Fundamentals of Satellite Communications Part 3

Modulation Techniques used in Satellite Communication Howard Hausman

December, 2009

Fundamentals of Satellite Communications Part 3 Modulation Techniques used in Satellite Communication

- 1. Early Communication
- 2. Simultaneously Transmitting Multiple Signals
- 3. Types of Modulation
- 4. Digital Modulation Quantizing Data
- Digital Modulation Techniques CW (Constant Amplitude)
- 6. Quadrature Amplitude Modulation (QAM)
- 7. Recovering Packet Errors
- 8. Amplitude and Phase Shift Keying (APSK)
- 9. Digital Modulation Decision Regions ~

1. Early Communications Wired Communications

Transfer information at Base band

- Only one link per line
- Add Modulation for multi-line communications
- Modulation
 - Altering one waveform (carrier) in accordance with the characteristics of another waveform ~

Early Wireless Communications - Analog

Multiple Conversations can mean a loss of information

- Goal is too find a means of differentiating connections
- Higher pitch can be distinguished from lower pitch multiplexing ~
 - Receiver

Howard Hausman

Early Digital Wireless Communications

- Communication Goals
 - Speed
 - Accuracy
- Select a stable carrier Smoke / Light / Electromagnetic Radiation
- Check the Path Loss & Distortion
- Efficiently modulate the carrier
- Prevent Interference from adjacent carriers ~
 Howard Hausman

A Short History of Satellite Communication

- 1945 Arthur C. Clarke publishes an essay
 - "Extra Terrestrial Relays"
- I957 First satellite SPUTNIK
- IPAGE 1960 First reflecting communication satellite ECHO
- IPAGE 1963 First geostationary satellite SYNCOM
- IPAGE 1965 First commercial geostationary satellite
 - "Early Bird" (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime ~

Modern Communication Satellites

Galaxy 25

- C-Band: 24x36 MHz
- Ku-Band: 4x54 MHz, 24x27 MHz
- 100's of TV Stations & 100,000's of Telephone Calls ~

Modern Communication Satellite

Geostationary Satellites in orbit today

2. Simultaneously Transmitting Multiple Signals

- Carriers can have multiple modulation techniques
- GSM uses FDM and TDMA ~

Howard Hausman

Frequency Division Multiplexing (FDM)

Frequency Division Multiplexing of Satellite Carriers

- Frequency Spectrum is a limited natural resource
- Maximum utilization of the allotted Frequency is essential for a competitive communication medium
- Using Polarization diversity the useable bandwidth is doubled
- Spectrum is offset to decrease the necessary polarization isolation
- Most Satellites are Bent Pipes
 - Transmit whatever it receives
 - Receive signals come from multiple sources ~

Channel Capacity

- Shannon's Theorem (1950's)
- Relates Bit Rate, Bandwidth, & Signal to Noise
- Bit Rate (Bits/Sec) = BW * log₂(1 + SNR)
 - Signal bandwidth = BW
 - SNR = Signal to Noise Ratio
- Theoretical limit, is still a goal
- Complex modulations optimize Bit Rates/BW
- Higher BR/BW require higher Signal to Noise
- Example: 28.8 Kbps modem
 - 2.4 KHz bandwidth on telephone line
 - 28 Kbps modem must send 12 bits / Symbol
 - S/N ratio must be >= 2¹², or 36 dB; typ. telephone line ~

Bandwidth Considerations

- Data in the time domain translates to the frequency domain as a (sin x)/x function $\wp(f) = A^2 T \left(\frac{\sin(\pi \lambda)}{\pi \lambda}\right)^2$ IF Bandwdith = 1/t_s Assumes alternate "1"s & "0"s NRZ -3/t_s -2/t_s -1/t_c 0 1/t_s 2/t_s 3/t_s
- The baseband time domain signal is filtered to minimize side lobes
 - Minimize adjacent channel interference
- Raised Cosine (Nyquist) filter best trade off of pulse distortion (time domain) and side lobe rejection (frequency domain) ~

3. Types of Modulation

- Unmodulated carrier: $V = A\cos [\omega_0 t]$.
- Modulated signals control amplitude & Phase (Frequency)
 - $V = [1 + A_c(t)] \cos [\omega ot + \theta(t)]$
 - A_c(t) is amplitude modulation (AM)
 - $\theta(t)$ is phase modulation (PM)
 - $d \theta(t)/dt = \omega_i(t) = f_c(t)$ frequency modulation (FM)
- AM Amplitude varies as a function of data
- FM Frequency Shifts as Function Data
- PM Phase Shifts as a function of data
- QAM is a combination of Amplitude and Phase Modulation -

 $A_{c}(t)$ and $\theta(t) \Rightarrow QAM$ (Digital) ~

Analog Amplitude Modulation (AM)

- AM Radio
- Analog TV
- Optical Communications
- $\omega_c = carrier$
- Modulation Index = m
- m = max |m(t)|
- m <=1
- For m(t)=m*cos(ω_m *t)
- Modulation Index determined graphically

- AM Waveform
- x(t) = A * [1+m(t)] * cos(ω_c*t)

Modulation index: m=0.5

$$m = \frac{P - Q}{P + Q}$$

AM Frequency Spectrum & Power

- Calculating Sideband Levels
- dBc = 20 Log₁₀ m/2
 •75% AM(m=.75)
 - •Sidebands down 8.5dB from the carrier

Required Power for AM

- Peak level 2 x no signal (m=1)
- RF power 4 x CW Signal (m=1)
- Linear Power Amps 2 or 3 x less
 efficient than Non-Linear Amps
- Need more power to operate than AM than FM/PM ~

ASK - AMPLITUDE SHIFT KEYING

- Two or more discrete amplitude levels
- Used in optical communications
- For a binary message sequence
 - two levels, one of which is typically zero
 - Modulated waveform consists of bursts of a sinusoidal carrier.

Extinction Ratio Max. Light to no light ~ Laser Output

Ð

time

Frequency Modulation

$$\frac{\mathbf{X}\mathbf{c}(t) := \mathbf{A}\mathbf{c}\cdot\mathbf{cos}\big(\mathbf{\theta}\mathbf{c}(t)\big)$$

- Xc(t) = modulated signal
- Ac = carrier amplitude
- Θc(t) = Instantaneous phase

$$\frac{\theta c(t) := 2 \cdot \pi \cdot Fc \cdot t + \phi(t)}{\theta c(t)}$$

$$\frac{\theta c(t) := 2 \cdot \pi \cdot F c \cdot t + 2 \cdot \pi \cdot k_{f} \cdot \int_{-\infty}^{\tau} m(\tau) d\tau$$

m(t) = Information waveform
Fc = average carrier frequency
Φ(t) = instantaneous phase around the average frequency Fc
Frequency = d Φ(t) / dt

FM Modulation Index (β)

Φ(t) = Instantaneous Phase variation around carrier Fc
 For FM signals:

$$\phi(t) := 2 \cdot \pi \cdot k_{f} \cdot \int_{-\infty}^{t} \mathbf{m}(\tau) \, d\tau$$

- Kf = Δ F = the peak frequency deviation
 - m(τ) = is the normalized peak deviation
- For Sinusoidal modulation:
- $m(\tau) = \cos(2^*\pi^*Fm^*\tau)$ where Fm is the rate of modulation
- $\Phi(t) = [2^*\pi^*\Delta F) / (2^*\pi^*Fm] * \sin(2^*\pi^*Fm *\tau)$
- Φ(t) = (ΔF / Fm) * sin (2*π*Fm *τ)
- **β** = Δ F / Fm = modulation index (Radians)
- $\Phi(t) = \beta * sin (2*π*Fm *τ) ~~$

MITEQ

FM Spectral Analysis

FM Modulated Carrier: Xc(t)=A_ccos (2 π f_ct+2π k_f f m (τ) dτ)
Sinusoidal signals: m(τ) = cos(2*π*Fm *τ)

Note: Non-sinusoidal signals are handled by taking the Fourier Transform of m(t) and applying the resultant sinusoidal infinite series using superposition

 $>\beta = \Delta F / Fm = modulation index (Radians)$

> All frequency components (δ functions) are at ± integral multiples of Fm, from the carrier (Fc)

 $\geq \delta$ functions at $f_c \pm nf_m$ have an amplitude = $J_n(\beta)$

 $> J_n(\beta)$ are Bessel Coefficients of the first kind, order n and argument β

Analog Phase Modulation (PM)

- $\frac{\mathbf{X}\mathbf{c}(\mathbf{t}) := \mathbf{A}\mathbf{c}\cdot\mathbf{cos}\big(\mathbf{\theta}\mathbf{c}(\mathbf{t})\big)$
- $\frac{\Theta c(t) := 2 \cdot \pi \cdot F c \cdot t + \phi(t)}{\Theta c(t)}$

→Φ(t) = Phase Modulation
→Φ(t) = β * m(t): β = peak phase deviation
→β = Modulation Index, same as FM
→m(t) = information normalized to ± unity
>Phase Modulated Carrier is:
→Xc(t) = Ac*cos [2*π*Fc *t + β * m(t)] ~

4. Digital Modulation - Quantizing Data

Sampled Analog Signals

- Continuous signals are sampled at discrete times
- Samples are digitally coded & Transmitted
- Nyquist criteria for completely recovering an analog signal
 - Sampling Rate (Fs) >= 2*Maximum Information Rate (Fm)
 No. of Samples >= 2 per period
 - Proof is in the analysis of the Fourier Transform

Take the Fourier Transform of a complex analog waveform

Limit the bandwidth to the maximum frequency rate (Fm)

All frequency components > Fm are suppressed

The Nyquist Criteria will solve all of the unknowns sampling at a rate of 2Fm
 Add one sample to calculated the DC component ~

Implementation of Quantization

- Analog to digital converter (ADC)
- Approximates analog signal by discrete M levels.
- Small step size, signals can appear continuous (e.g. Movies)
- Quantization level to a sequence of N binary bits
 - No. of Levels = M = 2^N
 - No, of Bits = N = Log₂ M

Waveform coder

Quanta

definition

Code-word

deneration

Howard Hausman

Nyquist Criteria

Sampler

Prefilter

N Bits per sample

- Sample Time: 50nSec
- •M = 1024 Steps
- 10 bit Binary Code

5nS/Bit

5. Digital Modulation Techniques - CW

Constant Wave (CW) Modulation / Phase Shift Keying (PSK)

- Modulated Phase (or Frequency)
- Highly Efficient Power Amps
 - More resilient to amplitude distortion
- Recovery by Simple Phase Detection
- Bi-Phase Shift Keying
 - BPSK: Low Data Rates
- Quadrature Phase Shift Keying
 - QPSK (OQPSK): Medium Data Rates
- Eight Level Phase Shift Keying
 - 8PSK: High Speed Data
- Higher Levels are use less often ~

Binary Phase-Shift Keying BPSK (2-QAM)

Howard Hausman

Signal is represented as a vector
 A change in phase (180°) is a change in Binary code ~

Binary Phase-Shift Keying BPSK (2-QAM)

Frequency Spectrum BPSK

Pulsed input transforms to a (Sin x)/x frequency spectrum 3dB bandwidth is 1/T_b > 1^{st} null is $1//T_{b}$ (1 symbol rate) away from the carrier Side lobes interfere with adjacent carriers Baseband is filtered to minimize the height of the nulls Optimize between frequency response and pulse response ➤Use ½ Raised Cosine (Nyquist) filter in the transmitter for side lobe suppression $>\frac{1}{2}$ Raised Cosine filter in the **Receiver for noise suppression**

Quadrature Phase-Shift Keying (QPSK)

QPSK Vector

Amplitude Variations of QPSK

- If I & Q bits change at the same time vector goes through zero
- **Power changes abruptly**
- Non-constant envelope after filtering
- Peak to Average Ratio increases with zero crossings
- Causes signal distortions ~

-0.4 -0.6

4.6

- Offset the I & Q bits so they don't change at the same time
- Instead of signals going through zero they go around the circle
- The receiver corrects the offset to recover the signal
- OQPSK does not have a distinct null in the frequency domain ~

8PSK Vector

- Used for High Data Rate Constant Amplitude Modulation
- 3 Bits/Symbol
 - Bit Rate = 3 x Symbol Rate
- Required Bandwidth is based on symbol rate (Bit Rate/3)
- Higher values than 8 are rarely used
 - Phase Increment is too small
 - Phase Noise is the limiting factor ~

Symbol Error in M-ary PSK Systems

Howard Hausman

6. Quadrature Amplitude Modulation (QAM)

- (QAM) A Combination of ASK & PSK
- M-QAM is QPSK with variable Amplitude vectors
- Varying Vector Amplitude and Phase
- I & Q Vector Phase (0° / 180 ° & 90° / 270 °)
- p_I(t) & p_Q(t) = Discrete (Binary) Amplitude Steps
- Sum = Vector with discrete Amplitude and Phase positions

- Constellation Diagrams
 - Contains all possible vector locations
- Points defined by the Quantized I & Q vector amplitudes
- Primary QAM Configurations
 - 16-QAM
 - 64 QAM
 - 256 QAM
- Less Efficient
 - Requires Linear Power Amplifiers
- Peak compression causes distortion
- Receiver requires complex Phase & Amplitude Detection

Typical Constellations

Howard Hausman

Constellation Characteristics: 16QAM Example

- 16QAM modulation is a constellation of discrete Phase & Amplitude positions
- Each position (Symbol) represents 4 bits of data
- 4:1 efficiency of transmission over BPSK
- Down side: Less allowable vector distortion for correct data reception ~

16-QAM Modulation (4 Bits / Symbol)

- I & Q vectors with variable discrete amplitudes define the vector position
- Initial phase is determined by a header code transmitted before actual data
- Note: Adjacent symbol positions differ by only one Bit
- Enhances the ability to correct data without retransmission (FEC) ~

	C	2 16	-QAM
0011	0010	0001	0000
0111	0110	0101	0100
	-	•	<u> </u>
• 1011	1010	• 1001	I 1000

Transmitted 16-QAM Data, 4 bits/symbol

64-Quadrature Amplitude Modulation

40

64-QAM Modulation (6 Bits / Symbol)

- 2 Vectors (I & Q)
- Phase States 4 = 2^N: (N=2) (BPSK N=1)
 - 0° / 180 ° & 90 ° / 270 °
- Amplitude Levels = 16= 2^A (A = 4), (A=0 for Constant Amplitude)
- M = No. of States
 - M = 2^N * 2^A
 - M = 2² * 2⁴ = 64

QAM Modulation Summary

Number of S	Bits/Symbol		
2-QAM (BPSK)	N=1, A=0,	$M = 2^1 * 2^0 =$	2 (1 Bit)
4-QAM (QPSK)	N=2, A=0,	$M = 2^2 * 2^0 =$	4 (2 Bit)
8PSK	N=3, A=0,	$M = 2^2 * 2^1 =$	8 (3 Bit)
16-QAM	N=2, A=2,	$M = 2^2 * 2^2 =$	16 (4 Bit)
32-QAM	N=2, A=3,	$M = 2^2 * 2^3 =$	32 (5 Bit)
64-QAM	N=2, A=4,	$M = 2^2 * 2^4 =$	64 (6 Bit)
128-QAM	N=2, A=5,	$M = 2^2 * 2^5 =$	128 (7 Bit)
256-QAM	N=2, A=6,	$M = 2^2 * 2^6 =$	256 (8 Bit)

256-QAM transfers 56kBits/sec on a 3kHz telephone line

 Faster transmission over a standard telephone line is not possible because the noise on the line is too high (Shannon's Theorem) ~

Carrier to Noise vs. Bit Error Rates (BER)

Bit Errors
 based on
 Average
 Signal Power
 Number of
 Standard
 Deviations to
 Threshold ~

7. Recovering Packet Errors

Error detection - Parity Check

- Effective when probability of multiple bit errors is low
- Only one extra bit
- If any bit, is distorted, parity will come out to be wrong

Two ways of recovering packets:

- Forward Error Correction (FEC)
 - recipient recovers data bits using additional bits
- Automatic Repeat Request (ARQ)
 - Recipient requests the retransmission of lost packets.

Observations:

- Most corrupted packets have single or double bit errors.
- ARQ is not suitable for broadcast communication pattern.
 - Retransmissions cause severe performance degradation.
 - Long delays, especially in Satellite Communication ~

Forward Error Correcting (FEC) Codes

- A system of error control for data transmission
 - Sender adds redundant data to its messages
- Reduces need to retransmit data
- Forward Error Correction (FEC) or Error Correcting Codes (ECC)
 - Goal : Include enough redundant bits to permit the correction of errors at the destination.
 - Avoid retransmission of data.
- Extra bits are added to the transmitted word
- Can find the error bit and correct it
- More extra bits the more bit errors that can be corrected ~

Types of Error-Correcting Codes

- Two basic types: block and convolution codes
- Block codes
 - All code words have same length
 - Encoding for each data message can statistically be defined
 - Reed-Solomon is a subset of Block Codes
- Convolution codes
 - Code word depends on data message and a given number of previously encoded messages
 - Encoder changes its state with processing of each message
 - Length of the code words is usually constant
- Other categorization of types of codes: linear, cyclic, and systematic codes ~

Forward Error Correcting Codes

R=3/4
 means 4
 bits are
 sent for
 every three
 data bits

 More extra bits – the more errors
 that can be corrected

More extra bits – lower Eb/No for the same BER ~

Example - Correcting 1-bit Errors

- Simple extensions of parity check per code word
 - Longitudinal Redundancy Check (LRC):
 - Additional parity bit with a sequence of 7 bits → new code word - 8 bits
 - Vertical Redundancy Check (VRC)
 - An extra sequence of 8 bits after a series of n code words
 - Each bit in this sequence works as parity for bits that occupy same position in n code words
- Example: ASCII coding (7 bit word) for n=4 (4 words)
- Add bits
 - 1 parity bit / word → 4 bits
 - 1 parity word → 8 bits
 - Total additional = 12 bits
- Code rate = 28/(12+28) = 0.7
- 3 correction bits for every 7 data bits sent

1	1	0	0	1	1	1	1	
1	0	1	1	1	0	1	1~	
0	1	1	1	0	0	1	0	
0	1	0	1	0	0	1	1	
0	1	0	1	0	1	0	1	
		A					~	

8. Amplitude and Phase Shift Keying (APSK)

Digital Video Modulator

- DVB-S2 is a new Video modulation standard for Digital Video Broadcasting
- Second-generation specification for satellite broadband applications
- Uses QPSK, 8PSK, 16APSK, or 32APSK
- 16APSK or 32APSK is a new digital modulation scheme
 - Changing, both amplitude and phase ~

- 16APSK more immune to Phase Noise than 16QAM
- 32APSK symmetrical means of doubling bits/symbol
 - Emphasis on Phase Noise immunity ~

Amplitude Compression - APSK

- 16APSK and 32APSK are not widely adopted
- Requires Higher power amplifiers than CW modulation
 - Note the effect of amplitude compression
- Note the Threshold region is still similar to the inner circle ~

Modulation Standards are driven by HDTV

- Standard Analog TV bandwidth is 6MHz
- HDTV with twice the resolution is 12MHz
- If the analog signal is digitized with 8 bits that → 96MHz of baseband signal (192MHz RF Bandwidth)
- Even with 16APSK (32APSK is not currently in use) bandwidth compresses to 24MHz baseband & 48MHz RF
- HDTV uses less than 6MHz of bandwidth: It's a miracle
 - Scene are only updated as necessary
 - Only scene changes are transmitted
 - High speed movement has many errors, No one notices
 - This is a calculated effect
- Networks want to minimize Bandwidth, it's expensive
 - They utilize the eyes of the viewer as a Forward Error Correcting code
- We can live with a large number of errors in TV, this doesn't work for our financial transactions ~

QAM Decision Region

Lines between the constellation points are the threshold
 levels
 Signals residing in

the square are assume to reside at the discrete vector location. ~

Threshold Spacing

- BPSK
- Threshold
 ±90°
 Acceptable Region
- 16-QAM Amplitude steps
 - A or 3A
- Separation 2A
- Amplitude Noise:
 Decision region must have
 Equal Area
 Phase Noise: Vector
 Angles must be equal ~

QAM Geometric Effects

- Maximum angle error is dependent on Symbol Location
- Outer Symbols Tolerate the least angle error
- Allowable Error
 Window is smaller for
 More Complex
 Modulation ~

Modulation	Error
•2QAM	90.0°
•4QAM	45.0°
•16QAM	16.9°
•32AM	10.9°
•64QAM	7.7 °
•1280AM	5.1°

Part 4 Signal Distortions & Errors

- Error Vector Measurements (EVM)
 - Thermal Noise Effects
 - Phase Noise Effects
 - Group Delay Distortion (Deterministic)
 - AM-AM Distortion (Deterministic)
 - AM-PM Distortion (Deterministic)
 - Modulated Power Levels
 - Total Noise Effects
- Eye Diagrams
 - Amplitude & Phase Distortion
 - Thermal Noise
 - Timing Errors ~

