
Chapter 14

MODULATION

INTRODUCTION

As we have seen in previous three chapters, different types of media need different types

of electromagnetic signals to carry information from the source to the destination. In

chapters 9 and 10 we discussed analog and digital baseband signals. Now that we discussed

the characteristics of various media we can now discuss how to construct signals that

take maximum advantage of each media’s capabilities. In almost all cases, the source

information is impressed upon a carrier-wave (essentially a sinusoid of a certain frequency)

by changing or modifying some characteristic of the sinusoidal wave. This process is

called modulation. The original source signal (e.g., audio, voltage pulse train carrying

digital information) is called the baseband signal. Modulation has the effect of moving

the baseband signal spectrum to be centered frequencies around the frequency of the

carrier. The resulting modulated signal is considered a bandpass signal. Other processes

that modify the original information bearing signal are sometimes called modulation—for

example, the representation of sampled signals by the amplitude, position or width of a

pulse as described in Chapter 10.

Consider a general sinusoid of frequency fc which we will refer to as the carrier

frequency. Recall from previous chapters (2, 6, 9) that we can write this sinusoidal carrier

signal as:

c(t) = A cos(2π fct + ϕ) (14.1)

Here, A is called the amplitude and ϕ the phase of the carrier. Before this carrier is

transmitted, data are used to modulate or change its amplitude, frequency, phase or some

combination of these as we will see later. We discuss the need for this in Section 14.1. We

consider the continuous change of the characteristics of a carrier or analog modulation in

Section 14.2. In particular, we discuss amplitude and frequency modulation. We discuss

discrete changes in the characteristics of the carrier (digital modulation) in 14.3 along with

the methods of representing and analyzing the performance of these modulation schemes.

We consider binary modulation schemes and multi-level modulation schemes here. In this

section, we also describe a special case of digital modulation that is very important for

transmission of information using modems—quadrature amplitude modulation (QAM) and

tradeoffs between data rate and signal bandwidth. Digital subscriber lines and emerging

wireless local area networks use multiple carriers to carry information—a technique called
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676 The Physical Layer of Communications Systems

orthogonal frequency division multiplexing (OFDM). Current and emerging generations of

cellular wireless communications use multiple layers of modulation resulting in spreading

of the spectrum of a signal. Both of these complex modulation schemes are briefly

discussed in 14.4.

14.1 WHYMODULATION?

Why do we need modulation? As the reader saw in the last three chapters, all media used

for transmission act as filters that attenuate different frequencies by different values. So

it is beneficial to move the spectrum of a signal to a frequency that is less susceptible to

attenuation over a given medium. We considered an example of amplitude modulation

in Chapter 6 that does this frequency translation. Some media have characteristics that

severely distort digital waveforms in such cases, it is necessary to send digital information

in analog form using sinusoidal carriers. We saw this restriction in Chapter 13 when we

discussed the electromagnetic spectrum which is regulated and different applications are

allowed transmissions only in specific parts of the electromagnetic spectrum. We also saw

in Chapter 13 that the size of the antenna depends on the wavelength of the signal that is

transmitted or received. Higher frequencies (smaller wavelengths) can reduce the size of

the antenna and thus the transceiver. Again, this makes it necessary to move the spectrum

to a higher frequency range. In processing signals, circuits are sometimes designed to

best operate in only a certain range of frequencies. The same circuit may have to be used

used to process signals that occupy different frequency bands. In such a case we once

again translate the spectrum, this time to an intermediate frequency (IF) that is in the range

where the circuit operates best. We will consider separating different transmissions from

different sources in Chapter 15 (multiplexing). A common way of separating such different

transmissions is to use separated frequency bands for these transmissions. Once again, this

implies that the spectrum of a signal must be shifted to the range of frequencies that it is

allowed to occupy. Modulation is necessary in all of the above scenarios.

14.2 ANALOGMODULATION

In analog modulation, the characteristics of the modulated sinusoid (such as amplitude,

frequency or phase) can take a continuum of values depending on the source of the

information. The two common forms of analog modulation are amplitude modulation

(AM) and frequency modulation (FM) which is specific form of more general angle

modulation. Most of us are familiar with AM and FM commercial radio stations. These

radio transmissions make use of amplitude and frequency modulation respectively. In

North America, the 525 kHz to 1715 kHz band is used for AM transmissions and the 87.8

MHz–108 MHz band is used for FM transmissions. An AM channel is 10 kHz wide and an

FM channel is 0.2MHz wide. Note that the commercial radio systems adopted the names of

the modulation schemes that they emply, but there are other systems that also use amplitude

and frequency modulation. For example, analog video transmission for television makes

use of a combination of both AM and FM. The analog cell phone systems use FM as the

modulation scheme. We discuss AM in Section 14.2.1 and FM in Section 14.2.2.
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Figure 14.7 Block diagram of a communication system.

MHz= 200 kHz. This fits reasonably well with the computation of transmission bandwidth
using Carson’s rule. FM receivers use an IF of 10.7 MHz to recover the message signal.

Noise and FM signals. Noise analysis for general FM signals is fairly complex and

described in detail in [1]. FM signals exhibit an improvement in SNR at the receiver output

over the receiver input SNR by a factor that is around
3k2f P

f 2max
where P is the average power

in the message signal. Observe that the improvement in SNR is a function of the frequency

sensitivity k f which in turn affects the signal bandwidth through the frequency deviation

! f . The improvement factor can be shown to be proportional to D2 where D = ! f
fmax

.

The transmission bandwidth BT is approximately proportional to D. hence, we can say

that the output signal-to-noise ratio is improved quadratically whenever the transmission

bandwidth is increased.

The above reasoning is true only when the carrier power is large compared to the

noise power. FM receivers also exhibit the threshold effect. Improvements are not seen

when the signal-to-noise ratio is below a threshold value. Below the threshold value, an

FM receiver cannot function. Initially, there may be clicks in the received audio and these

degrade to a crackle or sputter.

FM however has an inherent ability to minimize the effects of interference. If

two FM signals at the same carrier frequency are received, an FM receiver captures the

stronger signal and rejects the weaker signal. This capture effect is useful in packet radio

applications. FM was also the modulation scheme of choice in the first generation (1G) or

analog cellular systems in the USA, Europe and Japan.

14.3 DIGITAL MODULATION

In Chapter 8, we briefly considered a model of a digital communication system where

we have a source, a source encoder, and a channel encoder on the transmitter side and

the corresponding channel decoder, source decoder and destination on the receiver side.

We reproduce this communication system in Figure 14.7 with the addition of a modulator

prashantk
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block on the transmitter side and a demodulator block on the receiver side. Our goal in this

section is to consider the details of the modulator and demodulator blocks. In Figure 14.7,

we see that information is sent to the modulator after both source and channel encoding.

The source and channel encoders typically assume that the source produces a discrete

alphabet of information.

We considered digital signals in Chapter 10. In the case of digital signals, the

information is in the form of a finite set of discrete symbols called an alphabet. For

example, if the alphabet is binary, the two possible symbols are 0 and 1 and information

is simply a long sequence of 0’s and 1’s. A “binary” digital signal represents the “zero

symbol” using a specific signal that lasts for a duration of Ts seconds and the “one symbol”

using another specific signal that also typically lasts for the same duration of Ts seconds.

Since one bit is transmitted every Ts seconds, the bit rate is
1
Ts
bps.

If the number of possible symbols is M , we call it an M-ary alphabet and the

corresponding signal is an M-ary digital signal. While it is possible to have any arbitrary

value for M , most systems are constructed such that M = 2k . In such a case, we can think

of each one of the M symbols as containing k bits. For instance, if m1,m2,m3, and m4 are
the symbols of a 4-ary system, we can associate the “dibit” 00 to m1, 01 to m2, 10 to m3
and 11 to m4. Each one of the M symbols is usually represented by a unique signal that

lasts for Ts seconds. The message signal is thus one of M discrete possibilities. We call Ts
the symbol duration and 1

Ts
as the symbol rate (expressed in units of baud). The bit rate (if

M = 2k) will be k
Ts
bits per second.

Example. Each symbol occupies 1 µs, then the symbol rate is 1 M symbol/s or 1 Mbaud.

If each symbol carries 4 bits (k = 4 or it is a M = 16-ary alphabet) and the bit rate is 4

Mbps.

In a manner similar to analog modulation, the message is mapped to the amplitude,

frequency, phase (or a combination of these) of the carrier. Note however that there are

a finite and discrete number of messages and each message has a corresponding amplitude,

frequency or phase value. Thus there are a discrete number of carriers with specific

values of amplitude, frequency and phase values corresponding to a given alphabet. If the

message is mapped only to the amplitude of the carrier, the modulation is called amplitude

shift keying or ASK. If the message is mapped only to the frequency of the carrier, the

modulation is called frequency shift keying or FSK. If the message is mapped only to

the phase of the carrier, the modulation is called phase shift keying or PSK. A hybrid of

amplitude and phase mapping is called quadrature amplitude modulation (QAM).

In analog modulation we were interested in the SNR, but recall from Chapter 10

that in digital modulation we are intersted in the bit error rate (BER) as a function of the

ratio of the energy per bit (Eb) to the value of the noise PSD (N0) given by
Eb
N0
. Also,

like analog modulation we would like to maximize the efficiency with which we use the

available bandwidth in digital modulation we quantify the spectral efficiency for the amount

of bandwidth W required to transmit at a given data rate R quantified as η = R
W
bps/Hz.

Ideally, we would like to get the lowest bit error rate while spending the smallest amount of

energy for transmitting a bit and have the ability to simultaneously transmit at the highest

possible data rate in the given bandwidth. As we will see later, there are tradeoffs between

the BER for a given Eb
N0
and η.
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Figure 14.8 Binary Amplitude Shift Keying.

In what follows, we first describe the signaling schemes for binary and M-ary

alphabets. We then briefly revisit the idea of a matched filter and consider the impact

of noise in digital modulation schemes. We then consider a geometric representation of

signals and noise leading to the idea of a “signal constellation.” With a signal constellation,

it is possible to easily understand the performance of many digital modulation schemes

under a unified framework.

14.3.1 Binary Modulation Schemes

In the case of binary modulation schemes, the alphabet has two values “0” and “1.” In ASK,

a “0” is mapped to one amplitude value and a “1” is mapped to another amplitude value.

In FSK, a “0” is mapped to one frequency value and a “1” is mapped to another frequency

value. In PSK, a “0” is mapped to one phase value and a “1” is mapped to another phase

value. We call these modulation schemes BASK, BFSK and BPSK respectively to denote

that the alphabet is binary. We discuss these schemes in more detail below.

Binary Amplitude Shift Keying (BASK). In BASK, the binary symbols last for Ts seconds

each and are characterized by the amplitude of the carrier. In the general case,

si (t) = Ai cos(2π fct + φ), 0 ≤ t ≤ Ts for i = 1, 2 (14.25)

The transmitter will transmit s1(t) when the bit is zero and s2(t) when the bit is one. When
A1 = A and A2 = 0, we refer to the modulation scheme as having 100% depth. This

scheme (where the two amplitude values are A and 0) is also called unipolar modulation or

on-off keying. When A1 = A and A2 = A
2
, we say that the modulation depth is 50%. Both

of these schemes are shown in Figure 14.8.

Recall that we are interested in the BER as a function of Eb/N0 as one of the
performance measures. Towards this goal, let us perform some simple calculations. The
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energy in the “zero” bit is given by:

Ezero =
∫ Ts

0

s21(t) dt = A21

∫ Ts

0

cos2(2π fct + φ) dt

= A21

2

∫ Ts

0

[1+ cos(2π(2× fc)t + 2φ)] dt

≈ A21

2
Ts (14.26)

The approximation is an equality if fc = k
Ts
and is a close approximation if fc $ 1

Ts
even

if fc is not a multiple of
1
Ts
. The energy in the “one” bit is similarly equal to:

Eone = A22

2
Ts (14.27)

The average energy per bit is given by:

Eb,av = Ts

4

[
A21 + A22

]
(14.28)

Here we assume that the number of “0”s and the number of “1”s in a transmission are

equal. For the two special cases in Figure 14.8, the average energy per bit can be calculated

to be Eb = A2Ts
4
and Eb = 5A2Ts

16
respectively. Note that the average energy per bit with

50% modulation is higher. One may expect that the bit error rate with 50% modulation is

lower since more energy is being expended. But the error rates are worse as we will see

later because it is easier to make a mistake as to which bit was transmitted. Thus wherever

BASK is employed, it is common to use on-off keying.

Generation of the on-off keyed signal is fairly simple. The carrier is simply multiplied

by a baseband unipolar signal (see Figure 14.1). The baseband signal can be recovered at

the receiver using the same techniques as AM (envelope detection or coherent detection).

On-off keying is not a very popular modulation scheme. As we will see later, it is

fairly inefficient in terms of the BER performance as a function of the energy consumed.

Historically, on-off keying was used for transmitting Morse codes on RF carriers. It is now

used in devices that need to be extremely simple—some examples are television remotes,

RF-ID tags and infra-red links.

Binary Frequency Shift Keying (BFSK). In BFSK, the binary symbols last for Ts seconds

each and are characterized by the frequency of the carrier. In the general case,

si (t) = A cos(2π fi t), 0 ≤ t ≤ Ts for i = 1, 2 (14.29)

where we assume that the phase of the carrier is zero for simplicity. The transmitter will

transmit s1(t) when the bit is zero and s2(t) when the bit is one. Figure 14.9 shows an
example of the transmission of three bits using BFSK.

It is important to note that any two arbitrary frequencies f1 and f2 cannot be used

to represent the binary digits. The two frequencies must be separated by at least 1
Ts
to
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Figure 14.9 Binary Frequency Shift Keying.

ensure that the receiver is able to differentiate between the frequencies. The receiver

typically determines which frequency was transmitted by correlating the received signal

with locally generated carriers at the two frequencies f1 and f2 and picking the larger

of the two correlations. Consider the correlation between s1(t) and s2(t) which involves
multiplication of the two signals and integration over one symbol period given by:

∫ Ts

0

s1(t)s2(t) dt = A2
∫ Ts

0

cos(2π f1t) cos(2π f2t)dt

= A2

2

∫ Ts

0

[cos (2π( f1 − f2)t) + cos (2π( f1 + f2)t)] dt (14.30)

The term
∫
cos(2π( f1 + f2)t) has a frequency close to two times fi and it can be filtered

out using a low-pass filter. The term
∫
cos(2π( f1 − f2)t) needs to be made as small as

possible. Specifically, orthogonal FSK ensures that there is no correlation between s1(t)
and s2(t), that is: ∫ Ts

0

s1(t)s2(t) dt = 0 (14.31)

In the case of orthogonal FSK, f1− f2 = 1
Ts
so that the integration in

∫
cos(2π( f1− f2)t)

is over exactly one period resulting in a zero value. This idea also becomes important in the

discussion of orthogonal frequency division multiplexing (OFDM) later on in this chapter

(see Section 14.4.1).

As we saw in the case of BASK, the energy per bit in BFSK (for both a “0” and a “1”)

can be calculated to be A2Ts
2
which is also the average energy per bit. As we will see later,

BFSK has a better BER performance than BASK for the same average Eb
N0
. Note also that

an ASK signal, like AM has an envelope that is varying with time. However, an FSK signal,

like FM, has a constant envelope providing robustness against amplitude fluctuations.

Example. A classic example of FSK is the old 300 baud modems that used Manchester

signaling (Chapter 10). Recall that a Manchester pulse consists of two “half” pulses. The

duration of one bit in these modems was Ts = 1.67 ms for a data rate of 600 bps. The
frequency used to represent one of the half pulses was f1 = 1.5 kHz and the frequency
used to represent the other half pulse was f2 = 1.8 kHz.
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Figure 14.10 Binary Phase Shift Keying.

FSK has been used in early modems and FAX machines. FSK was used for signaling

purposes in the early analog cellular systems (like the Advanced Mobile Phone System—

AMPS). Recently, FSK has found applications in low power wireless networks like

Bluetooth, Zigbee and sensor networks.

Binary Phase Shift Keying (BPSK). In BPSK, the binary symbols last for Ts seconds each

and are characterized by the phase of the carrier. In the general case,

si (t) = A cos(2π fct + φi ), 0 ≤ t ≤ Ts for i = 1, 2 (14.32)

The transmitter will transmit s1(t) when the bit is zero and s2(t) when the bit is one.
Figure 14.10 shows an example of the transmission of three bits using BPSK.

Since the phase can only be between 0 and 2π radians, the maximum possible phase
difference between the two bits is π . It is common to assume that φ1 = 0 and φ2 = π in
which case, the two signals will be:

s1(t) = A cos(2π fct), 0 ≤ t ≤ Ts

s2(t) = cos(2π fct + π) = −A cos(2π fct), 0 ≤ t ≤ Ts (14.33)

From the equations and Figure 14.10, we can see that there is a reversal of phase when

the bit changes and so, this scheme is also called phase reversal keying. This interesting

result shows that s1(t) = −s2(t) and we can view BPSK as BASK where A1 = A and

A2 = −A. However, it is more appropriate to consider this as phase modulation as we

will see later. In the case of baseband signals without modulation, BPSK is equivalent to

antipodal or bipolar signaling with non-return-to-zero (NRZ) pulses. The transmitter can

be simply implemented as a multiplication of the baseband antipodal signal and the carrier

at frequency fc.
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In a manner similar to BASK, we can compute the average energy per bit in the case

of BPSK. We can show that the average energy per bit is A2Ts
2
. Also, BPSK signals, like

phase modulation, have a constant envelope. Consequently, they are robust to amplitude

fluctuations compared to BASK signals. As we will see later, they also have the best BER

performance of all binary modulation schemes for a given energy per bit.

BPSK is used as a robust modulation scheme in many applications. In 802.11

wireless local area networks, although different modulation schemes are used depending

on the transmission rate, the header of each frame is always transmitted using BPSK

to ensure its successful reception. Second generation cellular CDMA systems use what

is called “dual BPSK” for transmissions from the cell phone tower to mobile devices

(downlink). Here, there are two BPSK signals, one using a cosine and the other a sine that

are transmitted simultaneously. Each of these signals carries the same data. The reason

why this is possible is because the sine and cosine are orthogonal to one another. This fact

is also exploited in M-ary modulation schemes.

14.3.2 M-ary Modulation Schemes

M-ary alphabets are used to improve the spectral efficiency of a telecommunications system

by sending multiple data bits using one symbol. In M-ary modulation schemes, the source

produces one of M symbols mi for i = 1, 2, 3, · · · ,M . The alphabet mi is mapped to a

signal si (t) that lasts for Ts seconds.
In the case of M-ASK, there are M different amplitude values of the carrier. The

signal will be represented by:

si (t) = Ai cos(2π fct + φ), 0 ≤ t ≤ Ts for i = 1, 2, 3, · · · ,M (14.34)

M-ASK is also called pulse amplitude modulation like its baseband counterpart in Chap-

ter 9. It is common to assume that Ai = (2i − 1−M)d where 2d is the difference between
two consecutive signal amplitudes. For now, let us just note that d is some integer value. In

Section 14.3.4, we will define the distance between two signals when we represent signals

as vectors. This value 2d will be the distance between adjacent signals. We will also see

that the BER depends on half the distance (in this case d) between adjacent signals.

Example. Let M = 4 and d = 1. The four signal amplitudes will be −3, −1, 1 and 3 V.
The M-ASK signals will be:

s1(t) = cos(2π fct + φ), 0 ≤ t ≤ Ts

s2(t) = − cos(2π fct + φ), 0 ≤ t ≤ Ts

s3(t) = 3 cos(2π fct + φ), 0 ≤ t ≤ Ts

s4(t) = −3 cos(2π fct + φ), 0 ≤ t ≤ Ts

Note that once again, a composite M-ASK signal over many symbol durations does not

have a constant amplitude.

In the case of M-FSK, M different carrier frequencies are used to represent the M alphabet

symbols. Care must be taken to choose the frequencies such that there is no interference
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between adjacent frequency carriers. The M-FSK signal will be given by:

si (t) = A cos

[
2π fct + 2π

(
i − M

2

)
! f t

]
, 0 ≤ t ≤ Ts

for i = 1, 2, 3, · · · ,M (14.35)

The M frequencies will be fc +
(
i − M

2

)
! f for i = 1, 2, 3, · · · ,M . This ensures that

the frequencies are equally distributed on either side of fc. The parameter ! f denotes

the separation between two adjacent frequencies and is typically a multiple of 1
Ts
. 4-FSK

modulation is employed in systems such as Bluetooth.

In the case of M-PSK, there are M different carrier phases that represent the M

alphabet symbols. The M-PSK signal is given by:

si (t) = A cos(2π fct + φi ), 0 ≤ t ≤ Ts for i = 1, 2, 3, · · · ,M (14.36)

The phase φi is typically given by φi = 2π
M

(i − 1)+ constant. Variations of QPSK are

used in almost all wireless communication systems like 802.11 wireless LANs and cellular

telephony (CDMA and digital TDMA in North America).

Example. Suppose M = 4 and the constant is zero. The four phases are 0, π
2
,π, 3π

2
. This

scheme is commonly called quadriphase shift keying or QPSK. If the constant is π
4
, the four

phases will be π
4
, 3π
4

, 5π
4
and 7π

4
. Both schemes are equivalent. In the case of π

4
-QPSK, a

variation of QPSK, the symbols are picked alternatively from these two schemes (constant

= 0 and constant = π
4
) to reduce the amount of discontinuity between adjacent symbols.

This helps in keeping the sidelobes of the spectrum of the signal confined to low levels.

Quadrature Amplitude Modulation. An important observation that impacts the bandwidth

of modulation schemes is that a sine and a cosine at the same frequency are orthogonal. So

it is possible to transmit a carrier at a frequency fc and another carrier at the same frequency

fc with a phase shift of 90
◦ and be able to differentiate between the two of them easily. This

approach enables us to double the symbol rate without doubling the bandwidth required for

the transmission. This concept where both a sine and a cosine are simultaneously used for

transmitting information is called quadrature modulation. The cosine is called the in-phase

component and the sine is called the quadrature-phase component.

If different (multiple positive and negative) amplitudes are used with the two phase-

shifted carriers, the modulation scheme is called quadrature amplitude modulation (QAM).

QAM is a popular bandwidth efficient modulation scheme used in many practical systems.

The general M-QAM signal for an M-ary alphabet can be written as:

si (t) = Ai,I cos(2π fct) + Ai,Q sin(2π fct), 0 ≤ t ≤ Ts

for i = 1, 2, 3, · · · ,M (14.37)

where the subscripts I and Q refer to the in-phase and quadrature-phase components. Note

that we can also write the QAM signal as:

si (t) = Ai cos(2π fct + φi ), 0 ≤ t ≤ Ts

for i = 1, 2, 3, · · · ,M (14.38)
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where Ai =
√
A2i,I + A2i,Q and φi = − tan−1

(
Ai,Q
Ai,I

)
. So it is possible for us to think of

QAM as a mix of both amplitude and phase shift keying since the message mi is mapped to

a carrier with amplitude Ai and phase φi . Like M-ASK, it is common in M-QAM to pick

the in-phase and quadrature-phase amplitudes such that they are of the form (2i −1−M)d
where 2d is the difference between two consecutive amplitude values and is a measure of

the distance between adjacent signals.

QAM is employed in all voice-band modems. QAM is also used in digital subscriber

lines. Traditionally, QAM has not been used in wireless systems because of its dependence

on the amplitude which will be affected by fading. However, recently, QAM is being

considered in wireless communications as well in OFDM based systems.

14.3.3 Demodulation

So far we have described signals associated with modulation schemes analytically. We

have also qualitatively described how ASK, FSK and PSK signals can be generated at the

transmitter but we have not delved into the details of the transmitter. We will consider a

similar approach for understanding the reception and demodulation of signals, and noise

analysis of the various digital modulation schemes. We will consider these aspects at a

fairly high level without considering what happens at the circuit or electronics level. The

subject of transceiver design is fairly involved. A description of the transceivers is available

in [1], [2].

In most cases, we assume that the received signal is only corrupted by additive white

Gaussian noise (AWGN) with a flat two-sided power spectral density of value
N0
2
. If the

transmitted signal is si (t) for some i ∈ 1, 2, 3, · · · ,M , the received signal will be:

r(t) = si (t) + n(t), 0 ≤ t ≤ Ts (14.39)

The goal of the receiver is to determine what si (t) was transmitted given that r(t) was
received. If the receiver can correctly determine what si (t) was, it can determine mi and

thus recover the transmitted information. However, r(t) is corrupted by noise and it is
possible that the receiver will sometimes determine that the transmitted signal was s j (t)
where j (= i when si (t) was actually transmitted. We refer to this outcome as an error in
reception. The goal of the receiver is to reduce the probability of error to as small a value

as possible.

The common metric that is used for performance comparisons is the ratio of the

energy per bit (Eb) to the noise power spectral density value N0. Consider the example of

an on-off BASK signal (100% modulation) with two bits as shown in Figure 14.11. The

symbol duration is 1s. The transmitted signal consists of a bit “0” and a bit “1.” The figure

also shows the received signal for different values of Eb
N0
. As the Eb

N0
reduces, even the

visual difference between the “0” bit and the “1” bit reduces. Remember that a receiver

must automatically and electronically detect which bit was transmitted. Visual clues are

useful for people, who after all do not sense voltages that well :-). As the received signal

gets noisier, detecting which signal was transmitted becomes harder.

So how does the receiver decide which symbol was transmitted in a given time unit

of Ts seconds? The first step in the receiver will be demodulation of the received signal

where the baseband signal is extracted from the carrier. Consider a received BASK signal
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Figure 14.11 Noisy BASK signals with different
Eb
N0
values.

where there are no amplitude fluctuations except for AWGN. The received signal over one

symbol duration will be of the form:

r(t) = Ai cos(2π fct) + n(t), 0 ≤ t ≤ Ts (14.40)

To recover the number Ai , the receiver will coherently demodulate the signal in a manner

similar to AM as shown in Figure 14.12 (a). That is, the receiver computes:

Z =
∫ Ts

0

r(t) cos(2π fct) dt

=
∫ Ts

0

Ai cos
2(2π fct) dt +

∫ Ts

0

n(t) cos(2π fct) dt

= Ai

2
+

∫ Ts

0

n(t) cos(2π fct) dt = Ai

2
+ n (14.41)

where n =
∫ Ts
0 n(t) cos(2π fct) dt is a Gaussian random variable (with zero mean and a

variance that is a function of
N0
2
) that adds to the desired quantity Ai

2
. We will discuss the
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Figure 14.12 Receivers for BASK/BPSK and MPSK.

characteristics of this noise later. To decide which symbol was transmitted, the receiver

may simply test whether the value of Z is above or below a threshold.

Example. In the case of BASK, under noise-free conditions, Z would be either Ai
2
or 0.

Since n can be positive or negative, there is a finite probability that an error is made in the

decision. But this error can be in picking a “0” when a “1” was transmitted or vice versa

because n is symmetric. Thus, from a common sense perspective, if Z is above Ai
4
, the

receiver decides that a “0” was transmitted and a “1” otherwise. In the case of MASK, it is

possible to define similar thresholds that will enable the receiver to decide which amplitude

was actually transmitted.

Example. In the case of BPSK, the receiver needs to detect whether the phase is 0◦ or 180◦.
A simple way of determining this would be to perform the following computation:

Z =
∫ Ts

0

r(t) cos(2π fct) dt (14.42)

The above computation is similar to the coherent demodulation of BASK shown in

Figure 14.12. Depending on the phase, the computed number Z will be as follows:

Z =
{
A

∫ Ts
0 cos2(2π fct) dt +

∫ Ts
0 n(t) cos(2π fct) dt if the phase is 0◦

−A
∫ Ts
0 cos2(2π fct) dt +

∫ Ts
0 n(t) cos(2π fct) dt if the phase is 180◦ (14.43)



MODULATION 699

Note that in the noiseless case (n(t) = 0), Z will have a large positive value ( A
2
) when

the phase is 0◦ and a large negative value (− A
2
) when the phase is 180◦. The threshold for

comparison will be zero. That is, the receiver decides that the “0” bit was transmitted if

Z is positive and the “1” bit was transmitted if Z is negative. The noise term is similar to

the noise term n in (14.41). The effect of the noise term is to change the value of Z . If the

noise is positive and the phase was 180◦, the value of Z may be moved towards zero and in
some cases, Z may become positive resulting in an error in the detected bit.

For MPSK, the situation becomes complex because the receiver has to decide

between a large number of possible carrier phases. The received signal will be:

r(t) = A cos(2π fct + φi ) + n(t) (14.44)

Simply determining the polarity of Z will not be sufficient. Instead, the receiver will

multiply the received signal by both a sine and a cosine carrier (that are locally generated)

as shown in Figure 14.12 (b). Let us consider the computation of the receiver outputs

below. Multiplication by a local cosine followed by integration over Ts seconds yields:

Z1 = A

∫ Ts

0

cos(2π fct + φi ) cos(2π fct) dt +
∫ Ts

0

n(t) cos(2π fct) dt

= A

2
cos(φi ) + n1 (14.45)

Here n1 is the noise component at the output that adds to the desired signal component.

Multiplication by a local sine followed by integration over Ts seconds yields:

Z2 = A

∫ Ts

0

cos(2π fct + φi ) sin(2π fct) dt +
∫ Ts

0

n(t) sin(2π fct) dt

= A

2
sin(φi ) + n2 (14.46)

In the noiseless case, the receiver makes use of the ordered pair (Z1, Z2) =
(
A
2
cosφi ,

A
2
sinφi

)
to decide which symbol was transmitted.

Example. In the case of QPSK described previously with constant = 0, let us suppose that

φi = 90◦ = π
2
. Then the receiver computes (Z1, Z2) as

(
A
2
cos

(
π
2

)
, A
2
sin

(
π
2

))
=

(
0, A

2

)
.

Thus the receiver decides that the carrier phase is π
2
if Z1 is close to zero and Z2 is

positive. The other possibilities are
(
A
2
, 0

)
,
(
− A
2
, 0

)
and

(
0,− A

2

)
. These four possibilities

correspond to the four phases π
2
, 0,π and 3π

2
respectively. Again, the impact of n1 and n2

will be to possibly shift the values of Z1 and Z2 such that the decision is erroneous.

In the case of QAM, the quantities Z1 and Z2 can take on multiple values and

appropriate thresholds are necessary for deciding which amplitude and which phase was

transmitted. In the case of FSK, it is typical to choose the frequencies fi such that the

carriers are orthogonal. As described previously, the receiver will multiply the received

signal with locally generated carriers of all M frequencies, integrate the product over Ts
seconds and pick the one with the largest output as the transmitted frequency.
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Note that in all of the above cases, the receiver multiplies the received signal r(t) by
a locally generated cosine, sine or both and integrates the product over a duration of Ts
seconds. This process is called correlation (see Section 7.3.4 in Chapter 7) and the result

of the correlation is a single number Z or two numbers Z1 and Z2. We can think of the

output of the receiver as a vector Z with two components Z1 and Z2. Such a vector has

two dimensions because of the two components. Note that we can also represent the output

noise n as a vector with two components n1 and n2.

Common receiver architectures make use of a matched filter or a correlator. In either

case, the continuous time signal r(t) is mapped into a single received vector Z with N
dimensions in general. It is possible to view the M possible transmit signals si (t) for
i = 1, 2, 3, · · · ,M also as M vectors si each of dimension N . The representation of the M

signals as vectors si in N -dimensional space is called the signal constellation corresponding

to the modulation scheme (we will discuss some examples in Section 14.3.5). We will see

that in the case of ASK, N = 1, in the case of PSK and QAM, N = 2, and in the case

of FSK, N = M . For ASK, PSK and QAM, the signal constellation is the same as the

phasor diagram of the signals (ignoring the 2π fct). Noise being a random quantity cannot
be completely represented by a finite dimension vector. However, it can be shown that the

receiver performance depends only on the noise components in those dimensions that the

signal exists. Hence it is sufficient to consider only an N -dimensional noise vector. For the

transmitted signal si (t), we can then write in vector notation:

Z = si + n (14.47)

The receiver computes which of the M possible transmit vectors si is closest to the received

vector Z. Under the AWGN assumption, we can show that the closest transmit vector also

corresponds to the most likely transmitted signal. Let us suppose that the receiver computes

the received vector to be Z and determines that the vector sk is closest to it. Then it decides

that sk(t)was transmitted, which in turn implies that the messagemk was transmitted. Thus

the estimated message is m̂ = mk .

The interested reader can look at the mathematical details of representing signals and

noise as vectors this in the following section. Otherwise, you can skip this section and go

to the next section.

14.3.4 Signal and Noise Representation

An important method of characterizing and analyzing digital communication systems is to

use signal space analysis. Given the finite set of waveforms si (t), i = 1, 2, 3, · · · ,M that

last for a duration Ts seconds each, it is possible to establish that they can be represented as

elements of a finite vector space (see Chapter 6) spanned by a set of orthonormal basis

functions ϕ1(t), ϕ2(t), · · · ,ϕN (t) where N ≤ M . It is also possible to represent the

received signal that has additive white Gaussian noise as an element of the same vector

space. In this section, we provide a preliminary treatment of mapping signals into vectors.

This provides a general technique for analyzing the bit-error rate performance of several

modulation schemes.

Communication Signals as Vectors in a Vector Space. Consider a communication system

as shown in Figure 14.13. In this simplified communication system, we assume that the

prashantk
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Figure 14.16 Signals computed to determine the orthonormal basis.

Now that we know all the coefficients si j , we can easily express the signals as vectors as

follows:

s1 =
(√

T

3
, 0, 0

)

s2 =
(√

T

3
,

√
T

3
, 0

)

(14.69)

s3 =
(

0,

√
T

3
,

√
T

3

)

s4 =
(√

T

3
,

√
T

3
,

√
T

3

)

(14.70)

The four signals are plotted in the vector subspace spanned by ϕ1(t), ϕ2(t) and ϕ3(t) as
shown in Figure 14.16.

14.3.5 Signal Constellations and Performance Analysis

We summarize the significant results from the above subsection that are relevant from this

point onwards. If a modulation scheme is transmitting one of M signals si (t) each of
duration Ts seconds, it is possible to decompose these signals into an N (≤ M) dimensional
vector space spanned by N basis functions ϕ j (t) also lasting for Ts seconds. We can write:

si (t) =
N∑

j=1
si jϕ j (t) OR si = (si1, si2, · · · , si N ) (14.71)

We can compute the components of si (t), namely si j using the following expression:

si j =
∫ Ts

0

si (t)ϕ j (t) dt (14.72)
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Figure 14.17 Decision at the receiver.

The above operation can be recognized as a correlation operation where we are correlating

the signal si (t) with ϕ j (t) which is what the receiver does with the received signal as
we saw earlier in the discussion of demodulation. The representation of all of the M

possible transmit signals in an N -dimensional space is called the signal constellation of

the modulation scheme.

We can represent the part of noise that impacts performance as an N dimensional

vector n = (n1, n2, · · · , nN ). The components of n are independent and identically

distributed (a normal distribution with mean zero and variance
N0
2
. If the signal si (t)

was transmitted, the received signal r(t) = si (t) + n(t). We can write r(t) as a vector
Z = (Z1, Z2, · · · , ZN ) where:

Z j =
∫ Ts

0

r(t)ϕ j (t) dt

=
∫ Ts

0

si (t)ϕ j (t) dt +
∫ Ts

0

n(t)ϕ j (t) dt

= si j + n j (14.73)

In vector notation,

Z = si + n (14.74)

The receiver computes the distance between Z and every possible transmit signal si. It then

picks the signal sk that is closest to Z as the transmitted signal. Figure 14.17 shows the

process for two possible transmit signals si and sj. The received signal vector is Z which is

the sum of the transmitted signal vector si and the noise vector n. The dashed line denoted

“decision boundary” separates the signal space into two regions S1 and S2. If Z falls in S1,
it is closer to si which is what is desired. If however Z falls in S2, it is closer to sj which is
not the transmitted signal. In such a case, an error is made at the receiver. You can see from
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Figure 14.17, that the error depends upon the characteristics of the noise vector n and the

distance di j between the signals si and sj in signal space. In particular, if the noise vector

has a component that is larger than
di j
2
in the correct direction along the line joining si and

sj, an error is made at the receiver.

For binary modulation schemes, we have two signals s1 and s2. Let the distance

between the two signals be d and let the noise be additive, white and Gaussian with a two-

sided PSD of
N0
2
. Then, it is possible to show that the probability that the receiver picks s1

given that s2 was transmitted or vice versa is given by:

Pe = 1

2
erfc




√

d2

4N0



 (14.75)

Notice that this is also the probability of bit error since each signal in a binary modulation

scheme carries one bit.

Next let us see how we can represent signals from various example modulation

schemes as vectors and determine the performance for simple cases.

Binary Modulation Schemes. BPSK and ASK signals are one dimensional. From (14.32)

and (14.34), we can see that the signals depend only on cos(2π fct). It can be shown that:

ϕ1(t) =
√
2

Ts
cos(2π fct), (14.76)

is the single basis function for BPSK and all ASK signals. You can easily compute the

energy in ϕ1(t) and see that it equals one.

Let us consider BPSK. The energy in any of the si (t) in BPSK was
A2Ts
2
which is the

energy in one bit. That is,

Eb = A2

2
Ts ⇒ A =

√
2Eb

Ts
(14.77)

We can rewrite the signals for BPSK as:

si (t) = ±A cos((2π fct), 0 ≤ t ≤ Ts or

si (t) = ±
√
2Eb

Ts
cos(2π fct), 0 ≤ t ≤ Ts (14.78)

Clearly, s1(t) = √
Ebϕ1(t) and s2(t) = −√

Ebϕ1(t). In vector notation, s1 = √
Eb and

s2 = −√
Eb. The signal constellation corresponding to BPSK is shown in Figure 14.18 (a).

Similarly, it is possible to determine the signal constellations of BASK with 100% and 50%

depths. For BASK (100%), the the average energy per bit assuming that zeros and ones

occur with equal probability is:
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Figure 14.18 Signal constellations of BPSK and BASK.

Eb = 1

2
×

[
A2

2
Ts + 0

]

⇒ A =
√
4Eb

Ts
(14.79)

Clearly, s1(t) = √
2Ebϕ1(t) and s2(t) = 0 × ϕ1(t). In vector notation, s1 = √

2Eb
and s2 = 0. The signal constellation corresponding to BASK (100%) is shown in

Figure 14.18 (b). For BASK (50%), the average energy per bit assuming that zeros and

ones occur with equal probability is:

Eb = 1

2
×

[
A2

2
Ts + A2

8
Ts

]

⇒ A =
√
16Eb

5Ts
(14.80)

Clearly, s1(t) =
√
8Eb
5

ϕ1(t) and s2(t) =
√
2Eb
5

× ϕ1(t). In vector notation, s1 =
√
8Eb
5

and s2 =
√
2Eb
5
. The signal constellation corresponding to BASK (100%) is shown

in Figure 14.18 (c). Notice that the signal distance between points in the constellation

successively reduces as we move from BPSK to the two BASK schemes. The noise vector

can be smaller and still create errors as the distance reduces. Thus, the BER for the same

average Eb/N0 per bit will be larger for BASK.
Figure 14.19 shows the signal constellation of orthogonal BFSK. Even though this

is a binary modulation scheme, there are two basis functions corresponding to the two

frequencies. They are orthogonal to one another. The amplitude of each carrier is

A =
√
2Eb
Ts

in a manner similar to BPSK. The energy in each symbol and the average

energy per bit is Eb.
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Figure 14.19 Signal constellation of BFSK.

Using (14.75), we can now compute the probability of error for the binary modulation

schemes. The distances between the signal points are:

Distance for BPSK = 2
√
Eb

Distance for BASK–100% =
√
2Eb

Distance for BASK–50% =
√
2Eb

5

Distance for BFSK =
√
2Eb (14.81)

The probabilities of bit error are:

Pe(BPSK) = 1

2
erfc

(√
Eb

N0

)

(14.82)

Pe(BASK (100%)) = 1

2
erfc

(√
Eb

2N0

)

(14.83)

Pe(BASK (50%)) = 1

2
erfc

(√
Eb

10N0

)

(14.84)

Pe(BFSK) = 1

2
erfc

(√
Eb

2N0

)

(14.85)

Figure 14.20 shows the bit error rate curves for the different binary modulation schemes.

The x-axis has Eb
N0
in dB and the y-axis has the probability of error on a logarithmic scale.

You can see that BPSK has the best performance of the four schemes and BASK (50%) has
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Figure 14.20 Bit error rates for binary modulation schemes.

the worst performance. Recall that the objective of the modulation scheme is to achieve as

small a bit error rate as possible while expending as little energy as possible. For a bit error

rate of 10−5, BPSK needs an Eb
N0
of approximately 10 dB, BFSK and BASK (100%) need

an Eb
N0
of 13 dB (this is 3 dB larger) and BASK (50%) is around 19 dB. The reason for this

is BASK (50%) expends energy in both symbols used for transmission, but the symbols

are alike (distance between them in signal space is small). For two dimensional (binary)

modulation, BPSK is the optimal modulation scheme. No other modulation scheme can

perform as well in an AWGN channel.

Peak Vs Average Eb
N0
. In the previous discussion, we have considered BPSK and BASK

where the modulation schemes have the same average energy per bit. As we discussed in

Chapter 10, photonic systems are limited by the peak power output of LEDs and lasers and

it is therefor more practical and useful to compare the performance as a function of the peak

power or peak signal-to-noise ratio for photonics. If we are to consider BPSK and BASK

with the same peak power, the signal constellations will be quite different. Consider the

following three signals for 0 ≤ t ≤ T :

BPSK: s(t) = ±
√
2Eb

T
cos(2π fct) (14.86)

BASK—100%: s(t) = 0 OR

√
2Eb

T
cos(2π fct) (14.87)
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Figure 14.21 Signal constellation of BFSK.

BASK—50%: s(t) =
√
Eb

T
cos(2π fct) OR

√
2Eb

T
cos(2π fct) (14.88)

These three signals all have the same peak power. The constellations are shown in

Figure 14.21. The distances between the signal points in these constellations are 2
√
Eb,√

Eb and

√
Eb
2
respectively. The probabilities of error in the three cases will be:

Pe(BPSK) = 1

2
erfc

(√
Eb

N0

)

(14.89)

Pe(BASK (100%)) = 1

2
erfc

(√
Eb

4N0

)

(14.90)

Pe(BASK (50%)) = 1

2
erfc

(√
Eb

8N0

)

(14.91)

The probabilities of error are also shown in Figure 14.20. Observe that if the peak powers

are the same, but the average power is lower, the BER performance of BASK (100%)

is worse. We caution the reader that this is only an artifact of the presentation of the

BER curves as a function of Eb/N0. If you are making the right comparison using the
right metric, the results from the different curves will be the same as demonstrated by this

example.

Example. Consider BASK with 100% modulation depth. The amplitudes of the signals

associated with the “0” and “1” symbols are 1 V and 0 V respectively. The symbol lasts

for 1 s. The energy in the signal corresponding to “0” is 1
2
J. The energy in the signal

corresponding to “1” is 0 J. The peak power in the BASK signal is 1
2
W. The average power
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Figure 14.22 Signal constellations of QPSK, 8-PSK, 8-QAM and 16-QAM.

is 1
4
W. Although this is not a realistic value of N0, let us assume that it is 0.025 W/Hz.

Then the average Eb
N0

= 0.25
0.025 = 10 (10 dB) and the peak Eb

N0
= 0.5

0.025 = 20 (13 dB). From

Figure 14.20, the BER using the average BASK 100% curve is 3 × 10−4 at Eb
N0

= 10 dB.

Note that the BER using the peak BASK 100% curve is also 3 × 10−4 at but at Eb
N0

= 13

dB.

M-ary Modulation Schemes. For PSK modulation with M > 2 and QAM, there are two

basis functions given by:

ϕ1(t) =
√
2

T
cos(2π fct)

ϕ2(t) =
√
2

T
sin(2π fct) (14.92)

Figure 14.22 shows signal constellations for QPSK, 8-PSK, 8-QAM and 16-QAM. The

figure does not show the exact coordinates of the signal points. We leave this as an exercise

to the reader. However, some remarks are necessary.

• The norm of the vector (essentially the length of the line joining the origin to the

signal point) is a measure of the energy Es in that signal point or symbol. Note that

each symbol carries k = log2 M bits. The energy per bit will be Es
k
for that particular
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symbol. While calculating the average energy per bit for a given modulation scheme

is straightforward (assuming that symbols are equally likely), it can be cumbersome.

• As the number M of signal points increases, to keep Es approximately uniform

across symbols, it will become necessary to reduce the distance between symbols. In

the case of M-PSK, all signal points are at the same distance from the origin. This

implies that the signal points get closer as M increases. It is easy to show that the

distance between any two adjacent signal points in M-PSK is proportional to sin( π
M

).

• Determining the probability of error is not trivial because of the following. Suppose

the signal s1 was transmitted. The receiver could decide that any of the remaining

M − 1 signals were transmitted depending on what the noise does to the received

signal (the direction and length of the noise vector). Although the noise vector has

a Gaussian distribution, all signal points in the constellations are not at the same

distance from one another. Thus the probabilities of making an error between one

signal point and each of the other signal points will be different. Moreover, each

signal carries k bits. Depending on which signal was incorrectly decided upon as the

transmitted signal, some of the k bits could be in error and others may not.

• The way in which symbols are mapped into bits plays a role in the probability of

error. It can be shown that in an AWGN channel, it is more likely that errors are made

between adjacent signal points in the constellation. It is thus common to make use

of what is called a gray code where adjacent symbols differ in the smallest number

of bits (usually by one bit). If a gray code is used (see Figure 14.22 (a) for gray code

with QPSK), the probability of bit error can be reduced.

• There is a tradeoff between increasing M and the probability of error for a given
Eb
N0
. In the cases of both MPSK and QAM, as M increases (except for M = 4), the

probability of error also increases for a given Eb
N0
compared to BPSK. However, we

can send more bits per second in the same bandwidth as the BPSK signal (discussed

in Section 14.3.6). The approximate equation for the probability of bit error of M-

PSK as a function of Eb
N0
are as follows:

Pe(M-PSK) ≈ 1

k
erfc

(

sin
( π

M

)
√
kEb

N0

)

(14.93)

For M-QAM, it is common to use bounds on the symbol error probability rather than

the bit error probability.

• In QAM, all signal points do not have the same Es . You can see that some signal

points are closer to the origin than others. The peak power in a QAM signal is thus

quite different from the average power requiring the use of highly linear amplifiers

to prevent distortion.

A second class of M-ary signals correspond to M-FSK. They are M dimensional signals

if the M carriers with different frequencies are orthogonal to one another. The advantage

of this scheme is that the probability of error reduces as M increases unlike M-PSK or


