
AES Smaller Than S-Box

Minimalism in Software Design on Low End
Microcontrollers

Mitsuru Matsui and Yumiko Murakami(B)

Information Technology R&D Center, Mitsubishi Electric Corporation,
Chiyoda-ku, Japan

Matsui.Mitsuru@ab.MitsubishiElectric.co.jp,

Murakami.Yumiko@cw.MitsubishiElectric.co.jp

Abstract. This paper explores state-of-the-art software implementa-
tions of “size-minimum” AES on low-end microcontrollers. In embedded
environments, reducing memory size often has priority over achieving
faster speed. Some recent lightweight block ciphers can be implemented
in 200 to 300 ROM bytes, while the smallest software implementation of
AES including key scheduling, encryption and decryption is, as far as we
know, around 1 K ROM bytes.

The first purpose of this study is to see how small AES could be. To do
this, we aggressively minimize code and data size of AES by introducing a
ring multiplication for computing the S-box without any lookup table, a
compact algorithm for embedding MixColumns into InvMixColumns,
and a tiny loop for processing AddRoundKey, ShiftRows and SubBytes
at the same time. As a result, we achieve a 192-byte AES encryption-
only code and a 326-byte AES encryption-decryption code on the RL78
microcontroller. We also show that an AES-GCM core can be imple-
mented in 429 bytes on the same microcontroller. These codes include
on-the-fly key scheduling to minimize RAM size and their running time
is independent of secret information, i.e. timing-attack resistant.

The second purpose of this research is to see what processor hard-
ware architecture is suitable for implementing lightweight ciphers from
a minimalist point of view. A simple-looking algorithm often results in
very different size and speed figures on different low-end microcontrollers
in practice, even if their instruction sets consist of similar primitive oper-
ations. We show concrete code examples implemented on four low-end
microcontrollers, RL78, ATtiny, Cortex-M0 and MSP430 to demonstrate
that slight differences of processor hardware, such as carry flag treatment
and branch timing, significantly affect size and speed of AES.

1 Introduction

Lightweight is one of the recent keywords in cryptography, with increasing mar-
ket requirements of embedded security as a background. A lot of new lightweight
symmetric ciphers and hash functions have been proposed, aiming at achieving
low resource occupation and at the same time maintaining high level security.
c© Springer International Publishing Switzerland 2015
T. Eisenbarth and E. Öztürk (Eds.): LightSec 2014, LNCS 8898, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-16363-5 4



52 M. Matsui and Y. Murakami

Lightweight cryptography is in many cases studied in the context of hardware
lightweight such as low energy consumption and small circuit area, but software
lightweight is also getting paid attention. Some recent researches concentrate on
extensive software implementation of lightweight ciphers on an embedded micro-
controller [1–3].

In embedded environments, reducing memory size often has priority over
achieving faster speed and it has been reported that some lightweight block
ciphers can be implemented on an embedded microcontroller in extremely small
200 to 300 ROM bytes [3–5]. This paper goes deep into this direction for AES.
As far as we know, the smallest software AES with 128-bit key, including key
scheduling, encryption and decryption, still requires 1 K ROM bytes [3]. In fact,
to create an AES code within 1. 5K ROM bytes, loop rolling is necessary inside
its round function, which leads to heavy performance penalty. This explains why
most of known AES implementations require at least 1.5 K ROM bytes.

Our aim is to see how small AES could be, and to achieve this goal, we
aggressively try to minimize code and data size of AES. Our code does not use
any lookup tables for the S-box. It is instead computed with a Galois field inver-
sion and a matrix multiplication as in its original definition. While the matrix
multiplication is not a Galois field operation, we point out that a Galois field
multiplication included in the Galois field inversion is “essentially the same” as
the matrix multiplication since the former is a ring operation on GF (2)[x]/(x8+
x4 + x3 + x + 1) and the latter is that on GF (2)[x]/(x8 + 1). This observation
leads to a new compact logical S-box code. Note that the fact that the matrix
is circular is essential.

We next show that MixColumns can be fully embedded in InvMixColumns
not only in hardware [6] but in software in a very simple and compact manner. In
fact, InvMixColumns also works as MixColumns by just adding one conditional
jump indicating encryption or decryption into InvMixColumns. This greatly con-
tributes to code reduction of AES containing both encryption and decryption.
In addition, it is demonstrated that AddRoundKey, ShiftRows and SubBytes can
be merged into a tiny loop of around 20 bytes, except the S-box logic.

As a result, we achieve a 192-byte AES encryption-only code and a 326-byte
AES encryption-decryption code on the RL78 microcontroller. We also show that
an AES-GCM core can be implemented in 429 bytes on RL78. These algorithms
are implemented on the ATtiny microcontroller as well, and it is seen that our
resultant codes are a bit larger but much faster than those on RL78. All of these
codes include on-the-fly key scheduling to minimize RAM size, and their running
time is independent of secret information such as key and text.

The second purpose of this research is to see what processor hardware is
suitable for implementing lightweight ciphers from a minimalist point of view.
It is rather common that a code based on the same algorithm exhibits very
different size and speed figures on different low-end microcontrollers, even if
their instruction sets consist of similar primitive operations. Many types of low-
end microcontrollers have been used in real-world embedded applications, but
their comparative research from a cryptographic point of view seems missing.



AES Smaller Than S-Box 53

We show concrete examples extracted from our AES codes and implemented
on four low-end microcontrollers, RL78, ATtiny, Cortex-M0 and MSP430, and
demonstrate that slight-looking differences of hardware, in particular carry flag
treatment or branch timing, significantly affect size and speed of a target code.
We believe that this information is beneficial to not only programmers but also
designers of a cryptographic algorithm.

2 How to Minimize AES in Software

In this section we show several techniques to minimize code size of AES. For the
specification of AES and the notations, see [7]. Throughout this section, we use
C language notations in describing implementation algorithms.

2.1 SubBytes and InvSubBytes

We implement S-box S(x) and the inverse S-box IS(x) as their original formula
shown below, using an inversion over GF (28), a matrix multiplication on GF (2)8

and an xor of a constant value without any lookup tables.

S(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·x−1 +63, IS(x) = (x−1 +63) ·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The inversion is an operation on GF (2)[X]/(X8 +X4 +X3 +X +1) and the
matrix multiplication can be regarded as an operation on GF (2)[X]/(X8 + 1)
since it is circular. In other words, a multiplication routine on GF (28) can also
compute a matrix multiplication on GF (2)8 by just replacing the polynomial.

In general, a (random) matrix calculation is expensive in software, but in our
case, the matrix multiplication above becomes almost free by sharing it to the
Galois multiplication. This observation leads to the following simple algorithm
for computing S(x) and IS(x) as follows:

Input x, Output SubBytes(x)

01: x = INV8(x) : Galois inversion

02: x = MUL8(x,0x1f,0x101,0x63) ; matrix multiplication

03: return x ; (0x101 denotes X^8+1)

Input x, Output InvSubBytes(x)

04: x = MUL8(x,0x4a,0x101,0x05) ; matrix multiplication

05: x = INV8(x) ; Galois inversion

06: return x ; (0x05 = 0x63 * 0x4a)



54 M. Matsui and Y. Murakami

Input x, Output INV8(x) ; x^254 using a binary method

07: c = 0, y = 1

08: y = MUL8(y,x,0x11b,0) ; Galois multiplication

09: y = MUL8(y,y,0x11b,0) ; Galois multiplication

10: c = c+1 ; (0x11b denotes X^8+X^4*X^3+X+1)

11: if(c != 7) goto 08

12: return y

Input x,y,f,v, Output MUL8(x,y,f,v) ; v=v+(x*y) on GF(2)[X]/(f)

13: c = 0

14: if((x&1) == 1) v = v^y

15: x = x>>1

16: y = y<<1

17: if(y > 255) y = y^f

18: c = c+1

19: if(c != 8) goto 14

20: return v

2.2 AddRoundKey+ShiftRows+SubBytes

AddRoundKey, ShiftRows and SubBytes can be combined into in a very simple
loop by noting that ShiftRows moves its i-th input byte to the (i∗13 mod 16)-th
output byte (i = 0, 1, 2, .., 15). It is easy to see that InvShiftRows, InvSubBytes
and AddRoundKey for decryption can be written in a similar way:

Input x[0]..x[15],k[0]..k[15]

Output y[0]..y[15]=(AddRoundKey+ShiftRows+SubBytes)(x,k)

22: c = 0, d = 0

23: a = x[c]^k[c] ; AddRoundKey

24: y[d] = SubBytes(a) ; SubBytes (S-box)

25: d = d+13 mod 16 ; ShiftRows

26: c = c+1

27: if(c != 8) goto 23 ; equivalently, if(d == 0) goto 23

28: return y

2.3 Sharing MixColumns with InvMixColumns

Another trick to minimize AES is to share MixColumns with InvMixColumns
using the following equation, where the middle/left matrix is the one defined
in MixColumns/InvMixColumns, respectively. This decomposition was implicitly
used in [6] in the hardware context. Note that all entries in the middle matrix
have active bits at bit 0 and/or 1, and all entries in the right matrix have active
bits at bit 2 and/or 3.



AES Smaller Than S-Box 55

⎛

⎜⎜⎝

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0c 08 0c 08
08 0c 08 0c
0c 08 0c 08
08 0c 08 0c

⎞

⎟⎟⎠

Using this fact, we can embed MixColumns into InvMixColumns in the follow-
ing simple way, where only one additional instruction - a conditional branch -
is necessary for detecting encryption/decryption. This algorithm consists of a
double loop to minimize its code size, where the inner loop (lines 32 to 44) com-
putes only one vector of the entire four vectors contained in the matrices. We
are again using the fact that they are circular.

Input x[0]..x[15]

Output y[0]..y[15]=MixColumns(x) or InvMixColumns(x)

29: c0 = 0 ; matrix number

30: a0 = a1 = a2 = a3 = 0

31: c1 = 0 ; vector number

32: t = x[c0*4+c1]

33: a0 = a0^t, a1 = a1^t, a2 = a2^t ; 0th bit (ENC)

34: t = t*2 on GF(256)

35: if ENCRYPTION, then go to 41

36: a2 = a2^t, a3 = a3^t ; 1st bit (DEC)

37: t = t*2 on GF(256)

38: a1 = a1^t, a3 = a3^t ; 2nd bit (DEC)

39: t = t*2 on GF(256)

40: a0 = a0^t, a1 = a1^t ; 3rd bit (DEC)

41: a2 = a2^t, a3 = a3^t ; 1st/3rd bit (ENC/DEC)

42: t = a0, a0 = a1, a2 = a3, a3 = t ; rotate shift

43: c1 = c1+1

44: if(c1 != 4) goto 32

45: y[c0*4] = a0, y[c0*4+1] = a1, y[c0*4+2] = a2, y[c0*4+3] = a3

46: c0 = c0+1

47: if(c0 != 4) goto 30

48: return y

Note that [8] reports another decomposition of the InvMixColumns matrix as
a multiplication of two matrices, not an addition, one of which is the MixColumns
matrix. Implementing this form in software leads to a bigger code than the above
because of the matrix multiplication.

3 Implementation on RL78 and ATtiny

In this section, we discuss our implementations of AES on two low-end micro-
controllers, RL78 [9] and ATtiny [10]. RL78 is a typical accumulator-based
CISC processor and ATtiny is a typical register-symmetrical RISC processor.



56 M. Matsui and Y. Murakami

We believe that looking at software implementation on processors with utterly
different architecture is of its own interest.

On each processor, we implement three instances: AES encryption-only
(AES-E), AES encryption/decryption (AES-ED) and AES Galois counter mode
(AES-GCM) [11], based on the algorithms shown in the previous section. Our top
priority is to minimize ROM size, and we also try to reduce RAM usage, which is
equally important in practice. All codes presented in this section include on-the-fly
key scheduling.

3.1 RL78 and ATtiny Microcontrollers

In this subsection we briefly introduce the two microcontrollers, RL78 and ATtiny.
More detailed architectural comparison with actual code examples will be dis-
cussed in next section.

RL78 has eight 8-bit general-purpose registers a,x,b,c,d,e,h,l, of which
many instructions accept only a or ax as a destination. A limited number of
instructions have a 16-bit form with register pairs ax,bc,de,hl. Unfortunately
an xor instruction, frequently used in block ciphers, does not have a 16-bit
form [12].

We hence often suffer from “register starvation” on this microcontroller,
which requires extra instructions and memory to save/restore data on an accu-
mulator, but a big advantage of RL78 is that code size tends to be short due
to its support of read-modify instructions. For instance, ’xor a,[hl]’, – read
from an address pointed by hl and xor to a –, is a one-cycle instruction with
one-byte length. This significantly contributes to code size reduction.

ATtiny has thirty-two 8-bit general-purpose registers r0 to r31. Most instruc-
tions have “register symmetry”, i.e. accept any register as a destination. Some
instructions dealing with immediate data accept only r16 to r31, but this sel-
dom causes trouble to a minimalist. Three register pairs (r26,r27), (r28,r29),
and (r30,r31) are used as address registers X, Y, and Z, respectively [13].

Almost all instructions of ATtiny are two-byte long and no read-modify
instructions are supported. Hence a code size of this RISC microcontroller tends
to be bigger than that of CISC RL78, but in general creating a faster code is pos-
sible due to less memory accesses and faster jump instructions. The latter is very
important because a minimum-size code often consists of many small loops.

Our coding and performance measurement is done on RL78-G12 (ROM 8 K
bytes and RAM 768 bytes) and ATtiny85 (ROM 8K bytes and RAM 512 bytes),
respectively.

3.2 Interface and Metrics

Defining a software interface clearly is particularly important for discussing a
minimal code. For instance, some implementations on ATtiny allow programmers
to destroy all registers without restoration [1,2]. Other implementations [14,15]
follow the function call conventions described by Atmel [16]. For the latter case,
a subroutine code that destroys all registers has to save/restore 18 registers at



AES Smaller Than S-Box 57

the entry and exit of the code, which requires additional 72-byte ROM and
36-byte RAM by pushing/popping these registers. Obviously this overhead is
not ignorable in our context.

While our goal is to obtain a size minimum code, we also keep a practical and
usable code in mind. We hence adopt the latter approach; that is, we create a
function callable from a high-level language and count all resources occupied by
a code in referring to ROM/RAM size, as discussed in [3]. The following is our
coding and measurement policy in this paper, balancing minimalism, usability
and security.

1. Code is described as a subroutine callable from C-language.
2. Code processes one-block data.
3. Code should be relocatable.
4. Execution time is independent of secret information (text and key).
5. ROM size includes instruction code and constant data.
6. RAM size includes plaintext/ciphertext, key, stack, and temporary memory.
7. Plaintext area is shared with ciphertext area.
8. Key area can be destroyed but is recovered at the end of the code.

RAM memory for locating parameters such as text, key and other necessary
information, is allocated in consecutive area within a callee code and its address
is passed to a caller program as an external variable.

We should clarify policy 2 in the case of AES-GCM. In AES-GCM, we intro-
duce a switch, which we call MODE, that indicates which part of AES-GCM
should be carried out, as shown in Fig. 1. Our code reads MODE included in the
parameters and executes an appropriate component of the AES-GCM algorithm.

Fig. 1. Our implementation blocks of AES-GCM



58 M. Matsui and Y. Murakami

Also, strictly speaking we apply policy 3 to our codes of ATtiny in a slightly
relaxed way. It is assumed that the RAM memory (excluding stack) resides
within the same 256-byte block without crossing a 256-byte aligned boundary.
This is because otherwise updating address registers becomes very costly.

3.3 Implementation Results

Table 1 shows our implementation results of AES-E, AES-ED and AES-GCM
on RL78 and ATtiny. We followed the coding policy described in the previous
subsection and aimed at a minimum memory size. In this table, (E) and (D)
denote speed in encryption and decryption, respectively, and (n) in AES-GCM
means MODE shown in Fig. 1.

Table 1. Size minimum implementation of AES-E, AES-ED and AES-GCM

Algorithm Controller ROM RAM Speed (cycles/block)

AES-E RL78 192 88 369901

AES-E ATtiny 214 78 262061

AES-ED RL78 326 103 374016 (E), 449408 (D)

AES-ED ATtiny 356 78 264302 (E), 318800 (D)

AES-GCM RL78 429 182 741088 (0), 40620 (1), 412608 (2,3), 40937 (4)

AES-GCM ATtiny 522 165 525882 (0), 30536 (1), 293506 (2,3), 30876 (4)

We achieved a 192-byte AES encryption code, including on-the-fly key sche-
duling, on the RL78 microcontroller. It is again noted that it runs in a con-
stant time. As far as we know, this is the smallest AES ever made in software.
Of course, its speed is very slow, but still makes sense in non timing-critical
applications since it runs in 18.5 ms/block in 20 MHz clock.

For comparison with ATtiny, RL78 is smaller but slower than ATtiny, as
expected. More specifically ATtiny is 30 % faster, but 10 % larger for AES-E and
AES-ED and 20 % larger for AES-GCM. There are two reasons why ATtiny is
much larger in AES-GCM. One is that RL78 has a 16-bit addition instruction and
a multiple-bit shift instruction, which are missing in ATtiny. These instructions
are efficiently used for counting and accumulating text length in AES-GCM.

Another and more serious reason of this is that ATtiny only allows a 6-bit
displacement in register indirect addressing. This means that an address register
must be updated every time when it points a new address that is distant from a
current address by 64 or more bytes. This restriction does not cause a problem
in AES-E and AES-ED since their RAM size is close to 64 bytes, but that of
AES-GCM is much larger, which results in visible penalty.

We will discuss more detailed software implementation issues depending on
processor hardware architecture in the next section. Here we only illustrate code
examples of AddRoundKey+ShiftRows+SubBytes to show how a small loop can



AES Smaller Than S-Box 59

be implemented on these microcontrollers in Table 2, where we use the same
assembler syntax for RL78 and ATtiny for readers’ convenience. It is seen in
AddRoundKey(AR) that a missing read-modify instruction on ATtiny is com-
pensated by its post increment addressing mode. It is also noted that ATtiny
requires more instructions to modify/restore the destination address register
at the end of SubBytes(SB), and instead RL78 needs more instructions to do
ShiftRows(SR) due to its accumulator-based architecture; i.e. no instruction
exists such as ’sub c,3’ on RL78.

Table 2. AddRoundKey+ShiftRows+SubBytes on RL78 and ATtiny

3.4 Variations

It is common in a minimum-size approach to see that a slight modification
of a source code significantly affects its performance. To see this, we unroll
a performance critical loop and measure the size and speed of resultant codes.
The performance bottleneck of our AES codes is of course computation of S-box.
In particular a multiplication on GF (2)[X]/(f), corresponding to MUL8 shown
in the implementation algorithm of SubBytes and InvSubBytes, is the critical
routine. It consists of a loop with an eight-time iteration (a code example of
this routine will be shown in the next section). Unrolling this performance-
critical loop improves speed at the cost of a small increase in ROM size as
illustrated in Table 3. This table shows that our 520-byte code of AES-GCM on
RL78 outperforms the 522-byte code on ATtiny. It should be noted that if we
see performance of these microcontrollers with the same ROM size, the lead of
ATtiny is not so big.

Table 4 shows another variation of our codes where the S-box and its inversion
routines are replaced with normal lookup tables, including previous smallest
implementations [3]. We think that ours are still a minimum record of AES,
while not a minimalist approach. In the implementation on ATtiny, we put these
lookup tables on a 256-byte address boundary for faster memory access, as most
implementations of AES on an AVR processor do [1,17,18].



60 M. Matsui and Y. Murakami

Table 3. Loop unrolled codes of AES-E, AES-ED and AES-GCM on RL78

Algorithm Controller #iterations ROM RAM Speed (cycles/blocks)

AES-E RL78 4 206 88 309901

AES-E RL78 2 234 88 279901

AES-E RL78 1 283 88 246901

AES-ED RL78 4 340 103 314016 (E), 377408 (D)

AES-ED RL78 2 368 103 284016 (E), 341408 (D)

AES-ED RL78 1 417 103 251008 (E), 301792 (D)

AES-GCM RL78 4 442 182 621088 (0), 352608 (2,3)

AES-GCM RL78 2 471 182 561088 (0), 322592 (2,3)

AES-GCM RL78 1 520 182 495104 (0), 289600 (2,3)

Table 4. Lookup table implementation of AES-E, AES-ED and AES-GCM

Algorithm Controller ROM RAM Speed (cycles/block)

AES-E [3] RL78 486 78 7288

AES-E RL78 399 78 8704

AES-E ATtiny 428 82 8870

AES-ED [3] RL78 970 84 7743 (E), 10362 (D)

AES-ED RL78 776 85 9847 (E), 13634 (D)

AES-ED ATtiny 814 82 9624 (E), 13869 (D)

AES-GCM RL78 642 172 19695 (0), 40640 (1), 51904 (2,3), 40928 (4)

AES-GCM ATtiny 730 165 19486 (0), 30536 (1), 40308 (2,3), 30876 (4)

In this implementation, ATtiny is 5–10 % larger than RL78 but its speed is
comparable with RL78 for AES-E and AES-ED because the performance gain in
S-box of ATtiny, which will be demonstrated in the next section, is lost. On the
other hand, ATtiny is much faster in all modes of AES-GCM except MODE=0.
This is because GHASH of AES-GCM, more specifically a multiplication on
GF (2128) runs much faster on ATtiny than on RL78. This will be also discussed
in the next section.

Lastly, we mention that it is possible to further reduce the code size of our
192-byte program on RL78 by relaxing (or ignoring) the coding policies shown
in this section. This is not recommended in general, but might make sense in
certain situations. The first possibility is to allow to destroy key data with-
out restoration. Our code copies key to temporary area before starting actual
encryption, and hence removing this part reduces code size by 10 bytes. Another
possibility is to remove timing-attack protection. In the MUL8 routine, which is
in the bottom of the S-box, we can quit the loop as soon as the shifted multiplier
becomes zero, without iterating eight times. The resultant code no longer runs
in constant time, but reduces register pressure and saves 4 bytes. Ignoring the



AES Smaller Than S-Box 61

function call convention gains another 2 bytes. Also without violating any pol-
icy, x254 can be computed by simply multiplying x 253 times instead of using
a binary method, which reduces further 4 bytes. We did not adopt this because
it makes the code too slow. Applying all these reduces its ROM size down to
172 bytes. It will be a less practical code, though.

4 Minimalism from Hardware Viewpoints

There are various types of microcontrollers currently available in the market,
of which low-end ones usually have a similar instruction set consisting of only
basic operations such as read/write, arithmetic, logical and branch. However, in
practice, minor-looking differences of these instructions often lead to a significant
impact on size and speed. This section takes Cortex-M0 [19] and MSP430 [20],
in addition to RL78 and ATtiny, as target microcontrollers and demonstrates
this fact using concrete code examples for AES. An architectural comparison of
these microcontrollers is summarized in the appendix.

Our first example is MUL8, a multiplication on GF (2)[X]/(f) used in S-box.
The following examples illustrate code minimum implementation of MUL8 on
these four processors. (1) corresponds to lines 15 and 16, and (2) corresponds
to lines 17 and 18 in the sequence shown in Sect. 2.1 (Tables 5 and 6).

Table 5. MUL8 on RL78 (left) and ATtiny (right)

The simplest code is on ATtiny. On RL78, an overhead for creating backup
of the accumulator is unavoidable. On the other hand RL78’s sknc instruc-
tion (replace next instruction with nop if a condition is met) works fine as
a faster alternative of jnc. A conditional taken/not-taken jump of Cortex-M0
takes three/one cycles, respectively. This means that a redundant nop instruc-
tion must be inserted for constant time execution. Also since all registers of



62 M. Matsui and Y. Murakami

Table 6. MUL8 on Cortex-M0 (left) and MSP430 (right)

Cortex-M0 are 32-bit long only, an extra instruction is required to create the
carry flag. Interestingly, a conditional jump of MSP430 always takes two cycles,
and hence a special care is need to create a timing-attack protected code. To do
this we insert a dummy conditional jump instruction with an opposite logic for
each branch, which causes a heavy size and performance penalty.

The next example is a multiplication on GF (2128) that appears in GHASH of
AES-GCM. The following codes show part of one iteration of the multiplication.
More specifically, the code consists of two functions: (1) If carry (or the highest
bit of a register) is active, then A = A xor B, (2) Rotate right shift B by one
bit. A and B are 128-bit data pointed by an address register.

The most straightforward code is RL78. Note that in the first loop the carry
flag must be checked every time to make the code run in constant time. Since
both loops handle the carry flag independently, it is not trivial to combine them
into a single loop. However for ATtiny, thanks to its sbrc instruction (replace
next instruction with nop if a bit on a register is non active), this can be done
in a very simple way (Table 7).

An obstacle of Cortex-M0 and MSP430 is that they do not have a decrement
instruction that does not touch the carry flag. In general carry-free dec/inc
instructions are frequently used for arithmetic of long integers. Moreover Cortex-
M0 does not have a rotate-shift-with-carry instruction. Hence we have to create
a rather tricky code to simulate it. This causes a significant penalty. MSP430
again suffers a speed overhead for timing adjustment, while the code is very
simply described due to its abundant addressing mode.



AES Smaller Than S-Box 63

Table 7. Multiplication on GF (2128) on RL78 (left) and ATtiny (right)

Table 8. Multiplication on GF (2128) on Cortex-M0 (left) and MSP430 (right)



64 M. Matsui and Y. Murakami

For Cortex-M0 and MSP430, we can write a much faster code by fully using
their 32-bit/16-bit wide registers. However this results in an increase in code size
because we need extra byte-swap instructions due to little-endianness of these
microcontrollers (Table 8).

5 Concluding Remarks

In this paper we explored minimalism in software implementation of AES on
various modern low-end microcontrollers. As far as the authors know, this is
the first extensive analysis of embedded software coding of symmetric primitives
toward memory size reduction with comparative viewpoints of processor hard-
ware. As concluding remarks, we mention some lessons we learned which could
be beneficial to programmers and designers of symmetric primitives for low-end
microcontrollers.

Use left shifts. Availability and efficiency of shift instructions greatly depends
on processor hardware. Some do not support shift with carry instructions.
Then adc (addition with carry) instruction can be an alternative of a left
rotation with carry.

Be aware of locality of RAM access. ATtiny accepts only 6-bit displacement
in its register indirect addressing, which is often restrictive. An order of
parameters such as text, key, temporary subkey etc., can affect code size
and performance.

Why not little endian. Most modern processors have a little endian hardware,
but most modern symmetric encryption algorithms are suitable to a big
endian architecture. RL78, ATtiny, Cortex-M0, MSP430 are all little endian.

Matrix should be circular. A circular matrix significantly contributes to
code reduction. First of all, a matrix multiplication with a circular matrix
can be described using a vector-wise loop, and also can be regarded as a
multiplication on a ring, as shown in this paper.

Appendix: Low End Microcontrollers Comparison Chart

This table is not intended to be exhaustive, but to illustrate typical cases in
implementing lightweight symmetric ciphers for readers’ convenience.



AES Smaller Than S-Box 65

RL78 ATtiny CortexM0 MSP430

Hardware Registers

- Register Size 8,16 8 32 8,16

- Number of General Registers 8 32 13 12

Addressing Modes

- Number of Operands 2 2 2,3 2

- Read-Modify(-Write) Instructions R-M No No R-M-W

- Post-Increment Addressing No Yes No Yes

Code Length (bytes)

- Operation equivalent to xor reg,[mem] 1-3 4 4 2,4

- Conditional Short Jump 2 2 2 2

- Subroutine Call 3 2 4 4

Instruction Latency (cycles)

- Read from Memory (RAM/ROM) 1/4 2/3 2 2

- Operation equivalent to xor reg,[mem] 1 2 2 2-3

- Conditional Short Jump (taken/not-taken) 4/2 2/1 3/1 2/2

- Call+Return 9 7 7 7

Supported Instructions

- Shift with multiple counts Yes No Yes No

- Rotate Shift without carry Yes No Yes No

- Rotate Shift with carry Yes Yes No Yes

- Carry preserving increment/decrement Yes Yes No No

- Conditional Skip Yes Yes No No

References

1. Eisenbarth, T., et al.: Compact implementation and performance evaluation
of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

2. Balasch, J., et al.: Compact implementation and performance evaluation of hash
functions in ATtiny devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771,
pp. 158–172. Springer, Heidelberg (2013). http://eprint.iacr.org/2012/507.pdf

3. Matsui, M., Murakami, Y.: Minimalism of software implementation-extensive
performance analysis of symmetric primitives on the RL78 microcontroller.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 393–409. Springer, Heidelberg
(2014)

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. http://eprint.
iacr.org/2013/404.pdf

5. Papagiannopoulos, K., Verstegen, A.: Speed and size-optimized implementations of
the PRESENT cipher for tiny AVR devices. In: Hutter, M., Schmidt, J.-M. (eds.)
RFIDsec 2013. LNCS, vol. 8262, pp. 161–175. Springer, Heidelberg (2013)

http://eprint.iacr.org/2012/507.pdf
http://eprint.iacr.org/2013/404.pdf
http://eprint.iacr.org/2013/404.pdf


66 M. Matsui and Y. Murakami

6. Fischer, V., Drutarovsky, M., Chodowiec, P., Gramain, F.: InvMixColumn decom-
position and multilevel resource sharing in AES implementations. IEEE Trans.
VLSI Syst. 13(8), 989–992 (2005)

7. Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, NIST (2001)

8. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
9. Renesas Electronics, RL78 Family. http://am.renesas.com/products/mpumcu/

rl78/index.jsp?campaign=gn prod
10. Atmel, tinyAVR Microcontrollers. http://www.atmel.com/products/micro

controllers/avr/tinyavr.aspx
11. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

(GCM) and GMAC, Special Publication 800–38D, NIST (2007)
12. RL78 Family, User’s Manual. http://documentation.renesas.com/doc/products/

mpumcu/doc/rl78/r01us0015ej0210 rl78.pdf
13. 8-bit AVR Instruction Set http://www.atmel.com/Images/doc0856.pdf
14. AVR-Crypto-Lib Wiki. http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
15. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,

Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. http://www.groestl.
info/

16. Mixing Assembly and C with AVRGCC. http://www.atmel.com/Images/doc
42055.pdf

17. Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various Plat-
forms. http://eprint.iacr.org/2009/501.pdf

18. Poettering, B.: Rijndael Furious. http://perso.uclouvain.be/fstandae/lightweight
ciphers/source/AES furious.asm

19. ARM Cortex-M0 core MCUs. http://www.nxp.com/products/microcontrollers/
cortex m0 m0/

20. Overview for MSP430 Ultra-Low Power 16-bit MCUs. http://www.ti.com/lsds/ti/
microcontroller/16-bit msp430/overview.page

http://am.renesas.com/products/mpumcu/rl78/index.jsp?campaign=gn_prod
http://am.renesas.com/products/mpumcu/rl78/index.jsp?campaign=gn_prod
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://documentation.renesas.com/doc/products/mpumcu/doc/rl78/r01us0015ej0210_rl78.pdf
http://documentation.renesas.com/doc/products/mpumcu/doc/rl78/r01us0015ej0210_rl78.pdf
http://www.atmel.com/Images/doc0856.pdf
http://www.das-labor.org/wiki/AVR-Crypto-Lib/en
http://www.groestl.info/
http://www.groestl.info/
http://www.atmel.com/Images/doc42055.pdf
http://www.atmel.com/Images/doc42055.pdf
http://eprint.iacr.org/2009/501.pdf
http://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES_furious.asm
http://perso.uclouvain.be/fstandae/lightweight_ciphers/source/AES_furious.asm
http://www.nxp.com/products/microcontrollers/cortex_m0_m0/
http://www.nxp.com/products/microcontrollers/cortex_m0_m0/
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/overview.page
http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/overview.page



