
A3

128

Ki Rand

SRES

A8

Kc

GEA3

8CA
5CB

16
CE

Direction

Plaintext /
Ciphertext

Ciphertext /
Plaintext

Mobile Station

128 128

Ki Rand

128

128 64

SIM

Input
32

64

64

Figure 1. The GPRS security block diagram

An End-to-End Hardware Approach
Security for the GPRS

P. Kitsos, N. Sklavos and O. Koufopavlou
University of Patras/Electrical and Computer Engineering Department, Patras, Greece

e-mail: pkitsos@ee.upatras.gr

Abstract—An end-to-end security architecture and its VLSI
implementation for the GPRS is proposed in this paper. The
security offered by GPRS is similar to that offered by the
Global Mobile System (GSM). Three algorithms are needed.
The A3 and A8, for authentication and ciphering key
generation, and the GEA3 algorithm for data
confidentiality. The A3 and A8 are based on the RIJNDAEL
block cipher, while the GEA3 is based on the KASUMI
block cipher. For both ciphers efficient implementations are
proposed. The whole design was coded using VHDL
language and for the hardware implementations of the
designs FPGA devices were used. Detailed analysis is shown,
in terms of frequency, throughput, and covered area.

I. INTRODUCTION
The General Packet Radio Services (GPRS) offers to

the users continuous connection to Internet and Intranet.
Some of the services may require high level of security,
for example the financial transaction over the Internet.
The GPRS has inherited most of the security threats that
exists in the Global Mobile System (GSM) system. In
addition the GPRS encounters new and great challenges.
This since GPRS employs IP technology and it is
connected to the Internet. The technical security offered
by GPRS is similar to that offered by the GSM.
Confidentiality, integrity and authentication are the
services that devices and networks should cover [1].

In order to cover the GPRS security features three
algorithms are used. The A3 algorithm [2] is used for
authentication procedure, the A8 algorithm [2] is used for
encryption key generation, and finally the GEA3
algorithm [3] is used for data confidentiality. The A3 and
A8 algorithms are based on the RIJNDAEL block cipher
[4], while the GEA3 algorithm is based on the KASUMI
block cipher [5]. The performance of the proposed
RIJNDAEL block cipher implementation is slight slower
than other previous designs [6]-[9] in terms of throughput,
but the implementation is compact enough in order to
integrate better in the Subscriber Identification Card
(SIM). The GEA3 algorithm is integrated in the mobile
equipment and is used for bulk encryption. So, the
performance demands are very high and an efficient
implementation of the KASUMI block cipher is needed.
The proposed GEA3 and KASUMI implementations
outperforms all the previous published designs [10]-[14].

The paper is organized as follows: In section II the
GPRS security architecture is described. In section III the
proposed GPRS security VLSI implementation is
described. The synthesis results for the FPGA
implementation are shown in section IV, and the paper
conclusions are given in section V.

II. GPRS SECURITY FEATURES
The SIM contains the identity of the subscriber. A

Mobile Equipment (ME) with the SIM inserted they
together form a Mobile Station (MS). The primary
function of the SIM is to authenticate an MS before it
gets access to the network. The SIM contains the
Individual Subscriber Authentication Key Ki, the
ciphering key generating algorithm (A8), the
authentication algorithm (A3), as well as a Personal
Identification Number (PIN). The GEA3 algorithm is
implemented in the ME. Figure 1, shows the block
diagram of the GPRS security in the MS.

The Ki is 128 bits. The purpose of the algorithm A3 is
to allow authentication of a mobile subscriber’s identity.
The algorithm A3 must compute an expected response
SRES from a random challenge RAND sent by the
network. For this calculation, algorithm A3 is used with
the secret authentication key Ki. If the authentication is
passed, the A8 algorithm uses the Ki with the 128 bits
authentication RAND to generate the 64 bits Ciphering
Key, Kc. The GEA3 algorithm is integrated in the ME and
is used for encryption the data during a data transfer under
the ciphering key, Kc. This algorithm uses the Input and
Direction for synchronization purpose. In addition some
predefine constants, CA, CB, and CE are used.

KASUMI

64

Sel

64

REGISTER

64

Key Stream (KS)

Plaintext /
Ciphertext

Initial
Input

128

BLKCNT64

Ciphertext /
Plaintext

IN1 IN2

Modified K’C
or K’C

64

64

MUX

GEA3 DATA MAPPING

DIRECTION

128

K’CM

13

Figure 3. The GEA3 algorithm implementation

EK

OPc

RAND

OPc

c3

OPc

OPc

c4

OPc

OPc

c2

OPc
f3 f4

RES

f2

Kc

128

128 128 128

128 128 128

128 128

128128128

Ki
128 128 128

Ki

128

EK EK EK

rotate
by r2

rotate
by r3

rotate
by r4

G1

128

32

G2

64

Ki Ki

A3 A8

temp

CK IK

Figure 2. The A3 and A8 architectures

KEY
EXPANSION

UNIT

INITIAL-
KEY

REGISTER

128

Key

INITIAL ROUND

32 InputColumn

S-Box
32

DATA SHIFT
32

MIX COLUMN
32

KEY ADDITION

32

OUTPUT REGISTER

32

128
Output

128 Input

32

Column Key

128

Initial Key

128

Initial Key

Transformed Column

Basic Block
Transormation Round

Figure 4. The RIJNDAEL block cipher implementation

III. GPRS SECURITY VLSI IMPLEMENTATION
For the implementation of algorithms A3 and A8 the

f2, f3, f4, functions of the UMTS MILENAGE [15] are
used. The implementation of these algorithms is shown in
Fig. 2.

The constants ci, are stored and accessed from the ROM
blocks. The OPc value is stored and accessed from the
RAM. With EK the RIJNDAEL cipher is denoted. In the
A3 algorithm, the temp signal is equal to 128-bit. For the
SRES production the 64 least significant bits are used, by
the function G1 in the following way: SRES=temp(0 to
31) XOR temp(32 to 63). For the Kc production, the
outputs of the f3 and f4 function are used, by the function
G2, in the following way: Kc=CK(0 to 63) XOR CK(64
to 127) XOR IK(0 to 63) XOR IK(64 to 127).

The GEA3 is a stream cipher that encrypts/decrypts
blocks of data, between 1 to M bytes (max. 65536 bytes)
in length, by using a ciphering key K’C. The K’C is
defined as K’C = KC || KC. The GEA3 stream generator is
based on a KASUMI cipher in a form of Output
Feedback Mode (OFB) [16], and generates the output
Key stream in multiples of 64 bits. The implementation
of the GEA3 algorithm is illustrated in Fig. 3. The GEA3
data mapping pads the KASUMI initial value and set the
value of the counter BLKCNT. The CA, CB, and CE
parameters are fixed and stored in the data mapping
subunit. At the initialization phase, the system parameters
CA, CB, Input, CE, and Direction are padded in order to
make a 64-bits Initial Input. During the initialization
process (first loop execution) the MUX subunit selects
the IN1 (Initial Input) and the KASUMI produces the
initial Key Stream (KS) by using the modified K’c. This
initial KS is stored in a register and used for the next
iterations. In all the next iterations, the MUX selects the
second input (IN2) and the K’c is used by the KASUMI.
The Block Count (BLKCNT) counter is set initially to 0,
and after each iteration, is increased by one. The

maximum value of the counter is (8M/64), which is the
number of iterations. The input M defines the
plaintext/ciphertext length (# of bits).

A. RIJNDAEL Block Cipher implementation
The proposed hardware implementation of the

RIJNDAEL block cipher is shown in Fig. 4. This
implementation is similar to the [17], but with reduced
the hardware resources. The different transformations of
the algorithm architecture operate on the intermediate
result, called State. The State can be pictured as a
rectangular array of bytes. This array has four rows. The
number of columns (Nb) is equal to the block length
divided by 32. The Key is also considered as a
rectangular array with the same number of rows as State.
The number of columns (Nk) is equal to the key length
divided by 32. The number of rounds (Nr), depends on
the values Nb and Nk. For block and key length equal to

KIi,2

AND <<<1

OR<<<1

KLi,1

KLi,2

I
16

L0 R0

L' R'

FIi,1

L0 R0

FIi,2

I
32

16 16

FIi,3

OUTPUT
32

16 16

KOi,1 KOi,2

KOi,3

KIi,1 KIi,2

KIi,3

L3 R3

FLi FOi

KLi KOi,KIi

OUTPUT

S9 S7

ZE

TR

S9 S7

ZE

TR

KIi,j,2

9 7

7 9

16

32

L0 R0

L4 R4

KIi,j,1

ORC

ERC

MUX

64

REGISTER

REGISTER
64

64

64

128RKi

128RKi+1

REGISTER

Plaintext

Ciphertext

Figure 5. The KASUMI block cipher implementation

128 bits both values of Nb and Nk are equal to 4 and the
Nr is defined as 10. The proposed architecture consists of
the Key Expansion unit, the Basic Block Transformation
Round, the Initial Round and the appropriate registers. 41
clock cycles are needed for the completion of a 128-bit
plaintext transformation. The Basic Block
Transformation Round is composed of four building
blocks: S-BOXes, Data Shift, Mix Column and Key
Addition. In order to achieve high-speed performance the
S-BOXes are implemented by ROM. In the proposed
implementation four [256x8]-bit ROM blocks were used.
The implementation of the S-BOXes requires the
implementation of two different mathematical functions:
1) the multiplicative inverse of each byte of the State in
the finite field GF(28) and 2) an affine mapping
transformation over GF(2). The multiplicative inverse
function produces a byte, which is the input of the affine

mapping transformation function. This is defined as:
Out[i] = In[i] XOR In[(i+4) mod 8] XOR In[(i+5) mod 8]
XOR In[(i+6) mod 8] XOR In[(i+7) mod 8] XOR C(i)
where In[i] is the i-th bit of the input byte, and C(i) is the
i-th bit of a byte predefined constant C, as the algorithm
specifications defines.

B. KASUMI Block Cipher Implementation
The proposed KASUMI cipher consists of the two main

components. The Key Scheduling Unit, which is
responsible for the round keys generation, and the
KASUMI Core, which executes the basic encryption
procedure. The KASUMI Core implementation uses two
pipeline stages. The even round of KASUMI cipher has
different structure of the odd round. The odd rounds are
denoted as Odd Round Cell (ORC) and the even rounds
are denoted as Even Round Cell (ERC).

Figure 5 shows the implementations of the KASUMI
and ORC. In the ERC the order of the functions FLi and
FOi is reversed. As it is previously mentioned the GEA3
algorithm uses the KASUMI cipher in OFB mode of
operation. This mode, in order to work correctly,
demands the output block of the previous KASUMI
execution. So, the pipeline technique is used only in order
to decrease the critical path and only one data block can
process at any time. The proposed Key Expansion Unit
architecture is implemented by shift registers in order to
produce a number of sub-keys. The rest of the sub-keys
are generated by bit-wise XOR operations with the
constants Cj. These constants are stored in the 8x16 bits
ROM memory. At total 40 16-bit sub-keys are generated.
With the appropriate concatenations of the sub-keys the
round keys are generated. The round keys are computed
and stored in a 52x16 bit register file.

IV. SYNTHESIS RESULTS AND EVALUATION
The proposed architecture (Fig. 1) was captured by

using VHDL with structural description logic. The VHDL

code was simulated and verified by using the official test
vectors, provided by the 3GPP standard [15], [18].

The synthesis results of the proposed RIJNDAEL block
cipher and the A3/8 unit are shown in Table I. The FPGA
device XILINX V400E-FG676 was used.

The performance comparison with previous published
works is shown in Table II. In addition, the synthesis
results of the proposed GEA3 and KASUMI block cipher
implementations, are shown in Table III. The FPGA
device XILINX V200E-FG456 was used.

TABLE I.
RIJNDAEL AND A3/8 UNIT IMPLEMENTATION RESULTS

 RIJNDAEL block cipher A3/A8 Unit

Function Generators 2387 9548
CLBs 1194 4750

D Flip Flop 715 2960
F (MHz) 78 70

Throughput (Mb/s) 243 218

Performance comparisons between the proposed
KASUMI cipher implementation and implementations in
[10]-[14] are given in Table IV.

The GEA3 algorithm is almost the same with the
UMTS algorithm f8. Because no other previous GEA3
implementations are referred, comparisons with the
previous f8 implementation are made (see Table V).

V. CONCLUSIONS
A hardware implementation of the GPRS security was

presented in this paper. The proposed system performs all
the necessary security features that GPRS demands. The
main architectural units of the system are based on the
RIJNDAEL and KASUMI block ciphers. Efficient
implementations for both ciphers are proposed. The
system was synthesized, placed, and routed by using
FPGA devices. It is an efficient design for devices with
GPRS applications.

REFERENCES
[1] 3GPP TS 43.020 V4.0.0 3rd Generation Partnership Project;

Technical Specification Group Services and system Aspects;
Security related network functions

[2] ETSI/SAGE. Specification of the MILENAGE-2G Algorithms: an
Example Algorithm Set for the GSM Authentication and Key
Generation Functions A3 and A8. ETSI/SAGE, May 2002.

[3] ETSI/SAGE. Specification of the A5/3 Encryption Algorithms for
GSM and EDGE, and GEA3 Encryption Algorithm for GPRS,
Document 1: A5/3 and GEA3 Specifications. ETSI/SAGE, May
2002.

[4] Joan Daemen and Vincent Rijmen: "AES Proposal: Rijndael",
http://csrc.nist.gov/encryption/aes/round2/AESAlgs/Rijndael/Rijn
dael.pdf.

[5] KASUMI specification, Specification of the 3GPP Confidentiality
and Integrity Algorithms, Document 2, ETSI/SAGE, December
1999.

[6] A. J. Elbirt, W. Yip, B. Chetwynd, C. Paar, “An FPGA Based
Performance Evaluation of the AES Block Cipher Candidate
Algorithm finalists”, 3rd Advanced Encryption Standard (AES)
Candidate Conference, New York, USA, April 13-14, 2000.

[7] A. Dandalis, V.K. Prasanna, J.D.P. Rolim, “ A Comparative Study
of Performance of AES Final Candidates Using FPGAs”, 3rd
Advanced Encryption Standard (AES) Candidate Conference,
New York, April 13-14, 2000.

[8] K. Gaj and P. Chodowiec, “Comparison of the Hardware
Performance of the AES candidates using Reconfigurable
Hardware”, 3rd Advanced Encryption Standard (AES) Candidate
Conference, New York, USA, April 13-14, 2000.

[9] V. Fischer and M. Drutarovsky, “Two Methods of Rijndael
Implementation in Reconfigurable Hardware”, CHESS 2001,
France, May 14-16, 2001.

[10] K. Marinis, N. K. Moshopoulos, F. Karoubalis, and K. Z.
Pekmestzi, “On the Hardware Implementation of the 3GPP
Confidentiality and Integrity Algorithms”, 4th International
Conference for the Information Security, ISC 2001 Malaga, Spain,
pp. 248-265, October 1-3, 2001.

[11] K. Marinis, N. K. Moshopoulos, F. Karoubalis, and K. Z.
Pekmestzi, “An Area Optimized Hardware Implementation of the
3GPP Confidentiality and Integrity Algorithms”, 8th Conference
on Optimization of Electrical and Electronic Equipment, OPTIM
2002, Brasov, Romania, May 16-17, 2002.

[12] HoWon Kim, YongJe Choi, MooSeop Kim, and HeuiSu Ryu,
"Hardware Implementation of 3GPP KASUMI Crypto
Algorithm," The 2002 International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC),
Vol 1., pp. 317 - 320, July 16-19, 2002, Phuket, Thailand.

[13] Akashi Satoh, Sumio Morioka, “Small and High-Speed Hardware
Architectures for the 3GPP Standard Cipher KASUMI”, 5th
International Conference Information Security, ISC 2002 Sao
Paulo, Brazil, September 30 - October 2, 2002, LNCS 2433
Springer 2002.

[14] Guy-Armand Kamendje, “FPGA Architectures for High Speed
UMTS Encryption”, 2nd Asian International Mobile Computing
Conference (AMOC 2002), 14-17 May 2002, Malaysia.

[15] 3GPP TS 35.206 V4.0.0, Technical Specification Group Services
and System Aspects, 3G Security, Specification of the
MILENAGE Algorithm Set: An example algorithm set for the
3GPP authentication and key generation functions f1, f1*, f2, f3,
f4, f5 and f5*: Document 1: General, April 2001.

[16] “Recommendation for Block Cipher Modes of Operation.
Methods and Techniques”. NIST, Technology Administration.
http://csrc.nist.gov/encryption/modes/Recommendation/Modes01.
pdf.

[17] N. Sklavos, and O. Koufopavlou, Architectures and VLSI
Implementations of the AES-Proposal Rijndael”, IEEE
Transaction on Computers, Vol. 51, No. 12, December 2002, pp.
1454-1455.

[18] ETSI/SAGE. Specification of the A5/3 Encryption Algorithms for
GSM and EDGE, and GEA3 Encryption Algorithm for GPRS,
Document 2: Implementators’ Test Data. ETSI/SAGE, May 2002.

TABLE II.
RIJNDAEL BLOCK CIPHER IMPLEMENTATIONS PERFORMANCE

MEASUREMENTS

Architectures F (MHz) Throughput (Mb/s)
[6] 14,1/31,8 300/1940
[7] - 353
[8] 25,9 331
[9] - 750 (BEST)

Proposed 78.3 244

TABLE III.
KASUMI AND GEA3 IMPLEMENTATION RESULTS

 KASUMI Block
Cipher GEA3 Algorithm

Function Generators 2442 2687
CLBs 768 900

D Flip Flop 1405 1623
F (MHz) 34 33

Throughput (Mb/s) 544 363

TABLE IV.
KASUMI TIME PERFORMANCE COMPARISONS

Architecture F (MHz) Throughput (Mb/s)
[10]-[11] 35.35 70.70

[12] 20 110
[12] 60 410
[13] 33.14 265.12
[13] 28.38 227.04
[14] 7.3 233.6 (BEST)

Proposed 34 544

Table V.
GEA3 Time Performance Comparisons

Architectures F (MHz) Throughput (Mb/s)
[10] 33.14 53
[11] 46.56 73.5
[12] 19.5 103
[12] 52 321
[13] 30.12 238
[13] 25.80 204

Proposed 33 363

