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Abstract

This paper describes the GSM voice confidentiality cipher A5/1 and surveys a
set of attacks against it. The attacks clearly demonstrate that A5/1 does not provide
sufficient levels of security for protecting the confidentiality of GSM voice traffic.

1 Introduction

GSM is a mobile communications system. The voice communication between the base
station and the mobile handset is encrypted using a stream cipher. The encryption and
decryption are performed by the handset and the base station of the network.

The cipher used for voice communication confidentiality is commonly known as A5/1,
which is used in Europe. A weaker version called the A5/2 also exists, but it provides
security against attackers capable of significantly less than216 operations. The algorithms
were intended to be kept secret, but have been reverse engineered [1] based on information
released in [4]. This paper considers attacks only against the cipher A5/1. A5/1 is a
synchronous symmetric-key stream cipher, which relies on a 64-bit secret key.

2 GSM Voice Confidentiality

Every 4.6 ms of voice communication is digitized, compressed and divided into 114-bit
frames of plaintext [6]. One second of voice communication contains approximately 217
frames uplink and downlink. Associated with each pair of downlink and uplink frames is
a frame counterFn. Fn is a 22-bit positive integer. The frame counter is disclosed during
communication. [4]

The A5/1 algorithm is a pseudo-random generatorA5/1 : {0, 1}64×{0, 1}22 → {0, 1}228.
The algorithm is input with a session secretKc ∈ {0, 1}64 and theFn ∈ {0, 1}22. En-
cryption and decryption are performed by XOR:ng the plaintext with these pseudo-random
bits. The handset and base station (BS) use the first and last halves alternatively to encrypt
and decrypt.

Kc does not change very often (in fact it need change only when the network authenticates
the subscriber), but incrementingFn for every invocation causes a different pseudo-random
sequence to be generated for each frame.
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Figure 1: Encryption and Decryption using A5/1 for GSM
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Figure 2: GSM subscriber authentication and session key agreement

The subscriber and the mobile switching center (MSC) in the fixed network share a 128-bit
secretKi, which is used to authenticate the mobile station to the network and for creation
of the session secretKc [5]. The key agreement protocol is depicted in Figure 2.

The A3 and A8 are both assumed to be one-way functions, otherwise the permanent se-
cretKi would be revealed. In practice the A3 and A8 algorithms are often based on the
standardizedCOMP128 : {0, 1}128 × {0, 1}128 → {0, 1}128 function.

The 32 most significant bits of the COMP128 output are used as the output of A3 (SRES).
The least-significant output bits of the COMP128 output concatenated with 10 zero-bits
are used as the output for A8 (Kc).

The effective key size for the A5/1 in practice may be assumed to be only 54-bits.

3 A.5/1 Structure

The A5/1 pseudo-random generator is constructed from three LSFR registers R1, R2 and
R3. R1, R2 and R3 are 19, 22 and 23 bits in length and have periods219 − 1, 221 − 1 and
222 − 1 respectively. The combination function is a XOR. The only non-linear component
is the clock control mechanism.
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Figure 3: A5/1 structure

Denote byri the length of each register in bits.

Denote bysi,l(t) the state of bitl in registeri at cyclet. The bits of the register are labeled
from 0 to ri − 1. Bit 0 is output bit.

Denote bySi(t) the state of registeri at cyclet.

Denote byS(t) the state of A5/1 at cyclet.

Denote byyi(t) the output bit of registeri at clock cyclet. The first output bit of an LSFR
is yi(1).

Denote byy(t) = (y1(t) + y2(t) + y3(t)) mod 2 the output bit of A5/1 at cyclet.

Denote byτi the clock control bits from each register.τ1 = 10, τ2 = 11 andτ3 = 12.
A LSFR is clocked only if it’s input into the clock control is the same as the input from
another LSFR.

The output of A5/1, the pseudo-random sequenceA5/1(Kc, Fn), is computed as follows.

1. Zero every bit in R1,R2 and R3

2. For each bit inKc XOR the value of that bit into bitri of each LSFR and clock it
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Figure 4: Simple example that A5/1 state transition is not injective

Amount of PredecessorsProbability
0 3/8
1 13/32
2 3/32
3 3/32
4 1/32

Table 1: State transitions function characteristics

(the “clock control” is ignored). The bits ofKc are traversed from lsb to msb.

3. For each bit inFn XOR the value of that bit into bitri of each LSFR and clock it
(the “clock control” is ignored). The bits ofFn are traversed from lsb to msb. The
state of the registers after this step is called theinitial state.

4. Clock the generator for 100 cycles using the clock control. Discard the 100 output
bits.

5. Clock the generator for 114 cycles using the clock control. For each clock cycle one
output bit is produced as the XOR of the outputs of R1, R2 and R3.

6. Clock the generator for 114 cycles using the clock control. For each clock cycle one
output bit is produced as the XOR of the outputs of R1, R2 and R3.

Interestingly the specification of the algorithm above differs in [1] and [3]. The algorithm
above is the one presented in [1].

The state transition function of A5/1 is not injective when the clock control is enabled. The
amount of reachable states from the initial state is therefore less than the264 initial states.
An example is shown in figure 4. The amount of states reachable is5 ∗ 261 ≈ 263.32. Table
1 shows the distribution of predecessor states for a randomly chosen state. The expected
number of predecessors is 1. [3]
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(x, y, z) A1(i + 10) A2(j + 11) A3(k + 12)
(1,1,1) 0 0 0
(1,1,0) 0 0 1
(1,0,1) 0 1 0
(0,1,1) 0 1 1
(0,1,1) 1 0 0
(1,0,1) 1 0 1
(1,1,0) 1 1 0
(1,1,1) 1 1 1

Table 2: Table lookup for A5/1 state transition function

3.1 Implementing A5/1 in software

An efficient software implementation if A5/1 is proposed in [2]. The implementation is
based on the relatively short cycles of the three LSFR’s R1, R2 and R3. As the three
LSFR’s all produce maximum length cycles, there is only one cycle per register of length
2ri − 1.

Calculate the cycles produced by each of the registers and store them in memory. A state
of an LSFR can now be represented using a triple which contains three indices into the
computed sequences. IfAj(i) denotes bit 0 of register Rj thenA1(i + 10), A2(i + 11)
andA(i + 12) denote the clock control bits of the LSFR’s. A state of A5/1 can now be
represented as a simple tripleS(t) = (i, j, k). The state of R1 would then beS1(t) =
A1(0)A1(i + 1)A(i + 2)...A(i + 18).

The successor stateS(t + 1) for S(t) = (i, j, k) can now easily be computed using a table
lookup into Table 2 asS(t + 1) = ((i + x) mod (218 − 1), (j + y) mod (222 − 1), (k +
z) mod (223 − 1)).

Calculating an output bit of A5/1 can now be performed using 3 table lookups and a X-
OR. Calculating a state transition of A5/1 can be performed using 3 table lookups and 6
additions.

The total memory required by the three bit-sequences is approximately(219 + 222 +
223)/23 = 216 + 219 + 220 < 221 bytes or under 2 MB.

Table 2 can be expanded to consider several state transitions in one lookup for additional
speed in “fast forwarding” A5/1. A table considering at least 8 transitions in one lookup
would require224 rows, with each row containing at most 6 bytes. This table would require
6× 224 < 23 × 224 bytes or under 128MB.

Similar table-lookup techniques can be used to run A5/1 backwards, although one must
consider the possibility that there can be up to 4 preceding states for each state when
constructing the tables.
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4 Known Ciphertext Attack

Given a sequence of frame countersFn ∈ {0, 1}22 and a sequence of pairs of ciphertext
framesCn ∈ {0, 1}114×{0, 1}114 a known ciphertext attack against A5/1 aims to discover
information about either the plaintextPn ∈ {0, 1}114 × {0, 1}114 or the session keyKc.

A brute force attack iterates over the possible keysKc ∈ {0, 1}64 and creates a set of
pseudo-random sequencesXn ∈ {0, 1}114 × {0, 1}114 for each frame and computes the
plaintext pairsPn for each ciphertext pairCn.

If the sequence of computedPn’s are all recognized as a valid plaintext, a candidate key
Kc has been found. The feasibility of a brute-force attack in practice is limited partly by
the possibility of efficient plaintext recognition.

Brute-force attacks have been performed against DES which is a symmetric block-cipher
with a56 bit key. [7] The internal structure of A5/1 is much simpler than that of DES and
in practice the key space is 1/4 of that of DES.

According to the above software implementation, an A5/1 operation would require 6 table
lookups and 6 additions per output bit. Generation of the 228 output bits from an initial
state can easily be performed using only300+228∗6 = 1668 table lookups and 1668 addi-
tions. It can be approximated that the total procedure of mixing the session key and frame
counter and generating the 228 output bits can be performed in under 5000 operations.

Estimating on the basis of this that a PC could try approximately in between105 and107

keys per second. Searching the key space of size254 would require at least(254/107)/(60∗
60 ∗ 24) ≈ 20000 days. A network of 100 PC’s may be able to crack a key in weeks.

The DES cracker machine tries a DES key in 16 clock cycles and the chips run at40 Mhz
with each chip containing 24 search units. The machine had a total of 36864 search units.
To exhaust a key space of size254 this machine would require254/(36864∗40∗106/16) ≈
195470 seconds= 5.4 hours. The A5/1 algorithm is much simpler than DES and the clock
speed and the density of search units on the chips could probably be increased significantly
resulting in increased throughput. [7]

The problem remains in implementing an intelligent plaintext recognizer. A full-rate
speech frame is encoded as 4 114-bit blocks in GSM, which represent only 18.4 ms of
communication. The content of the frames is compressed, so it is safe to assume there is
relatively little redundancy in the frames. The data is transported alongside with a simple
CRC checksum. The CRC polynomial and it’s use varies along with the type of data being
handled. [6]

Assuming one iterates over254 possible keys and there are 32 redundant bits per 114-
bit frame, the expected amount of keys which generate the correct redundancy is222.
The probability of a key key producing the correct redundancy for all 4 frames is then
(222/254)4 = 2−128. For 8 redundant bits per frame this is2−32.

This implies that using a relatively simple plaintext recognizer in the actual search units
like in the DES cracker machines can produce good results if a similar design is used (the
search units perform only simple plaintext recognition tests and the controlling PC then
performs more complicated plaintext recognition tests for candidate keys).
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5 Known Plaintext Attacks

Known plaintext attacks determine from a set of frames of ciphertext and the correspond-
ing plaintexts a set of output bit streams (bit stringsy(t)|288

t=101) for A5/1, and from these
attempt to compute the state of A5/1 before the mixing of the A5/1 frame counter.

The attacks all progress in the three steps below, for the random subgraph and biased
birthday attacks the initial step is performed using a time/memory tradeoff algorithm.

1. Determine from the set of output bit streams the internal state of A5/1 for some cycle
t > 100.

2. Reverse A5/1 to determine a set of possible initial states.

3. Reverse the mixing of the frame counter to determine a state of A5/1 with only the
session key mixed in.

The state obtained in the last step can be used to generate a bit stream for any desired frame
counter and therefore is sufficient to perform decryption and encryption for the session key.

5.1 Divide and Conquer Attack

A divide-and-conquer attack against A5/1 cipher is presented in [3]. The attack is a known
plaintext attack and the objective of the attack is to recover the initial stateS(101) of A5/1
corresponding to a 64-bit prefixy(101)...y(164) of known A5/1 output.

1. Generate 10 bitsxi,l, 0 ≤ l < 10, for each registeri. Let si,τi+l(101) = xi,l.

2. For each registeri based on the generated bits infer 10 linear equations. For all
τ + l ≤ ri the equation is of the formsi,τ+l(101) = xi,l as above, otherwise infer
the equation from the connection polynomial.

For examplex1,10 = (s1,1(101) + s1,2(101) + s1,3(101) + s1,6(101)) mod 2.

The 30 equations are clearly linearly independent as an equation references one more
register bit than the previous equation. Solving these equations will therefore solve
30 bits of the initial state.

3. The bits in the registers define now a linear equation involving the first plaintext bit
y(101) and the bitssi,0.

For examples1,τ1(101) = 1, s2,τ2(101) = 1 ands3,τ3(101) = 0 implies(s1,τ1(101)+
s2,τ2(101)) mod 2 = y(101).

4. The bitsxi,l define a set of state changes. The amount of state changes defined
depends on the exact value of the bits due to the clock control. Each state change
implies a linear equation involving a known plaintext bit and the output bits in the
three registers. Each such equation will involve at least two new bits per state change
and therefore the equations are linearly independent.
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The equations are linearly independent from the equations in the previous step iff
each equation contains a bit not present in any of the equations in the previous step.
This is false only if R1 has been shifted in every state transition, which is highly
improbable.

Assuming the bits are random, the probability that a register does not shift during
a state change is1/2 ∗ 1/2 = 1/4. Therefore the 10 bits in each register define an
expected 40/3 state changes, generating an expected40/3 linear equations linearly
independent with all the previous equations.

5. There are still approximately63.32 − 13.30 − 1 ≈ 19.02 bits which values cannot
unsolved for the initial state.

Generate a tree of depth19.02/3. A node contains the next three input bits to the
clock control function. A node has as children nodes that contain the next clock
inputs that do not conflict with any of the linear equations already generated.

The root has as children the nodes which contain the possible clock cycles not fully
defined by the 30 bits generated in step 1.

The expected number of children for each node will be 2.5 [3]. This means the
amount of possible assignments to the bits not yet defined by the linear equations
are2.54/3∗19.02/3 with an expected value of approximately210.16.

The expected number of trials to find a correct state S(101) which generates the 64 bits
of plaintext in question is now on average240.16. The algorithm should generate only few
(presumably one) candidate states for S(101). [3]

5.2 Biased Birthday Attack

The biased birthday attack against A5/1 is a time/memory tradeoff and as such is divided
into two phases. The first phase can be done independently of the session key used and the
second phase is dependent of the session key. The objective of the attack is to determine
the initial state of A5/1 for a cycle101 ≤ t ≤ 277

First compute a setA of A5/1 states which all produce as output a bit stream beginning with
a common prefixα ∈ {0, 1}k for a fixedk. There are approximately264−k such states.
Call these statesspecial states. This computation is described in the next subsection.

An output prefix ofk+dlog2|A|e bits are used to identify a special state with only relatively
few expected collisions. Call an A5/1 initial state green if it generates thek + dlog2|A|e
bits identifying a special state in the output bit stream (bitsy(1) to y(228)). It is highly
unlikely thatα appears twice in the generated output bit stream and the map from green
states to special states may be therefore considered to be many to one. Denote by the
weightW (s) of a special states the amount of green states corresponding to the special
states.

[2] describes experiments performed regarding the weight of special states fork = 16. It
showsW (s) has a highly non-uniform distribution. For 85% of the special statesW (s) =
0, for the rest of the states1 ≤ W (s) ≤ 26000. This implies that some special states will
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Figure 5: Example of a special state and three corresponding green states

be traversed with far higher probability than others during the generation of the 228 output
bits.

There are approximately100 + 114 + 114− 100− k− dlog2|A|e = 228− k− dlog2|A|e
offsets in the known output sequence that can contain the identifying prefix of a special
state and hence there are approximately248 × (201− dlog2|A|e) green states.

Let C ⊆ {0, 1}228 be a set of known output sequences of A5/1 generated using the same
session key. LetB ⊆ C be the set of output sequences that contain the identifying prefix
of a special state.E[|B|] = 2−k × (228 − k − dlog2|A|e) × |C| assuming that the set of
output sequences for a session key are uniformly distributed over the set of frame counters.
This approximation is justified in [2] by the mixing performed in the setup of the initial
state.

Let PA(s) be the probability that special states ∈ A andPB(s) be the probability that
there is an output sequence in B generated by a green state corresponding tos.

If A only contains special statess with weightW (s) ≥ w andE[W (s)] is the expected
weight of a special state inA then the expected number of special states occurring in both
A andB is:

ΣsPA(s)×PB(s) = Σs|W (s)≥w
|B| ×W (s)

(228− k − dlog2|A|e)× 248 =
|A| × |B| × E[W (s)]

(228− k − dlog2|A|e × 248

[2] states that they were able to generate withk = 16 a setA such that|A| = 235 and
s ∈ A ⇒ E[W (s)] = 12500. There are now201 − 35 = 177 offsets in the known
output sequence that can contain the identifying prefix of a special state and therefore
approximately248 × 177 green states.

The attack is based on colliding a special state inA to a green state corresponding to it in B.
Assuming the cryptanalyst has access to a setC of known output sequences of A5/1 such
that|C| = 120∗1000/4.6 (approximately 2 min of GSM voice traffic), thenE[|B|] = 71.
The expected number of collisions isE[|B|]×12500

177×213 , for E[|B|] = 71 this is0.61.

Upon detecting a collision is found, the cryptanalyst can determine the state or set states
(in case the identifying output sequence was ambiguous) of A5/1 at a certain cyclet. The
cryptanalysis now proceeds by reversing A5/1 to the initial state, reversing the mixing of
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the frame counter and computing a state of A5/1 which contains only the mixed session
key.

The test for a collision can be assumed to be performed in constant time, if the setA is
ordered and indexed for efficient lookup. The attacker performs approximately|B| lookups
in A, with the success probability growing as|B| grows. The attack can be performed in
seconds on a PC. [2]

5.2.1 Pre-computation Phase

The purpose of the “pre-computation phase” is to produce a set of “special states” for a
defined prefixα of lengthk. A special state produces as output a sequence beginning with
the prefixα. There are approximately264 × 2−k special states for each prefixα. Call this
process sampling A5/1 for special states.

The parameters used in the attack in [2] arek = 16.

1. Choose a prefixα of lengthk that does not coincide with shifted versions of itself,
e.g.α = 100...0.

2. Construct an arbitrary partial state of A5/1. The state is constructed by guessing the
19 bits of R1 and 11 bits of R2 and R3. The bits of R2 and R3 guessed are the clock
control bits and the 10 next bits of R2 and R3 to enter the clock control next.

3. 19 + 11 + 11 = 41 bits of the 64-bit state have now been defined. These bits are
s1,i(0), s2,11+j(0) ands3,12+j(0) for 0 ≤ i ≤ 18 and0 ≤ j ≤ 10. The prefixα
definesy(t) for 1 ≤ t ≤ k.

4. For each state transition from a partial state there now exist at most 2 defined suc-
cessor states. Lett = 1 and(i, j, k) = (0, 0, 0).

(a) If s2,j(0) ands3,k(0) are both defined ands1,0(t) ⊕ s2,j(0) ⊕ s3,k(0) 6= y(t)
then the partial state can not be a special state. Discard the partial state.

(b) If s2,j(0) is defined ands3,k(0) is not defined then lets3,k(0) = s1,0(t) ⊕
s2,j(0)⊕ y(t).

(c) If s3,k(0) is defined ands2,j(0) is not defined then lets2,j(0) = s1,0(t) ⊕
s3,k(0)⊕ y(t).

(d) If s3,k(0) ands2,j(0) are not defined, then there exist 2 valuations fors2,j(0)
ands3,k(0) which satisfys3,k(0) ⊕ s2,j(0) ⊕ s1,0(t) = y(t). Call thes3,k(0)
ands2,j(0) “choice bits”. Choose one of the valuations and define the choice
bits.

(e) Calculate the clock control(x, y, z) as per Table 2.

(f) Let i = i + x, j = j + y, k = k + z andt = t + 1. If x = 1 clock R1.

(g) Iterate untilt > k

5. If the state is not yet fully defined (there are still bitssx,y(0) that are undefined) then
the undefined bits may be treated as choice bits and any assignment to them is valid.

10
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Fraction Avg Weight

2−4 2432
2−5 3624
2−6 4719
2−7 5813
2−8 6910
2−9 7991
2−10 9181
2−11 10277
2−12 11369
2−13 12456

Table 3: Average weights for the heaviest trees of various fractions of R

6. Iterate over all possible partial states and combinations of assignments to choice bits
for each partial states to produce the set of all special states.

The algorithm clearly defines only special states and creates a set of all special states for a
prefix α. There are 11 and 12 undefined bits and as A5/1 on average clocks each register
with probability 0.75 the algorithm should encounter only a negligible amount of contra-
dictions.

The caseE[W (s)] = 12500 and|A| = 235 in A was generated by iterating over248 special
states and choosing the heaviest special states. This may be too time-consuming for some
PC’s and the attacker may wish to trade shorter setup time for lower coverage of green
states.

Table 3 shows results from [2] regarding the average weight of certain fractions of the
heaviest special states. If the attacker is willing to halve the average weight of the trees
in his set, the attacker could iterate over the special states and then on average every2−8

would be acceptable and the pre-processing time could be reduced to235× 28 = 243. This
reduces the preprocessing time by a factor of25 = 32 and doubles the amount of known
bit stream frames required for a succesfull attack.

5.2.2 Caching Special States

Special states can be identified by approximately48 bits. The41 guessed bits and the
seven first choices made during the sampling of the special state. This identification is not
necessarily unambiguous. If an ambiguous partial description of a state is encountered,
then all possible states fullfilling the partial description must be considered. This is not
a problem, as the A5/1 can be reversed and the session key candidate can be efficiently
verified with another known bit stream frame.

The amount248 of special states is too high to cache these states on the disks of a modern
PC. The purpose is to cover as much as possible of the space of green states via the special
states being traversed during the generation ofy(101)...y(277).

The previous section shows how to generate sets of special states with certain properties.

11
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The setA must be stored on a hard disk in practice. As|A| = 235 each byte required per
special state requires 32 gigabytes of hard disk space.

The attack requires looking up the state from a(prefix, state) for a known 51-bit prefix.
Sort the pairs according to prefix in increasing order, and instead of the prefix store the
increment for the prefix in between states and only periodically store the full 31 unknown
bits of the prefix.

The amount of bits required to define a partial state can now be reduced as the 51-bit output
prefix of the state is known. Reducing the amount of bits used to below 48 creates further
possible ambiguity, but can be used to save hard disk space, although this is not necessary
as6 ∗ 32 = 192GB of disk space can be acquired by using 3 75GB hard disks (e.g. IBM
deskstar 75GXP)

A random disk access is estimated by [2] to require 6 ms. The biased birthday attack will
make one such disk access for each 51-bit output prefix of a special state inC. If |B| = 71
then the time spent accessing disk is approximately0.4 seconds.

5.3 Random Subgraph Attack

The random subgraph attack is another time/memory tradeoff attack against A5/1. The
attack relies on the special states defined above, but attempts to cover all special states in
the pre-computation phase, and hence requiring fewer frames of known A5/1 output. The
objective of the attack is to compute a set of possible internal states of A5/1 corresponding
to the state of A5/1 at different points in the known output sequence.

The random sub-graph attack is based on the Hellman time-memory tradeoff [2]. LetP be
the set of plaintexts,K the set of keys andC the set of ciphertexts. LetEk : P → C be
the encryption function for keyk ∈ K. Let K = P = C = U .

The idea of the attack is to define a functionf(K) = EK(P ) and a set oft permutations
πi : U → U . Definefi(r) = πi(f(r)). Compute form random valuesrn ∈ U the pairs
(rn, f t

i (rn)) for all functionsfi. See table 4 for an example.

Each pairrn, f t
i (rn)) defines a sequence that covers212 of elements inU . Choosing a

sufficient amount of such sequences from randomstart pointsto end pointsallows one to
cover the setU with high probability.

The attack consists of iterating the functionsfi over the known plaintextp ∈ U and for
each iteration comparing the result with the end points in the computed table. If a collision
is found, then the attack proceeds by iteratingfi from the start point corresponding to the
determined end point until a collision is found withp. The key is with high likelihood the
element inU used as input to the last iteration offi.

The random subgraph attack against A5/1 [2] is performed over the set of special setsR
(|R| = 248). This is possible as each special set can be identified by the 41 bits and 7
choice bits used in the biased birthday attack.

Definef : {0, 1}48 → {0, 1}48. Let a be the special state identified by the 48-bit in-
put. Initialize the internal state of A5/1 to this and clock A5/1 for 64 cycles. Now
y(1)...y(16) = α. Let bitsy(17)...y(64) be the result off(a). Define a set of212 random
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f1 ... f212

r1 (r1, f212

1 (r1)) ... (r1, f212

212 (r1))
r2 (r2, f212

1 (r2)) ... (r2, f212

212 (r2))
...
r224 (r224 , f212

1 (r224)) ... (r224 , f212

212 (r224))

Table 4: Pre-computed table for random sub-graph attack

permutations asri. Generate224 random values, for each random value generate212 (start
point, end point) pairs as shown in table 4.

According to [2] a special state is contained in one of the generated sequences with high
likelihood. The attack is performed against a frame containing the output sequence of any
special state (identified by the 16-bit sequenceα). The 48-bit sequence followingα in the
known output is then used as input to the212 different versions of A5/1 each of which is
iterated for212 times over the input. For each iteration, the attacker tests for a collision
with the set of computed end-points, and if a collision is found for a functionfk

i , the
internal state of A5/1 is the preceding stater−1

i (fk−1
i (start point), which is straightforward

to compute.

Table 4 is intended to be stored on a hard disk and [2] estimate the speed of a collision
test to be 6ms. This would make the duration of an attack several days. A solution to
this problem is proposed in [2]. Call a special state abright a redstate if the first 12 bits
following α are all0.

Generate the table now by iterating the functionsfi from the start point onwards until a
bright red state is encountered (on average every212 special state is also a bright red state).

A bright red state can be generated by sampling special states and filtering out non bright
red states, on average every212 state should be bright red. Now during the actual attack,
one needs access the disk on average only for every212 special state, which makes the
attack feasible. The time required for disk probes is now estimated at 24 seconds. [2]

After recovering an internal state of A5/1 and the cycle it is in, A5/1 can be reversed to
recover a functional session key as in the previous attacks.

The attack requires a frame of known A5/1 output containing a 64-bit sequence beginning
with the prefixα. The probability of a frame containing such a sequence is(228 − 64) ×
2−16 = 164× 2−16. This means in practice4.6 ms×216/164 < 2 s of GSM voice traffic.

The time complexity of the attack is224 assuming table lookups are performed in constant
time. The attack can be performed on a PC in 4 minutes according to [2].

5.4 Reversing A5/1

After a set of initial statesS(t) for 101 ≤ t ≤ 327 has been obtained the attack proceeds
to determining the actual pre-mixing phase state S(0).

Each registerR1, R2 andR3 has been clocked between 0 andt − 1 times during the
mixing. Iterate through the106 < 220 possible combinations and see which ones create
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initial statesS(0) that generate the known bit stream. The complexity of this attack is
negligible compared to the previous attacks.

The problem of using special states with great weight might seem to imply that several
candidate green states would be generated, but as the possible green states may be assumed
to be uniformly distributed over the statesS(101), ..., S(277), even if a special state has
weight12500 then an expected amount of12500/177 ≈ 70 candidate initial states for a
fixed cyclet will be generated. [2]

Assuming that the contents of the clock control bits have been completely random, the
estimated amount of clocks for each register is0.75 ∗ 101 = 76. The attack may be
speeded-up by attempting the most probable clock amounts first and the least probable last.
The software implementation described earlier can be used to perform quick forwarding
and reversing of A5/1. The expected amount of iterations for a candidate initial state are
104. [3]

The final step of the attack is to compute the session key. It is sufficient to reverse the
mixing of the frame counter and compute S(-22). This state of A5/1 with onlyKc mixed
in is sufficient to encrypt and decrypt forKc.

The expected amount of predecessors for a A5/1 state is 1 and varies between 0 and 4.
The number of states leading toS(0) therefore varies between0 and422. The expected
size of predecessors grows linearly, and therefore the expected complexity of this attack is
negligible compared to the earlier attacks.

Experiment results shown in [2] claim that they were unable to generate states for which
there were more than120 predecessors at depth 100. This supports the proposition that the
frame counter mixing can be efficiently reversed, and even the actual session key can be
recovered, if need be.

To determine if the computed stateS(−22) has been generated with the actual session
key, mixS(−22) with another frame counter and generate they(101)...y(328) output bits
and compare to the corresponding bits for another frame. It is highly unlikely an incorrect
candidate session key would generate equal bit streams with correct session key for two
frames.

6 Conclusion

This paper surveyed the A5/1 cipher and several attacks proposed against it. All the con-
sidered attacks can be used to relatively easily claim that A5/1 is not a secure cipher in
practice.

A brute-force attack against the cipher is deemed feasible using dedicated hardware similar
to that used in the EFF DES Cracker machine, but would otherwise be impractical.

The divide and conquer attack by Golic requires solving approximately240 linear equations
per session key and access to the 64 bits first bits of generated key stream for a single
frame. No numbers were provided by Golic regarding it’s implementation in practice and
it is difficult to estimate it’s actual speed.
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The biased birthday attack by Biryukov, Shamir and Wagner is a time/memory tradeoff.
The implementation can be tuned further to trade off pre-computation time and memory
against required amounts of known key stream. The pre-computation requires240 to 248

steps and 150GB to 300GB disk space. The actual attack requires in practice only seconds
of execution time on a PC, but requires key stream frames for two or more minutes of GSM
voice data.

The random subgraph attack by Biryukov, Shamir and Wagner is a time/memory tradeoff
based on the Hellman time/memory tradeoff. The attack requires approximately 160 GB
of disk space, and 4 minutes of execution time on a PC. The setup time consists of248

steps. The required amount of known bit stream frames corresponds to under 2 seconds of
GSM voice data.

The two attacks above both require a significant effort during the setup, but can later be
used to perform real-time attacks using a single PC, which makes the attacks especially
devastating as the actual cryptanalytic attacks become cheap both in terms of time and
money. This may facilitate making criminal eavesdropping on GSM conversations prof-
itable.
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