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1.  Introduction

AI will have a very large impact in the coming decade. Rapid and continuing AI 
progress is a predictable benefit of the exponential increase in computation used 
to train AI systems, because research on “scaling laws” demonstrates that more 
computation leads to general improvements in capabilities.

The three main ingredients leading to predictable improvements in AI performance 
are training data, computation, and improved algorithms and architectures. The 
amount of computation going into the largest models was growing at 10 times 
per year (a doubling time 7 times faster than Moore’s Law). This idea was made 
precise by developing scaling laws for AI, demonstrating that you could make AI 
smarter in a predictable way, just by making them larger and training them on 
more data. Justified in part by these results, this team led the effort to train GPT-3, 
arguably the first modern “large” language model, with over 173 billion parameters.

The current trend in the field of deep learning is to increase the number of model 
parameters, so that they can handle difficult tasks and model complex nonlinear 
systems such as natural language processing. However, it has its downside, as the 
complex system requirements to train such large models become the prerogative 
of just a few labs in the world. This paper focuses on the benefits of compression 
for models both during and after training. Our work shows that it is possible to 
jointly quantize the model during training in 8-bit accuracy and then perform block 
pruning, which leaves only 37% of the parameters. This method significantly 
increases the speed of training and at the same time reduces the memory footprint 
of the model after training. Moreover, if the hardware on which the model runs 
effectively supports 8-bit operations and sparse matrices, this further accelerates 
the model.

8-bit Floating Point, Quantization Aware Training, Post-training Quantization, Block 
Pruning, Model Compression
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Today, the scale of the largest AI computations is doubling every six months, far 
outpacing Moore’s Law. The capacities of language models increase dramatically 
by more than 1,000 times within a few years, from BERT’s 340 million parameters 
[1] to the Megatron Turing’s 530 billion dense parameters [2] and to the sparse 
Switch Transformer’s 1.6 trillion sparse parameters [3] and lower precision 
(bfloat16). Scaling up language and vision models has been incredibly successful. 
It significantly improves a model’s performance on language and vision tasks, and 
the models demonstrate amazing few-shot capabilities similar to that of human 
beings.

There are multiple common approaches for scaling deep learning and for 
reducing the overall number of computations required for deep learning inference.  
Quantization is a way of compressing DNN models by reducing the precision of 
model parameters and/or activations [4], [5]. The immediate benefit of quantization 
is reduced memory consumption, which allows reduced off-chip storage and 
bandwidth. In addition, quantization reduces the energy consumption of the matrix 
multiplication unit via low-bit precision arithmetic. Pruning is a procedure of making 
DNN models sparse by removing those redundant/insensitive parameters. While it 
has been observed that having a dense model may be necessary to successfully 
train a model, it is also possible to remove many of the parameters after the model 
has been trained without any quality degradation.

Tachyum’s Prodigy processor provides support for both dense and block sparse 
matrix multiplication using the following data formats, float32 as well as via low 
precision data types: bfloat16, float8 [6], INT8 and INT4 thus allowing to scale deep 
learning via joint quantization and pruning [7]. It supports block sparsity [8] with 
compression ratios 4:8 and 3:8.

Our contributions are as follows:

 » We propose joint quantization using float8 data type with 8:3 block pruning. 

 » We demonstrate 8:3 block pruning with quantization aware training (QAT) and 
adaptive scaling using float8 data type applied to computer vision models and 
present results. 

 » We demonstrate 8:3 block post training pruning with post training 
quantization (PTQ) along with retraining using float8 data type applied to 
language transformer models and present results.
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Pruning is a set of techniques for removing weights, filters, neurons, or other 
structures from a neural network. Pruning can compress standard networks across 
a variety of tasks, including computer vision and natural language processing, while 
maintaining the accuracy of the original network. Pruning leads to the reduction 
of the parameter count and resource demands of neural network inference by 
decreasing storage requirements, energy consumption, and latency.

Broadly speaking, there are two main approaches for neural network pruning: 
magnitude-based and impact-based.

Magnitude-based methods use the magnitude of weight to determine its 
importance and whether or not it should be pruned [13].

Impact-based pruning methods remove weights based on how much their removal 
would impact the loss function, often using second-order information on the loss 
function. Impact-based pruning dates back to the work of LeCun et al. [14] where the OBD 
(Optimal Brain Damage) framework is proposed. This approach, along with subsequent 
ones make use of second order approximation [15], [7], [16]. Using this approximation, 
the pruning method minimizes the discrepancy between the output of the original layer 
and that of the compressed one. Usually, this discrepancy is measured in l2-distance on 
a small amount of calibration data.

We identify two types of pruning techniques, sparsity aware training prunes the 
network throughout the standard training process [8], producing a pruned network 
by the end of training. The other type, post training pruning [17], prunes after the 
standard training process.

2.1  Pruning methods

2.  Related Work

Broadly speaking, sparsity can be categorized into two branches: unstructured 
sparsity and structured sparsity. Unstructured sparsity allows arbitrary patterns of 
pruning for parameters and feature maps [9]. It can achieve a high compression 
ratio, but is not hardware friendly. Structured sparsity prunes blocks of subnetworks 
of a neural network [10], [11], [12].



Unprecedented Scale and Efficiency in Generative AI with FP8 8:3 Super-Sparsitywww.tachyum.com       |         5

In this section, we will first introduce the 8-bit floating point format that we used 
in our experiments. Subsequently, we will describe the pruning method used to 
remove more than half of the model parameters. In the last part, we present two 
compression methods based on these techniques.

2.2  Post-training pruning

Pre-trained large language transformer models are over-parameterized and difficult 
to deploy. Therefore, the problem of compressing these models with minimum 
accuracy loss for downstream tasks is widely explored. Post-training compression 
has traditionally been investigated in the context of quantization to reduce the 
computational cost of quantization-aware training. More recently, it has been shown 
that it is possible to also perform accurate post-training pruning.

Specifically, when parts of the network are removed during the pruning step, accuracy 
typically decreases. It is therefore standard to retrain the pruned network to recover 
accuracy [18]. Pruning and retraining can be repeated iteratively until a target sparsity 
or accuracy threshold is met; doing so often results in higher accuracy than pruning 
in one shot.

3.  Method

3.1  Quantization in 8-bit floating point

Our 8-bit floating point format has a 5E2M structure, which means that 1 bit is 
dedicated to the sign, 5 bits to encode the exponent, and 2 bits to the mantissa. 
This is a standard format used in several works [19], [6], [20]. When converting 
from 32-bit floating point format, we use rounding of the last (second) bit of the 
mantissa, which is rounded according to the third bit of the mantissa of the 32-
bit source number. This operation is denoted as Q8(·) and for tensor T returns its 
quantized version. As a compensation of the quantization error defined as mean 
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squared error of T and T¯, it is necessary to introduce the scaling of the quantized 
tensor. For the model parameters W, we decided to use the existing statistics-
aware weight binning (SAWB) [21] technique. The input tensors X of the operators 
were scaled using their maximum absolute value. Our scaling has two parts, a 
constant component, calculated according to the stated rules, and a dynamic 
component λ, which adapts during training and learns along with the entire model. 
Each operator (linear, convolutional) has its own dynamic scaling value. The final 
form of quantization for input tensors is defined as

      (1)

and for model parameters is defined as
 
      (2)

      (3)

     
as well as for output gradient

      (4)

This format can be used for both QAT and PTQ. We have tested both cases, and they 
will be presented  in the experimental section. At QAT, operators using 8-bit floating 
point were implemented in two forms. The first, designated as semi-floating point 
8 implementation (SFP8), quantizes inputs and parameters only during the forward 
phase amid the training, the backward phase is always in float32 precision. In this 
form, the quantized values are rescaled back when calculating the gradients. For 
example, with the linear operator, a matrix multiplication with 8-bit precision is 
called in the forward phase, and two matrix multiplications with 32-bit precision in 
the backward phase. The simplified scheme of forward pass and backward pass is 
in Fig. 1 and Fig. 2. The second form, called floating point 8 implementation (FP8), 
additionally quantizes the output gradient, and the calculation of the input gradients 
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Figure 1
Forward pass with activation 
X and parameters W and b 
quantized to 8-bit floating 
point.

Figure 2
Backward pass of SFP8 
implementation (in 32-bit 
floating point precision).

Figure 3
Backward pass of FP8 
implementation (in 8-bit 
floating point precision).

also takes place in 8-bit precision. If we return to the linear operator example, in 
this case only 8-bit matrix multiplications are used in both directions. The simplified 
scheme of described backward pass can be found in Fig. 3.



      

www.tachyum.com      |         8Unprecedented Scale and Efficiency in Generative AI with FP8 8:3 Super-Sparsity

We divided our experiments into three parts. In the first part, we tried to find the 
lowest possible ratio of n and k for block-wise pruning, for which we used a small 
visual model trained on a classification task. In the second part, we selected 
representative models for the classification task, semantic segmentation and 
detection and applied the same procedure to them as in the first part, but only 
for the selected ratio n to k. In the third part, we took the trained language model, 
performed quantization, pruning (again for selected n and k) and fine-tuning. In the 
first two cases, we trained our own baseline models, so they may not have SoTA 
performance, but foremost we were interested in detecting a drop in accuracy 
relative to the baseline models.

To determine the best possible ratio for pruning, we used the ResNet20 [22] network 
and the CIFAR10 dataset [23]. We trained the baseline model for 120 epochs to 
Top1 accuracy 86.95%. Next, the SFP8 and FP8 implementation of ResNet20 was 
trained, and then pruning and subsequent retraining for 10 epochs was performed 
on it. The goal was to find such a ratio of n to k, where there was no significant 
reduction in the accuracy of the model and at the same time it was possible to 

4.  Experiment Results

4.1  Choosing pruning format

3.2  Block-wise pruning

For pruning, we use a method that accesses the tensor in blocks and removes 
parameters based on their magnitude. The input parameters of such a pruning 
method are the size of the block n and the number of elements k to be preserved. 
In this way, the parametric tensor is ”cut” into blocks (if necessary, zeros are 
added to its end so that the total number of elements is divisible by the size of 
the block) and the k largest elements from each block are kept, the others are set 
to zero. According to the ratio of n to k, it is possible to create different pruning 
format. Pruning was always applied after training and quantizing of the model. 
Subsequently, we always had to retrain the pruned model for a few epochs. The 
parameters that were already pruned were masked so that they would not be 
trained. We pruned only Linear and Convolutional layers.
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Ratio Reduction SFP8 FP8

8:4 50% 0.7 -0.57

8:3 63% -0.65 -1.21

8:2 75% -3.06 -3.61

4:2 50% -0.64 -0.97

4:1 75% -3.83 -3.92

Table 1
Drop in Top-1 accuracy (%) to 
baseline 32-bit ResNet20 and 
reduction of parameters (%)

4.2  Pruning of QAT models

After choosing a ratio of 8 to 3 based on previous experiments, we selected 
several models that solve different computer vision tasks. Models were trained 
again in both implementations (SFP8 and FP8). Subsequently, the trained models 
were pruned and retrained for 10 epochs. For image classification, we chose 
ResNet32 [22] trained for 200 epochs on the CIFAR100 dataset, ResNet34 [22] 
and SWIN transformer [24], both trained for 120 epochs on the Imagenet dataset. 
For segmentation, it was the UNet [25] network and the Kits19 dataset, which we 
also trained for 120 epochs. Finally, we chose SSD [26] for detection, where the 
pre-trained ResNet34 served as the backbone. We trained SSD for 240 epochs on 
the COCO 300×300 dataset. We used Adam [27] optimizer for training and cosine 
scheduler with warm restarts [28]. A complete overview of hyperparameters is 
presented in Tab. 2.

take the largest possible number of weights according to the rule described in the 
previous section. We compared five possible formats: 8 to 4, 8 to 3, 8 to 2, 4 to 2, 
4 to 1. From the results in Tab. 1 it can be seen that for both implementations of 
quantization, the best results were achieved for a ratio of 8 to 3, when we keep 37% 
of the parameters, but the loss in Top1 accuracy is around 1%. The results also 
show that the network was no longer able to recover from pruning at a ratio of 4 to 
1, when only 25% of non-zero parameters remained, while at ratios of 8 to 4 and 4 to 
2 still maintained good accuracy with 50% of parameters remaining.
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4.3  Pruning of PTQ models

To also evaluate our pruning method with 8-bit precision on other domain than 
vision, we tried natural language processing with question answering task, 
however this time in a slightly different workflow. To save time and computational 
resources we did not train the model from scratch, but downloaded a pretrained 
BERT transformer [1] from HuggingFace Hub [29] with 110M parameters, 
which was first trained in a self-supervised fashion on English Wikipedia and 
BookCorpus dataset and later fine-tuned for question answering on SQuAD v1 
dataset [30]. 

Based on the results shown in Tab. 3 we can state that pruning format 8 to 3 
in connection with quantization to 8-bit float precision can still preserve the 
performance of the models. Thanks to training in low accuracy and retraining the 
model after pruning, it turns out that it is possible to save 63% of memory and 
speed up inference (and also model training) theoretically to 4 times the speed 
compared to 32-bit accuracy. In the case of classification tasks, there was a loss 
in accuracy at the level of 1 to 2%, in the case of segmentation there was even 
an increase in IoU metric, indicating that the model has improved generalization 
after QAT and pruning. In the case of the SSD detector, there was a decrease of 
0.01 in the IoU metric.

Table 2
Hyperparameters used 
for training SFP8 and FP8 
models in our experiments

Model Epochs Warm-up LR WD

ResNet32 200 2 3E-03 5E-04

ResNet34 120 2 1E-03 1E-04

SWIN 120 5 5E-04 5E-02

UNet 120 0 1E-03 1E-04

SSD 240 0 1E-04 1E-04
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Table 3
Results of models after 
QAT in SFP8 or FP8 
implementation and pruned 
in 8:3 format after training

Model Metric baseline SFP8 FP8
ResNet32 Top1 (%) 60.06 59.02 58.3
ResNet34 Top1 (%) 68.77 66.61 66.3
SWIN Top1 (%) 75.86 73.41 73.05
UNet IoU 0.75 0.79 0.79
SSD IoU 0.32 0.31 0.31

Table 4
Results of BERT on question 
answering task before and 
after 8:3 block pruning with 
FP8 quantization

Metric baseline FP8
exact match 80.908 78.004
f1 score 88.228 86.619

After loading the pretrained model, all of the model layers with the exception of 
the embedding layer were pruned and the model was retrained once again on 
SQuAD. We have tried several configurations, but the best results were achieved 
with retraining for just 3 epochs with AdamW optimizer with learning rate: 5e−5, 
betas: 0.9, 0.999 and weight decay: 0.01. Finally, the model weights from all linear 
layers but the last one (output layer) were quantized into the FP8 format mentioned 
previously. The performance of the original model and our model with sparse and 
quantized weights are evaluated in Table 4. The quality of our PTQ model degrades 
relative to the original model only from 1.9% to 3.6%, depending on the metric in 
question.

This approach utilizes the theoretical speedup of sparsity during both retraining 
and inference, but the speedup of 8-bit floats only during inference. When we tried 
quantizing the model before retraining, the model quality deteriorated rapidly. 8-bit 
training with the combination of NLP tasks will be the focus of our future research.
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5.  Conclusion

In our work, we focused on investigating the possibilities of joint application of 
quantization in 8-bit float precision and block pruning, which preserves less than 
50% of the model parameters. Such a compressed model could subsequently 
use the advantages of the latest hardware platforms, which offer instructions 
for working with 8-bit floating point numbers and have support for accelerated 
multiplication of sparse matrices. 

On a small ResNet20 model trained on CIFAR10, we experimentally found out 
the appropriate ratio of block size and number of retained parameters, which 
preserves the performance of a model. We concluded that 8 to 3 pruning format 
is a reasonable choice. In the experiments, we then focused on two main types 
of quantization: QAT and PTQ. The advantage of QAT is that the models are 
already quantized during training, which speeds up the training process itself. After 
finishing, the models were pruned and subsequently retrained, which ensured a 
minimal loss of performance. A model compressed in this way is not only trained 
faster, but the speed of inference raises as well. 

To verify the robustness of our approach, we selected several models designed for 
visual tasks such as image classification, semantic segmentation, and detection. 
We applied our compression procedure to them and then compared them with 
baseline models trained in 32-bit precision and with the full number of parameters. 
The decrease in performance of the models was still at an acceptable level (there 
was even an increase in the case of semantic segmentation), if we took into 
account how much compression was performed on them. 

In the second part of the experiments, we looked at large language models, where 
it is no longer easy to perform their training in a quantized form. That’s why we 
applied PTQ to them in 8- bit precision and then performed pruning and fine-tuning 
again. We proceeded similarly to the first series of experiments and after PTQ and 
pruning we compared the resulting performance of the models and could conclude 
that there was a negligible decrease in performance. 

We managed to show that with the increase of current deep learning models, the 
8-bit float format will become the standard, and it will be possible to quantize the 
models in it not only after training, but already during the training itself. In addition, 
it will be possible to prune the trained model below 50% of the original size without 
losing performance. These compression approaches, together with hardware 
support, will make it possible to train and use large deep learning models even for 
smaller users in private sector or academia.
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