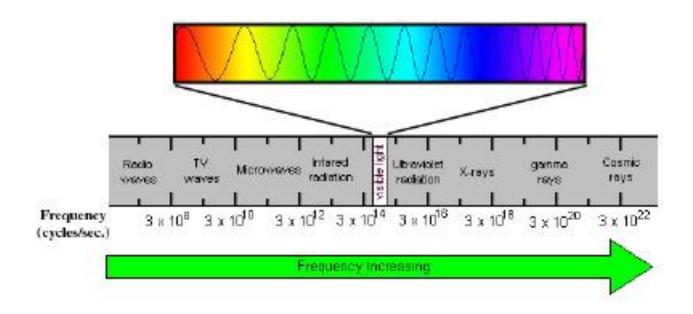


Digital television

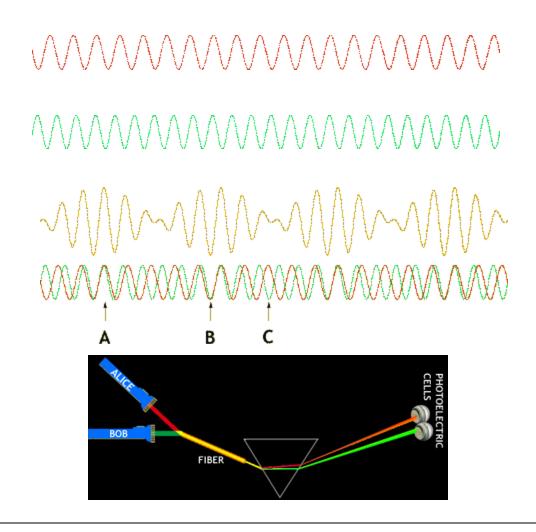
Modulation techniques

- Electromagnetic waves
- Analog modulation
 - Amplitude modulation
 - Angle modulation
 - Frequency modulation
 - Phase modulation
- Digital modulation
 - On-Off keying
 - Amplitude shift keying
 - Phase shift keying
 - Quadrature amplitude modulation

Electromagnetic waves



Electromagnetic waves



Modulation

"modulate" is "To adjust or adapt to a certain proportion."

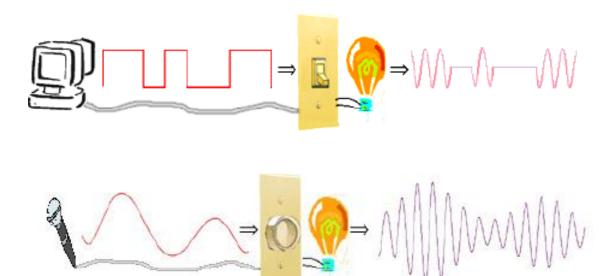
"Linear" modulation

$$x_{c}(t) = A_{c}(1 + \mu x(t))\cos\omega_{c}t$$

Exponential modulation

$$x_c(t) = A_c \cos(\omega_c t + \phi(t))$$
$$= A_c \cos\Theta_c(t) = A_c \operatorname{Re}\left[e^{j\Theta_c(t)}\right]$$

Amplitude modulation

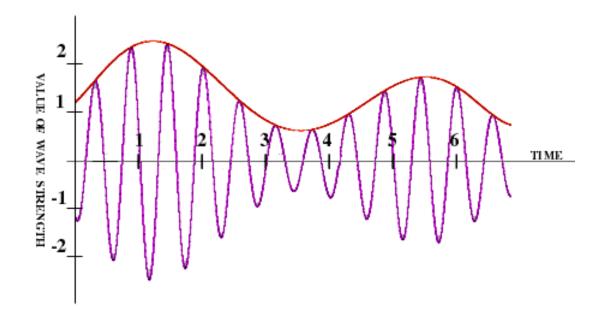


E.g..

- AM radio stations
- Analog television

2013

Amplitude modulation



$$x_c(t) = A_c m(t) \cos 2\pi f_c t \tag{3.1}$$

$$x_c(t) = A_c m(t) \cos 2\pi f_c t$$
 (3.1)
 $X_c(f) = \frac{A_c}{2} [M(f + f_c) + M(f - f_c)]$ (3.2)

AM: waveforms and bandwidth

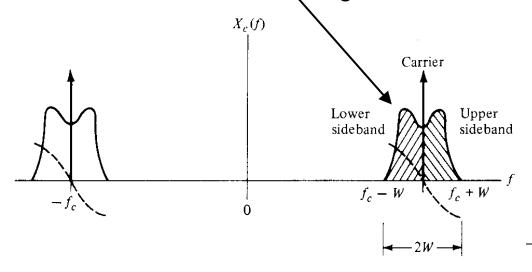
AM in frequency domain:

$$X_{c}(t) = A_{c}[1 + \mu x_{m}(t)]\cos(\omega_{c}t)$$

$$= \underbrace{A_{c}\cos(\omega_{c}t) + \mu x_{m}(t)\cos(\omega_{c}t)}_{\text{Information carrying part}}$$

$$X_{c}(f) \neq \underbrace{A_{c}\delta(f - f_{c})/2 + \mu A_{c}X_{m}(f - f_{c})/2}_{\text{Carrier}} + \underbrace{\mu A_{c}X_{m}(f - f_{c})/2}_{\text{Information carrying part}} f > 0 \text{ (for brief notations)}$$

AM bandwidth is twice the message bandwidth W:



Phase modulation (PM)

Carrier Wave (CW) signal:
$$x_c(t) = A_c \cos(\omega_c t + \phi(t))$$

In exponential modulation the modulation is "in the exponent" or "in the angle"

 $x_c(t) = A_c \cos(\theta_c(t)) = A_c \operatorname{Re}[\exp(j\theta_c(t))]$

Note that in exponential modulation superposition does not apply:

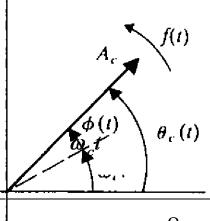
$$x_c(t) = A\cos\left\{\omega_c t + k_f\left[a_1(t) + a_2(t)\right]\right\}$$

$$\neq A\cos\omega_c t + A\cos k_f \left[a_1(t) + a_2(t) \right]$$

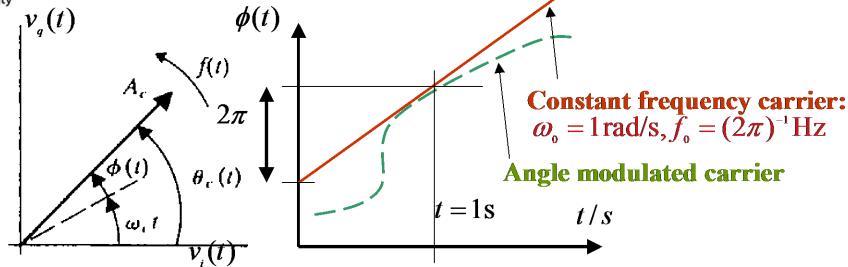
In phase modulation (PM) carrier phase is linearly proportional to the modulation amplitude:

$$x_{PM}(t) = A_c \cos(\omega_c t + \mathcal{C})$$

• Angular phasor has the instantaneous frequency (phasor rate) $\theta_C^{(t)}$ $\theta_C^{(t)}$ $\omega = 2\pi f(t)$



Instantaneous frequency



- Angular frequency ω (rate) is the derivative of the phase (the same way as the velocity v(t) is the derivative of distance s(t)
- For continuously changing frequency instantaneous frequency is defined by differential changes:

$$\omega(t) = \frac{d\phi(t)}{dt} \quad \phi(t) = \int_{-\infty}^{t} \omega(\alpha) d\alpha \quad \text{Compare to} \quad v(t) = \frac{ds(t)}{dt} \left(\approx \frac{s_2(t) - s_1(t)}{t_2 - t_1} \right)$$

$$v(t) = \frac{ds(t)}{dt} \left(\approx \frac{s_2(t) - s_1(t)}{t_2 - t_1} \right)$$

Frequency modulation (FM)

In frequency modulation carrier instantaneous frequency is linearly proportional to modulation frequency:

$$\omega = 2\pi f(t) = d\theta_C(t)/dt$$
$$= 2\pi [f_C + f_\Delta x(t)]$$

Hence the FM waveform can be written as

$$x_{c}(t) = A_{c} \cos(\omega_{c}t + 2\pi f_{\Delta} Z x(\lambda) d\lambda), t \ge t_{o}$$

$$(\alpha) d\alpha$$

$$\theta_{c}(t)$$
 integrate

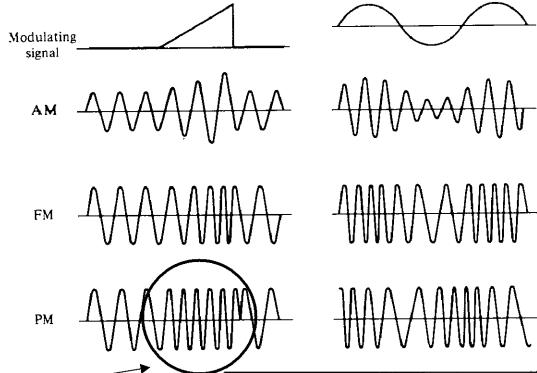
Note that for FM

$$f(t) = f_C + f_{\Delta} x(t)$$

and for PM
$$\phi(t) = \phi_{\lambda} x(t)$$

	Instantaneous	Instantaneous
	phase $\phi(t)$	frequency $f(t)$
PM	$\phi_{\Delta} x(t)$	$f_{\rm c} + \frac{1}{2\pi} \phi_{\Delta} \dot{x}(t)$
FM	$2\pi f_{\Delta} \int_{-\infty}^{t} x(\lambda) \ d\lambda$	$f_c + f_\Delta x(t)$

AM, FM and PM waveforms



Constant frequency follows constant modulation waveform derivative

$$x_{_{PM}}(t) = A_{_{C}}\cos(\omega_{_{C}}t + \phi_{_{\Lambda}}x(t))$$

$$x_{_{FM}}(t) = A_{c}\cos(\omega_{c}t + 2\pi f_{_{\Lambda}} \mathbf{Z}(\lambda)d\lambda)$$

Instan	taneous
phase	$\phi(t)$

$$FM = 2\pi f_{\Delta} \int_{-\infty}^{t} x(\lambda) d\lambda$$

 $\phi_{\Delta} x(t)$

Instantaneous frequency
$$f(t)$$

$$f_c + \frac{1}{2\pi} \phi_{\Delta} \dot{x}(t)$$

$$f_{\rm c} + f_{\Delta} x(t)$$

PM

FM Bandwidth

Normally calculated using Carlsons rule

$$B = 2 (D+1)W$$

where W is the maximun modulation frequency and D is the devation rato $D = f_{\Delta} / W$

 f_{Δ} is the peak frequency deviation

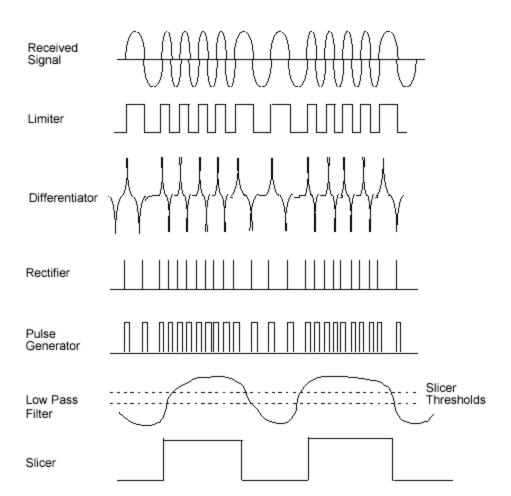
FM Radio:
$$f_{\Delta} = 75 \text{ kHz}$$
, $W = 15 \text{ kHz}$

$$B = 2* (75 / 15 + 1) * 15 \text{ kHz} = 180 \text{ kHz}$$

FM demodulation - Example

Zero-crossing based demodulation

Other: PLL



Comparison of carrier wave modulation systems

Type	$b = B_T/W$	$(S/N)_D/\gamma$	γ_{th}	DC	Complexity	Comments	Typical applications
Baseband	1	1		Not	Minor	No modulation	Short-haul links
AM	2	$\frac{\mu^2 S_x}{1 + \mu^2 S_x}$	20	No	Minor	Envelope detection $\mu \leq 1$	Broadcast ratio
DSB	2	1		Yes	Major	Synchronous detection	Analog data, multiplexing
SSB	1	1		No	Moderate	Synchronous detection	Point-to-point voice, multiplexing
VSB	1+	1		Yes	Major	Synchronous detection	Digital data
VSB + C	1+	$\frac{\mu^2 S_x}{1 + \mu^2 S_x}$	20	Yes‡	Moderate	Envelope detection $\mu < 1$	Television video
PM§	$2M(\phi_{\Delta})$	$\phi_{\Delta}^2 S_x$	10 <i>b</i>	Yes	Moderate	Phase detection $\phi_{\Delta} \leq \pi$	Digital data
FM§¶	2 <i>M</i> (<i>D</i>)	$3D^2S_x$	10 <i>b</i>	Yes	Moderate	Frequency detection	Broadcast radio, microwave relay, satellite systems

[†] Unless direct-coupled.

[‡] With electronic DC restoration.

[§] $b \ge 2$.

[¶] Deemphasis not included.

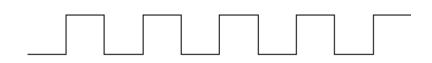
Digital modulation

On-off keying (Binary Amplitude Key Shifting) bandwidth?

2 analog signals



digital signal (010101...)



digital signal approximated using 5 sinus waveforms

$$\left[\sin f \tan + \frac{\sin 3\pi f x}{3} + \frac{\sin 5\pi f x}{5} + \frac{\sin 7\pi f x}{7} + \frac{\sin 9\pi f x}{9}\right]$$

e.g. keeping 5 components -> B = 18 f_m

Shannon's theorem

The capacity C of a channel is

$$C = B \log_2 \left(1 + \frac{S}{N} \right).$$

where B is the bandwidth and S/N is the signal to noise ratio (given in watts/watts)

The dB scale:

$$SNR_{dB} = 10 \log_{10} (SNR) (dB)$$

PAL analog 8MHz studio eq. $S/N = 65 \text{ dB} \rightarrow 149 \text{ Mbit/s}$ PAL analog 8MHz broadcast $S/N = 21 \text{ dB} \rightarrow 59 \text{ Mbit/s}$

Practical for digital applications 15 dB -> 30 Mbit/s

Normal digital applications: 6 bps / Hz → today often 8 bps/Hz

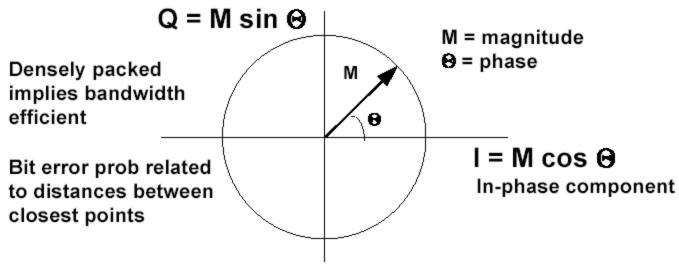
Short notes on dB

- Generally: magnitude of a physical quantity (usually power or intensity) relative to a certain reference value
- i.e. signal (S) to noise (N) S/N given in dB form $SNR_{dB} = 10 \log_{10} (S/N) (dB)$ e.g. $SNR_{dB} = 0 dB \rightarrow S/N = 1$ $SNR_{dB} = 2 dB \rightarrow S/N = 10^{2/10} = 1,58$
- Voltage
 - dBv voltage relative to I V
 - dBmV voltage relative to 1 mV
- Radio power
 - dBm (also dBmW) power ratio in decibels (dB) of measured power referenced to one milliwatt (mW)

Digital modulation

- Modify carriers amplitude and/or phase (and frequency)
- Constellation: Vector notation / polar coordinates

Quadrature component (carrier shifted 90°)



Modulation scheme - considerations

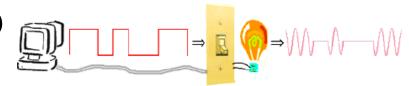
- •High spectral efficiency
- •High power efficiency
- •Robust to multipath effects
- •Low cost and ease of implementation
- •Low carrier-to-cochannel interference ratio
- Low out of band radiation
- Constant or near constant envelope

Constant: Only phase is modulated

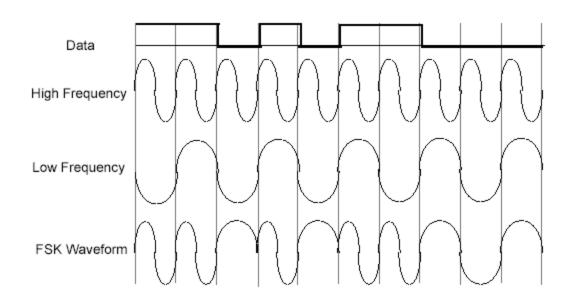
Non-constant: phase and amplitude is modulated

Binary modulations

•Amplitude shift keying (ASK)
Transmission on-off

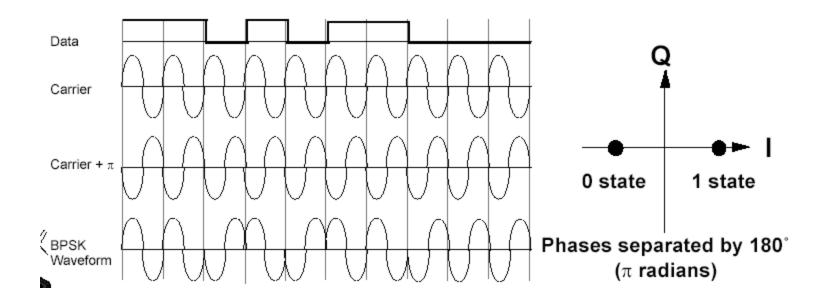


•Frequency shift keying (FSK)



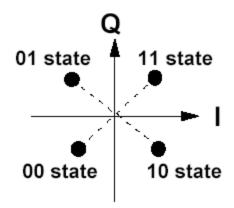
Binary modulations

- Binary phase shift keying (BPSK)
 - Simple to implement, inefficient use of bandwidth
 - Very robust, used in satellite communications



Phase key shifting

- Quadrature Phase Shift Keying (QPSK)
 - Multilevel modulation technique: 2 bits per symbol
 - More spectral efficiency, more complex receiver

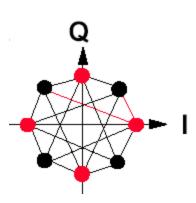


Phase of carrier: $\pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$

Output waveform is sum of modulated ± Cosine and ±Sine wave

π / 4 – Shifted QPSK

- Variation of QPSK
 - Restricted carrier phase transitions to +/- $\pi/4$ and +/- $3\pi/4$
 - Signalling elements selected in turn from two QPSK constellations each shifted by $\pi/4$
- Popular in Second Generation Systems
 - North American Digital Cellular (1.62 bps / Hz)
 - Japanese Digital Cellular System (1.68 bps / Hz)

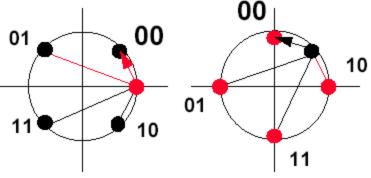


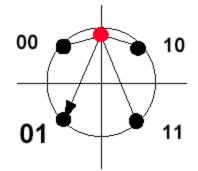
π / 4 – Shifted QPSK

- Advantages
 - Two bits per symbol
 - Phase transitions avoid center of diagram, remove som design constraints on receiver
 - Always a phase change between symbols, leading to self-clocking

... 00 00 01 ...

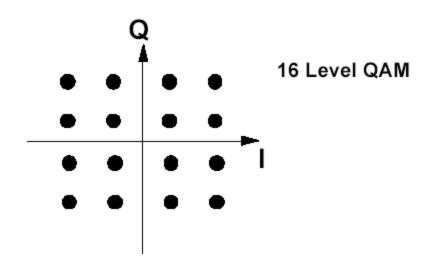
Data	Phase Change
00	45°
01 10	135° -45°
11	-135°





Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - •Amplitude modulation on both quadrature carriers
 - 2ⁿ discrete levels, if n=2 -> same as QPSK
- Extensively used in microwave links
- DVB-T uses QAM



Quadrature Amplitude Modulation

4 bits / symbol

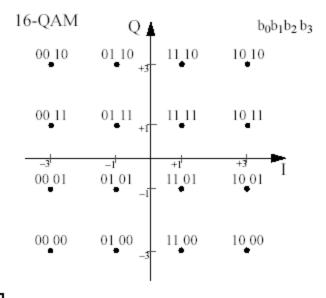


Table 84-16-QAM encoding table

Input bits (b ₀ b ₁)	I-out
00	-3
01	-1
11	1
10	3

Input bits (b ₂ b ₃)	Q-out
00	-3
01	-1
11	1
10	3

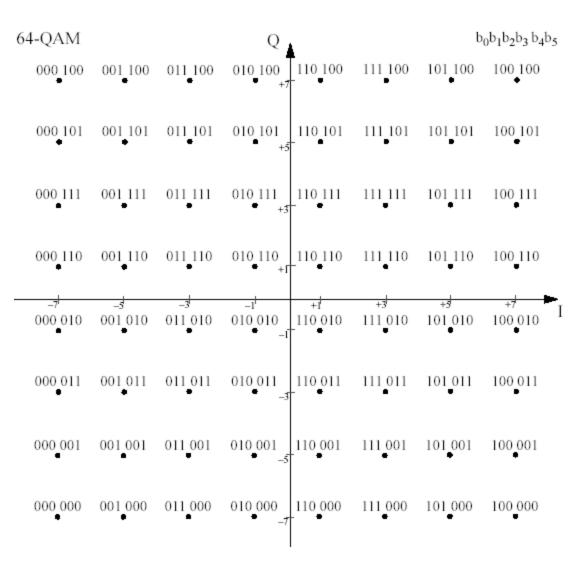
Quadrature Amplitude Modulation

6 bits / symbol

Table 85-64-QAM encoding table

Input bits (b ₀ b ₁ b ₂)	I-out
000	-7
001	-5
011	-3
010	-1
110	1
111	3
101	5
100	7

Input bits (b ₃ b ₄ b ₅)	Q-out
000	-7
001	-5
011	-3
010	-1
110	1
111	3
101	5
100	7



Gray coding

- Present integers, represented in binary format, in such and order, that adjacent integers differ only in one position
- In QAM modulation, c are usually represented
- Now, hamming distance represent physical distance between constellation

