$.


Figure 11: Row-wise reshape of the key row vector into the initial key matrix

The basic principle of the key expansion (Figure 12) is an element-wise xor-sum of two
previous rows; the direct predecessor row and the row four rows up. The seventh row $\left(k_{71} \ldots k_{74}\right)$ e.g. results from xor-ing the sixth row $\left(k_{61} \ldots k_{64}\right)$ and the third row $\left(\begin{array}{lll}k_{31} & \ldots & k_{34}\end{array}\right)$.
Additionally every fourth row (row 5 , row $9, \ldots$ ) is created differently. Before applying the xor, the predecessor row is "rotated", "substituted" and "xor-ed" with its corresponding round constant (see Listing 9).


Figure 12: Key expansion

In Line 1 of Listing 9 the key expansion function with its input parameters key (user supplied key), s_box (substitution table), and rcon (round constant) is declared, returning the expanded key schedule w.

Line 2 utilizes the Matlab command reshape to rearrange the 16 bytes of the key into a quadratic matrix of four rows, each holding four elements.
The effect of reshape is demonstrated in Example 10, rearranging the 4 elements of a row vector into a $2 \times 2$ matrix. Note the single quote character ('), which is Matlab's transpose-operator, resulting in a row-wise insertion of the vector elements into the matrix.

```
>> 1:4
ans =
 1 2 3 4
>> reshape (ans, 2, 2)'
ans =
 1 2
 3 4
```

Example 10: MatLaB example of reshape

A loop (Lines $3 \ldots$ 12) creates the remaining 40 rows of the key schedule. In Line 4 a buffer (temp) is filled with the previous row, which is xor-ed with the row four rows before in Line 11. Note the colon (:) as column index, which indicates that a complete row is addressed.

Line 5 checks if the row index matches $5,9,13, \ldots$. If this is the case, the buffered row is cyclically permuted (Line 6), substituted (Line 7) and xor-ed with the appropriate round constant (Lines $8 \ldots 9$ ), before it is finally xor-ed in Line 11 too.

```
function w = key_expansion (key, s_box, rcon)
w = (reshape (key, 4, 4))';
for i = 5 : 44
 temp = w(i - 1, :);
 if mod (i, 4) == 1
 temp = rot_word (temp);
 temp = sub_bytes (temp, s_box);
 r = rcon ((i - 1)/4, :);
 temp = bitxor (temp, r);
 end
 w(i, :) = bitxor (w(i - 4, :), temp);
end
```

Listing 9: Key expansion function key_expansion

## 7.1 rot_word

The permutation function rot_word is declared in Line 1 of Listing 10. The input "word" w_in is a row vector of four bytes and is cyclically permuted according to Figure 13. In Matlab the permutation can easily be achieved by utilizing the new index vector in Line 2.


Figure 13: Word rotating

1 function w_out = rot_word (w_in)
2 w_out $=$ w_in $\left(\left[\begin{array}{llll}2 & 3 & 4 & 1\end{array}\right]\right)$;
Listing 10: Word rotating function rot_word

## 7.2 sub_bytes

The substitution function sub_bytes (Line 1 of Listing 11) applies the S-box to one or more input bytes bytes_in and truly manifests Matlab's marvellous matrix manipulation mastery: In just one line of code (Line 2) the S-box is applied to a byte, a vector of bytes or even a complete matrix of bytes. This nice feature makes it feasible to utilize the same simple substitution function both for the substitution of a row vector in key_expansion and for the substitution of the state matrix in the encryption function cipher.

1 function bytes_out = sub_bytes (bytes_in, s_box)
2 bytes_out = s_box (bytes_in + 1);
Listing 11: Byte substitution function sub_bytes

Example 11 illustrates a call to key_expansion in verbose mode. The 16 bytes of the user supplied key can be found in the $4 \times 4$ initial key matrix ( $\mathrm{w}(1: 4,:$ ) ). The next output demonstrates the cyclic permutation of the fourth row (After rot_word). After the application of the S-box, the current round constant is xor-ed and the fifth row of the key schedule ( $\mathrm{w}(05,:)$ ) is finally computed by another xor with the first row.

For the determination of the sixth row (w(06, :)) all that rotating, substituting and rcon xor-ing does not have to take place. The sixth row is just the xor-sum of the fifth and the second row.

```
>> key_expansion (key, s_box, rcon, 1);

* *
* K E Y E X P A N S I O N *
* *
w(1:4, :): 00 01 02 03
 0 4 0 5 0 6 0 7
 08 09 0a 0b
 Oc Od Oe Of
After rot_word : Od Oe Of Oc
After sub_bytes : d7 ab 76 fe
rcon(05, :) : 01 00 00 00
After rcon xor : d6 ab 76 fe
w(05, :) : d6 aa 74 fd
w(06, :) : d2 af 72 fa
w(07, :) : da a6 78 f1
w(08, :) : d6 ab 76 fe
After rot_word : ab 76 fe d6 ...
```

Example 11: MatLaB call to key_expansion

## 8 poly_mat_gen

The polynomial matrices poly_mat and inv_poly_mat are used in the mix_columns function called by the en- and decryption functions cipher and inv_cipher respectively. Both matrices have a size of $4 \times 4$ and every row is a cyclic permutation (right shift) of the previous row (see Example 14).

The function poly_mat_gen (Listing 12) achieves the row-wise permutation of such a circulant matrix by a call to the cycle function in Line 5 and 9. The matrix to be permuted is assembled in Lines $2 \ldots 4$ and Lines $6 \ldots 8$ by defining its first row in hexadecimal representation in Lines 2 and 6, by converting the row to decimal (Lines 3 and 7) and by quadruplicating the row into a $4 \times 4$ matrix in Lines 4 and 8 .

```
function [poly_mat, inv_poly_mat] = poly_mat_gen
row_hex = {'02' '03' '01' '01'};
row = hex2dec (row_hex)';
rows = repmat (row, 4, 1);
poly_mat = cycle (rows, 'right');
inv_row_hex = {'0e' 'Ob' 'Od' '09'};
inv_row = hex2dec (inv_row_hex)';
inv_rows = repmat (inv_row, 4, 1);
inv_poly_mat = cycle (inv_rows, 'right');
```

Listing 12: Polynomial matrix generating function poly_mat_gen

The quadruplication process via the use of the Matlab function repmat is illustrated in Example 12.

```
>> row = [l2 3 1 1 1}
row =
>> rows = repmat (row, 4, 1)
rows =
 2 3
 2 3
 2 3
 2 3
```

Example 12: Row quadruplication via repmat

## 8.1 cycle

The cyclic permutation of the matrix has been outsourced into the function cycle, enabling other functions like shift_rows and inv_shift_rows to use this functionality too.

As illustrated in Figure 14 the function cycle (called with the parameter 'right') cyclically permutes the rows of the input matrix. The first row is not shifted at all, the elements of the second row are shifted one position to the right (with the former right-most element reentering as the left-most one), and the elements of the third and fourth rows are shifted two and three positions to the right respectively.


Figure 14: Cyclic permutation function cycle performs a row-wise right shift

Once again, the algorithm used in Listing 13 is pure overkill for a $4 \times 4$ matrix; a simple look-up table would do a much better job in an operational system. On the other hand, the code demonstrates Matlab's interesting indexing capabilities to formulate a closed solution without a single for-loop.
The input parameters of the function cycle in Line 1 of Listing 13 are the matrix (matrix_in) to be permuted and the direction ('left' or 'right') into which the shifting has to take place.
In Lines $2 \ldots 6$ a shift direction depending column vector (col) is defined (compare to Example 13). The appropriate row vector (row) is defined in Line 7. Both vectors are expanded (quadruplicated) into the corresponding matrices (rows and cols) in Lines $8 \ldots 9$. In Line 10 an index matrix (ind_mat) is created by adding both matrices and "folding back" the result into the $1 \ldots 16$ range via the modulo operator (mod). The index matrix is finally applied to the matrix to be permuted in Line 11, resulting in the permuted matrix matrix_out.

```
function matrix_out = cycle (matrix_in, direction)
if strcmp (direction, 'left')
 col = (0 : 5 : 15)';
else
 col = (16 : -3 : 7)';
end
row = 0 : 4 : 12;
cols = repmat (col, 1, 4);
rows = repmat (row, 4, 1);
ind_mat = mod (rows + cols, 16) + 1;
matrix_out = matrix_in (ind_mat);
```

Listing 13: Cyclic permutation function cycle

The elements of the index matrix are interpreted as linear indices into the two-dimensional matrix, as if the columns of the matrix were concatenated vertically. The element 7 in the third row and the fourth column of ind_mat in Example 13 e.g. addresses the element in the third row and the second column of the input matrix:

$$
7=(2-1) \cdot 4+3
$$

```
>> col = (0 : 5 : 15)'
col =
 0
 5
 10
 1 5
>> row = 0 : 4 : 12
row =
 0 4 8 12
>> cols = repmat (col, 1, 4);
cols =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
5 & 5 & 5 & 5
\end{tabular}
 10}10101
 15 15 15 15
>> rows = repmat (row, 4, 1);
rows =
 0 4 8 12
 0 4 8 12
 0 4 8 12
 0}4
>> ind_mat = mod (rows + cols, 16) + 1
ind_mat =
 1 5 9 13
 6
 11}15\mp@code{15
 16 4 8 12
```

Example 13: Generation of an index matrix

```
>> poly_mat_gen (1);

* *
* POLY_MA T C R E A T I O N *
* *
**
```

    poly_mat : 02030101
        01020301
        01010203
        03010102
    inv_poly_mat : Oe Ob Od 09
09 Oe Ob Od
0d 09 0e 0b
0b 0d 090 0

Example 14: Matlab call to poly_mat_gen

## 9 cipher

The function cipher is the real McCoy, doing the actual encryption of the 16 byte long input vector of plaintext into the output ciphertext vector as illustrated in Figure 15. Further input parameters of cipher, that have been created by the initialization function aes_init, are the substitution table s_box, the key schedule w, and the polynomial matrix poly_mat.
cipher rearranges the plaintext vector into the state matrix and iteratively loops the state through add_round_key, sub_bytes, shift_rows, and mix_columns.


Figure 15: Encryption function cipher

Line 2 of Listing 14 column-wise rearranges the 16 elements (bytes) of the plaintext vector, which is illustrated in Figure 16 and demonstrated in Example 15 (Initial_state).


Figure 16: Column-wise reshape of the plaintext row vector into the state matrix

Line 3 extracts the first $4 \times 4$ matrix from the key schedule w. In order to match the column-oriented state matrix, this first round key (matrix) has to be transposed and is added to the initial state in Line 4 (compare to Example 15).
The state transformations inside the loop (Lines $5 \ldots$ 11) are repeated nine times. They consist of an application of the S-box in Line 6, a cyclical permutation of the state row elements in Line 7, a polynomial matrix multiplication in Line 8, the extraction of the current round key matrix in Line 9, and the binary addition of the round key in Line 10.
In the final round, which has been coded separately in Lines $12 \ldots 15$, the mix_columns operation is missing.
Line 16 reshapes the final state (i.e. the ciphertext) back into a 16 byte long row vector.

```
function ciphertext = cipher (plaintext, w, s_box, poly_mat)
state = reshape (plaintext, 4, 4);
round_key = (w(1:4, :))';
state = add_round_key (state, round_key);
for i_round = 1 : 9
 state = sub_bytes (state, s_box);
 state = shift_rows (state);
 state = mix_columns (state, poly_mat);
 round_key = (w((1:4) + 4*i_round, :))';
 state = add_round_key (state, round_key);
end
state = sub_bytes (state, s_box);
state = shift_rows (state);
round_key = (w(41:44, :))';
state = add_round_key (state, round_key);
ciphertext = reshape (state, 1, 16);
```

Listing 14: Encryption function cipher

## 9.1 add_round_key

The add_round_key function declared in Line 1 of Listing 15 just has to perform a bitwise xor of the state matrix and the round key matrix. Matlab can do this matrix operation in just one line of code (Line 2).

1 function state_out = add_round_key (state_in, round_key)
2 state_out = bitxor (state_in, round_key);
Listing 15: Round key adding function add_round_key

The functionality of add_round_key can be verified in Example 15 (State at start of round 1).

## 9.2 shift_rows

As illustrated in Figure 17 the function shift_rows cyclically permutes (shifts) the rows of the state matrix to the left.


Figure 17: Row shifting function shift_rows

Fortunately, the cyclic permutation algorithm has already be defined in function cycle. Therefore, the function shift_rows, declared in Line 1 of Listing 16, simply has to call cycle with the appropriate shift direction parameter ('left') in Line 2.

1 function state_out = shift_rows (state_in)
2 state_out = cycle (state_in, 'left');
Listing 16: Row shifting function shift_rows

Once again, Example 15 (After shift_rows) demonstrates the operation of shift_rows.

## 9.3 mix_columns

The mix_columns transformation computes the new state matrix $\mathbf{S}^{\prime}$ by left-multiplying the current state matrix $\mathbf{S}$ by the polynomial matrix $\mathbf{P}$ :

$$
\begin{equation*}
\mathbf{S}^{\prime}=\mathbf{P} \bullet \mathbf{S} \tag{15}
\end{equation*}
$$

The polynomial matrix $\mathbf{P}$ has already been defined in poly_mat_gen:

$$
\left[\begin{array}{llll}
s_{11}^{\prime} & s_{12}^{\prime} & s_{13}^{\prime} & s_{14}^{\prime}  \tag{16}\\
s_{21}^{\prime} & s_{22}^{\prime} & s_{23}^{\prime} & s_{24}^{\prime} \\
s_{31}^{\prime} & s_{32}^{\prime} & s_{33}^{\prime} & s_{34}^{\prime} \\
s_{41}^{\prime} & s_{42}^{\prime} & s_{43}^{\prime} & s_{44}^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{array}\right] \bullet\left[\begin{array}{llll}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
s_{31} & s_{32} & s_{33} & s_{34} \\
s_{41} & s_{42} & s_{43} & s_{44}
\end{array}\right]
$$

Every element of the left hand side matrix is the scalar product of the corresponding row of $\mathbf{P}$ and the column of $\mathbf{S}$, e. g.:

$$
s_{23}^{\prime}=\left[\begin{array}{llll}
1 & 2 & 3 & 1
\end{array}\right] \bullet\left[\begin{array}{l}
s_{13}  \tag{17}\\
s_{23} \\
s_{33} \\
s_{43}
\end{array}\right]=1 \bullet s_{13} \oplus 2 \bullet s_{23} \oplus 3 \bullet s_{33} \oplus 1 \bullet s_{43}
$$

where • denotes the binary polynomial modulo multiplication (poly_mult) and $\oplus$ represents the corresponding bit-wise xor operation.
Since the declaration and definition of polynomial matrices as Matlab-objects, having their own methods for multiplication, would go beyond the scope of this paper, the function mix_columns, declared in Line 1 of Listing 17, has to perform a complete standard matrix-matrix-multiplication involving the usual three nested loops (Lines 3, 4 , and 6).
The input parameters of mix_columns are the state matrix (state_in) to be transformed ( $\mathbf{S}$ in Equation 15) and the polynomial matrix $\mathbf{P}$ (poly_mat), which has been created in poly_mat_gen. Line 2 defines the AES modulo polynomial to be used in the inner polynomial multiplication in Lines 7 ... 10 .

The double loop in Lines $3 \ldots 4$ addresses every single element of the transformed matrix state $\mathbf{S}^{\prime}$ (as in Equation 16) via its row and column indices. Line 5 initializes the state buffer temp_state which holds the cumulative sum during the element-wise computation of the right hand side expression of Equation 17 (e.g. $1 \bullet s_{13} \oplus 2 \bullet s_{23}$ ). The inner loop (Lines $6 \ldots$ 12) loops through all summands of Equation 17 (e.g. $3 \bullet s_{33}$ ), buffers every single product in temp_prod (Lines $7 \ldots$ 10) and accumulates (bit-wise xor) the current product to the state buffer in Line 11, which is finally inserted into the transformed state matrix (state_out) in Line 13.

```
function state_out = mix_columns (state_in, poly_mat)
mod_pol = bin2dec ('100011011');
for i_col_state = 1 : 4
 for i_row_state = 1 : 4
 temp_state = 0;
 for i_inner = 1 : 4
 temp_prod = poly_mult (...
 poly_mat(i_row_state, i_inner), ...
 state_in(i_inner, i_col_state), ...
 mod_pol);
 temp_state = bitxor (temp_state, temp_prod);
 end
 state_out(i_row_state, i_col_state) = temp_state;
 end
end
```

Listing 17: Column mixing function mix_columns

Due to the intricate nature of the mix_columns function, its functionality cannot be verified in Example 15 at a glance.

```
>> cipher (in, w, s_box, poly_mat, 1);
**
* *
* C I P H E R *
* *
Initial state : 00 44 88 cc
 11 55 99 dd
 2266 aa ee
 33 77 bb ff
Initial round key : 00 04 08 0c
 01 05 09 0d
 02 06 0a 0e
 03 07 0b 0f
State at start of round 1 : 00 40 80 c0
 10 50 90 d0
 20 60 a0 e0
 30 70 b0 f0
After sub_bytes : 63 09 cd ba
 ca 536070
 b7 d0 e0 e1
 04 51 e7 8c
After shift_rows : 63 09 cd ba
 536070 ca
 e0 e1 b7 d0
 8c 04 51 e7
After mix_columns : 5f 57 f7 1d
 72 f5 be b9
 64 bc 3b f9
 1592 29 1a
Round key :
d6 d2 da d6
aa af a6 ab
74727876
fd fa f1 fe...
Example 15: Matlab call to cipher
```


## 10 inv_cipher

The decryption function inv_cipher (Figure 18) step-by-step reverses the transformations of the encryption process. The input parameter of inv_cipher are the ciphertext to be decrypted (back) into plaintext, the inverse S-box (inv_s_box), the key schedule w, and the inverse polynomial matrix inv_poly_mat.


Figure 18: Decryption function inv_cipher

Listing 18 reveals the substantial similarity between the en- and the decryption function. The ciphertext is reshaped into the state matrix in Line 2. The first round key to be used here (Line 3) is the last one that has been used in cipher. As a consequence, the xor operation in Line 4 directly reverses the final add_round_key call in cipher. The last but one operation of cipher was a call to shift_rows, the effect of which is neutralized by the call to inv_shift_rows in Line 6. The sub_bytes transformation in Line 7 utilizes the inverse substitution table inv_s_box, reversing the substitution in cipher. The same is true for the call to mix_columns in Line 10, which uses the inverse polynomial matrix inv_poly_mat and therefore compensates the corresponding call in cipher.
As in cipher, but in the opposite chronological order, it takes nine identical rounds (Line 5) of row shifting, byte substituting and column mixing and a final tenth round (again with a missing mix_columns call) to end up with the reshaped plaintext in Line 16.

```
function plaintext = inv_cipher (ciphertext, w, inv_s_box, inv_poly_mat)
state = reshape (ciphertext, 4, 4);
round_key = (w(41:44, :))';
state = add_round_key (state, round_key);
for i_round = 9 : -1 : 1
 state = inv_shift_rows (state);
 state = sub_bytes (state, inv_s_box);
 round_key = (w((1:4) + 4*i_round, :))';
 state = add_round_key (state, round_key);
 state = mix_columns (state, inv_poly_mat);
end
state = inv_shift_rows (state);
state = sub_bytes (state, inv_s_box);
round_key = (w(1:4, :))';
state = add_round_key (state, round_key);
plaintext = reshape (state, 1, 16);
```

Listing 18: Decryption function inv_cipher

## 10.1 inv_shift_rows

The function inv_shift_rows is supposed to reverse the effect of the corresponding function shift_rows in the encryption process. Since shift_rows performs left shifts, inv_shift_rows (Listing 19) simply has to shift all rows of the state matrix (back) to the right.

1 function state_out = inv_shift_rows (state_in)
2 state_out = cycle (state_in, 'right');
Listing 19: Inverse row shifting function inv_shift_rows

Example 16 demonstrates the application of inv_cipher to the ciphertext resulting from a previous call to cipher.


Example 16: Matlab call to inv_cipher

## List of Figures

1 "Classical" polynomial addition ..... 7
2 Binary polynomial addition ..... 8
3 "Classical" polynomial multiplication ..... 9
4 Binary polynomial multiplication ..... 10
5 "Classical" polynomial division ..... 10
6 Binary polynomial division ..... 11
7 "Main" AES demonstration program aes_demo ..... 14
8 Initialization function aes_init ..... 16
9 S-box generation function s_box_gen ..... 17
10 Key expansion function key_expansion ..... 25
11 Row-wise reshape of the key row vector into the initial key matrix ..... 25
12 Key expansion ..... 26
13 Word rotating ..... 28
14 Cyclic permutation function cycle performs a row-wise right shift ..... 31
15 Encryption function cipher ..... 35
16 Column-wise reshape of the plaintext row vector into the state matrix ..... 35
17 Row shifting function shift_rows ..... 37
18 Decryption function inv_cipher ..... 41
List of Tables
1 xor operation ..... 8
List of Listings
1 Matlab function poly_mult ..... 12
2 "Main" program aes_demo ..... 15
3 Initialization function aes_init ..... 16
4 S-box generation function s_box_gen ..... 18
5 Inverse finding function find_inverse ..... 19
6 Affine transformation function aff_trans ..... 20
7 S-box inversion function s_box_inversion ..... 20
8 Round constant generation function rcon_gen ..... 23
9 Key expansion function key_expansion ..... 27
10 Word rotating function rot_word ..... 28
11 Byte substitution function sub_bytes ..... 28
12 Polynomial matrix generating function poly_mat_gen ..... 30
13 Cyclic permutation function cycle ..... 32
14 Encryption function cipher ..... 36
15 Round key adding function add_round_key ..... 37
16 Row shifting function shift_rows ..... 37
17 Column mixing function mix_columns ..... 39
18 Decryption function inv_cipher ..... 42
19 Inverse row shifting function inv_shift_rows ..... 42
List of Examples
1 Matlab example of bin2dec ..... 5
2 Matlab example of hex2dec ..... 7
3 Matlab example of bitxor ..... 8
4 Matlab example of poly_mult ..... 13
5 Matlab example of find_inverse ..... 19
6 Matlab example of aff_trans ..... 20
7 Matlab call to s_box_gen ..... 22
8 Modular reduction of the ninth element of rcon ..... 24
9 Matlab call to rcon_gen ..... 24
10 Matlab example of reshape ..... 27
11 Matlab call to key_expansion ..... 29
12 Row quadruplication via repmat ..... 30
13 Generation of an index matrix ..... 33
14 Matlab call to poly_mat_gen ..... 34
15 Matlab call to cipher ..... 40
16 Matlab call to inv_cipher ..... 43

## References

[1] The Mathworks: Matlab, The Language of Technical Computing. http://www. mathworks.com/products/matlab, (2001).
[2] The Mathworks: Galois Field Computations. http://www.mathworks.com/ access/helpdesk/help/toolbox/comm/tutor3.shtml, Communications Toolbox, (2001).
[3] J. Daemen, L. R. Knudsen, and V. Rijmen: The Galois Field GF(2 ${ }^{8}$ ). http: //www.ddj.com/documents/s=936/ddj9710e/9710es1.htm, Dr. Dobb's Journal, (October 1997).
[4] V. Rijmen: The block cipher Rijndael. http://www.esat.kuleuven.ac.be/ ~rijmen/rijndael/, (2001).
[5] J. Daemen, V. Rijmen: AES proposal: Rijndael. http://www.esat.kuleuven.ac. be/~rijmen/rijndael/rijndaeldocV2.zip, (1999).
[6] J. Daemen: Annex to AES proposal Rijndael. http://www.esat.kuleuven.ac.be/ ~rijmen/rijndael/PropCorr.PDF, (1998).
[7] National Institute of Standards and Technology: Specification for the Advanced Encryption Standard (AES). http://csrc.nist.gov/publications/fips/fips197/ fips-197.pdf, (2001).
[8] National Institute of Standards and Technology: Data Encryption Standard (DES). http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf, (2001).
[9] B. Schneier: Applied Cryptography. Addison-Wesley, (1996).


[^0]:    ${ }^{1}$ Figure 7 indicates that aes_init directly passes its parameters to cipher and inv_cipher. This is not really the case. In the actual implementation, the parameters are first returned from aes_init to aes_demo and then passed to cipher and inv_cipher by aes_demo.

