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Preface

Satellite data compression has been an important subject since the beginning
of satellites in orbit, and it has become an even more active research topic.
Following technological advancements, the trend of new satellites has led to
an increase in spatial, spectral, and radiometric resolution, an extension in
wavelength range, and a widening of ground swath to better serve the needs of
the user community and decision makers. Data compression is often used as a
sound solution to overcome the challenges of handling a tremendous amount
of data. I have been working in this area since I was pursing my Ph. D. thesis
almost 30 years ago.

Over the last two decades, I—as a senior research scientist and technical
authority with the Canadian Space Agency—have led and carried out research
and development of innovative data compression technology for optical
satellites in collaboration with my colleagues at the agency, other government
departments, my postdoctoral visiting fellows, internship students, and
engineers at Canadian space industry. I invented and patented two series of
near-lossless satellite data compression techniques and led the Canadian
industry teams who implemented the techniques and built the onboard near-
lossless compressors. I also led a multidisciplinary user team to assess the
impact of the near-lossless compression techniques on ultimate satellite data
applications. As the representative of Canada, I am an active member of the
CCSDS working group for developing international data-compression
standards for satellite data systems. Three international satellite data
compression standards have been developed by the working group and
published by the International Organization for Standardization (ISO). In

conference on satellite data compression, communication, and signal processing
since 2005. I have published over sixty papers and currently hold six U. S.
patents, two European patents, and several pending patents in the subjects of
satellite data compression and implementation. I feel that I have acquired
sufficient knowledge and accumulated plenty experience in this area, and it is
worth the effort to systematically organize them and put them into a book.

This book is my attempt to provide an end-to-end treatment of optical
satellite data compression and implementation based on 30 years of firsthand
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experience and research outcomes. (It is a companion text to my book Optical
Satellite Signal Processing and Enhancement, published by SPIE Press.) The
contents of the book consist of nine chapters that cover a wide range of topics
in this field. It serves as an introduction for readers who are willing to learn
the basics and the evolution of data compression, and a guide for those
working on onboard and ground satellite data compression, data handling
and manipulation, and deployment of data-compression subsystems. The
material is written to provide clear definitions and precise descriptions for
advanced researchers and expert practitioners as well as for beginners.
Chapters open with a brief introduction of the subject matter, followed by a
review of previous approaches and their shortcomings, a presentation of
recent techniques with improved performance, and finally a report on
experimental results in order to assess their effectiveness and to provide
conclusions.

Chapter 1 is the introduction to the book that describes the rationale and
needs for satellite data compression and introduces a set of image quality
metrics for assessing compressed satellite images. Chapter 2 presents a review
of satellite lossless-data-compression techniques, considering both prediction-
based and transform-based methods. Chapter 3 summarizes three interna-
tional satellite-data-compression standards developed by CCSDS from the
perspective of applying the standards. Chapter 4 describes vector quantization
(VQ) based data-compression techniques that I have developed for compres-
sing hyperspectral data. The focus of the research was to significantly reduce
the computational complexity of conventional VQ algorithms in order for
them to effectively compress hyperspectral datacubes. Many innovative yet
practical solutions have been developed, including two of my granted patents:
Successive Approximation Multi-stage Vector Quantization (SAMVQ) and
Hierarchical Self-Organizing Cluster Vector Quantization (HSOCVQ).
Chapter 5 describes how both of these techniques solve the blocking effect
when applied to compressing continuous data flow generated aboard satellites
and how they restrict the compression error to a level lower than that of the
intrinsic noise of the original data to achieve so-called near-lossless
compression. Chapter 6 addresses the optimization and implementation
aspects of onboard data compression; aspects include the effect of anomalies
of input data on compression performance, the location in the onboard data-
processing chain where the compressor should be deployed, and the
techniques to enhance error resilience in the data downlink transmission
channel. Chapter 7 describes the hardware implementation of compression
engines and onboard compressors that are based on SAMVQ and HSOCVQ.
Chapter 8 reports a multidisciplinary user-acceptance study that assessed the
impact of the compression techniques on various hyperspectral data
applications to address the users’ concern about possible information loss
due to the lossy compression nature of SAMVQ and HSOCVQ. Chapter 9
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describes the Hyperspectral Image Browser (HIBR) system, which is capable
of remotely displaying large hyperspectral datacubes via the Internet and of
quickly processing the datacubes directly on the compressed form for users to
identify the interested data, whose richness comes mostly from the spectral
information.

There are many people I would like to thank for their contributions to the
works included in this book. I would like to thank the Canadian Space
Agency, where I have been working for the last 20 years; my colleagues Allan
Hollinger, Martin Bergeron, Michael Maszkiewicz, Ian Cunningham, and
Davinder Manak for their participation in data compression projects; my
postdoctoral visiting fellows Pirouz Zarrinkhat and Charles Serele; and over
forty intern students who have each left their mark. I would like to thank
Robert Neville (retired), Karl Staenz (now at the University of Lethbridge),
and Lixin Sun at the Canada Centre for Remote Sensing for collaborating on
the Canadian hyperspectral program; Josée Lévesque and Jean-Pierre
Ardouin at the Defence Research and Development Canada for their
collaboration on assessing the impact of data compression. I thank David
Goodenough at the Pacific Forestry Centre; John Miller and Baoxin Hu at
York University for providing datasets and for actively collaborating on the
data-compression user acceptability study; and Bormin Huang of the
Cooperative Institute for Meteorological Satellite Studies at the University
of Wisconsin-Madison for his discussion on satellite data compression.

I would also like to thank the participants in the user acceptability study:
Andrew Dyk at the Pacific Forestry Centre; Jing Chen at the University of
Toronto; Harold Zwick, Dan Williams, Chris Nadeau, and Gordon Jolly at
MacDonald Dettwiler Associates; and Benoit Rivard and Jilu Feng at the
University of Alberta. I thank Luc Gagnon, William Harvey, Bob Barrette,
and Colin Black at MacDonald Dettwiler Associates (former EMS
Technologies) for the development and fabrication of onboard compressor
prototypes; and Melanie Dutkiewicz and Herbal Tsang for the development
of a hyperspectral browser. I thank Valec Szwarc and Mario Caron at the
Communication Research Centre (Canada) for discussions on enhancing
resilience to bit errors of compressed data in the downlink channel; and Peter
Oswald and Ron Buckingham for their discussion on onboard data
compression. I would also like to thank Penshu Yeh at the NASA Goddard
Space Flight Center, Aaron Kiely at the Jet Propulsion Laboratory, Carole
Thiebaut and Gilles Moury at the French Space Agency (CNES), and
Raffaele Vitulli at the European Space Agency for the collaboration within
the CCSDS in developing international spacecraft-data standards and for
their contributions to the CCSDS work included in this book.

I would also like to thank the three anonymous manuscript reviewers for
their tireless work and strong endorsement of this book, their careful and
meticulous chapter-by-chapter review on behalf of SPIE Press, and their
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detailed comments leading to the improvement and final results of the book in
its current form. Many thanks as well to Tim Lamkins, Scott McNeill, and
Dara Burrows at SPIE Press for turning my manuscript into this book.

Finally, I would like to thank my wife Nancy and daughter Cynthia for
their help and support. They provided great encouragement and assistance
during the period I wrote this book. The credit of this book should go to them.

Shen-En Qian ( )
Senior Scientist, Canadian Space Agency

Montreal, Canada
September 2013
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Chapter 1

Needs for Data Compression
and Image Quality Metrics

1.1 Needs for Satellite Data Compression

In modern times, satellites have become part of our daily life. Thousands of
satellites have been launched into orbit around the Earth and other planets
for a number of purposes, such as communications, weather forecasting,
navigation, Earth observation, and scientific research. Optical satellites
measure reflective light in wavelength ranges from the ultraviolet to the
infrared (including near-infrared, middle-infrared, and thermal infrared) to
observe the Earth and other planets to acquire information that cannot be
easily obtained by other means.

Optical satellites, based on their functions, normally carry the following
five types of payloads:

1. Panchromatic,
2. Multispectral,
3. Hyperspectral,
4. Fourier transform spectroscopy (FTS), and
5. Light detection and ranging (lidar).

With advancements in sensor technology, the trend of optical satellite
development has led to an increase in the number of spectral bands, spectral
and spatial resolution, swath (i.e., wider cross-track line on the ground), and
radiometric precision to better serve the needs of the user community and
decision makers. For example, in the SPOT (Systéme Pour l’Observation de la
Terre) satellite series, the spatial resolution (sometimes also referred to as
ground sample distance, or GSD) of the panchromatic image is increased
from 10 m for SPOT 1–4 to 5 m for SPOT 5,1 and further increased to 1.5 m
for SPOT 6–7. Hyperspectral imagers, such as Hyperion2 aboard NASA’s
EO-1 satellite, and imaging Fourier transform spectrometers (also known as
ultraspectral sounders) acquire over hundreds to a few thousand spectral
bands of images of a scene and generate enormous amounts of data.
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The Hyperion sensor generates 220 spectral bands covering a spectral
region from the visible/near-infrared to the short-wavelength infrared (400–
2500 nm) with a spectral resolution of 10 nm for each ground pixel of 30-m
GSD in a cross-track line of 255 pixels in approximately every 4.4 ms. The
datarate generated onboard is 220 bands � 255 pixels � 4.4 ms � 12 bits ¼
151 Mb/s. Advanced Responsive Tactically Effective Military Imaging
Spectrometer (ARTEMIS) is a U. S. Department of Defense (DoD)
hyperspectral sensor aboard the TacSat-3 satellite.3 By increasing the spectral
resolution to 5 nm, GSD to 4 m, and the number of pixels in a cross-track line
to 1000 pixels, the datarate generated by ARTEMIS increases to 400 bands �
1000 pixels � 4.4 ms � 16 bits ¼ 1.44 Gb/s, assuming that the integration time
remains the same and a 16-bit digitization.

Consider the atmospheric infrared sounder (AIRS)4 aboard NASA’s
Aqua satellite as an example of an ultraspectral sounder. The AIRS data has
2378 spectral channels covering a wavelength range in the infrared region of
3.74–15.4 mm. A day’s worth of AIRS data consists of 240 3D granules
(datacubes), each with a six-minute duration. Each granule contains 135 scan
lines with 90 cross-track footprints per scan line; thus, there are a total of
135 � 90 ¼ 12,150 footprints per granule. The 16-bit raw radiances are
converted into the brightness temperatures and then scaled as 16-bit unsigned
integers. The data volume of 240 3D granules is 110 Gb.

There is an increasing need for satellite data compression. Compression is
an efficient way to help reduce the amount of data onboard, to effectively
transmit the data from space to ground, and to archive and process the data
on the ground. In information theory and computer science, data compres-
sion, source coding, or bitrate reduction involves encoding information data
using fewer bits than the original representation.

In the case of the SPOT satellite series, onboard data compression has been
used since the first SPOT satellite to help balance the datarate generated
onboard and the data downlink telemetry-channel capability. SPOT 1–4
benefited from a compression ratio of 1.33 to match the onboard datarate and
the transmission bitrate of the telemetry channel capability. When the spatial
resolution of the panchromatic and multispectral sensors of SPOT 5 are
doubled, the onboard datarate is quadrupled.5 On the other hand, the
transmission bitrate of the telemetry channel is unchanged at 50 Mb/s to
maintain strict compatibility with SPOT-satellite ground-receiving stations
spread across the world. To accommodate the improved spatial resolution,
two telemetry channels (instead of one on SPOT 1–4) are used, which
simultaneously provide a total data transmission bitrate of 100Mb/s. With this
downlink-channel transmission capacity, it is still not adequate to handle the
datarate generated by SPOT 5, even though the transmission bitrate has been
doubled. It took a discrete-cosine-transform-based compressor aboard SPOT 5
that yielded a compression ratio 2.4� 3.4 to solve this problem.

Mars-Express, launched by the European Space Agency in 2003, is an
interplanetary exploration mission. It is aimed at visible and near-IR
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observation of the surface and atmosphere on Mars. The hyperspectral imagery
captured by the imaging spectrometer OMEGA (Observatoire pour la
Minéralogie, l’Eau, les Glaces, et l’Activité) is compressed using a wavelet-
based algorithm to package it into highly miniaturized datacube.50 The Mars
Reconnaissance mission is another exploration mission launched by NASA in
2005, and it carries the Compact Reconnaissance Imaging Spectrometer for
Mars (CRISM) payload to study the mineralogy and atmosphere of the red
planet via a hyperspectral imager. Lossless data compression is applied by
decorrelating the data using a DPCM method followed by the CCSDS-121 as
an entropy encoder.51 The Third World Satellite (TWSat), launched in 2008,
carries the hyperspectral imager HySI-T, which features another example of
satellite data compression. The onboard compression is performed using the
JPEG2000 algorithm with a compression ratio of 3.4:1.52

The Medium-Resolution Imaging Spectrometer (MERIS) instrument aboard
ESA’s ENVISAT satellite is a hyperspectral sensor used to observe the color of the
ocean, both in the openocean and in coastal zones, to study the oceanic component
of the global carbon cycle and the productivity of these regions, amongst other
applications.6 By design, MERIS could record 390 spectral bands covering a
wavelength range from the visible to the near-infrared (412–900 nm)with a spectral
interval of 1.25 nm. However, MERIS is restricted by its downlink channel
transmission capability and transmits only 15 channels, where each channel is an
average takenover 8–10 fine spectral bands.Table 1.1 tabulates the bandwidth of
the 15 channels and theirmain applications.MERISwould have transmitted all
390 fine spectral-resolution bands if an onboard data compressor with a
compression ratio of 26:1 had been deployed. Qian carried out a study within
his space agency right after the launch of MERIS in early 2000.7 In the study,
the author evaluated the advantages and disadvantages of onboard data
compression versus band-averaging, and compared the information volume
carried by the data received by band-averaging and by onboard compression

Table 1.1 Specifications of the 15 channels of the MERIS sensor.

Channel Number Bandwidth (nm) Application

1 402.5 422.5 Yellow substance and detrial pigments
2 432.5 452.5 Chlorophyll absorption maximum
3 480 500 Chlorophyll and other pigments
4 500 520 Suspended sediment, red tides
5 550 570 Chlorophyll absorption minimum
6 610 630 Suspended sediment
7 655 675 Chlorophyll absorption and fluorescence reference
8 673.25 688.75 Chlorophyll fluorescence peak
9 698.75 718.75 Fluorescence reference, atmospheric corrections
10 746.25 761.25 Vegetation, clouds
11 756.88 746.38 Oxygen absorption R branch
12 763.75 793.75 Atmosphere corrections
13 845 885 Vegetation, water vapor reference
14 875 895 Atmosphere corrections
15 890 910 Water vapor, land
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under the same downlink channel transmission capability. The study concluded
that compression is more beneficial because all 390 fine spectral bands are
transmitted to the ground despite the data containing some errors after
compression with a ratio of 26. The compressed data provides more
information than the transmitted 15 broadband channels.

Satellite data compression is a tradeoff between processing capabilities and data
volume (whether it is storage or transmission). Before selecting the compression
techniques, it is important to understand the context in which they operate and the
constraints that led to their selection. There is not much in common between the
requirements for compressing data onboard a satellite and compressing data on
the ground. In the former case, computational power is limited and error is
unrecoverable, while in the latter case, compression is used to speed up network
transfer or processing, but the whole data can be transmitted, if necessary.

Satellite data compression has been an important subject since the beginning
of satellites in orbit, and it has become an evenmore active research topic. Under
the same downlink channel transmission capability, onboard compression allows
transmitting more data to the ground or increasing the ground coverage if the
possible information losses due to compression are well controlled.8

1.2 Quality Metrics of Satellite Images

There is a need to assess the quality of satellite data and images. When a
satellite produces data products for a particular application, the quality must be
verified before the data is delivered to the user community. On the user side,
after applying application algorithms to the data or images, the processed
images need to be assessed to ensure that the derived intermediate or final
products meet the requirements of the application. This chapter describes image
quality metrics used to assess the original satellite data and the products derived
from the original data or processed data.

The reason for defining a set of comprehensive image quality metrics is
obvious. An optical satellite sensor suffers from degradations in the acquisition
process related to instrument characteristics, for example, the radiometric
noise and modulation transfer function (MTF). Different degradations
introduced by the acquisition system cause a loss of image quality. The first
degradation of the produced image products is radiometric noise caused
mainly by photonic effects in the photon detection process, by electronic
devices, and by quantization. This noise can often be assimilated to white
noise even if some correlation exists between different bands. A quality metric
called signal-to-noise ratio (SNR) is often used to quantify how much the
signal has been corrupted by noise.

Other degradations are due to the optical characteristics of the spectro-
graphs. The point spread function (PSF) can cause a smoothing effect along
the spatial dimension. The dispersion element of the spectrometer and the
characteristics of the detector array can produce a smoothing effect along the
spectral dimension. During the characterization of an optical satellite sensor,
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properly measuring the image quality related to specific application needs by
using quality metrics can help enhance the performance of the sensor by
focusing the crucial characteristics to be improved.

A set of spectral band images produced by a multispectral sensor can be
affected by registration problems. The misregistration leads to a bad
alignment between the spectral band images. An image or a datacube
generated by a hyperspectral sensor can be affected by spectral distortion and
spatial distortion problems. Spatial distortion prevents a given ground sample
from being imaged on the same column of the 2D detector array after the
radiance light is dispersed and causes the imaged detector elements to shift.
The spectral and spatial distortions of an optical sensor need to be measured
using a well-defined metric.

When lossy data compression is applied onboard, i.e., before the data
transmission from space to ground, information losses due to compression
will be irrecoverable. Some loss of information may occur after compression
in order to reduce the datarate to match the downlink telemetry channel
capability or transmit more images. It is important to assess the quality after
compression. Image quality criteria or distortion measures need to be
defined to properly quantify the information lost due to data compression.
Quality metrics can be used to ensure that no critical information has been
lost during the compression process and that the scientific value of the
original data is well preserved.

Image quality metrics can be classified into three categories based on the
reference used:

1. Full-reference (FR) metrics,
2. Reduced-reference (RR) metrics, and
3. No-reference (NR) metrics.

The FR metrics measure the quality of a test image based on a reference
image (the reference image often refers to the original image). This kind of
metric provides more-accurate assessment because the reference or the original
image contains all of the information to be assessed. However, sometimes the
reference or the original image is not available. Instead of using the entire
reference image, the RR metrics use only the reduced representation of the
reference image (e.g., mean, variance, reduced spatial representation, etc.) to
assess the quality of a test image, which is compared to either the reduced
representation of the test image or the entire test image. The NR metrics assess
a test image without using any information of a reference image. These metrics
exploit distortion based on a priori knowledge of the test image.

1.3 Full-Reference Metrics

There are many FR quality metrics for assessing the image quality of satellite
images. These metrics are based on the calculation of errors between the
reference and the test image, such as mean square error (MSE), root MSE,
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SNR, etc. These metrics do not take into account the perceived visual quality
of the test images; however, a set of FR metrics that consider perceived visual
quality of the test images has been proposed.9 13 One of these metrics is
referred to as the Universal Image Quality Index (also called Q index). This
metric is based on the philosophy that structural information is extracted from
the viewing field of human eyes. As a consequence, a switch from error
measurement to structural distortion measurement is performed. Many tested
images have proven that the Q index can be profitably used to assess the
quality of distorted images.12 In this section, the FR metrics that do and do
not take into account the perceived visual quality will be described in two
separate subsections.

A test image can be a 2D panchromatic image, a set of multispectral
images, or a 3D datacube. Let us assume that a test image is I(X, Y, L), and
its reference image is Ir (x, y, L), each of which is a 3D datacube with a
spatial size of Nx columns and Ny rows, and with Nl spectral bands. If a test
image is a single 2D image, Nl is equal to 1. The datacubes (images) can also
be written in a matrix form, where I (x, y, l) denotes the value of a pixel at x
column and y row in the spectral band l of the test datacube, and Ir (x, y, l)
denotes the value of a pixel of the reference image at the same spatial
location and the same spectral band as the test datacube. A spectrum profile
I(x, y,·), corresponding to a ground sample at location (x, y) of the datacube,
is defined as

Iðx, y, �Þ ¼ fIðx, y,lÞj1 � l � Nlg: ð1:1Þ
This spectrum profile is often referred to as a spectral vector whose length

is Nl. An image I(·, ·, l) at band l of the datacube I(X,Y,L) is defined as

Ið�, �,lÞ ¼ fIðx, y,lÞj1 � x � Nx; 1 � y � Nyg: ð1:2Þ

1.3.1 Conventional full-reference metrics

The following 13 metrics are widely used conventional FR metrics.

1.3.1.1 Mean-square error (MSE)

MSE ¼ 1
NxNyNl

XNx

x 1

XNy

y 1

XNl

l 1

½Iðx,y,lÞ Irðx, y,lÞ�2: ð1:3Þ

Root-mean-square error (RMSE)

RMSE ¼ 1
NxNyNl

XNx

x 1

XNy

y 1

XNl

l 1

½Iðx, y,lÞ Irðx,y,lÞ�2
vuut : ð1:4Þ
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1.3.1.2 Relative-mean-square error (ReMSE)

ReMSE ¼ 1
NxNyNl

XNx

x 1

XNy

y 1

XNl

l 1

Iðx,y,lÞ Irðx, y,lÞ
Irðx,y,lÞ

� �2
: ð1:5Þ

Root relative-mean-square error (RReMSE)

RReMSE ¼ 1
NxNyNl

XNx

x 1

XNy

y 1

XNl

l 1

Iðx, y,lÞ Irðx,y,lÞ
Irðx, y,lÞ

� �2vuut : ð1:6Þ

1.3.1.3 Signal-to-noise ratio (SNR)

SNR ¼ 10 log 10
Signal-power

MSE
; ð1:7Þ

where

Signal-power ¼ 1
NxNyNl

XNx

x 1

XNy

y 1

XNl

l 1

Irðx,y,lÞ2: ð1:8Þ

1.3.1.4 Peak signal-to-noise ratio (PSNR)

PSNR ¼ 10 log 10
ðPeak-valueÞ2

MSE
; ð1:9Þ

where Peak-value is the maximum value of the reference image. The value
of the upper limit of the quantization is also used sometimes, such as 255
for 8-bit quantization, 4095 for 12-bit quantization, and 65535 for 16-bit
quantization, which is not recommended. This is because the maximum
value of the real image data can often be much smaller than the upper limit
of the quantization dynamic range for the purpose of preventing saturation
caused by bright signal. If this is the case, the use of the upper-limit value
would result in an artificially high PSNR.

1.3.1.5 Maximum absolute difference (MAD)

MAD ¼ max
ðx; y; lÞ

fjIðx,y,lÞ Irðx, y,lÞjg: ð1:10Þ

MAD can be used to bind the error limits of any value of a test image related
to the reference image. This property can be very useful in the case of local
errors.
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1.3.1.6 Percentage maximum absolute difference (PMAD)

PMAD ¼ max
ðx; y; lÞ

jIðx, y,lÞ Irðx, y,lÞj
Irðx, y,lÞ

� �
� 100%: ð1:11Þ

PMAD provides more tolerance to individual larger errors of the test image
due to the introduction of the normalization term.

1.3.1.7 Mean absolute error (MAE)

MAE ¼ 1
NxNyNl

XNx

x 1

XNy

y 1

XNl

l 1

��Iðx, y,lÞ Irðx, y,lÞ
��: ð1:12Þ

1.3.1.8 Correlation coefficient (CC)

CCðlÞ ¼
XNx

x 1

XNy

y 1

�
Iðx, y,lÞ � mIð�, �, lÞ

	�
Irðx, y,lÞ � mIrð�, �, lÞ

	
XNx

x 1

XNy

y 1

�
Iðx, y,lÞ � mIð�, �, lÞ

	2r XNx

x 1

XNy

y 1

�
Irðx, y,lÞ � mIrð�, �, lÞ

	2r ;

ð1:13Þ

wheremIð , , lÞ andmIrð , , lÞ are the means of band images Ið�, �,lÞ and Irð�, �,lÞ at
band l, respectively, and are defined as

mIð , , lÞ ¼
1

NxNy

XNx

x 1

XNy

y 1

Iðx, y,lÞ; ð1:14Þ

mIrð , , lÞ ¼
1

NxNy

XNx

x 1

XNy

y 1

Irðx,y,lÞ: ð1:15Þ

CC(l) is the correlation coefficient between a band image at wavelength l and
its reference band image. The overall CC between a test datacube and its
reference datacube is

CC ¼ 1
Nl

XNl

l 1

jCCðlÞj: ð1:16Þ

For hyperspectral images, it is necessary to measure the spectral distortion.
The following metrics are particular to hyperspectral images.
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1.3.1.9 Mean-square spectral error (MSSE)

MSSEx; y ¼ 1
Nl

XNl

l 1

�
Iðx,y,lÞ Irðx, y,lÞ

�2
vuut : ð1:17Þ

MSSE is the MSE between a spectrum of a test datacube at location (x,y) and
the spectrum at the same location of the reference datacube.

Root-mean-square spectral error (RMSSE)

RMSSEx; y ¼ 1
Nl

XNl

l 1

�
Iðx, y,lÞ Irðx,y,lÞ

�2
vuut : ð1:18Þ

1.3.1.10 Spectral correlation (SC)

The spectral correlation between a spectral vector Iðx, y, �Þ and its reference
spectral vector Irðx,y, �Þ is

SCx, y ¼
sIðx, y, �ÞIrðx, y, �Þ
sIðx, y, �ÞsIrðx, y, �Þ

¼
XNl

l¼1
Iðx,y,lÞ � mIðx, y, �Þ
h i

Irðx, y,lÞ � mIrðx, y, �Þ
h i

ðNl � 1ÞsIðx, y, �ÞsIrðx, y, �Þ
, ð1:19Þ

where mIðx, y, Þ and s2
Iðx, y, Þ are the mean and variance of the vector Iðx, y, �Þ,

respectively, and are defined as

mIðx, y, Þ ¼
1
Nl

XNl

l 1

Iðx,y,lÞ, ð1:20Þ

s2
Iðx, y, Þ ¼

1
Nl

XNl

l 1

�
Iðx, y,lÞ mIðx, y, Þ

�2
: ð1:21Þ

1.3.1.11 Spectral angle (SA)

A spectral angle represents the angle between two spectral vectors ðv1, v2Þ in
an Nl-dimensional space:

SAðv1, v2Þ ¼ cos 1 v1 � v2
v1 � v2

� �
¼ cos 1

XNl

l¼1

�
v1ðlÞ � v2ðlÞ

�
XNl

l¼1
v1ðlÞ2

XNl

l¼1
v2ðlÞ2

q
0
B@

1
CA: ð1:22Þ
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To measure the spectral angle between a spectrum Iðx,y, �Þ ¼ fIðx,y,lÞ
j1 � l � Nlg of a test datacube and the spectrum Irðx, y, �Þ ¼ fIrðx,y,lÞ j1 �
l � Nlg at the same location of the reference datacube, Eq. (1.22) becomes

SA½Iðx,y, �Þ, Irðx,y, �Þ� ¼ cos 1

XNl

l¼1

�
Iðx,y,lÞ � Irðx, y,lÞ

	
XNl

l¼1
Iðx,y,lÞ2

XNl

l¼1
Irðx,y,lÞ2

q
0
B@

1
CA: ð1:23Þ

A resulting value of Eq. (1.23), equal to zero, denotes no spectral
distortion but possible radiometric distortion (e.g., the two spectral vectors are
parallel but have different lengths). Spectral angles are measured in either
degrees or radians and are usually averaged over the whole datacube to
produce a global measurement of spectral distortion.

The maximum spectral angle (MSA) within a datacube is

MSA ¼ max
x; y

fSA½Iðx, y, �Þ, Irðx, y, �Þ�g: ð1:24Þ

The spectral angle mapper (SAM) is formed by calculating spectral angles
for all of the spectra between a test datacube and the reference datacube. It is
a 2D image:14

SAM ¼ SA½Iðx, y, �Þ, Irðx, y, �Þ�
��1 � x � Nx; 1 � y � Ny: ð1:25Þ

1.3.1.12 Maximum spectral information divergence (MSID)

MSID ¼ max
x; y

XNl

l 1

ðrrl rlÞIn
rrl
rl


 �( )
; ð1:26Þ

where

rrl ¼
Irðx, y,lÞXNl

l 1
jIrðx, y,lÞj

and ð1:27Þ

rl ¼ Iðx,y,lÞXNl

l 1
jIðx, y,lÞj

: ð1:28Þ

This metric is based on the Kullback–Leibler distance, which measures the
distance between two spectra viewed as distributions.15

1.3.1.13 ERGAS for multispectral image after pan-sharpening

Ametric has been proposed to measure the image quality of multispectral (MS)
images after pan-sharpening. It is referred to as ERGAS (derived from its
French name); it means “relative global error in synthesis ” and is defined as16
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ERGAS ¼ 100
dh
dl

1
Nl

XNl

l 1

RMSEðlÞ
mIrð , , lÞ

" #2vuut , ð1:29Þ

where dh/dl is the ratio between pixel sizes of the multispectral and pan images,
e.g., 4:1 for IKONOS-2 and QuickBird images, mIrð ; ; lÞ is the mean of the lth
band image of the reference, RMSE(l) is the RMSE between the lth pan-
sharpened MS image and its reference image, and Nl is the number of
multispectral bands. An ERGAS value larger than 3 corresponds to fused
products of low quality, whereas an ERGAS value smaller than 3 denotes a
product of satisfactory quality or better.16 ERGAS is a notable effort to
integrate several measurements in a unique number; however, it does not
consider CC, spectral distortion, or radiometric distortion.

1.3.2 Perceived-visual-quality-based full-reference metrics

1.3.2.1 Universal image-quality index

An objective image-quality index applicable to various image-processing
applications was reported.9 This image quality metric is designed by modeling
any 2D image distortion as a combination of three factors: loss of correlation,
luminance distortion, and contrast distortion. Let v ¼ fvi j i ¼ 1, 2, . . . :,Ng
and u ¼ fui j i ¼ 1, 2, . . . :,Ng be the test image and the reference image,
respectively. The Q index is defined as

Q ¼ 4 � suv � u � v
ðs2

u þ s2
vÞðu2 þ v2Þ , ð1:30Þ

in which suv denotes the covariance between images u and v, u and v are the
means of images u and v, and s2

u and s2
v are the variances of images u and v.

The dynamic range of Q is [–1, 1]. The best value of 1 is achieved if u ¼ v, i.e.,
a test image is equal to the reference image for all pixels. The lowest value of
1 occurs when vi ¼ 2u ui for all i ¼ 1, 2, . . . , N. Equation (1.30) can be

rewritten as the product of three components:

Q ¼ suv

su � sv
� 2 � u � v
u2 þ v2

� 2 � su � sv

s2
u þ s2

v
: ð1:31Þ

The first component is the CC between the images v and u. The second
component is always less than or equal to 1 and sensitive to bias in the mean
of v with respect to u. The third component is also less than or equal to 1 and
accounts for relative changes in contrast between u and v. Relative change
means that the contrast will not change if the two contrasts su and sv are both
multiplied by the same constant. To increase the discrimination capability of
the three components of the Q metric, all statistics are calculated on suitable
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N�N image blocks, and the resulting values of Q are averaged over the whole
image to produce a global score. In this way the spatial variability of the test
image can be better accounted for.

1.3.2.2 Multispectral image-quality index

The Q index has been widely used to assess the image quality of 2D images. It
does not take into account spectral distortion when assessing the image quality
of multispectral images after pan-sharpening. To overcome this limitation, an
image-quality index designed for MS imagery that have four spectral bands
has been developed based on the Q index.17 It uses the theory of hypercomplex
numbers, or quaternions.18 This metric is referred to as Q4; it encapsulates
both spectral and radiometric distortion measurements in a unique measure-
ment, simultaneously accounting for local mean bias, changes in contrast, and
loss of correlation of individual bands, together with spectral distortion. The
Q4 index has been used to assess the pan-sharpened MS images.

Before describing the Q4 index, the fundamentals of the theory of a
quaternion are briefly reviewed. A quaternion is a hypercomplex number that is
represented in the following form:

z ¼ aþ ibþ jcþ kd, ð1:32Þ
where a, b, c, and d are real numbers, and i, j, and k are imaginary units, such
that

i2 ¼ j2 ¼ k2 ¼ ijk ¼ 1: ð1:33Þ
The noncommutative nature of a quaternion stems from the following further
relationships among the imaginary units:

jk ¼ i; kj ¼ i;

ki ¼ j; ik ¼ j;

ij ¼ k; ji ¼ k:

ð1:34Þ

Similar to complex numbers, the conjugate z* of a quaternion z is defined by

z� ¼ a ib jc kd, ð1:35Þ
and the modulus by

jzj ¼ z � z�p ¼ a2 þ b2 þ c2 þ d2
p

: ð1:36Þ
Given two quaternion random variables z1 and z2, the same as the complex
variance, quaternion variance of z1 and z2 can be defined as19

sz1 ¼ E
�ðz1 z1Þ2

	 ¼ E
�
z12
	

z12, ð1:37Þ
sz2 ¼ E

�ðz2 z2Þ2
	 ¼ E

�
z22
	

z22: ð1:38Þ
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Like complex covariance, quaternion covariance between z1 and z2 can be
defined as

sz1z2 ¼ E
�ðz1 z1Þðz2 z2Þ�

	 ¼ E
�
z1z2�

	
z1z2�, ð1:39Þ

where z1 ¼ E½z1�, z2 ¼ E½z2�, and z�2 ¼ ðz�2Þ ¼ E½z�2�. The quaternion CC
between two variables z1 and z2 can be defined as the normalized covariance:

CCðz1, z2Þ ¼ sz1z2

sz1 � sz2
: ð1:40Þ

The module of CCðz1, z2Þ is a real value and represents an extension of CC
suitable for assessing multivariable data having four components, such as
four-band multispectral images. In the case of three components (as for a
color image with three RGB bands), the real part of one quaternion can be set
equal to zero.20

For MS imagery with four spectral bands (typically acquired in the
R, G, B, and NIR wavelengths), let I(·,·,1), I(·,·,2), I(·,·,3), and I(·,·,4)
denote the four band images. Similar to the Q index, Q4 consists of
different factors accounting for the correlation, mean bias, and contrast
variation of each band image. Therefore, its low value may detect when
radiometric distortion is accompanied by spectral distortion. Both
radiometric and spectral distortions may thus be encapsulated in a
unique parameter. Let

z ¼ Ið�, �, 1Þ þ iIð�, �, 2Þ þ jIð�, �, 3Þ þ kIð�, �, 4Þ ð1:41Þ
and

zr ¼ Irð�, �, 1Þ þ iIrð�, �, 2Þ þ jIrð�, �, 3Þ þ kIrð�, �;4Þ ð1:42Þ
denote the four-band test MS imagery and its reference imagery in quaternion
variable form, respectively. The Q4 index is defined as

Q4 ¼ 4 � jszzr j � jzj � jzrj
ðs2

z þ s2
zrÞðz2 þ z2r Þ

: ð1:43Þ

The Q4 is a real value in the interval [0, 1], with 1 being the best value. It is an
extension of Q suitable for assessing multivariable data having four
components. Similar to Eq. (1.31), Eq. (1.43) can be written as the product
of three components:

Q4 ¼ jszzr j
sz � szr

� 2 � jzj � jzrj
z2 þ z2r

� 2 � sz � szr

s2
z þ s2

zr

: ð1:44Þ

The first component is the modulus of the hypercomplex CC between z and zr.
It is sensitive to both loss of correlation and spectral distortion between the
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test MS imagery and its reference. The second and third components,
respectively, measure mean bias and contrast changes on all four bands
simultaneously. Again, like Eq. (1.31), ensemble expectations are calculated
as averages on N�N image blocks. Q4 will thus depend on N as well. The Q4
index, together with the specific block size N, is denoted as Q4N. Q4N is
eventually averaged over the whole image to yield the global score index.
Alternatively, the minimum attained over the whole image can represent a
measure of local quality. The values taken for Q4 by Eq. (1.43) are invariant
to permutation [I(·,·,1), I(·,·,2), I(·,·,3), and I(·,·,4)] in both z and zr in Eqs.
(1.41) and (1.42). This happens because the order of components does not
affect the magnitude of Eq. (1.40).

1.3.2.3 Quality index for multi- or hyperspectral images

The image-quality metric Q index was developed for monoband images that
have been extended by the Q4 index. However, the Q4 index can be applied to
assess multispectral images having only four-band images. An image quality
index referred to as Q2n, suitable to assess the quality of images having an
arbitrary number of spectral bands, has been proposed.21 TheQ2n index is also
derived from the theory of hypercomplex numbers,18 particularly of 2n-ons.22

The new index consists of different factors to take into account correlation, the
mean of each spectral band, intraband local variance, and the spectral angle.
Thus, both intra- and interband (spectral) distortions are considered by a
single index Q2n. The index can be easily calculated and applied to assess the
quality of multispectral imagery with any number of spectral bands and
hyperspectral datacubes when their reference datacubes are available.

The 2n-ons can be defined recursively in terms of the 2n 1-ons. A 2n-on is a
hypercomplex number that can be represented as

z ¼ z0 þ z1i1 þ z2i2 þ . . .þ z2n 1i2n 1, ð1:45Þ
where z0, z1, z2, . . ., z2n 1 are real numbers, and i1, i2, . . ., i2n 1 are hyper-
complex unit vectors. Analogous to complex numbers, the conjugate z* is
given by

z� ¼ z0 z1i1 z2i2 . . . z2n 1i2n 1; ð1:46Þ
and the modulus by

jzj ¼ z20 þ z21 þ z22 þ . . .þ z22n 1

q
: ð1:47Þ

Given two 2n-on hypercomplex random variables z and zr, the hypercomplex
variances sz and szr , the covariance szzr between z and zr, and the correlation
coefficient CCðz, zrÞ between z and zr can be similarly defined as in Eqs.
(1.37)–(1.40).
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The Q2n index between a test datacube and its reference datacube calculated
in a block of spatial size N�N is given by

Q2nN�N ¼ jszzr j
sz � szr

� 2 � jzj � jzrj
z2 þ z2r

� 2 � sz � szr

s2
z þ s2

zr

: ð1:48Þ

Q2n is obtained by averaging the magnitudes of all Q2nN�N over the entire
spatial area of the datacube:

Q2n ¼ E½jQ2nN�N j�: ð1:49Þ
The more a Q2n value approaches unity, the higher the radiometric and
spectral quality of the fused datacube becomes. As an extension of the Q4
index, the Q2n index also produces a real value in the interval [0, 1], with 1
being the best value. Both spatial and spectral distortions are assessed by a
single Q2n index. The correlation, the mean of each spectral band, and the
intraband local variance are also taken into account for each band, as shown
in Eq. (1.48). The spectral angles between a test datacube and the reference
are also assessed by the Q2n index, which is reflected by the modulus of
hypercomplex CC of multivariate data.

1.3.2.4 Structural similarity index

Under the assumption that human visual perception is highly adapted for
extracting structural information from an image, an image-quality metric
based on the degradation of structural information has been developed. This
quality metric is referred to as the structural similarity (SSIM) index.23

The MSE between a test image and its reference image is the simplest and
most widely used distortion measure. But two test images with the same MSE
related to their referencesmay have very different types of errors, some of which
are much more visible than others. Most perceptual image-quality assessment
approaches proposed in the literature attempt to weight different aspects of the
error signal according to their visibility, as determined by psychophysical
measurements in humans or physiological measurements in animals.24 27

The SSIM index considers the structural similarity measurement between
a test image u and its reference v in three components—luminance, contrast,
and structure—and combines them to yield an overall similarity measure. The
luminance function is based on the means of the images mu and mv, and is
defined as

lðu, vÞ ¼ 2mumv þ C1

m2
u þ m2

v þ C1
, ð1:50Þ

where the constant a > 0 is included to avoid instability when m2
u þ m2

v is very
close to zero. C1 ¼ ðK1LÞ2, where L is the dynamic range of the pixels’ values
(255 for 8-bit quantization), and K1 	 1 is a small constant. Similar
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considerations also apply to contrast and structure components that are
described later.

The contrast function takes a similarity from

cðu, vÞ ¼ 2susv þ C2

s2
u þ s2

v þ C2
, ð1:51Þ

where C2 ¼ ðK2LÞ2, and K2 	 1. The structure function is defined as follows:

sðu, vÞ ¼ suv þ C3

s2
us

2
v þ C3

: ð1:52Þ

As in the luminance and contrast measures, a small constant C3 is included.
Finally, the three components of Eqs. (1.50)–(1.51) are combined to form the
structural similarity measure, the SSIM index, between a test image v and its
reference image u:

SSIM ¼ ½lðu, vÞ�a � ½cðu, vÞ�b � ½sðu, vÞ�g, ð1:53Þ
where a> 0, b> 0, and g> 0 are parameters used to adjust the relative
importance of the three components. In order to simplify the expression, it is
set to a ¼ b ¼ g ¼ 1 and C3 ¼ C2=2. This results in a specific form of the
SSIM index:

SSIMðu, vÞ ¼ ð2mumv þ C1Þð2suv þ C2Þ
ðm2

u þ m2
v þ C1Þðs2

u þ s2
v þ C2Þ : ð1:54Þ

The Q index defined in Eq. (1.31) corresponds to the special case that
C1 ¼ C2 ¼ 0, which produces unstable results when either ðm2

u þ m2
vÞ or ðs2

u þ
s2
vÞ is very close to zero.

For image quality assessment, it is useful to apply the SSIM index
locally rather than globally. This is because (1) image statistical features are
usually highly spatially nonstationary; (2) image distortions, which may or
may not depend on the local image statistics, may also be space-variant;
(3) at typical viewing distances, only a local area in the image can be
perceived with high resolution by the human observer at one time instance;
and (4) localized quality measurement can provide a spatially varying
quality map of the image, which delivers more information about the
quality degradation of the image and may be useful in some applications.
As suggested in the literature,9,23 the local statistics mu, su, and suv are
computed within a local 8 � 8 square window that moves pixel-by-pixel
over the entire image.

The overall quality measure of the entire image is obtained by averaging
the local SSIMs of the blocks, which is referred to as the mean SSIM
(MSSIM) index:

MSSIMðu, vÞ ¼ 1
M

XM
k 1

SSIMðuk, vkÞ; ð1:55Þ
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where u and v are the test and the reference images, respectively; uk and vk are
the image contents at the kth local block; and M is the number of local blocks
of the image. Depending on the application, it is also possible to compute a
weighted average of the different samples in the SSIM index map. For
example, region-of-interest (ROI) image-processing systems may give differ-
ent weights to different segmented regions in the image.

1.3.2.5 Visual information fidelity

Visual information fidelity (VIF) is an image quality metric that takes into
account the human visual system (HVS). It assesses the visual quality of a test
image in terms of the amount of image information that a human brain could
extract from the test image related to the amount of information that the
human brain could extract from the reference image. The metric is derived
from a quantification of two mutual information quantities: the mutual
information between the input and the output of the HVS channel when no
distortion channel is present (referred to as reference image information), and
the mutual information between the input of the distortion channel and the
output of the HVS channel for a test image.28

VIF is defined as the ratio of the test image information to the reference
image information:

VIF ¼
X

j�subbands
IðC!N, j;F

!
N, jjsN, jÞX

j�subbands
IðC!N, j;E

!
N, jjsN, jÞ

, ð1:56Þ

where IðC!N, j;F
!
N, j jsN, jÞ and IðC!N, j;E

!
N, jjsN, jÞ represent the information that

could be ideally extracted by the brain from a particular subband in the test
and the reference images, respectively.

IðC!N, j;E
!
N, jjsN, jÞ is called the reference image information. Intuitively,

visual quality should relate to the amount of image information that the brain
could extract from the test image relative to the amount of information that
the brain could extract from the reference image. For example, if the
information that could be extracted from the test image is 2.0 bits per pixel,
and if the information that could be extracted from the corresponding
reference image is 2.1 bits per pixel, then the brain could recover most of the
information content of the reference image from the test image. By contrast, if
the corresponding reference image information was, say, 5.0 bits per pixel,
then 3.0 bits of information have been lost to the distortion channel, and the
visual quality of the test image should be inferior.

The VIF given in Eq. (1.56) is computed for a collection of N�M wavelet
coefficients from each subband that could either represent an entire subband
of an image or a spatially localized region of subband coefficients. In the
former case, VIF is one number that quantifies the information fidelity for the
entire image, whereas in the latter case, a sliding-window approach could be
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used to compute a quality map that could visually illustrate how the visual
quality of the test image varies over space.

VIF has a number of interesting features: (1) Note that it is bounded below
by zero [such as when IðC!N ;F

!
N jsN ¼ 0Þ and IðC!N ;F

!
N jsN 6¼ 0Þ ], which

indicates that all information about the reference image has been lost in the
distortion channel. (2) When the image is not distorted at all, and VIF is
calculated between the reference image and its copy, VIF is exactly unity.
Thus, for all practical distortion types, VIF will lie in the interval [0, 1]. (3)
VIF has a distinction over traditional quality assessment methods—a linear
contrast enhancement of the reference image that does not add noise to it
will result in a VIF value larger than unity, thereby signifying that the
enhanced image has a superior visual quality than the reference image. It is a
common observation that contrast enhancement of images increases their
perceptual quality unless quantization, clipping, or display nonlinearity add
additional distortion. Contrast enhancement theoretically results in a higher
SNR at the output of the HVS neurons, thereby allowing the brain to be
better able to discriminate between objects present in the visual signal. The
VIF is able to capture this improvement in visual quality. Figure 1.1 shows
an example of an original image, its contrast-enhanced image, and its JPEG-
compressed image.

1.4 Reduced-Reference Metrics

Reduced-reference (RR) image-quality metrics are designed to measure the
image quality of test images with only partial information about the reference
images. RR methods are useful in a number of applications. For example, RR
metrics are used to measure the visual quality of hyperspectral images after
undergoing spatial-resolution enhancement. These metrics can measure the
visual quality of hyperspectral images whose FR image is not available but
where the low-spatial-resolution reference image is available. A FR metric
requires that a test image and its reference image have the same size. After
spatial-resolution enhancement of hyperspectral images, the size of the
enhanced images is larger than that of the original image. Thus, the FR metric
cannot be used. A common approach in practice is to first downsample an
original image to a low-resolution image and then to spatially enhance the
downsampled, low-resolution image using an enhancement technique. In this
way, the original image has the same size as the enhanced image, and the FR
metric can be applied to both of them. However, this common approach can
never directly assess the image quality of the spatially enhanced image that is
produced directly from the original image.

Another application involves real-time visual communication systems,
where a RR metric is used to track image quality degradations and control the
streaming resources. The system includes a feature extraction process at the
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Figure 1.1 An example of an image after linear contrast enhancement and compression:
(a) original image (VIF¼1.0), (b) contrast-enhanced image (VIF¼1.12), and (c) JPEG-
compressed image with a compression ratio of 118:1 (VIF¼0.15).
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sender side, and a feature-extraction and RR quality-analysis process at the
receiver side. The image quality at the receiver side is evaluated using the RR
metric. The extracted RR features usually have a much-lower datarate than
the image data and are typically transmitted to the receiver through an
ancillary channel.

1.4.1 Four RR metrics for spatial-resolution-enhanced images

The PSNR, Q index, MSSIM, and VIF are widely used FR metrics in image
processing, as described in Sections 1.3.2.1 and 1.3.2.2. These four FR metrics
have been selected to derive their corresponding RR metrics to assess the
image quality of a spatial-resolution-enhanced image.29 They are derived as
follows:

Let the size of the low-spatial-resolution image f be P�Q, and the size
of the corresponding spatial-resolution-enhanced image g be 2P� 2Q. This
means that the spatial resolution of image f is enhanced at a factor of 2� 2.
The following four images (downsampled at a factor of 2� 2) can be
defined as

g11 ¼ gð1 : 2 : 2P, 1 : 2 : 2QÞ, ð1:57Þ

g12 ¼ gð1 : 2 : 2P, 2 : 2 : 2QÞ, ð1:58Þ

g21 ¼ gð2 : 2 : 2P, 1 : 2 : 2QÞ, ð1:59Þ

g22 ¼ gð2 : 2 : 2P, 2 : 2 : 2QÞ, ð1:60Þ

where gði : 2 : 2P, j : 2 : 2QÞ, (i¼ 1,2; j¼ 1,2) is a matrix that starts at the
pixel (i,j) of image g and extracts every other pixel in g along both the x and
the y directions with a step of 2. Because the low-spatial-resolution image f
and the images gi; j (i,j¼ 1,2) have the same image size, any FR metrics can be
used to measure the image quality between them. The following four RR
metrics are defined:

PSNRðf ; gÞ ¼ 1
4

X2
i 1

X2
j 1

PSNRðf ; gijÞ, ð1:61Þ

Qðf ; gÞ ¼ 1
4

X2
i 1

X2
j 1

Qðf ; gijÞ, ð1:62Þ

MSSIMðf ; gÞ ¼ 1
4

X2
i 1

X2
j 1

MSSIMðf ; gijÞ, ð1:63Þ
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VIFðf ; gÞ ¼ 1
4

X2
i 1

X2
j 1

VIFðf ; gijÞ: ð1:64Þ

The previous four RR metrics are derived for a particular spatial-
resolution enhancement factor 2 � 2; it is easy to extend it to another spatial-
resolution enhancement factor M � N, where both M and N are positive
integers.

A number of experiments were conducted to demonstrate the feasibility
of the proposed RR metrics.29 Three hyperspectral datacubes were tested,
and the 2D band images of the datacubes were used to test the proposed RR
metrics. The first hyperspectral datacube was acquired using AVIRIS30 in
the Cuprite mining district of Nevada in 1997. The second hyperspectral
datacube was acquired using the airborne SWIR Full-Spectrum Imager II
(SFSI-II).31 The datacube was collected over Key Lake in northern
Saskatchewan, Canada to study the capability of imaging spectrometers in
identifying uranium mines and associated activities. The datacube was
acquired with a ground sample distance (GSD) of 3.19 m � 3.13 m. The size
of the datacube is 1090 lines by 496 pixels by 240 bands. The third
hyperspectral datacube was also collected using SFSI-II to study target
detection from SWIR hyperspectral imagery. The GSD of the datacube is
2.20 m� 1.85 m, and the size of the datacube is 140 lines by 496 pixels by
240 bands. Synthetic targets with different materials and sizes were deployed
in a mixture of sand and low-density grass cover within the scene of the
datacube.

Iterative back-projection (IBP)32,33 and bilinear interpolation were used
to enhance the spatial resolution of band images #16, #50, and #13 in
the experiments for the Cuprite, Key Lake, and Target datacubes,
respectively. In the experiments, these four FR metrics were compared to
their corresponding RR metrics. Table 1.2 lists the experimental results of
the metrics applied to the spatial-resolution-enhanced images by using IBP
and interpolation.

For the FR metrics, a test image is first downsampled at a factor of 2� 2
and then spatially enhanced at a factor of 2� 2 in order to satisfy the
requirement of the processed image having the same size as the reference
image. For the proposed RR metrics, an original test image is spatially
enhanced at a factor of 2� 2 without prior downsampling. From the table, it
can be seen that the proposed RR metrics measure the image quality of the
spatial-resolution-enhanced images very well, and they are consistent with
the corresponding FR metrics. This indicates that the proposed RR metrics
are reliable metrics for measuring the quality of the spatial-resolution-
enhanced images.
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1.4.2 RR metric using the wavelet-domain natural-image
statistic model

A RR image-quality metric has been proposed34 that is based on a natural-
image statistic model in the wavelet transform domain. A Kullback–Leibler
distance35 between the marginal probability distributions of wavelet coefficients
of a test image and its reference image is introduced as a measure of image
distortion. A generalized Gaussian model is employed to summarize the
marginal distribution of wavelet coefficients of the reference image so that only
a relatively small number of RR features are required to evaluate the quality of
a test image. This metric is easy to implement and computationally efficient.

The development of this RR metric was motivated by the fact that wavelet
transforms provide a convenient means for locally representing signals in space
and frequency simultaneously. Wavelet transforms have been widely used to
model the processing of visual systems and have become the preferred form of
representations for many image processing and computer vision algorithms. It
was demonstrated that the histogram of the wavelet transform coefficients
calculated from the horizontal subbands of an original image can be well fitted
with a generalized Gaussian density model. It has been observed that the
marginal histogram distribution of the wavelet coefficients of subbands changes
in different ways for different types of image distortions. This histogram
distribution change can be used as a clue to assess image quality.

Let q(x) and p(x) denote the probability density functions of the wavelet
coefficients in the same subband of a test image and its reference image,
respectively. Let x ¼ fx1, . . . ,xNg be a set of N randomly and independently
selected coefficients. The Kullback–Leibler distance between q(x) and p(x) are
estimated as

d̂ðpjjqÞ ¼ dðpmjjqÞ dðpmjjpÞ ð1:65Þ

Table 1.2 Experimental results of four FR and four RR metrics of the test images that are
spatially enhanced by using the IBP and interpolation methods.

Datacube Spatial
Enhancement
Method

Full-Reference Metrics Reduced-Reference Metrics

PSNR Q MSSIM VIF PSNR Q MSSIM VIF

Cuprite IBP 36.51 0.82 0.91 0.69 43.82 0.97 0.99 0.87
Interpolation 35.67 0.78 0.90 0.48 38.37 0.92 0.96 0.75

Key Lake IBP 34.87 0.75 0.89 0.77 40.11 0.96 0.98 0.87
Interpolation 32.41 0.70 0.87 0.54 34.59 0.87 0.94 0.78

Target IBP 53.33 0.78 0.99 0.77 61.67 0.97 1.00 0.98
Interpolation 53.14 0.74 0.99 0.65 56.35 0.89 1.00 0.88
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¼
Z

pmðxÞlog pðxÞqðxÞ dx, ð1:66Þ

where pmðxÞ is a two-parameter generalized Gaussian density, which can well
fit the marginal distribution of the coefficients in individual wavelet subbands
and is defined as

pmðxÞ ¼ b

2aG 1
b

�  e ðjx=ajÞb : ð1:67Þ

In Eq. (1.67), GðaÞ ¼
Z
ta 1e tdt (for a> 0) is the gamma function. This model

provides a very efficient means to summarize the wavelet coefficient
histogram of the reference image so that only two model parameters fa,bg
need to be transmitted to the receiver. The estimation error of d̂ ðpjjqÞ is

e ¼ dðpjjqÞ d̂ ðpjjqÞ
¼ dðpjjqÞ ½dðpmjjqÞ dðpmjjpÞ�
¼
Z

½ pðxÞ pmðxÞ�log pðxÞqðxÞ dx:
ð1:68Þ

This error is small when pmðxÞ and p(x) are close, which is true for typical
natural images. With the additional cost of sending one more parameter
dðpmjjpÞ, Eq. (1.66) not only gives a more-accurate estimator of dðpjjqÞ but
also provides the useful feature that when there is no distortion between the
original and received images [which implies p(x)¼ q(x) for all x], both the
distortion measure dðpjjqÞ and the estimated distortion measure d̂ðpjjqÞ are
exactly zero. The RR metric between a distorted test image and the reference
image is defined as

D ¼ log2 1þ 1
D0

XK
k 1

jd̂ kðpkjjqkÞj
" #

, ð1:69Þ

where K is the number of wavelet coefficient subbands, pk and qk are the
probability density functions of the kth subbands in the reference image and
test image, respectively, d̂ k is the estimation of the Kullback–Leibler distance
between pk and qk, and D0 is a constant used to control the scale of the
distortion measure.

The steps for calculating the D index are as follows. For the reference
image, a three-level, four-orientation, steerable pyramid wavelet transform21

is applied to the reference image to decompose the image into 12 oriented
subbands (four for each level) and a high-pass and a low-pass residual
subband. Six (two for each level) of the 12 oriented subbands are selected for
extracting the features (i.e., the reduced reference). Selection of a subset of all
the subbands reduces the datarate of RR features, as it was observed by the
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authors that selecting the other six oriented subbands or all of the 12 oriented
subbands gives similar overall performance for image quality prediction. For
each selected subband, the histogram of the wavelet coefficients is computed,
and its feature parameters fa, b, dðpmjjpÞg are then estimated using a gradient
descent algorithm to minimize the Kullback–Leibler distance between pm(x)
and p(x). This results in a total of 18 extracted scalar features for the reference
image that will be used for RR image-quality assessment.

For the test image, the same wavelet transform as the reference is first
applied to the image, and the coefficient histograms of the corresponding
subbands are computed. To evaluate dðpmjjqÞ at each subband, the subband
histogram is compared with the histogram calculated from the corresponding
RR features fa, bg about the reference image. The third RR feature,
dðpmjjpÞ, is then subtracted from this quantity [as of Eq. (1.65)] to estimate
dðpjjqÞ. Finally, the Kullback–Leibler distances evaluated at all subbands are
combined using Eq. (1.69) to produce a single distortion measure D.

1.5 No-Reference Metrics

When the reference image is unavailable, no-reference (NR) metrics are the
only choice for assessing image quality. The main philosophy of NR quality
assessment is blind distortion measurement. In NR quality assessment, an
assessment algorithm does not have access to the reference image, and only
the test image could be processed to assess its quality. From an application
perspective, NR methods are more desirable than FR methods. Unfortu-
nately, the NR quality assessment problem is largely unsolved, with limited
success achieved by restricting the scope of the algorithms to specific
distortion types, such as blocking due to block-based compression algorithms,
or blurring, etc. Only a handful of NR methods have been proposed in the
literature, and they are mostly designed for the blocking artifact in
compressed images and videos. This section describes three statistic-based
NR metrics for compressed images, a NR metric for compressed images using
JPEG, and NR metrics for pan-sharpened multispectral images.

1.5.1 Statistic-based methods

Three statistic-based NR metrics are used in data compression. They are
entropy, coding gain, and energy compaction.

1.5.1.1 Entropy

In information theory, entropy is a measure of the uncertainty in a random
variable.36 In this context, the term usually refers to the Shannon entropy,
which quantifies the expected value of the information contained in an image.
Entropy is typically measured in bits.37 Shannon entropy is the average
unpredictability in a random variable, which is equivalent to its information
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content.38 Shannon entropy provides an absolute limit on the best possible
lossless encoding or compression of any communication, assuming that the
communication may be represented as a sequence of independent and
identically distributed random variables.

Shannon’s source coding theorem shows that, in the limit, the average
length of the shortest possible representation to encode the messages in a given
alphabet is their entropy divided by the logarithm of the number of symbols in
the target alphabet. Entropy is often used to assess the effectiveness of a
lossless compression algorithm and to estimate the compressibility of an
image for lossy compression. For a lossless compression algorithm, the closer
the bitrate of the compressed image to the entropy of the original image is, the
more effective the compression algorithm. For a lossy compression algorithm,
the lower the entropy of an image is, the more compressible the image.

If outputs from a discrete source (e.g., a data series, an image, a datacube)
are independent and identically distributed with probabilities p1, p2, . . ., p(2n 1),
then the source has entropy:

H ¼
X2n 1

i 0

pi log2 pi: ð1:70Þ

If the source outputs are not independent, then the entropy depends on higher-
order probability distributions.

1.5.1.2 Energy compaction

Energy compaction is defined as the ratio of the arithmetic mean (AM) of the
variances of an image to the geometric mean (GM) of the variances of the
image:39

EC ¼
1
N

XN 1

i 0
s2
iYN 1

i 0
s2
i

q , ð1:71Þ

where s2
i is the variance of the image, and N is the total number of pixels of

the image. The AM/GM ratio is always greater than or equal to 1. When an
image has a higher AM/GM ratio, there is a higher amount of energy
compaction in the image, which is favorable for data compression.40

1.5.1.3 Coding gain

The coding gain is defined as the mean-squared reconstruction error in pulse
code modulation (PCM) coding divided by the mean-squared reconstruction
error in the transform coding T:41

CG ¼
XN 1

i 0
ðxi xPCMiÞ

2

XN 1

i 0
ðxi xTiÞ

2 , ð1:72Þ
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where xi is a pixel at location i of the original image, xPCMi is the pixel at
location i by PCM coding, and xTi is the pixel at location i after transform
coding T.

1.5.2 NR metric for compressed images using JPEG

These NR algorithms42 48 measure the blocking artifact for video signals
and compressed images using JPEG. They assume that the blocking edge
occurs every eight pixels and that the measure of blocking artifact is the
luminance-weighted norm of the pixel difference across block boundaries.
These blocking metrics measure the average gray-level slope at the block
boundary adjusted by the average gray-level slope at other locations. These
metrics measure several distortions present in an image blindly. These
distortions include global blur based on assumed Gaussian blurs of step
edges, additive white and impulse noise based on local smoothness violation,
blocking artifact based on simple block-boundary detection, and ringing
artifact based on anisotropic diffusion.44,45 These blocking-artifact metrics
also assess video and images in the frequency domain. These measures
assume that the presence of a blocky signal will introduce spikes in the PSD
function of the edge-enhanced image. The strength of these spikes quantifies
the strength of the blocking artifact.46,47

JPEG is a block-based lossy image coding technique that uses the discrete
cosine transform (DCT). It is lossy because of the quantization operation
applied to the DCT coefficients in each 8 � 8 coding block. Both blur and
blockiness can be created during quantization. The blur is mainly due to the
loss of high-frequency DCT coefficients, which smoothes the image signal
within each block. Blockiness occurs due to the discontinuity at block
boundaries, which is generated because the quantization in JPEG is block-
based, and the blocks are quantized independently.

One effective way to examine both blur and blockiness is to transform the
signal into the frequency domain. The blockiness can be easily identified by
the peaks at the several feature frequencies, and the blur is also characterized
by the energy shifting from high-frequency to low-frequency bands. A
disadvantage of the frequency domain method is the involvement of the fast
Fourier transform (FFT), which has to be calculated many times for each
image and is therefore expensive. FFT also requires more storage space
because it cannot be computed locally.

A computationally inexpensive and memory-efficient method has been
proposed to estimate the blockiness feature by calculating the difference signal
within a line horizontally and between lines vertically.48 Let uðx,yÞ denote a
test image for x�½1, Nx� and y�½1, Ny�; a difference signal along each
horizontal line of the image can be calculated as

dhðx,yÞ ¼ uðxþ 1, yÞ uðx, yÞ, x�½1,Nx 1�: ð1:73Þ
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The blockiness is estimated as the average differences across block
boundaries:

Bh ¼ 1
NyðNx=8 1Þ

XNy

j 1

XNx=8 1

i 1

jdhð8i, jÞj: ð1:74Þ

The activity image signal can be measured using two factors. The first activity
measure is the average absolute difference between in-block image samples:

Ah ¼ 1
7

8
NyðNx 1Þ

XNy

j 1

XNx 1

i 1

jdhði, jÞ Bhj
" #

: ð1:75Þ

The second activity measure is the zero-crossing (ZC) rate. The horizontal
zero-crossing rate can be estimated as

Zh ¼ 1
NyðNx 2Þ

XNy

j 1

XNx 2

i 1

zhðx, yÞ; ð1:76Þ

where

zhðx, yÞ ¼
1 horizontal ZC at dhðx,yÞ
0 otherwise:

ð1:77Þ
�

Using similar methods for the horizontal features, the vertical features
Bv, Av, and Zh can also be calculated. Finally, the overall features are given by

B ¼ Bh Bv

2
, A ¼ Ah Av

2
, Z ¼ Zh Zv

2
: ð1:78Þ

There are many different ways to combine the features to constitute a quality
assessment model. The proposed method that provides good prediction
performance is given by

S ¼ aþ bBg1Bg2Zg3, ð1:79Þ
where a,b,g1, g2, and g3 are the model parameters that need be estimated
with the subjective test image, such as mean opinion score.48 Figure 1.2 shows
the flowchart for calculating this S score.

1.5.3 NR metric for pan-sharpened multispectral image

A NR metric based on the Q index for a pan-sharpened multispectral image
has been reported.49 The Q index values between any couple of multispectral
band images are calculated before and after fusion and used to define a
measurement of spectral distortion. Similarly, Q index values between each
multispectral band image and the pan image are calculated before and after
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fusion to yield a measurement of spatial distortion. The rationale is that such
Q index values should be unchanged after fusion, that is, when the spectral
information is translated from the coarse scale of the multispectral data to the
fine scale of the pan image.

1.5.3.1 Spectral distortion index

A spectral distortion index is derived from the difference of interband Q index
values calculated from the fused multispectral band images, indicated as
fM̂ lg l ¼ 1, 2, . . . ,Nl, and from the original multispectral band images,
fMlg l ¼ 1, 2, . . . ,Nl. The terms QðM̂ i,M̂ jÞ and QðMi,MjÞ can be grouped
into two Nl �Nl matrices. The two matrices are symmetrical, and the values
on the main diagonal are all equal to 1. A spectral distortion index, referred to
as Dl, is calculated as

Dl ¼ 1
NlðNl 1Þ

XNl

i 1

XNl

j 1

i 6 j

jQðM̂ i,M̂ jÞ QðMi,MjÞj

0
BBBBBB@

1
CCCCCCA

1
p

; ð1:80Þ

with p being a positive integer exponent chosen to emphasize large spectral
differences: for p ¼ 1, all differences are equally weighted; as p increases,
larger components are given more relevance. The Dl is proportional to the p-
norm of the difference matrix, being equal to 0, if and only if the two matrices
are identical. If negative values of QðM̂ i,M̂ jÞ and QðMi,MjÞ, caused by

Figure 1.2 Flowchart for calculating NR metric S score.
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anticorrelated band images, are clipped below zero, then Dl is always lower
than or equal to one.

1.5.3.2 Spatial distortion index

A spatial distortion index is calculated as

Ds ¼ 1
Nl

XNl

i 1

jQðM̂ i,PÞ QðMi,P0Þj
 !1

q

: ð1:81Þ

In Eq. (1.81), P is the panchromatic image, and P0 is a spatially degraded
version of the panchromatic image obtained by filtering with a low-pass filter
having normalized frequency cutoff at the resolution ratio between
multispectral and panchromatic, followed by decimation. Similarly, Ds is
proportional to the q-norm of the difference vector, where q can be chosen so
as to emphasize higher difference values. The index Ds is equal to zero, when
the two vectors are identical. It is upper-bounded by one if clipping below zero
of Q values is enabled.

1.5.3.3 Jointly spectral and spatial quality index

The use of two separate indices may be not sufficient to assess the fused
images. In fact, Dl and Ds respectively measure changes in spectral behavior
occurring between the resampled original and the fused images, and
discrepancies in spatial details originated by fusion.

A single index, referred to as QNR, combines the two indices and is the
product of the complements of the spatial and spectral distortion indices. The
two exponents p and q jointly determine the nonlinearity of response in the
interval [0, 1] to achieve a better discrimination of the fusion results
compared. The QNR is defined as

QNR ¼ ð1 DlÞa � ð1 DsÞb, ð1:82Þ
where a and b are the weights for spectral and spatial distortion, respectively.
Thus, the highest value of QNR is 1 and is obtained when the spectral and
spatial distortions are both 0. The main advantage of this index is that, in spite
of the lack of a reference dataset, the global quality of a fusion product can be
assessed at the full scale of a panchromatic image.
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Chapter 2

Lossless Satellite
Data Compression

2.1 Introduction

Satellite sensors produce enormous data volumes, especially hyperspectral
sensors that acquire over hundreds of images of narrow-wavelength bands and
produce an image cube. Thus, a lot of effort has been made to study more-
efficient ways to compress satellite images or image cubes. Compression
techniques can be classified into three types:

1. Lossless compression,
2. Near-lossless compression, and
3. Lossy compression.

Lossless compression techniques are reversible techniques that compress
an image without loss of information. The reconstructed image is identical to
the original image. Because there is no loss of information, this kind of
compression technique is used for applications that cannot tolerate any
difference between the original and reconstructed data. However, a lossless
compression technique cannot achieve a high compression ratio, depending on
the redundancy of the images. The larger the redundancy is, the higher the
compression ratio that can be achieved. For optical satellite images, the lossless
compression ratio is normally less than 3:1. For an image with a very smooth
scene or extremely low spatial or spectral information in the data, a higher
compression ratio may be achieved.

A lossy compression technique compresses an image with errors. The
reconstructed image is not exactly the same as the original image. It does not
bind the difference between reconstructed pixels and the original pixels.
Instead, the reconstructed image is required to be similar to the original image
on a mean-squared error sense. High compression ratios can be achieved. The
higher the compression ratio is, the larger the compression error.

A near-lossless compression technique lies between the lossless and lossy
compression techniques. The error introduced by a near-lossless compression
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technique is bound by a predefined threshold, such as RMSE, the accuracy
of an application product. A near-lossless compression means that it is
theoretically still a lossy compression due to its irreversibility; however, the
loss of information caused by the compression is designed to have negligible
or minor impact on the derivation of the ultimate data products or
applications. Satellite data users often do not like lossy data compression
and may be willing to accept near-lossless compression by trading off the gain
and cost of the compression.

For satellite data, lossy compression is normally not recommended
because it will reduce the value of acquired data for their purpose. For this
reason, lossy data compression is not a subject of this book. Instead, this book
describes both lossless and near-lossless data compression techniques in this
and following chapters.

Lossless compression techniques can be generally classified as two
categories: prediction-based and transform-based. The former is based on
the predictive coding paradigm, whereby a current pixel is predicted from the
previous pixels, and the prediction error is then entropy coded.1,2 Lossless
compression techniques that use a lookup-table or vector-quantization
method are also categorized as prediction-based methods because both the
lookup-table and vector-quantization methods are used to generate prediction
of the data. A vector-quantization-based lossless technique is an asymmetric
compression process that is much more computationally intensive than the
decompression. For prediction-based lossless compression, band-reordering
techniques may also be applied before the prediction to improve the
compression ratio. Transform-based methods have been more successful in
lossy compression than lossless compression. This is because the transform
used for lossless compression, such as the discrete cosine transform (DCT) or
wavelet transform (WT), must be reversible or integer. This requirement may
compromise the ability of the transform to decorrelate the data to be
compressed.

Figure 2.1 shows the block diagram of a prediction-based lossless
compression process. Assume that the input is a hyperspectral datacube
Iðx, y,lÞ, where x, y, and l denote the spatial coordinates of a ground sample
in the scene of the datacube and the spectral band number, respectively. If the
input is a 2D image, then l¼ 1. The first step is the band reordering. This step

Figure 2.1 Block diagram of a prediction-based lossless compression process.
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may or may not be taken depending on the specific applications. Obviously,
for a 2D image, this step is unnecessary. The datacube after band reordering
I0ðx,y,lÞ is input to the prediction step to generate prediction values for each
pixel of the original datacube. This step can be implemented by using
conventional prediction methods, such as nearest neighbor prediction in either
the spatial or spectral domain or in both the spatial and spectral domains,
or using the lookup-table or vector-quantization method. The difference
Eðx,y,lÞ (sometimes also called the residual) between the original Iðx,y,lÞ or
I0ðx,y,lÞ and predictive value Îðx, y,lÞ is obtained and input to the entropy
encoder step for generating the compressed data or bitstreams.

Figure 2.2 presents the block diagram of a transform-based lossless
compression process. No band reordering is required in this case, even if the
input is a hyperspectral datacube. The transform function can be a single
reversible DCT, an integer WT, or a principal component analysis (PCA)
transform, or a combination of two transforms, one for spectral and another for
spatial decorrelation. The transformed coefficients Cðv,u,wÞ are decorrelated to
facilitate removal of redundancy. The coefficients are organized in a way
suitable for encoding before being sent to the entropy encoder, which generates
the compressed data.

2.2 Review of Lossless Satellite Data Compression

2.2.1 Prediction-based methods

Many prediction-based lossless techniques have been reported. In hyperspec-
tral datacubes, the interband correlation is much stronger than the intraband
correlation, which is why most predictive, lossless, hyperspectral data
compression techniques use prediction between bands for maximal compres-
sion performance. Unlike multispectral imagers, hyperspectral imagers
generate narrow spectral bands over a continuous spectral range. This results
in high correlation between the spectral band images.

A fuzzy prediction method was introduced by Aiazzi et al.3 The predictor
is switched within a predefined set based on a fuzzy logic rule. The authors
improved the prediction by using analysis of edges.4 They further developed a
classified prediction for both lossless and near-lossless compression.5 The
causal neighborhoods of each pixel are clustered using fuzzy c-means

Figure 2.2 Block diagram of a transform-based lossless compression process.
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clustering. For each of the clusters, an optimal linear predictor is computed
from the values and the membership degrees of those that exceed a threshold.
The final estimate is computed as a weighted sum of the predictors, where the
weights are the membership degrees. The spectral fuzzy matching pursuits
(SFMP) method exploits a purely spectral prediction. In their paper, a method
called spectral relaxation-labeled prediction was also proposed. The method
partitions image bands into blocks, and a predictor is selected for prediction
out of a set.

A concept of clustered-differential pulse code modulation was introduced
by Mielikainen and Toivanen.6 The spectra of a datacube are clustered into
spatially homogeneous classes. A separate linear predictor minimizing the
expected value of the squared prediction error is used inside each cluster. An
optimal predictor is computed for each cluster, used to remove the spectral
correlation and to generate the prediction error, which is coded using a range
coder. They further proposed a linear prediction model.7 The predictor is
optimized for each pixel and each band in a causal neighborhood of the
current pixel.

A prediction method based on context-adaptive lossless image coding is
reported.8 This method switches between intra- and interband prediction
modes based on the strength of the correlation between the consecutive bands.
Another multiband prediction method performs prediction using two pixels in
the previous bands in the same spatial position as the current pixel.9 The
prediction coefficients are computed using an offline procedure on training
data. An adaptive least-squares-optimized prediction technique called
spectrum-oriented least squares (SLSQ) was presented by Rizzo et al.10 The
same prediction technique as that of Mielikainen and Toivanen7 is used, but
the entropy coder is more advanced. A SLSQ-HEU uses an offline heuristic to
select between the intra- and interband compression modes. An optimal
method for inter-/intracoding mode selection called SLSQ-OPT was also
presented.

A block-based interband compressor prediction algorithm is proposed.11

Each band image of an input datacube is divided into square blocks. The
blocks are then predicted based on the corresponding block in the previous
band. A correlation-based, conditional-average prediction method is
reported.12 This method estimates the sample mean corresponding to the
current pixel in contexts that match the current pixel context. A selection is
then performed based on a correlation coefficient for contexts to decide the
use of the prediction or a lossless JPEG. A nonlinear prediction method for
hyperspectral images is also reported.13 The method predicts the pixel in the
current band image based on the information in the causal context in the
current band image and pixels co-located in the reference band image. This
method is also extended into an edge-based technique, called the edge-based
prediction for hyperspectral images, which classifies the pixels into edge and
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non-edge pixels. Each pixel is then predicted using information from pixels in
the same pixel class within the context.

The lookup-table method is one of the prediction methods.14,15 It makes a
prediction of the current pixel by searching all of the causal pixels in the
current and previous band images. It is based on the idea of a nearest-
neighbor search. The search is performed in reverse raster-scan order. The
pixel in the previous band at the same position as the pixel in the current band
is used as a predictor. The lookup tables are used to speed up the search.

Vector quantization (VQ) methods are also used to predict pixel values in
lossless compression.16 23 Ryan and Arnold identified various vector formation
techniques and investigated suitable quantization parameters for lossless data
compression using a VQ method. They proposed a mean-normalized vector
quantization technique that produced compression performances approaching
the theoretical minimum compressed image entropy of 5 bits/pixel of the
AVIRIS datacubes. Images are compressed from original image entropies of
8.28–10.89 bits/pixel to 4.83–5.90 bits/pixel.16

Mielikainen and Toivanen used a VQ method to compress AVIRIS
datacubes.17 A codebook is first trained from the datacube to be
compressed using the generalized Lloyd algorithm (GLA)18 and then is
used to compress the datacube. A reconstructed datacube is generated by
decompression right after compression and is used as the predictive
datacube. A residual datacube is obtained by subtracting the reconstructed
datacube from the original image. The difference images between the two
consecutive band images of the residual datacube are calculated and
formed. Finally, each difference image is entropy-encoded. The index and
codebook values are also separately entropy-encoded. This method
achieved a lossless compression ratio of approximately 3:1 for the test
AVIRIS datacubes.

A partitioned VQ compression method has been proposed.19 A vector
quantizer is designed that uses multiple codebooks. The spectral vectors of the
hyperspectral datacube are first partitioned into two or more subvectors of
different lengths, and then each subvector is individually encoded with an
appropriate codebook. The indices of the subvectors are encoded using
conditional entropy code.

Two VQ-based lossless compression methods for multispectral images
were reported.20,21 A VQ compression method for hyperspectral imagery
using entropy-constrained, predictive trellis-coded quantization was
proposed.22 A trellis-coded quantization is another VQ method. A
compression algorithm based on locally optimal partitioned vector
quantization was presented.23 It compresses hyperspectral images by
applying partitioned VQ to the spectral signatures and then encoding error
information with a threshold that can be varied from high-quality lossy to
near-lossless to lossless. This algorithm requires more-complex encoding.
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To overcome the complexity problem, a low-complexity algorithm
referred to as spectrum-oriented least squares is presented.24 It employs
linear prediction targeted at spectral correlation followed by entropy
coding of the prediction error.

Band reordering has also been used to obtain improved lossless
compression performance.25 27 Specifically, in band reordering, the spectral
band images of a datacube are reordered in such a way as to maximize the
correlation of adjacent band images, thus optimizing the performance of the
subsequent compression stage. The problem of optimal band ordering for
hyperspectral image compression has been solved.25 Optimal band reorder-
ing is achieved by computing a minimum spanning tree for a directed graph
containing the sizes of the encoded residual bands. A correlation-based
heuristic for estimating the optimal order was proposed by Toivanen et al.26

Another prediction method based on reordering was introduced by Zhang
and Liu.27

2.2.2 Transform-based methods

A transform-based lossless compressed technique for multispectral images
has been reported.28 It applied PCA and the integer wavelet transform to
decorrelate both spectral and spatial redundancies. This technique has been
slightly modified to get better compression results for both multispectral
and hyperspectral images.29 An integer version of the PCA is applied to
produce a set of base vectors that minimize the approximation error in the
MSE sense. Only a small number of spectra from the image are selected for
the calculation of the eigenvectors in order to reduce computational
complexity. The residual image is calculated from the available approxi-
mation image and then compressed using an integer wavelet transform,
which is a reversible integer-to-integer transform. It has been used in
lossless color and grayscale image coding and has shown good perfor-
mance.30 The integer wavelet transform is based on the lifting scheme:
different filters are derived by combining the prediction step with the update
step. The integer wavelet transform is 1D in nature. In the 2D case, the 1D
transform is applied to the rows and columns of the image. In the 3D case,
the 1D transform is applied to the spatial and spectral domains separately.
After the PCA transform, the eigenvectors are saved, and the differences
between their coefficients are entropy coded. The bands of the transformed
residual image are coded separately using different entropy coders, one
band at time.

A transform-based, lossy-to-lossless, hyperspectral image-compression
technique has been proposed by Wang et al.31 Instead of applying a
discrete wavelet transform (DWT) in the spatial domain, this technique
uses a reversible discrete cosine transform (RDCT) for spatial decorrela-
tion and a reversible-integer, low-complexity Karhunen–Loève transform
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(KLT) for spectral decorrelation. The DCT has its own special advantages,
such as low memory usage, flexibility at the block-by-block level, parallel
processing, etc. Tran et al.32 have designed pre- and postfilters to improve
the performance of the DCT and called the combination of them a time-
domain lapped transform (TDLT). The TDLT performs better than the
DWT in energy compatibility and lossy compression. However, it does not
perform well in lossless compression techniques where the reversible
transform is required. A reversible-integer TDLT is developed and used to
replace the integer WT to overcome the drawback of the TDLT. Thanks to
both the DCT and KLT being reversible, the proposed method can
compress hyperspectral images progressively from lossy to lossless in a
single, embedded codestream file.

Baizert et al.33 proposed a transform-based lossless compression
algorithm for hyperspectral data using a VQ technique and the DCT. They
demonstrated that a combination of mean-normalized vector quantization
(M-NVQ) in the spatial domain and the DCT techniques in the spectral
domain is the preferred compression system. The compression ratios produced
by such a spectral DCT together with a spatial M-NVQ coder are 1.5–2.5
times better than the compression ratios obtained by the M-NVQ technique
alone. Their work shows that, for low distortion levels, further improvements
in compression ratios can be obtained by replacing the spatial M-NVQ
technique with the 2D DCT.

A 3D compression algorithm based on integer wavelet transforms
(IWTs) and zerotree coding is presented.34 The algorithm for embedded
zerotrees of wavelet transforms (EZWs) is extended to three dimensions, and
context-based adaptive arithmetic coding is used to improve its perfor-
mance. The resultant algorithm is referred to as 3D context-based embedded
zerotrees of wavelet transforms (3D CB-EZWs). It efficiently encodes 3D
image data by exploiting dependencies in all dimensions while enabling lossy
and lossless decompression from the same bitstream. Compared with the
best available 2D lossless compression techniques at that time,35,36 the 3D
CB-EZW algorithm produced average decreases of 22%, 25%, and 20% in
compressed file sizes for computed tomography, magnetic resonance,
and AVIRIS hyperspectral images, respectively. The progressive perfor-
mance of the algorithm is also compared with other lossy progressive-coding
algorithms.

A 2D-transform-based lossy-to-lossless algorithm using the IWT was
proposed by Grangetto et al.37 They first studied methods for the selection of
the best factorization of wavelet filters within the lifting scheme framework.
Experimental results were reported for a number of filters, test images, and for
both lossless and lossy compression, showing that the obtained IWT
implementation achieved compression performance very close to the real-
valued DWT. They evaluated the effects of finite precision representation of

39Lossless Satellite Data Compression



the lifting coefficients and the partial results. Their analysis revealed that a
very small number of bits can be devoted to the mantissa with acceptable
performance degradation.

2.3 Entropy Encoders

As described in Section 2.2, it can be seen that the efforts for lossless data
compression are all focused on the development of effective predictors or
selection of powerful transform methods. All of the proposed lossless
compression techniques use three popular entropy encoders: arithmetic
coding,38 Golomb coding,39 and Golomb power-of-two coding (GPO2, also
referred to as Rice coding).40 An entropy encoder is at the final stage in the
lossless compression chain to produce the compressed bitstream. In essence,
such entropy coders assign shorter bitstream codewords to more-frequently
occurring symbols in order to maximize the compactness of the bitstream
representation.

In information theory, an entropy encoder is a lossless data compression
element that is independent of the specific characteristics of the medium. It
creates and assigns a unique prefix-free code to each unique symbol that
occurs in the input and then compresses the symbols by replacing each
fixed-length input symbol with the corresponding variable-length, prefix-
free output codeword. The length of each codeword is approximately
proportional to the negative logarithm of the probability. Therefore, the
most-common symbols use the shortest codes. This section briefly describes
these entropy encoders.

2.3.1 Adaptive arithmetic coding

Arithmetic coding (AC) is a widely used entropy encoder.38 It is a form of
variable-length entropy encoding. A string of data is normally represented
using a fixed number of bits per character. When a string is converted to
arithmetic encoding, frequently-used characters will be stored with fewer
bits, and not-so-frequently-occurring characters will be stored with more
bits, resulting in fewer bits used in total. Arithmetic coding differs from
other forms of entropy encoding, such as Huffman coding, in that rather
than separating the input into component symbols and replacing each with a
code, AC encodes the entire message in a single number, a fraction n, where
0.0 � n < 1.0.

The adaptive arithmetic coding (AAC) involves changing probability (or
frequency) tables while processing the data. The decoded data matches the
original data as long as the probability table on the decoding side is replaced
in the same way and in the same step as on the encoding side. The
synchronization is usually based on a combination of symbols that occur
during the encoding and decoding process. AAC significantly improves

40 Chapter 2



coding efficiency compared to static methods; it may be as effective as 2–3
times better in the result.

AAC encodes a stream of symbols into a bitstream with a length very
close to its theoretical minimum limit. Assume source X produces symbol i
with probability pi. The entropy of source X is defined to be

HðX Þ ¼
X
i

pi log2 pi, ð2:1Þ

where HðX Þ has units of bits per symbol (bps). One of the fundamental
tenets of information theory is that the average bitrate in bps of the most-
efficient lossless (i.e., invertible) compression of source X cannot be less
than HðX Þ. In practice, AAC often produces a bitrate quite close to
HðX Þ by estimating the probabilities of the source symbols with
frequencies of occurrence as it encodes the symbol stream. Essentially,
the better able AAC can estimate pi, the closer it will come to HðX Þ—the
lower bound on coding efficiency. The efficiency of AAC can often be
improved by conditioning the encoder with known context information
and maintaining separate symbol-probability estimates for each context.
That is, limiting attention of AAC to a specific context usually reduces
the variety of symbols, thus permitting better estimation of the
probabilities within that context and producing greater coding efficiency.
From a mathematical standpoint, the conditional entropy of source X
with known information Y is H(X|Y). Because it is well known from
information theory that

HðX jYÞ � HðX Þ, ð2:2Þ
conditioning AAC with Y as the context will (usually) produce a bitstream
with a smaller bitrate.

2.3.2 Golomb coding

Golomb coding uses a tunable parameter M to divide an input value x into
two parts: q, the quotient of a division by M; and r, the remainder. The
quotient is sent in unary coding, followed by the remainder in truncated
binary encoding.39 When M ¼ 1, Golomb coding is equivalent to unary
coding. In the case of a geometrically distributed random variable x, the
appropriately selected Golomb code minimizes the expected codeword length
over all possible lossless binary codes for x.

The two parts are given by the following expression, where x is a random
variable being encoded:

q ¼ x 1
M

, ð2:3Þ

r ¼ x qM 1: ð2:4Þ
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The final result looks like

ðq pieces of 1Þr: ð2:5Þ
It is a code string of q pieces of ‘1’ followed by q ¼ log2 M bits with

remainder r. The parameter M is a function of the corresponding Bernoulli
process, which is parameterized by p ¼ PðX ¼ 0Þ, the probability of success in
a given Bernoulli trial. M is either the median of the distribution or the
median �1. It can be determined by the following inequalities:

ð1 pÞM þ ð1 pÞMþ1 � 1 < ð1 pÞM 1 þ ð1 pÞM : ð2:6Þ
Golomb states that, for large M, there is very little penalty for picking

M ¼ round
1

log2ð1 pÞ
� �

: ð2:7Þ

The Golomb code for this distribution is equivalent to the Huffman
code for the same probabilities, if it were possible to compute the
Huffman code.

2.3.3 Exponential-Golomb coding

An exponential-Golomb (exp-Golomb) code of order k is a type of
universal code, parameterized by a non-negative integer k. To encode a
non-negative integer in an order-k exp-Golomb code, the following method
can be used:

1. Take the number in binary, except for the last k digits, and add one to it
(arithmetically). Write this down.

2. Count the bits written, subtract one, and write that number of starting
zero bits preceding the previous bit string.

3. Write the last k bits in binary. For k ¼ 0, the code begins:
0 ¼> 1 ¼> 1
1 ¼> 10 ¼> 010
2 ¼> 11 ¼> 011
3 ¼> 100 ¼> 00100
4 ¼> 101 ¼> 00101
5 ¼> 110 ¼> 00110
6 ¼> 111 ¼> 00111
7 ¼> 1000 ¼> 0001000
8 ¼> 1001 ¼> 0001001
. . .

2.3.4 Golomb power-of-two coding

Golomb power-of-two coding40 uses a subset of the family of Golomb codes
to produce a simpler but possibly suboptimal prefix code. A Golomb code has
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a tunable parameter M that can be any positive value. GPO2 codes are those
in which the tunable parameter is a power of two. This makes GPO2 codes
convenient for use on a computer because multiplication or division by two
can be implemented by shifting the bits left or right in the register of the
computer.

In a GPO2 code, M ¼ 2k, where k is a non-negative integer. The
codeword for a random integer variable x consists of bx=2kc zeroes followed
by a ‘1’ concatenated with the k least-significant bits of the binary
representation of x. This codeword is called a GPO2 code of parameter k.
An example of the GPO2 codes is shown in Fig. 2.3 when k ¼ 2, 3 for three
variables x.

In GPO2 coding, the key is how to select the parameter k that produces
the minimum bitrate for input source variables or an image. Rice encoded a
block of variables by using the best code option for the block from among
several candidate codes that consisted mostly of different GPO2 codes. The
Rice method does not specify how to find the best code option. The
minimum bitrate parameter k is selected by exhaustively trying every
optional value to pick the best one for the block. A fixed number of
additional bits are used preceding the encoded block to indicate which
optional code was selected. Information from previously coded blocks is
not utilized.

An adaptive parameter-k selection method has been proposed by
Kiely.41 The mean of the samples of a block to be encoded is utilized.
The method is based partly on a theoretical derivation of bounds on the
optimum value of k as functions of the mean sample value, as shown
in Fig. 2.4. These bounds are such that no more than three code choices
can be optimum for a given mean sample value. For a given mean value,
one of the three candidate codes is selected in a procedure that involves
only integer arithmetic and table lookups. It has been shown that
the value of k selected in this relatively simple procedure is always
within one of the optimum k values for the source, and that the cost
added by the suboptimality of the selection is never more than a half-bit
per sample.

when k = 2, 
x = 5   (binary code:     101) ==>         0  1  01 
x = 10 (binary code:   1010) ==>       00  1  10 
x = 20 (binary code: 10100) ==> 00000  1  00 

when k = 3 
x = 5   (binary code:     101) ==>       1  101 
x = 10 (binary code:   1010) ==>   0  1  010 
x = 20 (binary code: 10100) ==> 00  1  100 

Figure 2.3 An example of GPO2 codes.
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2.4 Predictors for Hyperspectral Datacubes

This section describes real-time lossless data compression of hyperspectral
datacubes using prediction followed by entropy encoding. The main effort is
to study predictors that can yield the best reduction of entropy of the
datacubes and can be easily implemented in real time. The GPO2 encoder
used by the Consultative Committee for Space Data Systems (CCSDS) is
selected as the entropy encoder. Four predictor schemes have been selected for
study. Three typical hyperspectral datacubes acquired by AVIRIS and three
datacubes acquired by CASI were used as test data. A lossless compression
system with different predictors has been simulated and tested with the test
data.42

Lossless data compression (LDC)43 is an international standard developed
by the CCSDS for onboard satellite data compression. It is a two-step
compression algorithm distinguished by the use of a predictor stage followed
by a GPO2 encoder (Rice encoder).40 This algorithm has been implemented in
a chipset called USES (universal source encoder for space), which has been
used in a number of space missions. The design of the predictor stage has been
specified in such way that it can be customized. The USES chip is equipped
with a 1D nearest-neighboring predictor (NNP). Selection of an external
predictor is not adaptive and must be chosen prior to beginning the
compression process. The residual between the original data and its predictor
is then entropy-encoded using a GPO2 encoder. This standard uses a bank of
several optional encoders, each optimized for a different entropy level; a
typical implementation uses 16 encoders. The encoders operate in parallel,
and the one that yields the fewest bits is selected and output. The output of the
GPO2 encoder has been shown to be equivalent to Huffman encoding if the
input distribution of the residual data is Laplacian. However, the throughput
is much faster than Huffman encoding, as the codebook is not required, and

Figure 2.4 Selection of optimum code parameter k in a GPO2 encoder based on the mean
of samples of a block (Source: NASA).
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the input distribution is assumed a priori. Details of the CCSDS-
recommended algorithm can be found in the green book of the standard.44

2.4.1 1D nearest-neighboring predictor

Assume that xr, c, l is the value of a pixel of a hyperspectral datacube at row r,
column c, and spectral band l, and its predictive value is x̂r, c, l. Three 1D
NNPs are studied; they are listed in Table 2.1. This study attempts to examine
the decorrelation capability offered by the built-in 1D NNP predictor of the
USES chip.

2.4.2 2D/3D predictors

Four 2D/3D predictors are selected (see Table 2.2). This study attempts to use
multidimensional predictors to examine the decorrelation capability.

2.4.3 Predictors within a focal plane image

Most hyperspectral sensors use area arrays on the focal plane of the
instrument. Each time the array is exposed, a cross-track line (one spatial
dimension) is acquired. Each ground sample within the cross-track line has an

Table 2.1 1D nearest-neighboring predictors.

ID Predictor Description

0 x̂r, c, l 0 No prediction
1 x̂r, c, l xr, c�1, l Cross track direction
2 x̂r, c, l xr�1, c, l Along track direction
3 x̂r, c, l xr, c, l�1 Spectral direction

Table 2.2 2D/3D predictors.

ID Predictor

4 x̂r, c, l
1
2 ðxr�1, c, l þ xr, c�1, lÞ

2D NNP in two spatial directions

80 x̂r, c, l
1
6 ½ð3xr�1, c, l xr�2, c, lÞ þ ð3xr, c�1, l xr, c�2, lÞ þ ð3xr, c, l�1 xr, c, l�2Þ�

3D, 2 point NNP in three directions

84 x̂r, c, l
1
2 ðxr�1, c, l þ xr, c�1, l xr�1, c, l�1 xr, c�1, l�1Þ þ xr, c, l�1

5 point 3D predictor

87 x̂r, c, l

1
9

4ðxr�1, c, l xr�1, c, l�1Þ þ 4ðxr, c�1, l xr, c�1, l�1Þ
þðxr�1, c�1, l xr�1, c�1, l�1Þ

� �
þ xr, c, l�1

7 point 3D predictor
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associated spectral profile. A frame of the 2D focal plane image is formed,
which corresponds to one row of spatial pixels in the cross-track direction
where each pixel in the row has an associated spectrum. The input to the data
compressor will typically be a serial readout of the focal plane elements.
A predictor using previous data in the focal plane image requires the least
capacity of a buffer. In this subsection, the predictors are constrained to use
data only within a focal plane image. Twelve predictors in the focal plane
image have been selected (see Table 2.3).

Predictor ID #82 is a 1D, spectral, 2-point NNP. Predictor IDs #100–104
are 2-point predictors; they use two values (points) in either one or two
dimensions of the focal plane image. The sum of the two coefficients A and B
must equal 1. To facilitate real-time operation the coefficients are limited to
values of �2�n. Three combinations of the coefficients were selected for the
study, listed in Table 2.4 as the sub-IDs (SIDs).

Predictor IDs #105–109 and ID #6 are 3-point predictors; predictor ID
#6 is called LOCO-I,45 and it is used in an international standard of
compression for still images. Each predictor has three coefficients, except for
#6, the sum of which must equal 1. The same limitation (values of �2�n) is

Table 2.3 Predictors within the focal plane image.

ID Predictor

82 2 point x̂r, c, l 2xr, c, l�1 xr, c, l�2 if slope increases or decreases,
x̂r, c, l

1
2 ðxr, c, l�1 þ xr, c, l�2Þ otherwise

100 x̂r, c, l Axr, c�1, l þ Bxr, c, l�1

101 x̂r, c, l Axr, c�1, l þ Bxr, c�2, l

102 x̂r, c, l Axr, c, l�1 þ Bxr, c, l�2

103 x̂r, c, l Axr, c�1, l þ Bxr, c�1, l�1

104 x̂r, c, l Axr, c, l�1 þ Bxr, c�1, l�1

105 3 point x̂r, c, l Axr, c, l�1 þ Bxr, c�1, l þ Cxr, c�1, l�1

106 x̂r, c, l Axr, c, l�1 þ Bxr, c, l�2 þ Cxr, c�1, l

107 x̂r, c, l Axr, c, l�1 þ Bxr, c�1, l þ Cxr, c�2, l

108 x̂r, c, l Axr, c, l�1 þ Bxr, c, l�2 þ Cxr, c�1, l�1

109 x̂r, c, l Axr, c�1, l þ Bxr, c�2, l þ Cxr, c�1, l�1

6
x̂r, c, l minðxr, c�1, l, xr, c, l�1Þ if xr, c�1, l�1 � maxðxr, c�1, l, xr, c, l�1Þ
x̂r, c, l maxðxr, c�1, l, xr, c, l�1Þ if xr, c�1, l�1 < minðxr, c�1, l, xr, c, l�1Þ
x̂r, c, l xr, c�1, l þ xr, c, l�1 xr, c�1, l�1 otherwise

Table 2.4 Coefficients of 2-point focal plane predictors.

SID A B

0 1/2 1/2
1 2 1
2 1 2
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adopted for selecting the three coefficients. Fifteen combinations of
coefficients were selected for study and are listed in Table 2.5.

2.4.4 Adaptive selection of predictor

This scheme is composed of a predictor bank with a set of N fixed predictors
and a predictor selector. The predictors in the bank are chosen from the best
ones studied in Sections 2.4.1–2.4.3. In the compression, an input
hyperspectral datacube is divided into blocks and routed through each
predictor in parallel block by block. After prediction, N parallel blocks of the
residuals obtained from the difference between the originals and their
predictions by each predictor are sent to the selector and compared based on a
predefined criterion. The block of residuals that yields the best performance is
selected as output to be fed to the USES chip. An overhead of log2N bits is
required to identify the best predictor for that block. Figure 2.5 shows the
block diagram of this scheme. Four fixed predictors (N ¼ 4) are used in the
predictor bank.

This scheme includes two parts: (1) choosing four fixed predictors to form
the predictor bank, and (2) studying the criterion for selecting the predictor
that yields the best output residuals.

Three predictor selection criteria have been proposed and studied:

1. Minimum sum
For block data X(b), where b is the block number, and its residual
produced by predictor p is Rp(b), this criterion consists of computing the

Table 2.5 Coefficients of 3-point focal plane predictors.

SID A B C SID A B C

0 1 1 1 8 1/2 1 1/2
1 1 1 1 9 1/2 1 1/2
2 1 1 1 10 1/2 1/2 1
3 1/4 1/4 1/2 11 1/2 1/2 1
4 1/4 1/2 1/4 12 1/2 1/2 2
5 1/2 1/4 1/4 13 1/2 2 1/2
6 1 1/2 1/2 14 2 1/2 1/2
7 1 1/2 1/2

P1

P2

P3

P4

Selector
X(b)

R1(b)

R2(b)

R3(b)

R4(b)
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Figure 2.5 Block diagram of the adaptive selection of a predictor.
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sum of absolute residuals of the entire block produced by each of N fixed
predictors:

Sp ¼
XL
i 1

Ri
pðbÞ

��� ��� ðp ¼ 1, 2, . . . ,NÞ, ð2:8Þ

where L is the total number of the samples in the block. The residual Rk(b)
produced by predictor k is selected as output of the block if
Sk ¼ min ðS1,S2, . . . ,SNÞ.

2. Most common
For block data X(b), a signed residual Di

pðbÞ in the block, produced by fixed
predictor p (p ¼ 1,2,. . .,N), is first mapped into unsigned data Ri

pðbÞ. This
unsigned data is then used as an address of a register to locate a
corresponding accumulator in the population array whose size is Rmax,
where Rmax is the maximum mapped unsigned value. The array needs to be
initialized at the beginning of compression. The population of all unsigned
residuals Ri

pðbÞ ði ¼ 1, 2, . . .LÞ by each fixed predictor is summed as

Pp ¼
XL
i 1

C½Ri
pðbÞ� ðp ¼ 1, 2, . . . ,NÞ, ð2:9Þ

where operator C[addr] is used to get the content (i.e., population) of
the accumulator specified by addr. The residuals Ri

kðbÞ ði ¼ 1, 2, . . . ,LÞ
produced by predictor k are selected as output of the block if
Pk ¼ max ðP1, P2, . . . ,PNÞ. Before going to the next block, each
register at address Ri

k ðbÞ ði ¼ 1, 2, . . . ,LÞ is increased by one to
accumulate its population.

3. Smallest maximum value
For block data X(b), the maximum absolute value of residuals in the block
produced by a fixed predictor p is sought:

Gp ¼ maxðjR1
pðbÞj, jR2

pðbÞj, . . . , jRL
p ðbÞjÞ ðp ¼ 1, 2, . . . ,NÞ: ð2:10Þ

The residuals Ri
kðbÞ ði ¼ 1, 2, . . . ,LÞ obtained by predictor k are selected

as the output of the block if Gk ¼ min ðG1,G2, . . . ,GNÞ.

2.4.5 Experimental results of the predictors

A total of six datacubes from two imaging spectrometers, AVIRIS and CASI,
were used as test datasets. Three of them are 1994 AVIRIS public cubes:
Cuprite94, Jasperidge, and Moffet. They have the same size (614 pixels � 512
lines � 224 bands � 16-bit). Three CASI cubes are derived from Boreal
Ecosystem–Atmosphere Study flight datasets,46 called cube1 through cube3.
Their sizes are 128 pixels � 2200 lines � 72 bands � 16-bit, 225 pixels � 2852
lines � 72 bands � 16-bit, and 250 pixels � 900 lines � 72 bands � 16-bit,
respectively.
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2.4.5.1 Compression results using fixed coefficient predictors

All of the predictors in Sections 2.4.1 and 2.4.2, and in predictor IDs #82 and
#6 in Section 2.4.3, are fixed coefficient predictors. Figure 2.6 shows the
average compression ratio over the six test datacubes using the fixed
coefficient predictors followed by two entropy encoders (bars). The variation
ranges of the compression ratios are also shown (lines). In the figure, the first-
order entropy H0ðx x̂Þ of the residual cubes (D ¼ x x̂) was calculated and
used to estimate the compressibility produced by the studied predictors:

CrHo ¼ len
H0ðx x̂Þ , ð2:11Þ

where len is the number of bits at which the original data are packed (len ¼ 16
in this study).

Two entropy encoders, GPO2 and base-bit plus overflow-bit coding
(BPOC),47 were used to encode the residual datacubes. BPOC is a simple and
effective entropy encoder developed by the author in an earlier project; it is
shown here for the purpose of comparison with the CCSDS algorithm. BPOC
is also a variable-length encoder composed of two parts: the base bits and the
overflow bits. The length of base bits Lb is the only parameter of this coding
method—it is determined by the inverse mean of the data to be encoded.
The length of overflow bits Lo is variable—it depends on the sample value to
be encoded. The length of overflow bits is Lo ¼ 0 if the value of a sample to be
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Figure 2.6 Average compression ratios of six test datacubes (bars) and their variation (lines)
using the fixed coefficient predictors followed by GPO2 and BPOC entropy encoders.
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encoded is smaller than 2Lb. Otherwise, the length of overflow bits is Lo ¼
INT[value/2Lb], where INT[.] is the operator of integer. A comma (which takes
1 bit) is required in order to distinguish the variable code in this method. If the
majority of data to be encoded can be expressed using only base bits as a
result of selection of Lb, a high encoding efficiency can be achieved. In Fig.
2.6, the BPOC for the same residual datacube always provides a slightly better
compression ratio than the GPO2 encoder.

Note that the compression ratios obtained using two entropy encoders
(shaded bars) are slightly higher than CrH0 (white bar). This probably results
from dividing the datacubes into small blocks. Both of the entropy encoders
separate the residual cubes into blocks and code them block by block. The
CrH0 is calculated based on H0ðx x̂Þ, which is obtained for an entire
residual cube.

The experimental results show that the 1D NNP in the cross-track
direction (ID #1) provides the best decorrelation of the three 1D NNP
predictors, whereas the 1D NNP in the spectral direction (ID #3) provides the
worst decorrelation. This is probably because the equivalent instrument noise
in the spectral domain is relatively strong in imaging spectrometers. The 2D
NNP in two spatial directions (ID #4) performs better than all three 1D
NNPs. The 3D, 2-point NNP in three directions (ID #80) does not perform
better than predictor ID #4, and it is much more complex than ID #4. The
predictor ID #82 is a 1D, 2-point spectral predictor that performs worse than
all three 1D NNPs. The 5-point 3D (ID #84) and 7-point 3D (ID #87)
predictors provide better decorrelation than predictor ID #4.

2.4.5.2 Compression results using variable coefficient predictors

Predictor IDs #100–109 are variable coefficient predictors. Figure 2.7 shows
the average compression ratio (bar) over the six test datacubes and its
variation (line) using predictor IDs #100–104, with three combinations of the
two coefficients followed by the GPO2 entropy encoder. The compression
results using the same predictors followed by the BPOC encoder are not
shown in the figure. They are all similar to those produced by the GPO2
encoder except that the compression ratios are slightly higher. The
experimental results show that predictor IDs #100–101 perform best when
coefficients A ¼ B ¼ 1/2 (SID #0).

Figure 2.8 shows the average compression ratios over the six test
datacubes using predictor IDs #105 through #109 followed by a GPO2
encoder. In the figure, the compression ratios of each predictor with 15
combinations (SIDs #0–14) are shown in sequence. The predictor ID
#105 performs the best of the five predictors. The average compression
ratio for the six test datacubes is 1.88 when coefficients A ¼ B ¼ 1 and C ¼
1 (SID #0), and is 1.82 when coefficients A ¼ 1/2, B ¼ 1, and C ¼ 1/2

(SID #8).
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2.4.5.3 Compression results using adaptive selection of predictor

Two predictor banks were constructed to examine the performance of the
scheme by choosing the best predictors studied in Sections 2.4.1–2.4.3. They
are listed in Tables 2.6 and 2.7.
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Figure 2.7 Average compression ratios of six test datacubes (bars) and their
variation (lines) using predictor IDs #100–104, with three SIDs followed by a GPO2
encoder.
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There are four preselected predictors in predictor bank #1. Block sizes of
1, 4, 8, 12, 16, 24, 32, and 48 are tested. The residual data was encoded using
the GPO2 encoder. Experimental results show that the compression ratios are
very close when block sizes are between 8 and 24; the three predictor selection
criteria discussed in Section 2.4.4 were used, and the criterion minimum sum
yielded the best compression ratio. The average ratio reaches 2.23 when block
size L ¼ 12. The frequency of occurrence of each preselected predictor was
also analyzed. The selection frequency of predictor 1 is over 36% when block
sizes are between 8 and 24. With the same range of block sizes, the selection
frequency of predictors 3 and 4 are around 24%, while the selection frequency
of predictor 3 is 15%.

There are two preselected predictors in predictor bank #2. They are
predictors 1 and 4 of the predictor bank #1, the two most-frequently selected
predictors. Experimental results show that the predictor selection criterion—
smallest maximum—provided the same compression ratios as those provided
by the minimum sum criterion. The average compression ratio reached is 2.11
when block size L ¼ 12. Though the overhead for recording the preset
predictors in bank #2 is reduced by a factor of two, its decorrelation is slightly
poorer than predictor bank #1.

In summary, a total of 99 predictors (including nine fixed coefficient
predictors, five two-variable coefficient predictors with three coefficient
combinations, and five three-variable coefficient predictors with 15
coefficient combinations) are examined and tested in Section 2.4. Three
predictor selection criteria are proposed and tested. The residual data is
encoded using the GPO2 and BPOC encoders.

Table 2.7 Predictor bank #2.

Predictor 1 x̂r, c, l xr, c, l�1 þ xr, c�1, l xr, c�1, l�1 ðID 105; SID #0Þ
Predictor 2 x̂r, c, l

1
2 ðxr, c, l�1 xr, c�1, l�1Þ þ xr, c�1, l ðID 105; SID #8Þ

Table 2.6 Predictor bank #1.

Predictor 1 x̂r, c, l xr, c, l�1 þ xr, c�1, l xr, c�1, l�1 ðID #105;SID #0Þ

Predictor 2

x̂r, c, l minðxr, c�1, l, xr, c, l�1Þ if xr, c�1, l�1 � maxðxr, c�1, l, xr, c, l�1Þ

x̂r, c, l maxðxr, c�1, l, xr, c, l�1Þ if xr, c�1, l�1 < minðxr, c�1, l, xr, c, l�1Þ
x̂r, c, l xr, c�1, l þ xr, c, l�1 xr, c�1, l�1 otherwise ðID #6Þ

Predictor 3 x̂r, c, l
1
2 ðxr, c�1, l þ xr, c�2, lÞ ðID #101; SID #0Þ

Predictor 4 x̂r, c, l
1
2 ðxr, c, l�1 xr, c�1, l�1Þ þ xr, c�1, l ðID #105; SID #8Þ
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2.5 Lookup-Table-Based Prediction Methods

2.5.1 Single-lookup-table prediction

Assuming a current pixel Iðx, y,lÞ at the xth column, yth row, and lth band
image of a datacube, make a prediction for the current pixel using all of the
causal pixels in the current and previous band images. The procedure searches
for the nearest-neighbor pixels in the previous band image ðl 1Þ that have
the same pixel value as the pixel Iðx,y,l 1Þ, which is located in the same
spatial position as the current pixel but in the previous band. The search is
performed in reverse raster-scan order. This kind of search is referred to as a
NN search. Each pixel in the previous band image ðl 1Þ is searched to check
if a pixel with value equal to Iðx,y,l 1Þ exists. If an equal-valued pixel
Iðx0, y0,l 1Þ is found, then Iðx, y,lÞ is predicted to have the same value as
the pixel in the same position as the found pixel in the current band Iðx0, y0,lÞ.
Otherwise, the predicted pixel value Iðx, y,lÞ is equal to the value of the pixel
in the previous band Iðx, y,l 1Þ. The predictive value of the current pixel
can be defined as

Î ðx, y,lÞ ¼ Iðx0, y0,lÞ if Iðx0, y0,l 1Þ ¼ Iðx,y,l 1Þ
Iðx,y,l 1Þ otherwise:

ð2:12Þ
�

A lookup-table (LUT) data structure is adopted to accelerate the NN
method by replacing time-consuming search procedures with a LUT operation,
which uses the pixel co-located in the previous band as an index in the LUT. The
nearest matching pixel is obtained by indexing the LUT. Its computational
complexity is much less than theNN search. First, for each band image l, a LUT
Ll is initialized so that the ith value of the LUT of band image l is Ll, i ¼ i, i 2
½ 216, 216 1� for 16-bit data. Next, for all of the pixels in the scanning order,
prediction, and update steps are performed. The pixel Iðx, y,l 1Þ co-located in
the previous band to the current pixel Iðx, y,lÞ is used as an index to the LUT.
The prediction step predicts the current pixel’s value to be the Iðx,y,l 1Þth
value in the current band’s LUT Ll, Iðx, y, l 1Þ. After prediction, the LUT is
updated as follows:Ll, Iðx, y, l 1Þ ¼ Iðx, y,lÞ. The use of the LUT corresponds to
performing a search in the previous band in the reverse scanning order and
making a prediction using causal pixels in the current band. Therefore, the NN
method and the LUT method are identical in terms of predicted values. The
residual values are obtained by subtracting the prediction values from the
original values and encoded using an entropy encoder.14

An example illustrating the LUT search process is shown in Fig. 2.9,
consisting of two consecutive band images l 1 and l, each of which has 3� 7
pixels and the lookup table Ll of band image l. In the example, pixel Ið7, 3,lÞ ¼
225 is the current pixel to be predicted. The causal pixels in the previous band are
searched to find matches for the co-located pixel Ið7, 3,l 1Þ ¼ 215. Two
matched pixels Ið3, 2,l 1Þ and Ið5, 2,l 1Þ are found and returned. The
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location x0 ¼ 5, y0 ¼ 2 of the matched pixel that is nearest to the co-located
pixel is used to locate the predictive pixel in the current band. Based on Eq.
(2.12), the predictive value for the current pixel is obtained: Î ðx,y,lÞ ¼
Iðx0,y0,lÞ ¼ Ið5, 2,lÞ ¼ 232. A time-consuming search is avoided because the
LUT directly returns the predictive value for the current pixel at index 215.

2.5.2 Locally averaged, interband-scaling LUT prediction

In the LUT method, the nearest matching pixel value Iðx0, y0,lÞmight not be
the closest to the current pixel. In the example shown in Fig. 2.9, the pixel in
the current band corresponding to another matching pixel Ið3, 2,lÞ ¼ 227 is
closer to the current pixel value 225 than the nearest matching pixel value
232. This type of behavior of the LUT method motivated the development of
the locally averaged, interband-scaling lookup table (LAIS-LUT) method,15

which uses a predictor to guide the selection between two LUTs. The LAIS-
LUT method works by first computing a LAIS estimate by scaling pixels
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Figure 2.9 An example illustrating the lookup table search process for prediction of the
current pixel Iðx, y,lÞ.
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co-located in the previous band. The LAIS scaling factor is an average of ratios
between three neighboring causal pixels in the current and previous bands:

a ¼ 1
3

Iðx 1, y,lÞ
Iðx 1, y,l 1Þ þ

Iðx, y 1,lÞ
Iðx,y 1,l 1Þ þ

Iðx 1, y 1,lÞ
Iðx 1,y 1,l 1Þ

� �
: ð2:13Þ

The factor a is multiplied by the co-located pixel Iðx, y,l 1Þ to get an
estimate for the current pixel:

Î ðx,y,lÞ ¼ aIðx, y,l 1Þ: ð2:14Þ
LAIS-LUT prediction uses two LUTs that are similar to the one used

in Fig. 2.9. The second LUT is updated with the previous entries of the
first LUT. The predictive value returned by the LUT that is the closest
one to the LAIS estimate is chosen as the predictor for the current pixel.
If the LUTs return no match, then the LAIS estimate is used as the
estimated pixel value. Figure 2.10 illustrates the LAIS-LUT search
process. The LAIS estimates for the two matching pixels in the LUT
example are shown in Fig. 2.9. Recall that the current pixel is
Ið7, 3,lÞ ¼ 225, and the causal pixels in the previous band are searched
to find matches for the co-located pixel Ið7, 3,l 1Þ ¼ 215. The two
matching pixels are Ið3, 2,lÞ ¼ 227 and Ið5, 2,lÞ ¼ 232 (highlighted with
asterisks in Fig. 2.9). The LAIS estimate values for the two matching
pixels are 222 and 216, respectively. The LAIS estimate 222 is closer to
the matching pixel Ið3, 2,lÞ ¼ 227, which is placed in the second LUT.
Therefore, the pixel value from the second LUT is used as the predictor
for the current pixel Î ðx, y,lÞ ¼ Iðx00

, y
00
,lÞ ¼ Ið3, 2,lÞ ¼ 227. LAIS-LUT

prediction provides more-accurate predictive values than the LUT
prediction method.
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LAIS-LUT 

Pixel 
Value

LAIS 
Estimate

Pixel 
Position 

(x, y)

227 

232 

222 

216 

(3,2) 

(5,2) 

Index
1st 

LUT

214 

215 

216 

217 

218 

2nd
LUT

228 

232 

235 

233 

228 

224 

227 

235 

225 

228 

Figure 2.10 LAIS estimation and the two lookup tables in the LAIS-LUT search process for
predicting the current pixel Iðx, y,lÞ.
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2.5.3 Quantized-index LUT prediction

The co-located pixel in the previous band Iðx, y,l 1Þ is quantized with a
predefined factor (e.g., 10) before it is used as an index for the LUTs. The
quantized indices reduce the size of the LUTs significantly.48 Except for a
changed LAIS approach and an additional quantization step, the locally
averaged, interband-scaling quantized-index lookup table (LAIS-QLUT) is
the same algorithm as the LAIS-LUT, as discussed in Section 2.5.2.

Instead of using Eq. (2.13), a slightly simpler LAIS method from the
work49 is used:

a ¼ Iðx 1, y,lÞ þ Iðx, y 1,lÞ þ Iðx 1,y 1,lÞ
Iðx 1, y,l 1Þ þ Iðx, y 1,l 1Þ þ Iðx 1, y 1,l 1Þ : ð2:15Þ

There are two separate variants of the LAIS-QLUT method. The first
variant is called LAIS-QLUT-OPT, which selects the optimal uniform
quantization factor for each band image. An exhaustive search of all
possible quantization values is performed to find the optimal quantization
factor for each band image. The quantization factor selection is based on
which quantization factor achieves the best compression efficiency for that
specific band. The excessive time complexity of the LAIS-QLUT-OPT
method can be decreased slightly by computing entropy of the residual
image instead of actually encoding residuals for the determination of the
optimal quantization factor.

The second variant is called LAIS-QLUT-HEU; it uses constant
quantization factors that are selected using a heuristic. The heuristic selects
the constant quantization factors to be the band-wise mean values of the
optimal quantization factors of a datacube. A division operation required by
the quantization represents the only increase in the time complexity of the
LAIS-QLUT-HEU method compared to the LAIS-LUT version.

2.5.4 Multiband LUT prediction

The LUT and LAIS-LUT methods have been generalized to a multiband and
multi-LUT method.50 In the extended method, the prediction of the current
band relies on N previous bands. LUTs are defined based on each of the
previous bands, and each band contains M LUTs. There are thus N � M
different predictors from which to choose. The decision among one of the
possible prediction values is based on the closeness of the values contained in
the LUTs to a reference prediction.

Two different types of purely spectral, multiband prediction estimates
were proposed. These LUT-based compression methods based on spectral
relaxation-labeled prediction (S-RLP) and spectral fuzzy-matching pursuits
(S-FMP) are referred to as S-RLP-LUT and S-FMP-LUT, respectively.
One of the reference predictors is crisp, and the other one is fuzzy. The first
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method is spectral relaxation labeled prediction.5 The method partitions
image bands into blocks. A predictor out of a set of predictors is selected for
prediction. In the S-FMP method, pixels are given degrees of membership
to predictors. The membership function of a pixel to a predictor is inversely
related to the average prediction error produced by that predictor in a
causal neighborhood of that pixel. The causal neighborhoods of each pixel
are clustered using fuzzy c-means clustering. Each predictor is then
recalculated based on the membership of pixels to it. The procedure is
analogous to relaxation labeling, in which the labeling is not crisp but
fuzzy. The final sets of refined predictors, one per wavelength, are
transmitted as side information.

2.6 Vector-Quantization-Based Prediction Methods

An ultraspectral sounder produces 3D datacubes, two of which are spatial
dimensions corresponding to scan lines and cross-track footprints within
each scan line. The third dimension corresponds to thousands of infrared
components (often referred to as channels) of each footprint. The
ultraspectral sounder data is generated using a Michelson interferometer
or a grating spectrometer for retrieving atmospheric temperature, moisture
and trace gases profiles, surface temperature and emissivity, as well as cloud
and aerosol optical properties. Due to the high volume of the ultraspectral
sounder data and the sensitivity of the compression error to downstream
data processing, lossless compression is highly desirable. A fast precomputed
vector quantization (FPVQ) scheme is proposed to compress ultraspectral
sounder data.51

This method first converts the ultraspectral sounder data into Gaussian-
distribution, predictive residual data using linear prediction and then groups
the predictive residual error data based on their bit-lengths. Vector
quantization with a set of precomputed, 2k-dimensional, normalized Gaussian
codebooks of size-2m codewords is then performed, and bit allocation for all
subgroups is performed via a new bit-allocation scheme that reaches an optimal
solution under the constraint of a given total bitrate. The precomputed-
codebook FPVQ method eliminates the time for online codebook generation,
and the precomputed codebooks do not need to be sent to the decoder as side
information.

The FPVQ method includes five steps.

2.6.1 Linear prediction

This step reduces the data variance and makes the data close to the Gaussian
distribution. Linear prediction employs a set of neighboring pixels to predict
the current pixel. For ultraspectral sounder data, the spectral correlation is
generally much stronger than the spatial correlation.52 It makes sense to

57Lossless Satellite Data Compression



predict the value at a spectral channel as a linear combination of neighboring
channels. The problem can be formulated as

X̂i ¼
XNl

k 1

ck X̂i k or X̂i ¼ XlC, ð2:16Þ

where X̂i is the vector with Nl elements of the current channel representing a
2D spatial frame, Xl the matrix consisting of Nl neighboring channels, and
C is the vector of the prediction coefficients. The prediction coefficients are
obtained from

X̂i ¼ C ¼ ðXT
lXlÞpiðXT

l X̂iÞ, ð2:17Þ
where the superscript pi represents the pseudo-inverse that is robust against
the case of the matrix being ill-conditioned. The prediction error vector (or
residual) is the difference between the original channel vector and the
predicted vector.

2.6.2 Grouping based on bit-length

The channels that have the same bit-length of prediction error are assigned to
the same group. Given nd bit-lengths, the channels are grouped such that

nc ¼
Xnd
i 1

ni, ð2:18Þ

where ni is the number of channels in the ith group. The precomputed VQ
codebooks are applied to each group independently.

2.6.3 Vector quantization with precomputed codebooks

Precomputed codebooks are generated to avoid online codebook training.
After linear prediction, the prediction error of each channel is close to a
Gaussian distribution with a different standard deviation. The codebooks of
size-2m codewords for 2k-dimensional, normalized Gaussian distributions are
precomputed using the Linde–Buzo–Gray (LBG) algorithm. It is known that
any number of channels ni in the ith group can be represented as a linear
combination of 2k, as follows:

ni ¼
Xlog2ni
k 0

di, k2
k
,di, k ¼ 0 or 1: ð2:19Þ

All of the 2k channels with di, k ¼ 1 form a subgroup within the ith bit-
length group. The total number of the subpartitions is

ns ¼
Xnd
i 1

ni, b, ð2:20Þ
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where ni, b is the number of subgroups within the ith bit-length group. The
codebook is the precomputed, normalized Gaussian codebook that is scaled
by the standard deviation spectrum of the datacube.

2.6.4 Optimal bit allocation

The number of bits for representing the quantization residuals within each
subgroup depends on the dimension of the subgroup and the codebook size.
An improved bit-allocation scheme is proposed that guarantees an optimal
solution under the constraint. It formulates the problem to minimize the
expected total number of bits for the quantization errors in the ith partition
and jth subpartitions and for the quantization indices. The proposed bit-
allocation scheme consists of nine steps. The first six steps are for marginal
analysis. The idea of the marginal analysis of the bit-allocation scheme is
similar to the algorithms developed by Riskin53 (with convexity assumption)
and those Cuperman54 developed for lossy compression. Steps 7–9 compare
neighboring bit allocations along the hyperplane of the constraint to reach a
local minimum of the cost function. The proposed scheme is much faster in
the sense that it only needs to update the margin for the subgroup that gives
the minimum margin for both convex and nonconvex cases. The difference
between the proposed scheme and those by Riskin and Cuperman is that the
proposed scheme allows comparison of neighboring bit allocations along the
hyperplane of the constraint to reach a local minimum of the cost function.

2.6.5 Entropy coding

Arithmetic coding38 is selected as an entropy encoder. After the VQ stage, a
context-based adaptive arithmetic coder is used to encode the data
quantization indices and quantization errors.

The proposed FPVQ-based lossless compression method has been applied
to 3D ultraspectral sounder data acquired by the Atmospheric Infrared
Sounder (AIRS) instrument.55 Ten granules were tested—each granule
contains a 2D spatial image consisting of 135 scan lines by 90 cross-track
footprints per scan line. Each footprint corresponds to a spectrum of 2,378
infrared channels within a wavelength range of 3.74–15.4 mm. Thirty-two
predictors are used in linear prediction. The distributions of prediction
residuals appear close to Gaussian and indicate that they are well
decorrelated. The compression ratio produced by the FPVQ method for test
AIRS ultraspectral granules is 3.2:1 ~ 3.4:1. The compression ratios produced
by JPEG2000 and by linear prediction followed by entropy encoding of the
residuals without the VQ method are 2.2:1 ~ 2.5:1 and 2.8:1 ~ 3.2:1,
respectively. The compression ratio produced by the FPVQ method is
approximately 1.4 times higher than that of JPEG2000 and 1.08 times higher
than that of linear prediction without the VQ method.51
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2.7 Band Reordering

In the prediction-based lossless compression of hyperspectral datacubes, band
reordering has also been proposed to obtain improved performance. This
process organizes the spectral bands of a datacube to be compressed in such a
way as to maximize the correlation of adjacent bands to optimize the
performance of the prediction step.

Band reordering is motivated by the fact that the previous band may
not necessarily be the most-correlated (or similar) band to the current
band for prediction, which is a necessary element. The most-correlated
band can only be found among the bands that have already been
encoded.

In order to describe how similar bands l and i are, and hence the
quality of the prediction of band i using band l, a similarity metric sl,i
needs to be defined. Tate25 used this metric, and a number of bits are
needed to encode band i from band l. In Toivanen et al.,26 sl,i is used as the
correlation coefficient between band l and band i; sl,i is also used as the
correlation coefficient in Zhang and Liu,27 but band grouping is
introduced to limit the complexity.

In the prediction-based lossless compression method, band reordering
is an option that a user may or may not use without affecting the
algorithm design and implementation. It has been reported that not all
datacubes to be compressed benefit from band reordering.56 In some cases
the gain is reasonable, while in other cases it is negligible. It is up to the
user to decide whether the effort in calculating an optimal reordering is
worth the performance gain.

For optimal band reordering, a specific ordering has to be computed
and used for each datacube. This increases the computational complexity.
To reduce this computational complexity, a different approach to band
reordering is proposed.56 In this approach, a reasonably “good” band
reordering is computed on the ground based on selected typical sample
data, and then the LUT of the “good” band ordering is uploaded to the
satellite for use in the compression of all datacubes. The reason being that
the optimal ordering arguably depends on both the sensor and the scene,
with the former potentially dominating the ordering. If the contribution of
the scene to the optimal ordering is small, then a per-sensor ordering
would be almost as good as the optimal per-image ordering. The authors
have shown that this is indeed the case. Thus, this approach achieves the
benefit of improving the performance by using a good optimal reordering
without adding complexity to the algorithm, as all computations needed to
reorder bands have been performed on the ground using sample data to
generate the LUT.
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2.8 Transform-Based Lossless Compression
Using the KLT and DCT

A combination of the KLT and DCT is adopted to implement a lossy-to-
lossless hyperspectral image compression.31 A reversible KLT is utilized for
spectral decorrelation. For spatial decorrelation, instead of applying a DWT,
a reversible DCT is used.

The KLT (sometimes referred to as principal components analysis) is an
optimal orthogonal transform for compacting the energy of a vector or image
into its first n components. The transform matrix is obtained by calculating
the eigenvectors of the covariance of the input vector or image. It has been
widely used in image processing. The studies on reversible KLTs for spectral
decorrelation have been reported. Hao and Shi57 proposed a reversible integer
KLT, and the late Galli and Salzo58 have improved it.

The DCT is widely used in image and video compression, such as JPEG,
MPEG, and H.26X formats. It has its own unique advantages, such as low
memory usage, flexibility at the block-by-block level, parallel processing, etc.
However, a key problem of DCT-based coding is the so-called “block effect”
at low bitrates due to the encoder processing each block independently. In
order to reduce the block effect of the DCT compression, some de-blocking
methods based on filtering have been proposed in which some low-pass filters
are applied to the boundary pixels. However, filtering-based methods usually
blur image content. Tran et al.32 have designed pre- and postfilters to improve
the performance of the DCT, calling the combination of the filters a time-
domain lapped transform (TDLT), which performs better than the DWT in
energy compatibility and lossy compression. However, it does not perform
well in lossless compression, where the reversible transform is required. Wang
et al.31 introduced a reversible TDLT using an integer operation to replace the
integer wavelet transform.

In order to reduce the high computational complexity, the low-complexity
KLT proposed by Penna is used.59 In the proposed low-complexity KLT, all
of the processing is not carried out on the complete set of spectral vectors but
rather on a randomly selected subset of vectors. The complexity of calculating
the covariance matrix becomes O(rB2MN) rather than O(B2MN), i.e., it
is reduced by a factor r (r ¼ 0.01, for example). The performance of the
low-complexity KLT is very similar to the conventional KLT, but
the computational complexity is reduced significantly. To further reduce the
computational complexity the evaluation of the covariance matrix is
simplified by subsampling the input vectors at a rate of 100:1.

In terms of the matrix factorization theory,60 a nonsingular matrix can be
factorized into a product of at most three triangular elementary reversible
matrices (TERMs). If the diagonal elements of the matrices are equal to 1, the
reversible integer-to-integer transform can be achieved by multilifting. In this
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way, these integer-to-integer DCT and KLT are implemented using multi-
lifting based on matrix factorization.

The forward DCT is defined as follows:

CðkÞ ¼ :k
2
N

r XN 1

n 0

xðnÞcos ð2nþ 1Þ pk
2N

� �
, ð2:21Þ

for k ¼ 0, 1,. . ., N 1, where :k ¼ 1= 2
p

if k ¼ 0, and :k ¼ 1 otherwise.
In the conventional DCT compression algorithms, an image is normally

divided into blocks of 8 � 8 pixels. Blocking artifacts occur because each
block is compressed independently. To overcome the blocking defects, eight-
point pre- and postfilters are used for the eight-point DCT. Prefiltering acts as
a flattening operation on two adjacent blocks. The pixels in a block are more
homogeneous after prefiltering as a result of better energy concentration.
Before transforming, the filtered DCT matrices are factorized into TERMs.
An integer-to-integer DCT transform is achieved with measures for reducing
blocking artifacts.

The reversible-integer KLT and DCT are implemented in the same way.
The integer transform can be achieved by shifting and adding without a
multiplier when the floating-point lifting coefficients are replaced by fractions
whose dominators are powers of two. For example, calculating 75/256 ¼ 1/4 þ
1/32 þ 1/64 þ 1/256 can be converted to the operation of 1/4, 1/32, 1/64, and 1/
256, which can be implemented by bit-shifting. Experimental results show that
the multilifting-based filter approximates the floating-point filter very well.

A lossless compression algorithm that combines the reversible time-
domain lapped transform (RTDLT) and reversible KLT has been proposed.31

This algorithm uses the RTDLT to decorrelate spatial redundancy and the
KLT to decorrelate spectral redundancy. Three AVIRIS datacubes were
tested using three algorithms—RTDLT/KLT, 3D SPECK,61 and JPEG2000
multicomponent (JPEG2000-MC)62—in order to assess the decorrelation
capability of the combined reversible KLT and RTDLT transform algorithm
against the other transform-based methods. The two transforms compared are
the asymmetric 3D-5/3DWT and 2D-5/3DWT used in an early work.61 The
RTDLT/KLT algorithm outperforms the asymmetric 3D-5/3DWT with a
7.4–8.6% better compression ratio,31 comparable to the 2D-5/3DWT þ
reversible-KLT. The RTDLT/KLT algorithm outperforms the JPEG2000-
MC with a 9.3–10.8% better compression ratio. However, the RTDLT/KLT
algorithm underperforms the M-CALIC algorithm,9 which is a prediction-
based lossless compression, with a 4.2–12.2% worse compression ratio.

2.9 Wavelet-Transform-Based Methods

Wavelet transforms are used as a means to repackage the energy of an
image or datacube for better encoding in that low-frequency components
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normally contain the majority of signal energy and are thus more
important than high-frequency components during reconstruction. Wavelet
transforms not only provide excellent repackaging of information in terms
of frequency but also retain much of the spatial and spectral structure of
the original image.

2.9.1 Wavelet decomposition structure

For a 2D image, the wavelet transform decomposes the image into horizontal
subband H, vertical subband V, diagonal subband D, and baseband B images
using the low-pass filter (LPF) and high-pass filter (HPF) in the filter bank.
The size of the subband image is one-fourth of the original image. Multiple
stages of decomposition can be cascaded together by recursively decomposing
the baseband image. The subband images are usually arranged in a pyramidal
form, as illustrated in Fig. 2.11.

For hyperspectral datacubes, a 3D wavelet transform is implemented by
applying the 1D transform separately, i.e., a 1D transform in the spatial-row,
spatial-column, and spectral-band directions. The addition of a third
dimension permits several options for the order of decomposition. For
example, one level of decomposition of the datacube can be performed along
each direction, followed by further decomposition of the low-pass subband,
leading to a dyadic decomposition (illustrated in Fig. 2.12). This dyadic
decomposition structure is the most-straightforward 3D generalization of the
2D dyadic decomposition of Fig. 2.11(a).

An alternative 3D wavelet transform referred to as a wavelet-packet
transform is also used. In this transform, each spectral band image of
the datacube is first decomposed using a 2D transform, followed by a
1D decomposition in the spectral direction. With this approach, an
m-level spatial decomposition followed by an n-level spectral decompo-
sition is achieved, where it is possible for m 6¼ n. For example, the
wavelet-packet transform depicted in Fig. 2.12(b) uses a three-level
decomposition (m ¼ n ¼ 3) in all directions. Comparing the two
decomposition structures, the wavelet-packet transform is more flexible
because the spectral decomposition can be better tailored to the data than
in the dyadic transform. Thus, this wavelet-packet decomposition
typically yields more-efficient coding for hyperspectral datacubes than
the dyadic decomposition does.

2.9.2 Lossy-to-lossless compression: 3D set-partitioning
embedded block

A 3D set-partitioning embedded block (3D-SPECK)63 has been proposed by
modifying and extending the 2D-SPECK. The 3D-SPECK algorithm uses
either the integer wavelet transform or floating-point wavelet transform. The
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integer wavelet transform enables lossless decompression from the same
bitstream. Wavelet-packet structure and coefficient scaling are used to make
the integer filter transform approximately unitary.

For a hyperspectral datacube that has been transformed using either
an integer or floating-point wavelet transform, the transformed subband
images form a hierarchical pyramidal structure, as shown in Fig. 2.12(a),
with the topmost level being the root. The finest pixels lie at the bottom
level of the pyramid, whereas the coarsest pixels lie at the top (root) level.
A wavelet subband image is represented by an indexed set of transformed

Figure 2.11 2D wavelet transform decomposition: (a) one-level decomposition with a
low-pass filter and a high-pass filter applied to the columns and rows independently;
(b) pyramid-form arrangement of subband images after three-level, 2D wavelet transform
decomposition.
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coefficients fci, j, kg, located at pixel position ði, j,kÞ in the transformed
subband image.

The coefficients are grouped together in sets that comprise regions in the
transformed subband images. The 3D-SPECK has only one type of set S that
is significant with respect to n if

maxði, j, kÞ2Sjci, j, kj � 2n, ð2:22Þ
where ci, j, k denotes the transformed coefficients at coordinate ði, j,kÞ,
otherwise it is insignificant. The significance function of a set S is defined as

Figure 2.12 3D wavelet transform decomposition: (a) three-level dyadic wavelet
transform decompositions; (b) 3D wavelet packet transform with m ¼ 3 spatial decom-
positions and n ¼ 3 spectral decompositions.
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GnðSÞ ¼ 1 if 2nþ1 > maxði, j, kÞ2Sjci, j, kj � 2n

0 otherwise:
ð2:23Þ

(

In the 3D-SPECK, each subband image in the pyramidal structure is
taken as a codeblock and referred to as set S, whose dimensions vary. The
dimension of a set S depends on the dimension of the original images and the
subband level of the pyramidal structure at which the set lies. The size of set
S is the number of elements in the set. There are two lists of the sets in the
3D-SPECK:

1. A list of insignificant sets (LIS), which contains S sets of varying sizes;
and

2. A list of significant pixels (LSP), which contains pixels that have been
found significant with respect to the threshold n.

The 3D-SPECK consists of four steps: (1) initialization, (2) sorting pass,
(3) refinement pass, and (4) quantization. The initialization step set the initial
values for output n ¼ log2maxjci, j, kj, LSP ¼ 0, and LIS ¼ {all subbands of
transformed images of wavelet coefficients}. In the sorting pass step, the 3D-
SPECK processes a set S to test its significance with respect to the threshold n.
If not significant, it stays in the LIS. Otherwise, it is partitioned into eight
approximately equal subsets O(S). The 3D-SPECK then treats each of these
subsets as a new S set and tests its significance. This process continues
recursively until it reaches the pixel level where the significant pixel in the
original set S is located. The algorithm then sends the significant pixel to the
LSP, outputs a bit 1 to indicate the significance of the pixel, and outputs
another bit to represent the sign of the pixel. In the refinement pass step, the
algorithm outputs the nth-most-significant bit of the absolute value of each
entry (i, j, k) in the LSP, except for those included in the just-completed
sorting pass. The procedure refines significant pixels that were found during
previous passes progressively. The last step is to decrease n by 1 and return to
the sorting pass of the current LIS, making the whole process run recursively.

The adaptive arithmetic coding algorithm is used to encode the
significance map. The significance test result of the first subset is encoded
without any context, and the significance test result of the second subset is
encoded by using the context of the first coded subset, and so on.

2.9.3 Lossy-to-lossless compression: 3D embedded
zeroblock coding

A wavelet-transform-based, lossy-to-lossless compression algorithm for
hyperspectral images has been proposed.65 This algorithm modifies the
motion-compensated 3D embedded zeroblock coding (MC 3D-EZBC)66 that
was developed for video coding by removing its motion-compensation part,
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and it replaces the DWT with a reversible 3D integer wavelet-packet
transform to achieve lossy-to-lossless compression.

Zeroblock coding is based on the set partitioning in hierarchal trees
(SPIHT) technique.67 The adaptive quadtree splitting method68 is used to
separate the significant and insignificant (i.e., zero) coefficients and then
encode a block of zero pixels into one symbol. In this method, a quadtree
representation of WT coefficients is first established for individual subband
images. The bottom level of a quadtree consists of the wavelet coefficients.
A single node at the top level of a quadtree (the root node) corresponds to
the maximum amplitude of all of the WT coefficients. To start with, the
root is the only insignificant node to process. Each quadtree node is split into
four insignificant descendent nodes of the next-lowest level once it is
confirmed as insignificant with respect to the threshold of the current bit-
plane coding pass. The same splitting process is recursively applied to the
individual descendent nodes until the bottom level of the quadtree is reached.
In this way, high-energy areas and regions of all-zero coefficients are
compactly represented.

Both the 3D-EZBC and 3D-SPECK methods use quadtree splitting; the
main difference between the two algorithms is that the former utilizes a
context-modeling scheme to efficiently encode the quadtree structure. With
the context models built separately for the individual lists, statistical
characteristics of the individual quadtree and subband images at different
levels can be more-accurately modeled. Another difference between them is
that the lists in the EZBC are all separately established for quadtree and
subband images at different levels. Therefore, all nodes in a list come from the
same quadtree level and subband image. Another advantage of the 3D EZBC
is that it can be applied to resolution-scalable coding applications once a
proper bitstream parsing method is set up.

The coding procedure of the 3D-EZBC includes three steps: (1) a 3D
integer wavelet-packet transform; (2) quadtree-based, set-partitioning zero-
block coding; and (3) context-based, adaptive arithmetic coding. The 3D-
EZBC was implemented by decomposing a hyperspectral datacube using a
wavelet-package transform (WPT) with a 5/3 integer wavelet filter. A four-
level spatial WPT and a four-level spectral WPT, as shown in Fig. 2.12(b),
were applied.

The implemented algorithm was tested using four AVIRIS hyperspectral
datasets (publically available at NASA’s website):69 Lunar Lake, Jasper
Ridge, Low-Altitude, and Cuprite. For each of the four datasets, only scene 1
was tested. The testing datacubes were a subset with a size of 256 pixels � 256
pixels � 224 bands extracted from the original datacubes. Figure 2.13
displays the lossless compression ratios produced by the 3D-EZBC and other
WT-based algorithms, including the JPEG2000-MC,62 3D-SPECK,63 3D set
partitioning in hierarchical trees (3D-SPIHT),64 and asymmetric tree
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3D-SPIHT (AT-3D SPIHT).70 The JPEG2000-MC tested here also used a
four-level spatial WPT and a four-level spectral WPT. It can be seen from the
figure that the JPEG2000-MC produces the shortest bitrates compared to the
four WT-based, 3D lossless compression algorithms for the testing AVIRIS
datasets. The 3D-EZBC is the second best, and the 3D-SPIHT is the worst.

Just like the KLTþDCT-transform-based, lossless compression algorithms
mentioned in Section 2.8, the WT-based, lossless compression algorithms
underperform the prediction-based lossless compression algorithms.
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Chapter 3

International Standards for
Spacecraft Data Compression

3.1 CCSDS and Three Data Compression Standards

Three international data-compression standards designed for data acquired by
satellites or spacecraft have been developed by the Data Compression
Working Group (DCWG) within the Consultative Committee for Space Data
Systems (CCSDS).1 (The author of this book is a member of the working
group and participates in the development of the standards.) CCSDS is an
international organization formed in 1982 by the major space agencies of the
world for the development of communications and data systems standards for
spaceflight. It is a subcommittee of the International Organization of
Standards (ISO) and currently consists of 11 member agencies, 28 observer
agencies, and over 100 industrial associates from 26 nations. The committee
meets periodically to address spacecraft-data-system problems that are
common to all participants and to formulate sound technical solutions to
these problems. Since its establishment, it has developed recommended
standards for space data and information systems to

1. Reduce the cost to the various agencies of performing common data
functions by eliminating unjustified project-unique design and develop-
ment, and

2. Promote interoperability and cross-support among cooperating space
agencies to reduce operational costs by sharing facilities.

CCSDS has developed and published 53 recommended standards
for space data and information systems (Blue Books), which have been
issued as international standards by the ISO. The CCSDS-developed
standards define specific interfaces, technical capabilities, or protocols, or
provide prescriptive and/or normative definitions of interfaces, protocols, or
other controlling standards such as encoding approaches. More than 600
space missions have used these standards.
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Although JPEG and JPEG2000 exist as the international standards for
image compression, they are not designed for compressing data and images
acquired by satellites or spacecraft. The compression algorithms recom-
mended by CCSDS are intended to be suitable for use aboard spacecraft. In
particular, the complexity of the algorithms is designed to be sufficiently low
to make high-speed hardware implementation feasible. The algorithms
permit memory-efficient implementation that does not require large
intermediate frames for buffering. In addition, the CCSDS standards are
intended to limit the effects of data loss that can occur on the
communications downlinking channel. Consequently, the compression
algorithms are appropriate for frame-based image formats (two dimensions
acquired simultaneously) produced, for example, by CCD arrays (called
image frames) as well as strip-based input formats (i.e., images acquired one
line at a time).

The three CCSDS data-compression standards include the following:

1. Lossless data compression: CCSDS 121.0-B2 (ISO-15887:20003,4) for
lossless compression of 1D science data,

2. Image data compression: CCSDS 122.0-B5 (ISO-26868:20096) for lossy-
to-lossless image compression,7 and

3. Lossless multispectral and hyperspectral image compression: CCSDS
123.0-B8 (ISO-18381:20139) for lossless multispectral/hyperspectral image
compression.

3.2 Lossless Data Compression Standard

The CCSDS Lossless Data Compression (LDC) standard (CCSDS-121) has
lower computational complexity. It consists of two functional parts: the
preprocessor and the adaptive entropy coder, as shown in Fig. 3.1.

3.2.1 Preprocessor

The preprocessor transforms the data into samples that can be more efficiently
compressed by the adaptive entropy encoder. It transforms the original data in
such a way that shorter codewords occur with higher probability than longer

Figure 3.1 Flowchart of the CCSDS LDC coder (source: CCSDS).
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codewords. To ensure that compression is lossless, the preprocessor must be
reversible. A preprocessor that removes correlation between samples in the
input data block will generally improve the performance of the entropy coder.
In CCSDS-121, the preprocessing is done by a predictor followed by a
prediction error mapper. For some types of data, more-sophisticated
transform-based techniques can offer improved compression efficiency at
the expense of higher complexity.

A preprocessor contains two functions, prediction and mapping, as shown
in Fig. 3.2. The inputs to the compressor are x ¼ x1,x2, . . . , xJ , which is a
block of J-size samples with n-bit word-length.

In CCSDS-121, users are allowed to select any prediction scheme that best
decorrelates the input datastream. Assuming an image with intensity values
x(i, j), where i represents the scan line, and j the pixel number within the scan,
a possible predictor can be one of the following:

• 1D first-order predictor:
The predicted intensity value x̂i might be equal to the previous samples
on the same scan line x(i, j 1) or the neighboring sample value from a
previous scan line x(i 1, j) The unit-delay predictor is an example of a
1D first-order predictor. Figure 3.3 shows the preprocessor with a unit-
delay predictor.

• 2D second-order predictor:
The predicted intensity value x̂i might be the average of the adjacent
samples x(i, j 1) and x(i 1, j).

Figure 3.2 Preprocessor of the CCSDS-121 LDC coder (source: CCSDS).

Figure 3.3 Preprocessor of the CCSDS-121 with a unit delay predictor (source: CCSDS).
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• 2D third-order predictor:
The predicted intensity value x̂i might be equal to a weighted combination
of three neighboring values of x(i, j 1), x(i 1, j), and x(i 1, j 1).

A reference sample is an unaltered data sample upon which successive
predictions are based. Reference samples are required in the decoder side in
order to recover the original values from difference values. The user must
determine how often to insert references. When required, the reference must
be the first sample of a block of J input data samples.

The preprocessor subtracts the predicted value x̂i from the current data
value xi. The resultant (n þ 1)-bit prediction error Di is then mapped to an n-
bit integer value di based on the predicted value x̂i:

di ¼
2Di 0 � Di � ui

2jDij 1 ui � Di < 0

ui þ jDij otherwise,

ð3:1Þ

8><
>:

where

ui ¼ minð̂xi xmin, xmax x̂iÞ; ð3:2Þ
for a signed n-bit signal value,

xmin ¼ 2n 1, xmax ¼ 2n 1 1; ð3:3Þ
and for a non-negative n-bit signal value,

xmin ¼ 0, xmax ¼ 2n 1: ð3:4Þ
When a predictor is properly chosen, the prediction error tends to be small.
The unit-delay prediction technique is adopted in this standard.

3.2.2 Adaptive entropy encoder

The function of the adaptive entropy encoder (shown in Fig. 3.4) is to
calculate variable-length codewords corresponding to each block of samples
input from the preprocessor. It converts preprocessed samples d into an
encoded bit sequence y. The code selected is a variable-length code that
utilizes Rice’s algorithm.10,11

3.2.2.1 Variable-length coding

The Rice algorithm uses a set of variable-length codes to achieve
compression. Each code is nearly optimal for a particular geometrically
distributed source. Variable-length codes, such as Huffman codes and the
codes used by the Rice algorithm, compress data by assigning shorter
codewords to symbols that are expected to occur with higher frequency. By
using several different codes and transmitting the code identifier, the Rice
algorithm can adapt to many source datasets with an entropy value ranging
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from low (more compressible) to high (less compressible). Because blocks of
source samples are encoded independently, side information does not need
to be carried across data packet boundaries, and the performance of the
algorithm is independent of packet size.

The adaptive entropy coder consists of a collection of variable-length
codes that can be applied to each block of J-size preprocessed samples. For
each block, the coding option that achieves the best compression is selected
to encode the block. The encoded block is preceded by an identifier (ID) bit
pattern that identifies the coding option to the decoder. Because a new code
option can be selected for each block, the Rice algorithm can adapt to
changing source statistics. Thus, shorter values of the block-length
parameter J allow faster adaptation to changing source statistics. However,
the fraction of encoded bits used to indicate the coding option (the
“overhead” associated with code option identification) decreases for larger
values of J.

The first issue of the CCSDS-121 standard allowed J to take values
{8, 16}. In practice, larger block sizes often offer improved overall
compression effectiveness because of reduced overhead. Motivated by this
fact—especially when the standard is used as the entropy coding option
for multispectral or hyperspectral image compression as specified in
Ref. [8]—issue 2 of the CCSDS-121 standard expands the allowed values
of J to {8, 16, 32, 64}.

Figure 3.4 Block diagram of the adaptive entropy coder (source: CCSDS).
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3.2.2.2 Coding options

In an adaptive entropy coder, several coding options are concurrently
applied to a block of J-size samples. The option that yields the shortest
encoded length for the current block of data is selected for transmission. An
ID bit sequence is attached to the code block to indicate to the decoder
which decoding option to use.

k split-sample options

As shown in Fig. 3.4, there are k þ 4 code options in the adaptive entropy
coder, where the k code options called “split-sample options” are the
majority. The kth split-sample option splits off the k least-significant bits of
each sample in a block of J-size samples and encodes the remaining higher-
order bits with a simple fundamental sequence (FS) codeword before
appending the split bits to the encoded FS datastream. Each split-sample
option is designed to produce compressed data with a range of about 1 bit/
sample (approximately kþ 1.5 to kþ 2.5 bits/sample); the code option
yielding the fewest encoded bits is chosen for the block by the option-select
logic. This option-selection process ensures that the block will be coded
with the best available code option on the same block of data, but this does
not necessarily imply that the source entropy lies in that range. The actual
source entropy value could be lower; the source statistics and the
effectiveness of the preprocessing stage determine how closely entropy can
be approached.

Zeroblock option

The zeroblock option and second extension option are the two low-
entropy code options. They are particularly efficient when the prepro-
cessed samples are of very small values. The zeroblock option is a special
case. This option is selected when one or more consecutive blocks of size-J
samples are all zeros. In this case, the number of zeroblocks nzero block is
encoded by an FS codeword whose bit length is equal to nzero block or
nzero block þ 1 if nzero block > 4.

Second-extension option

The second-extension option is designed to produce compressed datarates in a
range of 0.5 bits/sample to 1.5 bits/sample. When this option is selected, the
encoder first pairs consecutive blocks of J-size samples and then transforms
the paired samples into a new value that is coded with an FS codeword. The
FS codeword for g is transmitted, where:

g ¼ ðdi þ diþ1Þðdi þ diþ1 þ 1Þ
2

þ diþ1: ð3:5Þ
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Fundamental sequence code option

The fundamental sequence code is a variable-length code. In the adaptive
entropy coder, a FS codeword is defined so that each ‘1’ digit signals the end
of a codeword, and the number of preceding zeros identifies which symbol
was transmitted. This simple decoding procedure allows a FS codeword to be
decoded without the use of lookup tables. For example, FS codewords ‘1,’
‘01,’ ‘001,’ and ‘0001’ are used to code symbol s1, s2, s3, and s4.

The reason that the FS codes can achieve compression is that when
symbol s1 occurs very frequently, and when symbols s3 and s4 are very rare, on
average fewer than two encoded bits per symbol will be transmitted, whereas
an uncoded symbol always requires two bits per symbol. Longer FS codes
achieve compression in a similar manner.

No-compression option

When none of the previous options provides any data compression on a block,
the no-compression option is selected. Under this option, the preprocessed
block of data is transmitted without alteration except for a prefixed identifier.

3.2.2.3 Coded dataset format

The coded dataset (CDS) format has the following structure:

• When a split-sample option is selected, the ID bit sequence is optionally
followed by an n-bit reference sample, compressed data, and
concatenated k least-significant bits from each sample.

• When the zeroblock option is selected, the CDS contains the option ID
field, optionally followed by an n-bit reference sample and a required FS
codeword specifying the number of concatenated zero-valued blocks or
the remainder of the segment condition.

• When the second-extension option is selected, the CDS contains the
option ID field, optionally followed by an n-bit reference sample and the
required FS codewords for J/2 transformed samples.

• When the FS option is selected, the CDS contains the option ID field,
optionally followed by an n-bit reference sample and required FS
codewords.

• When the no-compression option is selected, the CDS is fixed-length
and contains the option ID field, optionally followed by an n-bit
reference sample and J preprocessed samples di.

3.2.3 Performance evaluation

The CCSDS-121 LDC algorithm is designed to compress 1D data in lossless
mode. It can also be used to compress any dimensional data. However, it does
not benefit from the correlation contained in 2D or 3D data when it is applied
to compress high-dimensional data.
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A compression study has been carried out to evaluate the performance of
the standard.12 Datasets from eight different scientific imaging and nonimaging
instruments were tested. The following are the dimensions of the datasets and
the instruments that acquire them:

• 1D: Goddard High-Resolution Spectrometer
• 1D: Acousto-Optical Spectrometer
• 1D: Gamma-Ray Spectrometer
• 2D: Landsat Thematic Mapper
• 2D: Heat-Capacity-Mapping Radiometer
• 2D: Wide-Field Planetary Camera
• 2D: Soft X-Ray Solar Telescope
• 3D: Hyperspectral Imager

The compression ratio (CR) is used to evaluate the performance; it is the
ratio of the number of bits per sample before compression to the encoded
datarate:

CR ¼ nJ
average CDS length in bits

, ð3:6Þ

where n is the number of bits per sample, and J is the block size. Table 3.1
summarizes the test datasets and the compression ratios.

3.2.3.1 1D data: Goddard High-Resolution Spectrometer

The Goddard High-Resolution Spectrometer (GHRS) is on the Hubble Space
Telescope (HST). Its primary scientific objective is to investigate the
interstellar medium, stellar winds, evolution, and extragalactic sources. It
generates a 1D spectrum in the UV range with 512 data values and 16-bit
dynamic range.

Two different prediction schemes are applied: the first uses the previous
sample within the same spectrum, and the second uses the previous spectrum

Table 3.1 Summary of lossless compression results of the CCSDS-121 algorithm on
imaging and nonimaging data.

Data
Dimension

Platform Instrument that Acquired
the Dataset

Compression
Ratio

1D Hubble Space Telescope GoddardHigh Resolution Spectrometer 1.72
1D Submillimeter Wave Astronomy Satellite Acousto Optical Spectrometer 2.3
1D Mars Observer Gamma Ray Spectrometer 5 � 26
2D Landsat 4 Thematic Mapper 1.83
2D Heat Capacity Mapping Heat Capacity Mapping Radiometer 2.19
2D Hubble Space Telescope Wide Field Planetary Camera 2.97
2D Solar A Soft X Ray Solar Telescope 4.69
3D Small Satellite Technology Infusion Hyperspectral Imager 2.6
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in the same category. For two tested spectra, the achieved CR is 1.64 and 1.65
when the previous sample within the same spectrum is used as the prediction
value. When spectrum 1 is used as prediction, the CR of spectrum 2 is 1.72.

3.2.3.2 1D data: Acousto-Optical Spectrometer

The Acousto-Optical Spectrometer (AOS) is on the Submillimeter-Wave
Astronomy Satellite (SWAS), the objective of which is to study the energy
balance and physical conditions of the molecular clouds in the galaxy by
observing the radio-wave spectrum specific to certain molecules. The AOS
utilizes a Bragg cell to convert the RF energy from the SWAS submillimeter-
wave receiver into an acoustic wave, which then diffracts a laser beam onto a
1D CCD array. The sensor has 1,450 elements with a 16-bit readout. Because
of limited available onboard memory, a CR greater than 2 is required for this
mission.

Three prediction schemes are studied: the previous sample, the previous
spectrum, and the higher-order multispectral. The results show that even with
the similarity in trace spectra, a predictor using an adjacent trace spectrum in
a direct manner does not improve the compression performance (CR ¼ 1.61)
because of the uneven background offset. The multispectral predictor mode is
effective in dealing with spatially registered, multiple data sources with
background offsets; it achieved a CR of 2.32.

3.2.3.3 1D data: Gamma-Ray Spectrometer

The purpose of the Gamma-Ray Spectrometer (GRS) on the Mars Observer
was to collect data through several instruments to help scientists understand
the Martian surface, atmospheric properties, and interactions between the
various elements involved. The GRS uses a high-purity germanium detector
for gamma rays. The flight spectrum is collected over 16,000 channels, each
corresponding to a gamma-ray energy range. The total energy range of a
spectrum extends from 0.2–10 MeV. These spectra show the random nature of
the counts; some are actually zero over several bits. The spectral-count
dynamic range is 8 bits.

Two different coding schemes are used: one-layer and two-layer. The one-
layer scheme applies the LDC algorithm directly to the spectrum. The block
size J is set to 16, and the entropy-coding mode is selected to bypass the
predictor and the mapping function. With this scheme, a CR greater than 20 is
achieved for the 5-second spectrum. As gamma-ray collection time increases,
the achievable compression decreases.

In the two-layer scheme, two passes are used to compress the data. The
first pass finds the channel numbers that have valid counts and generates the
run length of channels between them. Meanwhile, a count file is created that
holds only the valid counts as data in the file. In the second pass, both the
channel run-length file and the count file are compressed using the LDC
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algorithm at a block size of 16 using the unit-delay prediction mode. The CRs
of both schemes vary from 5 to 26.

3.2.3.4 2D image: Landsat Thematic Mapper

An image acquired by the Thematic Mapper (TM) aboard Landsat-4 at band 1
(0.45–0.52 mm) with a 30-m ground resolution has been tested. This 8-bit 512 �
512 image was taken over Sierra Nevada in California and has relatively
high information over the mountainous area (shown in Fig. 3.5). In the test, a
1D unit-delay predictor in the horizontal direction was used. Block size was
set to 16 samples, and one reference was inserted per image line. A CR of 1.83
is achieved for this 8-bit image.

3.2.3.5 2D image: Heat-Capacity-Mapping Radiometer

The Heat-Capacity-Mapping Radiometer (HCMR) is a solid-state photode-
tector sensitive in either the visible or infrared region. A typical image of 8 bits
taken in the visible region with a ground resolution of 500 m over the
Chesapeake Bay area was tested. With a 1D unit-delay predictor in the
horizontal direction and a block size of 16 samples, the CR achieved is 2.19.
When a 2D predictor takes the average of the previous sample and the sample
on the previous scan line, and keeps other parameters the same, the CR is
2.28, or about a 5% increase over a 1D predictor.

Figure 3.5 Landsat-4 TM image (band 1) over Sierra Nevada, California (source: NASA).
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3.2.3.6 2D image: Wide-Field Planetary Camera

The Wide-Field Planetary Camera (WFPC) is another payload aboard the
HST. The camera uses four 2D CCD arrays. The test star-field image has
the maximum value of a 12-bit resolution, which includes background
noise of 9 bits. The test image has a minimum quantized value of 423. The
size of the image is 800 � 800. The compression was performed using a
block size of 16 and a unit-delay predictor in the horizontal line direction.
The CR is 2.97.

3.2.3.7 2D image: Soft X-Ray Solar Telescope

The Soft X-Ray Telescope (SXT) is dedicated to the study of solar flares,
especially of high-energy phenomena observed in the x-ray and gamma-ray
ranges. It is a grazing-incidence reflecting telescope for the detection of
x-rays in the wavelength range of 3–60 Å. It uses a 1024 � 1024 2D CCD
detector array to cover the whole solar disk. A unit-delay predictor is
applied to the high-contrast image. A CR of 4.69 is achieved, which means
that only 3.2 bits are needed per pixel to provide the full precision of the
15-bit image.

3.2.3.8 3D image: hyperspectral imagery

The hyperspectral datacube tested was simulated from Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) data for the Small Satellite
Technology Infusion (SSTI) mission. The objective of SSTI was to transition
to new technologies for future missions to gain significant, measurable
performance benefits.

The simulated datacube is used by two hyperspectral instruments to
collect spectral–spatial information in the wavelength range from 0.4–2.5 mm:
the visible–near-infrared (VNIR) imager and the short-wave-infrared (SWIR)
imager. These imagers provide a 256-pixel spatial line with 128 spectral bands
from the VNIR region and 256 spectral bands from the SWIR region. Both
the VNIR and SWIR outputs are quantized to 12-bit data, and the GSD is 30 m.
The SSTI also has a panchromatic imager that provides a 5-m ground
resolution at 8-bit output. This CCD is a linear array of 2,592 elements. The
study applied the LDC algorithm only to the hyperspectral VNIR and SWIR
datacubes, which are sets of 256 � 256 spatial pixels, each with 384 spectral
bands (see Fig. 3.6).

Compression was applied to either the VNIR or SWIR datacubes
separately but in the same manner, that is, along the spatial direction in
a spatial–spectral plane (shown in Fig. 3.6). An average compression
ratio of 2.6 was obtained over both VNIR and SWIR data. If
multispectral prediction is applied between the spectral lines, the CR is
increased to 3.44.
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3.3 Image Data Compression Standard

3.3.1 Features of the standard

The CCSDS-122 Image Data Compression (IDC) standard defines a partic-
ular algorithm for compression of 2D images with 16-bit integers generated by
many types of imaging instruments. The algorithm is intended to be suitable
for use aboard spacecraft; in particular, the algorithm complexity is designed
to be sufficiently low to make high-speed hardware implementation feasible.
In addition, the algorithm permits a memory-efficient implementation that
does not require large intermediate frames for buffering. Consequently, the
ICD is appropriate for frame-based image formats (two dimensions acquired
simultaneously) produced, for example, by CCD arrays as well as strip-based
input formats (i.e., images acquired one line at a time) produced by push-
broom-type sensors.

The IDC algorithm can provide both lossy and lossless compression. Under
lossless compression, the original image data can be reproduced exactly, while
under lossy compression, quantization and/or other approximations used in
the compression process result in the inability to reproduce the original dataset.
The lossless compression normally achieves a lower compression ratio
compared to the lossy version for a given source image.

A discrete wavelet transform (DWT) is adopted in the standard to
transform the original data to the wavelet domain to facilitate compression.
The IDC algorithm supports two choices of DWT: an integer and a floating-
point DWT. The integer DWT requires only integer arithmetic and thus is
capable of providing lossless compression; it has lower implementation
complexity. The floating-point DWT provides improved lossy compression
effectiveness at low bitrates, but it requires floating-point calculations and
cannot provide lossless compression.

In order to enhance resilience to bit errors of the compressed data and
thus prevent data loss that may occur in the transmission downlink channel,

Figure 3.6 A hyperspectral datacube of size 256 lines � 256 pixels � 384 bands.
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the wavelet-transformed subband data is partitioned into segments, each
loosely corresponding to a different region of the image. Each segment is
compressed independently so that the effects of data loss or corruption are
limited to the affected segment. This wavelet-subband data partitioning also
has the benefit of reducing the memory required for some implementations.
The size of a segment can be adjusted to trade the degree of data protection
versus compression effectiveness. Smaller segments provide increased protec-
tion against data loss, but they tend to reduce the overall compression ratio.

Each segment begins with a segment header that provides information
about compression options and compressed data within the segment. The
encoded segments do not include synchronization markers or other schemes
intended to facilitate the automatic identification of segment boundaries.
Users of the IDC algorithm must employ a suitable CCSDS packetization
scheme13 or other means of identifying segment boundaries.

Within each compressed segment, data is arranged so that earlier portions
of the compressed data in the segment tend to make a larger contribution in
the overall reconstructed fidelity than later portions. This embedded data
structure allows a user to meet a constraint on the compressed-segment data
volume by truncating the compressed bitstream for a segment at the
appropriate point.

The trade-off between the reconstructed image quality and the compres-
sion ratio for each segment is controlled by specifying the maximum number
of bytes in each segment along with a quality limit. The quality limit
constrains the number of wavelet-transformed coefficients to be encoded in
each segment. For each segment, compressed data is produced until the byte
limit or quality limit is reached, whichever comes first. Lossless compression is
achieved when the integer DWT is used and when the number of bytes
required for losslessly encoding each segment does not exceed the segment
byte limit.

The CCSDS IDC standard differs from JPEG200014 in several respects:

1. It specifically targets use aboard spacecraft;
2. A careful trade-off has been performed between compression performance

and complexity;
3. Being less complex, it can be more-easily implemented in either hardware

or software; and
4. It has a limited set of options, supporting its successful application

without in-depth algorithm knowledge.

3.3.2 IDC compressor

The CCSDS IDC algorithm consists of two functional parts, depicted in Fig. 3.7:
a DWT module that performs the DWT decomposition of image data and a
bit-plane encoder (BPE) that encodes the transformed data. The standard
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supports two choices of DWT, an integer and a floating-point DWT. The integer
DWT requires only integer arithmetic and is capable of providing lossless
compression.

The DWT performs three levels of 2D wavelet decomposition that
produce 10 coefficient subband images, as illustrated in Fig. 3.8:

• LH1, HH1, and HL1 after first-level WT decomposition on the entire
input image;

• LH2, HH2, and HL2 after second-level WT decomposition on the LL1

subband image;

Figure 3.7 Block diagram of the CCSDS IDC standard.

Figure 3.8 Three-level, 2D WT decomposition of an image and schematic of a transformed
image with the 64 shaded pixels that consist of a single block: (a) the WT subband images
and (b) a single block with 64 WT coefficients (source: CCSDS). For a color version of this
figure, see Plate 1 in the color plate section of this book.
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• LH3, HH3, and HL3 after third-level WT decomposition on the LL2

subband image; and
• LL3, the third-level low-low-pass subband image (detailed subband
image).

After the WT coefficients have been computed and placed in the buffer,
the BPE stage begins encoding the WT coefficients. The BPE processes
wavelet coefficients in groups of 64 coefficients, referred to as blocks. A block
consists of a single coefficient from the lowest spatial frequency subband
image, referred to as the DC coefficient (i.e., coefficients in subband image
LL3, as shown in Fig. 3.8), and 63 AC coefficients located in three-level
subband images, as illustrated in Fig. 3.8. A block loosely corresponds to a
localized region in the original image. Blocks are processed by the BPE in
raster-scan order, i.e., rows of blocks are processed from top to bottom,
proceeding from left to right horizontally within a row.

A segment is defined as a group of S consecutive blocks. Each segment
loosely corresponds to a different region of the original image. Coding of
DWT coefficients proceeds segment-by-segment, and each segment is coded
independently of the others. The size of each segment (value of S) can change.

Partitioning DWT coefficients into segments has the advantage of limiting
the effects of data loss that can occur on the communications channel. This is
because each segment is compressed independently so that the effects of data
loss or corruption, if they occur, are limited to the affected segment.
Partitioning the DWT data into segments also has the benefit of limiting the
memory required for some implementations. The segment size can be adjusted
to trade the degree of data protection for compression effectiveness; smaller
segments provide increased protection against data loss but tend to reduce the
overall compression ratio.

A program and data flow diagram of the BPE stage of the compressor is
shown in Fig. 3.9. The BPE takes DWT coefficient data from the DWT
coefficient buffer, encodes the coefficient data, and places the encoded
output in the compressed datastream. Coding of a segment happens in four
steps:

1. Encode the segment header;
2. Encode quantized DC coefficients;
3. Encode the bit lengths of AC coefficient blocks; and
4. Encode bit planes of AC coefficients, including encoding parents,

children, and grandchildren coefficients for all blocks within the segment.

Figure 3.9 shows the encoding flow of DWT coefficient data of a single
segment, including complete encoding of all bit planes. In fact, encoding of a
segment can terminate earlier: coding of a segment stops when the prescribed
compressed-segment data-volume limit has been reached or when the
prescribed segment-quality level has been reached, whichever comes first.
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The maximum number of bytes in each compressed segment is controlled
via the SegByteLimit parameter, and image “quality” (more specifically, the
number of DWT coefficients to be encoded) is constrained via the DCStop,
BitPlaneStop, and StageStop parameters.7 These parameters control the

Figure 3.9 BPE encoding-block diagram and data flow (source: CCSDS).
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trade-off between reconstructed segment quality and compressed data volume
for each segment.

The encoded bitstream for a segment can be further truncated (or,
equivalently, coding can be terminated early) at any point to further reduce
the datarate in exchange for reduced image quality for the corresponding
segment.

Figure 3.10 shows the data structure of the encoded bit plane of a
segment. The entropy-coded data of a segment is arranged so that all parent
coefficients in the segment are placed first, followed by children and then
grandchildren coefficients, thereby supporting the desired embedded-data
format. Finally, the segment includes (uncompressed) refinement bits for the
AC coefficients in the segment for which more significant magnitude bits are
not all zero.

There is no separate “lossless compression mode” in the CCSDS image-
data compression standard. The lossless compression is achieved by using the
integer DWT and setting some parameters to special values (i.e., set DCStop
to 0, BitPlaneStop to 0, and StageStop to 3; and set the maximum number of
bytes in each compressed-segment SegByteLimit sufficiently large to
accommodate the compressed data volume needed to losslessly encode that
segment).

3.3.3 Selection of compression options and parameters

While using the CCSDS-122 IDC, it is critical to select appropriate
compression options and parameters. This has an effect on compression
effectiveness and implementation complexity. For example, Fig. 3.11
illustrates that two different sets of compression parameters can yield
remarkably different rate-distortion performance of the lossy compression
on the same test image. In the figure, it can be seen that this method can
achieve an MSE distortion value of approximately 10, and the bitrate

Figure 3.10 Data structure of an encoded bit plane of a segment (source: CCSDS).
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produced by the IDC with the parameter set (a) is 0.5 bits/pixel, whereas the
bitrate produced by the IDC with the parameter set (b) is less than 0.2 bits/
pixel. The former is more than a factor of two higher than the latter.

For a particular application, users are recommended to select appropriate
compression options and parameters, including

• Optional segment headers,
• An integer or float DWT,
• A parameter that limits the compressed data volume,
• A parameter that controls reconstructed image fidelity,
• The number of blocks per segment,
• A Golomb code parameter, or
• A custom subband weight.

3.3.3.1 Segment headers

Each segment header may have up to four parts. The first part is mandatory,
and the other parts are optional. Users need to select which of the optional parts
should be included in the header. Bits used in parts 2 and 3 of the segment
header can change from segment to segment, but in many applications one can
expect them to be fixed for an image. Bits used in part 4 cannot change within
an image. Thus, in a typical application, one might include all four header parts
for the first segment of an image and only part 1 for subsequent segments. In
some applications (e.g., if compression parameters are fixed for an entire
mission), the header needs only part 1. Including optional header parts results in
an increased bitrate, which may become particularly significant when segments
are small and low bitrate compression is desired. For example, when S¼ 16,

Figure 3.11 Rate-distortion performance of lossy compression on transposed version of a
Coastal (band 7) test image using different compression parameters: (a) integer DWT,
UseFill ¼ 1 (fixed-rate compression), S ¼ 16; and (b) float DWT, S ¼ 16386 (full-frame
compression) (source: CCSDS).
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including all optional header parts with each segment would contribute an
additional 0.125 bits/pixel to the compressed bitrate.

3.3.3.2 Integer or float DWT

The use of an integer or floating DWT is indicated in the DWTtype field in
the optional part 4 of the segment header. For lossless compression, the
integer DWT must be used because the float DWT cannot provide lossless
compression. The integer DWT requires only integer arithmetic and thus is
fast, which may be preferable in some applications for complexity reasons.
The float DWT may be preferable in some lossy image compression
applications because it often provides better compression ratios than the
integer DWT at low bitrates.

3.3.3.3 Parameters for controlling compression ratio and quality

To facilitate user control between bitrate or image distortion, the IDC
algorithm provides means for specifying limits on compressed data volume
and reconstructed image quality. For each segment, compressed data is
produced until the segment’s data volume limit or quality limit is reached,
whichever comes first. These limits are specified using the four parameters
SegByteLimit, DCStop, BitPlaneStop, and StageStop. The values of these
parameters are encoded in the optional part 2 of the segment header.

The SegByteLimit parameter controls the compressed volume by directly
limiting the number of compressed bytes (including headers) in a segment. The
parameters DCStop, BitPlaneStop, and StageStop limit the number of DWT
coefficients encoded in a compressed segment and thus indirectly control the
reconstructed image quality.

A user can effectively eliminate the quality limit (by setting DCStop ¼ 0,
BitPlaneStop ¼ 0, and StageStop ¼ 3) so that the amount of compressed data
produced for a segment is simply limited by the value of SegByteLimit. This
scenario is referred to as rate-limited compression. The rate limit is assumed to
be applied uniformly to every segment of the image. If, in addition, the
UseFill parameter is set to 1 so that fill bits are added as needed to ensure that
each compressed segment has exactly SegByteLimit bytes, then that
compression is said to be fixed-rate.

At the other extreme, if a user specifies a sufficiently large value for
SegByteLimit, then compression is limited by the quality limit determined by
the values of the DCStop, BitPlaneStop, and StageStop parameters. The
compression in this case is referred to as quality-limited.

3.3.3.4 Parameters for lossless compression

Lossless compression is achieved by (1) using the integer DWT; (2) setting
DCStop to 0, BitPlaneStop to 0, and StageStop to 3; and (3) for each segment,
setting the value of SegByteLimit sufficiently large to accommodate the
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compressed data volume needed to losslessly encode that segment. There is no
separate “lossless compression mode” in the IDC.

3.3.3.5 Segment size S

A user needs to select the number S of blocks per segment. The choice of S
affects memory requirements, robustness to data errors or losses, and
compression effectiveness because each segment is compressed independently.

An image with width w and height h generates dw/8e � dh/8e DWT blocks
of DWT coefficients. These blocks can be viewed as an array with width dw/8e
and height dh/8e. When S ¼ dw/8e � dh/8e, the entire image is compressed as a
single segment. This compression is referred to as full-frame compression.
When S ¼ dw/8e, each image segment loosely corresponds to a thin horizontal
strip of the image, and it is said that strip compression is being performed.
Strip compression can lead to a relatively memory-efficient implementation
and may be convenient, e.g., for images produced by push-broom-type
sensors. In some circumstances, the compression ratio may be significantly
improved when a larger value of S is used.

The minimum value of S is 16, except for the last segment of an image,
which may consist of as little as a single block (S¼ 1). This limitation prevents
users from using very small segments, which would tend to degrade
compression effectiveness. The maximum value of S is constrained by the
number of blocks produced for an image and the 20-bit field used to encode
the value of S in the optional part 3 of the segment header. Thus, the
maximum value of S is

S ¼ min
�
w
8

�
� h

8

� �
, 220

� �
: ð3:7Þ

A larger value of S generally leads to higher memory requirements
because the BPE coding process requires the availability of a complete
segment.

3.3.3.6 Golomb code parameter

As part of the segment encoding process, a simple differential coding
procedure is used to losslessly encode the sequence of differences between
quantized DC coefficients and the sequence of differences between quantized
AC coefficients. The sequence of differences is partitioned into smaller
sequences referred to as “gaggles.” For each gaggle, one of the Golomb codes
is used to encode the difference values. The selection of the Golomb code (i.e.,
the value of the parameter k) to encode each gaggle is normally done in the
Rice coding by exhaustively trying each code option.

Alternatively, the CCSDS-122 standard allows the Golomb code for
each gaggle to be selected by applying a computationally simpler but
sometimes suboptimal heuristic-parameter-selection procedure.15 In either
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case, the k value selected is encoded in the compressed datastream, so the
decompressor can decode the data without knowing which procedure was
used. As reported in the reference, the difference in compression ratios
between the optimal and heuristic parameter selection is negligible.
Selecting whether to use the optimal or heuristic parameter selection is
likely to be a matter of implementation complexity; the latter is
computationally simple.

3.3.3.7 Custom subband weight

When the integer DWT is used, each DWT coefficient is multiplied by the
same constant weight factor. The allowed weight factors are powers of two
(e.g., 1, 2, 4, or 8) so that the multiplications used in the weighting process can
be performed by bit-shift operations.

Subband weight factors may be assigned by using the default weight
factors or custom weight factors. Subband weighting is not used in
combination with the float DWT. The subband weight factors determine
the relative order in which bitplanes from different subbands are encoded,
which in turn affects compression effectiveness. The default set of weights
were chosen to minimize the MSE image distortion obtained at a given rate. A
custom set of weights might be appropriate, for example, to optimize a
different image quality metric, and may be based on experiments with images
from a particular instrument of interest.

The use of custom weights and the values of the weights are recorded in
part 4 of the segment header. Note, however, that this part is optional even
when custom weights are used. For example, if the same set of custom weights
were used for an entire mission, one might elect not to encode the weight
values in compressed images.

3.3.4 Performance evaluation

3.3.4.1 Lossless compression results

Table 3.2 lists the lossless compression results produced by the CCSDS IDC
(CCSDS-122), CCSDS lossless data-compression (CCSDS-121, Rice algo-
rithm), JPEG2000, JPEG-lossless (JPEG-LS), SPIHT (set partitioning in
hierarchical trees), and ICER when applied to 30 images within the CCSDS
test dataset. JPEG2000 results were produced using the verification model
(VM) 9.0,16 with either “frame-based” or “scan-based” compression options,
a 5/3 integer filter DWT, and three-level wavelet decomposition. The
SPIHT17 algorithm is a low-complexity, progressive, zerotree wavelet image-
compression algorithm. ICER18 is also a progressive wavelet-based lossless-
to-lossy image-compression algorithm. It offers wavelet-domain image
segmentation for error-containment purposes. ICER produces slightly
improved lossless and lossy CRs compared to the CCSDS-122 standard,
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but it has slightly higher complexity and has only been implemented as a
frame-based compressor. It uses four levels of wavelet decomposition and a
2/6 integer filter DWT.

It can be seen from Table 3.2 that ICER produces the lowest average
bitrate on the test images. However, JPEG-LS is equally effective on the
8-bit and 10-bit images and has significantly lower complexity than the
wavelet-based compressors. Comparing the average compressed bitrate over
all images at a given bit depth, the CCSDS-122 standard produces a higher
bitrate than frame-based SPIHT, ICER, and JPEG2000 compressors on
8-bit, 10-bit, and 12-bit test images. For 16-bit test data, the CCSDS-122
performs better than JPEG2000. In both strip-based and frame-based
options, the performances of the JPEG2000 and the CCSDS-122 standard
are very close. The CCSDS-122 standard provides similar performances in
both strip-based and frame-based compressions. The CCSDS/Rice (CCSDS-
121) compressor exhibits the lowest performance, which is expected because
only 1D correlation was explored in the compression.

3.3.4.2 Lossy compression results

To evaluate the lossy compression performance, the PSNR [Eq. (1.9)] and
MAD [Eq. (1.10)] metrics are calculated at bitrates of 0.25, 0.5, 1.0, and 2.0
bits/pixel for each of the test images. Three compression algorithms are
compared in the evaluation: CCSDS-122 (using a software implementation
developed at NASA GSFC), the JPEG2000 (VM v9.0)16 in frame-based and
scan-based modes, and the SPIHT algorithm.17

For the CCSDS-122, the parameters used for lossy compression are as
follows:

• Float DWT;
• SegByteLimit is adjusted to achieve rate-controlled compression at the
desired bitrate;

• S is adjusted to achieve strip compression and also full-frame compression;
• All optional header parts are included only in the first coded seg-
ment, but no optional headers are included for subsequent coded seg-
ments; and

• CodeWordLength is set to 0, corresponding to single-byte output words.

Figures 3.12 and 3.13 show the average compression ratios versus PSNR
of the test images with 12-bit and 16-bit dynamic range using CCSDS-122,
JPEG, and SPIHT. For CCSDS-122 and JPEG2000, both strip and frame
compression modes are performed.

For lossy compression, the compression results produced by the CCSDS-
122 frame-based algorithm are better than those by its strip-based algorithm
by roughly 1 dB. Overall, the trade-off between implementation complexity
and performance is observed for either strip-based or frame-based results: the
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CCSDS-122 algorithm is slightly lower than JPEG2000. However, this trade-
off in performance is within 1 dB, and this difference may be smaller than the
performance penalty obtained when similar complexity constraints are
imposed on JPEG2000 in a practical hardware implementation.

3.4 Lossless Multispectral/Hyperspectral Compression
Standard

3.4.1 Compressor composition

This CCSDS-recommended standard (CCSDS-123)8 defines a lossless data
compressor for 3D datacubes that are produced, e.g., by multispectral
imagers, hyperspectral imagers, and sounders. The compressed datacube
output from the compressor is an encoded bitstream from which the input

Figure 3.12 Mean PSNR of CCSDS-122, JPEG2000, and SPIHT on 12-bit test images
(source: CCSDS).

Figure 3.13 Mean PSNR of CCSDS-122, JPEG2000, and SPIHT on 16-bit test images
(source: CCSDS).
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datacube can be recovered exactly. Because of variations in image content, the
volume of compressed datacubes will vary from datacube to datacube. That
is, the compression ratio is variable.

The compressor consists of two functional parts: a predictor and an
encoder, as shown in Fig. 3.14. The predictor uses an adaptive linear
prediction method to predict the value of each sample in a datacube based on
the values of nearby samples in a small 3D neighborhood. Prediction is
performed sequentially in a single pass. The prediction residual, i.e., the
difference between the predicted value and the sample, is then mapped to an
unsigned integer that can be represented using the same number of bits as the
input data sample. These mapped prediction residuals are then encoded by an
entropy encoder. Entropy-encoder parameters are adaptively adjusted during
the encoding process to adapt to changes in the statistics of the mapped
prediction residuals.

3.4.2 Adaptive linear predictor

The adaptive linear predictor is a key of the compressor. Assuming that an
input 3D datacube with signed or unsigned integer sample values is
denoted as fsz, y, xg, where x and y are indices in the spatial dimensions,
and the index z indicates the spectral band. Indices x, y, and z take on
integer values in the ranges 0 � x � Nx 1, 0 � y � Ny 1, 0 � z � Nz 1,
where each image dimension Nx, Ny, and Nz shall have a value of at least 1
and at most 216.

Prediction is performed causally in a single pass through the datacube.
Prediction of the current sample sz, y, x, that is, the calculation of ŝz, y, x and
mapped prediction residual dz, y, x, generally depends on the values of nearby
samples in the current spectral band and P preceding spectral bands, where P
is a user-specified parameter. Figure 3.15 illustrates the typical neighborhood
of samples used for prediction.

Within each spectral band, the predictor computes a local sum sz, y, x of
neighboring sample values. Each such local sum is used to compute a local
difference. Predicted sample values are calculated using the local sum in the
current spectral band and a weighted sum of local difference values from the
current and previous spectral bands. The weights used in this calculation are
dynamically updated following the calculation of each predicted sample value.
Each prediction residual, that is, the difference between the current sample

Predictor
Input data 

Mapped 
prediction 
residuals 

Encoder

Compressed
data 

(encoded 
bitstream) 

Figure 3.14 Two functional parts of the CCSDS-123 compression algorithm.

99International Standards for Spacecraft Data Compression



value sz, y, x and the corresponding predicted sample value ŝz, y, x, is mapped to
an unsigned integer dz, y, x, the mapped prediction residual.

The local sum sz, y, x is a weighted sum of samples in spectral band z that
are adjacent to the current sample sz, y, x. Figure 3.16 illustrates the samples
used to calculate the local sum. This standard provides two options for a
user to perform prediction using either neighbor-oriented or column-oriented
local sums. When neighbor-oriented local sums are used, the local sum is
equal to the sum of four neighboring sample values in the spectral band z.
Equation (3.8) defines the neighbor-oriented local sum sz, y, x and the
boundary conditions when y ¼ 0, x ¼ 0, or x ¼ Nx – 1:

sz, y, x ¼

sz, y, x 1þsz, y 1, x 1þsz, y 1, xþsz, y 1, xþ1 y > 0, 0 < x < Nx 1

4sz, y, x 1 y ¼ 0, x > 0

2ðsz, y 1, x þ sz, y 1, xþ1Þ y > 0, x ¼ 0

sz, y, x 1 þ sz, y 1, x 1 þ 2sz, y 1, x y > 0, x ¼ Nx 1:

ð3:8Þ

8>>><
>>>:

When column-oriented local sums are used, the local sum is equal to four
times the neighboring sample value in the previous row. Equation (3.9)
defines the column-oriented local sum sz, y, x and the boundary condition
when y ¼ 0:

sz, y, x ¼
4sz, y 1, x y > 0

4sz, y, x 1 y ¼ 0, x > 0:
ð3:9Þ

�

The local sums are used to calculate local difference values. In each
spectral band there are four local difference values: dz, y, x, dN

z, y, x, d
W
z, y, x, and

Figure 3.15 Typical prediction neighborhood (source: CCSDS).
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dNW
z, y, x. The central local difference dz, y, x is equal to the difference between the
local sum sz, y, x and four times the sample value sz, y, x:

dz, y, x ¼ 4 sz, y, x sz, y, x: ð3:10Þ
The three directional local differences, dN

z, y, x, d
W
z, y, x, and dNW

z, y, x, are each
equal to the difference between dz, y, x and four times a sample value labeled as
‘N,’ ‘W,’ or ‘NW,’ as shown in Fig. 3.15:

dN
z, y, x ¼

4sz, y 1, x sz, y, x y > 0

0 y ¼ 0;
ð3:11Þ

�

dW
z, y, x ¼

4sz, y, x 1 sz, y, x y > 0, x > 0

4sz, y 1, x sz, y, x y > 0, x ¼ 0

0 y ¼ 0;

ð3:12Þ

8><
>:

dNW
z, y, x ¼

4sz, y 1, x 1 sz, y, x y > 0, x > 0

4sz, y 1, x sz, y, x y > 0, x ¼ 0

0 y ¼ 0:

ð3:13Þ

8><
>:

During compression of a datacube, a user may choose to perform
prediction in either full or reduced mode. Under the full prediction mode,
prediction in spectral band z uses both a weighted sum of the central local
differences dz, y, x computed in preceding bands and the three directional local
differences dN

z, y, x, dW
z, y, x, and dNW

z, y, x calculated in the current band. Under
reduced mode, prediction uses a weighted sum of the central local differences
dz, y, x computed in preceding bands; the directional local differences are not
used.

As described in the CCSDS 120.2-G-0 green book,19 the use of reduced
prediction mode in combination with column-oriented local sums tends to
yield higher compression ratios for uncalibrated, raw datacubes acquired by

Figure 3.16 Two options of calculating local sum sz,y,x: neighbor-oriented and column-
oriented. (source: CCSDS)
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push-broom imagers that exhibit significant along-track streaking artifacts.
The use of full prediction mode in combination with neighbor-oriented local
sums tends to yield higher compression ratios for whisk-broom imagers, frame
imagers, and calibrated imagery.

After the prediction residual, i.e., the difference between the predicted
value and the sample, is obtained, it is then mapped to an unsigned integer
that can be represented using the same number of bits as the input data
sample. These mapped prediction residuals are then encoded by an entropy
encoder.

The mapped prediction residual dz, y, x is an integer defined as

dz, y, x ¼
jDz, y, xj þ uz, y, x, jDz, y, xj > uz, y, x

2jDz, y, xj, 0 � ð 1Þ̂sz, y, x Dz, y, x � uz, y, x

2jDz, y, xj 1, otherwise;

ð3:14Þ

8><
>:

where the prediction residual Dz, y, x is the difference between the predicted
value and actual sample value:

Dz, y, x ¼ sz, y, x ŝz, y, x; ð3:15Þ
and uz, y, x is defined as

uz, y, x ¼ minf̂sz, y, x smin, smax ŝz, y, xg: ð3:16Þ

3.4.3 Encoder

The mapped prediction residuals are sequentially encoded in an order selected
by the user. This encoding order need not correspond to the order in which
samples are output from the imaging instrument or processed by the
predictor. To encode the mapped prediction residuals for a datacube, a user
may choose to use the sample-adaptive entropy coding approach or the block-
adaptive approach. The latter approach relies on the lossless data compressor
defined in the CCSDS-121 standard.2 The sample-adaptive entropy coder
typically yields smaller compressed images than the block-adaptive entropy
coder. Further examples and comparisons can be found elsewhere.19

Under the sample-adaptive entropy coding approach, each mapped
prediction residual is encoded using a variable-length binary codeword.20 The
variable-length codes used are adaptively selected based on statistics that are
updated after each sample is encoded. Separate statistics are maintained for
each spectral band, and the compressed data size does not depend on the order
in which mapped prediction residuals are encoded.

Under the block-adaptive entropy-coding approach, the sequence ofmapped
prediction residuals is partitioned into short blocks, and the encoding method
used is independently and adaptively selected for each block. Depending on the
encoding order, themapped prediction residuals in a blockmay be from the same
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or different spectral bands, and thus the compressed image size depends on the
encoding order when this method is used.

The compressed bitstream of a datacube consists of a header followed by a
body. The variable-length header records compression parameters. The body
consists of losslessly encoded mapped prediction residuals dz, y, x from the
predictor.

3.4.4 Performance evaluation

Experimental results of lossless compression of hyperspectral images using the
CCSDS-123 standard have been reported21,22 and compared with the LUT
method,23 JPEG-LS,24 and differential JPEG-LS, where JPEG-LS is applied
to the differences between two adjacent spectral-band images. Table 3.3
compares the compression results of raw hyperspectral images (i.e.,
uncalibrated). Twenty-one hyperspectral images were tested. The AIRS
images were hyperspectral sounder images with 1,501 bands. Yellowstone
images were acquired using the AVIRIS sensor. The Hyperion images were
spaceborne hyperspectral images.

Table 3.3 Comparison of lossless compression results (bits per pixel per band) of
hyperspectral images using the CCSDS-123 standard, JPGE-LS, JPGE-LS-Diff, and LUT
algorithms.

Image CCSDS-123 LUT JPEG-LS JPEG-LS-Diff

AIRS Granule 9 4.24 5.47 6.87 5.19
AIRS Granule 16 4.22 5.40 6.71 5.06
AIRS Granule 60 4.37 5.84 7.33 5.39
AIRS Granule 82 4.17 5.16 6.39 4.94
AIRS Granule 120 4.30 5.60 6.79 5.20
AIRS Granule 126 4.40 5.81 7.19 5.41
AIRS Granule 129 4.17 5.32 6.08 4.90
AIRS Granule 151 4.42 5.94 6.95 5.37
AIRS Granule 182 4.42 6.15 7.02 5.40
AIRS Granule 193 4.41 5.84 7.11 5.39
CASI t0180f07 raw 4.78 5.51 5.23 4.93
CASI t0477f06 raw 4.97 5.81 5.44 5.20
SFSI Mantar Raw 4.76 5.23 4.89 5.12
Yellowstone Sc00 6.41 7.16 9.18 6.98
Yellowstone Sc03 6.27 6.93 8.87 6.86
Yellowstone Sc10 5.67 6.28 7.32 6.19
Yellowstone Sc11 5.97 6.72 8.50 6.51
Yellowstone Sc18 6.52 7.24 9.30 6.96
Maine 2.78 3.45 4.53 3.39
Hawaii 614 2.71 3.26 4.61 3.30
Hyperion GeoSample 4.64 5.82 5.03 4.57
Hyperion GeoSample
(Flat Fielded)

4.09 4.46 4.83 4.36

Average 4.67 5.65 6.64 5.30
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It can be seen from the table that the CCSDS-123 standard produces the
shortest bitrates. The average bitrate is 4.67 bits per pixel per band (bpppb),
and it yields the best coding performance compared to the LUT method,
JPEG-LS, and JPEG-LS Diff. There is a better-than 1.0-bpppb gain of the
JPEG-LS Diff over the JPEG-LS. The performance of the LUT algorithm is
closer to the JPEG-LS Diff, although it is still 1.0 bpppb worse than the
CCSDS-123 standard.
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Chapter 4

Vector Quantization
Data Compression

4.1 Concept of Vector Quantization Compression

Vector quantization (VQ) is an efficient coding technique to quantize signal
vectors. It has been widely used in signal and image processing, such as
pattern recognition and speech and image coding. A VQ compression
procedure has two main steps: codebook training (sometimes also referred
to as codebook generation) and coding (i.e., codevector matching). In the
training step, similar vectors in a training sequence are grouped into clusters,
and each cluster is assigned to a single representative vector called a
codevector. In the coding step, each input vector is then compressed by
replacing it with the nearest codevector referenced by a simple cluster index.
The index (or address) of the matched codevector in the codebook is then
transmitted to the decoder over a channel and is used by the decoder to
retrieve the same codevector from an identical codebook. This is the
reconstructed reproduction of the corresponding input vector. Compression
is thus obtained by transmitting the index of the codevector rather than the
entire codevector itself.1

Unlike scalar quantization, vector quantization requires segmentation
of the source data into vectors. In 2D image data compression with VQ, a
block with n � m (n may be equal to m) pixels is usually taken as a vector
whose dimension is equal to n � m. Vectors constituted in this way have
no physical meaning. Because the blocks are segmented according to the
row and column indices of an image, the vectors obtained in this manner
change at random as the pixel patterns change from block to block. The
reconstructed image shows an explicit blocking effect for large compres-
sion ratios.

There are several approaches to constituting vectors for a 3D datacube
of hyperspectral imagery. The simplest approach is to treat the 3D
datacube as a set of monochromatic images and then segment each
monochromatic image into vectors independently, as in the 2D image

107



case. This approach, however, does not make use of the high correlation
of data in the spectral domain. This book’s approach to constituting a
vector for VQ compression is to define one spectral profile corresponding
to a footprint on the ground as a vector. There are a total of Nr � Nc

vectors for a 3D datacube with spatial dimensions Nr rows by Nc columns,
and the dimension of each vector is equal to the number of spectral bands
Nb. The vectors constituted in this way have a physical meaning: each
vector is a spectrum, and each spectrum is an indicator of the material on
the Earth’s surface that lies within the field of view of the hyperspectral
sensor. Because the number of materials in the scene is usually limited, the
number of different encoded spectra can be much smaller than the total
number of vectors Nr � Nc. Thus, all of the spectral vectors can be
expressed using a codebook with comparatively few codevectors and
achieve good reconstruction fidelity. This constitution of vectors makes
good use of the high correlation often found between bands in the spectral
domain and achieves a high compression ratio. The following sections
show that it also leads to fast codebook generation and fast codevector
matching.

Figure 4.1 illustrates the concept of the VQ compression of a hyper-
spectral datacube using the vectors formed as defined earlier. In the figure,
a hyperspectral datacube with Nb spectral band images, whose spatial size
is Nr rows by Nc column pixels, is used as an input datacube. A spectral
profile (i.e., Nb elements in the spectral direction) corresponding to a
footprint on the ground is taken as a vector. A codebook containing N
codevectors has been generated and stored in the training step. In the
coding step, in order to compress the datacube, each of the vectors of
the datacube is compared to the N codevectors in the codebook to find the
best matching one. The index of the best matched codevector is the output
of the coding result of the input vector; it is assigned to the element of the
index map at the same spatial location as the ground sample cell at
the datacube corresponding to the vector. After all of the vectors of the
datacube are coded, an index map with all the indices filled is formed. The
index map is the compression result of the datacube. The number of bits
needed to express an index is log2(N) for a codebook with N codevectors.

Figure 4.1 Illustration of the concept of a VQ compression algorithm.
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Thus the total number of bits needed to encode the datacube is
NrNc log2 N. The compression ratio can be computed as

Cr ¼ NrNcNbL
NrNc log2 N

¼ NbL
log2 N

, ð4:1Þ

where L is the word-length of the original datacube, i.e., the number of bits
used to express the value of the original datacube. Equation (4.1) indicates
that the compression ratio depends on the spectral band number Nb, the word-
length of the original datacube L, and the codebook size N. Codebook size is
the only parameter that controls the compression ratio, as Nb and L are fixed
for a datacube to be compressed. The compression ratio is independent from
the size of the datacube. If the size of a hyperspectral datacube increases while
the size of the codebook N remains the same, then the compression ratio will
remain the same but the compression fidelity will decrease. Assuming a
hyperspectral 3D datacube acquired using AVIRIS, L ¼ 16 bits, Nb ¼ 224, a
codebook with N ¼ 4096 codevectors is used, and the compression ratio is
Cr ¼ 298.7.

Many existing VQ algorithms for codebook designs are available, such as the
LBG algorithm,2 the tree-structure codebook algorithm,1 and the self-organizing
feature map (SOFM).3 Among these, the LBG algorithm is the most widely
used because of its fidelity. [This algorithm assumes a training sequence
Xj ðj ¼ 1, 2, . . ., nÞ, with n vectors whose dimension is k, is used to generate a
codebook with N codevectors, giving an initial codebook with N codevectors
Âm ¼ fYi; i ¼ 1, 2, . . . ,Ng.] The algorithm then finds the minimum distance
partition (MDP) PðÂmÞ ¼ fSi; i ¼ 1, 2, . . . ,Ng for each of vectors in the training
sequence:Xj 2 Si ifdðXj,YiÞ � dðXj ,YlÞ for all l¼ 1, 2, . . .,N.Codebook training
is an iterative process: The algorithm updates the codebook Âm at the end of an
iteration loop, where m defines the number of iterations to adjust the codebook.
The most-common distortion measure is the Euclidean distance, which is a
squared-error distortion measure:

dðX,YÞ ¼ X Y2 ¼
XNb

i¼1

ðxi yiÞ2: ð4:2Þ

If this measure is used, the algorithm needs to calculate dðX,YÞ
N times for each training vector Xj ðj ¼ 1, 2, . . ., nÞ to find the MDP (or
nearest partition) Si. To compute one dðX,YÞ requires k product and k – 1
addition operations, where k is the dimension of the vectors. Thus, it takes
N � k products and N � (k – 1) additions to find the MDP Si for
one vector. For a training sequence with a total of n vectors, it takes n �
N � k products and n � N � (k – 1) additions to find the MDP PðÂmÞ ¼
fSi; i ¼ 1, 2, . . . ,Ng to go through more than one iteration of codebook
training. The number of iteration loops is controlled by a distortion threshold :
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(� 0). It is common for over 10 iterations of training to be required to generate
a codebook.

The following is an example of training a codebook for AVIRIS
datacubes. The size of an AVIRIS datacube is 224 spectral band images,
each of which has 512 lines, and each line has 614 pixels. If the vectors are
constituted by defining an entire spectrum of each ground sample of the
datacube as a vector, an AVIRIS datacube contains 512 � 614 ¼ 314,368
vectors of dimension k ¼ 224. Supposing that two AVIRIS datacubes of this
size are used as a training set, the total number of training vectors is n ¼
628,736. Generating a codebook with N ¼ 4096 codevectors requires
628,736 � 4096 � 224 ¼ 57.7 � 1010 products per iteration. Supposing that
one product operation takes roughly 10 ns, one iteration of training can take
1.6 h. The disadvantages of this algorithm are its computational complexity
and the time needed to form the codebook. Many constrained VQ techniques4

have been developed to reduce the encoding complexity at the cost of a slight
performance penalty. As well, many fast search methods have been developed
to reduce the search complexity of the unconstrained VQ techniques.

The main focus of this chapter is (1) the fast VQ algorithms that overcome
the computational complexity of the conventional VQ algorithms, and (2) how
the VQ technique can be applied to compress 3D datacubes of hyperspectral
imagery in the near-lossless sense. Section 4.2 briefly reviews fast VQ algorithms.
Sections 4.3 and 4.4 describe two fast VQ search algorithms that reduce the full-
search of the classical VQ algorithm. Section 4.5 discusses a VQ compression
algorithm for compressing hyperspectral data using the spectral-feature-based
binary code (SFBBC), which permits the use of the Hamming distance rather
than the Euclidean distance in codebook training and codevector matching (and
significantly quickens processing). Section 4.6 describes an algorithm called
correlation vector quantization (CVQ), which exploits both spectral and spatial
correlation simultaneously of hyperspectral datacubes. Section 4.7 presents an
effective VQ algorithm with multiple subcodebooks that uses remote sensing
information of the datacube to improve the VQ compression performance and
speed up the processing. The final two sections discuss two near-lossless VQ
compression techniques for hyperspectral datacubes.

4.2 Review of Conventional Fast Vector Quantization
Algorithms

The classical generalized Lloyd algorithm (GLA) is the most cited and widely
used full-search VQ method due to its simplicity and relatively good fidelity.
However, it suffers from a serious complexity barrier that greatly limits its
practical use. The research in developing fast search for VQ compression
algorithms has been very active. A general approach to reducing the
computational complexity of a full search in the GLA is based on identifying
the geometric boundaries of the Voronoi cells and storing a suitable data
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structure to ease the search process. In this way much of the search complexity
is transferred to the offline design of the data structure.5

One approach is based on the use of k-dimensional (k-d) trees.6 8 The
search process is simplified because each node of the trees requires the
examination of only one component of the training vector to see if it lies above
or below a threshold. The k-d tree can be very efficient for codevector search,
but it requires careful design based on the training data.

Another approach to reducing the complexity of a full search is based on
triangle inequality elimination (TIE).9 16 Reference points called anchor
points are used in this approach. Their distances to each of the codevectors are
precomputed and stored. The encoder then computes the distance between a
training vector and each anchor point. After that, some simple comparisons
using the precomputed data eliminate a large number of codevectors as
candidates for the best-matching codevector. There is a trade-off between the
search speed and the size of the precomputed data table.10 12 Because the TIE-
based methods require considerable memory to store the precomputed data
table, a mean-ordered algorithm was developed to reduce the memory
space.13 Multiple triangle inequalities were then developed to further reduce
the computational complexity.14 16

Other inequality elimination methods were also developed. A norm-
ordered fast search algorithm was proposed by Wu and Lin17 that calculates
the norms of codevectors and sorts the codevectors based on the norms before
searching. In the search process, codevectors are rejected from being searched
through based on an inequality defined by the stored norms and the norm of
the training vector.

In another work,18 the distances from training vectors to the origin, their
squares, sines, and cosines are calculated and stored in a predefined data
structure. An inequality-of-cosines law was used to reduce the codevector
searching area of the full-search process.

A more-sophisticated codevector search algorithm was proposed.19

It introduced two extra codevector elimination criteria based on the mean
and the variance of codevectors in addition to the criterion used in the work
by Wu and Lin17 to further reduce the search space. Fast search methods
using the topological structure of the codebook were also introduced to
eliminate unnecessary codevector matching.20 22

A method for speeding up the GLA, which uses neither the k-d
trees approach nor the inequality elimination approach, was proposed by
Kaukoranta et al.23 It detects the activity of codevectors and uses this
information to classify training vectors. For training vectors whose current
codevector has not been modified, only the distances between them and the
active codevectors are calculated. A large portion of the distance calculations
can be omitted without sacrificing the optimality of the GLA. It further sped
up the processing by a factor of over 2 when it was applied to several fast
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GLA variants, such as partial distance search,24 TIE,9 and mean-distance-
order partial search.13

A simple and effective fast codevector search method of the same category
was proposed by Qian.25 It modifies the GLA such that a training vector does
not require a search to find the best matching codevector if its distance to the
MDP is improved in the current iteration. Similar improvement of the
processing time as in the work by Kaukoranta et al.23 was achieved, but it is
much simpler and requires only a minor modification of the GLA. The
codebook generated by Qian25 might not be identical to the GLA codebook.
This is because the algorithm classifies a training vector to the same best
matching codevector of the previous iteration if the vector moves closer to the
MDP in the current iteration, whereas in the GLA, a training vector might
not be classified to the same best MDP of the previous iteration, even though
it moves closer to the MDP in the current iteration. This fast codevector
search method is described in Section 4.3 in detail.

Following this work, Qian further improved the search method for VQ
compression techniques.26 The improved search method makes use of the fact
that in the GLA, a vector in a training sequence is either placed in the same
MDP as in the previous iteration or in a partition within a very small subset of
partitions. The proposed method searches for the MDP for a training vector
only in this subset of partitions plus the single partition that was the MDP in
the previous iteration. Because the size of this subset is much smaller than
the total number of codevectors, the search process is significantly faster.
This method generates a codebook identical to that generated using the GLA,
but it is much faster. This fast codevector search method is described in
Section 4.4 in detail.

4.3 Fast Vector-Quantization Algorithm Based on Improved
Distance to MDP

This section describes a fast VQ compression algorithm, which speeds up the
conventional GLA. It has the advantages of being simple, requiring only a
minor modification of the GLA and a very small amount of additional
memory, and producing results as good as the GLA. It can be easily applied
to existing fast methods to further reduce computation time.

Assume a training sequence fXjg j ¼ 1, 2, . . . , n with n training vectors. In
training a codebook with N codevectors, each of which is the centroid
corresponding to a partition, the GLA makes a full search of all N partitions
fYig i ¼ 1, 2, . . . ,N for finding the MDP:

Ym ¼ min dðXj,Y1Þ, dðXj,Y2Þ, . . . , dðXj,YNÞ
� � ð4:3Þ

for a vector Xj in the training sequence. This proposed fast VQ algorithm
attempts to reduce the full-search to a much-smaller number than N as well as
to reduce the accumulation operation in calculation of the vector distance
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dðXj,YiÞ between a training vector Xj and a partition Yi while maintaining the
same quality of the codebook as the GLA algorithm.25

4.3.1 Analysis of the generalized Lloyd algorithm for fast training

The codebook training in the GLA is an iterative process. It is observed from
analysis of the GLA full-search process that most of the vectors in a training
sequence are placed in the same MDP as in the previous iteration when the
training moves to the current iteration, although the codevectors have been
updated at the end of the previous iteration. Figure 4.2 shows examples of the
percentage of training vectors that remain in the same MDP in the next
training iteration as a function of iteration number for codebook sizes N ¼ 16
to 2048. Over 80% of the vectors in the training sequence remain in the same
MDP when the training process goes to the next iteration. The percentages
increase to 98% when the iteration number goes up to 20.

This observation indicates that only a very small portion of vectors in the
training sequence change their MDP from one iteration to the next. If the
changing vectors could be known beforehand, the MDP could be searched for
them, which would speed up the full-search process dramatically. Unfortu-
nately, this is not possible before conducting the full search.

In order to obtain information that can be used to determine which
vectors in the training sequence do not need a full search, the training vectors
that remain in the same MDP in the next iteration were further analyzed. Two
hyperspectral datacubes, Jasper Ridge and Cuprite, acquired by AVIRIS were
used. Analysis showed that a majority of the vectors had their distance to the
MDP improved when they remained in the same MDP, which suggests the
possibility that a training vector will most likely be placed in the same MDP
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Figure 4.2 Percentage of training vectors that remain in the same MDP in the next iteration
as a function of training iteration number for codebook sizes N ¼ 16 to 2048 (modified and
reprinted from Ref. 25).
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as in the previous iteration if the distance between the training vector and the
partition has improved compared to the previous iteration. This possibility
was tested to determine whether or not a vector in the training sequence needs
a full search to find its MDP. A training vector is placed in the same MDP as
in the previous iteration if the distance between the training vector and the
partition is improved in the current iteration. Because no search is conducted
for this kind of training vector, computation time is saved during each
iteration.

Figure 4.3 shows the results of the analysis for the percentage of training
vectors that do not need a search because they remained in the same MDP
and their distance to the MDP was improved. It can be seen that in the earlier
iterations the percentage is very large (up to 95%). With more iteration loops
the percentage tends to be in a constant range (50–55%). The percentage
climbs in late iterations for the cases of large codebook sizes (N ¼ 512, 1024,
and 2048). This is encouraging because the computation time savings are
proportional to the codebook size N in the proposed method. The high
percentage of training vectors that do not require a search for a large-size
codebook will produce even more time savings. The experimental results for
these cases will be shown later in the chapter.

The MDPs obtained by the proposed method were compared with those
obtained by a full search to examine the effectiveness of the proposed method.
The experimental results show that 96% of the vectors in the training sequence
that the MDPs found by the proposed method are identical to those found by
a full search in early iterations. This is because the partition adjustment is
unstable in early iterations. The identification rate goes up to 99.99% in the
later iterations. Figure 4.4 shows the frequency of disagreement of MDP
between the two methods as a function of the iteration number. It can be seen
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Figure 4.3 Percentage of training vectors that do not need a search when they remain in
the same MDP as a function of iteration number for codebook sizes N ¼ 16 to 2048
(modified and reprinted from Ref. 25).
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that the frequency reduces to 0.01% in later iterations, which is too small to
have an impact on the codebook quality.

4.3.2 Fast training based on improved distance to MDP

The flowchart of the proposed fast-training algorithm is shown in Fig. 4.5.
The codebook training iteration begins after initialization of N codevectors,
which are the centroids of the N partitions. The proposed algorithm
operates the same as the GLA in the first iteration. As shown in the right
column of the flowchart, for each vector Xj in the training sequence, a full
search is applied to find its MDP. After the minimum distance dmin of
vector Xj is found, it is stored in dp

minðjÞ. The index I of the MDP is also
stored in IX(j). They are the two parameters required in the next iteration
for the fast MDP search.

After the first iteration, for each vector Xj in the training sequence, the
distance dðXj,YI Þ between the training vector and the partition that was the
MDP in the previous iteration identified by I ¼ IX(j) is calculated. The same
partition as in the previous iteration is assigned to the training vector as the
MDP if dðXj,YI Þ < dp

minðjÞ, where dp
minðjÞ is the minimum distance between

the training vector and the partition in the previous iteration. No search is
applied to the vector, as shown in the left column of Fig. 4.5. Otherwise, a full-
search process is applied to find the MDP for the training vector, as shown in
the right column.

The proposed algorithm also attempts to reduce the cost of computation
of dðXj,YiÞ using partial distance.24 In a full-search process, a distance
dðXj,YiÞ between training vector Xj and each of the codevectors Yi ði ¼
1, 2, . . ., NÞ is calculated and then compared with the current minimum
distance dmin. Given that the distance dðXj,YiÞ is calculated on an
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Figure 4.4 Frequency of disagreement of MDP found by the GLA and by the proposed
method as a function of training the iteration number for codebook sizes N ¼ 16 to 2048
(modified and reprinted from Ref. 25).
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element-by-element basis of the vectors, the accumulator dpartial carries the
partial distance between the two vectors so far, up to the element e. The
distance dðXj,YiÞ will be greater than the current minimum distance dmin if the
partial distance dpartial at element e is equal to or greater than the current
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Figure 4.5 Flowchart of the fast VQ algorithm based on improved distance to the MDP
(reprinted from Ref. 25).
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minimum distance dmin. Hence, it is not necessary to complete the rest of the
calculation of the distance if dpartial � dmin. The calculation is aborted once
dpartial � dmin, as shown in the flowchart. This speeds up the calculation of
vector distance and ultimately the full-search process.

The additional memory requirements of the proposed algorithm are n
long integers for storing n minimum distance dp

minðjÞ of the previous iteration,
where n is the total number of training vectors.

4.3.3 Experimental results

Two hyperspectral datacubes, Jasper Ridge and Cuprite, acquired by
AVIRIS (http://popo.jpl.nasa.gov/html/aviris.freedata.html/aviris.free-data.
html) in 1992 and 1996, respectively, were used. They have been converted
to at-sensor radiance and are stored as 16-bit digital numbers (DNs). They
contain typical scenes such as mineral, urban, cloud, etc., and are widely
used in the hyperspectral community. The size of the datacubes was
originally 512 lines by 614 pixels per line with 224 spectral bands. In this
work, a subset of them with 256 lines by 256 pixels with all 224 bands was
tested. A spectrum in the datacube with 224 spectral values was taken as a
vector so that it has 224 elements.

In order to test the usefulness of the proposed method for a much-
wider variety of hyperspectral scene types, two other hyperspectral
datacubes were also tested. One datacube contains artificial targets and
forest and cloud scene types for target detection; it was acquired using
Short-Wave Infrared Full-Spectrum Imager II (SFSI-II)27 with a ground
sample size of 3.5 m � 3.5 m and 240 spectral bands between 1200 nm
and 2450 nm, with a band interval of 5 nm. The size of the datacube is 140
lines by 446 pixels per line, with 240 spectral bands. Another datacube,
called Acadie, contains urban and agriculture scenes, as shown in Fig. 4.6.
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Figure 4.6 The scene of the CASI Acadie datacube (reprinted from Ref. 25). For a color
version of this figure, see Plate 2 in the color plate section of this book.
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It was acquired over a cornfield near the small town L’Acadie, Quebec,
Canada using CASI with a ground sample size of 2 m � 2 m and 72
spectral bands in the wavelength range of 408–947 nm, with a band
interval of 7.6 nm. The size of the datacube is 1225 lines by 406 pixels per
line, with 72 spectral bands.28

Peak signal-to-noise ratio (PSNR) and signal-to-noise ratio (SNR) were
used to measure the quality of the codebooks and the statistical performance
of the compression data. For convenience, their definitions are rewritten as
follows:

PSNR ¼ 10 log10
Peak signal2

MSE
, ð4:4Þ

SNR ¼ 10 log10
Signal power

MSE
, ð4:5Þ

where

Signal power ¼ 1
nxnynb

Xnx

x 1

Xny

y 1

Xnb

b 1

�
DNOðx, y,bÞ

�2
, ð4:6Þ

MSE ¼ 1
nxnynb

Xnx

x 1

Xny

y 1

Xnb

b 1

�
DNOðx, y, bÞ DNDðx,y, bÞ

�2
: ð4:7Þ

DNO(x,y,b) and DND(x,y,b) are the DNs of the original and the
reconstructed data of band b at location (x,y), ny is the total number of
lines in the datacube, nx is the total number of pixels per line, and nb is the
total number of bands in the datacube. The Peak signal used in Eq. (4.4) is the
maximum value in the datacube.

Tables 4.1–4.4 show the training and compression results for the four
hyperspectral datacubes with codebook sizes N ¼ 16 – 2048. The iteration
distortion threshold : of the codebook training process was set to 0.001 in
the experiments in order to attain better codebook fidelity. The number of
iterations and computation times (CTs) for both the GLA and the proposed
method are listed. The ratio of computation time improvement (CTg/CT)
and the difference between PSNRs and SNRs yielded by the GLA and by
the proposed method are also shown. The proposed method improves the
computation time by a factor of 3.08–27.35. The larger the codebook size is,
the more time savings can be achieved—this is because there are more
training vectors that do not need a search, as shown in Fig. 4.3, when the
codebook size is larger. The CT and CTg were the times used to compress
the datacubes by a Sun Fire 280R workstation with a 900-MHz
UrltraSPARC-IIIþ CPU.
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It can be seen that for the four test datacubes, the proposed method
produced codebooks as good as the GLA when used to compress the data.
In 17 compression cases out of 32, the PSNRs (SNRs) are slightly improved
(up to 0.07 dB). In five cases the PSNRs remain the same. In 10 cases the

Table 4.2 Codebook training and compression results for the AVIRIS Cuprite datacube.

Codebook
Size (N)

Comp.
Ratio

GLA (Full-search) Proposed Method

CTg/
CT

PSNRg -
PSNR
(dB)

Itera-
tions

CTg
(sec)

PSNRg | SNRg Itera-
tions

CT
(sec)

PSNR | SNR

16 735 26 327.9 40.03 | 27.60 26 106.5 40.03 | 27.60 3.08 0
32 531 28 502.6 42.26 | 29.83 30 122.0 42.26 | 29.83 4.12 0
64 377 32 1138.8 43.53 | 31.10 33 217.7 43.55 | 31.13 5.23 0.02
128 256 41 3259.7 49.72 | 35.10 41 499.5 49.59 | 34.98 6.53 0.13
256 163 57 9202.6 51.55 | 36.94 55 1547.3 51.46 | 36.85 5.95 0.09
512 97 52 17004.4 54.43 | 39.82 54 1470.7 54.48 | 39.88 11.56 0.05

1024 54 24 15730.1 55.78 | 41.16 22 682.4 55.80 | 41.18 23.05 0.02
2048 29 18 23611.3 56.83 | 42.21 22 1035.2 56.89 | 42.27 22.81 0.06

Table 4.1 Codebook training and compression results for theAVIRIS Jasper Ridgedatacube.

Codebook
Size (N)

Comp.
Ratio

GLA (Full-search) Proposed Method

CTg/
CT

PSNRg -
PSNR
(dB)

Itera-
tions

CTg
(sec)

PSNRg | SNRg Itera-
tions

CT
(sec)

PSNR | SNR

16 735 29 273.3 40.60 | 25.03 33 72.4 40.57 | 25.00 3.77 0.03
32 531 24 443.8 42.26 | 26.69 26 80.6 42.20 | 26.63 5.51 0.06
64 377 20 731.1 43.60 | 28.03 22 94.2 43.53 | 27.96 7.76 0.07
128 256 18 1318.9 44.71 | 29.14 22 139.6 44.69 | 29.12 9.45 0.02
256 163 25 3716.2 45.86 | 30.29 24 238.2 45.87 | 30.30 15.60 0.01
512 97 21 6224.4 46.81 | 31.24 23 422.2 46.88 | 31.31 14.74 0.07

1024 54 21 12393.2 47.51 | 31.94 21 747.1 47.53 | 31.96 16.59 0.02
2048 29 21 24768.5 48.28 | 32.71 21 1584.7 48.30 | 32.73 15.63 0.02

Table 4.3 Codebook training and compression results for the SFSI datacube.

Codebook
Size (N)

Comp.
Ratio

GLA (Full-search) Proposed Method

CTg/
CT

PSNRg -
PSNR
(dB)

Itera-
tions

CTg
(sec)

PSNRg | SNRg Itera-
tions

CT
(sec)

PSNR | SNR

16 714 22 151.9 40.38 | 28.19 20 38 40.35 | 28.16 4.00 0.03
32 495 28 381.2 41.81 | 29.62 24 57.2 41.77 | 29.58 6.66 0.04
64 334 21 567.8 42.95 | 30.76 18 54.1 42.92 | 30.73 10.50 0.03
128 213 19 1027.4 44.11 | 31.92 23 95.2 44.11 | 31.92 10.79 0
256 128 15 1647.4 45.02 | 32.83 20 115.2 45.03 | 32.84 14.30 0.01
512 72 19 4189.8 45.95 | 33.78 21 188.5 45.97 | 33.79 22.23 0.02

1024 39 16 7071.8 46.87 | 34.67 19 284.6 46.88 | 34.69 24.85 0.01
2048 20 14 12372.1 47.86 | 35.67 16 452.3 47.87 | 35.68 27.35 0.01
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PSNRs are slightly worse. The maximum loss of PSNR is 0.13 dB for
AVIRIS Cuprite data with N ¼ 128. The PSNR loss was caused by the
disagreeing MDP found by the GLA and the proposed method. It is
possible that the partition that was the MDP in the previous iteration may
not be the closest partition for a training vector in the current iteration,
even though the distance between the pixel and the partition is improved. In
the GLA, a training vector might not be placed in the same MDP even
though it moves closer to the MDP; whereas in the proposed method, a
training vector is kept in the same MDP if it moves closer to the MDP. This
difference may cause some training vectors to be classified suboptimally in
an iteration process, introduce certain iteration error compared to the full-
search process, and ultimately require more iteration loops to reach the
predefined threshold. The experimental results shown in Tables 4.1–4.4
indicate that the proposed method took 1–2 more iteration loops on
average than the full-search process in training a codebook.

The compression ratios are listed in the second column of the tables. They
were calculated by dividing the number of bits in the original datacubes by
the number of bits in the compressed data (including both the index map and
the codebook; the inclusion of the codebook as the compressed data is
discussed in Section 4.7).

4.3.4 Assessment of preservation of spectral information

The preservation of spectral information is critical in the data compression of
hyperspectral imagery, as spectral information is the fingerprint of the target
objects. Extra care for the spectral information should be taken, as its loss
decreases the value of hyperspectral data for remote sensing applications.
Extensive studies of the impact of VQ-based data compression on hyperspectral
imagery for remote sensing applications have been reported.29 35 Chapter 8
assesses the impact data compression has on the derivation of final remote
sensing products.

Table 4.4 Codebook training and compression results for the CASI Acadie datacube.

Codebook
Size (N)

Comp.
Ratio

GLA (Full-search) Proposed Method

CTg/
CT

PSNRg -
PSNR
(dB)

Itera-
tions

CTg
(sec)

PSNRg | SNRg Itera-
tions

CT
(sec)

PSNR | SNR

16 285 21 495.9 32.39 | 19.47 24 111.3 32.44 | 19.51 4.46 0.05
32 227 67 3108.7 35.54 | 22.62 68 693.7 35.58 | 22.62 4.48 0
64 187 54 4961.9 37.74 | 24.81 55 902.4 37.74 | 24.81 5.50 0
128 158 48 8773.6 39.69 | 26.76 46 883.6 39.66 | 26.73 9.93 0.03
256 134 48 17506.6 41.32 | 28.40 49 1195.4 41.34 | 28.42 14.64 0.02
512 113 45 30376.3 42.73 | 29.81 46 1761.3 42.75 | 29.83 17.25 0.02

1024 93 38 56709.3 44.05 | 31.12 42 3096.6 44.06 | 31.13 18.31 0.01
2048 73 41 122672 45.27 | 32.35 42 5539.9 45.30 | 32.37 22.14 0.03
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The preservation of spectral information for the CASI and SFSI datacubes,
when VQ-based data compression is used, has been reported by Hu et al.33 and
Qian et al.35 This chapter uses the Cuprite datacube for evaluation as an
example of how compression can preserve the original information. The
spectral angle mapper (SAM) is used to evaluate the preservation of spectral
features of the data after compression. A typical spectrum profile corresponding
to a spatial sample in the scene of the datacube before and after compression
will be shown. Abundance images (derived using spectral unmixing) from the
datacube before and after compression are produced to assess the impact of
data compression on remote sensing applications.

A compressed datacube with a compression ratio of 29:1 (N ¼ 2048) was
selected for evaluation because a ratio between 10:1 and 30:1 meets most of
the requirements for onboard hyperspectral data compression. Compression
ratios above this range are usually suitable for a quick look or browsing of
hyperspectral data, as noise introduced with higher compression ratios is
unlikely to be acceptable for remote sensing applications.

The SAM is defined as follows:

SAM ¼ cos 1

Xnb

b 1

DNOðbÞ �DNDðbÞ

Xnb

b 1

½DNOðbÞ�2
Xnb

b 1

½DNDðbÞ�2
vuut

2
6666664

3
7777775
, ð4:8Þ

whereDNO(b) andDND(b) are digital numbers at spectral band b of an original
spectrum and the reconstructed spectrum after compression at the same
location of the scene, and nb is the total number of spectral bands. SAM varies
between 0 and p (radians), where 0 indicates a perfect match between the
original and the reconstructed spectra. The SAM between each spectrum of the
original Cuprite datacube and that of the reconstructed datacube was
calculated; the SAM image is shown in Fig. 4.7. The displayed scale is stretched
to between 0 and 0.03 rad (1.71 deg) in order to highlight the difference. The
statistical values of the SAM image are mean ¼ 0.003 rad (0.17 degrees),
standard deviation¼ 0.001 rad (0.06 deg), minimum¼ 0 rad, and maximum¼
0.041 rad (2.39 deg). The spectral angles between spectra of the original data
and those of the reconstructed data are generally smaller than 0.003 rad. The
maximum spectral angle between the two datacubes is located at spatial sample
(432, 85). This maximum value is difficult to identify by eyesight alone, as it is a
single point in the scene, whereas a bright spot (bottom left), which is composed
of a cluster of about 20 “high” valued samples, is more visible. The maximum
value of these samples is 0.037 rad (2.12 deg). These highest spectral angle
values likely correspond to the presence of spectral anomalies, and all of the
highway sample values in the scene are smaller than 0.010 rad (0.57 deg).
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Figure 4.8 shows the spectral profile of a spatial sample at location (176, 285)
of the original Cuprite data, the reconstructed spectrum, and their difference. It
can be seen that the two spectra are very similar. They overlap each other very
well even in the absorption band regions. Their differences appear to be random,

Figure 4.7 A SAM image between spectra of original Cuprite and those of compressed
data at a compression ratio of 29:1 (the darkest denotes 0 of the spectral angle value).
Reprinted from Ref. 25.
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Figure 4.8 Spectral profile of a spatial sample of the Cuprite datacube before and after
compression (29:1), and the difference. The compressed spectrum is overlapping well with
the original (reprinted from Ref. 25). For a color version of this figure, see Plate 3 in the color
plate section of this book.
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and no large discontinuities in the absorption band regions can be seen. The
relative rms error (R-RMSE) equals 0.85%. This spectrum is selected as an
example because it is the purest pixel of the mineral alunite, which is one of the
endmembers in the following spectral unmixing example.

Endmembers required for the spectral unmixing were extracted from the
original Cuprite datacube and the reconstructed datacube using an automated
method called iterative error analysis. Both the original and the reconstructed
datacubes were unmixed with their own endmembers using a constrained
linear technique to form the abundance images corresponding to the set of
endmembers. Figure 4.9 shows the abundance images for the endmember
kaolinite derived from the original Cuprite datacube and from the reconstructed
datacube. It can be seen that the compressed datacube produces an abundance
image similar to the original. A detailed evaluation and discussion can be found
in the work by Staenz et al.34

4.4 Fast Vector Quantization Based on Searching
Nearest Partition Sets

Following the discussion in the previous section, this section describes the
further development of fast VQ searching.26 This fast search algorithm makes
use of the fact that, in GLA, a vector in a training sequence is either placed in

               (a)                                                             (b) 

1.0

0.0

Figure 4.9 Abundance images (kaolinite) derived from (a) the original and (b) the
reconstructed Cuprite datacube at a compression ratio of 29:1 (reprinted from Ref. 25).
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the same MDP as in the previous iteration or in a partition within a very small
subset of partitions referred to as nearest partition set.

As described in Section 4.3, it is observed from the analysis of the GLA
that at any given iteration loop, most of the vectors in a training sequence are
placed in the same MDPs as in the previous iteration, although the centroids
(i.e., codevectors) of the MDPs are updated at the end of the previous
iteration. Over 80% of the vectors in the training sequence remain in the same
MDPs when the training process goes to the next iteration; the percentage
increases to 98% when the iteration number goes up to 20. This fact indicates
that only very small portions of vectors in the training sequence change their
MDPs from one iteration loop to the next. Unfortunately, it is unknown
which ones they are before going through the full search.

4.4.1 Nearest partition sets

In order to study the training vectors that change their MDPs in the next
iteration, an investigation of these vectors was performed to see how they are
trained in the full-search process. It is observed from the investigation that a
training vector that changes its MDP in the next iteration is placed in one of p
nearest-neighbor partitions of the vector’s MDP in the previous iteration. This
set of p partitions is referred to as the nearest partition set (NPS). Figure 4.10
shows the p nearest-neighbor partitions of the vector’s MDP in the previous
iteration and illustrates how the training vector is classified to a newMDPwithin
the NPS. In the figure, a black point stands for a 2D vector in an xy coordinate
system. A training vector v (marked as a small white circle) has been assigned to
partition A as its MDP in the previous iteration. The nearest neighbor partitions

b' A

b

c
d

e

f

g

c'

v

Figure 4.10 Six (p ¼ 6) nearest-neighbor partitions (b, c, d, e, f, and g, marked with a solid
circle) of MDP A of a training vector v in the previous iteration; and the two updated partitions
(b' and c', marked with broken circle) at the end of the previous iteration.
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of partition A are partitions b, c, d, e, f, and g, marked with the solid circles. The
centroids of the nearest-neighbor partitions are marked with �. At the end of
the previous iteration, all of the partitions are updated. Figure 4.10 shows the
partitions b0 and c0 (marked with broken line) updated from partitions b and c.
Their centroids are marked with	. In the current iteration, the training vector v
falls within the circle of partition b0 and is assigned to partition b0 as its MDP,
which is one of the nearest-neighbor partitions.

Figure 4.11 shows examples of the investigation results—p values (i.e.,
sizes of NPSs)—for training vectors that change their MDP in the next
iteration as a function of iteration number for codebook sizes N from 16 to
2048. It can be seen that p at each iteration is very small compared with the
total number of partitions N. The p values decrease with the increase of the
iteration number. For the case of codebook size N ¼ 2048, p decreases from
67 to 12 from iteration loops 1 to 20; this represents 3.3% to 0.6% of the total
number of partitions, respectively. For the case of codebook size N ¼ 16, p is
between 6 and 4 from iteration loops 1 to 28; this represents 37% to 25% of the
total number of partitions, respectively. The larger the number of partitions N
(i.e., codebook size) is, the smaller the percentage of the NPS size out of the
total number of partitions. This important observation of the characteristic of
the GLA is used to speed the codebook training process, especially for a
codebook with a large size.

It can be concluded that a training vector is either placed in the same
partition as in the previous iteration as the MDP or placed in a partition
within the NPS of its MDP in the previous iteration. The full-search can be
significantly accelerated by searching only in the NPS plus the single previous
MDP, as the size of the NPS is much smaller than the total number of
partitions. The only overhead is to set up the NPS of the previous MDP.
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Figure 4.11 Sizes of nearest partition sets for training vectors that change their MDP in the
next iteration as a function of iteration number, when codebooks of size N ¼ 16 to 2048 are
trained (reprinted from Ref. 26).
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A description of the process for generating NPSs follows. There are N
partitions if the codebook size is N. Each partition has a unique NPS, and
thus there are a total of NNPSs. The NPS of a partition does not change at an
iteration process and will be used many times for the partition that was a
MDP in the previous iteration. It should be ready for use before commencing
the next iteration. The logical time to set up the NPSs is right after the
codevector update of the previous iteration.

The scheme used to create the NPSs directly affects the speed im-
provement of the proposed search method, as the NPSs need to be created at
each iteration process. The proposed search method would not improve the
overall processing time if the processing time spent on creating the NPSs is of
the same order as the time saved by the proposed method. The schemes that
efficiently generate the NPSs are described as follows: (1) the upper-triangle
matrix of distances to reduce the number of calculations of the distances
between a partition and all of its neighbors; (2) a fast sorting method for
sorting partitions; and (3) the approach to determining the size of the NPSs.

4.4.2 Upper-triangle matrix of distances

The first step to generate the NPSs is to calculate the distances between a
partition i and all of its neighbors d(i, j)(i ¼ 1, 2,. . ., N; j ¼ 1, 2,. . ., N; i 6¼ j), so
that its neighbor partitions can then be sorted according to the distances.

A partition hasN 1 neighbor partitions, assuming that a codebook of size
N is being trained, and thusN 1 distances need to be calculated before sorting.
There are a total of N � (N 1) distances for all N partitions. In fact, only N �
(N 1) / 2 distances are unique and need to be calculated, as the distances
between partitions A and B and between partitions B and A are the same.

Figure 4.12 shows an upper-triangle matrix of distances that illustrates
how the distances between a partition and its N 1 neighbors are calculated

Distances of Partition 

#1        #2        #3        #4       #5 …. #N 2          #N 1       #N
Distances 
Calculated 

d(1,2)  d(1,3)  d(1,4) d(1,5) …… d(1,N 1) d(1,N) N 1

d(2,3) d(2,4) d(2,5) …... d(2,N 1) d(2,N) N 2

d(3,4) d(3,5) …… d(3,N 1) d(3,N) N 3

d(4,5) …… d(4,N 1) d(4,N) N 4

…… ……  …… 

d(N 2,N 1) d(N 2,N)  2 

d(N 1,N)  1 

–

–

–

–

–

––

–

–

–

–

–

–

–

Figure 4.12 Process of calculation and organization of distances between a partition and
its N – 1 neighbors (reprinted from Ref. 26).
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and organized for sorting in order to reduce the number of distance
calculations. For partition #1, its distances to all N 1 neighbor partitions d
(1, j)( j ¼ 2, 3,. . ., N ), underlined by dotted line #1 in the figure, are calculated
and then used for sorting its neighbors. For partition #2, its distance to
partition #1 d(2,1) is the same as distance d(1,2), which has been calculated.
OnlyN 2 distances d(2, j)( j¼ 3, 4,. . .,N ), underlined by dotted line #2, need
to be calculated; these N 2 distances together with d(1,2) are used for sorting
the partition’s neighbors. For partition #3, only N 3 distances d(3, j)( j ¼
4, 5,. . ., N), underlined by dotted line #3, need to be calculated, as its distances
to partition #1 and #2, d(i,3)(i ¼ 1, 2) in the vertical line for #3, have been
calculated. The N – 3 distances plus the calculated distances d(i,3)(i ¼ 1, 2) in
the vertical line for #3 [all of the distances d(.,.) crossed by dotted line #3]
are used for sorting the neighbors of partition 3. For partition #N, no
distance needs to be calculated, as the distances to its N 1 neighbors d(i,N)
(i ¼ 1, 2, . . ., N 1) [all of the distances d(.,.) strikethrough by dotted line #N]
have all been calculated previously. They are used for sorting the neighbors of
partition N.

4.4.3 p-least sorting

The next step is to sort the N 1 neighbors of each partition according to
their distances to the partition from nearest to farthest. “QuickSort” is a
widely used fast-sorting algorithm. Its complexity is O(n log2 n) when n values
are sorted. An average of N � (N 1)log2(N 1) comparisons and swaps are
required to sort N NPSs at each iteration if QuickSort is used. This is still a
large processing burden. In addition, when sorting the neighbor partitions, the
identities (IDs) of the neighbor partitions need to be transposed with the
distance values in order to generate the lookup table of the NPSs.

The proposed method is referred to as “p-least sorting;” it is simpler and
faster than QuickSort. The important features of the data to be sorted are
taken into account. That is, for N 1 neighbors of a partition, only the first
p nearest neighbors need to be sorted (p is much smaller than N 1).
It eliminates swap operations. Figure 4.13 illustrates the sorting process of the
p-least sorting. A window containing p ¼ 4 least values sorted so far is used to
sort a dataset having 16 values with the ID#. The beauty of the p-least sorting
is that it does not require a comparison to all of the values in the window when
a value in the dataset is equal to or larger than the last value in the window.
For example, the values (and their corresponding IDs) 99 (#5), 21 (#11), 92
(#12), 77 (#13), 75 (#14), 33 (#15), and 31(#16) in the dataset are sorted using
only one comparison. If a value in the dataset is smaller than the value(s) in
the window, only assignment(s) are required to place the value in the
appropriate location in the window. For value 43 (#6) in the dataset, for
example, the algorithm detects that it should be located in the second place in
the window after four comparisons. Only three assignments are needed to
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move 55 (#2) and 65 (#1) in the second and third place to the third and fourth
place, and to place 43 (#6) in the second place.

The number of comparisons and assignments used by the p-least sorting are
listed at the bottom of Fig. 4.13. Six comparisons and nine assignments (three
swaps) were used to initiate the window. They are also shown at the beginning of
the list. In this example, an assignment is counted as 1/3 swap, as three
assignments are required to swap a value inQuickSort. A total of 32 comparisons
and 26/3 
 9 swaps are used to sort the dataset with the p-least sorting, whereas
the QuickSort requires 75 comparisons and 16 swaps. The larger the size of the
dataset to be sorted, the greater the improvement in processing time.

4.4.4 Determination of NPS sizes

The final step to create the NPSs is to determine p, the size of the NPSs. The
investigation and analysis of the full-search process discovered that a training
vector is placed either in a partition that was the MDP in the previous
iteration or in one of the p nearest neighbor partitions of the previous MDP.
The sizes of NPSs vary, but the range of variation is not large. In order to
simplify the proposed method, the maximum one is used as the size for all of
the NPSs:

p ¼ maxfpig ði ¼ 1, 2, . . .,NÞ, ð4:9Þ
where pi is the size (i.e., maximum order number) of NPSi (i ¼ 1, 2, . . ., N).

Unfortunately, pi is not known before searching through all of the N 1
neighbor partitions of the MDP for each training vector. It is also observed
that the sizes of NPSs decrease with the increase of iteration number. This
makes sense because the codebook training error converges to the distortion

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

65 55 36 72 99 43 21 9 5 11 21 92 77 75 33 31

#3 #2 #1 #4
36 55 65 72

#3 #6 #2 #1
36 43 55 65

#7 #3 #6 #2
21 36 43 55

#8 #7 #3 #6
9 21 36 43

#9 #8 #7 #3
5 9 21 36

#9 #8 #10 #7
5 9 11 21

Comparisons 6 1 4 4 4 4 3 1 1 1 1 1 1 32 (total)

Assignments 9 0 3 4 4 4 2 0 0 0 0 0 0 26 (total)

Figure 4.13 Illustration of p-least sorting method with p ¼ 4 (reprinted from Ref. 26).
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threshold : with the increase of iterations. This observation is critical and used
to determine p.

Assuming that p0 � p is the approximation size of the NPSs of the current
iteration, the pi of each NPSi (i ¼ 1, 2, . . ., N) will be known at the end of the
iteration, after the p0 nearest partitions in each of the NPSs have been searched
through to find the MDP for all the training vectors. The p value of the
current iteration is thus obtained using Eq. (4.9). This p value is determined
too late for the current iteration, but it can be used as p0, the approximation
size of the NPSs of the next iteration. Although it may be slightly larger than
the real p value of the next iteration, it ensures that the NPSs of the next
iteration contain all of the necessary candidates for finding the same MDPs as
in the full-search process. This is because p values decrease with the increase of
iteration number; use of the p value of the current iteration as that of the next
iteration is a safe approximation. The only disadvantage is that slightly more
nearest partitions in the NPSs may be searched when p0 is slightly larger than
the real p of the next iteration; however, the latter is unknown until the
iteration is completed.

Figure 4.14 shows how pi of each NPSi (i ¼ 1, 2,. . ., N) is obtained at an
iteration. pi is the maximum order number of the partition that has been found
being a MDP at least once within the distance sorted NPSi. The maximum
order number pi of NPSi is recorded during the course of codebook training at
an iteration process. At the end of the iteration, the maximum pi of all of the
NPSs is extracted as p of the current iteration and used as the approximation
size of the NPSs of the next iteration. In Fig. 4.14, p ¼ pN 1 ¼ 10, the

A nearest partition in a NPS
A nearest partition that has been
found being a MDP at least once

Order Number of Nearest Neighbor
(from near to far)

p1 = 7

p2 = 7

p3 = 8

p4 = 7

p5 = 6

p6 = 7

pN-1=10

pN = 9

1 2 3 4 765 8 9 10 p'

NPS1

NPS2

NPS3

NPS4

NPS5

NPS6

NPSN-1

NPSN

Figure 4.14 Generation of the maximum order number pi of each NPS for determining p

(reprinted from Ref. 26).
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maximum order number of the current iteration is assigned to p0 for the next
iteration.

The first iteration is a full-search process. At the end of the first iteration,
N NPSs are generated, each of which has p0 ¼ N 1 neighbor partitions
sorted from nearest to farthest. The pi of each NPS is obtained by matching
the MDP of each training vector to the NPS of its MDP to locate the
maximum order number. The maximum pi is p of the first iteration and is
assigned to p0 for the second iteration.

4.4.5 Two fast VQ search algorithms based on NPSs

Two algorithms are proposed in this section. Algorithm 1 searches for the MDP
for a training vector in the NPS of the previous MDP plus the previous MDP.
Algorithm 2 is the combination of the fast method described in Section 4.3 and
the method proposed in this section to further improve the computation time.

4.4.5.1 Algorithm 1

From the second iteration onward, the full-search process for each training
vector is replaced by searching only in the small NPS of the previous MDP of
the training vector plus the previous MDP. The MDP found in this way is the
same as that found in the full-search process because the NPS plus the
previous MDP contains all necessary candidate MDPs (as in the full-search
process). Because the size of the NPS is much smaller than the total number of
partitions N, the codebook training process is greatly accelerated.

Figure 4.15 shows the flowchart of the codebook training process with
search limited to the NPS plus the single previous MDP (the boxes with solid
lines). The codebook training iteration begins after initialization of N
codevectors. The proposed algorithm operates in the same way as the GLA in
the first iteration, as shown in the right column of the flowchart. A full search
is applied to find the MDP for each training vector Xj( j ¼ 1, 2,. . ., n). In the
lower portion of the flowchart, the index I of the MDP for vector Xj is stored
in MDP( j), which will be used in the next iteration to identify a NPS for fast
search of the vector. The search process for the first iteration is completed
after all n vectors in the training sequence have had their MDP found and the
partitions updated. Before the end of the first iteration, the algorithm updates
the N codevectors, creates the N NPSs, and determines the p0 for the second
iteration using the method described in Sections 4.4.1–4.4.4.

After the first iteration, for each training vector Xj( j ¼ 1, 2,. . ., n), the
index of the partition that was the MDP of the vector in the previous iteration
stored in MDP( j) is assigned as the current minimum-distance partition
identity I ¼ MDP( j) (the box below the diamond-shaped box named
“iteration ¼ 1?” in the center column). The distance dðXj,YI Þ between the
vector and the partition identified by I is calculated (the second box below the
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diamond-shaped box named “iteration ¼ 1?” in the center column) and
assigned as the current minimum distance dmin (in the first box in the
left column) because the partition has a high probability of being the MDP
of the vector in the current iteration. The I, which carries the index of the
MDP of the vector in the previous iteration, is used to identify the nearest
partition set NPS ¼ NPSI for searching for the MDP of the vector. The left
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Figure 4.15 Flowchart of the proposed algorithms. Algorithm 1 includes the boxes with
solid lines, and algorithm 2 includes the boxes with both solid and dotted lines (reprinted
from Ref. 26).
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column of the flowchart shows that only p0 nearest-neighbor partitions in
NPS are searched to find the MDP for the vector Xj . The distance
dðXj,YNPSðiÞÞði ¼ 1, 2, . . . ,p0Þ between the vector and each of the nearest-
neighbor partitions in NPS is calculated. The current minimum distance dmin

and the index identity I are updated if the distance between the vector and the
partition is smaller than the current minimum distance dmin. This process
repeats until all p0 nearest partitions in the NPS are searched. Before going to
the low portion of the flow chart, update pI, the maximum order number of
the MDP found in NPS for determining p at the end of the iteration.

The proposed algorithm also attempts to reduce the computation time of
dðXj,YI Þ using partial distance.24 Compared to the GLA, the additional
memory required by Algorithm 1 is N � p0, which is used for storing the
lookup table of the p0 nearest neighbors for each of the NNPSs, where p0 is the
size of the NPSs, and N is the codebook size. The TIE-based fast search
algorithms9 16 require 2N2 additional memory. The search algorithms in Refs.
18 and 22 require 4(n þ N) and (N þ N/4 þ N/16) additional memory,
respectively, where n is the total number of vectors in a training sequence.

4.4.5.2 Algorithm 2

Section 4.3 describes a fast codebook training method that slightly modifies
the GLA such that a training vector does not require a full-search to find the
MDP if its distance to the partition is improved in the current iteration
compared to that of the previous iteration. Over half of the total vectors in a
training sequence can be directly placed in the same partition as in the
previous iteration as the MDP of the current iteration. The codebook
generated using this method might not be identical to the codebook generated
by GLA, although it is as good as the GLA codebook. In Section 4.3, a full
search is still required to find the MDP for a training vector if its distance to
the previous MDP is not improved in the current iteration. This full-search
can be replaced with the NPS search method proposed in this section to
further accelerate the training process. Algorithm 2 is the combination of the
two methods proposed in Section 4.3 and this subsection. A codebook
generated using Algorithm 2 will not be identical to that generated using the
GLA due to the use of the method proposed in Section 4.3.

The codebook training process of Algorithm 2 is shown in Fig. 4.15 (the
boxes with solid and dotted lines). The operation of the first iteration is the
same as that of Algorithm 1 except that the minimum distance dmin of each
vector Xj needs to be stored in dp

minðjÞ (the dotted-line box in the lower portion
of the flowchart), which will be used in the next iteration for determining
whether the distance between the training vector and the MDP is improved.

After the first iteration, for each vector Xj(j ¼ 1, 2, . . ., n) in the training
sequence, the distance dðXj,YI Þ between the vector and the partition that was
the MDP in the previous iteration, identified by I ¼ MDP(j), is calculated
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first. The same partition as in the previous iteration is assigned to the vector as
the MDP if the distance is improved, i.e., dðXj,YI Þ < dp

minðjÞ, where dp
minðjÞ is

the minimum distance between the vector and the partition in the previous
iteration. No search is applied to the vector, as shown in the center column of
the flowchart (through the dotted-line diamond-shape box and the dotted-line
rectangular box to the lower portion of the flowchart). Otherwise, a search
process within the NPS of the previous MDP is applied to find the MDP for
the vector (going to the left column of the flowchart). The search process for
MDP within the NPS is the same as described for Algorithm 1.

In addition to the memory requirements of Algorithm 1 of N � p0 for
storing the lookup table of the p0 nearest neighbors for each of the N NPSs,
the additional memory requirement of Algorithm 2 is the n for storing n
minimum distances dp

minðjÞ of the previous iteration, where n is the total
number of vectors in a training sequence.

4.4.6 Experimental results

Two hyperspectral AVIRIS datasets used in Section 4.3 were tested. The
experiments were performed using the same Sun Fire 280R workstation with a
900-MHz UltraSPARC-IIIþ CPU. The PSNR defined by Eq. (4.4) was used
to measure the quality of codebooks and compression performance.

The iteration distortion threshold : was set to 0.0001 in the experiments to
attain good codebook fidelity. The codebook training and compression results
(compression ratio, number of iterations, computation time, and PSNR/SNR)
of the two test datasets using the GLA with codebook sizes N ¼ 16 to 2048
appear in Tables 4.1 and 4.2. Figure 4.16 shows the improvement in
computation time of the two fast algorithms compared to the GLA for the
two datasets. The improvement in computation time of the fast algorithm
described in Section 4.3 to the GLA is also shown in the figure for the sake of
comparison.

It can be seen that Algorithm 1 improved the computation time of
codebook training by factors from 6.6 to 50.7 for the Jasper Ridge dataset
when the codebook size is from N ¼ 16 to 2048, and factors from 5.8 to 70.4
for the Cuprite dataset. The time used to create the NPSs has been included.
Algorithm 1 produces exactly the same codebook as that produced by the
GLA because the NPS together with the MDP of the previous iteration
contains the best-match partition found by the full-search process. The MDP
found by Algorithm 1 is identical to that found by the GLA. The larger the
codebook size N is, the greater the improvement in computation time. This is
because the size of the NPS, which is sought by the MDP, represents a small
percent of the total partitions when the codebook size N is large.

It can also be seen from Fig. 4.16 that the time improvement stops
increasing at a certain codebook size (N ¼ 1024 for the Jasper Ridge dataset,
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and N ¼ 512 for the Cuprite dataset) with the increase in the codebook
size N. This is because at that codebook size the computation time used to
prepare the N NPSs starts to affect the overall computation time. In training
a codebook of that size, the computation time saved by searching in the
small NPS is significantly consumed by the overhead of preparation of the N
NPSs. For instance, when the codebook size is N ¼ 512, a total of N(N 1)/
2 ¼ 130,816 vector distances need to be calculated at the end of each
iteration in order to sort the neighbor partitions for each of the N partitions.
Meanwhile, the total number of calculations of vector distances required
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Figure 4.16 Improvement of codebook training time of the NPS-based Algorithms 1 and 2
for the (a) Jasper Ridge dataset and (b) Cuprite dataset; and a comparison to the fast search
algorithm based on improved distance to MDP (reprinted from Ref. 26).
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to find the MDP for all the training vectors in the test datasets of size n¼ 256
� 256 ¼ 65,536 is n(p0 þ 1)/fpartial-distance ¼ 65,536 � (24 þ 1) / 2.5 ¼
655,360 (where an average NPS size over all iterations p0 ¼ 24 and a
partial distance factor fpartial-distance ¼ 2.5 are used). The number of
calculations of vector distances used for preparation of N NPSs represents
17% of the total number of calculations of vector distances of the codebook
training process. The percentage goes up to 70% when the codebook size
N ¼ 2048. In general, the time overhead for preparation of the N NPSs starts
to significantly affect the overall computation time when the codebook size
goes above 1% of the training set size n.

Algorithm 1 greatly outperforms the fast search algorithm that is based on
the improved distance to MDP described in Section 4.3. Not only does it
generate a codebook exactly the same as the GLA, but it also attains much
more improvement in computation time. It is faster than the method described
in Section 4.3 by factors from 1.7 to 3.2 for the Jasper Ridge data and by
factors from 1.9 to 8.0 for the Cuprite data.

Algorithm 2 combines the method described in Section 4.3 and the NPS-
based method. A codebook generated using the fast search method might not
be identical to that generated using the GLA when the same training set is
used to train a same-size codebook. The improvement in computation time of
codebook training by Algorithm 2 is superior to Algorithm 1 for all codebook
sizes. Speed improvement factors from 7.7 to 58.7 were attained for the Jasper
Ridge data when the codebook size was from N ¼ 16 to 2048, and factors
from 13.0 to 127.7 were attained for the Cuprite data.

Codebooks generated using Algorithm 2 are as effective as those generated
using the GLA when they are used to compress the datasets. Figure 4.17 shows
the differences of PSNRs attained using codebooks generated by the GLA
and those generated by Algorithm 2 for the two datasets. The differences in
the PSNRs are within � 0.1 dB, except N ¼ 512 for the Cuprite dataset.

Difference of PSNR Attained by the GLA and Algorithm 2
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Figure 4.17 Difference of PSNR attained by GLA and Algorithm 2 (reprinted from Ref. 26).
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A negative difference implies a slight improvement of PSNR. When the
codebook size isN¼ 512 for the Cuprite dataset, the PSNR is better by 0.33 dB
using Algorithm 2. The PSNR difference was caused by a disagreement in the
MDP found by the GLA and by the method described in Section 4.3.

It is possible that the partition that was the MDP of a training vector in
the previous iteration may not be the closest partition of the vector in the
current iteration, even though the distance between the vector and the
partition is improved in the current iteration. If this is the case, the training
vector is forced to stay in the same MDP at the current iteration, whereas the
GLA will not place the training vector in the same MDP of the previous
iteration if it is not the closest. This forced assignment of MDP can cause
some training vectors to be classified suboptimally in an iteration process,
introduce certain iteration errors compared to the GLA, and ultimately take
more iteration loops to reach the predefined threshold. The experimental
results shown in Section 4.3 (Tables 4.1–4.4) have indicated that the search
method in Section 4.3 took 1–2 more iteration loops on average than the GLA
in training a codebook. Because the fast search method in Section 4.3 takes
more iteration loops to train a codebook, it is possible that the overall training
error of a codebook trained using this method is slightly smaller than that
using the GLA when they exit the iteration loop by comparing the overall
training error with the iteration threshold :. For the case of the codebook of
size N ¼ 512 trained on the Cuprite dataset, the GLA took 52 iterations to
train the codebook and exited the iteration loop with the overall training error
of 0.0000914 (<: ¼ 0.0001), whereas Algorithm 2 took 55 iterations to train
the codebook and exited the iteration loop with the overall training error of
0.0000681. From this point of view, the codebook trained using Algorithm 2 is
slightly more accurate to span the training vectors than that using the GLA.

The improvement in computation time of the fast search method is
independent of the number of dimensions of the vectors, as it achieves the
improvement by reducing the search space from searching all N partitions to
the small NPS of the previous MDP of a training vector plus the single previous
MDP. A simplified theoretical speedup factor of the fast search method can be
expressed as f ¼ N/(paverage þ 1), where paverage is the average size of the NPSs
of all the iteration loops. In reality, the speedup factor also depends on the
codebook size N due to the overhead used for preparing the NPSs as discussed
above. Experiments with a small vector size of 32 were carried out for the
Cuprite dataset. The experimental results gave similar conclusions.

4.4.7 Comparison with published fast search methods

It is worth the effort to compare the improvement in computation time
achieved by the proposed algorithms in this book with reported fast
codevector search methods in the literature. It would be difficult to judge
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the performance speedup of published fast methods by comparing their
computation time reported, since the sizes of training sets, the dimensions of
vectors, size of codebooks trained, and the computation platform used were
different. That is why most of the published papers reviewed in Section 4.2
evaluated the improvement in computation time of the developed fast
methods by comparing their computation time with that of the GLA, as the
GLA is well known and easy to implement. A reader can easily judge the
performance of different fast methods by comparing their ratios of computation
time improvement to the GLA. This approach is adopted here to evaluate the
performance of the proposed algorithms in this book.

In Kaukoranata et al.,23 the developed fast method, which is referred to as
grouping, together with three earlier published fast methods—partial distance
search (PDS),24 triangle inequality elimination (TIE),9 and mean-distance-order
partial search (MPS)13—were compared with the GLA for the codebook size of
M ¼ 256. Three widely used images—Bridge, Miss America, and House—were
used. In order to evaluate the computation time reduction of the proposed
algorithms in this book, Table 4.5 was created here based on the information in
the article.23 It shows the time reduction compared to the GLA obtained by
each of the published methods. It can be seen that the time reduction obtained
by a single published fast method is between 1.9 and 20.3 for the three
test images when the codebook size is 256. Because the grouping was applied
to PDS, TIE, and MPS in Ref. 23 to further reduce the computation time,
Table 4.5 also shows the overall time reduction obtained by combining

Table 4.5 Time reduction compared to the GLA obtained by four published fast algorithms
and their combination (codebook size M ¼ 256).

Image Method

A method Alone With Grouping

Running Time Time Reduction Running Time Overall Time
Reduction

Bridge GLA 127.6
Grouping 46.1 2.8
PDS 33.4 3.8 13.0 9.8
TIE 21.4 6.0 13.5 9.5
MPS 12.4 10.3 4.8 26.6

Miss America GLA 1344.5
Grouping 336.3 4.0
PDS 311.1 4.3 75.8 17.7
TIE 135.2 9.9 44.6 30.1
MPS 97.3 13.8 21.5 62.5

House GLA 874.8
Grouping 138.8 6.3
PDS 460.7 1.9 85.0 10.3
TIE 43.2 20.3 28.8 30.4
MPS 55.2 15.8 15.5 56.4
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grouping with each of the earlier published fast methods. The overall time
reduction is between 9.5 and 62.5 for the three test images when the codebook
size is 256. The time reductions obtained by Algorithm 1 proposed in this book
are 39.1 and 47.8 for Jasper Ridge and Cuprite datasets, respectively, when the
codebook size is 256; and the time reductions obtained by Algorithm 2
proposed in this book are 57.4 and 73.8 (the sizes are much larger than that
obtained by a single published fast method and comparable to the overall time
reduction obtained by their combinations).

4.5 3D VQ Compression Using Spectral-Feature-Based
Binary Code

Two fast VQ search algorithms have been discussed in Sections 4.3 and 4.4.
These fast VQ search algorithms significantly reduce the search space of the
conventional full-search GLA in the codebook training process to accelerate
the processing.

The remaining sections of this chapter describe fast vector quantization
algorithms that exploit other effective means to significantly reduce the
computational complexity of the conventional vector quantization algorithms
for bringing VQ algorithms to practical uses in the compression of satellite
images, especially hyperspectral datacubes.

This section introduces an effective binary coding method to map the
spectra of a hyperspectral datacube to be compressed into very simple and
short binary codes. The heavy VQ codebook training and codevector
matching are then performed on these binary codes. This method speeds the
training and matching processing.

A spectral-feature-based binary code (SFBBC) was developed to represent
the vectors fXig i ¼ 1, 2, . . . ,Nr �Nc of a hyperspectral datacube.36 The
SFBBC-coded vectors allow the distance dðXi,YlÞ between a training vector
Xi and a codevector Yl to be calculated using the Hamming distance37 rather
than the Euclidean distance. The Hamming distance is a sum of binary bit-
wise exclusive-or operations and is a much-faster computation than the
Euclidean distance. Because the calculation of distance dðXi,YlÞ is the most
frequent operation in the VQ process, this speeds up processing.

4.5.1 Spectral-feature-based binary coding

When the spectrum Xi, j ¼ fxi, jðlÞðl ¼ 1, 2, . . . ,NbÞg, corresponding to a
ground sample at location (i, j) in a datacube, is defined as a vector, in fact,
the codebook generation and nearest-codevector searching for each of vectors
are operations of spectral feature matching. If a simple and efficient way to
express a spectrum can be found, the operation of spectrum matching can be
performed rapidly.
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Qian et al. extended the binary spectral encoding algorithm38 and
developed a SFBBC36 that can effectively express a spectrum using binary
code. The SFBBC encodes an Nb-band spectrum fxi, jðlÞðl ¼ 1, 2, . . . ,NbÞg
into three binary codevectors:

1. Nb-bit amplitude binary codevector Xa
i, j,

2. ðNb 2Þ-bit slope binary codevector Xs
i, j, and

3. Nb-bit mean deviation binary codevector XMD
i, j .

The three binary codevectors are then concatenated to forma single (3Nb 2)-
bit SFBBC code:

~Xi, j ¼ Xa
i, jX

s
i, jX

MD
i, j ði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ: ð4:10Þ

The amplitude binary codevector Xa
i, j expresses variation of

amplitude of each spectral element about its mean and is constructed
from

Xa
i, j ¼ ½Xa

i, jð1Þ,Xa
i, jð2Þ, . . . ,Xa

i, jðNbÞ�T
ði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ

, ð4:11Þ

Xa
i, jðlÞ ¼

1 ½xi, jðlÞ mi, j� � 0

0 ½xi, jðlÞ mi, j� < 0
l ¼ 1, 2, . . . ,Nb, ð4:12Þ

(

where the scalar mi, j is defined as the spectral mean of pixel (i, j):

mi, j ¼
1
Nb

XNb

l 1

xi, jðlÞ ði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ: ð4:13Þ

The slope binary codevector Xs
i, j represents variation of amplitude of each

spectral element about its slope related to two adjacent elements and is
constructed from

Xs
i, j ¼ ½Xs

i, jð1Þ,Xs
i, jð2Þ, . . . ,Xs

i, jðNbÞ�T
ði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ

, ð4:14Þ

Xs
i, jðlÞ ¼

1 ½xi, jðlþ 1Þ xi, jðl 1Þ� � 0

0 ½xi, jðlþ 1Þ xi, jðl 1Þ� < 0
l ¼ 2, 3, . . . ,Nb 1: ð4:15Þ

�

The mean deviation binary codevector XMD
i, j describes the variation of

amplitude of each spectral element about its mean deviation and is
constructed from

XMD
i, j ¼ ½XMD

i, j ð1Þ,XMD
i, j ð2Þ, . . . ,XMD

i, j ðNbÞ�T
ði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ

, ð4:16Þ
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XMD
i, j ðlÞ ¼ 1 ½xi, jðlÞ mi, j� � MDi, j

0 ½xi, jðlÞ mi, j� < MDi, j
l ¼ 1, 2, . . . ,Nb, ð4:17Þ

(

where the scalar MDi, j is defined as the spectral mean deviation of pixel (i, j):

MDi, j ¼ 1
Nb

XNb

l 1

jxi, jðlÞ mi, jj ði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ: ð4:18Þ

With the spectral vectors being expressed using the SFBBC code, the
distance between two vectors Xi, j and Ym, n or the similarity measure for
determining signature matches between them can be implemented by
calculating the Hamming distance38 between the two SFBBC-coded vectors
~Xi, j and

~Ym, n, which is computed as follows:

Dhð~Xi, j,
~Ym, nÞ ¼

X3Nb 2

l 1

~Xi, jðlÞXOR~Ym, nðlÞ: ð4:19Þ

This is just a sum of binary bit-wise exclusive-or operations. Because
perfect matches rarely occur with real data, the two vectors are considered
identical if the distance Dh between them is smaller than an acceptable
threshold distance d.

4.5.2 Fast 3D VQ using the SFBBC

In fact, a SFBBC code can be viewed as a dimension-reduction code. Let us still
use the AVIRIS datacube as an example. In VQ compression of 3D datacubes,
a raw vector has Nb ¼ 224 elements, and takes 224 units of 16-bit long memory,
while a binary vector uses ~Xi, j just 3Nb 2 ¼ 670 bits. It takes only 42 units to
put them in a 16-bit-long memory. Therefore, the dimension of the vectors is
reduced from 224 to 42. A more significant reduction in computational
complexity is the distortion measure between two vectors. For the raw vectors,
the distortion measure uses Eq. (4.2), where Nb ¼ 224 products and 2Nb 1 ¼
447 additions are required. For the SFBBC binary vectors, however, the
distortion measure uses Eq. (4.19), which measures the Hamming distance
between two binary vectors, and requires only ð3Nb 2Þ=16 ¼ 42 exclusive-or
logical operations. The latter is much faster than the former.

One can now discuss codebook training with the SFBBC binary vectors.
Each vector of training sequence Xi, jði ¼ 1, 2, . . . ,Nr; j ¼ 1, 2, . . . ,NcÞ
is encoded to a binary codevector ~Xi, j. In codebook training, the MDP for
all vectors of the training sequence is found using SFBBC binary vectors instead
of using raw vectors. For a spectral vector Xi, j, if

Dhð~Xi, j,
~YmÞ � Dhð~Xi, j,

~YlÞ ð4:20Þ
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for l ¼ 1, 2, . . .,N, then Xi; j is assigned to partition Sm. Here, ~Ym and ~Yl are
SFBBC binary vectors of codevectors Ym and Yl. The computational
complexity to find the minimum distance partition Sm for one vector is now
reduced from N � Nb products plus N � (2Nb 1) additions to N �
3Nb 2

len

� �
exclusive-or operations (here, len is the word-length of memory,

usually 16 for AVIRIS data).
In the LBG algorithm, during codebook training for each vector in the

training sequence, a search is performed over all N codevectors to find the
MDP; it is very time consuming. To overcome this problem, it is suggested to
use the mean mi,j of the current vector as an auxiliary parameter to decrease
the range of search. It has been shown in the previous discussion that the
mean of a vector plays an important role in SFBBC coding. It has a direct
influence on the binary vector Xa

i; j, which expresses the variation of amplitude
of the vector, and on the binary vector XMD

i; j . But these binary vectors do not
explicitly give the value of the mean. The probability of a good match between
two vectors whose means are similar is much higher than that between two
vectors whose means are very different. That is to say that it is not worthwhile
to match the codevectors whose means are far from that of the current vector.
Only the codevectors whose means are close to that of the current vector are
searched to find the minimum distance partition. Thus, the search range can
be greatly decreased. To implement this idea, the codevectors need to be
sorted according to the values of their means. When searching for the nearest
codevector for an input vector, the codevector whose mean is closest to that of
the current vector is located first and then taken as the center of the searching
range No; the nearest codevector is then sought in the range (No r1, No þ r2),
where the r1 and r2 can be determined by the tolerance of mean bias.

In order to increase the accuracy of vector matching with SFBBC-coded
vectors, a scheme of two-level searching is adopted. In the first level, several
candidate codevectors are found by using SFBBC vectors and the methodology
discussed earlier. In the second level, the best one is selected by using the mean
square criteria from these candidates. Although it takes a little bit more time to
do this, it improves the accuracy of the match. The total time for two-level
searching is still much less than that for the LBG and conventional VQ.

4.5.3 Experimental results of the SFBBC-based VQ
compression algorithm

Hyperspectral data acquired using CASI were tested. The test datacube has 144
spectral bands within the visible and near-IR region, and each band has 150 rows
and 200 columns. The data has been calibrated and is stored with 16-bit long
precision, although the data occupies only about half of the stored dynamic range.
The results obtained by both conventional VQ (i.e., LBG algorithm)2 and the
SFBBC-based algorithm are given to evaluate their performance. The experiments
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reported in Ref. 36 have been redone with a more-recent computational platform,
and the processing times reported in that source have been updated.

The results of codebook generation using the LBG algorithm on the original
spectral vectors and the SFBBC vectors are listed in Table 4.6. It can be seen
from the table that generating an identical-size codebook is on average 39 times
fasterwith the SFBBCvectors thanwith the original vectors. In addition, it shows
that the number of training iterations with the SFBBCvectors are usually smaller
than with the original vectors, when their distortion thresholds : are very close.

The compression ratio in VQ is determined by the codebook size N if the
dimension of the vectors is fixed [it has been defined in Eq. (4.1)]. For the CASI
datacube, the dimension of the vectors is Nb ¼ 144, and the word-length L ¼
16 bits. The PNSR defined in Eq. (4.4) is used to measure the fidelity of the
reconstructed data from the compression data with respect to its original data.
The value of peak signal in Eq. (4.4) used in the experiments is the maximum
value measured from the raw data (29,841 in this case) instead of 65,535, the
maximum value of a 16-bit unsigned word.

The compression performance of the conventional LBG algorithm and
the SFBBC-based fast algorithm with four different-size codebooks is listed in
Table 4.7. The processing time listed in the table includes both coding and

Table 4.6 Comparison of codebook generation using original vectors and SFBBC vectors.

Vector Type Results

Codebook Size

256 512 1024 4096

Original vectors Processing time (sec) 107.59 251.18 419.72 1436.72
Distortion Threshold : 0.0013 0.0014 0.0011 0.0013
Number of iterations 12 10 10 8

SFBBC vectors Processing time (sec) 2.68 5.29 11.07 46.65
Distortion Threshold : 0.0006 0.0040 0.0015 0.0012
Number of iterations 6 5 7 11
Improvement in processing time 40.2 47.5 37.9 30.8

Table 4.7 Comparison of VQ compression (including codebook training and coding) using
LBG algorithm and the SFBBC-based fast algorithm.

Vector Type Results

Codebook Size

256 512 1024 4096

LBG Compression ratio 288 256 230 192
Processing time (sec) 10.23 20.45 40.91 177.27
PSNR (dB) 43.03 44.14 45.43 47.99

SFBBC Compression ratio 288 256 230 192
Processing time (sec) 0.34 0.68 1.16 4.16
PSNR (dB) 42.28 43.51 44.44 46.83
Improvement in processing time 30.0 30.0 35.3 42.6
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decoding. A LBG algorithm that uses full-search codevector matching
requires ~177 s to compress a 3D datacube of 150 rows � 200 columns � 144
bands when the codebook size is N ¼ 4096. Using the SFBBC-based algorithm,
the processing time is 30–42 times faster than that using conventional
LBG, whereas the reduction in the fidelity of reconstructed data is only
between 0.9–1.9 dB.

4.6 Correlation Vector Quantization

As illustrated in Fig. 4.1, an index map is formed after VQ compression. An
index located at (x, y) of the index map is the address of the codevector in the
codebook that best represents the spectrum of the ground sample located at the
same location in the scene of the datacube. Because of spatial correlation, the
adjacent indices in the index map may be identical, especially in regions of
relatively small variation between ground samples. The spatial correlation
could be exploited by coding the index map using a conventional lossless
technique, such as differential pulse code modulation (DPCM) and entropy
coding. However, this method does not offer any benefit to processing speed. A
correlation vector quantization (CVQ) method was proposed by Qian et al.39

that performs VQ compression on 3D hyperspectral data and index map coding
simultaneously to remove the correlation in both the spatial and spectral
domains, with the additional benefit of reduced computational complexity.

4.6.1 Process of CVQ

A movable window that covers a block of 2 � 2 adjacent vectors (i.e., spectra)
in a datacube is used in CVQ. The vector quantizer scans over the scene of the
datacube from left to right, top to bottom. Figure 4.18 shows the upper-left
corner of an index map. This figure is used here to describe the principle of

Figure 4.18 The upper-left corner of an index map, the area in which vectors are coded by
each step.
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the CVQ. The capital letters represent vectors. The coding process of CVQ is
composed of four steps: (1) initialize the quantizer by starting in the block at the
top-left corner; (2) extend quantization across the first two rows of the scene;
(3) similarly extend the process down the first two columns; and (4) recursively
quantize the remaining imagery. The vectors that are coded by each step are
indicated by different shades in the figure.

In step 1, the window is located at the upper-left corner of the index map,
covering vectors A, B, F, and G, as shown in Fig. 4.18. The index of the
codevector for A is obtained by searching through the codebook to find the
best-match codevector. The indices for B, F, and G are obtained by directly
comparing them with A instead of searching through the codebook. The same
index for A is assigned to B if the distance measure between A and B is smaller
than a given threshold d, thereby avoiding a search of the entire codebook to
encode B. If the distance measure exceeds the threshold, the index for B is
obtained by searching for the best codevector in the codebook. The same
procedure is applied for F and G.

There are 15 possible combinations of the four indices in step 1; they are
expressed by the 15 correlation codevectors (CCs) shown in Fig. 4.19. In the
figure, the lowercase letters i, j, k, and l denote different indices. Table 4.8
gives the meaning of each CC and the number of bits required to encode the
four vectors. log2N is the number of bits required to express an index of
codevector in a codebook of size N, and four bits are used to express a CC.
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Figure 4.19 Step 1 correlation codevectors.

Table 4.8 Symbolism of CCs in step 1 and the number of bits used to code four vectors in
the window.

Correlation Codevector Symbolism Bits Required to Code 4 Vectors
in the Window

CC1(1) All 4 indices are different 4 log2N þ 4
CC1(2) CC1(7) 2 indices are identical 3 log2N þ 4
CC1(8) CC1(11) 3 indices are identical 2 log2N þ 4
CC1(12) CC1(14) 2 pairs indices are identical 2 log2N þ 4
CC1(15) All 4 indices are identical log2N þ 4
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In step 2, the window covers the first two rows (but not the first column)
of the index map and moves over the index map from left to right, for
example, blocks BCGH, CDHI, DEIJ, etc. Only two vectors in each block
need to be coded. For example, in block BCGH, only C and H need to be
coded because B and G were already coded in step 1. The index of the coded
vector is assigned to the new vector if the distance measure between the new
vector and the coded vector is smaller than the threshold d. There are ten
possible states for the two new indices; ten CCs are used to represent them,
as shown in Fig. 4.20. The known indices are shaded. The symbolism of ten
CCs and the number of bits required to code the two new vectors are listed in
Table 4.9.

Step 3 is similar to step 2 except that the window is moved vertically.
That is, the window covers the first two columns but not in the first row of
the index map, for example, blocks FGKL, KLPQ, PQUV, etc. There are
also ten CCs.

In step 4, the window covers neither the first row nor the first column in
the index map, i.e., blocks GHLM, HIMN, LMQR, etc., as shown in
Fig. 4.18. Only one vector in the window needs to be coded when the
window scans to a new location. For example, when the window is located

Table 4.9 Symbolism of CCs in step 2, and the number of bits used to code two new
vectors in the window.

Correlation codevector Symbolism Bits Required to Code Two
New Vectors in the Window

CC2(1) 2 new indices are different from
2 known indices

2 log2N þ 4

CC2(2) 2 new indices are identical, but
different from 2 known indices

log2N þ 4

CC2(3) CC2(6) 1 new index is identical to 1 of the
2 known indices

log2N þ 4

CC2(7) CC2(10) 2 new indices are identical to
2 known indices

4
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Figure 4.20 Step-2 correlation codevectors.
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at block GHLM, only M needs to be coded because the vectors G, H, and L
have already been coded in previous steps, and their indices are known.
Three distance measures between the new vector and each coded vector are
computed, and the smallest of the three distance measures is compared with
the threshold d. If it is less than d, the index of the coded vector, which
corresponds to the smallest distance measure, is assigned to the new vector.
Otherwise, the index of the new vector is obtained by searching the
codebook. There are only four possible states for the new index: identical to
one of the three known indices or different from all of them; thus, four CCs
are used to express them. Two bits are sufficient to code the new vector if
the new index is identical to one of the three known indices. log2Nþ2 bits
are required if the new index is different from all three known indices.

The CVQ performs VQ compression and index map coding simulta-
neously. No additional index-map-coding step is required. It is faster than the
conventional VQ algorithm because the codebook is not searched in many
cases. The threshold d is the only parameter of the CVQ. If it is set to be too
small, the process reverts to the conventional VQ algorithm. Similarly, if there
is no spatial correlation, there is no additional compression gain.

4.6.2 Performance of CVQ

If the spatial size of a datacube is Nr rows by Nc columns, the number of scans
in steps 1 through 4 are 1, Nc 2, Nr 2, and (Nc 2)(Nr 2), respectively.
Step 4 is the most frequent one. This section discusses only step 4 for
simplicity. If the Euclidean distance defined by Eq. (4.2) is used as the distance
measure, the computation of one distance measure requires k products plus
k 1 additions and k subtractions, where the vector dimension k is equal to
the number of spectral bands Nb.

For simplicity, only products are considered when assessing the
computation complexity. In CVQ, the quantizer first computes three vector
distances between the new vector and each coded vector in the window. 3Nb

products are required to encode a vector if the distance meets the threshold d.
Otherwise, the quantizer further searches through the N codevectors in the
codebook to find the closest one, and a total of (3 þ N)Nb products are
required. Let it be supposed that a is the probability that a new index is
different from all three known indices; 1 a is the probability that a new
index is identical to one of the three known indices. The factor of
improvement in coding time (FICT) of the CVQ can be estimated as

FICT ¼ CTVQ

CTCVQ
¼ NNb

ð1 aÞ3Nb þ að3þNÞNb
¼ N

3þ aN

 1

a
, ð4:21Þ

where N is the codebook size. It is usually 256 or larger; aN is much greater
than 3.
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The compression ratio of CVQ is calculated as

CrðCVQÞ ¼ NrNcNbL
ða log2N þ 2ÞNrNc þNNbL

, ð4:22Þ

where L is the word-length of the datacube in bits. The factor of improvement
in compression ratio (FICR) can be estimated as

FICR ¼ CrðCVQÞ
CrðVQÞ

¼ log2N þ c
a log2 N þ 2þ c

, ð4:23Þ

where c ¼ NNbL
NrNc

ð4:24Þ
is the overhead for transmission of the codebook.

As an example, if the test data in Section 4.5 is compressed using CVQ
with a codebook of size N ¼ 256, and assuming the frequency of occurrence of
each correlation codevector in step 4 is identical (i.e., a ¼ 0.25), the FICT
and FICR can be estimated using Eq. (4.21) and (4.23). They are FICT ¼ 3.8
and FICR ¼ 1.8, respectively. The greater the a value is, the smaller the
FICT and FICR. In the limit, when a ¼ 1, no new vector in step 4 can be
replaced by its adjacent vectors, and no improvement in compression ratio is
made: the compression ratio obtained by CVQ is slightly worse than that
obtained by conventional VQ. This is caused by the use of 2 additional bits to
code a correlation codevector.

4.7 Training a New Codebook for a Dataset
to Be Compressed

A challenge to VQ compression algorithms for satellite hyperspectral data in
terms of operational use is that they require large computational resources,
particularly for the codebook training phase. Because the size of hyperspectral
datacubes can be hundreds of times larger than those for traditional remote
sensing, the processing time required to train a codebook or to encode a
datacube using the codebook could also be hundreds of times larger. In 2D
VQ compression applications, the problem of training time is reduced by
training a codebook only once and henceforth applying it repeatedly to all
subsequent images to be compressed. This codebook is a universal codebook
or dictionary. It is normally trained from a large representative training set
that spans as many scene types as possible. This approach may not work for
satellite data compression because a training set cannot span many types of
satellite datasets. The so-called universal codebook trained from this training
set cannot compress a satellite dataset well.

In satellite remote sensing, it is generally very difficult to obtain a
universal codebook that spans many datasets to the required degree of
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accuracy, partly because of the high potential variability of the acquired
datacubes in terms of their location, spectral and spatial resolution, ill-
umination, viewing angle, atmospheric effects, season, spectral band con-
figuration, SNR of the instruments, etc., and partly because of the high
reconstruction fidelity that is required of the data in its downstream use. For
these reasons, the preferred strategy is to train a new codebook for a dataset to
be compressed by using the dataset itself as the training set and to apply the
trained codebook to compress the dataset. This gets rid of the difficulty of
constituting a representative training set. The codebook trained in this way is
more effective. Because the codebook is trained by using the dataset itself as
the training set and is applied to compress the dataset only (not universal), it
needs to be transmitted to the decoder side together with the index map as the
compressed data in order for the decoder to reconstruct the compressed data.
Figure 4.21 illustrates the scheme of the VQ data-compression system for
satellite data.

Because the codebook is part of the compressed data, the compression
ratio defined by Eq. (4.1) for the conventional VQ compression algorithms
needs to be revised by taking into account the additional bits used to encode
the codebook. The revised compression ratio is as follows:

Cr ¼ NrNcNbL
NrNc log2 N þNNbL

¼ NbL

log2 N þNNbL
NrNc

, ð4:25Þ

where NNbL=NrNc is the overhead for the codebook. By looking at Eq. (4.25)
itself, it seems that the compression performance is reduced as the
compression ratio is reduced if the codebook size N remains the same. In
reality, based on experimental results, this is often not the case. Although

Codebook 
Training

Code vector
Match

Compressed 
Data

Figure 4.21 Scheme of VQ data compression system for satellite data, where a new
codebook is trained for each input dataset and is transferred to the decoder together with the
index map.
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the compression ratio is reduced due to the overhead of transferring the
codebook, the compression fidelity (normally measured by PSNR or
SNR) is improved conversely. This is because the codebook trained from
the dataset itself is much more accurate than the codebook of the same
size trained from the large, so-called representative training set. Thus, a
small-size such codebook will achieve the same compression fidelity as a
large universal codebook. The small codebook size N trained from the
dataset itself compensates for the overhead of the codebook for
compression ratio loss. The more-important gain of this strategy is that
training a small codebook from a small training set is faster because
the VQ training processing time is proportional to the codebook size N
and the training size n, as discussed in Section 4.1.

All of the codebooks in the following sections are trained from the
datasets to be compressed themselves and are transferred to the decoder as
part of compressed data. For the calculation of compression ratio,
Eq. (4.25) is used.

4.8 Multiple-Subcodebook Algorithm Using Spectral Index

This section describes a method that uses the information contained in a
hyperspectral datacube to be compressed to improve the performance of the
VQ compression algorithm.41 43 A spectral index (SI) image of a datacube to
be compressed is generated first. This SI image is then employed to divide the
datacube into s subsets, each of which represents a cover type that occurs
within the scene of the datacube. This strategy is based on the knowledge that
the codebook generation time (CGT) and coding time (CT) are reduced when
the codebook size is reduced. Accordingly, while keeping the same total
number of codevectors, we generate not only a single codebook but also s
smaller codebooks of equal size called subcodebooks from each of the subsets.
This VQ compression algorithm is referred to as the multiple-subcodebook
algorithm (MSCA).

4.8.1 Spectral indices and scene segmentation

The most-accurate methods for segmenting scene spectra into similar clusters,
such as supervised classification and isoclustering, lead to large computational
overheads when performed on hyperspectral datacubes, require operator
intervention, or both. Therefore, they do not suit the goal of creating a more-
efficient algorithm in terms of processing time; a faster solution is required. In
the VQ-based hyperspectral data compression techniques presented here, a
spectrum corresponding to a ground sample in the scene is treated as a vector.
A spectral index is introduced as a means to capture one or more spectral
characteristics for scene segmentation of a hyperspectral datacube; it is
computed vector by vector, and the resulting SI image is provided as input to a
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segmentation procedure. The segmentation is performed rapidly because it
operates only on the SI image instead of the entire datacube.

By way of example, the normalized difference vegetation index (NDVI) is
chosen for its simplicity and its familiarity to the remote sensing community.
The role of NDVI in land-cover classification is well documented in the
literature.40 The data range of NDVI is between 1.0 and 1.0 by definition.
Spectra with similar NDVI values often share many spectral similarities,
especially for vegetated scenes at visible and NIR wavelengths. For other
types of scenes, other indices are preferable. For instance, a water index should
be used over ocean scenes. For datacubes involving other wavelength regimes,
such as the short-wave infrared (SWIR), a more-complex index or a
combination of indices should be used.

If the segmentation regions are chosen such that their members share
certain spectral characteristics, each subcodebook will be more likely to re-
present that region effectively, and the fidelity penalty incurred will be kept
small. Four segmentation methods used on the SI image are studied.

4.8.1.1 Manual multithresholding

The multithresholding (MT) method manually segments a SI image into
n clusters by simply slicing the SI (e.g., NDVI) value into s intervals of equal
width. If a spectrum’s SI value lies in the first interval, it is classified to region
1; if it lies in the second interval, it is classified to region 2; and so on.
In practice, in order to facilitate coding and maximize the compression ratio,
it is preferable to set the number of regions s to a power of 2, such as 8 or 16.
The first row of Table 4.10 lists an example for a datacube called cube1 (which
is described later), where the vegetation cover type dominates (described in

Table 4.10 An example of scene segmentation using the four segmentation methods on
the SI image (NDVI) of test datacube cube1 when the number of regions s ¼ 8. (The data
range of SI value and the number of pixels in each region are listed in the table. The size of
the SI image is 128 � 2200 ¼ 281,600.)

Segmentation
Method

Region Number

1 2 3 4 5 6 7 8

MT [ 1.0, 0.15)
36600

[ 0.15,0)
4674

[0,0.15)
5846

[0.15,0.30)
6145

[0.30,0.45)
7828

[0.45,0.60)
128248

[0.60,0.75)
82969

[0.75,1.0)
9290

IC 42278 59662 60938 43440 28087 23864 14954 8377

HS [ 1.0, 0.27)
35206

[ 0.27,0.49)
34424

[0.49,0.53)
36772

[0.53,0.56)
35756

[0.56,0.59)
34808

[0.59,0.63)
34794

[0.63,0.69)
35418

[0.69,1.0)
34242

MHS [ 1.0, 0.27)
35206

[ 0.27,0.06)
8376

[0.06,0.27)
8662

[0.27,0.45)
8843

[0.45,0.54)
54958

[0.54,0.58)
56457

[0.58,0.65)
54811

[0.65,1.0)
54287
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Section 4.8.4). When it is segmented into eight regions, all of the spectra
whose NDVI values are less than 0.15 are lumped into a single region
(which represents water), and all of the spectra whose NDVI values exceed
0.75 are lumped into another single region. The remaining range 0.15 ~ 0.75
is divided into six regions with an equal NDVI width of 0.15.

4.8.1.2 Isoclustering

Isoclustering (IC) is carried out on the SI image using the PCI/EASI-PACE
routine ISOCLUS in the PCI software tool. The algorithm examines a large
number of unknown values in the SI image and divides them into a number
of clusters based on natural groupings present in the image. The number of
clusters s produced by this algorithm is determined by the nature of the scene.
It is often the case that the output s is not equal to a number of power 2. It
is necessary to constrain it by adjusting the parameters of the algorithm.
Unsupervised classification is an iterative and relatively time-consuming
operation. The second row of Table 4.10 gives the segmentation result of
this method.

4.8.1.3 Histogram-based segmentation with same-size regions

The size of each region produced by both manual MT and IC is different.
Some regions are very large, while others may be very small. Because the
MT method segments the SI image in terms of the given intervals of SI value,
it does not take into account the population of the regions. If the occurrence
frequency of SI value is high in a certain interval, the corresponding region is
large. Similarly, IC segments the SI image by automatically searching for
different clusters based on a certain criterion. The size of a cluster is
determined by its characteristics.

In the MSCA, the size of each subcodebook is set to be identical, i.e., N/s,
to facilitate coding and keep the same compression ratio as the conventional
VQ, which uses a single codebook of size N. From this point of view, the sizes
of regions are expected to be the same, so that each subcodebook can
efficiently span the same amount of spectra. Otherwise, the small-size regions
are well spanned, whereas the large-size regions are poorly spanned. This will
result in uneven error distribution for each subcodebook and ultimately
reduce the fidelity of the system. The histogram-based segmentation (HS)
method segments a SI image into regions of the same size or as close as
possible.

In order to implement this segmentation method, the histogram of the SI
image is used and divided into s sections of equal area. Figure 4.22, for
example, shows the histogram of the SI image of the test datacube cube1. The
width of each section is different in order to keep the area constant. The width
is wider in a section with low frequency of SI value, while the width becomes
shorter in a section with high frequency of SI value. In fact, this method is an
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adaptive MT segmentation under the condition of equal-size regions. In
practice, it is difficult to find the boundaries in the horizontal axis that make
the area of each section identical. Thus, the sizes of the regions are only
roughly equal. The third row of Table 4.10 gives the segmentation result using
this method.

4.8.1.4 Modified histogram-based segmentation

The segmentation method with same-size regions might not provide good
segmentation if the histogram of the SI image has more than one spaced
peak whose distributions are different. For example, in Fig. 4.21, the
big peak on the right side represents vegetation cover types, and the two
small peaks on the left side represent nonvegetated-cover-type water (lakes).
The low-frequency part between them represents other nonvegetated cover
types (e.g., roads, etc.). If the segmentation method described in Section
4.8.1.3 were used to segment this SI image, the width in this part would be
very wide (e.g., section 2), whereas the width in the vicinity of the vegetation
peak would be very narrow (e.g., sections 3–7). It is known that different SI
values represent different spectra in the scene. A region with a wide range of
SI values implies that there is less similarity between the spectral
characteristics of the spectra in that region. The region will therefore be
less well spanned than a narrow region of the same size if the same-size
subcodebooks are used.

There are two alternative ways to handle this problem. The first alternative
uses variable-size subcodebooks: A region with a narrow range of SI values is
spanned by a small-size subcodebook, whereas a region with a wide range of SI
values is spanned by a large-size subcodebook. This alternative is not adopted
in this book because it increases the complexity of the MSCA for managing
different-size subcodebooks.

Another alternative divides the histogram into p parts, each of which covers
a length of histogram with roughly similar distribution and applies the same-
size segmentation method described in Section 4.8.1.3 to each of them. The sizes
of regions are set to be smaller in the part with a low occurrence frequency,

0 0.2 0.4 0 6 0.8 1.0

21 3 56 7 84

−1.0 −0.8 −0.6 −0.4 −0.4

Figure 4.22 Illustration of histogram-based segmentation with a same-size region.
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while the sizes of regions are set to be larger in the part with a high occurrence
frequency. If the number of regions in each part is siði ¼ 1, 2, . . ., pÞ, the total
number of regions s is

s ¼
Xp
i 1

si: ð4:26Þ

This alternative is referred to as modified histogram-based segmentation
(MHS).

For example, when we segment the histogram of Fig. 4.22 into s¼ 8 regions
using this method, it is divided into three parts. Part 1 covers a range of SI
value 1.0 to 0.27 (i.e., section 1 delimited by the same-size segmentation
method), and is segmented into s1 ¼ 1 region for water cover type. Part 2 covers
a range of SI value 0.27 to 0.45, and is segmented into s2 ¼ 3 regions for
nonvegetated cover types. Part 3 covers the area of the big peak and is
segmented into s3 ¼ 4 regions for vegetation cover types. The fourth row of
Table 4.10 lists the segmentation result of this method.

4.8.2 Methodology of the MSCA

The methodology of the MSCA is shown in Fig. 4.23. The three constituent
parts of the formation of SI-based training subsets are shown explicitly and
are bounded by a dashed-line rectangle. The SI calculation consists of
generating a SI image for an input datacube. The block of SI segmentation

Reconstructed
Datacube

Codebook
Generation

Coding

Index Map

Decoding

Segmentation Map

SI
Calculation

S I-based
S egm entation

Training Set
Separation

Vector
Constitution

Hyperspectral
Datacube

...Segmentation MapSI Image
Array of

Training Subsets

Array of
Sub-

codebooks

SI-based Training Subset Formation

...

Figure 4.23 Block diagram of the spectral-index-based multiple-subcodebook algorithm.

153Vector Quantization Data Compression



delimits the SI image into a number of distinct clusters of spectra that share
certain spectral characteristics, and a segmentation map is created. The block
of training-set separation divides the datacube into s training subsets, each of
which corresponds to a region in the segmentation map instead of only a single
training set. Each training subset is used independently for training its own
subcodebook in the codebook-generation step, and s subcodebooks of equal
sizeN/s are generated. The s subcodebooks are passed to the coding step, where
the segmentation map is used to match each vector to be compressed with the
best codevector from the appropriate subcodebook.

4.8.3 Improvement in processing time

To gain an appreciation for the expected effect on processing time, let us suppose
that the sizes of the segmented regions are identical and that the speed of
convergence is always consistent. In addition, suppose that the computational
overhead associated with maintaining the multiple subcodebooks can be
neglected.

It has been shown in previous discussion that to train a codebook with N
codevectors of dimension k from a training set of size n, a total of n�N � k
products are required for one iteration loop. The number of iterations depends
on the convergence speed. In the coding step, N � k products are required to
search for the best codevector in a codebook of size N in order to code an
input vector. In MSCA, codebook generation consists of s repetitions of a
training process whereby both the training set size and the subcodebook size
are reduced by a factor of s; thus, the conventional one-loop iteration time
becomes

s� n
s
�N

s
� k

� �
¼ 1

s
� ðn�N � kÞ: ð4:27Þ

In other words, the codebook generation time is reduced by a factor of
s compared to the conventional VQ. Meanwhile, the coding step in con-
ventional VQ consists of searching the entire codebook to find the best
codevector to an input vector. However, in MSCA, only one of the s
subcodebooks, whose size is N/s, needs to be searched. Thus, the CT also
improves by a factor of s.

4.8.4 Experimental results of the MSCA

Four datasets, called cube1 through cube4, were tested. These datacubes were
acquired using CASI flown in “enhanced spectral” mode. They contain
calibrated spectral radiance in 72 spectral bands covering the spectral range of
404 to 913 nm at a spectral interval of approximately 7.2 nm. They were
extracted from flight lines acquired in July 1994 during a field campaign of the
Boreal Ecosystem-Atmosphere Study.44 The scene contains mainly black
spruce trees with some tamarack and birch. There are also some roads and a
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few lakes. cube1 is used as the example to describe the test results. Its size is
128 pixels by 2200 lines by 72 spectral bands of 16-bit. The PSNR defined in
Eq. (4.4) is used to assess the compression fidelity. Three codebook sizes of
N ¼ 4096, 1024, and 256 were used. Because these codebooks are trained
specifically for the datacube to be compressed, they all need to be transferred
to a decoder. Equation (4.25), described in Section 4.7, is used to calculate the
compression ratios for them. These codebooks correspond to compression
ratios of 40:1, 81:1, and 127:1, respectively, for both the single-codebook 3D
VQ algorithm and the MSCA.

The compression results of cube1 obtained using the MSCA with the
segmentation maps generated in Section 4.8.1 are shown in Fig. 4.24. Each
codebook consists of s ¼ 8 subcodebooks of same size, when the scene of the
datacube is segmented into s ¼ 8 regions. The conventional 3D VQ39 is taken
as the reference; the compression results obtained by the reference are also
shown in the figure for comparison. The graph on the left of Fig. 4.24 shows
the PSNR of compressed data using the MSCA with each of the four
segmentation methods.

In the figure, the CGTs using the MT and the IC methods did not take
into account the time spent for segmentation by an operator. The processing
time for generating the segmentation maps varied over a large range. The IC
method took 5 min. It can take a few hours for an operator to segment the SI
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Figure 4.24 Compression results of cube1 using MSCA as a function of different
segmentation methods when the number of regions is s ¼ 8. The left graph shows the
PSNR, and the right graph shows the CGT (dashed lines) and CT (dotted lines).
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image using the MT method depending on the experience of the operator. The
two histogram-based methods spent less than 1 s. The right graph of Fig. 4.24
shows that the improvement in CGT and CT are approximately s ¼ 8, as
analyzed in Section 4.8.3.

The PSNRs yielded by the MSCA with MHS are the best. Compared
with those of the reference, they are slightly improved for smaller
compression ratios 40 and 81 (0.19 and 0.12 dB better). This is because
the spectra in the datacube are well delimited, and each subcodebook
spans almost the same number of distinct spectra, thus the system error is
uniformly distributed.

The MSCA with MT segmentation produces the second-best PSNRs. The
PSNRs are decreased by 0.27 dB on average. These losses in fidelity result
from the mismatch between identical-size subcodebooks and uneven-size
regions.

The PSNRs produced by MSCA with the histogram-based segmentation
are decreased by 0.45 dB on average. It can be seen from the histogram of the
SI image shown in Fig. 4.22 that the bandwidth of sections is sharply increased
in the low-frequency part in order to keep the size of the regions close to the
constant size. For instance, the bandwidth of section 2 is as wide as 0.76, which
is 15 to 19 times wider than the bandwidth of 0.04 to 0.05 for sections 3–7. The
error distribution is uneven if identical size subcodebooks are used to span
these regions. This results in decrease of fidelity of the overall system. In order
to evaluate the performance of each subcodebook, the reconstruction fidelity
by each subcodebook is calculated. The fidelities of region 2 are the worst in
the eight regions: Corresponding to the three compression ratios 40, 81, and
127, they are 40.53, 37.92, and 34.69 dB, respectively, which are about 5 dB
worse than their overall PSNRs 45.28, 43.17, and 40.51 dB.

The MSCA with IC produces the worst results of the four
segmentation methods. The PSNRs are decreased by 0.53 dB on average.
This is probably caused by constraining the number of regions s to being
a power of 2.

It has been shown in Section 4.8.3 that in the MSCA, the larger the number
of regions s is, the greater the improvement in the CGT and CT. Is it true that
the larger the number of regions s is, the better the performance? The number of
regions in cube1 has been known between 12 and 15 after analysis using
isoclustering without constraint to the number of clusters. The MSCA with the
number of regions beyond this range was tested.

The SI image of cube1 is segmented into s ¼ 16 and 32 regions by the MHS
method, as it produces the best performance. Two arrays of training subsets are
formed based on these two segmentation maps and are used to generate 16 and
32 subcodebooks of the same size at an overall codebook size N ¼ 4096, 1024,
and 256. These codebook sizes correspond to the same compression ratios 40:1,
81:1, and 127:1 as when s ¼ 8 regions. The compression results using these two
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arrays of subcodebooks are shown in Fig. 4.25. For the purpose of comparison,
the reference case as well as the results using a segmentation map of s ¼ 8 are
also shown in the figure. When the number of regions s ¼ 16, the CGT and CT
are improved by a factor of 15.7 and 14.6, respectively, on average, while the
average PSNR loss is 0.35 dB. When s ¼ 32, the average improvement in the
CGT and CT is 32.5 and 28.9, respectively, but the average PSNR loss is
increased to 1.27 dB. Although the improvement in the CGT and CT increases
with the increase of s, the reconstruction fidelity decreases. Especially when s is
far beyond the real number of regions of the dataset, the fidelity rapidly
decreases. Therefore, the number of regions s cannot be selected arbitrarily. In
this example, it is appropriate to select s ¼ 8 or 16.

In order to test the robustness and applicability of the MHS method, each
of the previous experiments were repeated on three different test datacubes
whose scenes contain cover types similar to cube1. The results showed similar
trends.

4.8.5 MSCA with training set subsampling

The next three subsections describe three improved VQ hyperspectral-data-
compression systems that integrate the MSCA, training set subsampling, and
the SFBBC binary coding:

1. the MSCA with training set subsampling,
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Figure 4.25 Compression results of cube1 using the MSCA with the MHS as a function of
the number of regions s. The left graph shows the PSNR, and the right graph shows the
CGT (dashed lines) and CT (dotted lines).
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2. the MSCA with training set subsampling plus SFBBC codebook training,
and

3. the MSCA with training set subsampling plus SFBBC for both codebook
training and coding.

(The effect of these three compression systems on remote sensing products
is described in Section 8.7.)

The cube1 from previous simulation tests will be used as test datacube.
The previous discussion has shown that the MSCA using the MHS with the
number of regions s ¼ 8 produced the best performance. (This MSCA
configuration is adopted in the next three subsections. The same codebook
sizes as in Section 4.8.4 will be used, and each codebook has eight
subcodebooks.)

In VQ hyperspectral-data-compression techniques, the CGT is much larger
than the CT. It is roughly m times as large as the CT if the number of iterations
is equal to m because one iteration takes the same amount of time as coding, as
discussed in Section 4.1. It is often the case that a codebook training process
takes m ¼ 10 iterations or more. Thus, it is necessary to reduce the CGT in
order to speed up the overall processing time. Because the CGT is proportional
to the size of the training set, it follows that the CGT can be reduced by
subsampling the training set. The difficulty is that as the training set size is
reduced, its ability to span the data declines, and beyond a certain point the
fidelity penalty incurred begins to outweigh the speed increase.

In early work,42 the experimental results demonstrated that the
subsampling rate of a training set of hyperspectral data that allows optimal
tradeoff between efficiency and fidelity appears to lie in the 2–4% range. This
section uses a subsampling rate of 2%.

Before showing the simulation results of the MSCA with subsampled
training subsets, two different methods of subsampling need to be described.

• Method 1 (equal percentage): Each training subset is subsampled at the
same percentage of 2%. The size of each subsampled training subset is
different, as the size of each training subset is different. They are listed in
the second line of Table 4.11. The size of each training subset is also
listed in the table (first line). Sometimes, for a small training subset, the
size of the subsampled training subset can be smaller than that of the
subcodebook to be trained from it. In Table 4.11, for example, the sizes
of the subsampled training subsets of regions 2, 3, and 4 are 170, 176,
and 180, respectively. These are all smaller than the subcodebook size,
N/s ¼ 4096/8 ¼ 512 (for the compression ratio of 40:1), which is not
desirable. If this happened, the reconstruction fidelity will be very poor
for that subcodebook.

• Method 2 (equal size): Each training subset is subsampled at a different
rate to obtain same-size subsampled training subsets. The size depends
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on the overall subsampling rate. The sizes of subsampled training
subsets of cube1 using this method at a rate of 2% are listed in the second
line of Table 4.11. Each subsampled training subset contains the same
number of vectors (718).

The MSCA was tested with two arrays of subsampled training subsets
extracted using the two subsampling methods. They produced almost the
same improvement in the CGT but produced no improvement in the CT
because the training-set subsampling technique does not have influence on
the CT. The MSCA with subsampling method 2 yielded better reconstruc-
tion fidelity than with subsampling method 1. This is because some
subsampled training subsets obtained with method 1 are even smaller than
the sizes of subcodebooks.

Figure 4.26 shows the simulation results of the MSCA with the equal-size
subsampled training subsets. The left graph shows the PSNR of the three
compression ratios, and the right graph shows the CGT (dashed lines), the CT
(dotted lines), and overall processing time (PT) (solid lines). The PT includes
the CGT, CT, and time for creating a segmentation map. For the purpose of
comparison, the PSNR, CGT, CT, and PT produced by the conventional 3D
VQ are also shown as circles in the same graph. CGTs are reduced to 2.3,
0.54, and 0.12 min (the dashed line marked by squares at bottom of the right
graph), respectively, from 1098, 250, and 120 min (the dashed line marked by
circles at top of the right graph) at the three compression ratios of 40, 81, and
127. They are improved by factors of 477, 463, and 1000, respectively; these
improvements result from two contributions. One comes from the methodol-
ogy of the MSCA, which brings an improvement of approximately s ¼ 8
times. Another comes from the reduction of subsampling training subsets to
2%, which brings an improvement of around 50 times. Thus, the improvement
in the CGT is 8 � 50 ¼ 400 times, assuming that the training convergence
speed remains constant. But the real CGT improvements are all larger than this.

The CTs are improved by a factor of around s ¼ 8 compared with the
reference. In the reference case, the PTs are dominated by the CGT because
the CGTs are two orders of magnitude larger than the CTs. That is why the

Table 4.11 Size of subsampled training subsets of cube1 subsampled at the rate of 2%
(the number of regions s ¼ 8).

Segmentation
Method

Region Number (Region Size)

1
(35206)

2
(8376)

3
(8662)

4
(8843)

5
(54958)

6
(56457)

7
(54811)

8
(54287)

Equal Percent 718 170 176 180 1121 1151 1118 1107

Equal Size 718
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PT curve (solid line marked by circles at top of the right graph) is only slightly
above the CGT curve (dashed line marked by circles at the top of the right
graph). Meanwhile, in the MSCA with 2% STSSs, the CGTs are reduced to
around six times as small as the CTs. Thus, CTs dominate the PT (solid line
marked by squares in the middle of the right graph). The overall processing
speed is improved by a factor of 82, 75, and 136, respectively, at the three
compression ratios. The costs for all of these improvements are losses of
PSNR of 1.68, 0.82, and 0.46 dB, respectively.

4.8.6 MSCA with training set subsampling plus SFBBC
codebook training

Section 4.5 describes SFBBC binary coding: it converts a spectral vector
Xi, j ¼ fxi, jðlÞðl ¼ 1, 2, . . . ,NbÞg of size 16Nb bits into a binary code of size
(3Nb 2) bits, where Nb is the number of elements of the spectral vector, and
16 is the word-length of each element. A SFBBC vector is much shorter than
an original spectral vector. Furthermore, with the SFBBC vectors, the
distance measure between two vectors in both the codebook training and
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Figure 4.26 Performance comparison of the MSCA with training set subsampling (2%)
against the conventional VQ. The left graph shows PSNR curves, and the right graph shows
the curves of the CGT (dashed lines), the CT (dotted lines), and the overall processing time
(solid lines).
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coding processes can be implemented by using the Hamming distance instead
of the Euclidean distance. The former is much faster to compute than the latter
because the Hamming distance is just a sum of bitwise exclusive-or operations.
Using this algorithm, both the CGT and CT were reduced by a factor of 30–40,
as reported in Section 4.5.

This section describes the VQ compression system that integrates the
MSCA, training set subsampling, and SFBBC codebook generation. Figure 4.27
shows the experimental results of this system. Three arrays of subcodebooks
of 4096, 1024, and 256 codevectors were generated from 2% subsampled
training subsets by the SFBBC fast-training algorithm. The CGTs are further
reduced to 0.10, 0.05, and 0.04 min, respectively (the dashed line at bottom of
the right graph). Compared to the reference, they are improved by factors of
10,980, 5,000, and 3,000, respectively. The codebooks are then used to
compress the datacube by the MSCA using the conventional coding
algorithm. The CTs are improved by a factor of s ¼ 8, similar to that in
Section 4.8.5. The CTs dominate the overall processing time because they are
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Figure 4.27 Performance comparison of the MSCA with training set subsampling (2%) and
the SFBBC algorithms. The left graph shows PSNR curves, and the right graph shows the
curves of the CGT (dashed lines), the CT (dotted lines), and the overall processing time
(solid line).
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tens of times as large as the CGTs, shown by the solid line and dotted line
curves marked by squares in the middle of the right graph of Fig. 4.27. The
overall processing speeds increase by 96, 88, and 150 times, respectively, at
three compression ratios. The fidelity losses are 1.73, 0.83, and 0.48 dB,
respectively (the curve marked by squares in the left graph of Fig. 4.27).

4.8.7 MSCA with training set subsampling plus SFBBC for both
codebook training and coding

The same codebooks generated in Section 4.8.6 are used, but coding is per-
formed with the SFBBC coding algorithm. The CTs are improved by factors
of 246, 108, and 54, respectively, at the three compression ratios. These
improvements result from a joint contribution of the MSCA and the SFBBC
coding. They are still several times as large as the CGTs and are the major
contributor to the overall processing time. The overall processing speeds are
improved by factors of 2393, 1086, and 895, respectively, but the fidelity losses
increase to 2.86, 1.39, and 0.96 dB, respectively (the curve marked by asterisks
in the left graph of Fig. 4.27).

In order to test the robustness and applicability, each of the previous
simulations was repeated on three different test datacubes. The experimental
results showed similar trends.

4.9 Successive Approximation Multistage Vector Quantization

4.9.1 Compression procedure

In order to overcome the shortcomings of the conventional VQ algorithm for
hyperspectral datacubes, a successive approximation multistage vector
quantization (SAMVQ) algorithm for encoding multidimensional data was
developed.45 SAMVQ is built on a multistage VQ framework, which is a
general approach to lowering the computation complexity in VQ methods.5

However, the existing multistage VQ is severely limited in use, and the fidelity
is substantially poorer than the full-search VQ methods; thus it is not well
adopted. SAMVQ is a novel multistage VQ algorithm and brings this
framework to practical use. SAMVQ achieves a fidelity that approaches or
exceeds the full-search VQ method. There is no limit to multistage in
SAMVQ.

Figure 4.28 shows the block diagram of SAMVQ. In a first-approximation
stage, a first codebook having a small number of codevectors (normally Nm ¼ 8
or 16) is generated from an input datacube. A codevector in the codebook
corresponds to a cluster of spectral vectors and is the centroid of the cluster.
Selection of such a codebook to accurately reflect the vectors of a given
datacube is unlikely, and as such, less care needs to be taken to ensure high
fidelity of the results. Next, the spectral vectors of the datacube are encoded
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using the small codebook first by determining a codevector within the first
codebook that best approximates the spectral vector within the datacube.
Generation of a first index map replaces each spectral vector with an index
indicative of the codevector’s location within the first codebook. Encoding the
datacube with a small codebook will result in encoded data having a low
fidelity. In preparation for a following approximation stage, the difference
based on the original datacube and the encoded datacube is determined. The
difference data is obtained as a difference between the original datacube and
reconstructed datacube after decoding. The difference data becomes input data
for a subsequent approximation stage.

In the second subsequent approximation stage, a new approximation is
created by generating a new small codebook and encoding each error vector
of the difference data by determining a codevector within the new small

Figure 4.28 Block diagram of the SAMVQ algorithm.
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codebook that best approximates the error vector within the difference data.
A second index map is created by replacing the error vectors with an index
indicative of the codevector’s location within the new small codebook. New
difference data based on the encoded datacube and the encoded difference
data is then determined. The new difference data become input data for a
subsequent approximation stage.

The approximation stages comprising the encoding of the difference data
are continued until a control error of the difference data is smaller than a
given threshold or a predefined number of approximation stagesM is reached.

4.9.2 Features

In SAMVQ, the computational burden present in conventional VQ algorithms
for 3D datacubes is no longer a problem, as the codebook size Nm of an
approximation stage is over two orders of magnitude smaller. Codebook
generation time is much faster than with conventional VQ algorithms because
the codebook at each approximation stage is much smaller. To generate
a codebook for a given datacube, the CGT is proportional to the size of the
codebook. In conventional VQ algorithms a single codebook of size N is
generated. The CGT is proportional to N:

CGTVQ / N, ð4:28Þ
whereas for SAMVQ, the CGT is proportional to the cumulative sum of the
sizes of the codebooks generated at each approximation stage:

CGTSAMVQ / N 0 ¼
XM
m 1

Nm, ð4:29Þ

where Nm is the size of the codebook at the mth approximation stage; in
general, Nm � N, and M is the number of approximation stages.

Because the CT and decoding time (DT) are also proportional to the
codebook size, the coding and the decoding are much faster for SAMVQ than
conventional VQ algorithms. This improvement in processing speed has no
fidelity penalty because the SAMVQ method spans the data with a virtual
codebook proportional to the product of the sizes of the codebooks generated
at each approximation stage. Therefore, the size of the virtual codebook is

N
~ ¼

YM
m 1

Nm: ð4:30Þ

For example, assume that SAMVQ comprises a four-stage approximation
with codebooks having an identical size of Nm ¼ 8 codevectors at each stage.
The virtual codebook—the equivalent codebook for conventional VQ
algorithms—would then have N

~ ¼ 84 ¼ 4096 codevectors to achieve the

164 Chapter 4



same reconstruction fidelity as SAMVQ having only N
0¼ 4 � 8 ¼ 32

codevectors. Both the CGT and the CT are improved by a factor of

N
~

N 0 ¼
84

4� 8
¼ 128: ð4:31Þ

By varying the size of the codebook Nm used at each approximation stage
and the number of approximation stages m, the compression ratio of the
encoding as well as the fidelity of the reconstructed data is controllable.
Therefore, SAMVQ is highly advantageous for various applications.

The compression ratio obtained by SAMVQ is greater than that by
the conventional VQ algorithms while the fidelity of the reconstruction
data remains the same because the total number of codevectors is smaller
(N

0¼ 4 � 8 ¼ 32, instead of N ¼ 84 ¼ 4096).
The compression ratio of SAMVQ with m-stage approximation of a

hyperspectral datacube is expressed as

Cr ¼ NrNcNbLXM

m 1
ðNrNc log2Nm þNmNbLÞ

, ð4:32Þ

where Nr and Nc are the number of lines and the number of pixels in the scene
of the hyperspectral datacube, Nb is the number of spectral bands, and L is the
word-length of data value. In Eq. (4.32), the overhead of codebooks at each
approximation stage is included.

The set of codebooks and index maps of the multiple approximation stages
is easily combined into a single codebook and a single index map similar to
those obtained from conventional VQ algorithms. For example, a single index
map is optionally constructed by concatenating the indices indicating the same
spatial location in the index maps, allowing fast calculation of a corresponding
combined codevector for decoding.

Another highly advantageous feature of the SAMVQmethod is the creation
of encoded data (codebook and index map) in subsequent approximation stages.
This allows encoding, transmission, and decoding of the same original image
data in stages of increasing reconstruction fidelity. For example, the most-
significant image information is encoded, transmitted, and decoded first,
followed by less-significant image information. Furthermore, if the number of
codevectors in the first codebook is determined such that it is close to the number
of real classes present in the scene of an input hyperspectral datacube, then
the first index map provides spatial information and spectral classification
information of the hyperspectral datacube.

Given the multiple-stage approximation nature in the compression,
SAMVQ can operate in either a fixed-fidelity or fixed-compression-ratio
mode. In the former mode, given a desirable reconstruction fidelity threshold
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(such as PSNR), SAMVQ will automatically compress one stage after another
until the reconstruction fidelity reaches the fidelity threshold. During the
course of compression, the SAMVQ algorithm adaptively selects the
codebook size at each approximate stage to yield the best compression ratio
and the fastest processing time. This mode has been examined and demonstrated
on eight hyperspectral test datasets. In the fixed-compression-ratio mode, given
the number of stages and the size of the codebook at each stage in terms of
the compression ratio needed, the algorithm compresses the data until the
compression of all approximation stages are completed. The fidelity of the
compression varies with the input data.

Lossy compression can be viewed as near-lossless compression from the
point of view of applications if the level of error (noise) introduced by a lossy
compressor is smaller than that of the intrinsic noise of the original data.
Using the fixed-fidelity mode, one can implement near-lossless compression
by setting the value of the fidelity threshold to be slightly less than the SNR
of the original data. (Near-lossless compression is discussed in detail in
Chapter 5.)

In SAMVQ, a graph of fidelity (such as PSNR) versus compression ratio
[which is related to the number of approximation stages and codebook size at
each stage as defined in Eq. (4.32)] reaches an asymptote. That is, despite
increasing the number of approximation stages, after a certain point the
reconstruction fidelity ceases to increase as the compression ratio decreases.
This point is referred to as an inflection point of the graph. In order to avoid
this, another operating mode called asymptotic compression ratio estimation
has been developed and put into use. In this operating mode the inflection
point of the compression ratio versus PSNR graph is detected, and
compression proceeds automatically stage by stage until the reconstruction
fidelity is not improved significantly (i.e., reaches the inflection point). In this
mode, the algorithm adaptively selects the codebook size at each approximate
stage to yield the best compression ratio and the fastest processing time.
This mode has been examined and demonstrated on eight hyperspectral test
datasets.

Because spectral information is the signature information for hyper-
spectral applications, it is critical to prevent loss in lossy data compression.
The strategy here gives spectral information integrity a high weight in the
compression process. In SAMVQ, the compression fidelity is checked for
each single spectral band rather than the overall datacube. If a spectral
band whose fidelity has reached the fidelity threshold or the inflection
point, the process of approximating to the fidelity threshold or the process
of detecting the inflection point ceases for that spectral band. This method
guarantees that the fidelity of the reconstructed data is better than the
fidelity threshold in each spectral band rather than the overall datacube.
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Due to the fact that the convergence speed of each band to the fidelity
threshold is different, the bands with a fast convergence speed are no longer
involved in the processing of the compression approximation with those
bands whose convergence speed is slow. This saves processing time for both
codebook generation and coding.

In the process of automatic detection of the inflection point, this strategy
produces an inflection point for each spectral band and continues approximate
compression on spectral bands whose inflection points have not been reached.
This not only saves processing time for both codebook generation and coding,
but it also produces a high compression ratio compared to the standard method
that checks the fidelity of the overall datacube because it avoids further
approximations of spectral bands whose inflection points have been reached in
the process, which reduces the number of codevectors.

4.9.3 Test results

The same test data for cube1 to cube4 acquired using CASI (included in
Section 4.8) is used to assess the performance of SAMVQ. Table 4.12
tabulates the experimental results of SAMVQ on cube1. For the purpose of
comparison, the experimental results produced by the MSCA with different
combinations with subsampling of the training set and SFBBC coding (see
Sections 4.8.5–4.8.7), denoted as Systems 1, 2, and 3, are also listed in the
table. For the SAMVQ algorithm, two cases are tested. The SAMVQ
algorithm was applied to the test datacubes without subsampling the training
set. This case is referred to as SAMVQ 1 in the table. The SAMVQ algorithm
was applied the test datacubes with 2% subsampling of training set in order to
compare with the experimental results by MSCA. This case is referred to as
SAMVQ 2 in the table.

Table 4.12 Comparison of PSNR and processing time of SAMVQ with the conventional
VQ compression algorithm for the similar compression ratio.

Improved VQ
System 1

Improved VQ
System 2

Improved VQ
System 3

SAMVQ 1 SAMVQ 2

CR PSNR
(dB)

PT
(min)

CR PSNR
(dB)

PT
(min)

CR PSNR
(dB)

PT
(min)

CR PSNR
(dB)

PT
(min)

CR PSNR
(dB)

PT
(min)

127 40.80 1.2 127 40.70 0.8 127 40.25 0.2 125 40.85 2.8 125 40.42 0.1
81 42.75 4.0 81 42.70 3.5 81 42.19 0.3 81 43.75 4.5 81 43.29 0.2
40 43.80 15.0 40 43.65 13.0 40 42.58 0.5 57 45.90 4.8 57 45.58 0.4

System 1: MSCA þ 2% subsampling (Section 4.8.5),
System 2: MSCA þ 2% subsampling þ SFBBC codebook generation (Section 4.8.6),
System 3: MSCA þ 2% subsampling þ SFBBC for both codebook generation and coding (Section 4.8.7),
SAMVQ 1: without subsampling of training set,
SAMVQ 2: with 2% subsampling of training set.
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It can be seen from the table that SAMVQ outperforms all of the
combined compression cases of MSCA in terms of the PSNR and processing
time (PT) at similar compression ratios. For simplicity, compare System 3
and SAMVQ 2, as they are the most-compatible cases in terms of
subsampling the training set and processing speed. For the lowest-
compression-ratio cases, SAMVQ 2 achieved a compression ratio of 57:1
with a PSNR of 45.58 dB, whereas System 3 achieved a compression ratio of
40:1 with a PSNR of 42.58 dB. Both the compression ratio and PSNR of
System 3 are worse than those of SAMVQ 2. In addition, the processing time
of SAMVQ 2 is faster than System 3. The test results on the other three test
datacubes show the similar conclusions.

It is evident that SAMVQ is a superior VQ-based compression algorithm
in terms of its efficacy and simplicity for operational use. Two patents on
SAMVQ compression techniques have been filed and granted.45,46 One
patent45 is on the subject discussed in this section, and another patent46 is on
the subject of onboard near-lossless compression, which is discussed in
Chapter 5.

4.10 Hierarchical Self-Organizing Cluster Vector Quantization

Another novel and fast VQ compression algorithm, referred to as hierarchical
self-organizing cluster vector quantization (HSOCVQ), has been developed by
Qian et al.47,48 The HSOCVQ algorithm merges the codebook training and
coding phases into one. Given a desired fidelity threshold, such as a RMSE,
HSOCVQ compresses the spectral vectors in a datacube until each of them is
encoded with fidelity better than the threshold, which is the main difference
between SAMVQ and HSOCVQ in terms of compression fidelity. Reduction
of the computational complexity of the search for the nearest codevector is no
longer an issue in HSOCVQ, as both the training set size and the codebook
size are orders of magnitude smaller than in the conventional VQ algorithms.

4.10.1 Compression procedure

Figure 4.29 shows the block diagram of the HSOCVQ algorithm. It first trains
an extremely small number of tentative codevectors (usually N1 � 8) using an
input datacube as the training set and then uses these tentative codevectors to
classify spectral vectors in the datacube into N1 clusters. Each tentative
codevector is the kernel of one of the clusters. The HSOCVQ algorithm then
encodes the N1 clusters one after another.

In encoding cluster #1, the spectral vectors in the cluster are coded using
the index of the tentative codevector associated to the cluster (i.e., 1) if the
compression fidelity is better than the predetermined threshold. Tentative
codevector #1 becomes a formal codevector and is added to the codebook. If
the compression fidelity is not better than the threshold, the HSOCVQ
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algorithm generates an extremely small number (N2) of tentative codevectors
by using cluster #1 as a training set. Cluster #1 is then split into N2

subclusters, each of which associates to a tentative codevector. The number of
tentative codevectors is determined adaptively. The distance between the
spectral vectors in cluster #1 and the kernel of the cluster (i.e., tentative
codevector #1) is calculated and used to estimate the number of the tentative
codevectors. A relatively larger number of tentative codevectors (e.g., 8) are
generated if the distance is large. A relatively small number of tentative
codevectors (e.g., 2) are generated if the distance is small. HSOCVQ then
encodes spectral vectors in each of the subclusters using the tentative
codevector associated to the subcluster and checks if each of the vectors has
compression fidelity better than the threshold. If a spectral vector whose
compression fidelity associated with the tentative codevector is better than the
threshold, it is encoded using the tentative codevector and excluded from the
subcluster. The tentative codevector associated to the subcluster becomes a
formal codevector and is added to the codebook. The remaining spectral
vectors whose fidelity associated with the formal codevector is not better than
the threshold are further split by adaptively generating new tentative

Figure 4.29 Block diagram of HSOCVQ.
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codevectors and clustering the subcluster using the same method described
earlier. The tentative codevector associated with a subcluster will not become
a formal codevector and be added in the codebook if it does not encode a
single spectral vector in the subcluster. This process repeats until all of the N2

subclusters are encoded for cluster #1, and then the HSOCVQ algorithm
encodes cluster #2, and so on until all N1 clusters have been processed.

4.10.2 Features

One of the unique features of HSOCVQ is that it guarantees that the
reconstruction fidelity of each spectrum in the compressed datacube is better
than the predetermined fidelity. This feature allows HSOCVQ to preserve
small targets or “golden” spectra in a hyperspectral datacube. HSOCVQ
operates only in Fidelity mode. Similar to SAMVQ, setting the compression
fidelity to a level better than that of the instrument that captured the data can
result in a near-lossless compression (or a lossless compression if accounting
for the instrument noise).

HSOCVQ can be viewed as a traditional tree-structured VQ with at least
the following four main differences:

1. Online design of the tree structure and transmission of codevectors;
2. Flexible tree structure (i.e., adaptive breadth and depth of tree);
3. Encoding converged vectors of a cluster at any given depth of the tree

using their kernel as codevector and excluding the vectors from the cluster
for further training; and

4. A stopping criterion based on maximum error.

The first point enables HSOCVQ to be a real-time algorithm, whereas the
fourth point allows it to control the compression fidelity for near-lossless
compression. The second point results from the adaptive selection of the
number of codevectors to be generated for a cluster and from the different
convergence rates of the clusters. It results in compression to a desired fidelity
with the fewest terminal nodes (i.e., codevectors). Its cost is the calculation of
the fidelity of each vector in the cluster to the kernel of the cluster. The third
point is inconsistent with the traditional tree-structured VQ because it assigns
the kernel of a cluster as the codevector of the node if at least a vector in the
cluster is converged to the compression fidelity. This may increase the total
number of codevectors. The benefit is that the clusters become smaller and
smaller when the splitting goes deep. This speeds up the processing of the
clusters and decreases the total breadth and depth of the tree to reduce the
total number of codevectors.

In the VQ technique, to generate a codebook for a given datacube, the CGT
is proportional to the size of codebook and the size of the training set. In
HSOCVQ, the clusters, subclusters, and sub-subclusters generated are disjoint,
and their sizes are decreased as the hierarchical splitting levels increase. Thus
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the compression process is extremely fast and efficient, as both the codebook
size and training set (cluster or subclusters) size are small, and the spectral
vectors in each cluster or subcluster are not trained twice. CGT is much faster
than in the conventional 3D VQ because the size of codebook is much smaller
in general. CT (codevector match) and DT are also much faster than
conventional 3D VQ because CT and DT are also proportional to the
codebook size.

In HSOCVQ, the codebook is generated in real time without any a priori
knowledge or user interaction. This feature allows the compression
technology to be applied in real time aboard a spacecraft.

Moreover, each codevector in the codebook that is associated with a
specific cluster is trained only from the data (vectors) that belongs to the
cluster. In other words, the size of training set for training each codevector
is much smaller than the entire datacube. The improvement in processing
speed offered by HSOCVQ against conventional 3D VQ has no fidelity
penalty.

The compressed data—the index map—produced by this compression
technique is actually a classification map of the datacube. In addition, the
clusters in the index map are well ordered. Similar clusters have close class
numbers. Moreover, controlling the fidelity of compression can be used to
control the accuracy of the classification. This is a unique property not
possessed by supervised or unsupervised classification methods. The proces-
sing time required to compress a datacube using HSOCVQ is faster than that
required to classify the datacube using a supervised or an unsupervised
classification method.

Though an increased fidelity requirement demands more processing time
(because additional recursions are needed), the increase is not so substantial,
and the trade-off is mainly between fidelity and compression ratio. This allows
the general trade-off between fidelity and compression ratio to be tailored to
the system application.
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Chapter 5

Onboard Near-Lossless Data
Compression Techniques

5.1 Near-Lossless Satellite Data Compression

The vector-quantization-based lossy compression algorithms discussed in
Chapter 4 can easily achieve compression ratios of 50:1 or more if some loss in
fidelity of the reconstructed data can be tolerated in exchange for the higher
compression ratio. Caution must be taken when a lossy data compression
algorithm is applied to satellite data. For example, hyperspectral data
contains rich spectral information for remote sensing applications. If a
hyperspectral datacube is compressed using a lossy method, any information
loss due to the compression can reduce the value of the data. Conventional
lossy compression methods developed for 2D or 3D images are not suitable
for hyperspectral imagery because they were not designed to preserve the
spectral information in hyperspectral imagery.

A scientific dataset acquired by a satellite is not noise free. It contains all
kinds of instrument noise, such as thermal noise, shot noise, salt-and-pepper
noise, quantization noise, etc. The thermal noise is caused by the detector
array and amplifiers of the instrument, and is independent of the signal
intensity. The shot noise of the detector array is dependent on signal intensity;
it is caused by statistical quantum fluctuations, that is, variation in the number
of photons sensed at a given exposure level. Shot noise is proportional to the
square root of the signal intensity, and the noises at different pixels of the
detector array are independent of one another. Shot noise follows a Poisson
distribution. In addition to photon shot noise, there can be additional shot
noise from the dark leakage current in the detector array. This noise is
sometimes known as dark-current shot noise. The salt-and-pepper noise is
impulsive noise that can be caused by analog-to-digital converter errors. The
quantization noise is caused by quantizing the analog electronic signal of the
sensed pixels to digital counts; it has an approximately uniform distribution
and can be signal dependent. Due to the existing instrument noise, scientific
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datasets acquired by a satellite instrument have a SNR that quantifies how
much the signal has been corrupted by the noise.

In addition, raw digitized satellite datasets need to be processed before
they are delivered to a user community to derive application products.
Raw datasets need to be converted to radiance data in the radiometric
calibration process to remove all of the artifacts caused by the instrument
and the atmosphere. This process introduces uncertainty or errors to the
scientific datasets. After that, the radiance data is corrected to remove
atmospheric effects and converted to reflectance data. The atmospheric
correction is another source of introducing errors to the scientific
datasets.

This chapter defines all of the noises (from different sources: instrument
noise, calibration-process, and atmospheric correction) contained in an original
satellite dataset as “intrinsic noise” for the purpose of distinguishing the noise
(errors) introduced by a compression algorithm.

In order to preserve the scientific information of satellite data, a lossy
compression algorithm should be designed to restrict the error introduced
during the compression process to a level consistent with or lower than the
level of the intrinsic noise of the original data. This kind of lossy compression
is defined as “near lossless,” as this level of compression error is expected to
have a small-to-negligible impact on remote sensing applications of the
satellite data compared with the intrinsic noise.

This chapter describes two near-lossless VQ-based compression techni-
ques for onboard processing: cluster SAMVQ and recursive HSOCVQ.1 As
described in Chapter 4, these two compression techniques are capable of
controlling the compression error introduced in the compression process to
the level consistent with that of the intrinsic noise of the original datasets by
setting the compression fidelity threshold to a value smaller than the intrinsic
noise. The compression errors introduced by these two compression
techniques are expected to have a small-to-negligible impact on remote
sensing applications in comparison with the intrinsic noise of the original
data. This kind of near-lossless compression is different from the visually near-
lossless compression2,3 for medical images and the virtual near-lossless compres-
sion4,5 for hyperspectral imagery.

5.2 Cluster SAMVQ

5.2.1 Organizing continuous data flow into regional datacubes

Unlike ground applications where a full datacube is available in advance, in
real-time compression aboard a hyperspectral satellite, only a 2D focal plane
frame (i.e., 2D detector array, as shown in Fig. 1.7) and the earlier frames are
available at a given moment when the satellite looks at the cross-track line on
the ground. One dimension of the focal plane frame corresponds to the
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ground sample cells in the cross-track line, and another dimension of the
frame corresponds to the spectrum expansion of each ground sample in the
wavelength dimension. The spectrum expansion of a ground sample is
referred to as a spectrum or spectral vector herein. There are Nc spectra (i.e.,
spectral vectors) in a focal plane frame if a cross-track line has Nc ground
samples. The second spatial dimension of a hyperspectral datacube is obtained
by the satellite flight in the along-track direction. This operating concept of a
hyperspectral sensor is illustrated in Fig. 1.7. A series of such 2D frames
collected in a certain period of time covers an instantaneous scene on the
ground (referred to as a region herein) and can be treated as a real-time
regional datacube for the purpose of dividing continuous 2D frame series into
manageably sized datacubes.

Because fixed-size datacubes are unavailable in advance aboard a satellite,
real-time compression of hyperspectral imagery has to be carried out region-
by-region by organizing the continuous data flow of 2D frames into regional
datacubes. Figure 5.1 illustrates how a series of continuous 2D focal plane
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Figure 5.1 Illustration of (a) organizing continuous 2D focal plane frames into regional
datacubes and (b) splitting a regional datacube into vignettes to facilitate parallel hardware
implementation. For a color version of this figure, see Plate 4 in the color plate section of
this book.
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frames are organized into a regional datacube on the left graph and how a
regional datacube is split into multiple vignettes (subdatacubes) on the right
graph for facilitating parallel processing to overcome the constraints of the
CPU processing and memory limitation. In the figure, a regional datacube is
split intoM ¼ 3 subdatacubes. In the real case, the number of subdatacubes to
be split depends on the volume of a regional datacube, the compression
processing throughput, and the memory capacity. Each compression engine
(CE) compresses a subdatacube independently. This approach solves the
problem of limited processing speed and memory capacity in real-time data
compression aboard a satellite.

5.2.2 Solution for overcoming the blocking effect

However, visible spatial quilts (blocks) occur within a regional datacube
because the compression of each subdatacube is compressed independently by
each compression engine. Figure 5.2 shows an example of the blocking effect
of the difference image between the original and the reconstructed datacubes
when a datacube is split into subdatacubes for parallel processing and when
each subdatacube is compressed by a compression engine independently. This
blocking effect of the compressed datacube is not acceptable.

Figure 5.2 An example of spatial quilt in the difference image between the original and the
reconstructed datacube when a datacube is split into subdatacubes for parallel processing
and when each subdatacube is compressed by a compression engine independently.
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To overcome this blocking effect, an innovative method referred to as
“cluster SAMVQ” herein has been developed.6 It separates a regional
datacube into manageable subsets for parallel processing by classifying a
regional datacube into M clusters based on the similarity of spectra within the
datacube rather than cutting the datacube into M vignettes. Similar spectra of
the ground samples are more likely to be associated with the same clusters of
particular targets in the scene (e.g., vegetation and water body, etc.). A subset
consists of a cluster of spectra that are similar but not associated with specific
locations across track. This method not only gets rid of the cross-track
boundaries in a regional datacube but also slightly improves the performance
of the compression. Because the spectra in a cluster are similar, they can be
more easily compressed. Fewer codevectors or fewer approximation stages
are required to attain the same reconstruction fidelity as that achieved using
the vignette approach. Thus, a higher compression ratio can be achieved if the
fidelity remains constant.

The classification processing is a preprocessing step that classifies a
regional datacube to form subsets and distributes them to each CE for
compression using the SAMVQ technique. A complex classification processor
is not necessary, as the purpose is to divide a regional datacube into subsets
without inducing spatial blocking effects and to facilitate parallel processing.
Any existing classification method can be used to divide a regional datacube
into clusters. The classification method chosen is called the spectral vector
partition algorithm; it classifies spectral vectors in a regional datacube into
partitions based on the minimal distances between the spectral vectors and the
centroids of the partitions, which is similar to the codebook training. This
method is simple, fast, and easy to implement in hardware.

The sizes of the clusters yielded by the selected classification method are not
the same. Some of them are large, and others are small. This is because the size
of the clusters depends on the scene of the datacube to be compressed.
However, it is desirable to have approximately equal sizes for each cluster in
order to make full use of the hardware capacity of each CE. For example, a CE
designed to compress a set of 4096 spectral vectors in a parallel compression
system would not be fully used if the size of the cluster assigned to the CE were
much smaller than 4096 spectral vectors. There is also an upper limit because
the CE cannot handle a cluster if its size is larger than 4096 spectral vectors.
A classification method that can adaptively control the size of each cluster was
developed so that they are approximately equal in size by splitting a large
cluster and merging small clusters during the course of classification.

5.2.3 Removing the boundary between adjacent regions

The solution described in Section 5.2.2 eliminates the blocking effect
occurring within a regional datacube. However, there is still a boundary
between two adjacent regions in the along-track direction, as compression is
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performed independently region by region. In order to overcome this problem,
a method of overlapping two adjacent regions for codebook training has been
introduced. A number of cross-track lines from the previous region, which are
closest to the current region, are selected and included in the training set used
for the current region during codebook training process, as shown in Fig. 5.3.
Because of the correlation and similarity among the spectral vectors of the
current region and those from the overlapped area of the previous region,
the codevectors trained for the current region will be highly correlated with
the codevectors trained in the previous region, especially in the juncture area
of the two regions. No boundary occurs between the two adjacent regions
when the codevectors trained in this way are used to encode the spectral
vectors of the current region.

5.2.4 Attaining a fully redundant regional datacube for
preventing data loss in the downlink channel

The data loss due to a single-bit event in the downlink channel is an issue in
the development of spaceborne hyperspectral imagers, especially when an
onboard data compressor is used. Data is more sensitive to bit errors after it is
compressed. Compressed data of a regional datacube is encapsulated into
source packages and ultimately placed in multiple transfer frames before it is
transmitted via the downlink channel to the ground. Single-bit errors can
cause a transfer frame to be corrupted or lost; if one occurs in a transfer frame
that contains the index map and/or codebook, the reconstructed data for that
regional datacube can be subject to error. If that transfer frame is lost, then
the regional datacube is lost.

Figure 5.3 Overlap of two adjacent regions for codebook training to remove the boundary
between two regions.
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Full redundancy of a regional datacube is obtained when the previous
region and current region are combined as the training set for codebook
training. The codebook trained from the combined regions can be used to
encode both regions. Figure 5.4 illustrates how a combined training set is
formed and how a codebook is created for regions 1 þ 2, 2þ 3, etc. A regional
datacube is associated with two codebooks. Region 1 is associated with
codebook 1 and 2, region 2 with codebook 2 and 3, and so on. In this way, a
regional datacube has a fully redundant codebook. There is no penalty to the
compression ratio for this redundancy, as the number of codevectors remains
the same. In order to attain a redundant index map, a current codebook is
used to encode the current region as well as the previous region to produce a
baseline index map for the current region and a redundant index map for the
previous region. In the example, the codebook 2 (trained from regions 1 þ 2)
creates a baseline index map for region 2 and a redundant index map for
region 1. This doubles the size of the index map. The overhead of the
compression ratio is very low because an index map is usually a tenth of the
size of a codebook.

This method attains full redundancy for a region. An entire regional
datacube can be perfectly restored if its codebook or index map are corrupted
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Figure 5.4 Combining a current region and an entire previous region to attain a full
redundancy.
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or lost due to single-bit errors. This feature is extremely important to protect
against such errors aboard a satellite or in the downlink channel. Because the
compressed data (i.e., codebook and index map) is fully redundant, the
reconstruction process is less sensitive to any errors, including single-bit errors
that could be introduced after applying a lossless compression algorithm to
the compressed data. This method enables the application of a lossless
compression algorithm to the codebooks and index maps to further increase
the compression ratio.

It is observed that in SAMVQ compression, the amplitude of the elements
of the codevectors generated in each stage decreases with the increasing
number of stages. For example, in the early stages, the amplitude of a
codevector may occupy the most-significant bits, whereas the amplitude of a
codevector after the second stage may occupy only the four least-significant
bits, even though the image dataset to be compressed has a 16-bit dynamic
range. In cluster SAMVQ, this fact is taken into account by storing the
codebook generated in a stage. The word-length of a codebook generated in a
stage is not fixed. Two schemes are utilized to encode a stage codebook:
(1) using the shortest-fitting word-length for each codevector of the stage
codebook, and (2) using the shortest-fitting word-length for all of the
codevectors of the stage codebook. Both schemes save storage memory for
codebooks in the multistage VQ and help increase the compression ratio while
retaining the same fidelity. More importantly, the codebooks encoded in this
way have much-higher bit-error immunity and protect against bit-error
propagation that can be caused by single-bit flips. For example, assume that
a codebook generated for stage 5, occupying only the 2 least-significant bits
(i.e., the amplitude dynamic range of 0–3), has 1 bit of a codevector within the
codebook flipped; the amplitude of the corrupted codevector that was
encoded using the conventional SAMVQ approach would become between
32,768 (i.e., 215) and 32,771 if the most-significant bit of the codevector is
flipped. In cluster SAMVQ, with the same assumption, the amplitude of the
corrupted codevector will be between 0 and 3. This scheme greatly reduces the
amplitude of the resulting error propagation.

5.2.5 Compression performance comparison between
SAMVQ and cluster SAMVQ

Table 5.1 shows an example of the compression performance comparison of
cluster SAMVQ with conventional SAMQ that divides a datacube into
vignettes. A BOREAS datacube acquired using the CASI hyperspectral sensor
was used as test data. The test datacube is in a raw digital number (DN) with
12-bit resolution (data range: 0–4024). The datacube size is 405 pixels in the
cross-track direction by 2852 lines by 72 spectral bands (file size 166 MB). The
experimental results show that cluster SAMVQ attains better reconstruction
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fidelity than SAMVQ with vignettes when the compression ratios remain
constant.

5.3 Recursive HSOCVQ

The SAMVQ and HSOCVQ methods described in Chapter 4 were designed
for different applications. The HSOCVQ algorithm merges the codebook
training and coding phases into one. Given a desired compression fidelity
threshold (such as PSNR or a RMSE), HSOCVQ compresses the spectral
vectors in a datacube until each of them is encoded with fidelity better than
the threshold. It is suitable for preserving single- or small-population spectral
signatures, whereas SAMVQ compresses data in a multistage approximation
manner by checking the fidelity of the entire dataset stage-by-stage until the
overall fidelity of the compressed data reaches the fidelity threshold at an
approximation stage. The spectral signature carried by a single sample or
small population samples in a scene may not be preserved. Normally,
SAMVQ produced relatively higher PSNRs of the reconstructed data
compared to HSOCVQ for the same compression ratio.

Similarly, for onboard real-time data compression using HSOCVQ, the
continuous data flow of the 2D focal plane frames also needs to be organized
into regional datacubes and compressed one after another. In order to
deal with the similar problems that occurred in onboard real-time data
compression, the conventional HSOCVQ method has been updated. A novel
onboard, real-time data-compression technique called recursive HSOCVQ has
been developed.7

5.3.1 Reuse of codevectors of the previous region to attain a
seamless conjunction between regions

As described in Chapter 4, HSOCVQ first trains an extremely small number
of tentative codevectors (usually N1 � 8) using the datacube to be compressed
as the training set and then uses these tentative codevectors to classify spectral
vectors in the datacube into N1 clusters. It then encodes the N1 clusters one
after another. This is equivalent to the cluster SAMVQ classification of a
regional datacube into M clusters based on the similarity of spectra within the
datacube to solve the blocking effect. HSOCVQ, by its nature, divides a

Table 5.1 Comparison of compression performance between cluster SAMVQ and
conventional SAMVQ using vignette splitting approach.

SAMVQ (with vignettes) Cluster SAMVQ

Compression ratio 20:1 30:1 50:1 20:1 30:1 50:1
PSNR (dB) 55.8 51.30 47.14 57.5 54.72 51.57
RMSE 5.51 11.00 17.68 5.38 7.34 10.62
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datacube to be compressed into multiple small-size clusters. There will be no
blocking effect when HSOCVQ is applied to compress a regional datacube.
This is another difference between HSOCVQ and SAMVQ. In onboard real-
time compression, HSOCVQ only needs to find a way to overcome the
boundary between the adjacent regions.

To overcome the boundary between the adjacent regions, our
innovative approach is to reuse the codevectors trained for the previous
region to encode the spectral vectors in the current region to attain a
seamless conjunction of the two adjacent regions. The last few frames
(especially the last frame) of the previous region and the first few frames
(especially the first frame) of the current region are referred to as the
boundary area. Because the boundary is artificial, spectral vectors in the
boundary area must be similar. The same codevectors are used to encode
the spectral vectors of both regions in the boundary area. No visible
spatial boundary between the two regions will occur because the same
codevectors are used. The reused codevectors of the previous region are
carried forward to the next region.

5.3.2 Training codevectors for a current frame and
applying them to subsequent frames

In real-time onboard VQ compression, codevectors have to be trained for a
relatively small instantaneous scene (or region) in order to reduce the
requirements for CPU, memory, complexity, power consumption, and
volume of the system. In recursive HSOCVQ, a single 2D focal plane frame
acquired in a moment by a hyperspectral sensor is used to train codevectors
for compression of that frame. When the next frame data comes, new
codevectors are trained by using this frame as the new training set. In other
words, recursive HSOCVQ trains codevectors and compresses data frame by
frame. This method greatly simplifies hardware implementation and requires
less memory for onboard operation. As shown in Fig. 5.5, for example,
the spectral vector of a ground sample cell in a focal plane frame has 200 bands
with 12-bit data resolution. The memory required to accommodate a
frame data is only 1000 such spectral vectors (a total of 1000 � 200 � 12
bits); this amount of data can be easily accommodated. However, this method
greatly reduces the ability of HSOCVQ to compress data because it does not
benefit from using the correlation that exists among spectral vectors within a
big scene.

In order to benefit from the correlation that exists among spectral vectors
of the ground samples within a scene, recursive HSOCVQ reuses codevectors
trained for a current frame in the subsequent frames to increase codevector
efficiency and save training time. Correlation is the strongest between the
spectral vectors in the current frame and those in the next frame. Codevectors
trained for the current frame can be used to encode most of the spectral
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vectors in the next frame at the same desired fidelity threshold. Correlation
decreases with the separation of the subsequent frames from the current
frame; that is, fewer codevectors trained for the current frame are used to
encode the spectral vectors in widely separated frames. The number of
codevectors that are reused depends on the desired fidelity threshold. This
method has following advantages:

1. Codevector training is extremely fast because the training set is very small
(a single frame rather than a datacube).

2. Codevectors trained in this way are used very efficiently. Codevectors
are used not only to encode the spectral vectors in the frame from which
they are trained but also to encode the spectral vectors in the subsequent
frames.

3. It is a recursive approach to encoding a large datacube by training only a
small portion of data.

Because reusing codevectors leaves some spectral vectors in the
subsequent frames that cannot be encoded at the desired fidelity, these
spectral vectors need to be encoded separately. Given the small number of
uncoded spectral vectors in the next frame (as most of the spectral vectors
have been encoded), the uncoded spectral vectors cannot be compressed
efficiently. Not only is there little correlation among the uncoded spectral
vectors but also experimental results show that the population of the
uncoded spectral vectors derived from subsequent frames is too small to be
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Figure 5.5 Illustration of recursive HSOCVQ generating an associated codebook in each
region with reuse of codevectors trained for the previous region.
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trained and encoded. As such, only a compression ratio between 1:1 and
2:1 could be achieved if they were encoded immediately. The approach
presented here collects all uncoded spectral vectors in each of the
subsequent frames and then encodes them at the end of a regional
datacube, after a preset number of frames is reached, or after a sufficient
population of uncoded spectral vectors is gathered. In this way, a
sufficiently high correlation among the spectral vectors can be accumu-
lated when the spectral vectors are encoded, and a relatively high
compression ratio can be attained.

5.3.3 Two schemes of carrying forward reused codevectors
trained in the previous region

Two schemes of carrying forward the reused codevectors have been proposed
and implemented in recursive HSOCVQ. The first scheme transmits only the
index of each reused codevector together with the codevectors trained for a
current regional datacube. Figure 5.5 illustrates the concept of this scheme. In
the figure, the leftmost column shows the regional codebooks transmitted.
The second-leftmost column shows the working memory of the regional
codebooks. Codevector x1 is reused in the next region. Only its index (or
address) in that codebook “x1” (8 bits, assuming a codebook size of 256
codevectors) is transmitted rather than the entire codevector (size is 200 �
12 bits, assuming that a spectral vector has 200 bands with 12-bit data
resolution). In the decompression process on the ground, its recorded index
(x1) will point to the corresponding codevector in the previous regional
codebook. In this way, all of the reused codevectors need not be transmitted,
which greatly increases the compression ratio because an index uses only
1 byte rather than using 300 bytes for a codevector. This scheme is referred to
as the “associated codebook” scheme because the recursive decompression
process requires a current regional codebook and the previous regional
codebook (the current regional codebook is always associated with that of the
previous region).

Upon completing the compression of the current region, all of the reused
codevectors from the previous region are copied and appended to the working
memory of the current regional codebook. In this way, all codevectors used
for the current region are organized into a whole codebook in order to
facilitate the processing of the next region. In the compression of the next
region, all of the codevectors residing in the working memory of the region
(whether trained or carried forward) will be checked to verify if they can be
reused to encode the new region.

The second scheme carries a codevector from the previous region
forward to the working memory of the current regional codebook as soon
as it is reused. Upon completing the compression of the current region, the
codevectors in the working memory of the current region are a mixture of
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reused and newly trained codevectors. All of the codevectors in the
working memory are transmitted. In this scheme, the codebook of each
region is distinct and independent, as all of the reused codevectors are
already included. Figure 5.6 illustrates this scheme. Reused codevectors
“x1” and “x2” are carried forward to the working memory of the current
region as soon as they are reused and immediately become the codevectors
of the new regional codebook. In the decompression process on the
ground, a region that is reconstructed requires only the codebook of that
region. Although this scheme does not make use of the redundancy of the
reused codevectors in the codebooks of the two neighboring regions, it has
the advantage of protecting against error propagation. The errors will be
constrained to a regional datacube if bit errors occur within that codebook
or index map.

The order of reusing existing codevectors is important to achieve high
compression performance. When spectral vectors in a current region are
encoded, there are two kinds of codevectors that exist and can potentially
be used: current-region, newly trained codevectors for the previous frames,
and codevectors in the previous regional codebook. As mentioned in
Section 5.3.2, HSOCVQ trains codevectors frame by frame. If a spectral
vector in the current frame can be encoded by a reused codevector, it is
from one of the two sources. Once a spectral vector is successfully encoded
from one source, codevectors in another source will not be searched.
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Figure 5.6 Illustration of recursive HSOCVQ generating an independent codebook in each
region with reuse of codevectors trained for the previous region.
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Experimental results show that the codevectors newly trained from the
current region should be checked first, followed by those from the
previous regional codebook. This order produces better compression
performance for three reasons:

1. The codevectors newly trained from the frames of the current region have
higher correlation to spectral vectors in the current frame than those
trained for the previous region. They yield better fidelity when they are
reused to encode spectral vectors of the current frame.

2. If a spectral vector can be encoded by a codevector from the newly
trained codevectors of the region, there is no need to search the
codebook of the previous region. This will save compression time for
encoding the spectral vector because the size of the current regional
codebook is normally small.

3. If a spectral vector could be encoded equally well using either a codevector
from the current or previous region, the former is preferred because the
overhead of transferring a codevector from the previous region is
removed. Otherwise, the reused codevector in the previous regional
codebook needs to be carried forward to the current regional codebook.
This will increase the size of the current regional codebook and reduce the
compression ratio.

5.3.4 Compression performance comparison between baseline and
recursive HSOCVQ

Table 5.2 shows an example of the compression performance comparison
of baseline and recursive HSOCVQ for hardware implementation. A radiance
datacube of the Cuprite mining district of Nevada was used as test data; it was
acquired using the AVIRIS hyperspectral sensor in June 1996, with an
approximately 20-m ground resolution in 224 spectral bands, each about
10 nm wide, in the 400–2500-nm wavelength range, with a spatial size of 614
pixels by 512 lines (12.3 km � 10.2 km). The data file size is 140 MB.
The experimental results show that recursive HSOCVQ modified to facilitate
parallel hardware performs as well as baseline HSCOVQ, although the
correlation that benefits compression is greatly reduced due to the training in
a single frame.

Table 5.2 Comparison of compression performance between baseline and recursive HSOCVQ.

HSOCVQ Recursive HSOCVQ

Compression ratio 10:1 20:1 30:1 40:1 10:1 20:1 30:1 40:1
PSNR (dB) 58.35 56.2 55.23 54.64 57.95 56.1 55.05 54.32
SNR (dB) 41.95 39.83 38.83 38.12 41.55 39.66 38.62 37.92
RMSE 39.64 50.57 56.67 60.65 41.50 51.58 58.13 63.06
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5.4 Evaluation of Near-Lossless Performance of
SAMVQ and HSOCVQ

5.4.1 Evaluation method and test dataset

One of the unique features of SAMVQ and HSOCVQ allows control of the
errors introduced during the compression process. For remote sensing
applications, compression is considered near lossless provided that the error
introduced by the compression is not larger than the intrinsic noise in the
original data caused by the instrument noise and other noise sources from
preprocessing, such as calibration and atmospheric correction. Because an
original datacube is not exempt from intrinsic noise and other noise sources,
these errors propagate into the remote sensing products derived from the
original data.

In order to evaluate the near-lossless feature of the two compression
techniques, the error introduced by the two compression algorithms was
analyzed band by band and pixel by pixel. The compression errors were
compared with the intrinsic noise of the original data to see if they were
consistent with the level of intrinsic noise in the original data.

A low-altitude AVIRIS dataset acquired in the Greater Victoria
Watershed District, Canada on August 12, 2002 was used (information on
the dataset is available at http://aviris.jpl.nasa.gov/ql/list02.html). The
ground sample distance (GSD) of the dataset is 4 m � 4 m with an AVIRIS
nominal SNR of 1000:1 in the visible and near-infrared (VNIR) region. A
spectral subset was selected to remove redundant and bad bands, which
reduced the data from 224 bands to 204 bands, including the original bands
6–31 (423.04–664.79 nm, VNIR), bands 35–96 (673.64–1258.39 nm), and
bands 98–213 (1263.72–2399.48 nm) for the short-wavelength infrared. A
28 m � 28 m GSD datacube was derived by spatially aggregating the 4 m �
4mGSD dataset. The SNRof the aggregated datacube is 1000� 49

p ¼ 7000:1.
Figure 5.7(a) shows the aggregated datacube, whose spatial size is 292 lines with
121 pixels per line. The datacube is encoded in 16-bit digital numbers (DNs).
This datacube is considered noise-free because the noise is too small to have a
significant impact on the evaluation. Figure 5.7(a) is a RGB image with bands
38 (702.2 nm), 20 (557.9 nm), and 2 (432.6 nm) being displayed as red, green,
and blue.

Figure 5.7(b) shows a datacube identical to Fig. 5.7(a) except that its SNR
is 600:1, generated by adding simulated instrument noise and other possible
noise sources to (a). An additive noise (Gaussian model) was used. This noise-
added datacube was used as an original datacube for compression and for
evaluation of the near-lossless feature of the compression algorithms here; it is
considered to be representative of a real satellite hyperspectral dataset because
the SNR for such an instrument is likely to be approximate to that level.2 The
noise of the original datacube caused by the instrument noise and other noise
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sources is referred to as intrinsic noise in this section. Figure 5.7(c) shows an
intrinsic noise image at band 38 (702.2 nm) of the noise datacube, which was
obtained by subtracting the datacube with a SNR of 600:1 (b) from the noise-
free datacube (a). The display scale is stretched to between the minimum (–155
DN) and maximum (149 DN) amplitude of the noise image for better
contrast.

The original datacube was compressed using SAMVQ at a compression
ratio 20:1, and then the compressed data was decompressed to obtain the
reconstructed datacube, as shown in Fig. 5.7(d), for evaluation. It is difficult to
visually distinguish the difference between the original and the reconstructed
datacubes. Figure 5.7(e) shows the compression-error image (difference between
the original datacube and the reconstructed datacube) at band 38. The display
scale is stretched to the same range as Fig. 5.7(c). The pattern of the
compression error image looks similar to that of the intrinsic noise image; also,
there are no apparent structures.

5.4.2 Evaluation of a single spectrum

The intrinsic noise of the original datacube has been analyzed; Figure 5.8(a)
shows the worst-case noise profile of a ground sample pixel at location
(49, 174) of the intrinsic-noise datacube as a function of spectral band
number. The noise magnitudes for the VNIR bands and the beginning of the
SWIR bands are large. The maximum value of the noise is 204 DN at band
66 (1050.45 nm), and the minimum value of the noise is –196 DN at band

Figure 5.7 AVIRIS Greater Victoria Watershed District datacube: (a) noise-free datacube,
(b) noise-added datacube (uncompressed), (c) intrinsic-noise datacube, (d) compressed
datacube, and (e) compression-error datacube (reprinted from Ref. 1). For a color version of
this figure, see Plate 5 in the color plate section of this book.
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Worst Case Intrinsic Noise Profile at Location (49,174) 
(SNR7000-SNR600)
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Figure 5.8 Profiles of (a) the worst-case intrinsic noise of the original data at location
(49, 174), (b) compression error introduced by SAMVQ at a compression ratio of 20:1, and
(c) overall noise (i.e., intrinsic noise with compression error) at the same location (reprinted
from Ref. 1).
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71 (1097.72 nm). The noise magnitudes are between –15 DN and 15 DN
between bands 100 (1363.50 nm) and 204 (2399.48 nm).

Figure 5.8(b) shows the compression error (or noise) profile of the
reconstructed datacube compressed by SAMVQ with a compression ratio of
20:1 at the same location as Fig. 5.8(a). The error introduced due to the
compression is not larger than the intrinsic noise of the original datacube
across the spectral bands. The maximum value of the compression error is
85 DN at band 71 (1097.72 nm), and the minimum value of the compression
error is –127 DN at band 63 (1022.09 nm). The compression-error magnitudes
between bands 100 (1363.50 nm) and 204 (2399.48 nm) are in the same range
as the intrinsic noise of the original datacube: between –15 DN and 15 DN.

After compression/decompression, the reconstructed data contains both
the intrinsic noise of the original datacube and the compression error (or
compression noise). This section refers to the combination of intrinsic noise
and compression error as overall noise, which is the final noise budget of the
datacube if the reconstructed data is sent to a hyperspectral data user for
deriving their products. Figure 5.8(c) shows the overall noise profile at the
same location (49, 174); it was obtained by subtracting the spectrum of
the reconstructed datacube from the spectrum of the noise-free datacube at
the same location. Interestingly, the overall noise profile shows that the
maximum value of the noise is reduced to 77 DN at band 63 (1022.09 nm),
and the minimum value of the noise is increased –111 DN at band
71 (1097.72 nm). The magnitudes of the overall noise between bands
100 (1363.50 nm) and 204 (2399.48 nm) are reduced to between –5 DN and
5 DN rather than between –15 DN and 15 DN, as in the original datacube.
The range of the overall noise magnitudes in the VNIR bands is also smaller
than for the intrinsic noise of the original datacube, which is probably due to
the random error introduced by the compression algorithm that cancelled the
intrinsic noise in the original data. These results show that the VQ-based
compression algorithm evaluated here can act as a low-pass filter, suppressing
high-frequency noise during compression.8

Figure 5.9 shows the noise profiles of the intrinsic noise of the original
data, compression error introduced by SAMVQ at a compression ratio of
20:1, and overall noise as a function of spectral band number for a randomly
selected ground pixel at location (94, 90). The profiles of the compression
error and the overall noise show better results than in Fig. 5.8.

5.4.3 Evaluation of an entire datacube

In order to assess the compression error of the entire reconstructed datacube,
the standard deviation of each band image of the compression-error datacube
was calculated and plotted as a function of spectral band number. These
standard deviations were used to estimate the noise level of the compressed
data. The standard deviations of each band image of the intrinsic noise and of
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Figure 5.9 Profiles of (a) intrinsic noise of the original data of a randomly selected ground-
sample pixel (94, 90), (b) compression error introduced by SAMVQ at a compression ratio of
20:1, and (c) overall noise (i.e., intrinsic noise with compression error) at the same location
(reprinted from Ref. 1).
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the overall noise were also calculated for the purpose of comparison (shown in
Fig. 5.10). It is observed that the standard deviations of the compression error
images (solid line) are much smaller than those of the intrinsic noise images
(dotted line) for the bands with high-magnitude noise [between bands 35
(749.96 nm) and 75 (1135.53 nm)]. The rest of the bands are very close. It is
also observed that the standard deviations of the overall noise images (thick
broken line) that include both the intrinsic noise and the compression error are
smaller than those of the intrinsic noise images (dotted line) for almost all of
the bands. This observation indicates that the overall noise level of the
compressed datacube is even lower than the noise level of the original
datacube, which is probably because SAMVQ acts as a low-pass filter, thus
suppressing the high-frequency noise. The random errors introduced by the
compression algorithm cancelled some of the intrinsic noise in the original
data. The test results of standard deviations are consistent with the results of
noise profiles shown in Figs. 5.8 and 5.9.

The noise profiles of the compression error and the overall noise of a
single ground pixel compressed using HSOCVQ are similar to those
compressed using SAMVQ, as shown in Figs. 5.8 and 5.9. Figure 5.11 shows
standard deviations of band images for the intrinsic noise (dotted line), the
compression error (solid line), and the overall noise (thick broken line) as a
function of spectral band number when the datacube was compressed using
HSOCVQ at 10:1. The standard deviations of band images of compression
error are close to or smaller than those of intrinsic noise for the bands with
high-magnitude noise [between bands 35 (749.96 nm) and 75 (1135.53 nm)].
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Figure 5.10 Standard deviations of single-band images for intrinsic noise, compression
error (using SAMVQ at a compression ratio 20:1), and overall noise (intrinsic noise with
compression error). Reprinted from Ref. 1.
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The standard deviations of the overall noise are smaller than those of the
intrinsic noise between bands 35 and 105 (1413.37 nm).

The previous experimental results show that the compression errors
introduced by SAMVQ and HSOCVQ are at the same level as the intrinsic
noise caused by the instrument noise and other noise sources contained in the
original datacube (such as calibration and atmospheric correction). The
compression errors are smaller than the intrinsic noise in band images with
high-magnitude noise. The experimental results justify the claim that SAMVQ
and HSOCVQ are near lossless for remote sensing applications compared to
the intrinsic noise of the original datacube. The noise contained in the
reconstructed data is the overall noise that includes both the intrinsic noise of
the original datacube and the compression error. The overall noise of the
reconstructed datacube is even smaller than the intrinsic noise for all of the
bands when the data is compressed using SAMVQ and for most of the bands
when the data is compressed using HSOCVQ. Statistically, SAMVQ shows
better near-lossless performance than HSOCVQ.

5.5 Evaluation of SAMVQ with Regard to the Development of
International Standards of Spacecraft Data Compression

The Consultative Committee for Space Data System (CCSDS) is developing
new international standards for satellite multispectral and hyperspectral data
compression, and the SAMVQ technique has been selected as a candidate.
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Figure 5.11 Standard deviations of single-band images for intrinsic noise, compression
error (using HSOCVQ at a compression ratio 10:1), and overall noise (i.e., intrinsic noise
with compression error). Reprinted from Ref. 1.
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This section reports the evaluation results of SAMVQ in the participation in
the development of the international standards. The evaluation results show
that SAMVQ produces competitive rate-distortion performance on the
CCSDS test images acquired by the hyperspectral sensors and hyperspectral
sounders.

5.5.1 CCSDS test datasets

The CCSDS working group has created a set of test datasets (59) acquired by
12 spaceborne/airborne hyperspectral sensors, multispectral sensors, and
hyperspectral sounders. There are four hyperspectral images acquired using
different hyperspectral sensors; three of them are tested:

1. AVIRIS Scene 0 dataset: raw data, 12 bits/sample, acquired using
AVIRIS, with a datacube size of 512 lines by 614 samples by 224 bands.

2. CASI t0180f07 dataset: raw data, 12 bits/sample, acquired using CASI,
with a datacube size of 2852 lines by 405 samples by 72 bands.

3. Geo sample flatfielded dataset: raw data, 12 bits/sample, acquired using
EO-1 Hyperion, with a datacube size of 256 lines by 1024 samples by
242 bands. The flat-fielded process attempts to normalize the detector
variations, causing some data points to have negative values. However,
the dynamic range is still within 12 bits.

There are two sets of CCSDS test hyperspectral-sounder datasets:
atmospheric infrared sounder (AIRS) and infrared atmospheric sounding
interferometer (IASI). The AIRS (granule 9) dataset, which is in raw data
format stored as a 2-byte integer, is tested. The actual sample values have bit
depths that range from 12 to 14, depending on the spectral band. The unstable
bands have been deleted, reducing the dataset from 2107 to 1501 spectral
bands. The datacube size is 135 lines by 90 samples by 1501 bands.

There are six sets of CCSDS test multispectral images; three of them are
tested:

1. MODIS datasets: raw data with 12 bits/sample, acquired using Moderate-
Resolution Imaging Spectroradiometer (MODIS) in the year 2001. There
are 36 bands in this Earth-view (EV) data, grouped into four datasets
based on different GSDs:
• Group 1: 250 m, bands 1 and 2 (2 bands);
• Group 2: 500 m, bands 3–7 (5 bands);
• Group 3: 1 km-day, bands 8–19 (1 km-day file contains both high-gain
and low-gain readings for bands 13 and 14, for a total of 12 þ 2 ¼
14 bands); and

• Group 4: 1 km-night, bands 20–36 (17 bands).
Groups 4 and 5 are selected as CCSDS test multispectral images. The
datacube size of the MODIS-Day and MODIS-Night is 2030 lines by
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1354 samples by 14 bands, and 2030 lines by 1354 samples by 17 bands,
respectively.

2. Pleiades datasets (there are two datasets: Montpellier and Perpignan sites):
raw data with 12 bits/sample, simulation of the Pleiades sensor based on real
airborne and spaceborne data. The GSD of datasets is 2.8 m. There are four
bands of datasets:
• B0: 430–550 nm (blue),
• B1: 490–610 nm (green),
• B2: 600–720 nm (red), and
• B3: 750–950 nm (NIR).
The datacube size of the Montpellier and Perpignan is 224 lines by 2456
samples by 4 bands, and 224 lines by 3928 samples by 4 bands,
respectively.

3. VEGETATION dataset: raw data with 10 bits/sample, acquired using
the VEGETATION payload aboard SPOT-4. There are four bands of the
dataset:
• B0: 430–470 nm (blue),
• B2: 610–680 nm (red),
• B3: 780–890 nm (NIR), and
• MIR: 1580–1750 nm.
The datacube size is 10080 lines by 1728 samples by 4 bands.

5.5.2 Test results of hyperspectral datasets

This section describes compression results of the CCSDS test hyperspectral
datasets using SAMVQ. For the sake of comparison, the results produced
using six other lossy data-compression techniques selected by the CCSDS
working group are also reported:

1. JPEG2000 Compressor with bitrate allocation (JPEG2000 BA),9

2. JPEG2000 Compressor with spectral decorrelation (JPEG2000 SD),9

3. CCSDS Image Data Compressor10 (CCSDS-IDC) in frame mode with 9/7
wavelet floating in block 2,

4. ICER-3D,11

5. Fast-lossless / near-lossless (FL-NLS),12 and
6. Fast-lossless / near-lossless, updated in 2009 (FLNLS2009).

JPEG2000 was applied to compress the hyperspectral images with bitrate
allocation mode (2D) and spectral decorrelation mode (3D).9

CCSDS-IDC is a 2D compression algorithm10 that consists of two
processing steps: a discrete wavelet transform (DWT) that performs
decorrelation of an image to be compressed, and a bit-plane encoder that
encodes the decorrelated data. There are two operating modes: frame and
strip. The frame mode supports input formats produced, for example, by
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CCD arrays, and the strip mode supports input formats produced by push-
broom sensors. CCSDS-IDC can compress images in both lossy and lossless
formats if the integer DWT is used. The compression results reported in
this section are obtained by using frame mode (Daubechies 9/7 wavelet in a
float DWT), as this parameter setting produces the best rate-distortion
performance.

ICER is a wavelet-based 2D image data compressor designed to meet the
specialized needs of deep-space applications.11 It features progressive
compression and can provide both lossless and lossy compression. ICER
compresses a simple binary coefficient of the transformed image by
successively encoding groups of bits, starting with groups containing highly
significant bits and working toward groups containing less-significant bits. The
entropy coder used is interleaved entropy coding. It also incorporates an error-
containment scheme to limit the effects of data loss. The compression results
reported in this section were obtained by adding a spectral decorrelation step
before applying ICER, which is referred to as ICER-3D.

“Fast lossless,” a term used by Klimesh,12 is a 3D, predictive lossless-
compression algorithm designed to be suitable for implementation in
hardware, such as a field programmable gate array (FPGA), for onboard
use. The predictive step of the algorithm makes use of the sign algorithm,
which is a relative of the least mean square algorithm from the field
of low-complexity adaptive filtering. The compressed datastream consists
of prediction residuals encoded using a method similar to that of the
JPEG-LS lossless image-compression standard. The essence of this
algorithm is the adaptive linear predictor using the sign algorithm for
filter adaptation, with local mean estimation and subtraction. This
predictor uses six neighboring samples with three samples from the same
band as the sample to be predicted, and one sample each from the three
preceding bands. This algorithm can provide near-lossless or lossy
compression when the prediction residuals are quantized and encoded.
The compression results reported in this section were obtained by using
the near-lossless mode of the algorithm (referred to as FL-NLS). Klimesh
has slightly tuned and updated the algorithm in 2009 after the publication
of his early work.12 This updated version was also used in the test
(referred to as FLNLS2009).

The compression results are reported in terms of rate-distortion
performance. The CCSDS working group recommended six bitrates for the
compression tests: 0.1, 0.25, 0.5, 1.0, 2.0, and 4.0. The distortion is measured
using PSNR and RMSE. The Peak signal used in the equation is the real
maximum value in the datacubes instead of the maximum value defined by
the word-length of the datacubes.

Figures 5.12–5.15 show the rate-distortion curves of the three testing
hyperspectral datasets and one sounder dataset produced using SAMVQ and
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the six CCSDS-selected compression techniques. The figures show that
SAMVQ produces the best rate-distortion performance among all of the test
images at the lower bitrates. CCSDS-IDC produces the worst rate-distortion
performance, and JPEG2000 BA performs the second-worst for the three test
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Figure 5.13 Rate-distortion curves of the CASI datacube compressed using SAMVQ and
the six compression techniques selected by the CCSDS.
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Figure 5.12 Rate-distortion curves of the AVIRIS Scene 0 datacube compressed using
SAMVQ and the six compression techniques selected by the CCSDS.
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hyperspectral images. This is expected, as both of them are 2D compression
algorithms. The other four compression techniques are 3D algorithms that
perform one after another for different test images, with FL-NLS showing the
worst performance at lower bitrates.
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Figure 5.14 Rate-distortion curves of the EO-1 Hyperion datacube compressed using
SAMVQ and the six compression techniques selected by the CCSDS.
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Figure 5.15 Rate-distortion curves of the AIRS Granule 9 datacube compressed using
SAMVQ and the six compression techniques selected by the CCSDS.
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From the rate-distortion curves of the AIRS sounder image in Fig. 5.15, it
can be seen that JPEG2000 SD performs the second-best and JPEG2000 BA
performs the third-best at bitrates �0.5 bits/pixel. JPEG2000 BA is expected
to perform rate distortion worse than the 3D compression algorithms because
it is a 2D compression algorithm. These compression performances remain to
be studied and explained.

It is worth mentioning that SAMVQ does not produce compression results
at high bitrates (e.g., >1 bit/pixel) because it is a successive, multistage,
approximation VQ algorithm that compresses a datacube by checking the
convergence of compression error stage by stage. It ceases to compress on the
compression error at a stage reaching the asymptote of the curve of fidelity vs.
compression ratio in order to achieve an efficient compression. For the
AVIRIS datacube, the upper-bound bitrate that SAMVQ can produce is 1.58
bits/pixel. For the CASI datacube, the upper-bound bitrate is 1.0 bits/pixel.
For the Hyperion datacube, the upper-bound bitrate is 0.2 bits/pixel.
Generally speaking, the noisier the datacube to be compressed is, the smaller
the upper-bound bitrate.

5.5.3 Compression of multispectral datasets using SAMVQ

Figure 5.16 shows the compression results of aMODIS-Day image using SAMVQ
and the six CCSDS-selected compression techniques. SAMVQ still outperforms
the other compression techniques, and the CCSDS-IDC remains the worst.
JPEG2000 SD and BA produce the second- and fourth-best rate-distortion
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Figure 5.16 Rate-distortion curves of the MODIS-Day image compressed using SAMVQ
and the six compression techniques selected by the CCSDS.
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performance when the bitrate is �0.5 bits/pixel. These compression results
make more sense than those of the AIRS sounder dataset in Section 5.5.2, as
the band images of a multispectral sensor are less correlated than those of
hyperspectral and sounder sensors.

When SAMVQ is applied to compress a hyperspectral or multispectral
datacube, it assigns all of the elements of the spectrum of a spatial sample
pixel as a vector. Due to the small number of bands in a multispectral dataset,
the length of the spectral vectors is short; thus the lowest bitrate (i.e., highest
compression ratio) that can be achieved by SAMVQ is normally limited
because the compression ratio attained by SAMVQ is proportional to the
number of spectral bands Nb, as defined by Eq. (4.25). The longer the vector
is, the higher the compression ratio. For example, the MODIS-Day image has
Nb ¼ 14 bands, and the rate-distortion curve produced by SAMVQ shown in
Fig. 5.16 indicates that the lowest achievable bitrate is 0.74 bits/pixel
(corresponding to the highest compression ratio of 16.3:1). There are two
segments of the rate-distortion curve produced by SAMVQ in Fig. 5.16: the
right segment is the rate-distortion curve when the length of vectors is equal to
the number of spectral bands Nb ¼ 14, and the left segment is the rate-
distortion curve produced after increasing the length of vectors to 28 by
reorganizing the vectors (shown in Fig. 5.17).

In order to attain lower bitrates (i.e., higher compression ratios) for the
multispectral datasets, this section reorganizes the multispectral data to form
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Figure 5.17 Rate-distortion curves of the MODIS-Night image compressed using SAMVQ
with vectors longer than the number of bands.
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longer vectors (i.e., higher vector dimension). Three schemes are proposed to
form longer vectors:

1. In band-interleaved-by-pixel (BIP) format of a multispectral datacube file,
every w (e.g., 2 or 4) adjacent pixel spectra in a cross-track line are
organized into a longer vector (e.g., the second spectral vector is appended
to the end of the first spectral vector, the third spectral vector is appended
to the end of the second spectral vector, and so on). The length of such a
reorganized vector is equal to w � Nb. The vectors formed in this way still
retain spatial correlation of the pixels for compression. This vector-
reorganized scheme is referred to as adjacent pixel spectra in a cross-track
line (APSICL).

2. In BIP format of a multispectral datacube file, pixel spectra within each
subcube of spatial size h � w (e.g., 2 � 2 or 2 � 4) pixels are organized
into a longer vector. The spectral vectors in a subcube are linked one
after another in the order of raster scanning to form a longer vector.
The length of such a reorganized vector is equal to h � w � Nb. When
the height of the subcubes is reduced to h ¼ 1, this scheme returns to
scheme 1. In band-sequential (BSQ) format of a multispectral datacube
file, pixel values within a block of size h � w of a band image are
organized into a subvector. Then this subvector is appended by the
subvector formed in the same way as the next band image, and so on.
The longer vectors formed in this way are the same as those formed
from the datacube file in BIP format except that the order of the vector
elements are different, which will not affect the compression results of a
VQ-based compression algorithm. This vector-reorganized scheme is
referred to as Subcube h � w.

3. In BSQ format of a multispectral datacube file, a partial line of length w
pixels of a band image is assigned as a vector. The length of such a formed
vector is equal to w. It is preferable to select a value of w so that it can
divide a line of the datacube in integer. In this way, such a formed vector
will not cover two lines. This vector-reorganized scheme is referred to as
Segment Line w.

Figure 5.17 shows SAMVQ compression results of the MODIS-Night
datacube produced after using longer vectors with vector-reorganizing
schemes APSICL and Subcube. The MODIS-Night datacube has Nb ¼ 17
bands. The original vector length is equal to Nb ¼ 17. For this datacube, after
longer vectors are used, lower bitrates are achieved, and the rate-distortion
performance is improved (up to 4 dB). The vector-reorganizing scheme
“Subcube 2 � 2” (i.e., vector length¼ 2 � 2 � 17¼ 68) produces the best rate-
distortion performance. The vector-reorganizing scheme “APSICL w4” that
forms the same vector length as “Subcube 2 � 2” performs worse than that of
the “Subcube 2 � 2.”
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The lowest bitrate that can be achieved by SAMVQ is 0.6 bits/pixel when
the vector length is equal to Nb ¼ 17. The compression results of a MODIS-
Night datacube using the Segment Line scheme to form longer vectors are
shown in Fig. 5.18. It can be seen from this figure that the rate-distortion
performance produced by using the Segment Line scheme to form longer
vectors is worse than that of the original vector length, which is probably due
to the fact that the vectors formed in this way do not take advantage of the
spectral correlation of the datacube.

Figure 5.19 shows SAMVQ rate-distortion curves of a MODIS-Day
datacube produced after using longer vectors with vector-reorganizing
schemes APSICL and subcube. MODIS-Day datacube has Nb ¼ 14 bands.
The original vector length is equal to Nb ¼ 14. The lowest bitrate that can be
achieved by SAMVQ is 0.74 bits/pixel when the original vector length is used.
For this datacube, with the original vector length, SAMVQ produces the best
rate-distortion performance. When longer vectors are used, only the lower
bitrates are achieved in exchange for poorer rate-distortion performance. The
shorter the reorganized vector length is, the better the rate-distortion
performance.

Figures 5.20–5.22 report the compression results of SAMVQ with the
vector length equal to the number of bands, and the longer vectors for the
CCSDS test multispectral datacubes whose number of bands is extremely
small (Nb ¼ 4). When the vector length is equal to Nb ¼ 4, the highest
compression ratio that can be achieved by SAMVQ is too small to be
attractive. A VQ-based compression algorithm is usually not recommended
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Figure 5.18 Rate-distortion curves of the MODIS-Night image using the Segment Line
scheme to form longer vectors.
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for use if the number of dataset bands is too small. This section investigates
the lowest bitrate that can be achieved by SAMVQ when the length of the
vectors is increased by reorganizing the image data at the cost of compression
fidelity.
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Figure 5.20 Rate-distortion curves of the PLEIADES-Montpellier image using the vectors
longer than the number of bands.
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Figure 5.19 Rate-distortion curves of the MODIS-Day image using the vectors longer than
the number of bands.
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The rate-distortion curves of the PLEIADES-Montpellier datacube, with
the vector length equal to the number of bands and the longer vectors, are
shown in Fig. 5.20. When vector length is equal to Nb ¼ 4, SAMVQ produces
the best rate-distortion performance from the high bitrates to a bitrate of
2.6 bits/pixel. Beyond this point, when the longer vectors are used, SAMVQ
produces better rate-distortion performance than that achieved when the
original vector length is used. With lower bitrates, SAMVQ produces the best
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Figure 5.22 Rate-distortion curves of the VEGETATION-vgt1 image using vectors longer
than the number of bands.
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Figure 5.21 Rate-distortion curves of the PLEIADES-Perpignan image using the vectors
longer than the number of bands.
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rate-distortion performance with a vector length of 8 using “APSICL w2-V8,”
a vector length of 16 using “Subcube 2 � 2-V16”, and a vector length of 32
using “Subcube 2 � 4-V32.” Extremely extended, longer vectors (e.g., V64 or
V128) do not show good rate-distortion performance for this datacube. Figure
5.20 also shows the rate-distortion curve of a single band image (Band 3–NIR)
compressed by SAMVQ. The rate-distortion performance of this compression
case is significantly poor compared to compression of the multispectral bands
with the original vector length and the longer vectors.

Figure 5.21 depicts the rate-distortion curves of the PLEIADES-
Perpignan datacube with the vector length equal to the number of bands
and the longer vectors. The compression results of this datacube demonstrate
the similar observation as the PLEIADES-Montpellier datacube. The rate-
distortion curves of the extremely longer vectors (e.g., V64 or V128) are not
shown because they are similar to those in Fig. 5.20.

The rate-distortion curves of the VEGETATION-vgt1 datacube, with the
vector length equal to the number of bands and the longer vectors, are shown
in Fig. 5.22. The compression results of this datacube appear similar to the
two PLEIADES datacubes.
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Chapter 6

Optimizing the Performance
of Onboard Data Compression

6.1 Introduction

This chapter addresses the optimization and implementation aspects of the
onboard near-lossless data compression using SAMVQ and HSOCVQ in the
image-acquisition and data-handling chain of a satellite system. The raw data
acquired by a satellite sensor is often not perfect; there are anomalies in the
raw data caused by detector and instrument defects. It is necessary to assess
how these anomalies will affect the compression performance onboard. The
outcome of the assessment will help determine whether the anomalies should
be removed onboard before compression.1

Another implementation aspect related to optimization of the onboard near-
data compression is preprocessing and radiometric normalization to convert raw
sensor data to radiance. In otherwords, SAMVQorHSOCVQ should be applied
to either the raw sensor data or the radiance data. The evaluation of the effect
of onboard preprocessing and radiometric conversion needs to be performed
in order to examine whether they should be carried out onboard before
compression. Radiance data obtained after radiometric calibration often
contains random noise and some artifacts induced during this process. How do
the random noise and artifacts in radiance affect the compression performance if
the onboard compression is applied to the radiance data?

For hyperspectral imagery, there are two kinds of distortions: spatial
distortion (often referred to as “keystone”) and spectral distortion (often
referred to as “smile”). How do these two distortions compromise the SAMVQ
or HSOCVQ performance onboard? Should these distortions be corrected
onboard before compression?

Finally, the resilience of the two compression techniques to bit errors
caused by single-event upsets (SEUs) is evaluated. This feature helps add
proper error-correction measures to enhance the robustness of the compressed
files and to decide the appropriate system requirement that prevents error
propagation and data loss.
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6.2 The Effect of Raw Data Anomalies on Compression
Performance

This section evaluates the impact of anomalies in raw hyperspectral data on
the performance of data compression using SAMVQ and HSOCVQ
algorithms for the purpose of determining whether the anomalies need to be
removed onboard before compression.

6.2.1 Anomalies in the raw hyperspectral data

Anomalies in raw data can be due to a variety of causes, including detector
defects, saturating targets, etc. Detector defects can appear as zero-pixel
values (dead detector elements), fixed values (frozen detector elements),
spikes (isolated over-responsive detector elements), saturation, etc. Some
detector anomalies occur regularly: their locations in the detector array
(i.e., spectral band numbers and cross-track columns) do not change. Of
these, dead detector elements (zeroes) in the same bands of a spectrum
of the raw data are expected to have no impact on data compression
because they do not contribute to the codevector training or to the
calculation of the compression fidelity. Fixed values are expected to have a
minor effect on data compression because their values do not change in the
bands of spectra where frozen detector elements occur. Thus, the values of
codevectors in these bands remain the same during the codevector train-
ing. This section focuses on the effect of spikes and saturation on raw
hyperspectral data.

Two hyperspectral datacubes are used to test the anomaly impact on data
compression performance. Datacube 1 was acquired using an airborne Short-
Wave Infrared Full Spectrum Imager II (SFSI-II)2 on June 7, 2002 at an
altitude of 2900 mwith a swath width of 1.8 km, for a ground pixel size of 3.5 m�
3.5 m, and 240 bands between 1200–2450 nm with a band interval of 5 nm. It is
a raw datacube and recorded in 12-bit DN. The size of the datacube is
140 lines by 496 pixels per line by 240 bands. This SFSI-II datacube was
originally acquired for use in target detection of hyperspectral imagery.
Synthetic targets with sizes ranging from 12 m � 12 m to 0.2 m � 0.2 m of five
different materials (awnings, polythene, plastic tarp, cotton, and vinyl mat)
were deployed in the scene.

Datacube 2 was acquired using an airborne CASI over the cornfields at
the L’Acadie experimental farm (Agriculture and Agri-Food Canada) during
the summer of 2000. CASI has 72 spectral bands with a spectral resolution of
7.6 nm in the range of 408–947 nm. Figure 6.1 shows the color-composite
image of the raw datacube with band 53 (775 nm) printed as red, band 33 (631
nm) as green, and band 20 (538 nm) as blue. The whole image covers an area
of 2450 m � 810 m, with the image size of 1225 lines by 405 pixels per line,
and the GSD of 2 m � 2 m.
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6.2.2 Effect of spikes on compression performance

The test SFSI-II datacube was evaluated to study the effect of anomalies. It was
found that there are five detector elements that produce over-responsive values
in the SFSI-II 2D detector array; Figure 6.2 shows the locations of these
elements in the detector array. The size of the detector array is 240 rows by 496
columns. The column dimension of the detector array corresponds to the
ground samples in a cross-track line, whereas the row dimension corresponds to
the wavelength expansion (or spectral bands) of each of the ground samples.
With this detector configuration, there are 496 ground samples in a cross-track
line, and each ground sample has 240 spectral bands.

Figure 6.3 shows examples of spikes in the spectra of the raw SFSI-II
datacube due to the over-responsive elements. It can be seen that the spikes
occur at spectral bands 11, 34, 93, and 173, and at cross-track column
numbers 32, 125, 286, 326, and 327. These spikes occur in the spectra of the

Figure 6.1 RGB image of the raw CASI test datacube (displayed in black and white here).
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Figure 6.2 Locations of over-responsive elements (spikes) in the detector array (reprinted
from Ref. 1).
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Figure 6.3 Spikes in spectra of raw DN data from SFSI-II (reprinted from Ref. 1).
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affected cross-track columns for all of the 140 frames when SFSI-II flies
along-track to generate the 140 detector frames (covering 140 along-track
lines) of the datacube, as these over-responsive detector elements repeat for all
of the detector frames.

In order to examine the impact of the spikes on the compression
performance, the spikes were removed by replacing them with interpola-
tion values derived from their spectral neighbors. This spike removal
process is also referred to as “despike” here. Both the raw SFSI-II
datacube and its despiked datacube were compressed using HSOCVQ
and SAMVQ at compression ratios of 10:1 and 20:1. With this range of
compression ratios, both SAMVQ and HSOCVQ produce near-lossless
compression as defined in Section 5.1. This range of compression ratios
meets the needs of the data-reduction requirement for transmission of
hyperspectral data to the ground.3

Three statistical measures—RMSE, SNR, and percentage error (%E)—
were used to evaluate the compression performance. The %E is defined as
follows:

%E ¼ 1
Nr �Nc �Nb

� �XNr

i 1

XNc

j 1

XNb

l 0

xi, jðlÞ x̂i, jðlÞ
xi, jðlÞ

����
����� 100, ð6:1Þ

where xi, jðlÞ and x̂i; jðlÞ are digital numbers of the raw data and the
reconstructed data, respectively, at spatial location (i, j) of band l. Nr, Nc, and
Nb are the total number of lines, the total number of pixels per line, and the
total number of bands of the datacube, respectively.

The upper part of Table 6.1 lists the compression results. The max-
imum value of the datacube is reduced to 518 DN from 1754 after

Table 6.1 Compression statistics and evaluation results using target detection as a remote
sensing application for the raw SFSI-II datacube with and without removing spikes before
compression.

Compression
Statistics

HSOCVQ SAMVQ

10:1 10:1 20:1 20:1 11.7:1 11.7:1 20:1 20:1

Spikes removed? No Yes No Yes No Yes No Yes
Maximum value (DN) 1754 518 1754 518 1754 518 1754 518
RMSE (DN) 5.21 5.21 5.83 5.79 3.98 4.04 4.32 4.42
SNR (dB) 35.35 35.35 34.37 34.43 37.68 37.56 36.97 36.77
%E 1.20 1.20 1.36 1.35 0.83 0.86 0.97 0.97

Evaluation using R/S application

Blind file name CSA1 CSA3 N/A CSA5 CSA11 CSA10 N/A CSA8
Total score 10 11 N/A 5 14 15 N/A 10
Acceptability A A N/A N A A N/A A

A: Acceptable M: Marginally Acceptable N: Not Acceptable N/A: Not Applicable
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despiking. For HSOCVQ, identical compression fidelity (SNR, %E, etc.)
was attained for the raw SFSI-II datacube with and without spike removal
when the compression ratio (CR) is 10:1. It produced slightly better
compression fidelity (0.06-dB higher SNR, and 0.01% lower %E) for the
raw SFSI-II datacube with despiking when the CR is 20:1; however, this
improved compression performance due to despiking is insignificant.
These results show that the HSOCVQ algorithm is insensitive to spike
anomalies in the raw data.

SAMVQ produced slightly different compression results than HSOCVQ.
When the CR is 20:1, SAMVQ produced identical percentage error (0.97%)
for the raw SFSI-II datacube with and without removing the spikes. It
yielded 0.2-dB lower SNR for the raw SFSI-II datacube with despiking,
which is a bit surprising because removing spikes is expected to improve the
compression fidelity. This effect is probably caused by the nature of
successive approximation of the SAMVQ algorithm and the reduction of
dynamic range (maximum value) of the data after despiking. The dynamic
range is reduced to 0 ~ 518 after removing the spikes. The influence (weight)
of the intrinsic noise of the datacube may become more explicit for the
convergence of the successive approximation because the intrinsic noise is
at the same level as the error induced by the compression, as described in
Section 5.4. SAMVQ produces slightly poorer fidelity after the maximum
value reduced.

The lowest CR achieved for the raw SFSI-II datacube with despiking is
11.7:1, which is caused by one of the features of the SAMVQ algorithm. In
SAMVQ, a graph of fidelity versus compression ratio would statistically reach
an asymptote. As the number of approximation stages increases beyond a
certain stage, the reconstruction fidelity ceases to increase, and the compression
ratio decreases; this point is referred to as an inflection point. As described in
Section 4.9, SAMVQ compression proceeds automatically stage by stage until
the compression fidelity reaches a given threshold or the inflection point is
detected, whichever comes first. In this way, efficient compression is achieved.
The inflection point was detected at a CR of 11.7:1, when the despiked raw
datacube was compressed (the CR for the raw SFSI-II datacube without
despiking was set to this ratio for a consistent comparison). It can be seen from
Table 6.1 that when the CR is 11.7:1, SAMVQ produced slightly better fidelity
(0.12-dB higher SNR, and 0.03% lower %E) for the raw SFSI-II datacube
compared to despiking. This also applies to a CR of 20:1. At both ratios,
the difference of the compression fidelity attained for the raw SFSI-II datacube
with and without despiking is insignificant. These results indicate that the
SAMVQ algorithm is also insensitive to spike anomalies in the raw data.

In order to examine how the spikes affect the compression fidelity on
individual spectra where the spikes occur, these spectra were compared with
their uncompressed versions. Figure 6.4 shows the difference spectra calculated
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Figure 6.4 Difference spectra between the original and the reconstructed datacubes for
the columns of the detector array where the over-responsive elements (spikes) are located
(reprinted from Ref. 1).
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between the original datacube (uncompressed) and the reconstructed datacube
compressed using SAMVQ at a ratio of 20:1 and using HSOCVQ at a ratio of
10:1 on the raw SFSI-II datacube with and without despiking. The frame (i.e.,
cross-track line) numbers of the spectra were selected arbitrarily. It can be seen
that both SAMVQ and HSOCVQ produced excellent reconstruction fidelity for
these individual spectra from the compressed datacubes no matter if the raw
datacube had or had not been despiked before compression. The difference
values are randomly distributed and well bounded within the range of 16 to 16
DN. The dynamic range of the raw datacube is 0 ~ 1754 DN and becomes
0 ~ 518 DN after despiking. For the raw SFSI-II datacube without despiking,
the difference spectra do not show large difference values at the bands (11, 34,
93, and 173) where the spikes occur (even for the largest spike at band 93 and
column 326 of the detector array), except for the spectrum of pixels at cross-
track column 286, where a large difference occurred in band 34 (marked with
dotted-line circles).

It is worth the effort to evaluate the impact of spikes on the data
compression for remote sensing applications. The raw SFSI-II datacube was
originally acquired for investigation of target detection of hyperspectral
imagery. Five synthetic targets—awnings, polythene, plastic tarp, cotton, and
vinyl mat—with sizes ranging from 12 m � 12 m to 0.2 m � 0.2 m were
deployed in the scene of the datacube. This datacube has been used to
evaluate impact of data compression on remote sensing application of target
detection.4 This section uses this application to evaluate the impact of spikes
on the data compression performance.

The raw SFSI-II datacubes with or without despiking were compressed/
decompressed using SAMVQ and HSOCVQ and then sent to the user for
evaluation. A double-blind test was used to reduce self-deception and bias in
the evaluation. The decompressed datacubes were named using an arbitrary
number before being sent to the user. Because the compressed datacubes were
in raw DNs, they were first preprocessed to remove periodic noise, dark
current, slit curvature (i.e., smile), and keystone. A vicarious calibration was
then performed using calibration coefficients derived from a previous SFSI-II
survey to convert the raw datacubes into radiance. Nine endmembers were
selected that correspond to the five materials of the synthetic targets and the
four ground features (forest, gravel road, sand, and grass). Nine regions of
interest (ROIs) were selected and used to extract the endmember spectra from
each blind-compressed datacube.

The following four qualitative and quantitative criteria were used to assess
the impact, and one point was scored for each criterion met:

1. All targets that are present in the fraction images derived from the original
datacube are present in the fraction images derived from the compressed
datacubes.

218 Chapter 6



2. No targets other than the ones present in the fraction images derived from
the original are present in the fraction images derived from the compressed
datacubes.

3. The T-test of the distribution of the fraction images derived from the
compressed datacubes is not significantly different than that of the
fraction images derived from the original datacube at a significance level
of 0.01.

4. The percentage standard error (%SE) of a target ROI is less than 5%. It is
used to measure the relative average deviation of the fraction images
derived from the compressed datacubes and is defined as follows:

SE% ¼

1
n

Xn
i 1

ðfi f̂ iÞ2
s

f
� 100, ð6:1Þ

where fi is the fraction of an endmember for a pixel in an ROI derived
from the original datacube, f̂ i is the fraction of the endmember for the
same pixel derived from a compressed datacube, f is the mean fraction of
the endmember for the ROI of the original datacube, and n is the number
of pixels in the ROI.

The evaluation was performed on a ROI-by-ROI basis. The full score for a
target ROI is 4, and thus the full score for a compressed datacube is 20, as there
are five target ROIs. The total score for the evaluation and the acceptance of
the six blind-compressed datacubes provided by the user are listed on the lower
part of Table 6.1.

For HSOCVQ, the compressed datacubes at a CR of 10:1 without and
with despiking before compression received a total score of 10 and 11,
respectively, out of the full score of 20. The user accepted both of them.
However, the compressed datacube at a CR of 20:1 with despiking before
compression got a total score of 5, which the user rejected.

For SAMVQ, the compressed datacubes at a CR of 11.7:1 without and
with despiking before compression got a total score of 14 and 15, respectively.
The compressed datacube at a CR of 20:1 with despiking got a total score of
10. The user accepted all three of the SAMVQ-compressed datacubes. The
evaluation results indicate that removal of spikes before compression has no
significant impact on compression performance, as the reconstructed
datacubes without and with spikes removed before compression contain the
same information for the application.

6.2.3 Effect of saturation on compression performance

It has been found that there are saturations in the raw CASI datacube,
examples of which are illustrated in Figure 6.5. It can be seen from the

219Optimizing the Performance of Onboard Data Compression



spectra in the figure that bands that reach the saturation level sharply drop
to a value close to zero. This treatment of saturation is unusual; normally, a
saturated signal is clipped to the saturation level rather than switched to a
value close to zero.

In order to examine the impact of the saturations on the compression
performance, the spectra showing signs of saturation were entirely replaced by
a typical spectrum without saturation extracted from the datacube. This
spectrum was used to replace all the saturated spectra of the datacube for the
sake of simplifying the saturation removal.

Table 6.2 lists the compression results of the raw CASI datacube with and
without removing the saturated spectra using HSOCVQ and SAMVQ at CRs
of 10:1 and 20:1. For HSOCVQ, identical compression results were attained
for both the raw datacube and the datacube after removing saturation when
the CR is 10:1. Slightly better compression fidelity (0.01-dB higher SNR and
0.01% lower %E) was achieved for the raw CASI datacube after removing the
saturations, when the compression ratio is 20:1. These results show the same
conclusion as for the impact of spikes on HSOCVQ.
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Figure 6.5 Saturations in spectra of four ground sample pixels of the raw CASI datacube
(reprinted from Ref. 1).

Table 6.2 Compression results of the raw CASI datacube with and without removing
saturations

HSOCVQ SAMVQ

10:1 10:1 20:1 20:1 10:1 10:1 20:1 20:1

Saturations removed? No Yes No Yes No Yes No Yes
Maximum value (DN) 4095 4095 4095 4095 4095 4095 4095 4095
RMSE (DN) 15.38 15.38 20.92 20.84 3.82 3.78 6.68 6.44
SNR (dB) 35.60 35.60 32.93 32.94 47.69 47.77 42.84 43.14
%E 1.45 1.45 1.99 1.98 0.33 0.32 0.60 0.58
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SAMVQ produced slightly better compression fidelity for the raw CASI
datacube with removing saturations than without removing saturations. The
improvement to the SNR is 0.08 dB and 0.30 dB, respectively, for CRs of
10:1 and 20:1. The reduction of percentage error is 0.01% and 0.02% for CRs
of 10:1 and 20:1. The improvement to compression fidelity after removing
saturations is expected although insignificant. These compression results are
contrary to those for the impact of spikes, which is probably caused by the
nature of the anomalies (spikes vs. saturations) and the approaches used to
remove them. Removing spikes reduced the maximum value of the datacube
significantly (from 1754 to 518) for the raw SFSI-II datacube, whereas
removing saturations did not change the maximum value of the raw CASI
datacube (4095). The spikes in the spectra were removed by replacing them
with the interpolated values from their spectral neighbors. The approach
used to remove the saturations in the raw CASI datacube replaced an entire
spectrum with a unique typical spectrum extracted from the datacube if the
spectrum was found containing saturation in at least a single spectral band.
This approach increases the occurrence frequency of the typical spectrum
and ultimately increases the compressibility of the datacube after the
saturations were removed.

Figure 6.6 shows the difference spectra calculated between the raw CASI
and the reconstructed datacubes compressed using SAMVQ at a CR of 20:1
on the raw datacubes with and without removing saturations. It can be seen
that the difference spectra of the four ground sample pixels previously shown
in Fig. 6.5 are near zero (between 5 and 5 DN) when the saturations in the
raw datacube are removed, which implies that the spectra before and after
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Figure 6.6 Difference spectra between the original and the reconstructed datacubes of the
ground sample pixels where the saturations are occurred (reprinted from Ref. 1).
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compression are nearly the same. This is expected because the saturated
spectra were replaced with a unique typical spectrum and then easily encoded
by a unique codevector.

For the raw CASI datacube with saturation effects, the difference
spectrum of ground sample pixel (74, 608), whose spectrum values were not
switched to a value close to zero (see the dotted-line spectrum in Fig. 6.5), is
much smaller than the difference spectra of the other three saturated ground
sample pixels, whose spectrum values were switched to a value close to zero
when saturation occurred. The values of the difference spectrum of the
ground sample pixel (74, 608) are between –10 and 10 DN. Its RMSE is
5.36 DN, which is even smaller than 6.68 DN, the overall RMSE of the
reconstructed datacube compressed using SAMVQ at a compression ratio of
20:1 (see Table 6.2). This difference spectrum indicates that SAMVQ can
achieve good compression fidelity even if spectra with near- or at-saturation
level, provided these spectra are not switched to values close to zero. The
difference spectra of ground sample pixels (19, 584), (21, 585), and (72, 608)
are relatively large (between 35 and 59 DN) in the spectral band region
between 18 and 46, where the spectrum values were switched to close to zero
(not to a constant value) when saturation occurred. This is because the close-to-
zero values in the spectral bands where the saturations occurred have too little
weight to influence the codevector during the training process and are therefore
not well accounted for. The approach to saturation whereby the saturated
values are switched with a value close to zero is not expected. It is currently
unknown why this raw CASI dataset exhibits this treatment of saturation.

6.2.4 Summary of anomaly effects

This section evaluated the impact of spikes and saturations on data
compression using SAMVQ and HSOCVQ. Two raw hyperspectral datacubes
acquired using airborne hyperspectral sensors SFSI-II and CASI were tested.
Statistics-based measures RMSE, SNR, and %E were used to evaluate the
compression performance. Difference spectra between the original and
reconstructed datacubes at spatial locations where anomalies occur were
plotted and verified. The compressed SFSI-II datacubes were also evaluated
using a remote sensing application (target detection).

The experimental results show that HSOCVQ is insensitive to both the
spikes and saturations when the raw hyperspectral data is compressed. It
produced almost the same statistical results, no matter if the spike and
saturation anomalies were removed or not before compression. The two
reconstructed SFSI-II datacubes compressed using HSOCVQ at a CR of 10:1
with and without removing the spikes before compression were assessed using
a target detection application. The reconstructed datacube without removing
the spikes before compression received 10 points out of the full score of 20,
whereas the reconstructed datacube with the spikes removed before
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compression received 11 points. It can be determined that there is no
significant impact on the application with respect to removal of spikes because
the evaluation scores are close and the user accepted both of them based on a
set of predefined criteria.

The experimental results show that the data fidelity of SAMVQ-compressed
datacubes is slightly reduced (0.12–0.2 dB SNR) after spikes were removed
from the raw datacube before it was compressed. This is probably caused by the
reduction of dynamic range (maximum value) of the raw datacube, which was
reduced significantly to 0 ~ 518 from 0 ~ 1754 DN after removing the spikes.
The influence of the intrinsic noise becomes more explicit for the convergence of
the successive approximation of the SAMVQ algorithm. The two reconstructed
SFSI-II datacubes compressed using SAMVQ at a CR of 11:7 with and without
removing the spikes before compression were evaluated using a target-detection
application. The evaluation results showed that the removal of spikes before
compression has no significant impact on SAMVQ compression performance
because the reconstructed datacubes with and without removing the spikes
before compression received a close evaluation score (15 vs. 14). They contain
the same information for the application. SAMVQ produced slightly better
data fidelity (from 0.08 dB to 0.3 dB SNR) with removing the saturations than
without removing the saturations when the raw datacube was compressed at
ratios of 10:1 and 20:1. This is because (1) removal of the saturations did not
change the dynamic range of the datacube, and (2) an entire spectrum was
replaced by a unique typical spectrum if a spectrum were found to contain
saturation in a single spectral band. This approach to removing saturations
increases the occurrence frequency of the typical spectrum and ultimately
increases the compressibility of the datacube.

6.3 The Effect of Preprocessing and Radiometric Conversion
on Compression Performance

This section examines the impact of preprocessing and radiometric conversion
on data compression using SAMVQ and HSOCVQ aboard a hyperspectral
satellite to decide whether they should be applied onboard before compres-
sion. In other words, the compression should be applied to either raw data or
its radiance version.

6.3.1 Artifacts introduced in preprocessing and radiometric
conversion

Preprocessing includes the removal of dark current, offset, and noise, and the
correction of nonuniformity. Radiometric conversion refers to the conversion
of the raw data to at-sensor radiance. After preprocessing and radiometric
conversion, the radiance data is usually encoded with 16-bit signed data.
Preprocessing and radiometric conversion processes can introduce spikes in
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the spectra of the radiance data, for example, when the raw data values are
divided by extremely small coefficients for correcting nonuniformity of the
detectors. A spike introduced in these processes is different from that in the
raw data caused by an isolated over-responsive detector element. The former
occurs at arbitrary spectral bands of an arbitrary radiance spectrum, while the
latter occurs at a persistent band of the spectrum of raw data at a fixed cross-
track pixel for all of the along-track lines (along-track lines corresponding to a
focal plane frame), as shown in Fig. 6.3. Regularly and frequently occurring
spikes in a raw datacube can be well trained by SAMVQ and HSOCVQ
algorithms at the cost of a few additional codevectors. A spike occurring at an
arbitrary band of an arbitrary radiance spectrum in a datacube cannot be
easily handled during the compression’s training phase and will ultimately
reduce the CR and compression fidelity of the datacube.

These processes can also introduce negative values in radiance data when
large coefficients are subtracted from small values of the raw data to remove
dark current and offsets. A negative value ‘ 1’ in radiance data, for example,
will be interpreted as 216 1 ¼ 65,535 when a compression algorithm is set to
operate on unsigned 16-bit data. This ‘ 1’ will be treated as a spike by the
algorithm if it is an isolated value. The impact of this kind of false spikes on
data compression is even higher than the spikes due to detector defects, as
these false spikes occur irregularly, and their amplitudes are extremely large
(e.g., 65,535). Experimental results indicate that the impact of spikes and
negatives in radiance data introduced in preprocessing and radiometric
conversion on compression performance is significant, and they should be
removed before compression.

Because both the preprocessing and radiometric conversion alter the raw
data, their impact on data compression cannot be evaluated by simply
comparing the statistics of the compression results (e.g., RMSE, SNR, and %E)
obtained for the raw data with those for the radiance data; remote sensing
applications were used for that. This section shows the results from the
evaluation of compressed datacubes using remote sensing application products
with preprocessing and radiometric conversion performed either after or before
compression. In other words, the compression was applied to either a raw
datacube or to the corresponding radiance datacube. Three datacubes from
CASI and one datacube from SFSI-II were tested. Spikes and negative values in
radiance datacubes were removed before compression. The spikes and
saturations in raw data were also removed for a consistent evaluation, although
they do not show a significant impact on the compression performance (as
described in Section 6.2).

6.3.2 Evaluation using crop leaf area index in agriculture applications

Crop leaf area index (LAI) derived from hyperspectral datacubes was used as
a remote sensing application to evaluate the impact of preprocessing and
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radiometric conversion on data compression. Both the LAI derived from the
compressed datacube with the compression applied to raw data and the LAI
derived from the compressed datacube with the compression applied to the
same data that has undergone preprocessing and radiometric conversion were
compared with the ground truth. A double-blind test was adopted to reduce
the bias in the evaluation.

The hyperspectral datacubes tested were acquired using CASI over the
crop fields at the former Greenbelt farm of Agriculture and Agri-Food
Canada, Ottawa in three intensive field campaigns (IFCs) during the summer
of 2001 (IFC-1, June 13; IFC-2, June 26; and IFC-3, July 19). The CASI
sensor was configured to 72 spectral bands with a spectral resolution of 7.6 nm
in the spectral range of 408–947 nm. The spatial resolution of the data is
approximately 2 m � 2 m. The three campaigns were planned to coincide with
different phenological development stages of three crops: corn, wheat, and
soybean. The LAI values of the three crops were measured in 14 sites of the
crop field by Agriculture and Agri-Food Canada during IFC-2 and IFC-3;
they were used as ground truth in the evaluation. The details of the CASI
data, the crop conditions, and the color composite images of the three
campaign datacubes have been reported by Hu et al.5

The raw datacubes from the three field campaigns were compressed
using SAMVQ at CRs of 20:1, 30:1, and 50:1, and HSOCVQ at CRs of 10:1,
20:1, and 30:1. The compressed data was decompressed to produce the
reconstructed datacubes. A reconstructed datacube is the same as the
original except it has undergone the compression. For each campaign,
the raw datacube and the six reconstructed datacubes were mixed with the
original datacube, named using arbitrary number identifiers by an individual
who was neither the evaluator nor the user, and then returned to the user for
derivation of the LAI. They were referred to as “blind datacubes” because
the user has no knowledge of which is the original datacube and which is the
compressed datacube. The blind datacubes were preprocessed, radiometri-
cally converted to radiance, and then converted to reflectance datacubes.
LAI was derived from each of the reflectance datacubes using the algorithm
developed by Haboudance et al.6

To evaluate the impact of preprocessing and radiometric conversion
on data compression, the raw datacubes from the three campaigns were
first converted to radiance using the same preprocessing coefficients and
calibration coefficients as those used previously. The three radiance datacubes
were compressed using both SAMVQ and HSOCVQ at the same compression
ratios as those for the raw datacubes. The reconstructed radiance datacubes
were mixed with the original radiance datacube and then sent back to the user
with the blind names. The user converted the blind datacubes to reflectance
and derived the LAI from each of the reflectance datacubes using the same
processing as that for the raw datacubes.
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The user utilized visual inspection as a qualitative measure to examine the
spatial and temporal patterns of the LAI images derived from the blind
datacubes. Based on visual inspection, the user qualitatively accepted all of
the 42 blind datacubes (i.e., the 36 mixed compressed and the 6 original
datacubes) because their spatial and temporal patterns are similar. Figure 6.7
shows the LAI images derived from the original IFC-2 datacube and its
reconstructed datacubes using SAMVQ and HSOCVQ at a CR of 20:1, with
preprocessing and radiometric conversion done after and before compression.
It can be seen that spatial patterns of all the LAI images are similar. Almost
no difference can be seen from the LAI images derived from the original and
from the datacubes with preprocessing and radiometric conversion done after
(compression applied to raw data) and before (compression applied to
radiance data) compression. This indicates that the order of applying
preprocessing and radiometric conversion before or after compression is not
critical. The LAI images derived from the IFC-2 datacubes with other CRs
and those derived from IFC-1 and IFC-3 datacubes show similar results.

SAMVQ 20:1, Raw 

0.51  - 1.00 
1.01  1.50 
1.51  - 2.00 
2.01  - 2.50 

0.51  - 
- 

5.01  - 6.00 
6.01  - 7.00 
7.01  - 8.00 

LAI: 
0.15  - 0.20 
0.21  - 0.25 
0.26  - 0.35 
0.36  - 0.50  

- - 

2.51  3.00 
3.01  - 4.00 
4.01  - 5.00 

- 

LAI: 

HSOCVQ 20:1, Raw Original, IFC-2 

HSOCVQ 20:1, Rad SAMVQ 20:1, Rad 

Figure 6.7 LAI images derived from the original IFC-2 datacube and from the compressed
datacubes (20:1) with compression applied to the raw and to the radiance (Rad) datacubes
(reprinted from Ref. 1). For a color version of this figure, see Plate 6 in the color plate section
of this book.
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Three quantitative measures were used to evaluate the impact: the
correlation coefficient (R2), the absolute root mean square error (A-RMSE),
and the relative RMSE (R-RMSE) between the derived LAI of a blind
datacube and the measured LAI (ground truth). From an application
perspective, a blind datacube is acceptable if over 70% of the variation (R2 �
0.7) in the measured LAI values can be explained by the derived LAI values of
the blind datacube. A blind datacube is acceptable if its A-RMSE of the
derived LAI is comparable with the standard deviation of the ground truth or
if its R-RMSE is less than 10%. The criteria were selected by the user based on
the retrieval accuracy of the LAI from the original reflectance data.6 The
measured LAI values range from 0.87–5.30 with a standard deviation of 1.40.

Table 6.3 lists the R2, A-RMSE, and R-RMSE calculated between the
derived LAI and the ground truth for corn, wheat, and soybean, with the
compression applied to the raw (Raw) and to the radiance (Rad) datacubes.
Both the original raw and the radiance datacubes were sent back to the user
with blind names along with their compressed datacubes. The user produced the

Table 6.3 The R2, the absolute RMSE, and the relative RMSE between the ground truth
and the LAI derived from the compressed datacubes.

Corn

Compression
Algorithm &
Ratio

R2 A-RMSE R-RMSE (%)

Raw Rad Raw Rad Raw Rad

1:1 (Original) 0.872 0.872 1.576 1.576 5.422 5.422
SAMVQ 20:1 0.869 0.871 1.579 1.600 5.439 5.533
SAMVQ 30:1 0.868 0.875 1.584 1.583 5.445 5.514
SAMVQ 50:1 0.867 0.857 1.598 1.590 5.460 5.566
HSOCVQ 10:1 0.868 0.869 1.557 1.618 5.446 5.653
HSOCVQ 20:1 0.868 0.868 1.559 1.621 5.467 5.675
HSOCVQ 30:1 0.868 0.880 1.559 1.576 5.471 5.675

Wheat

1:1 (Original) 0.955 0.955 0.559 0.559 8.089 8.089
SAMVQ 20:1 0.955 0.955 0.557 0.565 8.124 8.310
SAMVQ 30:1 0.956 0.955 0.558 0.569 8.134 8.235
SAMVQ 50:1 0.956 0.954 0.556 0.558 8.146 8.413
HSOCVQ 10:1 0.953 0.951 0.569 0.558 8.065 8.675
HSOCVQ 20:1 0.954 0.949 0.565 0.557 8.097 8.720
HSOCVQ 30:1 0.953 0.957 0.566 0.565 8.105 8.593

Soybean

1:1 (Original) 0.998 0.998 1.387 1.387 5.996 5.996
SAMVQ 20:1 0.998 0.998 1.390 1.398 6.010 6.086
SAMVQ 30:1 0.998 0.998 1.384 1.405 6.010 6.135
SAMVQ 50:1 0.997 0.998 1.412 1.395 6.065 6.038
HSOCVQ 10:1 0.997 0.998 1.340 1.391 6.094 5.871
HSOCVQ 20:1 0.997 0.998 1.401 1.393 6.121 5.873
HSOCVQ 30:1 0.997 0.998 1.401 1.399 6.121 5.918
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identical R2, A-RMSE, and R-RMSE in both Raw and Rad cases (see the first
row of each crop in the table), which indicates that the product algorithm is
stable and repeatable. The user quantitatively accepted all of the blind
datacubes because the R2 corresponding to all of the datacubes are between
0.87 and 0.99, which is better than 0.7; the A-RMSEs are between 0.6 and 1.6,
which is comparable to 1.4, the standard deviation of the ground truth; and the
R-RMSEs are between 5.4% and 8.7%, which is smaller than 10%.

Table 6.3 shows that there is no significant difference between the R2,
A-RMSEs, and R-RMSEs for the raw cases and those for the radiance cases,
indicating that preprocessing and radiometric conversion after or before
compression has no impact on the LAI product.

6.3.3 Evaluation using target detection

Ground target detection using spectral unmixing was selected as a remote
sensing application to evaluate the impact of preprocessing and radiometric
conversion on data compression. The compressed datacubes, using SAMVQ
and HSOCVQ at CRs of 10:1–30:1 with the compression applied to the raw
and to the radiance data, were used to derive the fraction images for detecting
targets. The targets derived from the compressed datacubes were compared
with those derived from the original datacube. A double-blind test was adopted.

The hyperspectral datacube used in this evaluation was acquired with
SFSI-II, which has been described in Section 6.2.1. The following eight
processing steps were performed to generate the fraction images when a blind
datacube to be evaluated was raw data:

1. Removal of periodic noise of raw data: The raw data is transformed into
Fourier frequencies, and a notch filter is applied to remove the peaks that
exceed 20 units.

2. Subtraction of dark current: The average of the dark current recorded at
the beginning and the end of each flight line is subtracted from each pixel.

3. Correction of spectral distortion (smile):7 The effect of the slit curvature of
the instrument is corrected.

4. Correction of spatial distortion (keystone):8 The geometric distortion
caused by misalignment of the lens in the focal plane is corrected.

5. Radiometric conversion: A vicarious calibration is performed using
calibration coefficients derived from a previous SFSI-II survey to convert
the raw data into at-sensor radiance.

6. Removing random noise: Random noise in radiance is removed using an
algorithm developed by Khurshid et al.9 This noise removal significantly
improves the data quality for remote sensing applications. (Section 6.4
describes this step and its effect in detail.)

7. Destriping: The intensity of the “bad” stripes is readjusted by applying a
gain to them.
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8. Spectral unmixing: Nine endmembers and nine ROIs are selected man-
ually from the original datacube. They consist of five synthetic targets and
four ground features (forest, gravel road, sand, and grass). Each ROI is
used to extract the corresponding endmember spectrum from a blind
datacube using constrained linear spectral unmixing. A fraction image
corresponding to each endmember is produced for each blind datacube
and used to identify the targets.

Processing steps 1–4 are the preprocessing; step 5 is the radiometric
conversion that converts raw data to radiance data; and steps 6 and 7 are
additional processing steps to clean up the artifacts in the radiance data before
applying the application product algorithm.

When the compressed datacubes were already radiance data, only
processing steps 7 and 8 were performed to generate the fraction images
because steps 1–6 had already been performed and converted raw data to
radiance before the compression.

The same four qualitative and quantitative criteria described in Section 6.2.2
were used to assess the impact of compression on target detection. Table 6.4
lists the evaluation score per target, total score, ranking, and user acceptability
of the compressed datacubes with compression applied to the raw datacube
(shaded columns) and on the corresponding Rad datacube.

When SAMVQ or HSOCVQ compression was applied to the Rad
datacube (i.e., the compression applied after preprocessing and radiometric
conversion), the SAMVQ-compressed datacube 10:1 got a total score of 18
out of the full score of 20 and was ranked #1. For targets polythene, cotton,
and vinyl mat, this datacube got a full score of 4. The HSOCVQ-compressed
datacubes 10:1 and 20:1 both got a total score of 15 and were ranked #2.
There is a fault of detection for the HSOCVQ-compressed datacube 10:1—it
got only 1 point out of 4 for target cotton. SAMVQ-compressed datacubes
20:1 and 30:1 got total scores of 14 and 13, respectively, and were ranked #3
and #4. The user accepted all five of the compressed Rad datacubes based on
the criteria.

When SAMVQ or HSOCVQ compression was applied to the Raw
datacube (i.e., applied before preprocessing and radiometric conversion), the
compressed datacube at a CR of 10:1 using SAMVQ got a total score of 15
out of the full score of 20, was ranked #1, and was accepted. The HSOCVQ-
compressed datacube 10:1 got a total score of 11 and was ranked #2. The
SAMVQ-compressed datacubes 20:1 and 30:1 got total scores of 10 and 9,
respectively, and were ranked #3 and #4. The user marginally accepted them.
The HSOCVQ-compressed datacube 20:1 got a total score of 5 and was
rejected.

The total scores for the compressed datacubes with compression applied
to the raw data are all smaller than those with compression applied to the

229Optimizing the Performance of Onboard Data Compression



T
a
b
le

6
.4

S
c
o
re

p
e
r
ta
rg
e
t,
to
ta

s
c
o
re
,
ra
n
k
,
a
n
d
u
s
e
r
a
c
c
e
p
ta
b

ty
o
f
th
e
c
o
m
p
re
s
s
e
d
S
F
S
I-
II
d
a
ta
c
u
b
e
w
th

c
o
m
p
re
s
s
o
n
a
p
p
e
d
to

th
e
ra
w

d
a
ta
c
u
b
e
a
n
d
to

th
e
ra
d
a
n
c
e
(R

a
d
)
d
a
ta
c
u
b
e
.

C
om

pr
es
si
on

A
lg
or
ith

m
&

R
at
io

Sc
or
e
pe
r
T
ar
ge
t

T
ot
al

Sc
or
e
pe
r

D
at
ac
ub
e

R
an
k

A
cc
ep
ta
nc
e

A
w
ni
ng

(R
O
I
1

si
ze

¼
71
)

P
ol
yt
he
ne

(R
O
I
2

si
ze

¼
29
)

P
la
st
ic

ta
rp

(R
O
I
3

si
ze

¼
29
)

C
ot
to
n

(R
O
I
4

si
ze

¼
28
)

V
in
yl

m
at

(R
O
I
5

si
ze

¼
80
)

R
aw

R
ad

R
aw

R
ad

R
aw

R
ad

R
aw

R
ad

R
aw

R
ad

R
aw

R
ad

R
aw

R
ad

R
aw

R
ad

SA
M
V
Q

10
:1

3
3

4
4

3
3

2
4

3
4

15
18

1
1

A
A

SA
M
V
Q

20
:1

2
3

1
3

2
2

2
3

3
3

10
14

3
3

M
A

SA
M
V
Q

30
:1

2
3

1
2

2
2

2
3

2
3

9
13

4
4

M
A

H
SO

C
V
Q

10
:1

2
3

2
4

2
3

2
1

3
4

11
15

2
2

M
A

H
SO

C
V
Q

20
:1

1
3

2
4

1
2

0
3

1
3

5
15

5
2

N
A

(A
A
cc
ep
ta
bl
e,

M
M
ar
gi
na

lly
A
cc
ep
ta
bl
e,

N
N
ot

A
cc
ep
ta
bl
e)

230 Chapter 6



radiance data. The evaluation results of this application indicate that pre-
processing and radiometric conversion applied before or after compression
affects compression performance. Compression of the radiance data produces
higher evaluation scores and better user acceptability.

6.4 The Effect of Radiance-Data Random Noise
on Compression Performance

The evaluation results in Section 6.3.3 indicate that it might be necessary to
apply preprocessing and radiometric conversion onboard to convert raw data
to radiance before compression because it preserves more information
and produces better user acceptability. On the other hand, as described in
Section 6.3.1, additional errors or artifacts are induced in the process of the
preprocessing and radiometric conversion. This section assesses the impact of
removing random noise of radiance data on data compression onboard a
hyperspectral satellite using the same target detection application. The same
SFSI-II datacube used in Section 6.3 was tested. The impact on data
compression was evaluated using both the statistical measures and a remote
sensing application. The evaluation results show that compression of radiance
data after removal of random noise produces better reconstruction fidelity
and much higher evaluation scores for the remote sensing application than
compression of radiance data without removal of random noise. The
evaluation results indicate that random noise of radiance data should be
removed before compression if it is applied to radiance data onboard.

6.4.1 Data processing procedure

Figure 6.8 shows the block diagram of the data processing procedure for a
target detection application using a spectral unmixing approach. There are

Figure 6.8 Block diagram of the data processing procedures (shaded boxes denote
onboard processing if onboard data compression is deployed).
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three paths of processing procedure in the figure. In the upper path, which
does not contain the onboard data compression, there are eight processing
steps to generate the fraction images from the acquired raw SFSI-II
hyperspectral data, as described in Section 6.3.3.

Processing steps 1–4 are the preprocessing steps, and the raw data after
preprocessing is converted to radiance in step 5. The middle and lower
paths shown in Fig. 6.8 are the subject of this section. In the middle-path
processing procedure, the noisy radiance data underwent removal of
random noise before being sent to compression. The input of the
compression is the noise-removed radiance (NRR) data. In the lower-path
processing procedure, the noisy radiance data was sent to compression
directly, and the random noise was removed after compression. The input
of the compression is the noisy radiance (NR) data. In fact, the evaluation
of the impact of preprocessing and radiometric conversion on compression
described in Section 6.3.3 includes the upper- and middle-path processing
procedures.

Random noise of the radiance data is removed by applying a spectral–
spatial smoothing operation based on the known noise characteristics of the
SFSI-II sensor. This is done by averaging together spectra from a number of
different pixels that are equivalent in light of the known noise characteristics
of the SFSI-II sensor. This noise removal can significantly improve the data
quality for remote sensing applications. Figure 6.9 shows the typical radiance
spectra of the test SFSI-II datacube over the site before and after noise
removal. The H2O band at 1470 nm and the water vapor value cannot be
properly estimated before the random noise is removed, but they can be well
estimated in the NRR spectra.

6.4.2 Evaluation results using statistical measures

This section begins by evaluating the effect of removing random noise on data
compression performance using statistical measures. The NRR and NR
datacubes were compressed using SAMVQ at ratios of 10:1–30:1, and
HSOCVQ at ratios of 10:1–20:1. The same evaluation metrics as in Section
6.2.2—RMSE, SNR, and %E—are used.

Table 6.5 lists the metrics of the reconstructed datacubes for the NRR
(shaded columns) and NR datacubes. Compression of the NRR datacube
produces better reconstruction fidelity than that of the NR datacube for the
same compression algorithm and same compression ratio. The compression of
the NRR datacube attains a SNR gain between 7.4–9.7 dB and a %E
reduction between 1.8–2.3%, which are due to the removal of random noise of
the radiance data. The NRR datacube is more compressible than the NR
datacube. The NRR compressed datacubes with higher reconstruction fidelity
are expected to produce more-accurate fraction images for ground-target
detection applications.

232 Chapter 6



6.4.3 Evaluation results using target detection

This section uses ground target detection of hyperspectral data as a remote
sensing application to evaluate the impact of removing radiance-data random
noise on data compression. The NRR and NR compressed datacubes using
SAMVQ at ratios of 10:1–30:1 and HSOCVQ at ratios of 10:1–20:1 were
decompressed to produce the reconstructed datacubes for evaluation. The

Figure 6.9 Spectra of the SFSI-II radiance over the target site (a) before and (b) after
removal of random noise. Band numbers start at 1100 nm (band 0) and end at 2500 nm
(band 240).
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reconstructed datacubes are of the same size and format as the original but
have undergone compression. A double-blind test was used to reduce self-
deception and bias in the evaluation of the impact, and the compressed
datacubes were named with an arbitrary number when returned to the user,
who then derived the fraction images for detecting the targets and evaluated
the impact based on predefined criteria by comparing the products derived
from the compressed datacubes with those derived from the original datacube.
The user had no knowledge of the compression status of the datacubes
evaluated. The same four predefined criteria proposed in Section 6.2.2 were
used to assess the impact; 1 point was scored for each criterion met.

The evaluation was performed on a ROI-by-ROI basis. The full score for
a target ROI is 4. The full score for a compressed datacube is 20, as there are
5 targets. Table 6.6 lists the evaluation score per target and the total score per
datacube of the blind-compressed datacubes with compression applied to the
NRR datacube (shaded columns) and to the NR datacube.

When the compression was applied to the NRR datacubes (i.e., the
middle path in Fig. 6.8, wherein the compression is applied to radiance data

Table 6.5 Statistical measures of reconstructed data with compression applied to noise-
removed radiance (NRR) and noisy radiance (NR) data.

Compression
Algorithm &
Ratio

RMSE SNR (dB) Percentage Error (%)

NRR NR NRR-NR NRR NR NRR-NR NRR NR NRR-NR

SAMVQ 10:1 8.93 21.92 12.99 41.26 31.59 9.67 0.68 2.46 1.78
SAMVQ 20:1 12.92 28.00 15.08 38.05 29.46 9.67 0.95 2.96 1.87
SAMVQ 30:1 15.22 33.35 18.13 36.62 27.94 8.59 1.09 3.28 2.19
HSOCVQ 10:1 17.43 32.63 15.20 35.45 28.08 8.68 1.33 3.64 2.31
HSOCVQ 20:1 20.85 36.05 15.20 33.89 27.21 6.37 1.59 4.05 2.46

Table 6.6 Application evaluation score per target and total score per compressed
datacube with compression applied to a noise-removed radiance (NRR) datacube and to a
noisy radiance (NR) datacube.

Compression
Algorithm &
Ratio

Score per Target

Total
Score per
Datacube

Awning
(ROI 1

size 71)

Polythene
(ROI 2

size 29)

Plastic tarp
(ROI 3

size 29)

Cotton
(ROI 4

size 28)

Vinyl mat
(ROI 5

size 80)

NRR NR NRR NR NRR NR NRR NR NRR NR NRR NR

SAMVQ - 10:1 3 2 4 0 3 1 4 1 4 1 18 5
SAMVQ - 20:1 3 2 3 0 2 1 3 1 3 1 14 5
SAMVQ - 30:1 3 1 2 0 2 0 3 1 3 1 13 3
HSOCVQ - 10:1 3 1 4 0 3 1 1 1 4 3 15 6
HSOCVQ - 20:1 3 1 4 0 2 1 3 2 3 3 15 7
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after removing random noise), the SAMVQ-compressed datacube 10:1 got a
total score of 18 out of the full score of 20 and was ranked #1. For targets
polythene, cotton, and vinyl mat, this datacube got a full score of 4. The
HSOCVQ-compressed datacubes 10:1 and 20:1 got a total score of 15 out
of 20 and were ranked #2. SAMVQ-compressed datacubes 20:1 and 30:1 got
total scores of 14 and 13, respectively, and were ranked #3 and #4. The user
accepted all five of the NRR-compressed datacubes based on the predefined
criteria.

When the compression was applied to the NR datacubes (i.e., the lower
path in Fig. 6.8, wherein the compression was applied before removal of
random noise), the compressed datacubes at compression ratios of 10:1 and
20:1 using SAMVQ both got a total score of 5 out of 20; the SAMVQ-
compressed datacube 30:1 got a total score of 3; and the HSOCVQ-
compressed datacubes 10:1 and 20:1 got total scores of 6 and 7, respectively.

The total evaluation score of a NR-compressed datacube is much smaller
than that of a NRR-compressed datacube with the same CR and the same
compression algorithm. These evaluation scores are consistent with the
statistical measures of the compressed datacubes shown in Section 6.4.2. The
evaluation results using this application show that removing radiance-data
random noise has a significant impact on SAMVQ or HSOCVQ compression
performance. Compression of the NRR datacubes by applying the removal of
random noise in the radiance datacube before compression produces much-
higher evaluation scores and better user acceptability than that of the NR
datacubes.

The reason for the poor evaluation scores of the compressed datacubeswhose
random noise were removed after SAMVQorHSOCVQ compression is that the
noise removal is not effective. This is probably because the noise-removal
algorithm was designed to remove random noise in the original SFSI-II radiance
data. The SAMVQ and HSOCVQ algorithms are lossy data-compression
algorithms. They act like a low-pass filter, suppressing the high-frequency noise
during the compression.10The randomnoise in the reconstructeddatacubes is not
the same as that in the original radiance data. The noise-removal algorithmmight
notwell remove the randomnoise in the reconstructedSFSI-II radiancedata after
compression using SAMVQ and HSOCVQ. The noise-removal algorithm
probably needs to be redesigned in order to effectively remove random noise in
the compressed radiance data.

6.5 Effect of Keystone and Smile on Compression Performance

This section evaluates the effect of spatial distortion (keystone) and spectral
distortion (smile) of hyperspectral sensors to examine whether these dis-
tortions have any impact on compression performance, and thus whether
these distortions should be corrected onboard before compression.
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In an imaging spectrometer, keystone refers to the across-track spatial
misregistration of the ground sample pixels of the various spectral bands of
the spectrograph. It is caused by geometric distortion, as can be seen in
camera lenses, by chromatic aberration, or a combination of the two. Smile,
also known as spectral line curvature, refers to the spatial nonlinearity of
a monochromatic image of a straight entrance slit as it appears in the
focal plane of a spectrograph. It is caused by a dispersion element, prism, or
grating, or by aberrations in the collimator and imaging optics. These
distortions have the potential to affect compression performance.

A datacube acquired using CASI in an application of boreal forest
environment was used as a test datacube. It has 72 spectral bands with a
spectral sampling distance of approximately 7.2 nm. The half-bandwidth used
is 4.2 nm. Keystone and smile were simulated and then incorporated into the
test datacube, as shown in Fig. 6.10.

The generated keystone was to simulate the shift of nominal data due to a
linear keystone whose maximum amplitude can be specified by a user. The
amplitude of the keystone is defined as the maximum angular shift in the pixel
center position from the nominal value in the full detector array. Because the
keystone is linear and symmetric around the array center, the maximum
keystone is located at the array edges (i.e., the first and last pixel in the array,
and for the first and last bands in the array). The generated keystone is the
same from one focal plane frame to the next.
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The approach to simulating Keystone: (a) 
nominal transection profile; (b) a nominal set of 
angular pixel response functions; (c) the pixels’ 
angular positions are shifted according to the 
keystone of the specific band to process; (d) 
shifted transection profile with keystone. 

The approach to simulating spectral curvature: (a) 
nominal spectrum; (b) a nominal set of band filter 
functions; (c) the bands spectral positions are shifted 
according to the spectral curvature of the specific 
across track pixel to process; (d) shifted spectrum 
with smile. 
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Figure 6.10 Simulation of keystone (left) and smile (right) of hyperspectral datacubes.
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The generated smile was to simulate the shift of nominal data due to a
quadratic spectral line curvature whose maximum amplitude can also be
specified by a user. The simulation approach assumes that the diffraction slit
is curved so that the smile is minimal in the middle of the array. The
amplitude for the smile is defined as the maximum spectral shift in the band
center wavelength from the nominal value in the full detector array. Because
the smile is quadratic and symmetric around the array center, the maximum
smile is located at the array edges.

Compressionwas applied to the original test datacube and the datacubeswith
simulated keystone and smile. Figure 6.11 shows the curves of compression
fidelity (PSNR) produced using SAMVQ as a function of magnitude of
keystone and smile. Experimental results showed that keystone has little or no
impact on the compression fidelity produced by both SAMVQandHSOCVQ.
The PSNR fidelity loss is <1 dB. Smile has little to some impact on the
compression fidelity. The PSNR fidelity loss is typically 2 dB with HSOCVQ
and <1 dB with SAMVQ.

6.6 Enhancing the Resilience of Compressed Data
to Bit Errors in the Downlink Channel

In SAMVQ and HSCOVQ, compressed data includes index maps and
codebooks. If one bit or multiple bits of an index in the index map are
flipped, caused by the single-event upsets in the downlink channel, the
decompression of this index on the ground will be in error. A wrong
codevector will be picked up in the codebook to reconstruct the spectrum for
the ground sample at the location of that index. These bit errors will not
propagate to other indexes of the index map. If one bit or multiple bits of an
element (i.e., spectral value) of a codevector in the codebook are flipped due
to single-event upsets, this element of the codevector is damaged and is in
error. In decompression on the ground, all of the ground samples with the
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Figure 6.11 Compression fidelity (PSNR) produced using SAMVQ as a function of
magnitude of (a) keystone and (b) smile.
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same index associated to this codevector will be reconstructed using this
corrupted codevector; these ground samples will all have a wrong value in
the spectral band corresponding to that corrupted element. The single-bit
error or multiple-bit burst errors within a codevector element are propagated
to an entire datacube, but they corrupt only in a specific band. In both cases
presented earlier, a single-bit error and multiple-bit burst errors will not
result in data loss; instead, they will cause inaccurate reconstruction of the
compressed data. This is the advantage of VQ-based compression techniques
compared to other compression techniques.

Although both SAMVQ and HSCOVQ are more bit-error resistant than
the traditional compression algorithms, experimental results show that when
the bit-error rate (BER) exceeds 10 6, the compression fidelity starts to drop.
This section explores the benefits of employing triple-module redundancy and
forward error correction on top of data compression (SAMVQ or HSOCVQ)
to deal with higher BERs. In particular, it is shown that proper use of triple-
module redundancy and convolutional codes can improve the resilience of
compressed hyperspectral data against bit errors by close to two orders of
magnitude.

6.6.1 Triple-module redundancy used in the header
of the codebook and index map

As described in Chapter 5, SAMVQ generates a codebook and an index map
in each approximation stage of the multistage compression. If S approxima-
tion stages have undergone compression, S codebooks and S index maps will
have been generated. HSOCVQ generates only one codebook and one index
map. In order to reconstruct the compressed data on the decoder side, the key
parameters of the compression (such as codebook size, number of spectral
bands, spatial size of the datacube, etc.) need to be stored together with the
codebooks and index maps. In SAMVQ and HSOCVQ, these key parameters
are stored in the header of a codebook file and an index-map file. The header
of a codebook file and an index-map file is critical because it is more sensitive
to bit errors than the body of the codebooks and index maps. For instance, if
the bits of a codebook size N are flipped due to single-event upsets, the
reconstruction will be in error.

In order to prevent the key parameters from corrupting, triple-module
redundancy has been used in the header in both SAMVQ and HSOCVQ.
Tables 6.7–6.9 show the layout of the header of the index map and
codebook of the SAMVQ algorithm. There are four parameters stored in
the header of an index-map file: the stage number (Stage#), the number of
bits per index (mapbits), the number of rows of the datacube scene (Nr),
and the number of columns of the datacube scene (Nc). The Stage# is
assigned for one byte (char) and can record up to 256 stages. The mapbits
is equal to log2N (N is the size of the codebook of the stage). One byte is

238 Chapter 6



sufficient to record it. Both Nr and Nc are encoded using 2 bytes (short)
that can record from 0 to 65535.

Among the four stored parameters, Stage# is informative and often
carried in the file naming. If it is corrupted, the reconstruction will not be
affected; however, the other three parameters are critical and will affect the
reconstruction if they are corrupted. These three parameters are recorded in
triplicate in the header. On the decoder side, the values of these three

Table 6.7 Header of the index-map file of a SAMVQ algorithm.

Data Type Item # of Bytes

char Stage# 1
char mapbits 1
short Nr 2
short Nc 2
char mapbits 1
short Nr 2
short Nc 2
char mapbits 1
short Nr 2
short Nc 2

Table 6.8 Header of a codebook file of a SAMVQ algorithm with the shortest fitting
word-length per codevector. Note that INDEXSAM ¼ char in this example.

Data Type Item # of Bytes

char Stage# 1
INDEXSAM N 1
short Nb 2
INDEXSAM N 1
short Nb 2
INDEXSAM N 1
short Nb 2
char vectorbits[0] 1
char vectorbits[1] 1
char vectorbits[2] 1
. . .

char vectorbits[N 1] 1
char vectorbits[0] 1
char vectorbits[1] 1
char vectorbits[2] 1
. . .

char vectorbits[N 1] 1
char vectorbits[0] 1
char vectorbits[1] 1
char vectorbits[2] 1
. . .

char vectorbits[N 1] 1
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parameters will be decided based on the majority voting of the triple-module
redundancy to prevent bit errors caused by single-event upsets. The overhead
of this redundancy is 10 additional bytes whose effect on the compression
ratio can be negligible compared to the total number of bytes of the index-
map file.

Section 5.2.4 notes that the word-length of a codebook generated in an
approximation stage can vary. Two schemes have been adopted to take this
feature into account when encoding the codebook generated in an approxima-
tion stage: one uses the shortest fitting word-length for each single codevector of
the stage codebook, and the second uses the shortest fitting word-length for all
of the codevectors of the entire stage codebook. Table 6.8 illustrates the header
for the first scheme. As in the index-map file, Stage# is informative and
assigned for one byte without triple-module redundancy. The other three
parameters are critical and encoded with triple-module redundancy. These
parameters are codebook size N (i.e., the total number of codevectors within a
codebook), number of spectral bands Nb (i.e., the total number of elements of a
codevector), and the word-length of each codevector vectorbits[k], k ¼ 0, 1, 2,
N 1. The data type of the codebook size N is a macro-variable in the c-code
of the SAMVQ algorithm, which is determined based on the maximum size of
the codebooks. If it is defined as INDEXSAM¼ char, the maximum codebook
size allowed is N ¼ 256. If it is defined as INDEXSAM ¼ short, the maximum
codebook size allowed is N ¼ 65535. The number of spectral bands Nb is
assigned to 2 bytes (short), which is sufficient to cover any value of number of
spectral bands up to 65535. The number of bits of the vectorbits[k] is between
1 and 16 for short (2-byte) data or between 1 and 32 for long (4-byte) data. One
byte is assigned to record the vectorbits[k] in the header.

Table 6.9 depicts the header for the second scheme of the codebook file,
where a single word-length vectorbits is used to encode all of the codevectors
within the codebook. This vectorbits is equal to the largest one in the N
vectorbits[k], k ¼ 0, 1, 2, N 1 in order to cover all of the codevectors.

Table 6.9 Header of the codebook file of a SAMVQ algorithm with the shortest fitting
word-length per codebook.

Data Type Item # of bytes

char Stage# 1
INDEXSAM N 1
short Nb 2
char vectorbits 1
INDEXSAM N 1
short Nb 2
char vectorbits 1
INDEXSAM N 1
short Nb 2
char vectorbits 1
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There is a trade-off between the two schemes in encoding the word-
length of the codevectors in the codebook file. The first scheme needs to
record N vectorbits in the header. The total cost is 3N bytes in the header
with the triple-module redundancy; however, this scheme saves on the total
number of bits in encoding the codevectors, as some of codevectors are
encoded using very short word-lengths. The second scheme records only
one vectorbits in the header. The total cost is 3 bytes in the header with the
triple module redundancy. However, this scheme uses more bits in
encoding the codevectors, as some codevectors whose amplitude is very
small are encoded using the maximum word-length. Experimental results
showed that the first scheme yields slightly better compression ratios than
the second scheme. The first scheme is selected as the default algorithm for
SAMVQ.

6.6.2 Convolutional codes

There exist many efficient channel codes that permit reliable communica-
tion of information without sacrificing the transmission rate, wasting the
frequency bandwidth, or wasting energy. In particular, convolutional
codes11 have often been used to improve the performance of deep-space
and satellite communications. A convolutional code is partly specified by a
triplet (k, n, Lc), where k and n denote, at any given time unit, the number
of information bits and the number of coded bits, respectively, and Lc, the
so-called constraint length, denotes the number of successive encoder input
blocks that affect the encoder output block at any given time. In other
words, the encoder output block vl (of n-size bits) at time l depends
not only on the encoder input block ul (of k-size bits) at time l but also on
Lc 1 encoder input blocks ul 1, ul 2, . . ., ul (Lc 1) (each of k-size bits) at
times l 1, l 2, . . ., l (Lc 1), respectively. The nominal code rate R
of a convolutional code is k/n. The encoding process of a convolutional
code is very simple, requiring only delays and adders, which is a great
advantage for onboard use. The decoding process of a convolutional code,
on the other hand, is more sophisticated and requires implementing the
Viterbi algorithm,12 a dynamic programming algorithm used to find the
most-likely sequence of states. Nevertheless, the decoding process is
perfectly capable on the ground.

This section employs the convolutional codes recommended by the
CCSDS13 for protecting compressed hyperspectral data against the errors
induced by the noise in the downlink channel. The basic recommended
convolutional code is partly specified by (1, 2, 7), has a rate R¼ 1/2 (i.e., 50%
overhead), and is well suited for channels with predominantly additive white
Gaussian noise (AWGN). The encoder of this code is shown in Fig. 6.12.
For this code, the encoder output block vl (of 2-size bits) at time l depends on
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the encoder input blocks ul, ul 1, . . ., ul 6 (each of 1-size bit) at times l, l 1, ...,
l 6, respectively, as follows:

v1, l ¼ ul � ul 1 � ul 2 � ul 3 � ul 6, ð6:2Þ

v2l ¼ ul � ul 2 � ul 2 � ul 5 � ul 6: ð6:3Þ
When higher code rates (i.e., lower overhead) at the expense of lower

error-correcting capability is desired, the basic recommended convolutional
code may simply be punctured.13 For instance, if rate R ¼ 2/3 (i.e., 33.33%
overhead) is desired instead of R ¼ 1/2 , v ¼ (v1,0, v2,0, v1,1, v2,1, v1,2, v2,2, v1,3,
v2,3, . . .); the sequence of the coded bits has to be punctured according to the
puncturing pattern of SAMVQ and HSOCVQ algorithms into vpunctured ¼
(v1,0, v2,0, v2,1, v1,2, v2,2, v2,3, ...) before transmission over the channel. Clearly,
although four coded bits are generated by the encoder for every two
information bits, only three out of four are actually transmitted, hence, the
rate R ¼ 2/3.

The encoder for the convolutional codes recommended by the CCSDS
is, in fact, a state machine with 26 ¼ 64 different states. State machines are
usually characterized by state-transition diagrams, or alternatively, by
trellis diagrams (note that a trellis diagram is a state-transition diagram
spread in time). Due to the large number of states in the state machine
associated with the recommended convolutional code, it is not easy to
properly depict either of the previously mentioned diagrams. However, if
the states are numbered from 0 to 63 based on the contents of the delay
units in the delay line, it is not difficult to see that Sl, the state number at
time l, is [Sl 1/2] if ul ¼ 0 and is 32 þ [Sl 1/2] if ul ¼ 1, where Sl 1 is the
state number at time l 1. For instance, if Sl 1 ¼ 21 and ul ¼ 1, then Sl ¼
32 þ [21/2] ¼ 42. Figure 6.13 shows the building block of both the state-
transition diagram and the trellis diagram characterizing this state
machine. Note that emanating from each state are two arcs entering into
two different states, one corresponding to the information bit that is 0, and
the other corresponding to the information bit that is 1. Similarly, but not
shown in the figure, entering into each state are two arcs emanating from

Figure 6.12 Encoder of a 64-state binary linear convolutional code of rate R ¼ 1/2.
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two different states. This subtle observation greatly simplifies the implementa-
tion of the Viterbi algorithm for this code.

6.6.3 Viterbi algorithm

As mentioned previously, after the encoding process, the sequence of coded
bits v is transmitted over a communication channel. The communication
channel discussed in this section is the downlink channel between a
hyperspectral satellite and a ground receiving station. This downlink channel
can be modeled by a binary-input power-limited Gaussian channel (BIPLGC)
for which the (channel) output Y is given by Y ¼ X þ Z, where X is the binary
(channel) input chosen from { 1, þ1}, and Z is a zero-mean Gaussian
random variable specified by its variance s2. Note that before transmitting
over the downlink channel, coded bits 0 and 1 are mapped into þ1 and 1,
respectively. Let v� denote the resulting sequence after the mapping. At the
output of the downlink channel, the received sequence is

v̂ ¼ v� þ n; ð6:4Þ
where n is the noise sequence. The channel decoder has to recover v based on v̂.
It is not difficult to see that the decoding problem is aminimumdistance detection
(MDD) problem, i.e., the channel decoder has to find a valid sequence of coded

bits v such that k v̂ v�k2, or equivalently
X

l
kv̂l v�l k2

, is minimum. The

Viterbi algorithm,which is a dynamic programming algorithm applied to a trellis
diagram, can efficiently solve this problem. The following observations must be
made in order to determine how the Viterbi algorithm works:

1. Each path in the trellis diagram of the code corresponds to a unique
sequence of coded bits. As such, if each branch in the trellis diagram is
assigned a metric equal to k v̂l blk2, where bl is the output n-tuple
associated with that branch, then the MDD problem becomes equivalent

Figure 6.13 Building block of the characterizing diagrams associated with the recom-
mended convolutional code.
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to finding p, the path with the smallest overall metric, in the trellis
diagram.

2. Consider a state through which p passes at time l. The initial segment of p
from time 0 to time l has the smallest accumulated metric amongst the
initial segments of all other paths passing through this state at time l.
Therefore, it suffices at time l to determine and retain for each state only
the path with the smallest accumulated metric, called the survivor.

3. The survivors at time l may be determined from the survivors at time l 1
by a recursive add–compare–select operation as follows:
a. For each branch from a state at time l 1 to a state at time l, calculate

the metric of that branch and add it to the metric of the survivor at time
l 1 to get a candidate path metric at time l.

b. For each state at time l, compare the metrics of the candidate paths
arriving at that state.

c. For each state at time l, select the path corresponding to the smallest
metric and store it as the survivor.

It should be clear now that the Viterbi algorithm can solve the MDD
problem for a trellis diagram by finding p through recursively performing the
add–compare–select operation mentioned in point 3. Equally important is
that the regular recursive structure of the Viterbi algorithm makes it very
attractive for software and hardware implementations. Note that the
complexity of the algorithm is proportional to the number of the branches
per unit of time in the trellis diagram, which is determined by the number of
states in the state-transition diagram.

6.6.4 Simulation results

Two different convolutional codes have been used to protect three different
compressed hyperspectral datacubes before transmitting the data over
simulated noisy channels. At the receiver, after decoding and decompres-
sing, the hyperspectral data is reconstructed to measure the SNR fidelity
loss.

The two convolutional codes used are of rates R ¼ 4/5 (i.e., 20% overhead)
and R ¼ 7/8 (i.e., 12.5% overhead), which are derived from the basic reco-
mmended convolutional code introduced in Section 6.6.1. More specifically,
R ¼ 4/5 and R ¼ 7/8 are obtained by puncturing the output of the channel
encoder according to the puncturing patterns [1000; 1111] and [1000101;
1111010], respectively. Note that before running the Viterbi algorithm, the
receiver has to insert a ‘0’ in all of the punctured positions.

The two hyperspectral datacubes tested in the simulations were acquired
by the CASI and the AVIRIS hyperspectral sensors. The CASI datacube has
been compressed by SAMVQ with a compression ratio of 10:1. The AVIRIS
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datacube, captured at Cuprite, NV, USA, has been compressed using
SAMVQ and HSOCVQ at CRs of 14:1 and 10:1, respectively.

Figure 6.14 depicts the SNR versus the BER for the CASI datacube
compressed by SAMVQ at a compression ratio of 10:1 with and without
channel coding. The SNR of the reconstructed datacube is 43.30 dB without
any single-event upsets. As can be seen in the figure, while the uncoded
compressed data cannot tolerate single-event upsets resulting in BERs greater
than 2 � 10 6, the coded compressed data exhibits a far greater resilience to
such errors: by channel coding with an overhead of 12.5% or 20%, BERs as
high as 5 � 10 5 or 5 � 10 4, respectively, are perfectly endured. Note that at
BER ¼ 5 � 10 5, the SNR fidelity loss for the uncoded case is 22.39 dB.

Figure 6.15 depicts the average SNR versus the BER for the AVIRIS
Cuprite datacube compressed by SAMVQ at a CR of 14:1. The SNR of the
reconstructed datacube is 52.99 dB without any single-event upsets. As can be
seen in the figure, although the uncoded compressed data cannot endure
single-event upsets resulting in BERs greater than 2 � 10 6, the channel-
coded compressed data can easily tolerate BERs as high as 1 � 10 4 or
5 � 10 4 with overheads of 12.5% or 20%, respectively. Note that at BER ¼
1� 10 4, the SNR fidelity loss for the uncoded case is 32.69 dB.

Figure 6.16 depicts the average SNR versus the BER for the AVIRIS
Cuprite datacube compressed using HSOCVQ. The SNR for this datacube is

Figure 6.14 Average SNR loss of SAMVQ-compressed data with and without channel
coding as a function of bit-error rate (BER) for the CASI datacube.
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Figure 6.16 Average SNR loss of HSOCVQ-compressed data with and without channel
coding as a function of bit-error rate (BER) for the AVIRIS datacube.

Figure 6.15 Average SNR loss of SAMVQ-compressed data with and without channel
coding as a function of bit-error rate (BER) for the AVIRIS datacube.
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41.66 dB without any single-event upsets. As can be seen in the figure,
although the uncoded compressed data cannot tolerate single-event upsets
resulting in BERs greater than 2 � 10 6, the coded compressed data can
endure BERs as high as 2 � 10 5 or 1 � 10 4 with overheads of 12.5% or
20%, respectively. Note that at BER ¼ 2 � 10 5, the SNR fidelity loss for the
uncoded case is 18.49 dB. Also noteworthy is the fact that at BER ¼ 5 � 10 3,
the curve representing the uncoded case is about to intersect the curve
representing the coded case for R ¼ 7/8. In other words, the uncoded case
outperforms the coded case at large BERs. This is not surprising, however,
as the coding gain is counterbalanced at large BERs by the reduction
in the amount of energy per coded bit, which is required for a fair
comparison.
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Color Plates

Plate 1 Three-level, 2D WT decomposition of an image and schematic of a transformed
image with the 64 shaded pixels that consist of a single block: (a) the WT subband images
and (b) a single block with 64 WT coefficients (source: CCSDS).
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Plate 2 The scene of the CASI Acadie datacube (reprinted from Ref. 25).
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Plate 3 Spectral profile of a spatial sample of the Cuprite datacube before and after
compression (29:1), and the difference. The compressed spectrum is overlapping well with
the original (reprinted from Ref. 25).
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Plate 4 Illustration of (a) organizing continuous 2D focal plane frames into regional
datacubes and (b) splitting a regional datacube into vignettes to facilitate parallel hardware
implementation.



Plate 5 AVIRIS Greater Victoria Watershed District datacube: (a) noise-free datacube,
(b) noise-added datacube (uncompressed), (c) intrinsic-noise datacube, (d) compressed
datacube, and (e) compression-error datacube (reprinted from Ref. 1).
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Plate 10 HIBR allows hyperspectral data users to remotely browse a hyperspectral data
archive, helping them find datasets of potential interest and evaluate their applicability to the
user’s application.



Plate 11 HIBR function for visualizing monochrome, RGB, and false color images.



Plate 13 HIBR image viewer.

Plate 12 HIBR function for visualizing processed images.



Chapter 7

Data Compression Engines
aboard a Satellite

7.1 Top-Level Topology of Onboard Data Compressors

This chapter describes the hardware implementation of SAMVQ1 and
HSOCVQ2 algorithms for near-lossless data compression onboard satellites.

Three top-level topologies were considered to meet the initial design
objective, including a digital signal processor (DSP)3 engine-based approach,
a high-performance, general-purpose CPU-based approach, and an applica-
tion-specific integrated circuit (ASIC)4 or field programmable gate array
(FPGA) approach.5 The resulting onboard data compression engines were
evaluated for various configurations. After studying the topologies, the
hardware and software architectural options, and candidate components, an
architectural preference was placed on a hardware compressor with
modularity and scalability. The performance trade-off studies for these
architectures showed that the best performance and scalability could be
achieved using dedicated compression engines (CEs) based on an ASIC/
FPGA topology. The advantages of the ASIC/FPGA approach include the
ability to

• Apply parallel processing to increase throughput,
• Provide for successive upgrades of compression algorithms and
electronic components over a long term,

• Support high-speed direct memory access (DMA) transfers for data read
and write operations,

• Optimize the scale of the design to mission requirements, and
• Provide data integrity features throughout the data handling process.

Performance simulation was carried out for the candidate architectures
by coding the FPGA using very high-speed integrated circuit hardware
description language (VHDL).6 This also verified that the proposed
architectures support expansion to arrays of CEs. The design of a real-time
data compressor, using VHDL tools, benefited from generic functions that
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provide for rapid redesign or resizing. With these infrastructure tools, the CEs
can adapt to the scale of different data requirements of a hyperspectral
mission. Figure 7.1 shows a block diagram of a real-time compressor.
A proof-of-concept prototype compressor has been built based on this block
diagram. Figure 7.2 shows the prototype compression engine board; it
consists of multiple standalone CEs, each with the ability to compress a
subset of spectral vectors in parallel. These are autonomous devices that,
once programmed, perform compression in continuous mode, subset by
subset. A CE is composed of a FPGA chip. The prototype board also has a
network switch, fast memory, and a PCI bus interface. The network switch,
which consists of a FPGA chip, is used to serve the data flow transfer in and
out of each of the CEs, serving up to eight CEs in parallel using a high-speed
serial link.

In the prototype compressor, the fast memory is temporally treated as the
continuous data-flow source of focal plane frames from a hyperspectral
sensor. The imagery data is fed into CEs via the wide bus and the PCI bus of
the controller computer and distributed to each CE by the network switch.
The transfer datarate from the fast memory to the network switch may be
lower than the real datarate of the focal plane frames produced by a
hyperspectral sensor, but the throughput of the compressor from the point
where data reaches the network switch to the point of output of the
compressor must be greater than or equal to the real datarate. In the real case,
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Figure 7.1 Block diagram of the real-time hardware data compressor using the ASIC/
FPGA approach.
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the fast memory will be replaced by the data buffer after the A/D or
preprocessing of a hyperspectral sensor.

The LBG algorithm7 is a widely used vector-training algorithm in VQ-
based data compression techniques. It is utilized in both SAMVQ and
HSOCVQ. In the development of a real-time onboard data compressor
using SAMVQ or HSOCVQ, the implementation of the LBG algorithm has
a significant effect on the performance of the compression system. In the
LBG codevector training, the calculation of vector distance between a
spectral vector and a codevector is the most-frequent operation. The
architecture of computing the vector distance dominates the performance of
a compression engine. Two novel and effective vector distance calculators
have been developed,8 referred to as the “along-spectral-bands vector
distance calculator” and the “across-spectral-bands vector distance calcula-
tor.” Based on these two vector distance calculators, two codevector trainers
have been developed. Compression engines with four different configura-
tions have also been built.9

This chapter describes the hardware implementation of the onboard
compressor starting from the elementary level through to the more-complex
level, starting with vector distance calculators, then codevector trainers,
followed by compression engines, and finally the onboard compressor
(compression system).

Figure 7.2 The proof-of-concept prototype compressor board (featuring four compression
engines and one network switch, each of which uses a FPGA chip).
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7.2 Vector Distance Calculators

Vector distance calculation is the most-frequent operation of the codevector
training process in a VQ-based data compression technique. Both SAMVQ
and HSOCVQ use either absolute distance or squared distance as the
vector distance measure. In software implementation, this distance measure is
usually designed as a subroutine and is called frequently. Hardware
implementation of this vector distance calculation has not yet been reported.
This section describes two architectures of the along-spectral-bands and
across-spectral-bands vector distance calculators. Their hardware embodi-
ments are called the along-spectral-bands vector distance calculator and the
across-spectral-bands vector distance calculator.

7.2.1 Along-spectral-bands vector distance calculator

In the along-spectral-bands vector distance calculator, the distance between a
spectral vector and a codevector is obtained immediately (within a few clock
cycles) upon the spectral vector and the codevector entering the calculator, as
all elements (data bits of each spectral band value) along the spectral band
direction of the two vectors are all presented simultaneously and thus can be
computed in parallel, as shown in Fig. 7.3.

The figure shows a simplified block diagram of an along-spectral-bands
vector distance calculator. A spectral vector (in this example comprisingNb¼ 200
spectral bands) and a codevector are provided to the calculator from a spectral
vector memory and a codevector memory, respectively. Each band of the spectral
vector and its corresponding component of the codevector are provided to a
respective sumof absolute/squared distance (SOAD/SOSD) unit of the calculator.
Each SOAD/SOSD unit calculates a scalar distance (absolute or squared
distance) between a spectral band of the spectral vector and its corresponding
component of the codevector. The scalar distances are then provided to a scalar
distance unit comprising cascaded registered adders. To calculate the scalar
distance between a spectral vector having spectral bands and a corresponding
codevector having components, the calculator comprises eight levels of registered
adders starting with a hundred 13-bit adders in the first level, followed by fifty
14-bit adders in the second level, etc., as shown in Fig. 7.3. The last level consists
of one 20-bit adder providing the final scalar distance. The scalar distance
between the spectral vector and the codevector is obtained within a few clock
cycles (eight clock cycles for 200 bands) upon entering the calculator, as all
spectral bands of the spectral vector and all corresponding components of the
codevector are processed in parallel.

The main features of this architecture are:

1. A best-match codevector is determined as soon as all of the scalar
distances between the spectral vector and each of the codevectors have
been calculated and compared. The codevector to which the spectral
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vector has a minimum scalar distance is the best-match codevector for the
spectral vector. The partition (referred to herein as a set of spectral vectors
with the same best-match codevector) to which the spectral vector belongs
is known as soon as the best-match codevector is determined. The
codevector is the centroid of the partition described in Chapter 4.

2. The index (i.e., address) of the best-match codevector in the codebook is
assigned to the spectral vector immediately. The index is the compression
output of the spectral vector when the codevector training operation is the
last iteration.

3. Furthermore, the along-spectral-bands vector distance calculator supports
pipeline processing operations to calculate a vector distance per clock
cycle, when desired, with a latency as indicated previously. When pipeline
processing, it is advantageous to provide a shift register for cascading an
index associated with the codevector such that the output scalar distance
and a corresponding codevector index are provided at output ports
simultaneously. Thus, to determine a best match, each scalar distance is
compared to a previously calculated lowest scalar distance; when the
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scalar distance is lower, it replaces the previously calculated lower scalar
distance, and an associated index value is stored. Once all codevectors
have been provided to the along-spectral-bands, vector distance calculator,
the index stored is that of the best-match codevector.

4. Because the partition is known, the spectral vector can be immediately
added to the vector accumulator associated with the partition to allow
the codevectors to be updated at the end of the current iteration for the
next iteration of the codevector training process. (This is rendered
possible because the temporary storage for the spectral vector is used
for a short period of time before the best-match codevector is found).
This feature greatly reduces the effort required for the codevector
update operation, which would otherwise be as time-consuming as the
codevector training process. The codevector update function is
substantially completed when all of the spectral vectors have undergone
the codevector matching process. The only operation that remains is
normalization, which divides the vector in each vector accumulator
by the number of members in the partition (entry counts) to get the
updated codevector for that partition; this operation is performed in a
few clock cycles.

7.2.2 Across-spectral-bands vector distance calculator

In the across-spectral-bands vector distance calculator, a 2D matrix architecture
is proposed to implement the vector distance calculation, as shown in Fig. 7.4.
One dimension (vertical in the graphics) is for the spectral vectors, and another
dimension (horizontal in the graphics) is for the codevectors. The nodes of the
matrix are the parallel operators of SOAD/SOSD, which computes the distance
between a spectral vector and a codevector. Each SOAD/SOSD operator
computes the distance between the two vectors for a spectral band during a
given clock cycle.

In Fig. 7.4, a simplified block diagram of an across-spectral-bands vector
distance calculator is shown. Each SOAD/SOSD unit comprises a magnitude
comparator, a differentiator, an adder, and a register. In operation, a given
spectral band of spectral vectors 0 to i – 1 are provided to the SOAD/SOSD
unit such that the spectral band of one spectral vector is provided to one row
of the matrix. The components of codevectors 0 to j – 1 corresponding to the
given spectral band are provided to the SOAD/SOSD unit such that the
corresponding component of one codevector is provided to one column of the
matrix. Each SOAD/SOSD unit determines a distance between the given
spectral band of a spectral vector and the corresponding component of a
codevector during a given clock cycle. The overall scalar distance (absolute/
squared distance) between the two vectors is then obtained by repeating the
process Nb times (i.e., along the spectral bands).
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The main features of this architecture are as follows:

1. The across-spectral-bands vector distance calculator provides for parallel
processing for calculating vector distances. As shown in Fig. 7.4, a total of
i � j vector component distances between i spectral vectors and j
codevectors are determined per clock cycle. Each of the i spectral vectors
has its best-match codevector determined and is assigned an index after all
elements of the spectral vectors in the along-spectral-bands direction are
accumulated.

2. This architecture uses less memory and requires a smaller bus width than
the vector calculator described in Section 7.2.1. Spectral vector data
corresponding to only one spectral band is fed to the SOAD/SOSD unit at a
given time. There is no need to save values relating to the spectral vectors
after the vector distance calculation unless the scalar distance is the lowest.
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3. Only one adder and one register is used to determine the scalar distance
between two vectors (instead of 200 adders and registers in the along-
spectral-bands vector distance calculator) because a vector distance is
determined on a spectral-band-by-spectral-band basis. The vector distance
is obtained by accumulating the component distances associated with the
spectral bands.

4. The across-spectral-bands vector distance calculator is highly advantageous
for hardware implementation because it substantially reduces hardware size
and complexity. It ultimately increases the number of spectral vectors and
codevectors being processed using a given FPGA/ASCI chipset within a
compression engine.

7.3 Codevector Trainers

There are two types of codevector trainers: along-spectral-bands and across-
spectral-bands. Each codevector trainer is associated with a specific vector
distance calculator.

7.3.1 Along-spectral-bands codevector trainer

Figure 7.5 shows a simplified block diagram of an along-spectral-bands
codevector trainer. The trainer autonomously trains codevectors from the
spectral vectors using the LBG iteration. The basic elements of the codevector
trainer comprise an along-spectral-bands vector distance calculator, as shown
in Fig. 7.3, vector accumulators for codebook update, spectral vector
memory, and codevector memory. The along-spectral-bands vector distance
calculator is the core of the trainer.

Due to the unique features of the along-spectral-bands vector distance
calculator (see Section 7.2.1), the vector distance between an input spectral
vector and a codevector is determined quickly. For each spectral vector in the
spectral vector memory, the best-match codevector in the codebook is found
after computing and comparing its distances to each of the N codevectors
(typically N ¼ 8). Because the best-match codevector of an input vector is
known, the codevector update operation, which is time consuming, can be
conducted at the same time as the training process; this saves a significant
amount of time for codevector update operation. Figure 7.5 shows the
codevector update units in the lower portion.

All hardware units of the along-spectral-bands codevector trainer are
accommodated within a single integrated circuit, such as a FPGA. There is no
need for external communication once all the data is fed to the trainer at the
beginning of the training process. This self-contained implementation of the
training process significantly reduces the time required for communication
and data transfer.
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In Fig. 7.5, the numbers in the circles show the time order of the
operations of the codevector training process. The spectral vector memory
contains the input data in the form of spectral vectors, with each spectral
vector comprising, for example, Nb ¼ 200 spectral bands. A spectral vector is
read completely during a single clock cycle, i.e., when a given spectral vector
of the spectral vector memory is read, 200 spectral band values of 12 bits, each
resulting in 2400 bits, are obtained.

The codevector memory contains allN codevectors used in the compression,
for example, N ¼ 4, 8, or 16. Again, a complete codevector (comprising, for
example, 200 components of 12 bits each) is read during a single clock cycle.

The input data corresponding to one spectral vector and one codevector
are fed to the along-spectral-bands vector distance calculator to determine a
vectored form of the squared distance or absolute distance between the two
vectors, i.e., a vector distance comprising 200 scalar distances between the 200
spectral bands of the spectral vector and 200 corresponding components of the
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codevector. The vectored form of the squared distance or absolute distance is
then provided to a scalar distance unit.

In Fig. 7.6, a memory architecture accommodating the data provision
to the along-spectral-bands vector distance calculator is shown. As shown
in the figure, all spectral bands of a spectral vector (SV) and all
components of a codevector (CV) are readily available at output ports of
the SV memory and the CV memory, respectively. Due to this specific
architecture, no other SV or CV is accessible while a given SV or CV is
being accessed. Each memory output is dimensioned large enough to
accommodate the provision of a complete vector (SV or CV) typically
comprising 200 bands of 12 bits each, i.e., each output data being 2400
bits wide.
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A remember register is interposed between the SV memory, the vector
distance calculator, and the vector accumulators. The remember register
consists of a memory array equal to the spectral vector in size and serves as
temporary storage for the spectral vector while the scalar distance between the
spectral vector and all of the codevectors is being determined.

The scalar distance unit receives the vectored form of the squared or
absolute distance as an input value and sums, for example, its 200 vector
components, in order to provide a scalar distance between a given spectral
vector and a codevector. The distance sorting unit (the box attached to the
bottom of the codevector memory box in Fig. 7.5) is used to store the scalar
distances between a given spectral vector and all N codevectors successively
provided by the scalar distance unit. The N sorted scalar distances are then
sent to a minimal distance selector (MDS) unit to determine the closest
codevector to the given spectral vector. The codevector that corresponds to
the smallest scalar distance is the best-match codevector.

Based on the determined codevector, the MDS unit determines the
associated vector accumulator (VA) and accumulates the given spectral
vector to the associated VA. The N ¼ 4, 8, or 16 VAs comprise specialized
adders for summing all of the spectral vectors associated with a given
codevector. Each VA has as many adders as the number of spectral bands in
a spectral vector. This process repeats until all of the spectral vectors in the
SV memory are trained.

The exit criteria unit receives the overall minimal scalar distances
determined for all spectral vectors of the input datacube and determines the
end of the codevector training process based on predetermined criteria. When
the overall minimal scalar distances are smaller than the predetermined
criteria, the exit criteria unit ceases the training iteration; otherwise, it moves
to the next iteration. However, before moving to the next iteration, the MDS
unit finalizes the codebook update process. The codevectors in the VAs are
almost the updated codevectors; they just need to be normalized by dividing
them by the number of the counted spectral vectors in each of the partitions
and then sent to the CV memory for the next iteration step.

The architecture of the along-spectral-bands vector trainer permits the
codevector update operation to be carried out at the same time as the
codevector matching process. The time-consuming codevector update process
has been substantially completed when all of the spectral vectors in the SV
memory have been processed. This unique feature of the along-spectral-bands
vector trainer saves a significant amount of time for codevector updating.

7.3.2 Across-spectral-bands codevector trainer

Figure 7.7 shows a simplified block diagram of an across-spectral-bands
codevector trainer. It autonomously trains codevectors from the spectral
vectors using the LBG iteration. It comprises the along-spectral-bands
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vector distance calculator, the spectral vector memory, the codevector
memory, and the housekeeping control logic. All hardware units are
accommodated within a single integrated circuit, such as a FPGA. External
communication is not required once all of the data is fed to the trainer at
the beginning of the process. The across-spectral-bands vector distance
calculator is the core of the trainer.

The spectral vector memory contains the input data in the form of spectral
vectors, with each spectral vector comprising, for example, 200 spectral bands.
Due to the matrix architecture of the across-spectral-bands vector distance
calculator, the codevector trainer calculates multiple vector distances simulta-
neously on a spectral-band-by-spectral-band basis. The number of codevectors
to be trained is usually in a range of 4–16 codevectors, which are
accommodated in the columns of the across-spectral-bands vector distance
calculator array, as shown in Fig. 7.7. The number of spectral vectors residing

Figure 7.7 Across-spectral-bands codevector trainer.
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in the SV memory is usually larger than the number of rows of the across-
spectral-bands vector distance calculator. Therefore, the total number of
spectral vectors stored in the SV memory is grouped into pages of i-size spectral
vectors. The pages are then processed successively in the across-spectral-bands
vector trainer.

As shown inFig. 7.8, the SVmemory provides a spectral band corresponding
to the same dimension within the spectral vectors for the i spectral vectors, and
the CV memory provides the corresponding component of the j codevectors.
Therefore, the SV memory has a memory output width equal to the number of
spectral vectors being read simultaneously multiplied by the sample width,
i.e., 384 bits for 32 rows (spectral vectors), and 12 bits per band. Accordingly, the
CV memory has a memory output width equal to the number of codevectors
multiplied by the sample width, i.e., 48, 96, or 192 bits for 4, 8, or 16 codevectors,
respectively.

With each clock cycle i � j, vector distances for a given spectral band are
determined and added to the sum of previously determined vector component
distances. This process is repeated along spectral bands until the last spectral
band of the spectral vectors is processed and i � j final scalar vector distances
for the combination of i spectral vectors and j codevectors are obtained. With
the i � j scalar vector distances determined, a best-match codevector is
determined for each spectral vector of the current page. Using a control unit,
indices of the best-match codevectors are then assigned to the spectral vectors.
The above process is then repeated for all pages.
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Figure 7.8 Across-bands memory arrangement.
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In an across-spectral-bands codevector trainer, the codevector update is
carried out after the codevector matching process. After all of the spectral
vectors have been processed, the SOAD/SOSD matrix of the vector distance
calculator is used to accumulate the spectral vectors for each partition. Each
partition corresponds to a codevector. The indices assigned to the spectral
vectors are used in order to identify the partition to which a spectral vector
belongs. Thus, spectral vectors of a given page with the same index are
accumulated on a spectral-band-by-spectral-band basis in a same column of
the matrix. The accumulation of the spectral vectors is repeated until all of the
pages are processed.

After summing all of the vectors of each partition, the remaining
operation of the codevector update is to normalize the intermediate vector of
each update partition by dividing it by the number of members in each of the
partitions to obtain the updated codevector for the associated partition for the
next iteration step. The assignment of a spectral vector to a respective
partition, the entry count, and the normalization are performed using the
control unit. Furthermore, the end of the codevector training process is
determined based on predetermined exit criteria using the control unit.

7.4 Vector Quantization Data Compression Engines

A compression engine (CE) is a standalone autonomous machine that
compresses a subset of spectral vectors using either SAMVQ or HSOCVQ
techniques. Figure 7.9 shows the block diagram of the CE. It is built in a
single integrated circuit, such as an FPGA. A CE is composed of a
codevector trainer, a state machine controller, an internal RAM, two direct
memory access (DMA) interfaces, and a programming bus interface.
Dashed lines indicate a programming bus, dotted lines indicate request or
handshake lines, and thick continuous lines indicate data buses. The state
machine controller may be designed such that the CE can run either
SAMVQ or HSOCVQ. A DMA interface transfers raw spectral vectors to
the internal RAM at high speed. Another DMA transfers compressed data
out of the CE. The programming bus interface enables the programming of
the codevector trainer and the state machine controller of the CE. In this
way, a codevector trainer can be selectively implemented as either an along-
spectral-bands or across-spectral-bands vector trainer. A CE can operate in
any of the four configurations listed in Table 7.1 without any change to the
hardware.

In a preferred configuration of the CE, the codevector trainer is
implemented as an along-spectral-bands codevector trainer (shown in Fig. 7.5)
as well as an across-spectral-bands codevector trainer (shown in Fig. 7.7).
The state machine controller is designed such that the CE performs either
the SAMVQ or the HSOCVQ technique. The programming bus interface
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receives a programming signal from a network switch to program the codevector
trainer and the internal RAM to support along-spectral-bands codevector
training or across-spectral-bands codevector training as well as programming the
state machine controller to perform either the SAMVQ technique or the
HSOCVQ technique.

The DMA interface receives input spectral vectors from the network
switch and transfers the same spectral vectors to the internal RAM at high
speed. The DMA interface transfers the compressed data to the network
switch. The DMA interfaces are connected via a high-speed serial link pair

Figure 7.9 Block diagram of a compression engine.

Table 7.1 Four configurations of a compression engine: two configurations for
implementing SAMVQ, and two configurations for implementing HSCOVQ.

Algorithm SAMVQ HSOCVQ

Codevector trainer 1 Along spectral bands Along spectral bands
Codevector trainer 2 Across spectral bands Across spectral bands
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interface (LVDS) to the network switch for fast transfer of the input spectral
vectors and the compressed data. The input spectral vectors are stored in the
internal RAM prior to compression. The internal RAM comprises the
memory architectures shown in Figs. 7.6 and 7.8 supporting along-spectral-
bands codevector training as well as across-spectral-bands codevector
training. The compressed data (codevectors and index map) is also stored in
the internal RAM prior to transmission via DMA interface.

This hardware design enables the CE to autonomously perform the
compression process without external communication, substantially
increasing processing speed. Only a few commands such as “feeding
vectors” and “start compression” are needed to initiate the compression
process. The completion of the compression process is signaled by a
prompt. Furthermore, the CE is independent of a system’s clock. Once the
input data is received, the compression process is performed using an
internal clock. The serial links act to decouple the clock domains of the CE
and its environment. The programming bus interface is asynchronous and
does not constrain the clock of the CE. These cited features are highly
advantageous because they provide a CE that is fast, flexible without
hardware changes, capable of autonomous operation, and easy to control.
Therefore, the CE substantially facilitates formation of a parallel
compression system.

7.5 Real-time Onboard Compressor

7.5.1 Configuration

A real-time compressor is composed of a plurality of parallel compression
engines and a high-speed network switch, as shown in Fig. 7.10. The network
switch (Fig. 7.11) distributes the input spectral vector data into each of the
plurality of CEs and then receives and transmits the resulting compressed
data. The cluster SAMVQ and recursive HSOCVQ techniques support
splitting the raw hyperspectral imagery data into subsets and allow them to be
compressed in parallel within a single CE. The real-time compressor is built
on a print-circuit board (PCB).

An input buffer memory (RAM) is connected to the network switch via a
width data bus (e.g., 128-bit). The input buffer memory allows for multiple
subsets of data to be stored and read at very high rates in order to avoid
bottlenecks in the serial link communication to the CEs. The PCB enables
high-speed serial links between the network switch and the CEs. Reconfigur-
able integrated circuit (IC) chipsets such as FPGAs connected to the PCB are
used, for example, one reconfigurable IC for each of the parallel CEs, and one
reconfigurable IC for the network switch. This allows, for example,
programming from a ground station of multiple configurations in real-time
using the same hardware aboard a spacecraft. Furthermore, the PCB enables
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a serial link expansion of the network switch to a second PCB via a
communication link such as a card-to-card connector, i.e., doubling the
number of CEs in the compressor. Using existing technology, four CEs are
implemented for the simultaneous processing of four data subsets on one
PCB, or eight CEs when two PCBs are linked. The compressor is integrated
into an application system environment and linked thereto via a communica-
tion link such as the compact PCI connectors for transmission of control
signals, data, and power. The received power is transmitted via power supply
circuitry to the various components of the compressor. The hardware
architecture shown in Fig. 7.10 and the employment of PCBs and FPGAs
provides the compressor with modularity that allows adaptation of the
compressor to numerous system applications with minimal redesign.

Figure 7.10 Block diagram of the real-time compressor.
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The real-time compressor has the following features:

1. The hardware architecture enables the compressor to have modularity and
expandability so that it can serve any hyperspectral satellite system
requirements with minimal redesign.

2. A reconfigurable IC chipset (such as FPGA) can be used, allowing multiple
real-time configurations with the same hardware aboard spacecraft.

3. The PCB allows for high-speed serial links between the network switch
and PCB internal and external CEs.

4. The serial link expansion of the network switch is available to a second
PCB. A network switch can link to up to eight CEs.

5. It accommodates debugging features in the implementation.

7.5.2 Network switch

The network switch is a unique design in this system (Fig. 7.11). It resides in a
single IC (such as FPGA), and its main duties are to

• Provide a PCI interface to the PCB,
• Provide an interface to access the FAST input buffer memory,

Network Switch

Communication
Controller
(receiver)

PCI I/F (slave)

LVDS pairs
* Multiples

Communication
Controller

(transmitter)

FIFO Interface
(Inter clock domain interface)

RAM
Interface
128 bits
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acceses

DMA

Common Data BUS
128 bits wide

Request Interface(User Application)

Requests

Programming BUS
8-32 bits wide

Programming Bus

Inter IC
Programming

Bus

RAM
Banks

(FAST
Input
Buffer
RAM)

PCI Bus

To CEs
(Programming BUS)

To CEs
(HIGH Speed Serial Links)

Arbitration

DMA

Figure 7.11 Network switch.
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• Provide an interface to access the CEs (programming bus),
• Allow interconnection to eight CEs, and
• Allow for expansion to add other functions, such as a summing unit.

Figure 7.11 shows a more-detailed block diagram of the network switch.
The switch is linked to the PCB via the PCI interface, which consists of
a programming bus link for configuring the CEs via a programming bus
(thin dashed lines) of the network switch and inter-IC programming
interface, as well as for configuring the fast input buffer RAM via the RAM
interface. The PCI interface further comprises a PCI data link for
transmission of input spectral vectors data and compressed output data.
Data communication within the network switch is enabled using, for
example, a 128-bit-wide common data bus (solid lines) connecting the
PCI interface, the RAM interface, and two DMA interfaces. The DMA
interface transmitter provides a high-speed serial link to the CEs for
provision of input data thereto. Accordingly, the DMA interface receiver
provides a high-speed serial link to the CEs for receiving the compressed
data from the CEs.

In operation, the network switch receives the input spectral vector data
from the PCI interface and transmits the received data to the input buffer
memory via the RAM interface for storage therein. Depending on the
received programming data, the input spectral vector data is then accessed
and partitioned for distribution to the plurality of CEs using the RAM
interface. The partitioned input spectral vector data is then provided to the
plurality of CEs via the common data bus and the DMA interface
transmitter. The compressed data is received from the plurality of CEs via
the DMA interface receiver and provided via the common data bus and the
RAM interface to the fast input buffer RAM for storage therein.
Alternatively, the received compressed data is directly transmitted to the
PCI interface.

Employment of the RAM interface linked to the fast input buffer RAM is
highly advantageous for real-time data compression by allowing receipt of
input data during the compression process and provision of the same data to
the CEs via a high-speed serial link, substantially increasing the processing
speed. Furthermore, partitioning and provision of the partitioned input data
for simultaneous processing by a plurality of CEs is substantially facilitated
using the fast input buffer RAM. Using the technology available at the
development period, the hardware implementation of the network switch is
realized using one integrated circuit, such as a FPGA. It allows implementa-
tion of eight CEs within one compressor. Furthermore, it is possible to add
other functions, such as a summing unit. The hardware architecture shown in
Figs. 7.9 and 7.10 allows direct connection of a hyperspectral sensor to the
network switch via a high-speed serial link.
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Note that the network switch has been instantiated in the design as it
would be used in a final flight design; the only difference being that the PCI
bus is used to program the devices (CE and NS) on the board, i.e.,

• The network switch has direct access to the fast input buffer RAM,
• It provides a direct connection to eight CE using high-speed serial
links, and

• It allows for focal plane frames of a satellite hyperspectral sensor to be
connected directly to the network switch using a spare high-speed
serial link.

7.6 Hardware Implementation Process of SAMVQ and HSOCVQ

7.6.1 Codevector training

The LBG iteration is used in the vector training process in both SAMVQ
and HSOCVQ. It is an iterative, vectored clustering algorithm that groups a
large number of spectral vectors (SVs) into a small set (4, 8, or 16) of classes,
each of which is associated with a codevector (CV) by which all input
spectral vectors are encoded with the index of their best-matched codevector
in the codebook.

The data inputs and outputs for codevector trainer are

1. The input dataset: An array constituted of spectral vectors.
2. The output codevectors: A small set of vectors, which encodes the input

spectral vectors with the minimum distortion measure.
3. The output index map: A 2D array whose size is the same as

the spatial image of the input datacube. Each value in a spatial
location of the index map is an index referring to the best-matched
codevector by which the specific input spectral vector at this location
is encoded.

The codevector training is illustrated in Fig. 7.12.
In order for the vector training process to determine the best-match

codevector and then to encode each spectral vector in the input dataset,
an iterative process is used. This is referred to as the vector training
process.

When the vector coding process completes, two compressed datasets are
produced: A small set of CVs (4, 8, or 16) and an index map (with size equal to
the number of row by the number of columns).

These datasets are saved and ultimately sent to the ground via
downlinking channel. It can be seen that on the ground, when each index
(in the index map) is replaced by its associated codevector (referred to as the
encoded datacube), a very good reconstruction of the original input datacube
is obtained. SAMVQ and HSOCVQ algorithms define the next steps that will
better approximate the original cube.
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7.6.2 SAMVQ

From the vector training process discussion, if the reconstructed datacube is
subtracted from the original input datacube, an error cube is obtained
(represented in Fig. 7.13).

The error cube is then fed to the vector training processing, just like the
hyperspectral input data shown in Fig. 7.12, and another set of CVs and index
maps is generated. A complete loop (vector training processing, cube
reconstruction, and residual process) is referred to as a SAMVQ stage.

The SAMVQ compression algorithm has a fixed or variable number of
stages (based on a fidelity measure, such as PSNR). The compressed data at each
stage includes a codebook and an index map. The index map and codebook of
each stage are then sent to the ground for reconstruction. Figure 7.14 shows the
overall view of SAMVQ processing.

For the first stage of the SAMVQ compression, the vector training
processing uses the hyperspectral input data. When the residual process takes
place at the end of the first stage approximation, the reconstructed cube is
subtracted from the hyperspectral input data to generate the error cube (of
stage 1), which is indicated by arrow 1. When the compression processing

Figure 7.12 Vector training processing.
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takes place at the second stage, the input data is the error cube from stage 1,
which is indicated by arrow 2. At the end of the second stage compression on
residual, the reconstructed cube (reconstructed error cube of stage 1) is
subtracted from the source error cube of the stage (indicated by arrow 3). This
generates the error cube of the error cube.

The process goes on for M stages. M sets of index maps and codevectors
(one set per stage) are generated and sent to the ground for reconstitution.

7.6.3 HSOCVQ

Figure 7.15 illustrates the hierarchical self-organizing clustering process of
HSOCVQ. It can be seen from the figure that the hyperspectral input data is
fed to the vector training processing as described previously. The output of
that block is a set of codevectors (four in this example) and an index map
specifying which codevector is associated with each pixel.

Hyperspectral
INPUT datacube

Vector Training

Code
Vectors + Vector training  

Output

Decoded 
data cube

Index Map

-

Error Cube

Residual Process

Encoding

Figure 7.13 Error cube (residual cube) generation process.
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Descending in the figure, each of those four clusters (red, yellow, blue, and
green) are then treated separately (as a distinct group) because each of these
clusters will be analyzed again by the vector training processing.

Using the red cluster as an example here, in the second depth of vector
training processing, the cluster is subdivided into four subclusters. This
process goes on (tree expansion) until the clusters meet one or more of the
following criteria:

1. The number of spectral vectors per cluster is smaller than a predetermined
value,

2. The PSNR value of that cluster meets a predefined value, and
3. The RMSE value of that cluster meets a predefined value.

As a cluster converges, the codevectors found by the vector training
processing in that cluster are sent to the ground (or to a temporary memory
storage external to the CE) along with the pixel referenced by these
codevectors.

It can be seen that all clusters and all pixels will eventually converge, and
thus all of the pixel’s indices will be determined. Similarly, all codevectors
related to all converged cluster will be determined and sent to the ground for
decompression.

Hyperspectral
INPUT data

Vector
Training

Code
Vectors + Index Map

Residual
Process

Error Cube
or

Residual Cube

(One Set Per SAMVQ
Stage)

1

2 3

Figure 7.14 Overall view of SAMVQ processing.
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7.7 Scenario Builder: A Real-Time Data Compression Emulator

This section describes a real-time data compression emulator, which is
referred to as Scenario Builder. It supports hardware configurations (i.e.,
scenarios) that are “user trials” in the search for an optimal system. It
emulates a compressor that uses either cluster SAMVQ or recursive HSOCVQ
from a complete family of optimized and synthesized (based on real hardware
data) VHDL designs. Scenario Builder is a software tool that enables reliable

Figure 7.15 Overall view of the HSOCVQ process. For a color version of this figure, see
Plate 7 in the color plate section of this book.
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prediction of an onboard compressor architectural configuration for a hyper-
spectral mission. It provides users the ability to determine the optimal hardware
implementation.

7.7.1 Scenario Builder overview

Even though both the hardware and software implementations of cluster
SAMVQ or recursive HSOCVQ provide identical results, their performances
have no common evaluation metrics.

The software models can effectively be used to select the most-appropriate
algorithm (or combination of algorithms) to be used for optimal results, but
the software models cannot be used to judge the optimized hardware
implementation. The best system that supports the mission requirements may
lie between the optimal software and hardware implementation.

Scenario Builder provides a software environment that is capable of
emulating real data that flows through real hardware models with real hardware
timings. It is an emulation of a real-world hardware prototypewithout producing
the hardware.

In the proposed compression system, the real input data is hyperspectral
datacubes in band-interleaved-by-pixel (BIP) format. Any BIP-formatted
datacubes can be used with any user-defined scenario. The real hardware
models are clock-cycle-accurate models of the VHDL implementation in
hardware, and the real hardware timings are true operational frequencies
extracted from the synthesized work required as the real FPGA chipsets are
produced. Scenario Builder is a powerful tool for evaluating any mission
requirements.

An overview of Scenario Builder and its components is shown in
Fig. 7.16. There are three steps: scenario definition, scenario simulation, and
scenario validation.

7.7.2 Scenario Builder applications

Scenario Builder is built over seven applications, shown in the rectangular
boxes in Fig. 7.17. The overall design architecture defines the interaction
between all of these applications and the data flows between them.

The applications and their characteristics include the following:

1. Scenario Builder GUI: The application of a graphical user interface (GUI)
is written in Java language, using the Ptolemy (latest version) simulation
framework. It helps a user build a scenario and configures each of its
components. Then, it streams the scenario into an extensible markup
language (XML) model file; XML is a markup language that defines a set
of rules for encoding documents in a format that is both human-readable
and machine-readable.
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2. VXML converter: This application is also written in Java language, and its
main purpose is to convert the XML model file generated by the Ptolemy
framework (consisting of overhead information) and simplify it into a CE
preprocessor format.

3. Compression engine preprocessor: This application is written in Cþþ
language. It analyzes the simplified scenario model according to the
hardware topology and its specification. It then generates the compressed
data by compressing the original datacube.

4. Fidelity: This application, written in Cþþ language, uses the compressed
data generated in the previous application to reconstruct a compressed

Scenario
Builder

Graphical User
Interface

(GUI)

XML
Model

VXML
Conv
erter

XML
Model

Simplify

Compression
Engine Pre-
Processor

Fidelity Simulator

Simulator Control

Synthetisis

Figure 7.17 Seven applications of Scenario Builder.
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Figure 7.16 Scenario Builder overview.
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datacube and compares it to the original. After the comparison, it
generates statistical measures such as CR, SNR, PSNR, %E, etc.

5. Simulator: This application is written in Cþþ language and uses
the DiscreetC framework to provide simulation capabilities.
It generates information using the Ptolemy framework (.vcd files).
The framework can be displayed in visual graphics for the compres-
sion engine state, the first-in first-out (FIFO) buffer usage, the duty
cycle, etc.

6. Simulator control: This application, written in Cþþ language, controls
applications 3–5. It starts these applications in different processes and
links them with a stream pipe. It monitors the execution of the
applications and handles errors reported from them.

7. Synthesizer: This application, written in Cþþ language, loads each report
and information file from applications 3–5 and synthesizes them into one
XML report.

7.7.3 Architecture and data flow of Scenario Builder

Figure 7.18 shows the architecture of Scenario Builder. The simulated
component software-configurable-items (CSCIs) are expanded in the figure.

Pre-processor
(CEPP) CSCI
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HSOC_Timing.xml
SAM_Timing.xml

H/W Timing

HSOC_INDEX.xml
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Figure 7.18 The architecture and data flow of Scenario Builder.
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The scenario simulator is parsed into 3 CSCIs (the three rectangular boxes in
the figure):

1. The preprocessor CSCI analyzes the user’s scenarios according to the
hardware topology and its specification. It generates the compressed
data by compressing the original datacube. When performing the
previous task, the preprocessor monitors the compression process based
on hardware implementation and generates timing metrics.

2. The fidelity CSCI uses the compressed data generated by the preprocessor
to reconstruct a datacube and compares it to the original one. Then, from
the comparison, it generates quality metrics.

3. The simulator CSCI uses the timing metrics generated by the preprocessor
to simulate a hardware model of a compression engine. The simulator
generates FIFO buffer usage, compression engine duty cycle, and
compression timing, and it detects FIFO buffer bottleneck.

7.7.4 SORTER engine and cluster SAMVQ compression engine

As described in Chapter 5, both cluster SAMVQ and recursive HSOCVQ
divide an input datacube into subsets of spectral vectors by clustering the
spectral vectors of the datacube based on the similarity of the spectral
vectors to overcome the constraints of CPU processing speed, memory, and
power. Each subset of spectral vectors is then fed to a CE for parallel
processing. The operation of clustering spectral vectors of the datacube is
carried out by a dedicated CE to handle the heavy processing and the large
number of spectral vectors; this engine is referred to as “SORTER.” The
consequent operation of cluster SAMVQ is carried out by a second-level CE,
which can operate by using either an external RAM to handle a large subset
of spectral vectors or its own internal RAM to handle a relatively small
subset of spectral vectors.

Scenario Builder supports five different types of CEs, and each type has its
unique characteristics, limitation, and capability:

• SORTER,
• SAMVQ with external RAM,
• HSOCVQ with external RAM,
• SAMVQ without external RAM, and
• HSOCVQ without external RAM.

Figure 7.19 shows the global view of SORTER. SORTER receives an
input cube from a hyperspectral sensor. The characteristics of the input
cube are constants, i.e., the cube is of a constant number of bands and of
constant spatial size. The number of spectral vectors in the cube is > 216

(64K) SVs.
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Globally, the SORTER operations can be described as follows:

• Read the input cube.
• Classify the datacube into N subsets (i.e., clusters) of spectral vectors
based on spectral similarity, whereby N codevectors are generated, and
a cluster map (also referred to as index map, i.e., subset ID of each
spectral vector of the datacube) is created.

• Transfer the cluster map to the mass storage for transmission to the
ground.

• Send the N subsets to the consequent CEs for compression using
SAMVQ or HSOCVQ.

• Optionally, calculate the difference (i.e., residual) between the subsets and
reconstructed subsets using the cluster map and the N codevectors, and
send the N residual subsets to the consequent CEs for compression using
SAMVQ or HSOCVQ. In this scenario, theN codevectors also need to be
transferred to the mass storage for transmission to the ground.

Figure 7.19 SORTER compression engine overview.
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The following guidelines were used in the design of SORTER:

• The subsets are formed based on the similarity of the spectral vectors.
• The sizes of the subsets need to be as close as possible in order to
distribute the subsets to the next-level CEs with even size for better use
of the CE’s resource.

• None of the spectral vectors in the input datacube should be read more
than twice.

In order to accomodate the sizes of subsets with small variances, the initial
codevectors used to classify the input datacube need to be representative of the
input cube. Selection of these “ideal” codevectors need not require reading the
complete datacube but rather a representative subsampling of the entire
datacube.

Reading a specific number of spectral vectors with spatially equidistant
subsampling from the input cube and then performing LBG on these
subsampled spectral vectors provides a good subsampling strategy. If all of
these spectral vectors can be stored within the SORTER CE internal memory,
then the codevector-selection processing time will be optimized. Once the
initial codevectors are selected, all spectral vectors of the input cube are read
and classified per their closest codevector. Each spectral vector is read only
once in the clustering process with this strategy.

If the residual option is chosen in SORTER, the residual data needs to be
calculated and transferred to the next-level CE. The residual calculation is
performed as soon as the best-match codevector is determined to avoid
reading a spectral vector twice. The external RAM bottleneck can be easily
avoided if the number of codevectors in use is large enough.

To speed up the codevector training process and save memory usage,
subsampled spectral vectors are formed and used to train the codevectors.
First, n equally spaced spectral vectors are read from the input datacube and
used for codevector training; this equally spaced selection of the spectral
vectors produces diagonal patterns, as shown in Fig. 7.20. This selection
method provides excellent spatial subsampling of the input datacube for
codevector training.

Once the spectral vector RAM is filled with subsampled spectral vectors,
the LBG iterative process takes place to update the initial estimate
codevectors, resulting in N codevectors that can best fit the subsampled
spectral vectors. The N codevectors are now ready to be used in the clustering
process. The iteration threshold (standard epsilon used to exit LBG
processing) used in the LBG process is 1/1024 or smaller. The choice of N
has to be established using the following driving parameters:

• N needs to be large enough so that no unnecessary external RAM
bottleneck is created in the clustering process.
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• N must be selected so it creates subset sizes that are typically close to the
consequent CE internal memory capability to reduce RAM bottlenecks
in the consequent CE. Because the variance of the subset sizes is small,
all subsets (or packets) should not produce excessive RAM bottleneck.

Once N codevectors have been trained and stored in the SORTER CE
internal memory, the classification process can begin. All spectral vectors of
the input cube are read and compared to the N codevectors; the scalar
distance (Euclidean) is used to determine the best-matched codevector. The
index of the codevector is then assigned to each spectral vector to form the
index map. When all spectral vectors have been matched with the closest
codevector, the SORTER process is complete.

Cluster SAMVQ by definition operates on clusters created by SORTER,
hence the cluster SAMVQ engine (or SAMVQ baseline engine) could only be
a second-level engine.

Input Cube Input Cube

Legend:

Each Dot represents a
Selected SV in the CV
Isolation process

Case 1 Case 2

Input Cube

Case 3

Figure 7.20 Subsampling an input datacube with equally spaced spectra selection for
codevector training.
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Baseline SAMVQ might also be used as the first-level engine (as a sorter),
generating an index map and residual datacube for the second level of
processing. This configuration may seem interesting, but the SORTER
operations can provide better results than baseline SAMVQ as a SORTER.

Still, if a user wants to try baseline SAMVQ in the first level (in stage
mode), the codebook size must be increased so that the RAM bottleneck
disappears. The stage number to be performed should also be maintained in
the 1–3 range.

7.7.5 Recursive HSOCVQ compression engine

Recursive HSOCVQ is an updated version of HSOCVQ for onboard use that
would enable easier implementation of the algorithm in hardware. It also
incorporates interesting features regarding the single-event upsets (SEUs)
sensitivity of the design, which has been described in Chapter 5. Without
going into the details of the recursive variation, the original idea could save
both processing time and external storage capacity.

This section defines the configurations whereby recursive HSOCVQ can be
used effectively and where it could not be supported; Figure 7.21 is used to
facilitate the description. Scenario Builder analyzes four configurations (i.e.,
cases) and validates their operational ability and effectiveness. In the figure, a
CCD instrument is used as an example of a hyperspectral data source.

Case 1: In this case, the first-level compression using a CE of SORTER,
residual SAMVQ, or cluster HSOCVQ generates uncorrelated com-
pressed data. The HSOCVQ CE at the second level (final box) cannot
implement the recursive feature of the algorithm because the
compressed data is uncorrelated. Performing the comparison using
codevectors in the previous region is irrelevant when the sequential
packets are uncorrelated (see detailed description of recursive HSOCVQ
in Chapter 5).

Case 2: As in case 1, the recursive HSOCVQ feature cannot be
implemented in case 2 because there is no correlation between packets
from one packet to another (note that bandsplitting is used). The first
packet might be high-number bands, then medium-number band, etc.
(final box).

Case 3: This configuration is a valid one, where recursive HSOCVQ can
be efficiently used (final box). It is supported by Scenario Builder. All
sequential packets relate to the same bands, and the data being fed to
the CE is raw data (as opposed to residual data).

Case 4: This configuration can be used with the following precautions
(final boxes):
• All bands split (split 1, 2, or n) need to be fed to a specific CE (CE 1,
2, or n),
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• No other packets except its related band packet should be sent to that
CE, and

• The CE cannot skip an imaging session (sequential packet) for best
performance.

Scenario Builder does not support the HSOCVQ recursive variation
over this configuration directly. In order to test the scenario, a user
needs to perform n simulations, where n is the band splitting factor used
in case 4 and where each simulation operates on the bands of interest
(n splits).

Input Buffer

SAMVQ
or

Sorter
or

HSOC

CE

CCD
Instrument

Recursive HSOCVQ allowed configurations

Inter CE
data

exchange
Matrix

(transparent
Interface)

HSOCVQ

CE

Input Buffer

(Band
Splitting)

HSOCVQ

CE

(Not all Bands)

CCD
Instrument

Input Buffer

(No Band
Splitting)

HSOCVQ

CE

(all bands)

CCD
Instrument

Input Buffer

(Band Splitting
Split factor=X)

HSOCVQ

CE 1

(1/X bands)

CCD
Instrument

HSOCVQ

CE 2

(1/X bands)

HSOCVQ

CE X

(1/X bands)

...

Case 1

Case 2

Case 3

Case 4

Figure 7.21 Configurations validated by Scenario Builder for recursive HSOCVQ.
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The configuration of case-3 recursive HSOCVQ is valid and can be
implemented. The following defines the parameters that provide the best
results using that configuration.

It has been mentioned earlier that the minimal input cube size that could
be used is 64K spectral vectors. It is also known that the CE internal memory
for HSOCVQ is quite limited (ranging from 512 to 4,000 spectral vectors
depending on the number of bands in use), which leads directly to the
conclusion that the vast majority of spectral vectors will reside outside the CE
and that the CE will have to perform numerous RAM accesses to satisfy the
recursive HSOC processing.

The disadvantage of this configuration is that the external RAM accesses
become a bottleneck for HSOCVQ processing. The RAM bottleneck must be
analyzed in the two modes in which recursive HSOCVQ operates: compare
with previous region codevectors (CWPRC) and HSOCVQ tree expansion
(baseline HSOCVQ).

Within CWPRC processing, there are three cases:

• First frame, first region,
• First frame NOT first region, and
• Not first frame.

Having frames of at least 512 spectral vectors (one cross-track line of the
CCD instrument) and a codevector reuse rate of 20–30% minimum from one
region to the first frame of a new region, it was found that there is
no bottleneck in the RAM interface because a codevector is required every
20–30% of 512, i.e., every 100–150 clock cycles, which is more than enough to
fetch a new spectral vector.

For basic HSOCVQ processing, the worst-case scenario is when the tree
expansion operates on a large number of unconverged spectral vectors (after
CWPRC has completed). There are two options to reduce that bottleneck (as
neither the number of bands in use nor the number of spectral vectors under
processing can be reduced): use faster external RAM or use a large number of
CVs as the HSOCVQ tree expands.

These measures are not always possible or efficient. Using faster external
RAM quickly reaches a limit. Using a large number of codevectors for the
HSOCVQ tree expansion could be good processing-wise but is not very
efficient where the HSOCVQ lower-level tree processing is concerned.

In conclusion, recursive HSOCVQ or even baseline HSOCVQ is not the
most-efficient engine in the first level of compression (except when used in fidelity
mode). The bottleneck can be compensated for by the efficiency of the algorithm.

7.7.6 Scenario Builder products

This section describes the Scenario Builder products and their implementa-
tions. Overall views of the mechanisms and concepts that were used to define
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the products are provided first, followed by the details and operational
information.

As described earlier, Scenario Builder is a software environment that is
capable of emulating real data that flows through real hardwaremodels with real
hardware timings.A Scenario Builder product can be viewed as an emulation of a
real-world hardware prototype without producing that hardware. It supports
many hardware configurations, i.e., scenarios. These scenarios are “user trials”
for designing an optimal system, which the hardware prototyping cannot offer.

7.7.6.1 SORTER

SORTER, described in Section 7.7.4, is the best engine for the first level of
SAMVQ compression. It does not generate RAM bottlenecks even with very
large input-cube sizes when the cluster number is set to the typical value N ¼
32 codevectors or more. Its efficiency resides in the fact that

• The initial codevectors are determined without using the external RAM
block (spectral vectors are read only once for the codevector estimation
process).

• Each spectral vector of the input datacube is read only once in the
clustering process.

• The SORTER engine can generate residual data to the next-level
SAMVQ compression, and generate and then send the index map and
codevectors to the mass storage for ground reconstruction.

• The hardware timings (and the frequency of operation) used for the
SORTER are based on SAMVQ with a RAM engine, as that engine
offers all of the elements required for the SORTER operation (SORTER
is, in fact, a SAMVQ engine with internal RAM and a slightly different
algorithm controller).

7.7.6.2 SAMVQ engine with external RAM

The SAMVQ engine with external RAM implements the SAMVQ algorithm
by using both its internal memory and the external RAM block attached to it.
The engine is most efficient when operating on a reduced number of spectral
vectors or on a reduced number of bands (which increases its internal RAM
capacity as per). Because the minimal input cube to be processed is in the
range of more than 64,000 spectral vectors, the SAMVQ engine with external
RAM necessarily requires a front-end SORTER at level-1 compression. It is
suggested for best performance that the number of spectral vectors fed to the
engine does not exceed 2 times the SVs’ capacity.

Because Scenario Builder requires a SAMVQ engine with external
RAM of variable characteristics (i.e., different numbers of bands), the
frequency of operation used and the CE internal RAM capacity will be
derived linearly.
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The SAMVQ engine with external RAM is required to be at the second
level of compression (with SORTER in the first level) to remove any spatial
blocking and boundary effects. The engine can operate in threshold or in level
mode.

7.7.6.3 HSOCVQ engine with external RAM

The HSOCVQ engine with external RAM implements the HSOCVQ/
recursive HSOCVQ algorithm by using both its internal memory and the
external RAM block attached to it. The engine is most efficient when
operating on a reduced number of spectral vectors or on a reduced number of
bands (which increases its internal RAM capacity), or when the number of
codevectors in use overcomes the RAM bottleneck. The engine can operate on
residual or raw data, and can be fed by SORTER.

7.7.6.4 Clock-accurate hardware timing

As software compression is performed with the data file specified in the
scenario, the application software computes the exact number of clock cycles
that would be required by the real hardware CE. This computation is dictated
by the VHDL (hardware) implementation of the algorithm in the specific CE
in use.

Two special cases need to be identified with regards to the hardware
formula used to evaluate the hardware performance of the CE in use: serial
link duty cycle and external RAM throughput.

There has been some discussion concerning the link to be used to feed
RAM and compressed data to/from the CE. That link was initially serial,
enabling very dense usage of a CE on a PCB. Based on this discussion, EMS
chose to characterize that link in terms of throughput. The serial-link duty
cycle encodes that measure.

It is based on the scaling of a 32-bit word feeding the CE at every clock
cycle. This means that if the specified serial-link duty cycle is 3, then the
throughput (reception or transmission throughput) is 3 � 32 bits � Foper CE.
For example, a CE operating at 75 MHz with a duty cycle of 1 leads to a
throughput of 2.4 Gbps. The serial-link duty cycle value can range from 100
to 0.001.

In the same vein, the external RAM throughput has been encoded on a
reference where 128 bits of data are fed at every clock cycle into the CE (or
being output by the CE to the external RAM bank). As an example, having a
CE operating at 75 MHz with an external RAM throughput of 0.33 leads to
0.33 � Foper CE � 128 bits ¼ 3.17 Gbps. The external RAM throughput
value can range from 100 to 0.001.

This encoding scheme for the serial links and for the external RAM
interface performance enables testing different RAM devices or different
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implementation for the CE RAW or the compressed data upload and
download.

7.7.6.5 Hardware bottleneck emulation

Scenario Builder can be either a GUI interface or a batch processing
(command line with text reporting) interface.

It is used to judge the capacity of the proposed scenario hardware
configuration to sustain the CCD Instrument output rate without overflow.
The GUI interface provides an animated (and graphical) representation of all
element usage:

• All CE duty cycles (from 0–100%),
• The FIFO or RAM instantaneous and maximum capacity during
simulation, and

• Some other quality statistics.

The batch processing provides the same information in a text file. For that
purpose, as shown in Fig. 7.16, step 3 of Scenario Builder uses two main
inputs:

• Hardware timings from step-2 simulation and
• Fidelity data from step-2 simulation

Some additional notes:
The main criterion to validate a specific scenario (besides the level of

quality of the compressed data) is the FIFO maximum capacity during
simulation (or the CE duty cycle approaching 100%, which is the same
phenomenon). In order to properly assess the validity of the specific scenario,
multiple cubes should be sent by the CCD instrument.

If an overflow occurs, many solutions are possible. For example, increase
the number of CEs in the compression step that cause the bottleneck, or
increase the threshold of that bottleneck CE (or decrease its level for an
HSOCVQ in level mode or its stage number for a SAM engine used in stage
mode, etc.). If SORTER is used, and the second-level compression overflows,
increase the SORTER splitting factor, modify the original scenario, and test
again.

7.7.7 Scenario simulation user interface

A scenario can be defined in the graphical scenario definition (step 1 in
Fig. 7.16). Figure 7.22 shows the directory structure and a typical scenario
with a producer, one FIFO, two stages of compression (one SORTER and
one HSOCVQ), and consumers. These components are parameterized
through the graphical interface. With this information, the graphical scenario
definition generates a scenario file in XML format to be used by the scenario
simulation. The scenario simulation uses the scenario template to validate the
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scenario against its syntax. However, not every scenario is supported, as
described in Section 7.7.5. Some internal constraints also exist: each CE
composing a stage has to be identical, and each block generated by the
producer has to be the same size.

Each simulation uses its own directory structure where it finds its input
files and stores its output files; the structure shown in Fig. 7.22 is an example.
In this example, because the scenario defines two stages of compression
(one SORTER and one HSOCVQ), the directory contains two subdirectories
(CE1 and CE2) where the output files of these two compression engines
are stored.

7.8 Using Scenario Builder to Optimally Design Onboard
Data Compressor Architecture

Scenario Builder provides a means for a user to trade-off for the most
promising architecture of an onboard compressor that implements either the
SAMVQ or HSOCVQ algorithm. As described in Section 7.7, Scenario
Builder permits for variations of

• Hyperspectral imager configuration,
• SORTER CE usage,
• HSOCVQ CE usage,
• SAMVQ CE usage,
• Compression ratio, and
• Compression fidelity.

Figure 7.22 User graphical scenario display.
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7.8.1 Parameters of the design

Based on the technology at the development time, Scenario Builder supports
the following parameters:

• 640 pixels per cross-track line,
• 250 Hz frame rate,
• 12 bits/pixel,
• 80 bands per spectral vector, and
• Minimal cube size of 64,000 spectral vectors, each with 80 spectral bands.

The example shown here uses the parameters of a hyperspectral sensor
from the Canadian Hyperspectral Environment and Resource Observer
(HERO) mission.10

There are a total of 60 bands in the VNIR (400–1000 nm) region that fit
the vector length (80) of the compression engines. There are a total of 156
bands in the SWIR (900–2500 nm) region. These bands are split into two
subgroups of 78 bands each, referred to as SWIR A and SWIR B, in order to
fit the vector length (80) of the compression engines. These two subgroups of
spectral bands are compressed independently. The number of pixels in a
cross-track line is 640 pixels. The focal plane frame rate is 230 Hz. The data
is 12-bit quantization.

When an input datacube size is in the range of 64,000 spectral vectors
(i.e., 100 cross-track lines acquired by the satellite with 640 ground samples
per line), the compression of that datacube at the first level must be
completed in less than 400 ms, otherwise data overflows are likely to occur.
Table 7.2 lists the processing time for HSOCVQ or SAMVQ to compress an
input datacube of 64,000 spectral vectors (CE operating at 100-MHz
clock cycle).

The only engine that can be used as the front-end CE is a SORTER (the
next section elaborates on this avenue). The second-level compression will use
either a SAMVQ or an HSOCVQ engine.

7.8.2 SORTER as the front-end compressor

The parameters that can be tuned for SORTER when used as the front-end
compressor are as follows:

• Input cube size,
• Number of bands,
• N number of clusters or subsets,
• (Non-)group mode, and
• Residual mode.

As it is understood the first two parameters have already been set to the
following constraints: input cube size potentials ¼ 64, 80, 96, 112, 128, and
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256K spectral vectors, and number of bands ¼ 80, the number of clusters N
will then be tried for N ¼ 4, 8, 16, . . ., 512.

The group mode that will be used (SORTER will generate N subsets) will
be individually compressed by the second-level CE.

The residual mode will be used (the residual values are already available in
the SORTER), leaving only N as the true varying parameter. From these
parameters, the evaluation results are listed in Table 7.3. It is understood from
the results in the table that the preferred operational case for SORTER is a
single CE with the biggest SORTER number of clusters N and a duty cycle
above 50% and below 100%.

7.8.3 Second-level compressor

The second level of compression can be inferred to be either a HSOCVQ
or a SAMVQ engine in threshold mode because these engines are the ones
that will define final fidelity and CR (they are the last ones to process the
data).

The methodology used will specify for both engines a threshold for which
the overall CR is around 20:1. This threshold will vary depending on the
SORTER programming parameters. Table 7.4 lists HSOCVQ performance as
the second-level CE.

Table 7.2 Processing time for HSOCVQ or SAMVQ in compressing an input datacube of
64,000 spectral vectors (CE operating at 100-MHz clock cycle).

Type of Engine Mode of Operation Processing
Time (ns)

Overload Factor
for a Single CE

Number of CEs
Required for
Real-Time
Operations

SAMVQ with RAM Fixed stage (1 stage)
with 32 CVs

677,297,760 1.7 2

HSOCVQ with RAM Fixed fidelity mode
(1 level) with 32 CVs

1,538,234,890 3.8 4

SAMVQ with RAM Fixed stage (2 stages)
with 32 CVs

944,953,720 2.4 3

HSOCVQ with RAM Fixed fidelity mode
(1 level) with 64 CVs

2,070,788,330 5.2 6

SAMVQ with RAM Fixed stage (1 stage)
with 64 CVs

1,045,981560 2.6 3

HSOCVQ with RAM Fixed fidelity mode
(2 levels) with 32 CVs

2,034,219,160 5.1 6

SORTER with RAM Fixed fidelity mode
with 32 CVs

70,622,440 0.17 1

SORTER with RAM Fixed fidelity mode
with 64 CVs

100,947,150 0.25 1
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Table 7.3 SORTER performance as the front-end (first-level) compression engine.

Input Cube Size
(K SV of 80 bands)

Number of
Clusters (N)

Processing
Time (ns)

Duty Cycle
of SORTER

Number of CEs
Required

64 4 47857270 11.964 1
80 4 59531610 11.906 1
96 4 71371450 11.895 1
112 4 83792260 11.970 1
128 4 95466000 11.933 1
256 4 190517640 11.907 1
64 8 49668990 12.417 1
80 8 60849990 12.17 1
96 8 71864440 11.977 1
112 8 84034900 12.005 1
128 8 95709390 11.964 1
256 8 191089190 11.943 1
64 16 53813630 13.453 1
80 16 66774590 13.355 1
96 16 81049750 13.508 1
112 16 94340540 13.477 1
128 16 105982660 13.248 1
256 16 209333630 13.083 1
64 32 70622440 17.656 1
80 32 86146600 17.229 1
96 32 103634010 17.272 1
112 32 115214070 16.459 1
128 32 134674010 16.834 1
256 32 344686620 15.89 1
64 64 100947150 25.237 1
80 64 115025360 23.005 1
96 64 142227150 23.705 1
112 64 182588360 26.084 1
128 64 176939600 22.117 1
256 64 344686620 21.543 1
64 128 155029890 38.757 1
80 128 206944690 41.389 1
96 128 214163740 35.694 1
112 128 247685250 35.384 1
128 128 281176040 35.147 1
256 128 530842190 33.178 1
64 256 268449410 67.112 1
80 256 314586140 62.917 1
96 256 402677990 67.113 1
112 256 412052150 58.865 1
128 256 468637980 58.58 1
256 256 895272270 55.955 1
64 512 453280490 113.32 2
80 512 535134340 107.027 2
96 512 658924470 109.821 2
112 512 719774340 102.825 2
128 512 833062480 104.133 2
256 512 1613630440 100.852 2
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7.8.4 Proposed system

From the descriptions in previous sections, the system depicted in Fig. 7.23 is
selected as the proposed compression system configuration for the example
mission.

This system can perform real-time compression of hyperspectral data with
the following characteristics (foreseen HEROVNIR and SWIR characteristics):

• 80 bands per spectral vector,
• 640 cross-track pixels,
• 250-Hz frame rate,
• 12 bits/pixel, and
• 64,000-spectral vector minimal cube size.

The different devices are programmed as follows:

Hyperspectral sensor parameters
Rate: 250 Hz
Cube path: Must point to source datacube *.bip

Table 7.4 HSOCVQ performance as the second-level CE.

Input Cube
Size (K SV)

Number of
Clusters (N)

HSCCVQ
Threshold in

Use

Overall
Compression

Ratio
Overall SNR,

PSNR
HSOCVQ CE
Duty Cycle

64 128 7.0 16.36 40.27,51.00 16.547
64 128 8.0 23.78 39.51,50.24 15.518
64 256 7.0 14.51 40.80,51.53 13.40
64 256 8.0 20.09 40.04,50.77 12.38
80 128 7.0 19.56 39.98,50.69 17.696
80 128 8.0 28.48 39.19,49.91 16.178
80 256 7.0 16.77 40.60,51.32 14.674
80 256 8.0 23.45 39.91,50.63 13.546
96 128 6.0 11.73 41.25,51.96 19.952
96 128 7.0 20.08 40.10,50.81 17.616
96 256 7.0 18.51 40.53,51.24 14.762
96 256 8.0 26.01 39.63,50.34 13.129
112 128 6.0 12.93 41.18,52.87 19.328
112 128 7.0 21.83 40.03,51.72 17.040
112 256 7.0 19.38 40.68,52.37 14.244
112 256 8.0 29.13 39.87,51.56 12.981
128 128 6.0 13.15 41.29,53.28 20.356
128 128 7.0 22.20 40.11,52.10 17.964
128 256 6.0 12.44 41.68,53.66 16.477
128 256 7.0 20.64 40.56,52.55 14.437
256 128 6.0 14.83 40.92,52.82 22.790
256 128 7.0 25.89 39.88,51.78 20.132
256 256 6.0 13.99 41.39,53.28 18.648
256 256 7.0 24.58 40.23,52.13 15.931
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Cube Nr: xxx (cube dependant)
Cube Nc: yyy (cube dependant)
Cube N bands: 80
Block band offset: 0 (or other values)
Block N bands: 80
Block size: 64,000 and above

SORTER parameters
Clock period: 10 (ns)
Xram throughput: 1.0
Cube size: 64,000 and above
Cluster size (SSF): 256
Nb Stage: 1
Nb bands: 80
Nb stage: 0
RMSE threshold: 0

SAMVQ parameters
Clock period: 10 (ns)
Xram throughput: 0
Cube size: 64,000 and above
Cluster size (SSF): 256
Nb stage: 0
Nb bands: 80
RMSE threshold: D

Figure 7.23 Best architecture for the HERO mission onboard-compression specification.

291Data Compression Engines aboard a Satellite



HSOCVQ parameters

Clock period: 10 (ns)
Xram throughput: 1.0
Cube size: 64,000 and above
Number of frames: 1
Frame size: 64,000
Nb bands: 80
Nb levels: 0
RMSE threshold: TBD

From these, the system provides the following results:

• Overall CR,
• Overall fidelity (RMSE, PSNR, SNR, %R, etc.),
• SORTER duty cycle,
• SAMVQ duty cycle, and
• HSOCVQ duty cycle.
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Chapter 8

User Acceptability Study
of Satellite Data Compression

8.1 User Assessment of Compressed Satellite Data

To deal with the extremely high datarate and huge data volume generated
aboard a hyperspectral satellite, lossless and lossy data compression
techniques have been developed;1 24 these techniques can significantly reduce
the amount of data onboard and on-ground. Chapters 4 and 5 of this book
describe two near-lossless data compression techniques, referred to as
successive approximation multistage vector quantization (SAMVQ) and
hierarchical self-organizing cluster vector quantization (HSOCVQ), that
compress hyperspectral data with a high compression ratio and restrict the
compression error at the same level or even smaller than the intrinsic noise of
the original data. This low-level compression error is expected to have a minor
to negligible impact on ultimate applications of the data, so this kind of
compression is considered to be near-lossless compression. Even so, they are
still lossy compression algorithms. It is essential to assess the usability of the
compressed data and to examine acceptability to users in terms of their end
products and remote sensing applications. It is critical that the compression
techniques preserve the information content of hyperspectral data, as a loss of
information content would decrease the value of the data.

Studies of the usefulness of the compressed data and the impact of the
developed vector quantization (VQ) data compression techniques on various
hyperspectral data applications have been carried out and reported.25 35 For
example, the evaluation of the effect of the early VQ compression algorithms
on the retrieval of red-edge indices and surface reflectance have been
reported.25,28,29 In the work reported by Qian et al.,25 hyperspectral
datacubes acquired using AVIRIS and CASI were used to evaluate the
impact of the compression. The overall error in the red-edge indices due to
compression was below 3.0% and 2.0% for CASI and AVIRIS datacubes,
respectively, for compression ratios up to 100:1. Errors were uniformly
distributed throughout vegetated areas. In the work reported by Hu et al.,28,29
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for atmospheric correction of hyperspectral images using best-estimate input
parameters, the mean and standard deviation of the surface reflectance over
nine specified regions of interest (ROIs) from a CASI datacube were
compared with those of the reflectance from the reconstructed datacubes at
compression ratios of 42:1 to 104:1. Hypothesis tests at the 95% confidence
level found no evident differences in the shapes of the average surface
reflectance spectra. It was found that the uncertainty in the retrieved surface
reflectance caused by the uncertainties in the atmospheric correction input
parameters was larger than the uncertainty caused by the compression
algorithm.

The near-lossless compression algorithms SAMVQ and HSOCVQ were
also evaluated and reported.26,27,30 35 The evaluation was carried out using
three evaluation systems with compression performed at different stages of the
data-flow chain of an imaging spectrometer.26 The first evaluation system had
the onboard compressor placed immediately following the A/D converter (i.e.,
using sensor digital count as input), the second evaluation system had the
onboard compressor placed after the detector’s gain and offset (called scaling)
were corrected, and the third evaluation system had the onboard compressor
placed after a full calibration (i.e., using radiance as input). Datacubes
acquired using AVIRIS, CASI, and Probe-1 were tested; statistical tests were
performed on the radiance and reflectance datacubes for all three systems.
Preliminary evaluation results of the impact of the compression on red-edge,
leaf chlorophyll content, and spectral unmixing were reported.

The performance of SAMVQ was evaluated versus a 3D compression
algorithm designed for hyperspectral imagery using the JPEG2000
standard.27 It was found that the SAMVQ algorithm outperforms the
JPEG2000 algorithm by 17 dB of PSNR for the same compression ratios.
The preservation of both spatial and spectral features was evaluated
qualitatively and quantitatively. SAMVQ outperformed JPEG2000 in both
spatial and spectral feature preservation. The spectrum of a spatial sample in
the scene of the SAMVQ-compressed data was compared with that from the
original data at the same location—the reconstructed spectrum curve
overlaps the original spectrum curve very well. Furthermore, the spectral
angle mapper (SAM) was used to measure the preservation of spectral
features for an entire datacube, wherein the spectral angle between each
spectrum of the reconstructed datacube and the spectrum of the original
datacube at the same location was calculated. A SAM image was generated,
and the SAM values were generally smaller than 0.003 rad with respect to
the range from 0 to p. The SAM image did not show any evident spatial
pattern due to compression.

A study on the effect of the SAMVQ algorithm on hyperspectral data in
the retrieval accuracies of crop chlorophyll content for precision agriculture
was presented by Hu et al.30 A detailed study of the impact of the SAMVQ
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compression algorithm on the retrieval of crop chlorophyll content and leaf
area index (LAI) in precision agriculture was also reported by Hu et al.31

The impact of the HSOCVQ algorithm on mineral mapping products and
on retrieval of atmospheric water vapor and canopy liquid water content has
been examined elsewhere.32,33 The influence of the near-lossless compression
algorithms on the classification accuracy of forest species using Hyperion data
was reported by Dyk et al.34

A work reported by Serele et al. 35 evaluated the preservation of spatial
features of hyperspectral data after compression using variogram analysis. It
was found that there is no apparent difference between both the semivariances
and variogram ranges derived from the original data and those derived from
the compressed data.

In order to systematically assess the usability of compressed data and the
effect of the compression algorithms on hyperspectral data applications,
a multidisciplinary user acceptability study was carried out and reported.36

A total of 11 hyperspectral data users, covering a wide range of remote sensing
application areas, participated in the study in two phases. The compressed and
original datacubes were evaluated by the users in a double-blind test using their
well-defined remote sensing algorithms or products. The users ranked and
either accepted or rejected the datacubes based on predefined criteria; this
chapter summarizes the work done in this study. Only the evaluation results for
the SAMVQ algorithm are addressed, although the evaluation results for the
HSOCVQ algorithm are briefly summarized in Section 8.6.

8.2 Double-Blind Test

Double-blind testing was adopted in this study in order to reduce error, self-
deception, and bias in the assessment of the impact of compression on
hyperspectral data. It is a test where neither the evaluator nor the subject
knows which item is the control group and which item is the test group. In
this study, an original datacube is the control group. The compressed
datacubes are the test group. The subjects are the hyperspectral data users
who derived remote sensing products from the datacubes using their
algorithms and provided either rankings and acceptance or rejection of the
datacubes based on predefined criteria. The evaluators are the people at the
contracted company who managed this study and summarized the users’
acceptability results.

A set of datacubes was created that included both the compressed
datacubes and the original datacube. Each datacube in this set was labeled
with a random number. In this chapter, each datacube in this set is referred to
as a blind datacube, as neither the users nor the evaluators knew which was a
compressed datacube and which was the original datacube. (Blind datacubes
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are shown here with their compression status for the sake of reporting the
results, as the evaluation study has been completed.)

8.3 Evaluation Criteria

The criteria for acceptability were established prior to the commencement of
the users’ evaluation. Whenever possible in this study, the products derived
from the blind datacubes were assessed and ranked according to their
agreement with the ground truth. The effect of data compression was assessed
both qualitatively and quantitatively.

Qualitatively, each blind datacube was classified as acceptable or
unacceptable according to the adequacy of information needed to derive the
products and for making decisions for the specific application. Quantitatively,
statistical tests were applied to identify whether the difference between the
products’ values derived from the blind datacubes and the ground truth is
statistically significant. A blind datacube was considered acceptable if the
difference was not found to be significant. Different users developed their own
quantitative rule to assess the significance, taking into account such things as
uncertainty of their mathematical model used to derive the products or the
stability of the product.

In this study, an attempt was made to avoid comparing the products
derived from the blind datacubes with those derived from the original
datacube, whenever possible. When making comparisons to the original
datacube, users can focus on minute changes whose significance is not well
assessed. Because an original datacube is not exempt from sensor noise and
uncertainties introduced during the preprocessing steps (e.g., radiometric
calibration and atmospheric correction), there is a propagation of errors into
the products derived from the original data.

Another reason to avoid this comparison is because the compression
algorithms SAMVQ and HSOCVQ can be set to “near-lossless” mode. In this
mode, the error introduced during compression is at a level equal to or lower
than the intrinsic noise in the original data, as described in Chapter 5. It is
expected that this level of error has a small-to-negligible impact on the quality
of the data compared to the errors introduced in preprocessing steps. The
experimental results reported by Qian et al.3 indicate that VQ compression
sometimes improves the data quality for derived products because the
compression algorithm can be viewed as a nonlinear filter that eliminates
artifacts (e.g., salt-and-pepper noise, etc.).

8.4 Evaluation Procedure

Figure 8.1 shows the evaluation procedure used in this study. Eleven
hyperspectral data users were selected to cover a wide range of products,
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application areas, and sensors. Table 8.1 provides detailed information about
the users. A form was sent to each of the users to collect all necessary
information about the datacube(s) and the product algorithm(s) used in this
study. Prior to compression, datacubes were screened using a quality
assurance procedure. Each datacube was examined, and anomalies such as
negative values and spurious spikes were removed (these anomalies could
influence the compression fidelity and ultimately bias the evaluation results).

Identification of 
hyperspectral datacubes

Identification of 
evaluation criteria 

Quality assessment of 
user-provided hyperspectral datacubes and user 

information form

Approval of 
evaluation criteria 

Compression/decompression of 
hyperspectral datacubes 

Label decompressed datacubes and the original 
datacube with random numbers to generate the 

blind datacube set 

Delivery of blind 
datacubes to 

users 

Derive end-products from 
blind datacubes  

Statistical comparison of 
decompressed datacubes 

Statistical 
tests 

Compare end-products with 
ground truth  

 Rank blind datacubes using 
predefined criteria 

Evaluation 
criteria 

User's ranking and 
acceptability report 

Compilation and analysis of 
user's results 

Production of final report 

Figure 8.1 Evaluation procedure of the user acceptability study (reprinted from Ref. 36).
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Each datacube provided by a user was compressed using both the
SAMVQ and HSOCVQ algorithms at compression ratios (CRs) of 10:1, 20:1,
and 30:1 (20:1, 30:1, and 50:1 for users who participated in phase I only). The
compressed data was then decompressed to produce the reconstructed
datacubes for evaluation; note that these datacubes are of the same size and
format as the original, but they have undergone compression. The CRs were
selected in order to cover reasonable compression performances for limited
distortions. The reconstructed datacubes together with the original datacube
were labeled with random numbers by an individual who was neither a user
nor an evaluator in order to generate a blind datacube set for the purpose of
double-blind testing.

In order to examine the quality of the reconstructed datacubes, statistical
hypothesis tests were applied to assess whether the compression significantly
affected the mean and variance of ROIs provided by the users. The F, T, and
Z tests and RMSE were used to examine the significance on a spectral band
by spectral band basis. The general conclusion was that the changes found for
the mean and variance of ROIs were not significant.

The three double-lined boxes in Fig. 8.1 outline the tasks performed by the
users. First, products were derived from the blind datacubes using the user’s
product algorithm(s). The products were then compared with the ground truth
or products derived from the original data to rank and accept or reject the
blind datacubes based on predefined criteria and statistical tests. Finally, a
user ranking and acceptability report was written and sent to the evaluators.
After collecting all of the users’ reports, the evaluators compiled and analyzed
the users’ results, and produced the final report for the study.

8.5 Multidisciplinary Evaluation

A total of 11 users participated in this study. Table 8.1 summarizes the
information about the users, type of hyperspectral sensor, location where test
data was collected, data processing level, datacube size, application area,
algorithms, and products. Among the users, five are commercial companies,
two are universities, and four are government entities. They cover a wide
range of hyperspectral data application areas, including agriculture, geology,
oceanography, forestry, and defence. A total of nine different hyperspectral
sensors are covered, including the spaceborne hyperspectral sensor Hyperion.
This section briefly describes the evaluation and results for SAMVQ on a
user-by-user basis.

8.5.1 Precision agriculture

User #1 (York University) evaluated the impact of the data compression on
the derivation of crop leaf area index (LAI) from hyperspectral data. A total
of 27 blind datacubes compressed using both SAMVQ and HSOCVQ
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generated from three test datacubes were evaluated in two phases. In this
chapter, only the evaluation results for SAMVQ on one test datacube carried
out in phase II are presented to constrain the length of the chapter. The test
datacube was acquired using CASI over the crop fields at the former Greenbelt
farm of Agriculture and Agri-Food Canada, Ottawa in the intensive field
campaign on June 26, 2001. The CASI sensor was configured for 72 spectral
bands with a spectral resolution of 7.6 nm in the wavelength range of 408–947
nm. The spatial resolution is approximately 2 m � 2 m. The test datacube was
in raw digital number (DN). Figure 8.2 shows the datacube color-composite
image for three bands. The three bands displayed were used to estimate the crop
LAI. The LAI values in the 14 sites (ground truth) were measured by
Agriculture and Agri-Food Canada during the field campaign.

Four blind datacubes, including the three compressed/decompressed using
SAMVQ and the original (identified as #278, #519, #730, and #866
arbitrarily), were delivered to the user. Because the test datacube is in DN, the
blind datacubes were first calibrated using calibration coefficients determined
in the laboratory to produce radiance and then converted to reflectance using
the CAM5S atmospheric correction software.37 The georeferencing was
performed on the reflectance datacubes. Four LAI images were derived from
the reflectance datacubes using the algorithm developed in the work.38

Visual examination of the spatial pattern of the LAI images was used to
qualitatively assess the impact of data compression. There are two plots in the
wheat field, each having very different soil conditions. The wheat in the

Corn 1

Corn 2

Corn 3

Corn 4

Wheat 1

Wheat 2

Wheat 3

Wheat 4

Wheat 5

Wheat 6

Wheat 7

Soybean 1

Soybean 2

Soybean 3

Figure 8.2 The CASI datacube RGB image [band #41 (708 nm) as red, band #24
(580 nm) as green, and band #8 (460 nm) as blue] with 14 sites where the ground truth was
collected. The three bands were used to estimate the crop LAI (reprinted from Ref. 36). For a
color version of this figure, see Plate 8 in the color plate section of this book.

302 Chapter 8



northeastern area showed more vigor than the wheat in the northwestern area.
As a consequence, it is anticipated that the wheat LAI in the northeast is
higher than that in the northwest. For each LAI image, if the spatial pattern
of the LAI is the same as expected, then the image is acceptable.

The correlation (expressed by the coefficient of determination R2) between
the derived LAI from each blind datacube and the measured LAI (ground
truth) was calculated and used to quantitatively assess the impact of data
compression. From an application perspective, a blind datacube is considered
acceptable if over 90% of the variation (R2 � 0.9) in the measured LAI values
can be explained by the derived LAI. This criterion is selected based on the
accuracy of the LAI retrieved from the original reflectance datacube.38

Statistical Z-tests29 were performed to assess whether the mean and variance
of the LAI values in each of the 14 ROIs (where the ground truth had been
collected) derived from each of the blind datacubes are significantly different
from the ground truth. Both the 1 and 5 percent significance levels were used.

Four LAI images derived from the four blind datacubes are shown in Fig.
8.3. The compression ratios corresponding to the blind datacubes are given in
the caption for the figure. The spatial patterns for these images are similar;
user #1 qualitatively accepted all the blind datacubes based on visual
inspection.

The R2 between the ground truth and the LAI derived from each of the
blind datacubes is shown in Fig. 8.4. The absolute and relative RMSE between
the ground truth and derived LAI were also calculated and shown in the figure;
note that the correlation between the ground truth and derived LAI is quite
high for all of the blind datacubes (all of the R2 are over 0.95). Table 8.2 lists the

0.15 - 0.20 
0.21 - 0.25 
0.26 - 0.35 

0.36 -  0.50
0.51 - 1.00
1.01 – 1.50

1.51 - 2.00 
2.01 - 2.50 
2.51 – 3.00

4.01 - 5.00 

3.01 - 4.00 

5.01 - 6.00

#278 #519 #886 #730 

Figure 8.3 The LAI images derived from the four blind datacubes. The compression ratios
associated with blind datacubes are as follows: 10:1 (#519), original (#730), 20:1 (#278), and
30:1 (#886) (reprinted from Ref. 36). For a color version of this figure, see Plate 9 in the color
plate section of this book.
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evaluation results, the ranking, and the acceptability for this user. The absolute
RMSEs between the ground truth and derived LAI are smaller than 0.56,
whereas the measured LAI values (ground truth) vary from 0.87 to 5.3 with a
standard deviation of 1.4. The relative RMSEs are all smaller than 8.2%. The
experimental results showed that the mean and variance of the LAI values for

Table 8.2 Evaluation results, ranking and acceptability for user #1 (reprinted from
Ref. 36).

Blind
Datacube #

Qualitative
Acceptable?

Quantitative Measure Rank Overall
Acceptable?

R2 Absolute RMSE Relative RMSE

278 (20:1) Yes 0.955 0.557 8.124% 3 Yes
519 (10:1) Yes 0.957 0.557 8.065% 1 Yes
730 (Original) Yes 0.955 0.559 8.089% 2 Yes
886 (30:1) Yes 0.955 0.558 8.134% 4 Yes

Figure 8.4 The correlation, absolute RMSE, and relative RMSE (%) between the derived
LAI from the blind datacubes and the ground truth. The compression ratios associated with
blind datacubes are as follows: 20:1 (#278), 10:1 (#519), original (#730), and 30:1 (#886)
(reprinted from Ref. 36).
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all of the 14 sites derived from each of the blind datacubes are not significantly
different from the ground truth. In conclusion, user #1 quantitatively accepted all
of the blind datacubes based on the predefined criteria. The ranking of the
datacubes (evaluated according to agreement with the ground truth) is 10:1,
original, 20:1, and 30:1.

It is observed from the quantitative evaluation results that the accuracy of
the product LAI derived from the original datacube (#730) is not necessarily
better than that derived from the compressed datacubes when they are both
compared to the ground truth. The R2 of the LAI derived from the original is
virtually the same as that derived from the compressed data. Its absolute
RMSE and relative RMSE are in some cases even worse than those derived
from the compressed data.

8.5.2 Forest regeneration

User #2 (Tecsult, Inc.) assessed the impact of data compression on the
mapping of forest regeneration ecosystems in a boreal forest environment.
The test hyperspectral datacube was acquired using the TRWIS-III sensor on
September 2, 2001 at 150-km northwest of Saint Jean Lake in the province of
Quebec, Canada. The instrument was configured with a ground pixel size of
3 m � 7 m and spectral range of 371–2501 nm. The original datacube
comprises 384 spectral bands, 256 cross-track pixels, and 512 along-track
pixels. Bands associated with atmospheric absorption features or with low
SNRs were removed, leaving 247 out of the 384 spectral bands.

Extensive preprocessing was performed on the data, which consisted of
registration of the VNIR and the SWIR FPAs, sensor attitude correction (roll,
pitch, and yaw), correction for the illumination variation across the FOV, and
correction for a slight shift in the band-center position from the expected
values and correction of low-response pixels (striping). The datacube was
processed to at-sensor radiance.

The product algorithms used were the SAM, the principal component
transformation, and the maximum likelihood classification. A postclassifica-
tion filter was applied to smooth the output maps. The end product was a
forest regeneration map sorted by groups of species, density, and tree height.

The qualitative evaluation by this user was based on visual inspection of
the classification maps derived from the blind datacubes compared to those
from the original datacube. Both spatial extent and spatial distribution were
compared. Visual inspection did not reveal any differences between the
classification maps.

For the quantitative evaluation, an error matrix was calculated using
ground control points (ground truth). The ground control points
have roughly uniform areas and have been validated using a standard
interpretation of 1/5000 aerial photography. An error matrix was derived for
all of the blind datacubes. This user’s evaluation results indicated that the
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compression did not alter the overall classification accuracy, even with large
CRs; the evaluation results and ranking are presented in Table 8.3.

Although the average classification accuracy for all classes is seen to be
excellent, one might be wary of the classification accuracy of specific classes.
As such, a classification matrix for both omission and commission errors was
calculated, but results show no specific tendency. Specific CRs might have
some classes that are worse than others; however, no single class appeared to
be systematically affected by the compression. On average, commission and
omission errors for the compressed datacubes were very similar to those for
the original datacube, which itself sometimes presented the largest omission or
commission error for a given class. Based on the classification accuracy, this
user found that blind datacube #444 (30:1) produced the best results and was
ranked as #1. Blind datacube #938 (20:1) was ranked as #2, blind datacube
#139 (original), and #385 (50:1) were both ranked as #3.

8.5.3 Geology

User #3 (University of Alberta) assessed the impact of data compression on
geological rock mapping. The datacube was acquired using an ASDTM

spectrometer in a laboratory by scanning a rectangular region of a rock
(quartzite) face (see Fig. 8.5), which is partially coated with different lichens
(predominantly green and black crustose lichen). Lichens are common
coatings on exposed rock surfaces, and mapping rock units partially covered
by lichens is of particular interest when performing rock unit mapping. The
ASD spectrometer data was resampled to simulate the Probe-1 sensor, which
covers a spectral range from 436–2501 nm with 128 bands. The water vapor
feature from 1796–1996 nm was masked. The benefit of using this datacube is
that the datacube was collected under a well-controlled laboratory environ-
ment with known endmembers (e.g., rocks and lichen species) and “ground
truth.” The products derived from the original datacube were the ground
truths in this case and used as the metrics to assess the impact of data
compression. The spectrometer produced reflectance data. No calibration or
atmospheric correction preprocessing steps were required. The evaluation
using this datacube assessed the impact of only one error source, i.e., the error

Table 8.3 Average classification accuracy for the maximum likelihood classifier (MLC) and
the spectral angle mapper (SAM) algorithm compared to the ground truth, ranking, and
acceptability of user #2 (reprinted from Ref. 36).

Blind Datacube # MLC Accuracy SAM Accuracy Rank Acceptable

139 (Original) 71% 66% 3 Yes
938 (20:1) 72% 66% 2 Yes
444 (30:1) 73% 66% 1 Yes
385 (50:1) 72% 65% 3 Yes
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introduced by the compression, as no preprocessing was applied to the
datacube. This evaluation provides high confidence that the results are due
solely to the compression.

There were three major classes—quartzite, green lichen, and black lichen—
in the scene of the datacube. A total of 11 endmembers (5 for quartzite, 2 for
green lichen, 3 for black lichen, and 1 for shadow) were extracted from the
datacube; they were a complete set of spectra that could reconstruct the
datacube through linear spectral mixing with minimal error.

Two algorithms were used to assess the impact of data compression: the
spectral angle mapper and linear spectral unmixing (LSU). The former is
sensitive only to the spectral shape, and the latter is sensitive to both the
spectral shape and the amplitude. The color-composition SAM images and

Figure 8.5 (a) Digital photo of rock sample, with a (b) subregion marked by a rectangle
(reprinted from Ref. 36).
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fraction images derived from the blind datacubes and those derived from the
original datacube were visually identical and qualitatively acceptable.

In order to quantitatively evaluate the effect of data compression, the
correlation between the fraction images derived from each of the blind
datacubes and from the original datacube was calculated. The correlation
between the SAM images derived from each of the blind datacubes and from
the original datacube was also calculated; Table 8.4 lists the quantitative
evaluation results. It can be seen that the fraction images and SAM images
derived from each of the blind datacubes have a very high correlation with
those derived from the original datacube (ground truth). The coefficients are
above 0.98.

An unsupervised classification was performed on both the fraction images
and the SAM images to establish the optimal thresholds for mapping the
distribution of quartzite, green lichen, and black lichen in the datacube. The
general distribution of the three classes on the classification maps obtained
from the fraction images and SAM images derived from each of the blind
datacubes were all very similar to the distribution for the original datacube.
A confusion matrix was calculated between each map generated from a blind
datacube and from the original datacube. The overall classification accuracies
for the two products are listed in Table 8.4—all better than 98%. This user
considered all of the compressed datacubes acceptable, as the user believes
that an overall classification error of less than 5% is usually acceptable in
applications of hyperspectral data. Other sources of error (e.g., instrument
stability, calibration, atmospheric correction, etc.) can contribute even larger
errors to the final products.

8.5.4 Military target detection

User #4 (Defence Research and Development Canada–Valcartier) evaluated
the impact of data compression on military target detection. Figure 8.6 shows
the synthetic targets present in the test datacube: seven pieces of awning with
varying sizes ranging from 12 m � 12m to 0.2 m � 0.2 m, four pieces of

Table 8.4 Quantitative evaluation results, ranking, and the acceptab lity for user #3
(reprinted from Ref. 36).

Blind
Datacube

Correlation of Fraction Image
Derived from Compressed
and Original Datacubes

Correlation of SAM Image
Derived from Compressed
and Original Datacubes

Classification
Accuracy (%)

Rank Accept-
able?

Quartzite Green
Lichen

Black
Lichen

Quartzite Green
Lichen

Black
Lichen

LSU SAM

180 (10:1) 0.9984 0.9917 0.9982 0.9999 0.9999 0.9999 98.69 99.98 2 Yes
927 (20:1) 0.9987 0.9932 0.9906 0.9999 0.9999 0.9999 98.81 99.98 1 Yes
988 (30:1) 0.9979 0.9908 0.9867 0.9999 0.9999 0.9999 98.51 99.84 3 Yes
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polythene, four pieces of white tarp, and four pieces of white cotton with
varying sizes ranging from 6 m to 0.5 m were deployed. In addition, a 3 m � 3 m
piece of white tarp was placed on a large vinyl turf mat (11 m � 14 m). The
test datacube was acquired using the Short-Wave Infrared Full-Spectrum
Imager II (SFSI-II) flown on June 7, 2002 at an altitude of 2900 m with
a ground sample size of 3.5 m � 3.5 m and 240 spectral bands between 1200–
2450 nm with a band interval of 5 nm. The sky was clear with a few cirrus
clouds.

The raw data was first preprocessed to remove periodic noise, dark
current, slit curvature (smile), and keystone. A vicarious calibration was
then performed using calibration coefficients derived from a previous
SFSI-II survey to convert the raw data into radiance. Before the radiance
datacube was sent for compression/decompression, it was processed to
remove system noise.

Nine endmembers were selected that correspond to the five materials of
the synthetic targets and the four ground features (forest, gravel road, sand,
and grass). This endmember selection helped reduce the average unmixing
error. Nine ROIs were selected and used to extract the endmember spectra
from each blind datacube. Constrained spectral unmixing was performed with
the nine endmembers using the ISDAS unmixing tool.39

This user used the detection results obtained from the original datacube as
the benchmark to evaluate the impact of compression. They were viewed as
equivalent to the ground truth because the targets in the test datacube were
synthetic and their spatial and spectral features were well understood and
validated. The evaluation was performed on a ROI-by-ROI basis.

For the qualitative evaluation, the following two criteria were used to
assess the impact (one point was scored if a criterion was met):

1. All targets seen in the fraction images derived from the original datacube
must be seen in the fraction images derived from the blind datacubes, and

Figure 8.6 Synthetic targets present in the datacube (reprinted from Ref. 36)
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2. No targets other than the ones seen in the fraction images derived from the
original must be present in the fraction images derived from the blind
datacubes.

In the quantitative evaluation, a T-test was performed to determine
whether the distribution of the fraction images derived from the blind
datacubes is significantly different from that of the fraction images derived
from the original datacube. One point is scored if the difference is not
significant. The percent standard error (%SE) was used to measure the relative
average deviation of the fraction images derived from the blind datacubes; it is
defined as follows:

%SE ¼

1
n

Xn
i 1

fi f̂i
� �2vuut
f

� 100%, ð8:1Þ

where fi is the fraction of an EM for a pixel in a ROI derived from the original

datacube, f̂i is the fraction of the EM for the same pixel derived from a blind
datacube, f is the mean fraction of the EM for the ROI of the original
datacube, and n is the number of pixels in the ROI. One point is scored if the
%SE of a ROI is less than 5%.

Table 8.5 lists the scores for the ROIs of the five targets based on the
qualitative and quantitative criteria defined above; the maximum score for
each ROI is 4. Blind datacube #119 (10:1) received 18 points out of 20 and
was ranked as #1, whereas datacubes #721 and #172 received very close
scores (14 and 13). This user accepted all three compressed datacubes.

8.5.5 Mineral exploration 1

User #5 (Noranda/Falconbridge) evaluated the impact of data compression
on the identification of minerals in mineral exploration applications. The test
hyperspectral datacube was acquired using ESSI Probe-1 in a mineral area in
north-central Chile. The data was acquired on March 28, 1999 at 15:46 GMT.
The spatial resolution for this datacube is 10 m � 10 m and covers a spectral

Table 8.5 Score for each ROI, ranking, and acceptability for user #4 (reprinted from
Ref. 36).

Blind
Datacube

ROI 1
(awning)
Size 71

ROI 2
(polythene)
Size 29

ROI 3
(plastic tarp)
Size 29

ROI 4
(cotton)
Size 28

ROI 5
(vinyl mat)
Size 80

Total
Score per
Datacube

Rank Acceptable?

119 (10:1) 3 4 3 4 4 18 (90%) 1 Yes
172 (30:1) 3 2 2 3 3 13 (65%) 3 Yes
721 (20:1) 3 3 2 3 3 14 (70%) 2 Yes
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range from 438–2504 nm with 128 spectral bands. The datacube had been
calibrated to at-sensor radiance. The minerals goethite, hematite, alunite,
kaolinite, and illite were contained in the test data and were used to assess the
blind datacubes.

A blind datacube was first spectrally subset into a VNIR subcube (bands
1–31 and 39–45) and a SWIR subcube (bands 100–124). The VNIR subcube
was used to map goethite and hematite, whereas the SWIR subcube was used
to map alunite, kaolinite, and illite. An internal average relative reflectance
calibration was applied to normalize each datacube to the scene average
spectrum. Reference spectra extracted from the JPL and USGS mineral
spectral libraries were used as the “ground truth.” The spectral feature fitting
(SFF) algorithm was applied to compare the fit of the spectra of a blind
datacube to the corresponding reference spectra at each selected wavelength in
a least squares sense. The SFF is an absorption-feature-based methodology.

The following qualitative criteria were used to broadly classify each of the
blind datacubes as acceptable, marginal, or unacceptable in terms of their
suitability for mineral exploration:

1. Presence of system artifacts (e.g., striping) in the datacubes,
2. Texture of the product images (e.g., smooth, speckly, or blocky),
3. Spectral quality, and
4. Visual comparison of the products derived from the blind datacubes to

those derived from the original datacube.

All of the blind datacubes were considered qualitatively acceptable.
Two quantitative evaluations were used to rank the products generated

from the blind datacubes. They are referred to as “band math evaluation”
and “mean and standard deviation evaluation.” The former evaluation
method assesses each blind datacube by comparing the number of
inconsistencies in the derived products (i.e., mineral fraction planes) against
those derived from the original datacube. The number of inconsistencies
is the sum of the “committed” and “omitted” pixels in the ROI compared to
the mask in the original datacube for the mineral being evaluated. The
latter evaluation method compares the mean and standard deviation for
each ROI against those of the original datacube. Table 8.6 summarizes the
evaluation results of this user. All of the blind datacubes were considered to

Table 8.6 Ranking and acceptability for user #5 (reprinted from Ref. 36).

Blind Datacube # Qualitative Acceptable Quantitative Ranking Overall Acceptable

159 (original) Yes 1 Yes
638 (30:1) Yes 4 Yes
957 (20:1) Yes 3 Yes
980 (10:1) Yes 2 Yes
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be acceptable; their ranking based on the overall quantitative score is
original, 10:1, 20:1, and 30:1.

8.5.6 Ocean ship and wake detection

User #6 (Satlantic, Inc.) evaluated the impact of compression on hyperspec-
tral data applications for ocean ship wake detection. Ship wakes are bright
patterns arising from the ship’s movement and propellers. They are attributed
to the reflectance of the solar irradiance and to the concentration of air
bubbles in the water. Three hyperspectral datacubes of size 499 � 606 pixels
were used. They were acquired using PHILLS2, which was flown aboard an
airplane during July and August of 2001, at an altitude of roughly 9 km with a
GSD of approximately 9 m.

Each test datacube contained the spectra of one vessel, the spectra of its
associated wake, and the spectra of water (background). One of them was
used to obtain a total of 109 training spectra (9 wake signatures and 100
water signatures) for training support vector machines (SVMs). The trained
SVM was then applied to the three test datacubes to generate three 2D
classification maps, which were used as the benchmarks to evaluate the blind
datacubes. Four blind datacubes were created from each of the three test
datacubes. This user evaluated a total of 12 blind datacubes. The classification
was performed on region averages for each blind datacube that were either
calculated on a moving 10 � 10 pixel window centered on each pixel (moving
average classification, or MAC), or nonoverlapping regions of 10 � 10 pixels
(average classification, or AC).

The effect of compression was assessed by comparing the wake-pixel
classification map derived from a blind datacube with that derived from the
original datacube because the ground truth was not available. If more than
80% of the ship wake pixels of a blind datacube were properly identified, the
blind datacube was then considered acceptable. If 40–80% of the ship-wake
pixels were properly identified, the blind datacube was considered marginally
acceptable.

Table 8.7 lists the classification accuracy of wake pixels for both the
MAC and the AC classification. It can be seen that the percentage is
always better than 80% using the MAC and better than 90% using AC.
The AC approach yielded better results, sometimes as good as 100%.
Overall statistics were excellent because less than 0.5% of the pixels were
attributed to the wrong class for all of the classified spectra of all of the
blind datacubes. However, for test datacube 006/2100, the MAC
classification methodology introduced 10% error, even for the same
original datacube (#663). The difference between the products derived
from the two identical original datacubes (the one that the user archived
and the one in the blind datacubes) indicates that the product algorithm is
not stable or repeatable.
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A statistical test analysis was performed onROIs of both ship wakes and non-
shipwakes (i.e., background).At the 5%significance level, themeans andvariances
of ship wake ROIs for all of the blind datacubes were not significantly different
from the means and variances for the original datacubes. Using the predefined
criterion, this user considered all of the blind datacubes to be acceptable.

8.5.7 Mineral exploration 2

User #7 (Burnside & Associates, Limited) evaluated the impact of compression
on spectral unmixing for mineral exploration applications. The test datacube
was acquired using a TRWIS-III hyperspectral sensor at the renowned Cuprite
site in Nevada, USA covering the spectral range from 400–2500 nm in 384
contiguous spectral bands. A subset of the acquired datacubes consisting of 200
pixels cross-track by 800 lines along-track of radiance data was used.

The blind datacubes were atmospherically corrected before the remote
sensing algorithm was applied. Most of the subsequent processing was done
with ENVI, and the ISDAS software39 was used for automatic endmember
extraction and unmixing. Up to thirty endmembers were extracted from the
blind datacubes. The SWIR region of the spectra was especially important as
it contains most of the distinguishing features for minerals. The end products
are fraction maps (from 0–100%).

The qualitative evaluation was simply performed by the visual inspection
of the fraction maps. A comparison with the original datacube was made, and
the fraction maps for major mineral constituents derived from the blind
datacubes were examined. They were not significantly different from those
derived from the original datacube.

Table 8.7 Evaluation results, ranking, and acceptability for user #6 (reprinted from
Ref. 36).

Test Datacube Blind Datacube Wake Detection Ranking Acceptability

MAC AC

006/2100 568 (50:1) 80% 90% 3 Acceptable
623 (30:1) 80% 90% 3 Acceptable

663 (original) 90% 100% 1 Acceptable
751 (20:1) 83% 90% 2 Acceptable

008/6000 234 (original) 100% 100% 1 Acceptable
239 (30:1) 95% 100% 3 Acceptable
635 (50:1) 95% 100% 3 Acceptable
674 (20:1) 96% 100% 2 Acceptable

008/6660 177 (50:1) 96% 100% 2 Acceptable
240 (30:1) 96% 100% 2 Acceptable

383 (original) 100% 100% 1 Acceptable
564 (20:1) 96% 100% 2 Acceptable
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The quantitative evaluation was performed on four selected ROIs. These
regions were predominantly composed of the following endmembers:
buddingtonite, kalunite, chalcedony, and halloysite. This user evaluated the
impact of compression strictly based on the qualitative results. No statistical
tests were performed, and thus no quantitative results are available. This user
considered the datacube compressed at 20:1 to be acceptable, the datacube
compressed at 50:1 to be marginally acceptable, and the datacube compressed
at 30:1 to be unacceptable.

8.5.8 Mineral exploration 3

User #8 (CSIRO/Exploration &Mining) evaluated the impact of compression
on mineral mapping of mica and dolomite using hyperspectral data. The test
datacube was a spatial subset of a HyMap survey flown for CSIRO in
2000 over the Mt. Fitton talc mines of southern Australia. It consists of
1000 lines � 512 pixels � 126 bands at a 5-m spatial resolution with spectral
coverage from 400–2500 nm; it has been calibrated to at-sensor radiance with
a 12-bit data resolution. This location was selected because the geology of the
area is well documented by field studies and the evaluation of field-, air-, and
spaceborne instruments undertaken by the user. The two most-spatially
important minerals in the scene, mica and dolomite, were studied.

Four blind datacubes (identified as #148, #389, #486, and #637) were
processed using the same methodology as was applied to the original
datacube. Atmospheric correction was carried out on each blind datacube
using HyCorr.44 A water-vapor fraction image was generated and used to
examine compression effects at the atmospheric correction stage; an
evaluation of the water vapor statistics for selected pixels was also carried
out to provide a quantitative comparison.

The endmembers of minerals mica and dolomite were extracted using
Voltron, a fast and automated mineral-mapping algorithm developed by the
user. The spatial location and spectral characterization of mica endmembers
were analyzed. The shape and depth of the spectra from the same location of the
mica endmembers ROI in each blind datacube were compared with those of
the spectra from the same location in the original data to assess the effects of the
compression algorithmon endmember spectra.Mineralmappingwas carried out
on two levels: as a composite mineral map using Voltron, and on an individual
mineral basis for mica and dolomite using SAMspade, a SAM-like algorithm.

The products described earlier were created and allocated a score to
represent whether the effects of the compression on that particular
product were acceptable, marginal, or unacceptable. These scores, tallied in
Table 8.8, convey the overall user-acceptability ranking of the blind
datacubes. The datacube #637 (10:1) obtained the maximum score of 12,
the same as datacube #486 (original), and was considered acceptable.
Datacube #148 (20:1) obtained a score of 6 and was considered marginally
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acceptable. Datacube #389 (30:1) obtained a score of 2 and was considered
unacceptable.

8.5.9 Civilian target detection

User #9 (MacDonald Dettwiler and Associates) evaluated the impact of data
compression on civilian target detection. The hyperspectral data was acquired
using Probe-1 covering a wavelength range from 440–2507 nm with a ground
sampling distance of 5 m over Santa Barbara, California on Aug. 30, 1998.
The size of the test datacube is 512 pixels � 570 pixels � 128 bands, which is a
subset of a flight line. The test datacube contains three targets (terra cotta
roofing material, industrial oil tanks, and vehicles) and seven backgrounds:
ground, sand, healthy vegetation, asphalt, concrete, shadow, and dirt road.

The test datacube was calibrated to radiance before being sent for
compression/decompression. The ground truth for this site was not available.
In this evaluation, the results obtained from the original datacube were used
to assess the results from the blind datacubes. Because the results obtained
from the original datacube had not been validated against the ground truth,
this user considered a 20% difference in detection or false alarm rate of the
blind datacubes acceptable.

The pixels in the ROIs were used to define the endmember for each
target. The adaptive spectral unmixing tool provided by the HypOT suite
was used to unmix both the original and each blind datacube. After
unmixing a datacube, the fraction images for each endmember were
examined for qualitative evaluation. ENVI’s rule classifier was used to
generate classification maps from the fraction images. Each pixel was
classified based on the maximum EM fraction over a prespecified threshold.
Scatter plots for target endmembers were used to assess the correlation
between the fraction images for the original and blind datacubes. Target

Table 8.8 Score, ranking, and acceptability for user #8 (reprinted from Ref. 36).

Evaluation Method Blind datacubes #

148 (20:1) 389 (30:1) 486 (Original) 637 (10:1)

Water vapor image 0 0 2 2
EM classes 1 0 2 2
EM spectra 2 1 2 2
Composite mineral map 1 0 2 2
Thematic mica map 1 1 2 2
Thematic dolomite map 1 0 2 2

Total Score 6 2 12 12
Ranking 2 3 1 1
Overall Acceptability Marginal Unacceptable Acceptable Acceptable

Scores: 2 ¼ acceptable, 1 ¼ marginal, and 0 ¼ unacceptable.
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fraction images were examined closely for quantitative variations in target
area, detection, and false alarm rates.

Classification maps generated from the fraction images of the blind
datacubes were similar to those of the original datacube, which indicated
consistent unmixing results for the background endmembers. By generating
scatter plots comparing the unmixing results for the original datacube and the
blind datacubes for the target endmembers, the terra cotta and industrial oil
tank endmembers showed good organization along the diagonal (above the
0.25 detection limit) and good probability of detection (above 80%). For the
terra cotta and the industrial oil tank, a target detection and mensuration
algorithm was used to identify contiguous pixels and return an area estimate
in square meters. For the vehicle target, the estimates were measured from
fraction values for single pixels.

Based on the results of the rule classification, scatter plots, area estimates,
and probability of detection, this user considered the datacube compressed at
10:1 acceptable and the datacubes compressed at 20:1 and 30:1 unacceptable.

8.5.10 Forest species classification

User #10 (Pacific Forest Centre) evaluated the impact of compression on
classification accuracy for forestry inventory applications. The test datacube
was acquired using Hyperion aboard NASA’s EO-1 satellite over the
Greater Victoria Watershed District (GVWD) on September 10, 2001. The
size of the datacube is 256 pixels wide by 6460 lines with 242 spectral bands;
it has been processed to level 1b. In this study, a subset extracted from the
center of the scene with the full width by 801 lines by 195 bands was used.
The 195 bands cover a spectral range of 438–2396 nm at an average FWHM
of 10 nm.

The classification results for the original datacube were used as the
benchmark to evaluate the impact of compression. Prior to classification, the
datacube was “cleaned” using an algorithm called BAD PIXEL CORR
(BPC)40 to remove abnormal pixels and stripes. The cleaned datacube was
transformed using the forward MNF transform. Eigenchannels 2–12 were
then used in the species classification; the first eigenvalue channel was
excluded as it contained a gradient due to residual smile effects and
radiometric errors across the detector array of Hyperion. A supervised
classification was performed using two-thirds of the pixels for calibration
(training) and the remaining one-third for validation (check). The input
classes consisted of seven nonforest classes and ten forest classes of five species
of varying densities and ages.34 The 17 input classes were aggregated into ten
final classes. Confusion matrices for each classification were generated and
compared. The average and overall accuracies of both the nonaggregated and
aggregated classes were recorded for both the training and check data. The
classification accuracies of the original datacube were 93.4% (training) and
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89.7% (check) for the aggregated classes, and 88.1% (training) and 80.4%
(check) for all 17 classes.

The compressed/decompressed datacubes at CRs of 10:1 and 20:1 were
evaluated by this user. The classification accuracies of the 10:1 compressed
datacube were 92.8% (training) and 89.2% (check) for the aggregated classes,
and 87.6% and 79.2% for all 17 classes. They reduced between 0.5–1.2%
compared to those obtained from the original datacube.

It should be noted that two different data “cleaners” were used in this
evaluation due to a drop off in the experimental procedure. They introduced
an uncertainty in classification accuracy of up to 0.6%. The BPC40 was used to
remove negative values and stripes in the original datacube by the user before
performing the classification on the original data. It identifies bad pixels and
lines and removes them using the average of two spatial neighboring pixels.
Any negative values are set to zero. The datacube sent to the evaluator for
compression/decompression had not undergone the BPC. In order to reduce
the effect of abnormal pixels on compression performance, the evaluator used
another algorithm called “remove-negative-spikes” (RNS)10 to remove the
negative values and spikes before compression. The RNS algorithm was set to
replace the spikes and negative values by interpolation of the spectral
neighboring values. It has been found that the difference between the
classification accuracies obtained from the original datacube “cleaned” using
the two different data cleaners was 0.4% on average. This difference made a
considerable contribution to the reduction of between 0.5% and 1.2% in
classification accuracy for the compressed datacubes. This user considered the
10:1 compressed datacube acceptable and the 20:1 compressed datacube
unacceptable.

8.5.11 Endmember extraction in mineral exploration

User #11 (Canada Centre for Remote Sensing) evaluated the impact of
compression on endmember extraction and spectral unmixing in mineral
exploration applications. The test datacube was collected on June 12, 1996
using AVIRIS at an approximately 20-m ground resolution from an ER-2
aircraft, with a spatial size of 512 lines by 614 pixels by 224 spectral bands,
each about 10 nm wide, in the 400-nm to 2500-nm wavelength range. The site
lies within the Cuprite mining district of Nevada, USA. This site has been
used as a test area for mineral mapping in hyperspectral remote sensing for
many years.

The test datacube was calibrated to radiance before the evaluation. The
original datacube was converted to surface reflectance using a procedure
based on a look-up table approach with tunable breakpoints.41 Prior to the
conversion to reflectance, the wavelengths covering the strong atmospheric
water absorption regions at 1380 nm and 1870 nm were eliminated due to the
dominance of noise in these regions. For the same reason, the first six bands
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and the last five bands were also excluded, resulting in a reduction in
wavelength coverage to between 428 nm and 2458 nm.

Endmembers required for the spectral unmixing were extracted from the
original datacube using an automated method, iterative error analysis (IEA).
Once the endmembers were extracted, the datacube was unmixed with the
endmembers using a constrained linear technique.42,43 Fraction images
corresponding to each of the endmembers were created.

This user evaluated three Cuprite datacubes compressed using the
HSOCVQ algorithm.33 Only one datacube compressed using SAMVQ at a
CR of 20:1 has been evaluated.

In order to evaluate the impact of compression, the SAM and the average
percent-relative absolute difference (APRAD) were used to measure the
spectral variations of the endmembers extracted from the original and
compressed datacubes. APRAD is defined as follows:

APRAD ¼ 1
nb

Xnb
b 1

PRADðbÞ, ð8:2Þ

PRADðbÞ ¼ 100
ðemOðbÞ emDðbÞÞ2

q
emOðbÞ , ð8:3Þ

where emO(b) and emD(b) is the endmember reflectance in band b of the
original datacube and of the decompressed datacube, respectively. The root
mean square error (RMSE) between the fraction images derived from the
original datacube and those derived from the decompressed datacube was
calculated to measure the impact of compression on the fraction images.

Table 8.9 lists the results for five endmembers, each of which corresponds
to a unique mineral in the scene. Figure 8.7 shows the reflectance spectra of
the endmembers extracted from the original and from the decompressed
datacube. The results indicate that the difference between the endmember
spectra derived from the original datacube and from the decompressed
datacube is insignificant.

Table 8.9 SAM and APRAD between the endmember spectra extracted from the original
Cuprite and the compressed datacube (20:1), and the RMSE between their corresponding
fraction maps (reprinted from Ref. 36).

EM SAM(Radian) APRAD(%) Fraction Map RMSE(0.0 1.0)

Chalcedony 0.004 0.277 0.007
Alunite 0.007 0.769 0.020
Kaolinite 0.008 0.930 0.044
Dickite 0.015 2.251 0.028
Montmorillonite 0.010 1.463 0.046
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8.6 Overall Assessment Result and Ranking

In order to reduce the datarate and volume aboard a hyperspectral satellite, the
author has developed two real-time multidimensional data compression
techniques: SAMVQ12,21,24 and HSOCVQ.13,14,21 A multidisciplinary user
acceptability study has been carried out to evaluate the quality of the
compressed data using these techniques and the impact of the compression on
hyperspectral data applications. Double-blind testing was used to reduce error,
self-deception, and bias in the assessment of the effect. Sections 8.2–8.5
summarize the work done in the disciplinary user acceptability study.

A total of 11 hyperspectral data users participated in this study. Among
them, five are commercial companies, two are universities, and four are
government users. They covered a wide range of hyperspectral data
application areas, including agriculture, geology, oceanography, forestry,
and military target detection, and a wide range of remote sensing algorithms
and products. A total of nine different hyperspectral sensors were used,
including the spaceborne hyperspectral sensor Hyperion.

This study attempted, whenever possible, to avoid comparing the
products derived from the blind datacubes with those derived from the
original datacube because, when comparing to the original datacube, users
can focus on minute changes whose significance is not well assessed. Because
an original datacube is not exempt from sensor noise and uncertainties
introduced during the calibration and atmospheric correction preprocessing
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Figure 8.7 Reflectance spectra of the endmembers extracted from the original
Cuprite datacube (solid line) and from the compressed datacube (dotted line) (reprinted
from Ref. 36).
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steps, there is a propagation of errors in the products derived from the
original data. Four out of the eleven users (i.e., users #1–4) had the ground
truth available and used it as the metric to assess the products derived from
the blind datacubes. They qualitatively and quantitatively accepted all of the
compressed datacubes at CRs of 10:1 to 50:1 using both SAMVQ and
HSOCVQ because they provided the same amount of information as the
original for their applications. Users #5–11 did not have the ground truth
available; they evaluated the effect of compression by comparing
the products derived from the blind datacubes with those derived from the
original datacube. Two of them (users #5 and #6) accepted all of the
compressed datacubes evaluated, whereas the remaining users accepted or
marginally accepted the compressed datacubes. These users rejected 11
datacubes out of the 90 compressed datacubes evaluated.

Table 8.10 summarizes the evaluation results for this study. For SAMVQ,
a total of 7 blind datacubes at a compression ratio of 10:1 were evaluated. The
users accepted them all. A total of 17 blind datacubes at a compression ratio
of 20:1 were evaluated. The users accepted 14 of them, marginally accepted 1,
and rejected 2. A total of 15 blind datacubes at a compression ratio of 30:1
were evaluated. The users accepted 12 of them and rejected 3. A total of 9
blind datacubes at a compression ratio of 50:1 were evaluated. The users
accepted 8 of them and marginally accepted 1.

For HSOCVQ,

• A total of seven blind datacubes at a CR of 10:1 were evaluated: users
accepted five of them and rejected two.

• A total of 16 blind datacubes at a CR of 20:1 were evaluated: users
accepted 14 of them and rejected two.

• A total of ten blind datacubes at a CR of 30:1 were evaluated: users
accepted eight of them, marginally accepted one, and rejected one.

• A total of nine blind datacubes at a CR of 50:1 were evaluated: users
accepted eight of them and marginally accepted one.

Users #1 and #2 observed that the accuracy of the products derived from
the original datacube is not necessarily better than that of the products derived
from the compressed datacubes. Both of them did not rank the original
datacube as the first out of the four blind datacubes for SAMVQ based on
agreement with the ground truth. These evaluation results prove that an
original datacube is not exempt from the sensor noise and uncertainties in the
preprocessing steps (i.e., calibration and atmospheric correction, etc.). They all
contribute additional noise (or errors) to the products derived from the original
data. Because the SAMVQ compression algorithm can be adjusted to introduce
compression noise at a level consistent with the intrinsic noise of the original
data, it is expected that this level of noise has a small to negligible impact on the
data quality compared to the noise introduced in other preprocessing steps.
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User #1 ranked the datacube with the CR of 10:1 first, the original second, the
20:1 third, and the 30:1 fourth. User #2 ranked the datacube with the CR of
30:1 first, the 20:1 second, and both the original and the 50:1 third.

These ranking results were not surprising when double-blind testing was
performed and the derived products were assessed by comparing them with
the ground truth because both self-deception and bias were eliminated. The
ranking is probably due to the following four reasons: (1) Both the original
data and the ground truth are not 100% accurate because they contain a
certain degree of error upon collection (the original data is not necessarily the

Table 8.10 Summary of user acceptability (reprinted from Ref. 36).

User
#

Application
Area

Product(s) Compared
to Ground
Truth?

SAMVQ HSOCVQ Comments

10:1 20:1 30:1 50:1 10:1 20:1 30:1 50:1

1 Precision
agriculture

LAI fraction Yes A A A A A A
A A A A A A
A A A A A A

A A A A A

2 Forest
regeneration

Classification
maps

Yes A A A A A A Participated
Phase I only

3 Geology Fraction map
Classification
map

Yes A A A A A A
A A A A A

4 Target detection Fraction map Yes A A A A A

5 Mineral
exploration

Fraction map No A A A A A

6 Ocean, ship, &
wake detection

Binary loca
tion of ship
wakes

No A A A A A A Participated
Phase I onlyA A A A A A

A A A A A A

7 Mineral
exploration

Fraction map No A N M A N N Participated
Phase I only

8 Mineral
exploration

Fraction map
Composite
classification
map

No A M N N N

9 Target detection Fraction map No A N N N N

10 Forest & species
classification

Classification
map

No A N Not double
blinded

11 Mineral
exploration

Fraction map No A A A M

Percentage of Acceptable (%) 100 82.4 80.0 88.9 71.4 87.5 80.0 88.9
Percentage of Marginal Acceptable (%) 0.0 5.8 0.0 11.1 0.0 0.0 10.0 0.0
Percentage of Unacceptable (%) 0.0 11.8 20.0 0.0 28.6 12.5 10.0 11.1

A: Acceptable M: Marginal Acceptable N: Not Acceptable Shade: Not Applicable
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closest to ground truth), (2) uncertainty in the preprocessing steps as
mentioned previously can be a dominant factor, (3) the stability of the
product algorithms can be another reason, and (4) data quality for deriving
products may be improved after compression. Previous experience indicates
that the VQ compression process can be viewed as a nonlinear filter that
eliminates artifacts (such as salt-and-pepper noise etc.). This sometimes
improves the data quality for derived products.

User #3 utilized a test datacube collected under a well-controlled
laboratory environment. The test datacube produced by the instrument was
at the reflectance level, and no calibration or atmospheric correction
preprocessing steps were applied to the datacube. The products derived from
the original datacube were the ground truths in this case and used as the
metrics to assess the impact of data compression. The overall classification
accuracies corresponding to all the compressed datacubes were all better
than 98%. This user’s evaluation results indicate that both the SAMVQ and
HSOCVQ algorithms have no impact on the derivation of fraction images
and SAM images in this application. These results have higher reliability
because the original datacube is free of the preprocessing uncertainties (i.e.,
calibration, atmospheric correction) that usually occur in airborne and
spaceborne hyperspectral datacubes. This user assessed the impact of only
one error source—the error introduced by the compression—on the
products.

User #4 used a test datacube with synthetic targets in the scene of the
datacube and accepted all of the datacubes compressed using both SAMVQ
and HSOCVQ. The EMs of the targets and ground truth were known. The
products derived from the original datacube were used as metrics to assess the
products derived from the compressed datacubes, as they had been well
validated with the ground truth.

Users #5 and #6 accepted all of the datacubes compressed using both
SAMVQ and HSOCVQ, although they did not compare the products with the
ground truth. User #5 used the reference spectra extracted from the JPL and
USGS mineral spectral libraries as the “ground truth” and compared the least
squares fit of the spectra of a blind datacube to the corresponding reference
spectra at each selected wavelength.

User #6 evaluated three test datacubes for ship and wake detection. For
each test datacube, the percentage accuracy of wake detection derived from
the original datacube in the blind datacube set was always ranked first. This
is not surprising because the original datacube was being used as the
benchmark. The products derived from the user-archived original datacube and
from the original datacube in the blind datacube set should be exactly the same,
as the two original datacubes are identical. The difference between the
products derived from the two identical original datacubes indicates that the
product algorithm is not stable or repeatable. For test datacube 006/2100,
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the correction percentage of wake detection derived from the original
datacube in the blind datacube set using moving average classification
(MAC) lost 10% compared with that from the user-archived original
datacube.

User #7 did not perform statistical tests for the quantitative analysis. This
user evaluated the effect of compression strictly based on qualitative results.
For three datacubes compressed using SAMVQ, they accepted the datacube
compressed at 20:1, marginally accepted 50:1 and rejected 30:1. The fact that
the datacube compressed at 30:1 was ranked lower than the datacube
compressed at 50:1 probably relates to the stability of the product algorithms
and the uncertainty in the preprocessing steps.

User #8 accepted the datacube compressed at 10:1 using SAMVQ because
it obtained the same score as the original data. The user marginally accepted
20:1 using SAMVQ and rejected the rest of the datacubes. User #9 accepted
the datacube compressed at 10:1 using SAMVQ and rejected the rest of the
datacubes.

Both users #10 and #11 did not undergo a double-blind test. User #10
evaluated only two datacubes compressed using SAMVQ (10:1 and 20:1),
whereas user #11 evaluated one datacube compressed using SAMVQ (20:1)
and three datacubes using HSOCVQ.

In summary, the evaluation results obtained by performing double-blind
testing and comparing the derived products with ground truth should have the
highest weight because double-blind testing reduces error, self-deception, and
bias in the evaluation process, and the use of ground truth as a benchmark
removes uncertainties in the products derived from the original data caused by
the intrinsic instrument noise of the data and preprocessing steps. The
evaluation results obtained by performing double-blind testing and by using
the products derived from the original data as benchmark should have median
weight because the uncertainties caused by the intrinsic instrument noise of
the data and preprocessing steps are still in the benchmark. The evaluation
results obtained by neither performing double-blind testing nor using ground
truth as a benchmark should have the lowest weight.

The location of the compression in the data flow chain of an imaging
spectrometer system is an important issue in a user acceptability study. Three
evaluation systems with the compression intervening at different locations in
the data flow chain were proposed.26 The first system had the onboard
compressor located immediately following the A/D converter (i.e., using
sensor digital count as input), the second after the detector gain and offset
(called scaling) is corrected, and the third after a full calibration (i.e., using
radiance as input). In this study, most users evaluated the impact of the
compression using datacubes at the radiance-processing level as input (i.e.,
system 3); only two users evaluated data at the DN-processing level (i.e.,
system 1).
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8.7 Effect of Lossy Data Compression on Retrieval
of Red-Edge Indices

This section evaluates the effects of lossy VQ hyperspectral data compres-
sion algorithms using red-edge indices as end remote sensing products.25

Three CASI datasets and one AVIRIS dataset from vegetated areas were
tested.

A VQ data compression algorithm for compressing 3D hyperspectral
datacubes called 3DVQ and its three speed-improved compression algorithms
were examined. Five red-edge products representing the NIR reflectance
shoulder (Vog1), the NIR reflectance maximum (Red rs), the difference
between the reflectance maximum and the minimum (Red rd), the wavelength
of the reflectance maximum (Red lo), and the wavelength of the point of
inflection of the NIR vegetation reflectance curve (Red lp) were retrieved
from each original datacube and from their decompressed datacubes to
evaluate the impact of the lossy compression algorithms.

8.7.1 Test datacubes

Hyperspectral datacubes used in this section were acquired by CASI45 in
July 1996 and by AVIRIS46 in August 1996 from the Southern Study Area
located north of Prince Albert, in Saskatchewan, Canada (through the
BOREAS project).47 This data has been converted to units of scene
reflectance using the Imaging Spectrometer Data Analysis System (ISDAS)
atmospheric-correction software.39 Three CASI datacubes of 400 pixels by
800 lines by 72 bands by 16 bits were extracted from the BOREAS dataset
acquired using the CASI sensor and named after the BOREAS tower sites
because the datacubes are all from small areas near the tower sites; they are
called yjps (Young Jack Pine site), ojps (Old Jack Pine site), and fens (Fen
site), respectively.

An AVIRIS datacube of 614 pixels by 512 lines by 205 bands by 16 bits
was extracted from two datasets that were collected over approximately the
same ground targets as the CASI datasets. It is composed of the bottom half
of one AVIRIS scene and the top half of the next scene. The datacube is
combined in this way so as to include both the Young Jack Pine and Old Jack
Pine sites, which appear in the CASI datacubes. The original 224 AVIRIS
bands were reduced to 205 bands by removing bands that are affected by high
atmospheric absorption, as the atmospheric correction cannot address the low
signal level in these bands.

8.7.2 Red-edge indices

Two red-edge indices were used for evaluation.

1. Vogelmann red-edge reflectance ratio index (Vog1):48
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This index is correlated with pigment and given by the expression

Vog1 ¼ Rð740 nmÞ
Rð720 nmÞ , ð8:4Þ

where R(l) is the surface reflectance at wavelength l.
2. Inverse Gaussian red-edge spectral parameters:49

The red-edge parameters or the inverted Gaussian model of the reflectance
curve between 670–780 nm are defined by the following equation:

RðlÞ ¼ Rs ðRs RoÞe
ðl loÞ2

2s2 , ð8:5Þ
where Rs is the reflectance maximum, Ro is the reflectance minimum, lo is
the spectral position of the reflectance minimum, lp is the spectral position
of the inflection of the Gaussian red-edge reflectance curve, and s ¼ lp –
lo is the Gaussian curve width parameter.

Figure 8.8 depicts the definition of the curve fit and the parameters of
vegetation reflectance red-edge in terms of two reflectance parameters (Rs and
Ro) and three spectral parameters (lp, lo, and s).

Both of these indices50 52 are useful in vegetation applications; they are
selected for evaluation because (1) the test datacubes are from vegetated areas,
(2) research groups utilizing hyperspectral imagery for forestry applications
are currently using the Vog1 index, and (3) the inverse Gaussian red-edge
spectral parameters require hyperspectral imagery and cannot be determined
from broadband imagery.
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Figure 8.8 Illustration and curve fit of the inverse Gaussian red-edge parameters
(reprinted from Ref. 25).
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This section computes and examines the following five independent
parameters (called hyperspectral products):

1. Vog1: Vogelmann red-edge reflectance ratio index,
2. Red rs: The reflectance value at the maximum point in the NIR,
3. Red rd: The difference between reflectance at maximum point in the NIR

and reflectance at the minimum point in the red,
4. Red lo: The wavelength at which the reflectance minimum occurs, and
5. Red lp: The wavelength of the inflection point of the Gaussian fit.

8.7.3 Evaluation using red-edge products

This section describes the hyperspectral data compression systems to be
evaluated, gives the statistical measures used to show the accuracy of the
products due to compression, and, finally, considers the proper retrieval of the
products.

The 3DVQ algorithm described in Chapter 4 treats the spectrum of a
ground sample in the datacube to be compressed as a vector (also referred to
as “spectral vector”) and compresses the spectral vectors using the LBG
algorithm.53 It is the basic compression system in the VQ-based,
hyperspectral-data-compression algorithm series and does not use any
techniques for improving the speed and the best PSNR. It was used as a
reference in the development of improved systems in order to compare
performances. This section uses it as the reference compression system to
examine how lossy VQ hyperspectral data compression affects the selected
remote sensing applications.

Chapter 4 describes three processing-speed-improved, lossy-VQ
hyperspectral-data-compression systems that integrate the MSCA,4

training set subsampling,5 and the SFBBC.1 System 1 uses the MSCA
with 2% training set subsampling (see Section 4.8.5); system 2 uses the
MSCA with 2% training set subsampling and SFBBC for codebook
training (see Section 4.8.6); and system 3 uses the MSCA with 2% training
set subsampling and SFBBC for both codebook training and for coding
(see Section 4.8.7). The experimental results show that the overall
processing speed of the systems can be improved by a factor of around
1,000 at an average PSNR penalty of 1.5 dB. In this section, they are
selected for evaluation to examine how the improved systems further
impact specific remote sensing applications.

In this section, the standard deviation of percentage difference between
product values retrieved from the original and from the decompressed data,

Std Dev ¼ 1
n 1

Xn
i 1
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vuuut , ð8:6Þ

326 Chapter 8



is used to evaluate the product error induced by lossy compression, where x̂i is
the product value at pixel i retrieved from the decompressed data, xi is the
product value at pixel i retrieved from the original data, and n is the number
of pixels in the scene of a datacube.

The product algorithms are applied to the original and decompressed
datacubes on a pixel-by-pixel basis. Because the red-edge indices are only
valid for vegetated pixels, the products will be computed in a region
dominated by vegetation coverage to reduce the influence of nonvegetated
pixels on the evaluation. In the CASI datacubes, a subscene of 256 � 256
pixels within the scene of a test datacube was selected for computation of the
products. The subscene selected contains over 90% vegetated pixels.

Two additional mechanisms were used to prevent computations from
nonvegetated pixels in the subscene from affecting the results: (1) The
product algorithms perform “reality checks” on all pixels in a subscene. If a
pixel is nonvegetated, it is flagged and will not be used in subsequent
analysis. (2) The statistics computation algorithm ignores pixels for which
the product value does not lie within an expected range. These ranges are
given in Table 8.11.

During the generation of the statistics, the algorithm also records: (1) The
number of pixels for which both the original datacube and the decompressed
datacube produced viable product values. (2) The number of pixels for
which neither the original datacube nor the decompressed datacube produced
viable product values. (3) The number of pixels for which only the original
datacube or the decompressed data produced viable product values (tracked
separately). These pixel counts are also used to ensure that the above
screening methods are working properly.

8.7.4 Evaluation results and analysis

This section’s evaluation is first applied to the three CASI hyperspectral
datacubes and then validated using the AVIRIS datacube.

8.7.4.1 From CASI datacubes

The three CASI test datacubes were compressed using the four systems
described above with eight different-size codebooks. Each system yields

Table 8.11 Viable data range of the five red-edge products (reprinted from Ref. 25).

Product Name Minimum Accepted Value Maximum Accepted Value

Vog1 0.0 10.0
Red rs [%] 0.0 60.0
Red rd [%] 0.0 60.0
Red lo [nm] 660.0 700.0
Red lp [nm] 693.0 733.0
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the same CR but different reconstruction fidelity for the same-size
codebook. Table 8.12 lists the compression ratios corresponding to
each codebook size. The compression results (fidelity versus compression)
are shown in Fig. 8.9. The reference system yields the best PSNR for
each of the test datacubes, but it is the slowest. Systems 1 and 2 produce
similar PSNRs that are close to those of the reference system. System 3
produces the worst PSNR of the systems, but it is the fastest. The
compressed data was decompressed to produce the reconstructed
datacubes for evaluation.

Five red-edge products—Vog1, Red rs, Red rd, Red lo, and Red lp—
were retrieved from each original CASI datacube and from their decom-
pressed datacubes, which were produced by the four compression systems at
eight CRs. Thus, a total of 33 product images were generated per product
because there are 32 decompressed datacubes corresponding to one original
datacube. The standard deviation of percentage difference between the
product retrieved from the original and those retrieved from the decompressed
data were computed based on Eq. (8.6).

Figure 8.10 shows graphs of standard deviations of percentage
difference between the five red-edge products retrieved from the Young
Jack Pine site datacube and its decompressed datacubes, and their average
graph as a function of CRs. Each curve in a graph represents one
compression system and has eight points, each of which corresponds to a
CR. In general, the reference system induces the smallest product errors of
the four compression systems. Systems 1 and 2 perform similarly—their
curves are closer to the reference than to system 3. The product errors
increase with increases in CR.

The dynamic range of the standard deviation for Vog1 is 1.8–2.8%. The
dynamic range of the standard deviation of the two reflectance-related
products is 1.7–7.0%. The dynamic range of the standard deviation of the two
wavelength-related products is very small. It is smaller than 0.14%, which
indicates that the lossy VQ compression has little effect on wavelength. The
spectral information in the wavelength domain is well preserved during the
process of this lossy compression. The curves of the product errors
corresponding to different compression systems start to converge once the
CR exceeds 106.

In the Vog1 graph, the standard deviations from compression systems 1
and 2 remain constant (around 2.2%) for CRs from 43 to 106. In contrast, the

Table 8.12 Eight codebook sizes and their corresponding CRs on the CASI test datacubes
(reprinted from Ref. 25).

Codebook Size 32 64 128 256 512 1024 2048 4096

Compression Ratio 225.2 184.9 154.4 129.1 106.2 84.2 62.7 43.1
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Figure 8.9 Compression ratio vs. PSNR of the four compression systems on three CASI
datacubes (reprinted from Ref. 25).
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standard deviation from the reference system increases from 1.8% to 2.1% at
the same CRs. In this case, systems 1 and 2 with a CR of 106 are optimal from
the point of view of the Vog1 application because they produce the best
compression and induce the smallest error on the product. The curves of
standard deviation versus CR are almost linear after the CR exceeds 106. The
standard deviation values from compression system 3 at CRs of 43, 62, and 84
are worse than that at a CR of 106. This is probably caused by the instability
of the compression system. It can be seen from the PSNR versus CR curves
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Figure 8.10 Standard deviation of percentage difference between products retrieved from
the original and decompressed datacubes. The test datacube comes from the Young Jack
Pine site (reprinted from Ref. 25).
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shown in Fig. 8.9 that the improvement in PSNR becomes very small when
the CR decreases below the compression ratio of 106. For a compression ratio
of 43, the PSNR of system 3 is actually worse than it is at slightly higher CRs.
Comparing the Vog1 curve with the PSNR curve, it can be seen that they
demonstrate similar trends; the only difference is in their sensitivity. Vog1 is
more sensitive than PSNR to this instability of the system. Fortunately, the
absolute amount resulting from this instability is small (less than 0.3% in this
example).

In the Red rs and Red rd graphs, the standard deviations of the
systems are relatively large when the CR is high; they almost reach 6.5%
and 7.0% in graphs Red rs and Red rd, respectively, when the CR is 225.
They are more sensitive to compression than other products. The curves of
standard deviation from compression systems 1 and 2 are very close to
that from the reference system in both of the graphs. The product errors
from system 3 remain constant at CRs from 43 to 106 in both graphs, and
they are slightly above 3.0% and 4.0% in the two graphs. Below a CR of
106, this is caused by the poorer performance of system 3 compared to the
other systems.

In the two wavelength-related products graphs Red lo and Red lp, all
three speed-improved compression systems perform poorly with respect to
the reference system when the CR is smaller than 106. In the graph
Red lo, the standard deviation curves from these three systems bend
upward when the CR is less than 106. The product errors decrease with the
increase of the CR up to 106 rather than increase. In the graph Red lp, the
standard deviations from system 3 are similar to those in graph Red lo,
while the standard deviations from systems 1 and 2 slightly oscillate
around a value of 0.16%. These results indicate that at a lower CR (<106),
the wavelength-related products are more sensitive to the improved
compression techniques than the reflectance-related products, although
the absolute value of the errors is 15 to 40 times smaller than that of the
reflectance products. System 3 is the poorest of the three improved systems
with respect to the reference system.

Figure 8.3(f) graphs the average over the five products. It is presented to
summarize the overall product error of a test datacube. The average product
errors are dominated by products Vog1, Red rs, and Red lp, which have large
values of standard deviation. It can be seen from this graph that systems 1 and
2 perform as well as the reference system in terms of the overall product
errors. Systems 1 and 2 compress a datacube hundreds of times faster than the
reference system. The differences between the overall errors from the reference
and those from system 1 or 2 are below 0.25% at all CRs. They are
insignificant, especially when CRs are greater than 106. It is recommended
that system 1 or 2 be used with a CR of no more than 106 if one wants to
obtain a relatively small error on these products. In this way, the overall
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product error would be below 2.0%, which is an acceptable error level in most
applications.

For example, spectral indices used for the estimation of chlorophyll
content in higher plant leaves are typically based on the red-edge
inflection point Red lp or reflectance ratios such as R750/R700 and R750/
R550.

54,55 A 2.0% error in the retrieved reflectance ratio could produce an
error in the reflectance ratio of 4.0%. The resulting uncertainty of
the estimated chlorophyll content Chl aþb using the results of the
work in Gitelson and Merzlak 54 for maple leaves, for example, would be
0.56 mg cm 2. This is much less than the estimated error in the regression
using the R750/R700 ratio of 3.6 mg cm 2.

Each of the above experiments was also carried out on the Old Jack Pine
datacube. The results showed similar trends, except the results are slightly
better than those of the Young Jack Pine datacube, since the PSNRs obtained
using the Old Jack Pine datacube are slightly better than those obtained using
the Young Jack Pine datacube.

Figure 8.11 shows the graphs of standard deviations of the products
retrieved from the Fen datacube. The trends of standard deviations of the
products Vog1, Red rs, and Red rd are similar to those of the Young
Jack Pine datacube, but their values are slightly worse (1.0% to 3.0%
worse), which is because the PSNRs of the Fen decompressed datacubes
are about 1.5 dB lower than those of Young Jack Pine datacube (see
Fig. 8.9).

In general, products Red lo and Red lp from the Fen site are up to 0.14%
worse than those from the Young Jack Pine site. As above, this is caused by
slightly poorer PSNR of the decompressed datacubes. The Red lo and Red lp
curves of the reference system from the Fen site are not as straight as those
from the Young Jack Pine site, especially the Red lo curve. Unlike the Young
Jack Pine site, the Red lo and Red lp curves from the Fen site compressed by
the three improved systems are very close and do not bend upward explicitly
in the low CR range. The differences between standard deviations from the
improved systems and those from the reference are around 0.07% when CRs
are 184 and 225 in the two products. They are relatively large compared to the
difference of 0.006% at CRs between 84 and 154, although the absolute value
is quite small.

The average standard deviations over the five products are plotted in
graph (f) of Fig. 8.11. Similar to the Young Jack Pine site, they are dominated
by products Vog1, Red rs, and Red lp. Systems 1 and 2 perform as well as the
reference system. The differences between overall product errors from
the reference system and from system 1 or 2 are below 0.5% at all CRs.
For the Fen datacube, system 3 performs quite well; compared with the
Young Jack Pine datacube, the degradation of performance in the low-CR
range is not explicit.
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8.7.4.2 From AVIRIS datacube

The AVIRIS datacube was compressed using the four systems at four
codebook sizes: 512, 1024, 2048, and 4096. With these four codebook sizes,
the four systems yield the same CRs of 229, 159, 101, and 60, respectively.
These CRs are selected for evaluation since they are in a similar range to those
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Figure 8.11 Standard deviation of percentage difference between products retrieved from
the original and decompressed datacubes. The test datacube comes from the Fen site
(reprinted from Ref. 25).
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obtained using the CASI datacubes. Figure 8.12 shows the compression
results in terms of the MSE distortion measure. The PSNRs of the
decompressed data, produced by these four systems on the AVIRIS datacube,
are smaller than those on the CASI datacubes. The decrease in PSNR with the
increase in CR is also small. The PSNR produced by the reference system
decreases only 1.3 dB from the smallest CR of 60 to the largest ratio of 229.
The PSNRs produced by the improved systems are very close. Systems 1 and 2
produced almost the same PSNR at the four CRs, so that their curves of CR
versus PSNR are merged together. The maximum difference between PSNRs
produced by system 1 or 2 and by system 3 is only 0.2 dB.

The product errors retrieved from the original AVIRIS datacube and its
decompressed datacubes, as a function of CR, are shown in Fig. 8.13.
Compared with the graphs in Figs. 8.10 and 8.11, the graphs of the product
errors from the AVIRIS datacube demonstrate similar trends to those
obtained from the CASI datacubes. In general, the standard deviations of all
the products from the AVIRIS datacube are smaller than those from the
CASI datacubes. This probably results from the attributes of the AVIRIS
datacube. Most notably, the AVIRIS datacube is approximately three times
larger than the CASI datacubes. Therefore, higher CRs are expected. For CRs
near 106, the CASI Fen and Young Jack Pine datacubes yield error statistics
similar to the error statistics from the AVIRIS datacube. For CRs above 106,
the overall product error increase for the AVIRIS datacube is minimal, while
the overall product error increase for the CASI datacubes is quite significant.
To achieve comparable CRs, the codebook size for the CASI datacubes must
be much smaller than for the AVIRIS datacube (for example, to achieve a CR
of 106, the CASI codebooks can only contain 512 codevectors, whereas the
AVIRIS codebooks can contain 2048 codevectors). Therefore, the impact of
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Figure 8.12 Compression ratio versus PSNR of the four compression systems on the
AVIRIS datacube (reprinted from Ref. 25).
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CR on overall product error is more significant for the CASI datacubes than it
is for the AVIRIS datacube. Figure 8.14 shows the average product errors of
the CASI and AVIRIS datacubes compressed by system 2 for the scenario
detailed earlier.

The CASI datacubes selected for evaluation in this section demonstrate
worst-case results because the datacubes are small. If a datacube is large
enough spatially, a high CR can be obtained even if a large codebook is used;
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this will yield minimal induced product errors. This validation test gives us
more confidence on the product error statistics.

8.7.4.3 Spatial patterns of induced product errors

The previous analysis shows statistical results from comparisons between
data products derived from the original and the decompressed datacubes.
In this subsection, the spatial component of the product errors is
presented. Figure 8.15 shows a series of pictures of spatial patterns of
the product errors retrieved from the AVIRIS datacube. A quick-look
image of the complete scene of the AVIRIS datacube, generated at 733 nm,
is presented in Fig. 8.15(a). Figures 8.15(b)–(f) show the absolute value
of the percentage error between each red-edge product calculated from
the original datacube and from the decompressed datacube produced
by system 3. System 3 yields the worst PSNR in terms of MSE distortion
and the largest product errors of the four compression systems. Thus, the
pictures of spatial patterns resulting from system 3 show the worst cases of
the compression systems.

These pictures show that for all products, errors are relatively high along
the north–south river and river bank, and along narrow logging roads, where
mixed pixels would occur. For all products, errors are relatively high in clear-
cut areas, in part because the area is primarily nonvegetated (some limited
regrowth only) and because the regions tend to be nonuniform and would
therefore contain highly mixed pixels (consisting of various amounts of soil,
deadfall, and a variety of vegetation in different stages of growth). For the
Vog1 product, the highest errors are generated over water bodies [the bright
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Figure 8.14 Comparison of overall product errors from CASI datacubes (Young Jack Pine
and Fen sites) and the AVIRIS datacube compressed by system 2 (reprinted from Ref. 25).
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Figure 8.15 Spatial patterns in induced product errors of the AVIRIS data. (a) A quick-look
image of the scene at wavelength 733 nm. (b)–(f) Images of the absolute value of the
percentage error between each red-edge product calculated from the original datacube and
from the reconstructed datacube compressed by system 3 using the following products: (b)
Vog1, (c) Red rs, (d) Red rd, (e) Red lo, and (f) Red lp (reprinted from Ref. 25).
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regions in Fig. 8.15(b)]. The high errors for nonvegetated pure and mixed
pixels are inherent because the red-edge algorithm does not apply to the
spectra for these pixels. Consequently, this error is of no significance: in the
area of interest—vegetation—the error is uniformly distributed.

8.7.5 Summary of the evaluation

Four lossy VQ hyperspectral data compression algorithms were evaluated
using red-edge indices as end products. The standard deviation of percentage
difference between a product retrieved from an original datacube and that
from its decompressed datacube was used as a measure to quantify the impact
of compression on end products. Three CASI datacubes from vegetated areas
were tested. An AVIRIS datacube collected over approximately the same
ground targets at approximately the same time of the year was also tested to
validate the experimental results.

Four lossy VQ hyperspectral data compression systems were examined.
A basic compression system called the reference system, which does not use
any techniques to improve the speed, yielded the best PSNR for all test
datacubes, but it is the slowest method. Systems 1 and 2 produced PSNRs
close to that of the reference. System 3 produced the worst PSNR, but it is the
fastest. Five red-edge products (Vog1, Red rs, Red rd, Red lo, and Red lp)
were retrieved from each original datacube and from their decompressed
datacubes, and were analyzed.

For CASI datacubes, the reference induces the smallest product errors of
the four compression systems. System 1 and 2 perform fairly similarly to the
reference. System 3 performs similarly to the reference at high CRs. Product
errors increase with the increase of CR. The amplitude of product error of the
two wavelength-related products Red lo and Red lp (below 0.18%) is 15 to 40
times smaller than that of the two reflectance-related products Red rs and
Red rd. This indicates that the lossy VQ compression has little impact on
wavelength. The spectral information in the wavelength domain can be well
preserved during the process of lossy compression. The overall product errors
are dominated by Vog1, Red rs, and Red lp, which have relatively large
values of induced error. The difference between the overall error from the
reference and that from system 1 or 2 is below 0.5% at all CRs, which is
insignificant. Systems 1 and 2 compress a datacube hundreds of times faster
than the reference system. The overall product error induced by system 1 or 2
is below 2.0% for the Young Jack Pine and Old Jack Pine datacubes and
below 3.0% for the Fen datacube when the CR is 106 and below. It is
recommended that system 1 or 2 be used with a CR no greater than 106 to
obtain a relatively small error in these products.

For the AVIRIS datacube, similar trends as in the CASI datacubes were
observed. In general, the product errors from the AVIRIS datacube are
smaller than those from the CASI datacubes. This probably results from the
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greater compressibility of the AVIRIS datacube, which is due to the fact that
it is 3 times larger than the CASI datacubes, and thus, higher CRs are
expected. When the CR reaches a certain value, the CASI codebooks can
contain only a small number of codevectors to achieve a compatible CR,
whereas the AVIRIS codebooks can contain a large number of codevectors.
Minimal induced product errors would be expected if a datacube is large
enough spatially because a codebook can still contain a sufficiently large
number of codevectors at a high CR.

Spatial patterns of the product errors of the AVIRIS datacube were also
presented. For all products, errors are uniformly distributed in vegetated
areas. Errors are relatively high in nonvegetated and mixed pixel areas.
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Chapter 9

Hyperspectral Image Browser
for Online Satellite Data
Analysis and Distribution

9.1 Motivation for Web-Based Hyperspectral Image Analysis

Hyperspectral image data encapsulates a wealth of information. Remote
sensing using hyperspectral instruments allows collection of the spectral
signature of ground objects over large regions. These spectral signatures can
be used to determine the chemical composition of the objects and thus allow
applications such as mineral detection and vegetation health monitoring from
airborne or spaceborne platforms. One of the greatest impediments to
widespread use of hyperspectral remote sensing data is that there is no quick
and easy method for potential users of hyperspectral data to locate and access
suitable datasets. The datasets are large, and data providers do not generally
advertise their products. As such, the user community has remained static,
consisting of a small set of knowledgeable users.

The traditional approach for managing and advertising large holdings of
remote sensing image data has been to use a cataloging system that maintains
text metadata about each image in the archive together with a “quick-look”
browse image. The browse image is typically a heavily subsampled and
compressed version of the original image (in black and white or color). By
performing a spatial or temporal search of the metadata within the catalog,
potential users of the data can effectively discover potential datasets of
interest. By then visualizing the corresponding browse images, users can
evaluate each of the potential datasets to determine whether the imagery is of
use in their application. The key to the success of this paradigm is that the
metadata supports discovery of potential datasets, whereas the spatially
subsampled browse images support quick evaluation of the spatial quality of
the imagery. It is argued here that, until now, no such discovery and
evaluation paradigm has existed for hyperspectral data archives.
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Unlike traditional panchromatic or multispectral images, whose “infor-
mation context” is contained primarily in the spatial domain, hyperspectral
images are rich in spectral information. A typical hyperspectral dataset, often
called a datacube, has a spatial extent, for example, of 640 lines by 512 pixels
with 224 spectral bands. In other words, the spectral dimension is of the same
order of magnitude as the spatial dimension. Cataloging systems that support
only spatial or temporal queries of a metadata database miss the whole
spectral domain, and thus users are unable to discover potential datasets of
interest. By providing only spatially subsampled black-and-white or color
browse images, users are unable to assess image quality or attributes in the
spectral domain, and so are unable to evaluate the potential usefulness of
the datacubes without ordering full copies of them. In other words, although
the browse image adequately captures the spatial information in the full-
resolution datacube, the spectral information is too heavily subsampled.

This chapter describes an innovative hyperspectral image browser (HIBR)
system that overcomes the limitations of traditional archive catalogs. The
HIBR via internet provides users of hyperspectral imagery with an effective
data-discovery tool for exploring hyperspectral data archives, and for
effectively evaluating the quality of potential datacubes before deciding
whether or not to order the complete datasets.

The HIBR system has, at its core, a novel VQ compression scheme that
packs the information of a hyperspectral datacube into VQ-compressed data
(referred to as “VQube”) that is a small fraction of the size of the original
datacube. A unique property of the VQube is that any remote sensing
algorithms can be applied to it directly to derive the image products without
returning to the original format by decompressing it. Because a VQube is
much smaller in size, the processing is extremely fast. The net gain is that the
VQube allows both a reduction in data storage requirements and very fast
processing of hyperspectral data using a wide selection of spectral processing
algorithms. The HIBR system has the potential to revolutionize the user-data
catalogs for future hyperspectral Earth-observation missions.

Although the VQ compression is necessarily a “lossy” process, one of its
strengths is that the loss of spectral information is small and distributed across
the spectrum. It maintains high spectral integrity even at a high CR. Results
show that the image products obtained from spectral algorithm analysis
applied to the VQube are within 2% or less than those derived from the
original datacubes.

9.2 Web-Based Hyperspectral Image Browser and Analysis

The HIBR concept was initially invented by the author of this book together
with colleagues at the Canadian Space Agency (CSA).1 Under contract to
CSA, MacDonald Dettwiler and Associates (MDA) subsequently developed
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and extended its functionality to demonstrate the usefulness of the HIBR for
rapidly browsing, selecting, and extracting geophysical product information
from hyperspectral data archives. As part of this work, MDA expanded the
functionality of the search methodology by linking the system to existing
metadata browsers, narrowing the number of datacubes to be searched, and
expanding the functionality of the browser implementation. The latter
includes downloading compressed VQubes from a remote server via internet,
viewing the decompressed data, performing spectral searches, and computing,
analyzing, and displaying remote sensing products derived directly from the
VQubes.

The fundamental concept behind the HIBR is the realization that
hyperspectral data users require specialized tools to enable them to quickly
and effectively discover and evaluate data holdings within a large
hyperspectral image archive. These tools must allow users to evaluate the
spectral content of individual datacubes over remote links, much like how
today’s users of multispectral satellite datasets use the Internet to search
existing catalogs and preview browse images. The HIBR is such a system for
hyperspectral data.

As mentioned in the previous section, the HIBR system is built on a novel
VQ compression technique that compresses datacubes and packs the datacube
information into VQ-compressed “VQubes” a fraction of the size of the
original datacubes. Because compression ratios from 20:1 to 100þ:1 are
routinely achievable, VQubes are well suited to online storage and
dissemination over the Internet. In essence, VQubes are to datacubes what
quick-look browse images are to multispectral images.

The HIBR consists of two parts: a Java client running on a user’s desktop,
and a catalog server located at the image archiving facility. The server is
responsible for searching through online VQubes and serving them up to the
desktop client software. The client software provides a rich set of
hyperspectral visualization and analysis tools that can be used to assess the
suitability of a particular datacube. Figure 9.1 illustrates the overall HIBR
concept.

The process begins with the initial data acquisition. Hyperspectral satellite
and aircraft sensors collect large quantities of data, which have 2D spatial
dimensions and one spectral dimension, producing a datacube. The raw
datacubes are inserted into an archive typically consisting of storage libraries.
The resulting hyperspectral data archives are huge, and it is difficult and time-
consuming to check data quality and utility. Furthermore, the size of the
datacubes means that there is no practical way to let potential users browse
the data and thus make informed decisions about whether or not the data is
suitable for their application.

To address the problem of data volume, the HIBR compressor reduces the
data volumes to small manageable VQubes with minimal loss to the data
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information content. The HIBR-compressed VQubes are smaller and thus
lend themselves well to online storage. Furthermore, the VQubes are faster to
process and electronically transfer. The compressor can be applied to radiance
data (for data quality checking by the data distributor) and to reflectance data
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2. Online catalog

3. Spatial and spectral
    brower capability

4. Online order desk

5. Brower also allows
    product generation

* High compression ratio, yields great reduction in data volume
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* Free thumbnail browse
* Increases data availability awareness
* Rapid selection and analysis
* Allows user to spatially and spectrally identify needed data
* Cyberspeed ordering and delivery of purchased VQubes
* Speedy (several orders of magnitude faster than the original)
* Accurate (within a few percent of result from the original)
* User-controlled band arithmetic
* Spectral transform toolkit
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Hyperspectral Image Browser (HIBR)

Figure 9.1 HIBR allows hyperspectral data users to remotely browse a hyperspectral data
archive, helping them find datasets of potential interest and evaluate their applicability to the
user’s application. For a color version of this figure, see Plate 10 in the color plate section of
this book.
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(for data dissemination). The conversion from radiance to reflectance can be
performed on the compressed radiance data, as it has been shown that the
reflectance data thus produced is of the same quality as would be achieved by
performing atmospheric correction on the original noncompressed data and
then compressing. This allows the atmospheric correction to be done much
more rapidly than would otherwise be possible.

Once compressed, the VQubes are inserted into an online catalog. The
catalogue provides much the same functionality as a traditional Earth-
observation catalog with the ability to perform spatial and temporal
searches of the test image metadata. There are two key differences,
however: first, the HIBR supports a spectral search of the archive, thus
allowing a user to identify datasets that contain spectral signatures of
potential interest to the user. Second, instead of (or in addition to) offering
traditional browse images, the HIBR provides compressed VQubes to the
users’ desktop browser. The user can then run the local HIBR applet within
a browser to perform a wide range of hyperspectral image analysis and
visualization tasks. In this manner, the user can evaluate whether the
spectral content of the selected datacube is sufficient for the application’s
needs.

The user can order the full resolution dataset to perform detailed
analysis after an appropriate datacube has been identified. The exact
mechanism for ordering image data typically depends on the policies of
individual data provider. However, the HIBR has been designed to, and fully
supports, the notion of online ordering for compressed or noncompressed
datasets.

9.3 HIBR Functions and Data Flow

Figure 9.2 shows the block diagram of the HIBR functions. The HIBR system
contains three libraries: a local hyperspectral library, a benchmark
hyperspectral library, and a compressed data library. The compression
module provides compression functions including lossy compression
(described earlier), lossless compression, browser communications, and applet
server. The compression module exchanges data with the three libraries via
the internal data bus and communicates with the browser module and service
control module via transmission bus. The browser module provides functions
of remote communications, decompression, visualization, remote processing,
and a set of algorithms for application products. The service control module is
the interface between the HIBR system, remote users, and the third-party data
sources through the Internet. From the previous discussion, it is clear that the
hyperspectral data compressor, the central web server, and the desktop
hyperspectral image browser are the three key technologies that underpin the
development of the HIBR.
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9.3.1 Hyperspectral data compressor

The HIBR is based on a high-data-compression-ratio software algorithm and
is achieved through the use of a lossy compression technique that uses VQ.
This algorithm forms the core of the HIBR system and is in fact the enabling
technology that makes HIBR possible. The VQ compression algorithm has a
number of attributes that are of particular importance to the HIBR
application:

1. The technique supports large compression ratios while maintaining much
of the spatial and spectral content of the original image. Because of this, it
is practical to maintain an online archive of VQubes for all datacubes
within a mission data holding.

2. While the compression is lossy, the algorithm distributes the compression
errors across the spectrum, thus minimizing the local loss of spectral
information. Tests on compressed VQubes show that the image products
obtained from spectral algorithm analysis applied to the VQ-compressed
datacubes are within 2% of those derived from the original noncom-
pressed datacubes.

3. Decompression of the image is extremely fast, meaning VQubes can be
rendered in real time on even low-end workstations and PCs.

Local
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Benchmark
Hyperspectral
Library

Compressed Library
  (Codebooks, indexes)

Compressor Module
 -lossy(codebooks, indices and
  selectable compression factor)
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        User1
(with Browser)

        User2
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Figure 9.2 Block diagram of HIBR functions.
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4. The compressed data format is such that most traditional hyperspectral-
image-processing algorithms (such as the SAM, spectral indices, etc.) can
be applied directly to the compressed data. This results in an
extraordinary shortening of image processing time because VQubes are
extremely small and require no preliminary decompression time.
Furthermore, because the complete dataset easily fits in memory, there
is no need to process hundreds of megabytes of image data on disk (as is
typically the case with datacubes). The result is that many traditionally
computationally expensive algorithms run in real time.

As described in Chapter 4, VQ compression is composed of two steps:
codebook training and codevector matching (also called encoding). The actual
compression performance depends on the selected codebook training
algorithm and the selected hyperspectral image data training set. Three
codebook training algorithms are used in the HIBR:

1. 3DVQ, a conventional VQ data compression for 3D hyperspectral
datacubes using the Linde–Buzo–Gray (LBG) algorithm,2

2. 3DVQ using a spectral-feature-based binary coding (SFBBC) fast
algorithm,3 and

3. Multiple-subcodebook algorithm (MSCA).4

The LBG algorithm generates codevectors by iteratively reclustering the
data, using the Euclidean distance to determine to which cluster each image
vector should be assigned and then taking the centroid of each cluster as a
codevector. This is a very computationally intensive procedure.

The SFBBC algorithm first computes a spectral “feature” vector for each
spectral vector in a datacube. Codevectors are again taken as cluster centroid,
except that the use of feature vectors allows the use of the Hamming distance
as the distance measure instead of the Euclidean distance. The former involves
a bitwise exclusive-or operation as opposed to the squared-error computation
required for the Euclidean distance, and thus it is much faster than the
conventional LBG algorithm.

The MSCA algorithm requires that the scene of the datacube be
presegmented using a remote sensing technique such as spectral index, for
example, the normalized difference vegetation index (NDVI). Subcodebooks
are then generated independently (using either LBG or SFBBC methods) for
each segment (training subset). Working on small segments at a time
significantly speeds up codebook generation. The segmentation “class map” is
saved for use in encoding.

Five VQ codevector-matching algorithms are used in the HIBR:

1. 3D vector quantization (3DVQ),3

2. Fast 3DVQ (F3DVQ),6

3. Correlation vector quantization (CVQ),5
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4. Fast CVQ (FCVQ),6 and
5. Spectral-index-based multiple-subcodebook algorithm (MSCA).4

The 3DVQ algorithm encodes each spectral vector in a datacube with the
nearest codevector in the codebook, using the Euclidean distance as the
distance measure. The index of each matched codevector is recorded in an
index map, which is transmitted with the codebook in the compressed VQ
product.

The F3DVQ algorithm encodes each spectral vector in a datacube with
the nearest codevector in the codebook, using the Hamming distance between
their spectral feature vectors (i.e., SFBBC vectors) as the distance measure. As
above, the match indices are recorded in an index map.

The CVQ algorithm uses a 2 � 2 moveable window to check the
Euclidean distance between a vector to be encoded and three encoded vectors
in the window. If the smallest distance is less than a given threshold, the
codevector index of the closest encoded vector is assigned to the vector instead
of searching through the entire codebook; otherwise, the entire codebook is
searched to find the best match.

The FCVQ algorithm operates similar to the CVQ algorithm except that
the Hamming distance between spectral feature vectors is used in place of the
Euclidean distance between spectral vectors.

In the case where the MSCA was used in training, the encoding step uses
the presegmentation class map to ensure that only the subcodebook relevant
to the segment in which the current vector lies is searched for the best-
matching codevector. The best match can be found using any one of the
previous techniques.

The decompression stage is a simple lookup procedure, where the index
map dictates which codevector to apply at each spatial location in the
decompressed image.

9.3.2 Hyperspectral catalog web server

The HIBR exploits a central web server to which the user can connect to
query the hyperspectral data holdings within an archive. To facilitate the
traditional temporal and spatial searches of data holdings, HIBR can be
integrated into an existing image catalog system. This allows a data-archiving
facility to seamlessly integrate hyperspectral data with their existing Earth-
observation data holdings. The primary difference with the catalog is that
instead of presenting the user with a color browse image of the hypercube, the
catalog will download the VQube to the user’s desktop computer to facilitate
hyperspectral image browsing.

A unique aspect of HIBR is that it also supports spectral querying of
hyperspectral datacubes within the data archive. This is an extraordinarily
powerful tool whereby the user can select a reference spectral signature (either
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from the integrated USGS spectral signature library or supplied by the user),
and run a SAM algorithm on all of the VQubes of interest. Using this
technique, the user can quickly identify potential datasets that contain a
specific spectrum (e.g., of a mineral of interest). The feature is made possible
by the fact that the VQubes retain much of the spectral information contained
in the original datacubes but with a much lower data volume. All functionality
within the catalog server is accessed through a standard web browser.

9.3.3 Overall data flow

Figure 9.3 illustrates the overall flow of hyperspectral data through the HIBR
system. Data received from a hyperspectral satellite is first archived in the
HDF-EOS format. These files are then compressed using the VQ compressor.
The output compressed data (VQubes) also use the HDF format; these files
can be browsed over the Internet using the HIBR browser.

9.4 User Scenarios

The most-visible part of the HIBR system is the hyperspectral image browser
itself, a Java applet that runs within a standard web browser on the users’
desktop. The browser is actually a relatively complex hyperspectral-image
analysis tool that has been tuned to operate on compressed VQubes. When
users identify a potential dataset of interest in the catalog, they click on an
icon that downloads the corresponding VQube and initiates the browser
applet. Users are then free to browse through the dataset, including applying a
number of standard analysis algorithms.

Figure 9.3 The flow of hyperspectral data from the sensor to the user’s desktop.
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The HIBR browser allows the user to preview available hyperspectral
datacubes. The user may perform preliminary visualization and simple
spectral searches (user product search) during this preview. All operations are
performed on the lossy representation of the data. Once the user has identified
the datacube(s) of interest, the full datacube may be ordered from the
appropriate source. Figure 9.4 shows scenarios under which the browser can
be operated.

There are two main branches of operation that a user of the HIBR may
take to process the datacube. Operations include data visualization using one
of several visualization tools and user product searches.

9.5 Hyperspectral Image Browser Operations

In order to meet the design requirements, Java has been selected as the
development language. The advantages of Java include its readiness for
Internet applications and its platform independence. Furthermore, the
existing prototype was developed in this language. As a result, the entire
HIBR system is built using the Java Development Kit. Four groups of
software have been combined to create the current HIBR system.

The HIBR is a functional hyperspectral image browser that allows users
to browse VQ-compressed hyperspectral image cubes. A suite of applications
and functions was implemented that allows the user to examine and visualize
the data. Users can perform many operations by combining these functions
and applications.

9.5.1 HIBR visualization

The visualization module contains core functionality that allows the user to
visualize and examine the datacube:

1. Compose RGB,
2. Display image by band and wavelength,
3. Zoom into a region,
4. Plot spectrum at a specified spatial location,
5. Plot spectrum with confidence measure display,
6. Band arithmetic (addition, subtraction, multiplication, and division),
7. Contrast stretching,
8. Apply different color maps,
9. Display transform image, and
10. Provide interactive cursor location and value display.

The HIBR provides operation of visualizing any image band or band
combination in black and white or color, including full roam and zoom
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Figure 9.4 (a) HIBR user data visualization and (b) user product-search scenarios.
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capabilities, contrast stretch, and pseudo-color editing. Figures 9.5 and 9.6
illustrate examples of visualizing monochrome, RGB, and false color, as well
as processed images of hyperspectral datacubes.

9.5.2 User product search

The user product-searchmodule contains core functionality that allows the user
to search the list of available datacubes by providing a reference spectrum:

1. The user can select a spectrum from a given library,
2. The user can search all available datacubes for the selected spectrum,
3. The search results are displayed as a list of the percentage of matching

pixels per image, and
4. The user can display the search results for each image in image format,

where pixel value equals the computed value of the cosine of the spectral
angle between the image spectrum at the given pixel and the selected
library spectrum. (The results are in the range [0.0, 1.0], where a value of
1.0 indicates a perfect match).

Figure 9.5 HIBR function for visualizing monochrome, RGB, and false color images. For a
color version of this figure, see Plate 11 in the color plate section of this book.
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Figure 9.7 illustrates a typical application with the HIBR browser to
search for interested hyperspectral datacubes using the SAM as a means.
A reference spectrum (sometimes referred to as a “seed spectrum”) is used to
match the hyperspectral datacubes in the archive. The search is extremely fast
because it is carried out in the VQubes.

9.5.3 User product generation

The user product generation module contains core functionality that allows
the user to generate products from the list of available datacubes:

1. NDVI,
2. SAM (by using a spectrum from a library or by using a spectrum from the

datacube),
3. Vogelmann red-edge bio-indicator, and
4. Inverse Gaussian red-edge biophysical indicator parameters.

Figure 9.6 HIBR function for visualizing processed images. For a color version of this
figure, see Plate 12 in the color plate section of this book.
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9.5.4 HIBR graphical user interface

The main display of the HIBR system is shown in Fig. 9.8, which consists of a
hypertext markup language (HTML) page from which the main Java applet
program of HIBR may be launched.

The Java applet program is the main controller of the HIBR system. Two
pull-down menus are also provided on the HTML page: the first pull-down
menu lists the compressed hyperspectral image cubes available for display,
and the second menu lists available reference spectra for the user product
search. Below the second menu is a message area for displaying messages such
as the search results from the user product search.

Figure 9.9 shows the image viewer of the HIBR system, divided into six
areas:

1. Pull-down-menu bar: These menus allow the user to select from the
available functions.

2. Main image display: This is where the image or transformed image is
displayed.

3. Position information display and selection: The values of the cursor
position and the pixel intensity at this position are displayed in this area.
A toggle button is provided for the user to select between having the position

Figure 9.7 A seed spectrum is used to search for interested hyperspectral datacubes
using the SAM as a means.
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Figure 9.9 HIBR image viewer. For a color version of this figure, see Plate 13 in the color
plate section of this book.

Figure 9.8 Main page of the HIBR.
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of the cursor constantly updated when the user uses the mouse to scroll
around the image display, or only updating the information when the user
clicks the left mouse button at a selected position.

4. Toggle buttons to display transformed and original images: These are
provided to allow the user to switch between displaying the original image
and the transformed (product) image.

5. Band-selection slider: The user can select which band to display by
moving the band slider. The current band number and wavelength are
listed alongside the slider. The display is not updated until the “Apply”
button is clicked to avoid the user having to wait for the display to be
updated until the choice is validated.

6. Application buttons: Two buttons are provided. The “Reset” button resets
the current band selection to “1,” and the “Apply” button updates the
image display area to show the currently selected band.

Figure 9.10 illustrates a typical set of screens a user would encounter
when browsing a hyperspectral archive. The left side depicts the traditional
“results” screen that shows the available images in a data holding. The
screenshot on the right illustrates the use of the spectral search interface in
the catalog. Figure 9.11 illustrates a typical session with the HIBR browser.
As the figure shows, the browser provides a wide range of data visualization
tools.

9.6 Summary

This chapter presents an overview of the HIBR, a novel web-based
hyperspectral-image browsing system. The HIBR provides hyperspectral
image users with effective tools to aid them in the discovery and evaluation
of potentially useful hyperspectral datacubes within large data archives,
thus eliminating one of the major impediments to the widespread
exploitation of hyperspectral image data.

Key to the success of the HIBR is an innovative hyperspectral
compression algorithm that enables compact VQubes to be generated from
large datacubes. VQubes significantly reduce data storage requirements,
thus enabling online archives and fast network transfers, and allowing for
the fast processing of remote sensing products directly in the compressed
data format. Furthermore, VQubes retain most of the spectral information
contained in the original datacube, allowing effective evaluation of the
suitability of the dataset.

It is anticipated the HIBR technology will be of great interest to
hyperspectral data users and principal investigators to facilitate their access
to datasets within existing image archives. The HIBR will also be of interest to
data providers and managers of large data archives, allowing them to
effectively advertise their hyperspectral data holdings. Finally, the HIBR will
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Figure 9.10 The HIBR supports traditional catalog queries that result in sets of candidate
datasets, as shown in (a), as well as spectral queries that allow the user to compare all
datasets of interest to a particular reference spectral signature, as shown in (b).
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be of interest to end users who wish to perform fast, quantitative analysis of
datacubes to identify promising areas where full-resolution analysis is
justified.

The HIBR has the potential to revolutionize the user data catalogs for
future hyperspectral Earth-observation missions, including the Hyperion
instrument on the EO-1 satellite, the MODIS instrument on the EOS-AM
satellite, and future hyperspectral instruments.
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adaptive linear prediction, 99
adder, 252
addition operation, 109

additive noise, 191
additive white Gaussian noise
(AWGN), 241

additive white noise, 26
adjacent pixel spectra in a cross-
track line (APSICL), 205

Advanced Responsive Tactically
Effective Military Imaging
Spectrometer (ARTEMIS), 2

aerial photography, 305
aggregated class, 316
agreement with ground truth, 305
agriculture, 117, 301
air bubble, 312
Airborne Visible Infrared Imaging
Spectrometer (AVIRIS), 48, 85,
113, 190, 198, 244, 333

along-spectral-bands vector distance
calculator, 251

along track, 179, 215
alunite, 123, 311, 314
amplifier, 177
amplitude binary codevector, 139
analog-to-digital (A/D) converter,
177, 296, 318, 306

anchor points, 111
ancillary channel, 20
anisotropic diffusion, 26
anomaly, 211
applet server, 349
application-specific integrated
circuit (ASIC), 249

approximation size, 129

365



approximation stage, 162, 238
architecture, 249, 275
archive, 345
arithmetic coding (AC), 40, 59
arithmetic mean, 25
artificial target, 117
associated codebook, 188
asymmetric compression process,
34

asymptote, 166, 203, 216
asynchronous, 264
at-sensor radiance, 223, 305
atmosphere, 178
atmospheric correction, 178, 296,
298, 349

atmospheric effect, 148
Atmospheric Infrared Sounder
(AIRS), 2, 59, 103, 198

atmospheric water vapor, 297
auxiliary parameter, 141
average classification, 312
average percent-relative absolute
difference, 318

awning, 212, 308

B
BAD PIXEL CORR (BPC), 316
band combination, 354
band math evaluation, 311
band reordering, 34, 38, 60
band interleaved by pixel (BIP),
205, 273

band sequential, 205
base bits, 49
base-bit plus overflow-bit coding
(BPOC), 49

baseband, 63
baseline index map, 183
benchmark, 316
benchmark hyperspectral library,
349

Bernoulli process, 42
bilinear interpolation, 21

binary codevector, 139, 140
binary-input power-limited
Gaussian channel (BIPLGC),
243

birch, 154
bit-allocation, 57
bit-error rate (BER), 238, 245
bit errors, 182, 211
bit pattern, 79
bit-plane encoder (BPE), 87
bit-shifting, 62
BitPlaneStop, 90
bitrate, 41, 61, 91, 200
bitrate reduction, 2
bits per pixel per band (bpppb),
104

bits per symbol (bps), 41
bitstream, 35, 40, 98
black crustose lichen, 306
black spruce, 154
blind datacube, 225, 297
blind-compressed datacube, 218
blind distortion measurement, 24
block, 78
block-adaptive entropy coding
approach, 102

block diagram, 162
block effect, 61
block size, 52, 79
blocking, 24
blocking artifact, 26
blocking effect, 180
Blue Books, 75
blurring, 24
boreal forest environment, 305
bottleneck, 264, 276, 285
boundary conditions, 100
brightness temperature, 2
broadband channel, 3
browser module, 349
browsing, 121
buddingtonite, 314
byte limit, 87

366 Index



C
Cþþ language, 274
c-code, 240
c-means clustering, 36
California, 84
CAM5S, 302
Canadian Space Agency (CSA), 346
canopy liquid-water content, 297
card-to-card connector, 265
catalog server, 347
cataloging system, 345
causal neighborhoods, 35
causal pixels, 55
CCD, 76
CCSDS 121.0-B, 76
CCSDS-123 , 98
CCSDS-IDC, 199
central local difference, 101
central web server, 352
centroid, 115, 124, 162, 253, 351
Chalcedony, 314
channel codes, 241
channel decoder, 243
Chesapeake Bay, 84
chipset, 264
chromatic aberration, 236
cirrus cloud, 309
class map, 351, 352
classical VQ algorithm, 110
classification map, 171
clock cycle, 252
cloud scene type, 117
cluster, 36, 107, 168, 277
cluster map, 277
cluster SAMVQ, 178, 181
co-located pixel, 55
coastal zone, 3
codeblock, 66
code rate, 241
codebook, 37, 57, 237, 238
codebook generation, 107
codebook generation time, 149
codebook size, 164, 168, 238, 240

codebook training, 58, 107
coded dataset, 81
codestream, 39
codevector (CV), 107, 251, 258
codevector matching, 107
codevector memory, 260
codevector trainer, 251, 262
codevector update operation, 254
codeword, 40, 57, 77
CodeWordLength, 97
coding gain, 25
coding paradigm, 34
coding step, 107
coding time, 149
coefficient of determination, 303
collimator, 236
color-composite image, 212
column-oriented local sum, 100
commission error, 306
communication channel, 243
Compact Airborne Spectrographic
Imager (CASI), 48, 198, 212, 225,
244, 302, 327

compare with previous region
codevectors (CWPRC), 282

component software-configurable-
items (CSCIs), 275

composite mineral map, 314
compressed data library, 349
compressed datacube, 225
compressibility, 25
compression effectiveness, 89
compression efficiency, 77
compression engine (CE), 180, 249,
262

compression-error datacube, 194
compression-error image, 192
compression fidelity, 110, 149, 162,
216, 237, 238

compression performance, 211
compression ratio (CR), 2, 34, 50,
82, 301

computation time, 112, 118, 133
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computational complexity, 38, 53,
60, 110, 162, 168

computational platform, 142
concrete, 315
confidence level, 296
configuration, 249, 280
confusion matrix, 316
constrained spectral unmixing, 309
constraint length, 241
Consultative Committee for Space
Data Systems (CCSDS), 44, 75,
197

context adaptive, 36
context-based embedded zerotrees
of wavelet transforms
(CB-EZWs), 39

context modeling, 67
contrast enhancement, 18
contrast stretch, 356
controlled laboratory environment,
306

conventional full-reference metrics,
6

conventional VQ algorithm, 110,
164

convergence speed, 167
convex, 59
convolutional code, 238, 241
corn, 225, 227
cornfield, 118, 212
correlation codevectors (CCs), 144
correlation coefficient, 8
correlation vector quantization
(CVQ), 110, 351

cosine, 111
cotton, 212, 309
covariance, 61
covariance matrix, 61
CPU, 180, 249
crisp, 56
crop chlorophyll content, 296
crop field, 225, 302
crop leaf area index, 301

cross-support, 75
cross-track, 45, 57, 215
cross-track line, 178, 282
cube1, 48
cube3, 48
Cuprite, 21, 48, 67, 113, 190, 245
current pixel, 34, 57
current regional codebook, 188
current spectral band, 99
curvature, 218
custom weight, 95

D
dark current, 177, 223, 228, 309
dark leakage current, 177
data acquisition, 347
data anomaly, 299
data bus, 262
data cleaner, 317
Data Compression Working Group
(DCWG), 75

data-flow chain, 296
data handling, 211, 249
data holdings, 347
data loss, 86, 182
data processing level, 301
data products, 4
data structure, 111
data visualization tool, 360
datacube, 2, 6
DC coefficient, 89
DCStop, 90
DCStop=0, 93
deblocking, 61
dead detector elements, 212
debug, 266
decoder, 78, 107, 148, 238
decoding time, 164
decomposition, 63
defence, 301
derived product, 4, 298
desktop browser, 349
despike, 215
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destriping, 228
detector array, 177
detector defects, 211
diagonal subband, 63
difference between the reflectance
maximum and the minimum, 324

differential pulse code modulation
(DPCM), 36, 143

differentiator, 254
digital count, 177
digital number (DN), 117, 184
digital signal processor, 249
dimension-reduction code, 140
direct memory access (DMA), 249,
262

directional local differences, 101
dirt road, 315
discrete cosine transform (DCT), 2,
26, 34

discrete wavelet transform (DWT),
38, 61, 86

discrimination capability, 11
dispersion element, 4, 236
distortion channel, 17
distortion measure, 5, 109
distortion threshold, 109
distortion types, 24
dolomite, 314
double-blind test, 225, 234, 297
downlink channel, 3, 182, 237, 241
downsample, 18
duty cycle, 276
dynamic range, 82, 184, 223

E
Earth-observation satellites, 1
edge-based prediction, 36
eigenvectors, 38, 61
embedded zerotrees of wavelet
transforms (EZWs), 39

embedded data structure, 87
encoding order, 102
endmember (EM), 123, 218, 229

endmember spectra, 218
energy balance, 83
energy compaction, 25
energy shifting, 26
entropy, 24, 34
entropy encoder, 34, 35, 40, 59, 99,
102

entry counts, 254
ENVISAT, 3
Earth Observer-1 (EO-1), 29, 198,
316

equal-percentage subsampling, 158
equal-size subsampling, 158
equivalent codebook, 164
ERGAS, 10
error-correction measures, 211, 298
error cube, 269
error matrix, 305
error measurement, 6
error propagation, 211, 298
error vector, 58
Euclidean distance, 109, 138, 161, 351
evaluation criteria, 298
evaluation metrics, 232
evaluation procedure, 298
evaluation score, 219, 235
evaluator, 297
exhaustive search, 56
exponential-Golomb coding, 42
exposed rock, 306
exposure, 177
extensible markup language
(XML), 273

external RAM, 284
extragalactic source, 82

F
F-test, 301
factor of improvement in coding
time, 146

factor of improvement in
compression ratio, 147

factorization, 39
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false alarm rate, 315
false color, 356
fast three-dimensional vector
quantization (F3DVQ), 351

fast correlation vector quantization
(FCVQ), 352

fast Fourier transform (FFT), 26
fast memory, 250
fast precomputed vector
quantization (FPVQ), 57

fast sorting method, 126
fast VQ algorithm, 110
feature extraction, 18
fidelity, 274
fidelity mode, 170
fidelity penalty, 164
fidelity threshold, 166
field campaign, 154, 225, 302
field of view (FOV), 108
field programmable gate array
(FPGA), 249

filter bank, 63
final product, 4
fingerprint, 120
first-in first-out (FIFO), 275
first-order predictor, 77
fixed-compression-ratio mode, 165
fixed-fidelity mode, 166
fixed length, 40
flat field, 198
flexibility, 61
floating point, 62
floating-point DWT, 86, 88
floating-point wavelet transform, 63
focal plane, 236
focal plane frames, 250
focal plane image, 45
footprint, 57
forest, 218, 229
forest density, 305
forest height, 305
forest regeneration ecosystems, 305
forest regeneration map, 305

forest scene type, 117
forest species classification, 316
forestry, 301
forestry inventory, 316
forward-error correction, 238
Fourier frequencies, 228
Fourier transform spectroscopy
(FTS), 1

fraction image, 218, 228, 229, 308,
315

frame-based algorithm, 97
frame-based image format, 76
framework, 162, 275
frequency, 40
frequency domain, 26
frozen detector elements, 212
full-frame compression, 94, 97
full-prediction mode, 101
full-reference metrics, 5
full-resolution data, 349
full search, 110
fully redundant regional datacube,
182

fundamental sequence, 80
fusion, 28
fuzzy logic, 35
fuzzy prediction, 35

G
gaggle, 94
galaxy, 83
gamma function, 23
gamma ray, 83
Gamma-Ray Spectrometer (GRS),
82, 83

Gaussian blurs, 26
Gaussian distribution, 58
Gaussian random variable, 243
generalized Gaussian, 22
generalized Lloyd algorithm
(GLA), 37, 110

geo-referencing, 302
geological rock mapping, 306
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geology, 301
geometric distortion, 236
geometric mean, 25
global blur, 26
global carbon cycle, 3
Goddard High-Resolution
Spectrometer (GHRS), 82

goethite, 311
golden spectra, 170
Golomb code, 94
Golomb coding, 40–41
Golomb power-of-two coding
(GPO2), 40, 42

granule, 2, 59, 198
graphical user interface (GUI), 273
grass, 218, 229
grating, 236
gravel road, 218, 229
gray level, 26
grayscale, 38
grazing-incidence reflecting
telescope, 85

Greater Victoria Watershed District
(GVWD), 191

green crustose lichen, 306
ground control point, 305
ground receiving station, 2
ground sample distance (GSD), 1
ground sample size, 118
ground swath, 1
ground truth, 225, 227, 298, 302
groups of species, 305

H
halloysite, 314
Hamming distance, 110, 138, 161,
351

handshake, 262
hardware configuration, 272
hardware implementation, 249, 273
hardware timing, 273, 284
hardware topology, 276
header, 238

healthy vegetation, 315
Heat-Capacity Mapping
Radiometer (HCMR), 82, 84

hematite, 311
heuristic parameter selection, 94
hierarchical pyramidal structure, 64
hierarchical self-organizing cluster
vector quantization (HSOCVQ),
168, 295

hierarchical splitting, 170
high-energy phenomena, 85
high-frequency component, 63
high-frequency noise, 194
high-pass filter (HPF), 23, 63
high-speed hardware, 76
high-speed integrated circuit
hardware description language,
249

high-speed serial link, 250
histogram, 22, 151
histogram-based segmentation, 151
horizontal subband, 63
housekeeping control logic, 260
Hubble Space Telescope (HST), 82
Huffman code, 40, 78
human brain, 17
human visual system (HVS), 17
human-readable, 273
HyCorr, 314
HyMap, 314
hypercomplex, 12, 14
Hyperion, 1, 103, 198, 316
hyperplane, 59
hyperspectral, 1, 98
hyperspectral analysis tool, 347
hyperspectral image browser, 346
Hyperspectral Imager, 82
hyperspectral visualization tool,
347

hypertext markup language
(HTML), 358

HypOT, 315
hypothesis test, 296
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I
ICER, 95
ICER-3D, 199
ID, 79
identifier, 79
illite, 311
illumination, 148
image archiving facility, 347
image data compression (IDC), 76,
86

image frames, 76
image information, 17
image processing, 107
image quality criteria, 5
image quality metrics, 4
image acquisition, 211
image-quality index, 12
imaging Fourier transform
spectrometer, 1

imaging instrument, 82
imaging optics, 236
impulsive noise, 177
index, 37, 107, 253
index map, 108, 120, 143, 163,
237–238, 352

inequalities, 42
inequality elimination method, 111
inequality-of-cosines law, 111
inflection of the NIR vegetation
reflectance curve, 324

inflection point, 166
inflection-point-detection operating
mode, 166

information amount, 17
information theory, 2, 24
infrared, 1
infrared atmospheric sounding
interferometer (IASI), 198

infrared region, 84
initialization, 66, 115
input symbol, 40
instrument defects, 211
instrument noise, 177, 191

integer DWT, 86, 88
integer wavelet transform (IWT),
38, 39, 63

integrated circuit (IC), 264
intensive field campaign (IFC),
225

interband, 14, 35
interband-scaling lookup table, 54
intermediate product, 4
internal RAM, 262, 284
international standard, 197
International Organization of
Standards (ISO), 75

Internet, 347
interoperability, 75
interpolation, 21
interstellar medium, 82
intraband, 14, 35
intrinsic noise, 166, 178, 191, 192,
298

inverse Gaussian red-edge spectral
parameters, 325

irreversibility, 34
isoclustering, 149, 151
isolated over-responsive detector
elements, 212

iteration loop, 109
iterative back-projection, 21
iterative error analysis (IEA), 318
iterative process, 109, 113

J
Jasper Ridge, 48, 67, 113
Java applet, 353
Java client running, 347
Java language, 273
JPEG, 24, 76
JPEG-lossless, 95
JPEG-LS, 95, 103, 200
JPEG2000, 76, 95, 199, 296
JPEG2000 BA, 199
JPEG2000 multicomponent, 62
JPEG2000 SD, 199
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K
k-dimensional (k-d) tree, 111
k split-sample options, 80
kaolinite, 123, 311
Karhunen–Loève transform (KLT),
38, 39, 61

kernel, 168
Key Lake, 21
keystone (KS), 211, 228, 235, 309
Kullback–Leibler distance, 10, 22

L
Landsat, 82, 84
Landsat Thematic Mapper, 82
laser beam, 83
latency, 253
leaf area index (LAI), 224, 297
leaf chlorophyll content, 296
least-significant bits, 184
least squares, 36
lenses, 236
lichen, 306
lidar, 1
lifting scheme, 39
Linde–Buzo–Gray (LBG)
algorithm, 58, 109, 251, 278, 351

linear prediction, 57
linear spectral unmixing (LSU),
229, 307

list of insignificant sets (LIS), 66
list of significant pixels, 66
local difference value, 99
local HIBR applet, 349
local hyperspectral library, 349
local sum, 99
locally averaged, interband-scaling
quantized-index lookup table
(LAIS-QLUT), 56

LOCO-I, 46
logarithm, 25
logging road, 336
longer vector, 205
lookup table (LUT), 34, 37, 53

lossless data compression (LDC),
44, 76

lossless multispectral and
hyperspectral image compression,
76

lossy compression, 33
lossy-to-lossless compression, 38,
61, 63, 66

low altitude, 67
low complexity, 38, 200
low-frequency component, 62
low-pass filter, 23, 63, 194, 235
low resolution, 18
luminance function, 15
luminance-weighted norm, 26
Lunar Lake, 67

M
M-CALIC algorithm, 62
MacDonald Dettwiler and
Associates (MDA), 346

machine readable, 273
macro-variable, 240
mapbits, 238
mapped prediction residual, 99,
102

mapping, 77
marginal analysis, 59
Mars Observer, 82–83
mathematical model, 298
matrix factorization theory, 61
maximum absolute difference
(MAD), 7

maximum likelihood classification,
305

maximum spectral angle (MSA), 10
maximum spectral information
divergence (MSID), 10

maximum value, 7, 118
mean absolute error (MAE), 8
mean and standard deviation
evaluation, 311

mean deviation binary codevector, 139
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mean-distance-order partial search,
137

mean-normalized vector
quantization, 39

mean of spectral vector, 9
mean-square error (MSE), 6
mean-square spectral error (MSSE),
9

mean-squared reconstruction error,
25

mean SSIM, 16
median, 42
medical image, 178
Medium-Resolution Imaging
Spectrometer (MERIS), 3

membership, 57
membership degrees, 36
memory, 180
memory-efficient implementation,
76

metadata, 345
mica, 314
mineral exploration, 313
mineral mapping, 297, 314
minimal distance selector (MDS),
259

minimum distance detection
(MDD), 243

minimum distance partition (MDP),
109

minimum sum, 47
misalignment, 228
misregistration, 5
Moderate-Resolution Imaging
Spectroradiometer (MODIS), 198

modularity, 249
modulation transfer function
(MTF), 4

Moffet, 48
molecular cloud, 83
monochromatic image, 107, 236
most-significant bit, 66, 184
motion compensation, 66

movable window, 143
moving average classification
(MAC), 312

MPEG, 61
Mt. Fitton talc mines, 314
multidimensional data, 162
multidisciplinary, 297
multilifting, 61
multithresholding, 150
multiple-bit burst errors, 238
multiple codebooks, 37
multiple-subcodebook algorithm,
149

multispectral, 1, 98
multispectral images, 6
multispectral prediction, 85
multispectral sensor, 2, 5
multistage, 162, 238
multivariable, 13
mutual information, 17

N
navigation, 1
navigation satellites, 1
near-infrared, 1
near-infrared reflectance maximum,
324

near-infrared reflectance shoulder,
324

near-lossless compression, 33, 166
nearest neighbor (NN), 53
nearest-neighbor partitions, 124
nearest-neighbor prediction, 35, 44
nearest-neighbor search, 37
nearest-partition set, 124
negative value, 224
neighbor-oriented local sum, 100
neighboring pixel, 57
neighboring sample, 99
network switch, 250, 264
no-compression option, 81
no-reference metrics, 5, 24
noise free, 177, 191
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noise profile, 192
noise-removed radiance (NRR),
232

noisy radiance (NR), 232
nonimaging instrument, 82
nonaggregated class, 316
nonconvex, 59
nonlinear filter, 298
nonlinear prediction, 36
nonnegative integer, 42
nonsingular matrix, 61
nonstationary, 16
nonuniformity, 223
nonvegetated pixel, 327
normalized difference vegetation
index (NDVI), 150, 351

notch filter, 228
number of bits per index, 238
number of coded bits, 241
number of columns of the datacube
scene, 238

number of information bits, 241
number of rows of the datacube
scene, 238

number of spectral bands, 238, 240

O
objective image-quality index, 11
ocean scene, 150
ocean ship wake detection, 312
oceanography, 301
offline design, 111
offline procedure, 36
offset, 223
oil tank, 315
Old Jack Pine, 324
omission error, 306
onboard near-lossless compression,
168

one-layer coding, 83
online data dissemination, 347
online data storage, 347
online design, 170

optimal hardware implementation,
273

optimal linear predictor, 36
optimization, 211
orbit, 1
original data, 191
original image, 5
original spectrum, 121
output port, 253
overall noise, 194
overflow, 285
overflow bits, 49
overhead, 79, 148, 183
overlapping two adjacent regions, 182

P
p-least sorting, 127
packet size, 79
packetization, 87
pan-sharpening, 27
panchromatic image, 1, 6, 29
panchromatic sensor, 2
parallel processing, 61, 180, 249, 276
partial distance, 115
partial distance search (PDS), 137
partial information, 18
partition, 115, 253
patent, 168
pattern recognition, 107
PCI, 151
PCI bus, 250
peak signal, 118
peak signal-to-noise ratio (PSNR),
7, 118

perceived visual quality, 6
percent standard error, 310
percentage maximum absolute
difference (PMAD), 8

percentage standard error, 219
perceptual quality, 18
performance penalty, 110
periodic noise, 218, 228, 309
PHILLS2, 312
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photon, 177
photonic effects, 4
pipeline processing, 253
pitch, 305
plastic tarp, 212
Pleiades, 199
point spread function (PSF), 4
Poisson distribution, 177
polythene, 212, 309
postclassification filter, 305
postfiltering, 61
precision agriculture, 296
predefined criteria, 234, 297, 305
predetermined fidelity, 170
predetermined threshold, 168
prediction, 77
prediction-based lossless
compression, 34

prediction error, 34, 78
prediction residual, 99
predictors, 40
prefiltering, 61
prefix-free code, 40
preprocessing, 181, 211, 223, 228, 298
preprocessor, 76
preselected predictor, 52
previous pixel, 34
previous regional codebook, 188
previous spectral bands, 99
principal component analysis
(PCA), 35

print circuit board (PCB), 264
prism, 236
probability, 40
probability density functions, 22, 23
Probe-1, 306, 310, 315
processing capability, 3
processing time, 159
product operation, 110
programming bus interface, 262
progressive performance, 39
protocol, 75
prototype, 283

pseudo-color editing, 356
Ptolemy, 273
pull-down menu, 358
pulse code modulation (PCM), 25
purest pixel, 123
push-broom-type sensor, 86, 102
pyramidal, 63

Q
Q index, 6, 11
q-norm, 29
Q2n index, 14
Q4 index, 12
quadratic, 237
quadtree, 67
qualitative, 298
qualitative criteria, 218
quality assurance procedure, 299
quality limit, 87
quality metrics, 4
quantitative, 298
quantitative criteria, 218
quantization, 26
quantization noise, 177
quantum fluctuation, 177
quartzite, 306
quaternion, 12
quick-look image, 336
quick looking, 121, 345
QuickBird, 11
QuickSort, 127

R
radiance, 211
radiance data, 178, 349
radio-wave spectrum, 83
radiometric calibration, 178, 298
radiometric conversion, 223, 228
radiometric noise, 4
radiometric normalization, 211
radiometric precision, 1
random error, 194
random noise, 228, 231
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raster-scan order, 37
raster scanning, 205
rate-distortion curve, 200
rate-distortion performance, 198
raw data, 211
real time, 18
real-time data compression
emulator, 272

receiver side, 20
reconfigurable, 264
reconstructed datacube, 123, 192
reconstructed image, 33
reconstructed spectrum, 121
reconstruction fidelity, 165, 232
recursive HSOCVQ, 178, 185
red-edge indices, 295, 324
red-edge reflectance ratio index, 324
reduced prediction mode, 101
reduced-reference metrics, 5, 18
redundancy, 33, 183
redundant index map, 183
reference image, 5
reference predictor, 56
reference sample, 78
refinement pass, 66
reflectance data, 178, 349
reflectance datacube, 225
reflective light, 1
regional datacube, 179
regions of interest (ROIs), 218, 296
register, 253
relative global error in synthesis, 10
relative-mean-square error
(ReMSE), 7

relative root-mean-square error
(Re-RMSE), 227

remote sensing application, 218
remove negative spikes, 317
reorganized vector, 205
residual, 35
resilience to bit errors, 86, 238
resolution enhancement, 18
resolution ratio, 29

reused codevector, 186
reused codevectors, 188
reversible, 34, 77
reversible compression, 33
reversible discrete cosine transform,
38

reversible integer-to-integer
transform, 38, 61

reversible time-domain lapped
transform (RTDLT), 62

reversible transform, 39
RGB, 356
RGB image, 191
Rice algorithm, 78
Rice coding, 40
Rice encoder, 44
ringing artifact, 26
river bank, 336
roam, 354
roll, 305
root-mean-square error (RMSE), 5,
6

root-mean-square spectral error
(RMSSE), 9

root relative-mean-square error
(RReMSE), 7

S
salt-and-pepper noise, 177, 298
sample-adaptive entropy coding
approach, 102

sample splitting option, 81
SAMspade, 314
sand, 218, 229, 315
Santa Barbara, 315
saturation, 212, 219
scalability, 249
scalar distance, 252
scalar quantization, 107
scan line, 57
scanning order, 53
scatter plot, 315
Scenario Builder, 272, 273, 276
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scene segmentation, 149
score, 310
seamless conjunction, 185
search complexity, 110
search process, 111
search range, 141
season, 148
second-extension option, 80, 81
second-order predictor, 77
seed spectrum, 357
SegByteLimit, 90
segment, 87, 89
segment boundary, 87
segment header, 87, 89, 92
segment line w, 205
segment size, 89
segmentation map, 154
self-deception, 297
self-organizing feature map, 109
semivariances, 297
sensor attitude correction, 305
sequence of states, 241
serial link, 264
service control module, 349
set partitioning in hierarchal trees
(SPIHT), 67, 95

shadow, 315
Shannon entropy, 24
ship wake, 312
short-wave infrared (SWIR), 85, 150
Short-Wave Infrared Full-Spectrum
Imager, 117, 212, 309

shortest fitting word-length, 184
shot noise, 177
side information, 57
Sierra Nevada, 84
signal intensity, 177
signal processing, 107
signal-to-noise ratio (SNR), 4, 7, 118
signature information, 166
signed data, 223
signed integer, 99
significance, 298

significance level, 219
simulator, 275
sine, 111
single-bit error, 238
single-bit event, 182
single-bit flips, 184
single-event upset (SEU), 211, 237
single-lookup-table prediction, 53
sliding window, 17
slit, 236
slit curvature, 228, 309
slope binary codevector, 139
Small Satellite Technology Infusion
(SSTI), 82, 85

smile, 211, 228, 235, 309
smoothing effect, 4
Soft X-Ray Telescope, 82, 85
software environment, 273
software implementation, 273
soil condition, 302
solid state photodetector, 84
SORTER, 276, 283
sorting pass, 66
sounder, 98
source coding, 2
source packages, 182
soybean, 225, 227
spacecraft, 87
spaceflight, 75
spatial correlation, 57
spatial decorrelation, 35
spatial distortion, 5, 211, 235
spatial distortion index, 29
spatial metadata search, 349
spatial nonlinearity, 236
spatial pattern, 226, 302, 336
spatial resolution, 1, 148
spatial size of a datacube, 238
spatial-resolution-enhanced image, 20
spectral amplitude, 307
spectral angle, 9
spectral angle mapper (SAM), 10,
121, 296, 307
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spectral anomaly, 121
spectral band, 1, 5
spectral band configuration, 148
spectral correlation, 9, 35, 57
spectral distortion, 5, 211, 235
spectral distortion index, 28
spectral domain, 108
spectral feature, 121
spectral feature fitting, 311
spectral-feature-based binary code
(SFBBC), 110, 138, 139, 142

spectral feature matching, 138
spectral fuzzy-matching pursuits
(SFMP), 36, 56

spectral index, 149
spectral information, 166
spectral line curvature, 236
spectral profile, 108, 122
spectral relaxation-labeled
prediction, 56

spectral resolution, 1
spectral shape, 307
spectral similarities, 150, 277
spectral–spatial smoothing
operation, 232

spectral unmixing, 121, 123, 229
spectral vector (SV), 6, 168, 179,
181, 251, 258, 276

spectral vector memory, 260
spectrograph, 236
spectrum, 108
spectrum-oriented least squares, 36
spectrum profile, 6
spikes, 212
spurious spike, 299
square blocks, 36
squared distance, 252
stability of the product, 298
Stage#, 238
stage codebook, 184
stage number, 238
StageStop, 90
standard deviation, 58, 194

standards, 75
state machine, 242
state machine controller, 262
statistical measures, 232
statistical test, 298
steerable pyramid wavelet
transform, 23

stellar, 82
straight entrance, 236
stream pipe, 275
strip-based algorithm, 97
strip-based input formats, 76
strip compression, 94
stripe, 317
striping, 305
structural distortion measurement, 6
structural information, 6
structural similarity (SSIM) index, 15
subidentities (SIDs), 46
subband image, 63, 88
subbands, 23
subclusters, 169
subcodebooks, 110, 149
subcube h � w, 205
subdatacube, 180
submillimeter wave, 83
Submillimeter-Wave Astronomy
Satellite (SWAS), 83

subsampled training subset, 158
subsampling, 157, 278
subsampling rate, 158
subvector, 37, 205
successive approximation
multistage vector quantization
(SAMVQ), 162, 295

suitability, 347
sum of absolute distance (SOAD),
252

sum of squared distance (SOSD), 252
supervised classification, 149, 171,
316

support vector machine (SVM), 312
surface reflectance, 296
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symbol, 40
synchronization, 40
synchronization marker, 87
synthesizer, 275
synthetic target, 21, 212, 308
Système Pour l’Observation de la
Terre (SPOT), 1

T
T-test, 219, 301, 310
TacSat-3, 2
tamarack, 154
target detection, 218, 228
telemetry channel, 2
temporal metadata search, 349
tentative codevector, 168, 185
terra cotta roof, 315
test image, 5
Thematic Mapper (TM), 84
thermal infrared, 1
thermal noise, 177
third-order predictor, 78
threshold, 34, 164
throughput, 180, 249, 284
time-domain lapped transform
(TDLT), 39, 61

toggle button, 358
topological structure, 111
topology, 249
trade-off, 3, 87
trade-off study, 249
training data, 36
training sequence, 107, 115, 140
training set size, 168
training set subsampling, 326
training step, 107
training vector, 111, 115
transfer frame, 182
transform-based lossless
compression, 34, 38

transmission bitrate, 2
transmission downlink channel, 86
tree structure, 170

tree-structure codebook algorithm,
109

tree-structured VQ, 170
trellis diagram, 242
triangle inequality elimination
(TIE), 111, 137

triangular elementary reversible
matrices (TERMs), 61

triple-module redundancy, 238
triplet, 241
TRWIS-III, 305, 313
two-layer coding, 83

U
ultraspectral sounder, 1, 57
ultraviolet, 1
unary coding, 41
uncertainty, 178
unconstrained VQ, 110
uniform distribution, 177
unit-delay predictor, 77
universal code, 42
universal codebook, 147
universal image-quality index, 6, 11
universal source encoder for space
(USES), 44

unsigned integer, 99
unsupervised classification, 151,
171, 308

updated codevector, 254
uploaded, 60
upper-triangle matrix, 126
urban scene, 117
user assessment, 295
user product search, 356
user trials, 272

V
variable coefficient predictors, 50
variable-length code, 78
variable-length encoder, 49
variance of spectral vector, 9
variogram, 297
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vcd files, 275
vectorbits, 240
vectorbits[k], 240
vector, 107
vector accumulator, 254, 259
vector distance, 251
vector distance measure, 252
vector quantization (VQ), 34, 57,
107, 162

vector-reorganizing schemes, 206
vegetated scene, 150
vegetation, 152
VEGETATION, 199
vehicle, 315
vertical subband, 63
very high-speed integrated-circuit
hardware description language
(VHDL), 249, 272

vessel, 312
vicarious calibration, 228, 309
viewing angle, 148
viewing field, 6
vignette, 180
vinyl turf mat, 212, 309
virtual codebook, 164
visible near-infrared (VNIR), 85
visible region, 84
visual communication systems, 18
visual examination, 302
visual information fidelity (VIF), 17
visual near-lossless, 178
visual perception, 15
visual quality, 17
visualizing monochrome, 356
Viterbi algorithm, 241
Vog1, 324
Voltron, 314
Voronoi cell, 110
VQube, 346

W
wake pixel, 312
wake-pixel classification map, 312

water index, 150
water-vapor peak, 232
wavelength of the reflectance
maximum, 324

wavelength range, 1
wavelet, 22
wavelet coefficients, 22
wavelet-packet transform (WPT),
63, 67

wavelet subband, 23, 87
wavelet transform, 22, 34
weather forecasting, 1
web browser, 353
weight factor, 95
weighted sum, 99
wheat, 225, 227
wheat field, 302
whisk-broom, 102
white noise, 4
white tarp, 309
wide bus, 250
Wide Field Planetary Camera
(WFPC), 82, 85

word-length, 109
word-length of each codevector, 240
workstation, 118

X
xy coordinate system, 124

Y
yaw, 305
Yellowstone, 103
Young Jack Pine, 324

Z
Z-test, 301
zeroblock option, 80–81
zero-crossing, 27
zeroblock, 67
zerotree, 39, 95
zerotrees of wavelet transforms, 39
zoom, 354
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