Fundamentals of Satellite Communications Part 3

Modulation Techniques used in Satellite Communication

Howard Hausman

December, 2009

Fundamentals of Satellite Communications Part 3
 Modulation Techniques used in Satellite Communication

1. Early Communication
2. Simultaneously Transmitting Multiple Signals
3. Types of Modulation
4. Digital Modulation - Quantizing Data
5. Digital Modulation Techniques - CW (Constant Amplitude)
6. Quadrature Amplitude Modulation (QAM)
7. Recovering Packet Errors
8. Amplitude and Phase Shift Keying (APSK)
9. Digital Modulation - Decision Regions ~

1. Early Communications

Wired Communications

Transfer information at Base band

- Only one link per line
- Add Modulation for multi-line communications
- Modulation
- Altering one waveform (carrier) in accordance with the characteristics of another waveform ~

Early Wireless Communications - Analog

Multiple Conversations can mean a loss of information

- Goal is too find a means of differentiating connections
- Higher pitch can be distinguished from lower pitch multiplexing ~
- Receiver

Early Digital Wireless Communications

- Communication Goals
- Speed
- Accuracy
- Select a stable carrier - Smoke / Light / Electromagnetic Radiation
- Check the Path Loss \& Distortion
- Efficiently modulate the carrier
- Prevent Interference from adjacent carriers ~

A Short History of Satellite Communication

- 1945 Arthur C. Clarke publishes an essay
- "Extra Terrestrial Relays"
- 1957 First satellite SPUTNIK
- 1960 First reflecting communication satellite ECHO
- 1963 First geostationary satellite SYNCOM
- 1965 First commercial geostationary satellite
- "Early Bird" (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime ~

Modern Communication Satellites

- Galaxy 25
- C-Band: $24 \times 36 \mathrm{MHz}$
- Ku-Band: $4 \times 54 \mathrm{MHz}, 24 x 27 \mathrm{MHz}$
- 100's of TV Stations \& 100,000's of Telephone Calls ~

Modern Communication Satellite

2. Simultaneously Transmitting Multiple Signals

- FDM Different Frequencies
- TDM Different Times

CDM Different Codes -

- Carriers can have multiple modulation techniques
- GSM uses FDM and TDMA ~

Frequency Division Multiplexing (FDM)

- Frequency Converters place the carrier in their assigned slot
\square Guard bands are necessary to prevent adjacent carrier interference ~

Frequency Division Multiplexing of Satellite Carriers

- Frequency Spectrum is a limited natural resource
- Maximum utilization of the allotted Frequency is essential for a competitive communication medium
- Using Polarization diversity the useable bandwidth is doubled
- Spectrum is offset to decrease the necessary polarization isolation
- Most Satellites are Bent Pipes
- Transmit whatever it receives
- Receive signals come from multiple sources ~

Channel Capacity

- Shannon's Theorem (1950's)
- Relates Bit Rate, Bandwidth, \& Signal to Noise
- Bit Rate (Bits/Sec) = BW * $\log _{2}(1+\mathrm{SNR})$
- Signal bandwidth = BW
- SNR = Signal to Noise Ratio
- Theoretical limit, is still a goal
- Complex modulations optimize Bit Rates/BW
- Higher BR/BW require higher Signal to Noise
- Example: 28.8 Kbps modem
- 2.4 KHz bandwidth on telephone line
- 28 Kbps modem must send 12 bits / Symbol
- S / N ratio must be $>=2^{12}$, or 36 dB ; typ. telephone line \sim

Bandwidth Considerations

- Data in the time domain translates to the frequency domain as a $(\sin x) / x$ function

$$
\wp(f)=A^{2} T\left(\frac{\sin (\pi \lambda)}{\pi \lambda}\right)^{2}
$$

$\underbrace{}_{-3 / \mathrm{t}_{\mathrm{s}}} \quad-2 / \mathrm{t}_{\mathrm{s}}$

- The baseband time domain signal is filtered to minimize side lobes
- Minimize adjacent channel interference
- Raised Cosine (Nyquist) filter best trade off of pulse distortion (time domain) and side lobe rejection (frequency domain) ~

Modulation - Preconditioning Data

3. Types of Modulation

- Unmodulated carrier: $\mathrm{V}=\mathrm{Acos}\left[\omega_{0} \mathrm{t}\right]$.
- Modulated signals control amplitude \& Phase (Frequency)
- $V=\left[1+A_{c}(t)\right] \cos [\omega o t+\theta(t)]$
- $\mathrm{A}_{\mathrm{c}}(\mathrm{t})$ is amplitude modulation (AM)
- $\theta(\mathrm{t})$ is phase modulation (PM)
- $d \theta(t) / d t=\omega_{i}(t)=f_{c}(t)$ frequency modulation (FM)
- AM - Amplitude varies as a function of data

- FM - Frequency Shifts as Function Data
- PM - Phase Shifts as a function of data
- QAM is a combination of Amplitude and Phase Modulation
$A_{c}(t)$ and $\theta(t) \Rightarrow \quad$ QAM (Digital) ~

Analog Amplitude Modulation (AM)

- AM Radio
- Analog TV
- Optical Communications
- $\omega_{c}=$ carrier
- Modulation Index $=m$
- $m=\max |m(t)|$
- $m<=1$
- For $\mathrm{m}(\mathrm{t})=\mathrm{m}^{*} \cos \left(\omega_{\mathrm{m}}{ }^{*} \mathrm{t}\right)$
- Modulation Index determined graphically
- AM Waveform
- $x(t)=A *[1+m(t)] * \cos \left(\omega_{c}{ }^{*} t\right)$

Modulation index: $\mathrm{m}=0.5$

$$
m=\frac{P-Q}{P+Q}
$$

AM Frequency Spectrum \& Power

- Calculating Sideband Levels
- $\mathrm{dBc}=20 \log _{10} \mathrm{~m} / 2$
-75\% AM(m=.75)
- Sidebands down 8.5 dB from the carrier
- Required Power for AM
- Peak level $2 \times$ no signal ($m=1$)
-RF power $4 \times$ CW Signal (m=1)
- Linear Power Amps 2 or $3 x$ less efficient than Non-Linear Amps
- Need more power to operate than AM than FM/PM ~

ASK - AMPLITUDE SHIFT KEYING

- Two or more discrete amplitude levels
- Used in optical communications
- For a binary message sequence

- two levels, one of which is typically zero
- Modulated waveform consists of bursts of a sinusoidal carrier.

Extinction Ratio
Max. Light to no light ~

Laser
Output

Frequency Modulation

$\mathrm{Xc}(\mathrm{t}):=\mathrm{Ac} \cdot \cos (\theta \mathrm{c}(\mathrm{t}))$

- $\mathrm{Xc}(\mathrm{t})=$ modulated signal
- Ac = carrier amplitude
- $\Theta c(t)=$ Instantaneous phase
$\theta \mathrm{c}(\mathrm{t}):=2 \cdot \pi \cdot \mathrm{Fc} \cdot \mathrm{t}+\phi(\mathrm{t})$
$\theta c(t):=2 \cdot \pi \cdot \mathrm{Fc} \cdot \mathrm{t}+2 \cdot \pi \cdot \mathrm{k}_{\mathrm{f}} \cdot \int_{-\infty}^{\mathrm{t}} \mathrm{m}(\tau) \mathrm{d} \tau$
-m(t$)=$ Information waveform
- Fc = average carrier frequency
- $\Phi(\mathrm{t})=$ instantaneous phase around the average frequency Fc
-Frequency $=\mathrm{d} \Phi(\mathrm{t}) / \mathrm{dt}$

Frequency Modulation
Modulated Carrier vs Modulating Signal

$\phi(\mathrm{t}):=2 \cdot \pi \cdot \mathrm{k}_{\mathrm{f}} \cdot \int_{-\infty}^{\mathrm{t}} \mathrm{m}(\tau) \mathrm{d} \tau$
-For $\mathrm{m}(\mathrm{t})$ sinusoidal

- $\mathrm{f}_{\mathrm{i}}=\mathrm{F}_{\mathrm{c}}+\mathrm{k}_{\mathrm{f}} \mathrm{m}(\mathrm{t})$
- $\mathrm{k}_{\mathrm{f}}=$ Gain Constant
-Frequency Deviation $=\Delta f$
$\therefore \Delta \mathrm{f}=\mathrm{k}_{\mathrm{f}} \max |\mathrm{m}(\mathrm{t})| \sim$

FM Modulation Index (β)

$>\Phi(\mathrm{t})=$ Instantaneous Phase variation around carrier Fc $>$ for FM signals:

$$
\phi(\mathrm{t}):=2 \cdot \pi \cdot \mathrm{k}_{\mathrm{f}} \cdot \int_{-\infty}^{\mathrm{t}} \mathrm{~m}(\tau) \mathrm{d} \tau
$$

- $\mathrm{Kf}=\Delta \mathrm{F}=$ the peak frequency deviation
- $\mathrm{m}(\tau)=$ is the normalized peak deviation
- For Sinusoidal modulation:
- $\mathrm{m}(\tau)=\cos \left(2^{*} \pi^{*} \mathrm{Fm}{ }^{*} \tau\right)$ where Fm is the rate of modulation
- $\Phi(\mathrm{t})=\left[2^{*} \pi^{*} \Delta \mathrm{~F}\right) /\left(2^{*} \pi^{*} \mathrm{Fm}\right]^{*} \sin \left(2^{*} \pi^{*} \mathrm{Fm}{ }^{*} \tau\right)$
- $\Phi(\mathrm{t})=(\Delta \mathrm{F} / \mathrm{Fm})^{*} \sin \left(2^{*} \pi^{*} \mathrm{Fm}{ }^{*} \tau\right)$
- $\beta=\Delta \mathrm{F} / \mathrm{Fm}=$ modulation index (Radians)
- $\Phi(\mathrm{t})=\beta^{*} \sin \left(2^{*} \pi^{*} \mathrm{Fm}{ }^{*} \tau\right) \quad \sim$

FM Spectral Analysis

$>F M$ Modulated Carrier: $X c(t)=A_{c} \cos \left(2 \pi f_{c} t+2 \pi k_{f} \int m(\tau) d \tau\right)$ $>$ Sinusoidal signals: $\quad \mathrm{m}(\tau)=\cos \left(2^{*} \pi^{*} F \mathrm{~m}^{*} \tau\right)$
$>$ Note: Non-sinusoidal signals are handled by taking the Fourier Transform of $m(t)$ and applying the resultant sinusoidal infinite series using superposition
$>\beta=\Delta \mathrm{F} / \mathrm{Fm}=$ modulation index (Radians)
$>$ All frequency components (δ functions) are at \pm integral multiples of Fm, from the carrier (Fc)
$>\delta$ functions at $\mathrm{f}_{\mathrm{c}} \pm \mathrm{nf}_{\mathrm{m}}$ have an amplitude $=\mathrm{J}_{\mathrm{n}}(\beta)$
$>\mathrm{J}_{\mathrm{n}}(\beta)$ are Bessel Coefficients of the first kind, order n and argument β
$>$ Carson's Rule: $\mathrm{BW} \approx 2 \Delta \mathrm{f}+2 \mathrm{~F}_{\mathrm{m}} \sim$

Analog Phase Modulation (PM)

$$
\begin{aligned}
\mathrm{Xc}(\mathrm{t}) & :=\operatorname{Ac} \cdot \cos (\theta \mathrm{c}(\mathrm{t})) \\
\theta \mathrm{c}(\mathrm{t}) & :=2 \cdot \pi \cdot \mathrm{Fc} \cdot \mathrm{t}+\phi(\mathrm{t})
\end{aligned}
$$

$>\Phi(\mathrm{t})=$ Phase Modulation
$>\Phi(\mathrm{t})=\beta^{*} \mathrm{~m}(\mathrm{t}): \quad \beta=$ peak phase deviation
$>\beta=$ Modulation Index, same as FM $\Rightarrow \mathrm{m}(\mathrm{t})=$ information normalized to \pm unity
$>$ Phase Modulated Carrier is:

$$
>X c(t)=A c^{*} \cos \left[2^{*} \pi^{*} F c * t+\beta^{*} m(t)\right]
$$

4. Digital Modulation - Quantizing Data

Sampled Analog Signals

> Continuous signals are sampled at discrete times
> Samples are digitally coded \& Transmitted
> Nyquist criteria for completely recovering an analog signal > Sampling Rate (Fs) >= 2*Maximum Information Rate (Fm) $>$ No. of Samples >= 2 per period > Proof is in the analysis of the Fourier Transform
> Take the Fourier Transform of a complex analog waveform
>Limit the bandwidth to the maximum frequency rate (Fm)
$>$ All frequency components $>$ Fm are suppressed
>The Nyquist Criteria will solve all of the unknowns sampling at a rate of 2 Fm
 >Add one sample to calculated the DC component ~

Implementation of Quantization

- Analog to digital converter (ADC)
- Approximates analog signal by discrete M levels.
- Small step size, signals can appear continuous (e.g. Movies)
- Quantization level to a sequence of N binary bits
- No. of Levels = M = 2 N
- No, of Bits $=N=\log _{2} M$
- Nyquist Criteria
- N Bits per sample

N Bits

- Fm $=10 \mathrm{MHz}$
-Sample Time: 50nSec
-M = 1024 Steps
- 10 bit Binary Code
- 5 nS/Bit

5. Digital Modulation Techniques - CW

Constant Wave (CW) Modulation / Phase Shift Keying (PSK)

- Modulated Phase (or Frequency)
- Highly Efficient Power Amps
- More resilient to amplitude distortion
- Recovery by Simple Phase Detection
- Bi-Phase Shift Keying
- BPSK: Low Data Rates
- Quadrature Phase Shift Keying

- QPSK (OQPSK): Medium Data Rates
- Eight Level Phase Shift Keying
- 8PSK: High Speed Data
- Higher Levels are use less often ~

Binary Phase-Shift Keying BPSK (2-QAM)

>Signal is represented as a vector
 $>$ A change in phase $\left(180^{\circ}\right)$ is a change in Binary code ~

Carrier is multiplied +1 (Binary 1) or 1(Binary 0)

$$
\begin{aligned}
s(t)= & \begin{cases}A \cos \left(2 \pi f_{c} t\right) & \text { binary } 1 \\
0 & \sim_{0}^{\text {BPSK }} \\
A \cos \left(2 \pi f_{c} t+\pi\right) & \text { binary } 0\end{cases} \\
& A \cos \left(2 \pi f_{c} t\right) \\
& \text { binary } 1
\end{aligned}
$$

Binary Phase-Shift Keying BPSK (2-QAM)

$>T_{\mathrm{b}}$ is the duration of 1 Bit
$>$ Bit Rate $=1 / T_{b}$
$>$ Symbol Rate $=1 / T_{\text {b }}$
$>$ IF BW $=$ Symbol Rate $=$ $1 / T_{b}$

Frequency Spectrum BPSK

> Pulsed input transforms to a (Sin x$) / \mathrm{x}$ frequency spectrum
$>3 \mathrm{~dB}$ bandwidth is $1 / \mathrm{T}_{\mathrm{b}}$
$>1^{\text {st }}$ null is $1 / / \mathrm{T}_{\mathrm{b}}$ (1 symbol rate) away from the carrier
>Side lobes interfere with adjacent carriers
$>$ Baseband is filtered to minimize the height of the nulls $>$ Optimize between frequency response and pulse response $>$ Use $1 / 2$ Raised Cosine (Nyquist) filter in the transmitter for side lobe suppression
$>1 / 2$ Raised Cosine filter in the Receiver for noise suppression

Quadrature Phase-Shift Keying (QPSK)

> Successive bits are transferred to alternate channels $>$ Bits are stretched x 2 >2 Bits per symbol ~

- 2 BPSK modulators
- Carriers are 90° Out of Phase (I \& Q)
- $\Sigma 2$ vectors 90° out of phase

QPSK Vector

- "Quadrature": 1 of 4 phases (4-PSK) of the carrier
- 0,90,180,270 (00, 01, 10, 11)
- 2 Bits per symbol. The bit rate for QPSK is twice the symbol rate.

QPSK Bandwidth

$>$ Bit Rate $=1 / T_{b}$
>2 Bits per Symbol
$>$ Symbol Rate $=1 /\left(2 T_{\mathrm{b}}\right)=$ $1 / T_{\mathrm{s}}$
$>$ IF BN $=$ Symbol Rate $=1 / T_{\mathrm{s}}$
$>1^{\text {st }}$ Null is at Symbol Rate
>2 times as efficient as BPSK
$>1 / 2$ Raised Cosine filters are
used for all digital signals ~
$f_{0} \frac{-1}{T_{\mathrm{s}}} f_{0} f_{f_{0}+1}^{T_{\mathrm{s}}} \rightarrow f$

2 Bits per Symbol

Amplitude Variations of QPSK

- If I \& Q bits change at the same time vector goes through zero
- Power changes abruptly
- Non-constant envelope after filtering
- Peak to Average Ratio increases with zero crossings

- Causes signal distortions ~

QPSK - ideal

QPSK - filtered

Offset QPSK (OQPSK)

- Offset the I \& Q bits so they don't change at the same time
- Instead of signals going through zero they go around the circle
- The receiver corrects the offset to recover the signal
- OQPSK does not have a distinct null in the frequency domain ~

8PSK Vector

- Used for High Data Rate Constant Amplitude Modulation
- 3 Bits/Symbol
- Bit Rate $=3 \times$ Symbol Rate
- Required Bandwidth is based on symbol rate (Bit Rate/3)
- Higher values than 8 are rarely used
- Phase Increment is too small

- Phase Noise is the limiting factor ~

Symbol Error in M-ary PSK Systems

Note:
More Complex
Modulations Require higher S/N for the same Error

SNR/bit in dB

6. Quadrature Amplitude Modulation (QAM)

- (QAM) A Combination of ASK \& PSK
- M-QAM is QPSK with variable Amplitude vectors
- Varying Vector Amplitude and Phase
- I \& Q Vector Phase $\left(0^{\circ} / 180^{\circ}\right.$ \& $\left.90^{\circ} / 270^{\circ}\right)$
- $\mathrm{p}_{\mathrm{I}}(\mathrm{t}) \& \mathrm{p}_{\mathrm{Q}}(\mathrm{t})=$ Discrete (Binary) Amplitude Steps
- Sum = Vector with discrete Amplitude and Phase positions

Carrier Vector is the summation of the I \& Q vectors

- Constellation Diagrams
- Contains all possible vector locations
- Points defined by the Quantized I \& Q vector amplitudes
- Primary QAM Configurations
- 16-QAM
- 64 QAM
- 256 QAM
- Less Efficient
- Requires Linear Power Amplifiers
- Peak compression causes distortion
- Receiver requires complex Phase \& Amplitude Detection

Typical Constellations

Constellation Characteristics: 16QAM Example

- 16QAM modulation is a constellation of discrete Phase \& Amplitude positions
- Each position (Symbol) represents 4 bits of data
- 4:1 efficiency of transmission over BPSK

\[

\]

- Down side: Less allowable vector distortion for correct data reception ~

16-QAM Modulation (4 Bits / Symbol)

- I \& Q vectors with variable discrete amplitudes define the vector position
- Initial phase is determined by a header code transmitted before actual data
- Note: Adjacent symbol positions differ by only one Bit
- Enhances the ability to correct data without retransmission (FEC) ~

Transmitted 16-QAM Data, 4 bits/symbol

64-Quadrature Amplitude Modulation

64-QAM Modulation (6 Bits / Symbol)

- 2 Vectors (I \& Q)
- Phase States $4=2^{N}$:
($\mathrm{N}=2$) (BPSK $\mathrm{N}=1$)
- $0^{\circ} / 180^{\circ} \& 90^{\circ} / 270^{\circ}$
- Amplitude Levels = 16= $2^{A}(A=4)$, ($A=0$ for Constant Amplitude)
- $M=$ No. of States
- $M=2^{N}{ }^{*} 2^{A}$
- $M=2^{2 *} 2^{4}=64$

1/4 64 QAM Constellation

QAM Modulation Summary

- Number of States $=\mathrm{M}=2^{\mathrm{N}} * 2^{\mathrm{A}} \quad$ Bits/Symbol
- 2-QAM (BPSK) $N=1, A=0, \quad M=2^{1 *} 2^{0}=2$ (1 Bit)
- 4-QAM (QPSK) $N=2, A=0, \quad M=2^{2} * 2^{0}=4 \quad$ (2 Bit)
- 8PSK
- 16-QAM
- 32-QAM
- 64-QAM
- 128-QAM
- 256-QAM

$$
N=3, A=0, \quad M=2^{2} * 2^{1}=8
$$

(3 Bit)
$N=2, A=2, \quad M=2^{2}{ }^{*} 2^{2}=16$ (4 Bit)
$N=2, A=3, \quad M=2^{2} * 2^{3}=32$ (5 Bit)
$N=2, A=4, \quad M=2^{2} * 2^{4}=64$ (6 Bit)
$N=2, A=5, \quad M=2^{2} * 2^{5}=128(7 \mathrm{Bit})$

- 256-QAM transfers $56 \mathrm{kBits} / \mathrm{sec}$ on a 3 kHz telephone line
- Faster transmission over a standard telephone line is not possible because the noise on the line is too high (Shannon's Theorem) ~

Carrier to Noise vs. Bit Error Rates (BER)

7. Recovering Packet Errors

- Error detection - Parity Check
- Effective when probability of multiple bit errors is low
- Only one extra bit
- If any bit, is distorted, parity will come out to be wrong
- Two ways of recovering packets:
- Forward Error Correction (FEC)
- recipient recovers data bits using additional bits
- Automatic Repeat Request (ARQ)
- Recipient requests the retransmission of lost packets.
- Observations:
- Most corrupted packets have single or double bit errors.
- ARQ is not suitable for broadcast communication pattern.
- Retransmissions cause severe performance degradation.
- Long delays, especially in Satellite Communication ~

Forward Error Correcting (FEC) Codes

- A system of error control for data transmission
- Sender adds redundant data to its messages
- Reduces need to retransmit data
- Forward Error Correction (FEC) or Error Correcting Codes (ECC)
- Goal : Include enough redundant bits to permit the correction of errors at the destination.
- Avoid retransmission of data .
- Extra bits are added to the transmitted word
- Can find the error bit and correct it
- More extra bits - the more bit errors that can be corrected ~

Types of Error-Correcting Codes

- Two basic types: block and convolution codes
- Block codes
- All code words have same length
- Encoding for each data message can statistically be defined
- Reed-Solomon is a subset of Block Codes
- Convolution codes
- Code word depends on data message and a given number of previously encoded messages
- Encoder changes its state with processing of each message
- Length of the code words is usually constant
- Other categorization of types of codes: linear, cyclic, and systematic codes ~

Forward Error Correcting Codes

- $\mathrm{R}=3 / 4$ means 4 bits are sent for every three data bits
- More extra bits - the more errors that can be corrected

- More extra bits - lower Eb/No for the same BER ~

Example - Correcting 1-bit Errors

- Simple extensions of parity check per code word
- Longitudinal Redundancy Check (LRC):
- Additional parity bit with a sequence of 7 bits \rightarrow new code word - 8 bits
- Vertical Redundancy Check (VRC)
- An extra sequence of 8 bits after a series of n code words
- Each bit in this sequence works as parity for bits that occupy same position in n code words
- Example: ASCII coding (7 bit word) for $\mathrm{n}=4$ (4 words)
- Add bits
- 1 parity bit / word $\rightarrow 4$ bits
- 1 parity word $\rightarrow 8$ bits
- Total additional $=12$ bits
- Code rate $=28 /(12+28)=0.7$
- 3 correction bits for every 7 data bits sent
$\mathrm{R}=7 / 10$

1	1	0	0	1	1	1	1
1	0	1	1	1	0	1	1
0	1	1	1	0	0	1	0
0	1	0	1	0	0	1	1
0	1	0	1	0	1	0	1

8. Amplitude and Phase Shift Keying (APSK)

Digital Video Modulator

- DVB-S2 is a new Video modulation standard for Digital Video Broadcasting
- Second-generation specification for satellite broadband applications
- Uses QPSK, 8PSK, 16APSK, or 32APSK
- 16APSK or 32APSK is a new digital modulation scheme
- Changing, both amplitude and phase ~

16APSK \& 32APSK

- QAM modulators can place signals at any vector location
- 16APSK more immune to Phase Noise than 16QAM
- 32APSK symmetrical means of doubling bits/symbol
- Emphasis on Phase Noise immunity ~

Amplitude Compression - APSK

- 16APSK and 32APSK are not widely adopted
- Requires Higher power amplifiers than CW modulation
- Note the effect of amplitude compression
- Note the Threshold region is still similar to the inner circle ~

(1) Mrt토른

DVB-S2 Carrier to Noise Requirements

Modulation Standards are driven by HDTV

- Standard Analog TV bandwidth is 6 MHz
- HDTV with twice the resolution is 12 MHz
- If the analog signal is digitized with 8 bits that $\boldsymbol{\rightarrow} 96 \mathrm{MHz}$ of baseband signal (192MHz RF Bandwidth)
- Even with 16APSK (32APSK is not currently in use) bandwidth compresses to 24 MHz baseband $\& 48 \mathrm{MHz}$ RF
- HDTV uses less than 6 MHz of bandwidth: It's a miracle
- Scene are only updated as necessary
- Only scene changes are transmitted
- High speed movement has many errors, No one notices
- This is a calculated effect
- Networks want to minimize Bandwidth, it's expensive
- They utilize the eyes of the viewer as a Forward Error Correcting code
- We can live with a large number of errors in TV, this doesn't work for our financial transactions ~

9. Decision Regions - System Diagram

QAM Decision Region

\square Lines between the constellation points are the threshold levels
\square Signals residing in the square are assume to reside at the discrete vector location. ~

Threshold Spacing

Acceptable Region

- QPSK
- Threshold $\pm 45^{\circ}$

QAM Geometric Effects

\square Maximum angle error is dependent on Symbol Location
\square Outer Symbols
Tolerate the least angle error
\square Allowable Error
Window is smaller for
More Complex
Modulation ~

Modulation	Error
-2QAM	90.0°
-4QAM	45.0°
-16QAM	16.9°
-32AM	10.9°
-64QAM	7.7°
-128QAM	5.1°

Part 4 Signal Distortions \& Errors

- Error Vector Measurements (EVM)
- Thermal Noise Effects
- Phase Noise Effects
- Group Delay Distortion (Deterministic)
- AM-AM Distortion (Deterministic)
- AM-PM Distortion (Deterministic)
- Modulated Power Levels
- Total Noise Effects
- Eye Diagrams
- Amplitude \& Phase Distortion
- Thermal Noise
- Timing Errors ~

