Lecture 5

University

Modulation techniques

- Electromagnetic waves
- Analog modulation
 - Amplitude modulation
 - Angle modulation
 - Frequency modulation
 - Phase modulation
- Digital modulation
 - On-Off keying
 - Amplitude shift keying
 - Phase shift keying
 - Quadrature amplitude modulation

Electromagnetic waves

Electromagnetic waves

Modulation

"modulate" is "To adjust or adapt to a certain proportion."

"Linear" modulation

 $x_{c}(t) = A_{c}(1 + \mu x(t))\cos\omega_{c}t$

Exponential modulation

$$\begin{aligned} x_c(t) &= A_c \cos(\omega_c t + \phi(t)) \\ &= A_c \cos\Theta_c(t) = A_c \operatorname{Re}\left[e^{j\Theta_c(t)}\right] \end{aligned}$$

Amplitude modulation

E.g..

- AM radio stations
- Analog television

Amplitude modulation

$$x_{c}(t) = A_{c}m(t)\cos 2\pi f_{c}t$$
(3.1)
$$x_{c}(t) = \frac{A_{c}}{4} \left[M(t+t) + M(t-t)\right]$$
(3.2)

$$X_{c}(f) = \frac{A_{c}}{2} \left[M(f+f_{c}) + M(f-f_{c}) \right]$$
(3.2)

Phase modulation (PM) Carrier Wave (CW) signal: $x_c(t) = A_c \cos(\omega_c t + \phi(t))$

- In exponential modulation the modulation is "in the exponent" or "in the angle" $x_c(t) = A_c \cos(\theta_c(t)) = A_c \operatorname{Re}[\exp(j\theta_c(t))]$
- Note that in exponential modulation superposition does not apply: $x_c(t) = A \cos \{ \omega_c t + k_f [a_1(t) + a_2(t)] \}$

 $\neq A\cos\omega_{c}t + A\cos k_{f}\left[a_{1}(t) + a_{2}(t)\right]$

 In phase modulation (PM) carrier phase is linearly proportional to the modulation amplitude:

- Angular frequency \u03c8 (rate) is the derivative of the phase (the same way as the velocity \u03c8(t) is the derivative of distance s(t))
- For continuously changing frequency instantaneous frequency is defined by differential changes:

$$\omega(t) = \frac{d\phi(t)}{dt} \quad \phi(t) = \int_{-\infty}^{t} \omega(\alpha) d\alpha \quad \text{Compare to} \quad v(t) = \frac{ds(t)}{dt} \left(\approx \frac{s_2(t) - s_1(t)}{t_2 - t_1} \right)$$

In frequency modulation carrier instantaneous frequency is linearly proportional to modulation frequency:

$$\omega = 2\pi f(t) = d\theta_C(t) / dt$$
$$= 2\pi [f_C + f_\Delta x(t)]$$

Hence the FM waveform can be written as

$$x_{c}(t) = A_{c} \cos(\underbrace{\omega_{c}t + 2\pi f_{\Delta} \mathbf{Z}_{\alpha}(\lambda)d\lambda}_{\theta_{c}(t)}, t \ge t_{0} \qquad \begin{array}{c} \phi(t) = \int_{-\infty}^{\infty} \omega(\alpha)d\alpha \\ \text{integrate} \\ \hline \\ \mathbf{Note that for FM} \\ f(t) = f_{c} + f_{\Delta}x(t) \\ \text{and for PM} \\ \phi(t) = \phi_{\Delta}x(t) \\ \end{array} \qquad \begin{array}{c} \text{Instantaneous} \\ \text{Instantaneous} \\ \text{phase } \phi(t) \\ \hline \\ \mathbf{PM} \\ \phi_{\Delta}x(t) \\ \mathbf{FM} \\ 2\pi f_{\Delta} \int_{-\infty}^{t} x(\lambda) d\lambda \\ f_{c} + f_{\Delta}x(t) \\ \end{array} \qquad \begin{array}{c} \phi(t) = \int_{-\infty}^{\infty} \omega(\alpha)d\alpha \\ \text{integrate} \\ \hline \\ \text{integrate} \\ \hline \\ \mathbf{FM} \\ 2\pi f_{\Delta} \int_{-\infty}^{t} x(\lambda) d\lambda \\ f_{c} + f_{\Delta}x(t) \\ \end{array} \qquad \begin{array}{c} \phi(t) = \int_{-\infty}^{t} \omega(\alpha)d\alpha \\ \text{integrate} \\ \hline \\ \text{integrate} \\ \hline \\ \mathbf{FM} \\ 2\pi f_{\Delta} \int_{-\infty}^{t} x(\lambda) d\lambda \\ f_{c} + f_{\Delta}x(t) \\ \end{array}$$

10

t

FM Bandwidth

Normally calculated using Carlsons rule

 $B = 2 \ (D+1)W$

where *W* is the maximun modulation frequency and *D* is the devation rato $D = f_{\Delta} / W$

 f_{Δ} is the peak frequency deviation

FM Radio: $f_{\Delta} = 75$ kHz, W = 15 kHz

B = 2* (75 / 15 + 1) * 15 kHz = 180 kHz

FM demodulation - Example

Zero-crossing based demodulation

Other: PLL

Comparison of carrier wave modulation systems

Туре	$b = B_T / W$	$(S/N)_D/\gamma$	γ_{th}	DC	Complexity	Comments	Typical applications
Baseband	1	1		No†	Minor	No modulation	Short-haul links
AM	2	$\frac{\mu^2 S_x}{1+\mu^2 S_x}$	20	No	Minor	Envelope detection $\mu \leq 1$	Broadcast ratio
DSB	2	1		Yes	Major	Synchronous detection	Analog data, multiplexing
SSB	1	1		No	Moderate	Synchronous detection	Point-to-point voice, multiplexing
VSB	1+	1		Yes	Major	Synchronous detection	Digital data
VSB + C	1+	$\frac{\mu^2 S_x}{1+\mu^2 S_x}$	20	Yes‡	Moderate	Envelope detection $\mu < 1$	Television video
ΡM§	$2M(\phi_{\Delta})$	$\phi_{\Delta}^2 S_x$	10 <i>b</i>	Yes	Moderate	Phase detection $\phi_{\Delta} \leq \pi$	Digital data
FM§¶	2 <i>M</i> (<i>D</i>)	$3D^2S_x$	10 <i>b</i>	Yes	Moderate	Frequency detection	Broadcast radio, microwave relay, satellite systems

† Unless direct-coupled.

‡ With electronic DC restoration.

§ $b \ge 2$.

¶ Deemphasis not included.

Digital modulation

On-off keying (Binary Amplitude Key Shifting) bandwidth?

2 analog signals

digital signal (010101...)

digital signal approximated using 5 sinus waveforms

 $\left[\frac{\sin f\pi x + \frac{\sin 3\pi fx}{3} + \frac{\sin 5\pi fx}{5} + \frac{\sin 7\pi fx}{7} + \frac{\sin 9\pi fx}{9}\right] \text{ e.g. keeping 5 components } -> B = 18 \text{ f}\text{_m}$

Shannon's theorem

The capacity C of a channel is

$$C = B \log_2 \left(1 + \frac{S}{N} \right).$$

where B is the bandwidth and S/N is the signal to noise ratio (given in watts/watts)

The dB scale:

 $SNR_{dB} = 10 \log_{10} (SNR) (dB)$

PAL analog 8MHz studio eq. $S/N = 65 \text{ dB} \rightarrow 149 \text{ Mbit/s}$ PAL analog 8MHz broadcast $S/N = 21 \text{ dB} \rightarrow 59 \text{ Mbit/s}$

Practical for digital applications 15 dB -> 30 Mbit/s

Normal digital applications: 6 bps / Hz

- Generally: magnitude of a physical quantity (usually power or intensity) relative to a certain reference value
- i.e. signal (S) to noise (N) S/N given in dB form $SNR_{dB} = 10 \log_{10} (S/N) (dB)$ e.g. $SNR_{dB} = 0 dB \rightarrow S/N = 1$ $SNR_{dB} = 2 dB \rightarrow S/N = 10^{(2/10)} = 1,58$
- Voltage
 - dBv voltage relative to 1 V
 - dBmV voltage relative to 1 mV
 - Radio power

Digital modulation

- Modify carriers amplitude and/or phase (and frequency)
- Constellation: Vector notation / polar coordinates

Modulation scheme - considerations

- •High spectral efficiency
- •High power efficiency
- •Robust to multipath effects
- •Low cost and ease of implementation
- •Low carrier-to-cochannel interference ratio
- •Low out of band radiation
- •Constant or near constant envelope
 - Constant: Only phase is modulated
 - Non-constant: phase and amplitude is modulated

Binary modulations

Amplitude shift keying (ASK) Transmission on-off
Frequency shift keying (FSK)

Binary modulations

- Binary phase shift keying (BPSK)
 - Simple to implement, inefficient use of bandwidth
 - Very robust, used in satellite communications

Phase key shifting

- Quadrature Phase Shift Keying (QPSK)
 - Multilevel modulation technique: 2 bits per symbol
 - More spectral efficiency, more complex receiver

Output waveform is sum of modulated ± Cosine and ±Sine wave

 π / 4 – Shifted QPSK

- Variation of QPSK
 - Restricted carrier phase transitions to +/- $\pi/4$ and +/- $3\pi/4$
 - Signalling elements selected in turn from two QPSK constellations each shifted by $\pi/4$
- Popular in Second Generation Systems
 - North American Digital Cellular (1.62 bps / Hz)
 - Japanese Digital Cellular System (1.68 bps / Hz)

π / 4 – Shifted QPSK

- Advantages
 - Two bits per symbol
 - Phase transitions avoid center of diagram, remove som design constraints on receiver
 - Always a phase change between symbols, leading to self-clocking

... 00 00 01 ...

 2Δ

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM)
 - •Amplitude modulation on both quadrature carriers
 - 2^n discrete levels, if n=2 -> same as QPSK
- Extensively used in microwave links
- DVB-T uses QAM

Quadrature Amplitude Modulation

4 bits / symbol

Table 84-16-QAM encoding table

Input bits (b ₀ b ₁)	I-out
00	-3
01	-1
11	1
10	3

Input bits $(b_2 \ b_3)$	Q-out	
00	-3	
01	-1	
11	1	
10	3	

Quadrature Amplitude Modulation

6 bits / symbol

Table 85–64-QAM	encoding	table
-----------------	----------	-------

Q-out

-7 -5 -3 -1 1 3 5 7

Input bits $(\mathbf{b_0} \mathbf{b_1} \mathbf{b_2})$	I-out	Input bits (b ₃ b ₄ b ₅)
000	-7	000
001	-5	001
011	-3	011
010	-1	010
110	1	110
111	3	111
101	5	101
100	7	100

64-QAM			Q 🛓		b	₀ b ₁ b ₂ b ₃ b ₄ b ₅
000 100	001_100 •	011_100 _	010 100 110 100	111 100 •	101_100 •	100 100 •
000 101 •	001 101 •	011_101 •	010 101 110 101 +5	111 101 •	101 101 •	100_101
000 111	001_111	011_111	010 111 110 111	111 <u>1</u> 111 •	101_111 •	100 111
000 110	001 <u>1</u> 110	011_110	010 110 110 110 +1	111 1 10 •	101_110	100_110
000 010	 001_010	-3 011_010	010 010 110 010	+3 111_010	+5 101_010	+7 100 010 I
000 011	001 011	011_011	010 011 110 011 -3	111_011	101_011	100 011
000_001	001_001	011_001	010_001110_001 _5	111_001 •	101 001	100,001
000 000	001_000	011_000	010 000 110 000	111_000 •	101_000	100 000

Gray coding

- Present integers, represented in binary format, in such and order, that adjacent integers differ only in one position
- In QAM modulation, c are usually represented
- Now, hamming distance represent physical distered between constellation

