GPS Tutorial

Signals and Data

Applications Engineering u-Nav Microelectronics

GPS Tutorial

- Geodetic Datum's
- Navigation Message
- Signal Structure
- Error Sources

Geodetic Datums

- Define the size and shape of the earth.
- Range from flat earth models to complex descriptions that include gravity and angular momentum.
- Using the wrong geodetic datum will result in position errors.
- Algorithms are used to convert between different datums.

ECEF Model

Reference Ellipsoid

WGS-84 Geoid Height

WGS-84 Geoid Height

Metera

- 70.00 - 60.00

- 50.00 - 40.00 - 30.00

- 20.00 - 10.00

-0.00

- -10.00

- -20.00 - -30.00

- -40.00 - -50.00

- -60.00 - -70.00

- -80.00

Peter H. Dana 11/05/95

Datum Differences

GPS Tutorial

- Geodetic Datums
- Navigation Message
- Signal Structure
- Error Sources

Navigation Message

- The navigation message is a bit stream of ones and zeros with a data rate of 50 Hz.
 - Message is divided into frames.
- Entire message is 25 frames.
 - Each frame has 1500 bits = 30 seconds.

Navigation Frame

Each frame has 5 subframes.

- First three subframes contain local data.
- Last two subframes contain system data.

Navigation Subframe

- First 3 subframes repeat every 30 seconds.
 - Ephemeris and clock corrections.
- Last 2 subframes repeat every 12.5 minutes.
 - Almanac and Ionoshperic data.
- Each subframe contains 10 words.
 - Starts with preamble (10001011), ends with a zero.
- Each word contains 30 bits = 600 ms
 - 24 data bits and 6 parity bits.
 - Parity bits are the Hamming code for the word.

Navigation Frames

Basic message unit is one frame (1500 bits long)

4 and 5 = 37,500 bits taking 12.5 minutes to transmit

Subframe Data

- All subframes start with the TLM and HOW.
- First word is the telemetry word (TLM)
 TLM contains an 8 bit preamble (10001011).
- Second word is Hand Over Word (HOW)
 - HOW contains 17 bit Time of Week (TOW)
 - TOW is synchronized to beginning of next subframe.
 - Contains ID of the subframe.

Subframe Data

- First subframe contains Satellite clock correction terms and GPS Week number.
- Frames two and three contain precise ephemeris data.
- Frame four contains lonospheric and UTC data as well as almanac for SVs 25-32.
- Frame five contains almanac for SVs 1-24 and almanac reference time.

Subframe Data

P H DANA 10/92

Data Collection Times

- 1 word = 600 ms
 - Up to 1.18 seconds to collect a word.
 - Quick Start needs a valid word.
- 1 subframe = 6 seconds
 - Up to 6.6 seconds to collect a subframe.
 - Hot Start needs a valid time.
- 1 frame = 30 seconds
 - Up to 36 seconds to collect a frame
 - Warm and Cold Start need valid ephemeris.

GPS Tutorial

- Geodetic Datums
- Navigation Message
- Signal Structure
- Error Sources

Signal Structure

Carriers are pure sinusoidal waves.

L1 frequency

- 1575.42 MHz, ~19 cm wavelength
- Modulated by both the C/A and P(Y) codes.

L2 frequency

- 1227.60 MHz, ~24 cm wavelength
- Modulated by the P(Y) code only.

C/A code

- Coarse/Acquisition (Civil Access)
- 1023 bit pseudorandom noise (PRN) code
 - PRN is selected from a set of Gold codes
 - Gold codes are designed to minimize cross correlation
 - Different PRN for each SV
- Clock rate of 1.023MHz (chip rate)
- Repeats every 1ms
- C/A code is not encrypted

P(Y) Code

- Y refers to an encrypted version of P-code
- Clock rate of 10.23 MHz
- Repeats every 267 days
- Each SV transmits unique 7 day segment
- Transmitted on L1 and L2
- 90 degrees out of phase of C/A on L1

C/A Code Modulation

- Navigation message is 50 bps.
- 20 C/A codes per navigation bit.
- Navigation message is modulo 2 added to C/A code.
 - 1's in navigation message invert the PRN codes.
 - 1's effectively invert the autocorrelation function.

C/A Code Modulation

Carrier Modulation

- GPS uses binary phase shift keying (BPSK) to modulate the codes on to the carrier.
- Change in code state causes a 180 degree phase shift in carrier.
- BPSK spreads signal power around carrier by the code bandwidth.

Binary Phase Modulation

L1 Signal Structure

SV Onboard Navigation Package

Noise Power

- Noise power is defined as KTB
 - K = 1.3806e-23 J/S (Boltzmann's constant)
 - T = temperature in Kelvin (273)
 - B = bandwidth
- IMHz BW (C/A code) = -114dBm
 - 600 nV into 50 ohms
- GPS signal power specified at –130dBm
 - 70 nV into 50 ohms

Received Signal

GPS Tutorial

- Geodetic Datums
- Navigation Message
- Signal Structure
- Error Sources

Error Sources

System Errors

- Satellite clock
 - Errors in modeling of the satellite clock offset and drift using a second order polynomial
 - Selective Availability
- Satellite orbit
 - Errors that exist within the Keplerian representation of the satellite ephemeris
 - Selective Availability

Ionospheric Errors

- 70 1000 km above the earth
- Dispersive medium affects the GPS signals
 - Carrier experiences a phase advance
 - Codes experience a group delay
- Delay is dependent on the total electron count (TEC)
 - Peaks during day due to solar radiation
 - Varies with geomagnetic latitude
 - Varies with satellite elevation

Ionospheric Errors

- Frequency dependent
 - Can be eliminated with dual frequency receivers (L1/L2)
- Reduce errors using Klobuchar model
 - Eight parameters are transmitted in the navigation message
 - Combined with an obliquity factor dependant on the satellite elevation
 - Provides an estimate within 50% of the true delay

Ionospheric Errors

JPL

08/08/02 Global Ionospheric TEC Map

Troposhperic Errors

- 0-70 km above the earth
- Delays both code and carrier measurements
- Not frequency dependent within L band
- Can be modeled
 - Dry component, 90% of the total refraction
 - Wet component, 10% of the total refraction
 - Temperature, pressure and humidity
 - Satellite elevation angle

Environmental Errors

- Multipath
 - Signals bounce off nearby surfaces before being received by the antenna
 - Causes a delay resulting in range error
- Signal degradation
 - Foliage
 - Buildings
 - Anything in the line of sight

Receiver Noise

- Clock stability and accuracy
- A/D conversion
- Correlation process
- Tracking loops and bandwidths

Satellite Geometry

- Relative position between the user and the GPS satellites affects the accuracy of the solution
- Geometric Dilution Of Precision (GDOP)
 - Position or spherical (PDOP)
 - Horizontal (HDOP)
 - Vertical (VDOP)
 - Time (TDOP)

Lower DOP values result in better accuracy

An antenna in a window would have a poor DOP

Further Reading

Elementary

http://www.trimble.com/gps/index.html

Novice

 <u>http://www.colorado.edu/geography/gcraft/no</u> tes/gps/gps_f.html

Expert

 <u>http://www.gmat.unsw.edu.au/snap/gps/gps</u> <u>survey/principles_gps.htm</u>