
a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 1 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

1.0 INTRODUCTION :

The ADuC83X family (“big memory family”) all integrate a large program memory space, with 62kBytes of flash/EE
program memory available to the user. As with the standard MicroConverter products (ADuC81X and ADuC82X) the full
program memory space can be programmed in circuit direct from a 2kByte download program, residing on the chip at
address F800hà FFFFh via a defined protocol (see uC004) using the UART serial port.

Now on the ADuC83X family the user can choose to program the entire user code space (62kBytes) via the 2kByte
download program as normal, or, use their own custom defined protocol located in the upper 6kBytes of user program
memory (E000H à F7FFH) to reprogram the lower 56kBytes of user program memory using any of the on chip peripherals
that they wish. This is known as User Download Mode or ULOAD mode for short. In this case the 6kByte program is
known as the ‘bootloader’ as it programs the lower 56kBytes with the user code, allowing user code to be easily upgraded
as necessary.

Typically, there are two different approaches to bootloaders.

1. Embedded Programmers (the whole of the bootloader is present)
2. Microprogrammers (only a tiny bootloader is present to download the bootloader itself into external RAM)

each approach can be implemented using either
1. ROM based Bootloader
2. Flash Based Bootloader

Each of these can be typically compared for robustness, cost and flexibility with each approach having its own advantages
and disadvantages. Embedded programmers require larger non-volatile memory and lack flexibility; the microprogrammer
is more difficult to implement and requires that a external RAM is available to run code. In terms of their implementations;
ROM based programmers are inflexible and add cost to the system and finally flash based programmers can cripple the
product if power failures occur during reprogramming.

Our bootloader tries to provide a simple bootloader that is easy to implement, flexible, very robust and cost effective. To do
this we have implemented a bootloader that is a somewhere between a ROM based bootloader and a flash based bootloader.
The bootloader itself is physically flash/EE memory integrated in the same block as the rest of the flash/EE program
memory. However what differentiates it from ordinary flash based bootloaders is that while running user code the user
cannot erase, or reprogram the bootloader code. Hence it appears as ROM to user code.

To program (or reprogram) the bootloader requires that the user code jumps to the kernel program (hardware reset with
PSEN pulled low) and follows the serial download protocol as defined in technical note uC004. If an error occurs while
programming (or reprogramming) the bootloader, then code execution will begin again in the kernel program allowing the
bootloader download to be tried again.

Section 1 of this Technical Note discusses:

• The Flash/EE Program Memory map
• How to implement a user defined bootloader using ULOAD mode
• How fast can the 56kBytes of flash/EE program memory be programmed in ULOAD mode?
• How to implement a safe user protocol when defining your own protocol

 Section 2 of this technical note contains a code example with a code description and a flowchart.

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 2 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

1.1 FLASH/EE PROGRAM MEMORY MAP:

As with the standard products there are two distinct memory blocks on the ADuC83X family, a flash/EE data memory and a
flash/EE program memory. The difference between the standard products and the big memory products is that the on big
memory products both the flash/EE data memory and the flash/EE program memory are about 8 times bigger, giving a
64Bytes of flash/EE program memory and 4kBytes of flash/EE data memory.

As shown in figure 1 the 4kBytes of flash/EE data memory is configured as 1024 pages of 4 bytes. EADRH and EADRL
contain the page address (0000h<EADRH/L<0400h) of the flash/EE data memory and is programmed as described in
section 1.2 for NORMAL mode. The erasing, programming and reading of this space is identical to that of the ADuC81X
and ADuC82X products except the page address now requires the inclusion of the EADRH SFR.

Byte 1

Byte 1

Byte 1

Byte 1

Byte 2

Byte 2

Byte 2

Byte 2

Byte 3

Byte 3

Byte 3

Byte 3

Byte 4

Byte 4

Byte 4

Byte 4

Byte 1 Byte 2 Byte 3 Byte 4

Byte 1 Byte 2 Byte 3 Byte 4

01h

00h

02h

03h

3FEh

3FFh
E

D
A

TA
2

S
FR

E
D

A
TA

1
S

FR

E
D

A
TA

3
S

FR

E
D

A
TA

4
S

FR

P
ag

e
 A

d
d

re
ss

(E
A

D
R

H
/L

)

Figure 1: 4kBytes of flash/EE data memory programming configuration

As can be seen from figure 2 below the 64kBytes of flash/EE program memory is divided into two sections; a 2kByte
kernel download/debug/emulation program and 62kBytes of user code. Many users of large programs (often C source) will
use the flash/EE program memory in this way.

In figure 3 we notice that the 62kBytes of user flash/EE program memory can be sub-divided into two distinct sections if
required. The upper 6kBytes of flash/EE program memory can be configured as a user bootloader, and the lower 56kBytes
of flash/EE program memory can be used to run the user program. Alternatively some or all of this 56kBytes can also be
used as data memory if required by the user. This is often useful in data logger applications.

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 3 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

FFFFH

0000H

F800H

F7FFH

USER DOWNLOAD SPACE
62 KBYTES OF USER PROGRAM MEMORY IS

PROGRAMMABLE IN CIRCUIT FROM THE KERNEL
PROGRAM

KERNEL PROG RAM
THE KERNEL PROGRAM IS USED TO DOWNLOAD

CODE TO ANY OF THE 62 KBYTES OF ON-CHIP
PROGRAM MEMORY. THE KERNEL PROGRAM

APPEARS AS 'NOP' INSTRUCTIONS TO USER CODE.

62 KBYTE

2 KBYTE

Figure 2: Flash/EE Program Memory Configuration

FFFFH

E000H

DFFFH

0000H

USER BOO TLOADER SPACE.
THE USER BOOTLOADER SPACE IS READONLY
FROM USER CODE BUT THE KERNEL PROGRAM

DOES HAVE READ/WRITE ACCESS TO IT

6
KBYTE

F800H

F7FFH

USER DOWNLOAD SPACE
EITHER THE KERNEL PROGRAM OR USER CODE
(IN ULOAD MODE) CAN WRITE TO THIS SPACE.

KERNEL PROG RAM
THE KERNEL PROGRAM IS USED TO DOWNLOAD

CODE TO ANY OF THE 62 KBYTES OF ON-CHIP
PROGRAM MEMORY. THE KERNEL PROGRAM

APPEARS AS 'NOP' INSTRUCTIONS TO USER CODE.

56
KBYTE

2 KBYTE

62 KBYTES
OF USER

PROGRAM
MEMORY

SPACE

Figure 3: Flash/EE Program Memory Configuration in Bootloader Mode

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 4 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

2kBYTE KERNEL MEMORY (F800h àà FFFFh)
Every part that leaves the factory contains a kernel program that has three distinct functions.

(1) After power up or reset a small piece of code downloads factory-calibrated coefficients to the various calibrated
peripherals (ADC, temperature sensor, current sources, bandgap reference, etc).

(2) downloads code to any of the 62kBytes of user code space
(3) a debugger/emulator program allows in circuit non-intrusive emulation of the MicroConverter.

The 2 KBytes kernel program will appear as NOP instructions to user code. The only way to run the kernel program is reset
the part with the PSEN pin pulled low.

6kBYTE USER BOOTLOADER SPACE (E000h àà F7FFh)
Since the bootloader space is only programmable from the 2kByte kernel program or via parallel programming it can
therefore not be erased or reprogrammed while running user code, even if the user code becomes erroneous. Since the
bootloader is flash based it will not get erased or reprogrammed during power failures. Hence this space can act like a ROM
bootloader.

NOTE: If using the flash/EE program memory in bootloader mode then it is strongly recommended powering up at the

start of the bootloader program (E000h) after reset instead of 0000h (see section 1.4 ‘Implementing a safe
Bootloader Protocol’). For larger programs then the user can use this space as normal flash/EE program memory.

56kBYTES PROGRAM MEMORY (0000h àà DFFFh)
This space is erasable and re-programmable from user code if the user enters ULOAD Mode. The user can use this space for
data only, for code only or indeed for code and data. When the flash memory control SFR (ECON) is put into ULOAD
mode then it is possible to:

• erase the full 56kBytes of flash/EE program memory
• erase the flash/EE program memory space page by page (each page is 64 bytes)
• byte program the code space (the page must be pre-erased)
• page program (256 bytes at a time) the code space (all 4 pages must be pre-erased)

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 5 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

1.2 HOW TO IMPLEMENT A USER DEFINED BOOTLOADER USING ULOAD MODE:

Bootloader code can be downloaded into the upper 6kBytes of program memory by

• serially downloading to the 6kByte (and the other 56kBytes if required) of bootloader space via the on-chip serial
download protocol.

• Parallel programming the 6kByte (and the other 56kBytes if required) of bootloader space via a parallel
programmer as documented in the datasheet.

Once the bootloader has been downloaded then the code can be upgraded in circuit via the users custom bootloader which
might use the SPI, UART serial ports, a software I2C routine or indeed using the parallel ports or any other protocol that the
user desires.

It should be noted that there is nothing in hardware to prevent the user from erasing the lower 56kBytes of code even if
executing code from the 56kBytes. The upper 6kBytes of Flash/EE Program memory however is not changeable in user
code and can hence not be erased from user code. It can only be erased and reprogrammed from the kernel program.

By default the flash memory control SFR (ECON) points to the flash/EE data memory. This means that read, write and
erase commands programmed to the ECON SFR will act on the flash/EE data memory and not the 56kBytes of flash/EE
program memory. To reprogram the 56kBytes of flash/EE program memory the user must enter ULOAD mode. The user
can enter ULOAD mode by executing the following instruction.

MOV ECON, #0F0h ; Enter ULOAD mode

To point back to the flash/EE data memory the user must first exit ULOAD mode. ULOAD mode is exited by executing the
following instruction.

MOV ECON, #0Fh ; Exit ULOAD mode

The various commands available to the user during NORMAL mode and ULOAD mode are described in Table 1 below.

ECON VALUE COMMAND DESRIPTION
(NORMAL MODE)

COMMAND DESCRIPTION
(ULOAD MODE)

01H READ

Results in the 4 bytes in the flash/EE data
memory, addressed by the page address
EADRH/L, being read into EDATA 1-4.

Not implemented
Use the MOVC command

02H WRITE PAGE

Results in the 4 bytes in EDATA 1-4 being
written to the flash/EE data memory,
addressed by the page address EADRH/L.
Note: The 4 bytes in the page being

addressed must be pre-erased

Results in the bytes 0-255 of internal XRAM
being written to the 256 bytes of flash/EE
program memory addressed by the page
address EADRH. (0 ≤ EADRH < E0h)
Note: The 256 bytes in the page being erased
must be pre-erased.

03H RESERVED

Reserved

Reserved

04H VERIFY PAGE

Verifies if the data in EDATA1-4 is contained in
page address given by EADRH/L. A subsequent
read of the ECON SFR will result in a 0 being
read if the verification is valid, or a nonzero
value being read to indicate an invalid
verification.

Not implemented.
Use the MOVC and MOVX commands (and
dual data pointers) to verify the flash/EE
program memory WRITE command. (see
VERIFYULOADPROG function in code
example)

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 6 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

05H ERASE PAGE

Results in the Erase of the 4 byte page of
flash/EE data memory addressed by the page
address EADRH/L

Results in the 64 byte page of flash/EE
program memory, addressed by the byte
address EADRH/L being erased.
EADRL can point to any of the 64 locations
within the page. A new page starts whenever
EADRL is equal to 00h, 40h, 80h, or C0h.

06H ERASE BLOCK

Results in the Erase of the entire 4kBytes of
flash/EE data memory

Results in the erase of the entire 56 kBytes
of ULOAD flash/EE program memory.

81H READBYTE

Results in the byte, in flash/EE data memory
addressed by the byte address EADRH/L,
being read into EDATA1.
(0000h<=EADRH/L<=0FFFh)

Results in the byte, in flash/EE data memory
addressed by the byte address EADRH/L,
being read into EDATA1.
(0000h ≤ EADRH/L ≤ F7FFh)

82H WRITEBYTE

Results in the byte in EDATA1 being written
into flash/EE data memory, at the byte
address EADRH/L.
(0000h<=EADRH/L<=0FFFh)

Results in the byte in EDATA1 being
written into flash/EE program memory,
addressed by the byte address EADRH/L.
(0000h ≤ EADRH/L ≤ F7FFh)

0FH
EXIT ULOAD MODE

Leaves the ECON instructions operate on the
flash/EE data memory.

Enters NORMAL MODE by changing the
ECON instruction so that it operates on the
flash/EE program memory.

F0H
ENTER ULOAD MODE

Enters ULOAD MODE by changing the
ECON instruction so that it operates on the
flash/EE program memory.

Leaves the ECON instructions operate on
the program/EE data memory.

Table 1: Flash Memory Commands in NORMAL and ULOAD mode

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 7 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

1.3 HOW FAST CAN THE 56KBYTES OF FLASH/EE PROGRAM MEMORY BE
PROGRAMMED IN ULOAD MODE?

There are four time consuming tasks which must occur during a download.

1) Reception of the 56kBytes of data
2) Programming of the 56kBytes of flash/EE program memory
3) Verification of programming of the 56kBytes of flash/EE program memory

Note: The flash/EE program memory is pre-erased in the one extended instruction that takes 2ms in duration. This can be

ignored in the context of about a 5s download.

(1) The first thing to occur is that the data is to be sent to the microcontroller. Lets assume that the data is downloaded in
packets as follows.

 <'D'><PAGEADD><DATA0->255><CS>
Therefore for every 256 bytes to be downloaded 259 bytes must be sent to the microcontroller core. Lets assume that
these bytes are sent via SPI at the quickest bitrate that the core can keep up (assume that the microcontroller core is in
slave mode). The loop used to receive the data (slowest part of the reception) might be something like this.

LOOP:
JNB ISPI, $;(24) wait for next reception
CLR ISPI ;(12)
MOV A, SPIDAT ;(12)
MOVX @DPTR, A ;(24) DPTR in auto inc mode
ADD A, R1 ;(12) add to Check Sum
MOV R1, A ;(12)
DJNZ R0, LOOP ;(24)

Therefore this loop requires that data cannot be received any quicker than every 120 core cycles. At 12.58MHz 120 core
cycles takes 9.54µs. To calculate the minimum download time then lets assume that data is transmitted via SPI at this
frequency. Therefore the 259 bytes will be received in 2.47ms.

(2) The appropriate page of flash/EE program memory can be easily programmed in one instruction. However this
instruction takes 15.5ms.

(3) Next the code in flash/EE program memory should be verified against the value in internal XRAM. The following loop
verifies every address.

VERIFYDOWNLOADLOOP:
 MOV EADRL, A ;(12)
 MOV ECON, #81H ;(24) read byte
 MOVX A, @DPTR ;(24) DPTR in auto inc mode
 CJNE A, EDATA1, ERROR ;(24)
 MOV A, DPL ;(12)
 JNZ VERIFYDOWNLOADLOOP ;(24)

This verification loop takes 120 core cycles per byte. Hence to verify the 256 bytes in the page takes 2.45ms.

Therefore in total, the reception, programming and verification of every page in flash/EE program memory takes
20.5ms. Hence to receive, program and verify the 224 pages takes 4.6s.

Hence it is possible to program the 56kBytes of flash/EE program memory in under 5s.

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 8 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

1.4) IMPLEMENTING A SAFE BOOTLOADER PROTOCOL

An ideal bootloader allows the user to upgrade user code at any time, over any user-defined interface, without having to
change any hardware on the circuit board. This allows a quick and easy way of upgrading the code in the field. The
bootloader should remain robust even over the most unlikely conditions, e.g. erroneous code execution or power failures
during reprogramming.

To provide a robust bootloader then there are two main points that should be observed.

1) What happens if a power failure occurs during programming, causing garbage data to be written into the code

space?
On any flash/EE based product it is possible that if a power failure occurs during programming that an erroneous
infinite loop may exist at the start of the code space leaving the part unable to jump to the bootloader. Even worse for
microcontrollers controlling dangerous equipment the equipment may end up executing erroneous code causing the
equipment to behave dangerously after power has been restored.

To prevent both of these unwanted phenomenon the ADUC83X family of products allows the user to start code
execution from 0000h or E000h after a reset. It is recommended to all users using bootloaders to start execution from
E000h. Execution from E000h ensures correct program execution after all conditions.
NOTE: If there was a problem downloading the original bootloader code then the hardware (PSEN is still pulled low)

is still set up correctly to reprogram this code again once the power is restored. The user code will not have
been executing User Code until the download was completed correctly.

To allow the user code to execute and not have to wait for a command “Run Use Code” from another peripheral it is
desirable to easily start user code execution. To do this safely it is recommended to include something similar to the
following at the start of the bootloader program.

READ FLASH/EE DATA MEMORY PAGE 0
IF EDATA1.0 = 1
 EXECUTE BOOTLOADER CODE
ELSE IF EDATA1.0=0
 EXECUTE USER CODE

Now the first time that the bootloader executes EDATA1=FFh (if user erased both flash/EE data and program memory
during download). Since, the LSB of BYTE1 on PAGE0 of the flash/EE data memory (which we will call BOOTEN
(bootloader enable) from now on) is set then we will execute the bootloader code. If the user code is downloaded with
the bootloader for the very first time then the user should also download to the flash/EE data memory ensuring that the
BOOTEN bit is cleared (this will ensure that user code at 0000H is run after reset).

In the case of the bootloader code only being downloaded code execution will begin in the bootloader after reset. User
code can then be downloaded via the user’s protocol defined in the bootloader. Once the code has been satisfactorily
downloaded the BOOTEN bit should be cleared. This ensures that code execution will always begin in user code after a
reset/power cycle in future. The BOOTEN bit should be set before any new download starts as discussed below.

2) Can erroneous code execution cause the corruption (erase/reprogram) of the flash memory

While running erroneous code it is possible to execute a jump instruction to any part of user code. This means that any
segment of code can be executed at any time during an erroneous condition.

To prevent erroneous code execution executing an erase or reprogram or the flash/EE program memory on the
ADuC83X family of products we have included a double instruction sequence to reprogram the flash/EE program
memory. Firstly the user must enter ULOAD mode (point to the flash/EE program memory), and then the user must

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 9 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

execute the erase/reprogram flash/EE program memory instruction. It is up to the user to include a check between these
commands.

An example of a good check might be for the programming command to issue a “Ready for New Download” command
when it wants to upgrade its code. Once the user program receives this command it sets the BOOTEN bit and vectors to
the bootloader which checks if the BOOTEN bit is set. If it is set then the bootloader program will enter ULOAD mode.
The BOOTEN bit is set to indicate that a download is in progress and if a power failure is to occur that we should
attempt to download new code again

Note: Before we vector to the bootloader program we should disable all interrupts by clearing the EA bit in the IE

register. Alternatively, as in the case of the code example explained in section 2, we can reset the part via the
watchdog timer. Code will resume at E000h after reset (if programmed correctly) with the EA bit (and all other
SFRs) cleared.

At this stage the bootloader waits to receive a command to “Erase Flash/EE program memory” or to “Program
Flash/EE program memory”. It is only after receiving the commands correctly that the program should erase or
reprogram the flash/EE program memory.

Again once the download is satisfactorily completed then the BOOTEN bit should be cleared again to allow future
resets to execute user code and not the bootloader program.

Example: To reprogram the code space then the user might follow the following program flow:

 Step 1: Download Bootloader

ð Download Bootloader Via WSD
ð Enable Code execution from E000H (see uC004)

 Step 2: Receive Upgrade Code Command in user code

ð Set BOOTEN to indicate wish to start a new download
ð Reset Part via Watchdog Timer (this will resume execution in the Bootloader)

(Note: Resetting the part, resets all SFRs and clears any interrupt flags)

Step 3: Bootloader checks if BOOTEN is set. If set execute the Bootloader Program
ð Enter ULOAD mode
ð Wait for Erase Command
ð Erase Code Space

Step 4: Receive Download Command

ð Wait for Download Command
ð Download Code

Step 5: Receive Download OK Command

ð Exit ULOAD mode
ð Clear BOOTEN
ð Jump to E000H

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 10 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

2.0 EXAMPLE BOOTLOADER CODE DESCRIPTION:

This section describes the example piece of bootloader code (bootload.asm). Refer to the code in section 2.2 and the
flowchart in section 2.1 while referring to the code description below.

The user code located at 0000h is a simple blink routine. This blink routine flashes the LED at about 5Hz. To allow the user
code to be upgraded simply press the INT0 button to activate the enabled external interrupt. In the INT0 ISR the code waits
to receive a ‘U’ (for upgrade code) over the UART at 115200. If this is received the BOOTEN bit is set, indicating that a
new download of code is required and the part is reset via the watchdog timer.

Program execution will restart in the bootloader if the “RUN from E000H” option is enabled. To enable this feature the user
must send the following command after the initial download of the bootloader (see uC004)

<07h><0Eh><02h><‘F’><FEh>< CS = BAh>
This can be done automatically by clicking on the Start Code at E000h button on the WSD available as part of the
QuickStart development system.

Once code execution starts at E000h the bootloader reads the BOOTEN bit (LSB of first byte in flash/EE data memory).
The first time program execution commences then code will remain in the bootloader because the BOOTEN bit is in the
erased state (set).

In this example we firstly reset the watchdog timer to its default value, then configure the UART for 115200 baud which
requires running at the maximum PLL frequency and then configure in ULOAD mode.

We then wait for the Erase, Download Page or Download OK command. If we receive an ERASE command, we erase the
56kBytes of flash/EE program memory, send an ACK byte to indicate to the host that we are ready to receive data again and
return to waiting for the next command.

If we receive the DOWNLOAD PAGE command we receive the appropriate data, program the data to the appropriate page
and then verify that the page has been programmed correctly. If the page has been verified correctly we then send an ACK
and wait to receive the next command. If we receive another DOWNLOAD PAGE command the process is repeated until
all the appropriate bytes have been programmed.

At the end of the download the DOWNLOAD OK command should be sent. After receiving this command the program will
clear the BOOTEN bit to indicate that a valid download occurred, send an ACK frame, reset all SFRs used in the bootloader
and then jump to user code at 0000H. With the BOOTEN bit cleared user code at 0000H will always be executed after a
reset or power cycle.

Both the original user code, blink1.asm (blinks LED at 5Hz) and a second example of user code, blink2.asm (blinks LED at
1Hz) can be used to demonstrate how simple it is to upgrade user code. Here are the steps involved.

1) Download bootload.hex from the WSD with the RUN from E000H feature enabled (code should execute in
the bootloader). Run the code.

2) In bootload.exe click on the “Execute” button. User code should run, blinking the LED at 5Hz.
3) To upgrade the code click on the INT0 button on the eval board
4) Click on the “Upgrade Code” button
5) Click on the “Erase” button to erase the code
6) Click on the “Download” button to download new code. Select blink2.hex
7) Click on the “Execute” button to run the new code. The new user code should run, blinking the LED at 1Hz
8) The original code can be downloaded again by repeating steps 3 to 7 and this time selecting blink1.hex.

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 11 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

2.1 EXAMPLE CODE FLOWCHART:

Reset SFRs
Used

Erase Code

?
BOOTEN

Set
?

YES Jump to User
Code at 0000H

Config UART
Enter ULOAD Mode

NO

?
Erase

Command
?

YES

NO

?
Download

Page
Command

?

NO

Send ACK

YESReceive Page
Address and Data

Program Page

Verify Program
Page

Verify CS
?

Download
OK

Command
?

Clear BOOTEN
YES

Send ACK

Reset SFRs
Used

Jump to User
Code at 0000H

NO

Send NACK

Figure 3: Flow Chart for the Bootloader Example Code

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 12 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

2.2 EXAMPLE BOOTLOADER CODE:

;**
;
; Author : ADI - Apps www.analog.com/MicroConverter
;
; Date : November 2001
;
; File : Bootload.asm
;
; Hardware : ADuC834
;
; Description : Example bootloader program that lies in upper
; 6kbytes of the 62kByte code space. This bootloader
; can be used to download to the bottom 56kBytes.
;
; NOTE: This program will only work if the option to
; always run code from E000H after download is
; selected.
;
;**

$MOD834

ACK EQU 06H
NACK EQU 15H

;**
; EXAMPLE USER CODE
;**
CSEG
ORG 0000H

AJMP MAIN

;__
 ; INT0 ISR
ORG 0003H
 ; wait to receive a character from the UART
 JNB RI, $; wait for reception
 CLR RI
 MOV A, SBUF
 CJNE A, #'U', ERROR

 ; plan to upgrade new code => set BOOTEN
 MOV EADRH, #0
 MOV EADRL, #0
 MOV ECON, #1 ; read page
 ORL EDATA1, #1 ; SET LSB
 MOV ECON, #5 ; ERASE page
 MOV ECON, #2 ; program page

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 13 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

 MOV ECON, #4 ; verify page
 MOV A, ECON
 JNZ ERROR
 ; use the watchdog timer to reset part...run from E000H after reset
 CLR EA ; disable interrupts for double

; write sequence
 SETB WDWR
 MOV WDCON, #82h

ERROR:
 RETI

;__
 ; MAIN
MAIN:
 ; enable INT0
 SETB IT0 ; INT0 edge triggered
 SETB EA ; enable inturrupts
 SETB EX0 ; enable INT0

 ; configure at fastest freq
 MOV PLLCON, #0

 ; configure UART for 115200
 MOV T3CON, #81h
 MOV T3FD, #2Dh
 MOV SCON, #52H

 ; THIS SIMPLE BLINK ROUTINE REPRESENTS THE MAIN PROGRAM
BLINK:
 CPL P3.4
 CALL DELAY
 AJMP BLINK

;__
 ; DELAY
DELAY:
 ; 100ms DELAY
 MOV R0,#205
DLY:
 MOV R1,#255 ; 205 x 255 x 1.91us
 DJNZ R1,$
 DJNZ R0,DLY

 RET
;__

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 14 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

;**
; EXAMPLE BOOTLOAGER CODE
;**
CSEG
ORG 0E000h
 ; read BOOTEN
 MOV EADRH, #0
 MOV EADRl, #0
 MOV ECON, #1 ; read page
 MOV A, EDATA1
 JB ACC.0, BOOTLOADER

 ; reset EDATA1-4 before running user code
 CLR A
 MOV EDATA1, A
 MOV EDATA2, A
 MOV EDATA3, A
 MOV EDATA4, A
 LJMP 0000H

BOOTLOADER:
 ; clear the deliberate WDT reset
 SETB WDWR
 MOV WDCON, #10H

 ; configure UART for 115200 baud
 MOV PLLCON, #0 ; run core at max speed
 MOV T3CON, #81H
 MOV T3FD, #2Dh
 MOV SCON,#52h

 ; configure in ULOAD mode
 MOV ECON, #0F0h

GETCOMMAND:
 CALL RECBYTE
 CJNE A, #'E', $+5
 AJMP ERASECOMMAND
 CJNE A, #'D', $+5
 AJMP DOWNLOADCOMMAND
 CJNE A, #'O', $+5
 AJMP DOWNLOADOKCOMMAND
 AJMP SENDNACK

;==
; ERASE CODE
;==
ERASECOMMAND:
 ; wait for erase command
 ; <'E'><CS>
 CALL RECBYTE

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 15 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

 ADD A,#'E'
 JZ ERASEOK
 AJMP SENDNACK

ERASEOK:
 ; erase 56kbytes of code space
 MOV ECON, #6

 ; send ACK
 AJMP SENDACK

;==
; DOWNLOAD CODE
;==
DOWNLOADCOMMAND:
 ; wait for download command
 ; <'D'><PAGEADD><DATA0->255><CS>

 MOV R0, #'D'
 ; get page address
 CALL RECBYTE
 MOV EADRH, A
 mov eadrl, #13
 ADD A, R0
 MOV R0, A

 ; if page address =FFh then exit download
 MOV A, EADRH
 CJNE A, #0E0H, $+3
 JC ADDRESSOK ; C=0 for EADRH < E0h
 AJMP SENDNACK

ADDRESSOK:
 MOV DPTR, #0
 MOV R1, #0 ; count
 MOV CFG834, #1 ; int XRAM
READDATA:
 ACALL RECBYTE
 MOVX @DPTR, A
 INC DPTR
 ADD A, R0
 MOV R0, A
 DJNZ R1, READDATA ; REPEAT 256 TIMES

 ; verify checksum
 ACALL RECBYTE
 ADD A, R0
 MOV R0, A
 JZ DOWNLOADCHECKSUMOK
 AJMP SENDNACK

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 16 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

DOWNLOADCHECKSUMOK:
 ; program page
 MOV ECON, #2

; verify download
 MOV DPCON, #54H ; main DPTR in auto INC mode
 ; shadow DPTR in auto INC mode
 ; DPTR in aut toggle mode
 MOV DPTR, #0 ; main DPTR=0 (XRAM)
 INC DPCON ; select shadow DPTR
 MOV DPH, EADRH ; shadow DPTR (CODE)
 MOV DPL, #0
 MOV R0, #0

VERIFYDOWNLOADLOOP:
 ; read code memory
 CLR A
 MOVC A, @A+DPTR ; swap to main DPTR
 MOV B, A
 MOVX A, @DPTR
 CJNE A, B, JMPSENDNACK
 DJNZ R0, VERIFYDOWNLOADLOOP
 MOV DPCON, #0

 AJMP SENDACK

JMPSENDNACK:
 AJMP SENDNACK

;==
; DOWNLOAD OK COMMAND
;==
DOWNLOADOKCOMMAND:
 ; wait for Download OK command
 ; <'O'><CS>
 CALL RECBYTE
 ADD A,#'O'
 JZ EXITULOADMODE
 AJMP SENDNACK

EXITULOADMODE:
 ; exit ULOAD mode
 MOV ECON, #0Fh

DOWNLOADOK:
 ; clear BOOTEN
 MOV EADRH, #0
 MOV EADRL, #0
 MOV ECON, #1 ; read page
 ANL EDATA1, #0FEh ; clear LSB
 MOV ECON, #5 ; ERASE page
 MOV ECON, #2 ; program page

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 17 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

 MOV ECON, #4 ; verify page
 MOV A, ECON
 JZ BOOTENCLEAR
 AJMP SENDNACK

BOOTENCLEAR:
 ; send an ACK
 MOV A, #ACK
 CALL SENDBYTE
 JNB TI, $; disabling UART shortly
 ; => wait for char to send

RESETSFR:
 ; reset SFRs
 CLR A
 MOV B, A
 MOV PSW, A
 MOV EADRH, A
 MOV EADRL, A
 MOV EDATA1, A
 MOV EDATA2, A
 MOV EDATA3, A
 MOV EDATA4, A
 MOV DPCON, #1
 MOV DPTR, #0 ; clear shadow DPTR
 MOV DPCON, A
 MOV DPTR, #0 ; clear main DPTR
 MOV CFG834, A
 MOV PLLCON, #3 ; run core at max speed
 MOV T3CON, A
 MOV T3CON, A
 MOV SCON, A

 ; jump to 0000H
 LJMP 0000H

a

 MicroConverter Tech Note – uC007
Ver 0.1 November 2001 - 18 - www.analog.com/microconverter

MicroConverter Technical Note - uC007
User Download (ULOAD) Mode

;==
; FUNCTIONS
;==
;__
 ; RECBYTE
RECBYTE: ; waits for a single ASCII character to be received
 ; by the UART. places this character into A.

 JNB RI,$
 MOV A,SBUF
 CLR RI

 RET

;__
 ; SENDBYTE
SENDBYTE: ; sends ASCII value contained in A to UART

 JNB TI,$; wait til present char gone
 CLR TI ; must clear TI
 MOV SBUF,A

 RET
;__
 ; SENDACK/SENDNACK
SENDACK:
 MOV A, #ACK
 AJMP CONTSENDACK
SENDNACK:
 MOV A, #NACK
CONTSENDACK:
 ACALL SENDBYTE

 AJMP GETCOMMAND
;__

END

