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Figure 1. The GPRS security block diagram 

An End-to-End Hardware Approach 
Security for the GPRS 

P. Kitsos, N. Sklavos and O. Koufopavlou 
University of Patras/Electrical and Computer Engineering Department, Patras, Greece 

e-mail: pkitsos@ee.upatras.gr  
 

Abstract—An end-to-end security architecture and its VLSI 
implementation for the GPRS is proposed in this paper. The 
security offered by GPRS is similar to that offered by the 
Global Mobile System (GSM). Three algorithms are needed. 
The A3 and A8, for authentication and ciphering key 
generation, and the GEA3 algorithm for data 
confidentiality. The A3 and A8 are based on the RIJNDAEL 
block cipher, while the GEA3 is based on the KASUMI 
block cipher. For both ciphers efficient implementations are 
proposed. The whole design was coded using VHDL 
language and for the hardware implementations of the 
designs FPGA devices were used. Detailed analysis is shown, 
in terms of frequency, throughput, and covered area.  

I. INTRODUCTION 
The General Packet Radio Services (GPRS) offers to 

the users continuous connection to Internet and Intranet. 
Some of the services may require high level of security, 
for example the financial transaction over the Internet. 
The GPRS has inherited most of the security threats that 
exists in the Global Mobile System (GSM) system. In 
addition the GPRS encounters new and great challenges. 
This since GPRS employs IP technology and it is 
connected to the Internet. The technical security offered 
by GPRS is similar to that offered by the GSM. 
Confidentiality, integrity and authentication are the 
services that devices and networks should cover [1].  

In order to cover the GPRS security features three 
algorithms are used. The A3 algorithm [2] is used for 
authentication procedure, the A8 algorithm [2] is used for 
encryption key generation, and finally the GEA3 
algorithm [3] is used for data confidentiality. The A3 and 
A8 algorithms are based on the RIJNDAEL block cipher 
[4], while the GEA3 algorithm is based on the KASUMI 
block cipher [5]. The performance of the proposed 
RIJNDAEL block cipher implementation is slight slower 
than other previous designs [6]-[9] in terms of throughput, 
but the implementation is compact enough in order to 
integrate better in the Subscriber Identification Card 
(SIM). The GEA3 algorithm is integrated in the mobile 
equipment and is used for bulk encryption. So, the 
performance demands are very high and an efficient 
implementation of the KASUMI block cipher is needed. 
The proposed GEA3 and KASUMI implementations 
outperforms all the previous published designs [10]-[14].  

The paper is organized as follows: In section II the 
GPRS security architecture is described. In section III the 
proposed GPRS security VLSI implementation is 
described. The synthesis results for the FPGA 
implementation are shown in section IV, and the paper 
conclusions are given in section V.  

II. GPRS SECURITY FEATURES 
The SIM contains the identity of the subscriber. A 

Mobile Equipment (ME) with the SIM inserted they 
together form a Mobile Station (MS). The primary 
function of the SIM is to authenticate an MS before it 
gets access to the network. The SIM contains the 
Individual Subscriber Authentication Key Ki, the 
ciphering key generating algorithm (A8), the 
authentication algorithm (A3), as well as a Personal 
Identification Number (PIN). The GEA3 algorithm is 
implemented in the ME. Figure 1, shows the block 
diagram of the GPRS security in the MS.  

The Ki is 128 bits. The purpose of the algorithm A3 is 
to allow authentication of a mobile subscriber’s identity. 
The algorithm A3 must compute an expected response 
SRES from a random challenge RAND sent by the 
network. For this calculation, algorithm A3 is used with 
the secret authentication key Ki. If the authentication is 
passed, the A8 algorithm uses the Ki with the 128 bits 
authentication RAND to generate the 64 bits Ciphering 
Key, Kc. The GEA3 algorithm is integrated in the ME and 
is used for encryption the data during a data transfer under 
the ciphering key, Kc. This algorithm uses the Input and 
Direction for synchronization purpose. In addition some 
predefine constants, CA, CB, and CE are used.  
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Figure 3. The GEA3 algorithm implementation 
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Figure 4. The RIJNDAEL block cipher implementation 

III. GPRS SECURITY VLSI IMPLEMENTATION 
For the implementation of algorithms A3 and A8 the 

f2, f3, f4, functions of the UMTS MILENAGE [15] are 
used. The implementation of these algorithms is shown in 
Fig. 2.  

The constants ci, are stored and accessed from the ROM 
blocks. The OPc value is stored and accessed from the 
RAM. With EK the RIJNDAEL cipher is denoted. In the 
A3 algorithm, the temp signal is equal to 128-bit. For the 
SRES production the 64 least significant bits are used, by 
the function G1 in the following way: SRES=temp(0 to 
31) XOR temp(32 to 63). For the Kc production, the 
outputs of the f3 and f4 function are used, by the function 
G2, in the following way: Kc=CK(0 to 63) XOR CK(64 
to 127) XOR IK(0 to 63) XOR IK(64 to 127).  

The GEA3 is a stream cipher that encrypts/decrypts 
blocks of data, between 1 to M bytes (max. 65536 bytes) 
in length, by using a ciphering key K’C. The K’C is 
defined as K’C = KC || KC. The GEA3 stream generator is 
based on a KASUMI cipher in a form of Output 
Feedback Mode (OFB) [16], and generates the output 
Key stream in multiples of 64 bits. The implementation 
of the GEA3 algorithm is illustrated in Fig. 3. The GEA3 
data mapping pads the KASUMI initial value and set the 
value of the counter BLKCNT. The CA, CB, and CE 
parameters are fixed and stored in the data mapping 
subunit. At the initialization phase, the system parameters 
CA, CB, Input, CE, and Direction are padded in order to 
make a 64-bits Initial Input. During the initialization 
process (first loop execution) the MUX subunit selects 
the IN1 (Initial Input) and the KASUMI produces the 
initial Key Stream (KS) by using the modified K’c. This 
initial KS is stored in a register and used for the next 
iterations. In all the next iterations, the MUX selects the 
second input (IN2) and the K’c is used by the KASUMI. 
The Block Count (BLKCNT) counter is set initially to 0, 
and after each iteration, is increased by one. The 

maximum value of the counter is (8M/64), which is the 
number of iterations. The input M defines the 
plaintext/ciphertext length (# of bits).  

A. RIJNDAEL Block Cipher implementation 
The proposed hardware implementation of the 

RIJNDAEL block cipher is shown in Fig. 4. This 
implementation is similar to the [17], but with reduced 
the hardware resources. The different transformations of 
the algorithm architecture operate on the intermediate 
result, called State. The State can be pictured as a 
rectangular array of bytes. This array has four rows. The 
number of columns (Nb) is equal to the block length 
divided by 32. The Key is also considered as a 
rectangular array with the same number of rows as State. 
The number of columns (Nk) is equal to the key length 
divided by 32. The number of rounds (Nr), depends on 
the values Nb and Nk. For block and key length equal to 
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Figure 5. The KASUMI block cipher implementation 

128 bits both values of Nb and Nk are equal to 4 and the 
Nr is defined as 10. The proposed architecture consists of 
the Key Expansion unit, the Basic Block Transformation 
Round, the Initial Round and the appropriate registers. 41 
clock cycles are needed for the completion of a 128-bit 
plaintext transformation. The Basic Block 
Transformation Round is composed of four building 
blocks: S-BOXes, Data Shift, Mix Column and Key 
Addition. In order to achieve high-speed performance the 
S-BOXes are implemented by ROM. In the proposed 
implementation four [256x8]-bit ROM blocks were used.  
The implementation of the S-BOXes requires the 
implementation of two different mathematical functions: 
1) the multiplicative inverse of each byte of the State in 
the finite field GF(28) and 2) an affine mapping 
transformation over GF(2). The multiplicative inverse 
function produces a byte, which is the input of the affine 

mapping transformation function. This is defined as: 
Out[i] = In[i] XOR In[(i+4) mod 8] XOR In[(i+5) mod 8] 
XOR In[(i+6) mod 8] XOR  In[(i+7) mod 8] XOR C(i) 
where In[i] is the i-th bit of the input byte, and C(i) is the 
i-th bit of a byte predefined constant C, as the algorithm 
specifications defines. 

B. KASUMI Block Cipher Implementation 
The proposed KASUMI cipher consists of the two main 

components. The Key Scheduling Unit, which is 
responsible for the round keys generation, and the 
KASUMI Core, which executes the basic encryption 
procedure. The KASUMI Core implementation uses two 
pipeline stages. The even round of KASUMI cipher has 
different structure of the odd round. The odd rounds are 
denoted as Odd Round Cell (ORC) and the even rounds 
are denoted as Even Round Cell (ERC). 

Figure 5 shows the implementations of the KASUMI 
and ORC. In the ERC the order of the functions FLi and 
FOi is reversed. As it is previously mentioned the GEA3 
algorithm uses the KASUMI cipher in OFB mode of 
operation. This mode, in order to work correctly, 
demands the output block of the previous KASUMI 
execution. So, the pipeline technique is used only in order 
to decrease the critical path and only one data block can 
process at any time. The proposed Key Expansion Unit 
architecture is implemented by shift registers in order to 
produce a number of sub-keys. The rest of the sub-keys 
are generated by bit-wise XOR operations with the 
constants Cj. These constants are stored in the 8x16 bits 
ROM memory. At total 40 16-bit sub-keys are generated. 
With the appropriate concatenations of the sub-keys the 
round keys are generated. The round keys are computed 
and stored in a 52x16 bit register file.  

IV. SYNTHESIS RESULTS AND EVALUATION 
The proposed architecture (Fig. 1) was captured by 

using VHDL with structural description logic. The VHDL 

code was simulated and verified by using the official test 
vectors, provided by the 3GPP standard [15], [18].  

The synthesis results of the proposed RIJNDAEL block 
cipher and the A3/8 unit are shown in Table I. The FPGA 
device XILINX V400E-FG676 was used. 

The performance comparison with previous published 
works is shown in Table II. In addition, the synthesis 
results of the proposed GEA3 and KASUMI block cipher 
implementations, are shown in Table III. The FPGA 
device XILINX V200E-FG456 was used.  

TABLE I.  
RIJNDAEL AND A3/8 UNIT IMPLEMENTATION RESULTS 

 RIJNDAEL block cipher A3/A8 Unit 

Function Generators 2387 9548 
CLBs 1194 4750 

D Flip Flop 715 2960 
F (MHz) 78 70 

Throughput (Mb/s) 243 218 



 
 

 
 
 
 
 
 
 
 

Performance comparisons between the proposed 
KASUMI cipher implementation and implementations in 
[10]-[14] are given in Table IV. 
 

 
 
 
 
 
 
 
 
 

 

The GEA3 algorithm is almost the same with the 
UMTS algorithm f8. Because no other previous GEA3 
implementations are referred, comparisons with the 
previous f8 implementation are made (see Table V). 
 

 
 

 
 
 
 
 
 
 

V. CONCLUSIONS 
A hardware implementation of the GPRS security was 

presented in this paper. The proposed system performs all 
the necessary security features that GPRS demands. The 
main architectural units of the system are based on the 
RIJNDAEL and KASUMI block ciphers. Efficient 
implementations for both ciphers are proposed. The 
system was synthesized, placed, and routed by using 
FPGA devices. It is an efficient design for devices with 
GPRS applications. 
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TABLE II.  
RIJNDAEL BLOCK CIPHER IMPLEMENTATIONS PERFORMANCE 

MEASUREMENTS 

Architectures F (MHz) Throughput (Mb/s) 
[6] 14,1/31,8 300/1940 
[7] - 353 
[8] 25,9 331 
[9] - 750 (BEST) 

Proposed 78.3 244 

TABLE III.   
KASUMI AND GEA3 IMPLEMENTATION RESULTS 

 KASUMI Block 
Cipher GEA3 Algorithm 

Function Generators 2442 2687 
CLBs 768 900 

D Flip Flop 1405 1623 
F (MHz) 34 33 

Throughput (Mb/s) 544 363 

TABLE IV.   
KASUMI TIME PERFORMANCE COMPARISONS 

Architecture F (MHz) Throughput (Mb/s) 
[10]-[11] 35.35 70.70 

[12] 20 110 
[12] 60 410 
[13] 33.14 265.12 
[13] 28.38 227.04 
[14] 7.3 233.6 (BEST) 

Proposed 34 544 

Table V.  
GEA3 Time Performance Comparisons 

Architectures F (MHz) Throughput (Mb/s) 
[10] 33.14 53  
[11] 46.56 73.5 
[12] 19.5 103 
[12] 52 321 
[13] 30.12 238 
[13] 25.80 204 

Proposed 33 363 


