
Technical University of Košice

Faculty of Electrical Engineering and Informatics

Department of Electronics and Multimedia Communications

Secured opto-electronic system
for product traceability

Architecture, design and feasibility study

Master’s Thesis

L’uboš Gašpar

Supervisor: Assoc. Prof. Miloš Drutarovský, PhD.

Consultant: Prof. Viktor Fischer

Košice 2009

Metadata Sheet
Author: L’uboš Gašpar

Thesis title: Secured opto-electronic system for product traceability

Subtitle: Architecture, design and feasibility study

Language: english

Type of Thesis: Master’s Thesis

Number of Pages: 76

Degree: Master degree

University: Technical University of Košice

Faculty: Faculty of Electrical Engineering and Informatics (FEI)

Department: Department of Electronics and Multimedia Communica-

tions (DEMC)

Study Specialization: Electronics and Telecommunication Engineering

Town: Košice

Supervisor: Assoc. Prof. Miloš Drutarovský, PhD.

Consultant(s) : Prof. Viktor Fischer

Date of Submission: 7. 5. 2009

Date of Defence: 27. 5. 2009

Keywords: traceability, Embedded digital systems, data securization , applied

cryptography, reconfigurable circuits, FPGA, cryptoprocessors, ARM

Category Conspectus: Technika, technológia, inžinierstvo; Elektronika

Thesis Citation: L’uboš Gašpar: Secured opto-electronic system for product traceabil-

ity. Master’s Thesis. Košice: Technical University of Košice, Faculty

of Electrical Engineering and Informatics. 2009. 76 pages

Title SK: Návrh opto-elektronického systému s kryptografickým zabezpečením

pre kontrolu originality výrobkov

Subtitle SK: Architektúra, návrh a štúdia uskutočnitel’nosti

Keywords SK: vystopovatel’nost’, vložene digitálne systémy, hardwarové zabezpeče-

nie údajov, aplikovaná kryptografia, rekonfigurovatel’né obvody,

FPGA, kryptoprocesory, ARM

Abstract in English

The goal of this thesis is an architecture design, feasibility study of the secured opto-

electronic system for product traceability and prototype realization of selected blocks.

The thesis demonstrates the implementation of the embedded system based on Actel Fu-

sion FPGA (Field-programmable Gate Array) interconnected with the external small cam-

era from ST Microelectronics. The system communicates with the PC via Cypress USB

interface. The core of the system represents the SoC (System On Chip) in FPGA based

on the ARM7TDMI processor. The system was implemented in the Actel System Man-

agement board based on Fusion FPGA. The thesis also contains a discussion about the

implementation of the image processing algorithms with products’ authentication, as well

as analysis of the possible implementations of the cryptoprocessor for confidentiality and

authenticity of transferred data. One part of the thesis deals with the problems related to

the implementation of the AES cipher (Advanced Encryption Standard) in non-volatile

FPGAs.

Abstract in Slovak

Ciel’om práce je návrh architektúry, štúdia uskutočnitel’nosti zabezpečeného optoelek-

tronického systému pre vystopovanie produktov a realizácia prototypu z vybraných blokov.

Práca demonštruje implementáciu vloženého embedded systému založeného na Actel

Fusion FPGA (Field-programmable Gate Array) prepojeného s miniatúrnou externou

kamerou od spoločnosti ST Microelectronics. Systém komunikuje s PC pomocou Cy-

press USB rozhrania. Jadro systému je tvorené SoC (System On Chip) založeným na

ARM7TDMI procesore. Tento SoC bol implementovaný vo Fusion FPGA, ktorý je

súčast’ou Actel System Management board. Práca tiež zahŕňa diskusiu o implementácii

algoritmov pre spracovanie obrazu spolu s autentifikáciou produktov, a taktiež analýzu

možných implementácií kryptoprocesora pre utajenie a autenticitu prenášaných dát. Čast’

práce je venovaná problematike implementácie AES (Advanced Encryption Standard)

šifrátora v nevolatilných (z ang. non-volatile) obvodoch FPGA.

Thesis assignment

Study Specialization: Electronics and Telecommunication Engineering

Thesis title: Secured opto-electronic system for product traceability

Extent of Thesis: Recommended number of pages: 40 and more

Date of Assignment: 20. 2. 2009

Date of Submission: 7. 5. 2009

Head of the Department: Prof. Ing. Dušan Levický, CSc.

Dean of the Faculty: Prof. Ing. Liberios Vokorokos, PhD.

Outline of Thesis:

1. Design the architecture of opto-electronic digital system for secured traceability of products

based on the FPGA and verify the functionality of its particular parts. Future automated

system has to capture a digital image of the selected region on the cover of the product,

compute an optical signature of the product according to a simple algorithm, encrypt the

signature and transfer it via the USB to the connected PC.

2. Design and verify functionality of the image acquisition from the camera to FPGA and the

transfer of the images to a PC via the USB interface.

3. Analyze the possibility of the realization of selected mathematical operations for the optical

signature calculation by the embedded ARM processor in the FPGA

4. Design a simple cryptoprocessor with limited instruction set and verify the possibility of its

realization inside the FPGA.

5. Design the method for interconnecting the cryptoprocessor with the ARM processor.

6. Write the documentation according to the instructions given by the supervisor of the thesis

(i.e. main part of 40 pages or more, appendices according to the type of the thesis, provide

the main part and appendices in the electronic form).

Declaration

I hereby declare that this thesis is my own work and effort. Where other sources of

information have been used, they have been acknowledged.

Košice 7. 5. 2009 .

Signature

Acknowledgement

I would like to thank to my family for their unconditional love and support. I would

like to express my sincere thanks to my supervisor Assoc. Prof. Miloš Drutarovský for his

valuable recommendations and carefull review of the thesis. Special mention and thank

should go to Prof. Viktor Fischer for his constant and constructive guidance throughout

the thesis, support and patience during long phone calls and discussions. To all other who

gave a hand, I say thank you very much.

Preface

Counterfeiting of the products represents a very serious threat nowadays. The trend of

counterfeiting is as old as the humankind itself. However, the development of more ad-

vanced techniques of production goes hand in hand with enhancements in counterfeiting

techniques. In order to be able to distinguish the original products from the fake ones,

production techniques have to develop faster than enhancements in counterfeiting tech-

niques. One of the promising solutions is the miniaturization of the optical markers for

recognition of originals. However, a new issue shows up. This miniature markers have to

be localized, scanned and the originality of the product has to be confirmed. Therefore it

is essential to design secured opto-electronic system for product traceability.

Several years ago, the Hubert Curien Laboratory in Saint-Etienne, France together

with the SignOptic private company have proposed an image processing algorithm en-

abling cheap and reliable product recognition and authentication. The system is already

validated in industrial applications working in product area (factory). However, industrial

needs have shown that it would be very useful to build a simple and portable device that

should be able to authenticate products as well as to authenticate the factory in a hos-

tile environment. The design of a secured embedded system suitable for such kind of

applications has become the aim of a research and development project of the AMTeS

(Architectures Matérielles pour le Traitement et la Sécurisation des Données) research

team from the laboratory that is in charge of Professor Viktor Fischer. Professor Fischer

and his team have invited me two times in order to work on the project. The objective of

the first stay during the summer 2008 was to implement an image acquisition embedded

system connected to a PC via USB interface. The aim of the second stay was the work on

the overall system design. Although the system should be small and handy, its architec-

ture will be certainly very complex and its detailed structure is not known, yet. For this

reason, the objective of my work was to propose an architecture that would be:

1. evolutive (in order to permit to upgrade the system)

2. embeddable in digital devices (in order to be small in size)

3. featuring sufficient hardware and software means (in order to implement easily se-

rial algorithms and parallel hardware structures)

4. secured (containing cryptographic means as random number generator and crypto-

processor)

5. easily connectable to internet

For the above-mentioned reasons, AMTeS team has selected the reconfigurable logic de-

vices (FPGAs) as the hardware platform.

The work on the project needed a large spectrum of knowledge and abilities: starting

from programming and description languages like VHDL (Very High Speed Integrated

Circuit Hardware Description Language), C and C++, communication protocols like I2C

(Inter-Integrated Circuit) and USB, microprocessor architectures, image processing, ap-

plied cryptography and cryptographic protocols. It was not easy to acquire all the nec-

essary knowledge in a relatively short time. But the fact that I have the possibility to

participate on the development of a product dedicated to very important industrial appli-

cations, has motivated me very much.

Contents

Introduction 1

1 Overview of the project 3

2 Description of hardware platform 7

2.1 Actel system management board . 8

2.2 Actel Fusion FPGA architecture . 9

2.2.1 Actel Fusion . 9

2.2.2 M7AFS600 device . 10

2.2.3 Fusion core . 10

2.3 IP processor based on ARM7TDMI . 12

2.3.1 The ARM7TDMI-S processor architecture 12

2.3.2 The Actel CoreMP7 processor architecture 13

2.4 Micronic development module with Cypress USB 13

2.5 X24 camera integration kit . 15

2.6 STM VS6524 camera . 16

2.6.1 Initialization of the camera . 18

2.6.2 Output data format and synchronization 19

2.6.3 I2C communication description 21

3 Description of the software development tools 24

3.1 Libero IDE . 24

3.2 ModelSim . 27

3.3 Keil µVision 3 . 29

3.4 C++ design environment (Borland C++ Builder) 30

4 Structure of the image acquisition subsystem 32

4.1 Interconnection of the development boards 32

4.2 System on chip based on the ARM7 processor 33

4.3 Image acquisition . 34

5 Optical signature extraction algorithm 37

5.1 Description of the image processing, signature extraction and comparison

algorithm . 37

5.2 Hardware implementation of image processing, signature extraction and

comparison algorithms . 40

6 Analysis of the cryptoprocessor core 43

6.1 AES Encryption/Decryption module . 43

6.1.1 Implementation of the shared AES encryptor/decryptor core . . . 44

6.1.2 Implementation of S-boxes . 46

6.1.3 Implementation of AES enc/dec core in FPGA 52

6.2 Analysis of cryptoprocessor core . 53

6.2.1 Modifiability analysis of available open-source processors 54

6.2.2 Design of new cryptoprocessor architecture 57

6.3 Interconnection of cryptoprocessor with ARM7 62

7 Software implementation 65

7.1 ARM7 firmware design . 65

7.2 USB transport protocol . 66

7.3 PC software implementation . 66

7.3.1 PC interface from user’s point of view 67

8 Conclusion 70

Bibliography 72

Appendices 76

List of Figures

1 – 1 Block diagram of the secured opto-electornic system for product trace-

ability . 3

1 – 2 Image acquisition development stage 5

1 – 3 S-box development stage . 5

1 – 4 AES development stage . 6

1 – 5 Cryptoprocessor development stage . 6

1 – 6 Development and analysis of potential implementation of image pro-

cessing and product authentication stage 6

2 – 1 Actel System Management Board . 9

2 – 2 Structure of Actel Fusion . 11

2 – 3 Structure of VersaTile . 11

2 – 4 Ultra-Fast Local Lines connected to the eight nearest neighbors 12

2 – 5 ARM7TDMI-S architecture . 14

2 – 6 Micronic USB_CYPRESS module - front side 15

2 – 7 Micronic USB_CYPRESS module - back side 15

2 – 8 X24 camera integration kit . 16

2 – 9 Camera chip VS6524 in scale 7:1 . 17

2 – 10 Simplified block diagram of ST VS6524 camera chip 18

2 – 11 VGA 30fps output frame . 19

2 – 12 nTH pixel in video stream . 20

2 – 13 Beginning of the frame . 20

2 – 14 End of the first line . 20

2 – 15 End of the frame . 21

2 – 16 Write operation with the internal register 0xC003 22

2 – 17 Read operation with the internal register 0xC003 23

3 – 1 Libero IDE . 25

3 – 2 Actel Designer tool . 26

3 – 3 Waveform view in ModelSim . 28

3 – 4 Keil µVision 3 development tool . 29

3 – 5 PC software development environment Borland C++ Builder 30

4 – 1 Interconnection of development boards forming the system 32

4 – 2 System on Chip based on ARM7 processor 33

4 – 3 Illustration of the DMA controller with two clock domains 35

4 – 4 State diagram of the main image acquisition state machine 36

5 – 1 Special uncopyable marker for optical signature extraction 37

5 – 2 A) Scan of original print, B) Binarized and filtered, C) Angle estimation 38

5 – 3 A) Rotated, B) Dot localized, C) Centered and trimmed 38

5 – 4 Original print: scan A and scan B . 39

5 – 5 Fake print: scan A and scan B . 39

6 – 1 Shares AES Encryption/Decryption core 45

6 – 2 Key expansion block for forward and backward expansion 47

6 – 3 RCON and Inv_RCON constants generator 47

6 – 4 S-box and S-box−1 generation and connection to TDPRAM 48

6 – 5 LFSRs for generation of multiplicative inversed pairs 49

6 – 6 S-box generator with basis transformation 52

6 – 7 Detailed implementation of the S-box in TDPRAM 53

6 – 8 Block diagram of the cryptoprocessor 58

6 – 9 Implementation of cryptoprocessor with 128-bit datapath 59

6 – 10 Implementation of cryptoprocessor with 32-bit datapath 62

6 – 11 Conversion of 4 successive 32-bit words into 128-bit word 63

6 – 12 Conversion of 128-bit word into 4 successive 32-bit words 63

6 – 13 Interconnection of cryptoprocessor with ARM7 63

7 – 1 Communication model between ARM7 and a PC 66

7 – 2 Main window of the PC interface . 67

7 – 3 Application in the Debug mode . 68

7 – 4 About window in the PC interface . 69

List of Tables

5 – 1 Levenshtein distance of different prints and corresponding scans 40

5 – 2 Basic estimation of required ARM7 cycles as well as required logic re-

sources for implementation of particular operations within the algorithm. 42

6 – 1 Architecture and implementation comparison of open-source processors 55

6 – 2 Comparison of code properties of open-source processors 56

6 – 3 Selected open-source processors to be reused in cryptoprocessor 57

List of Symbols and Abbreviations

2D Two dimensional

ABC APB Bus Controller

AES Advanced Encryption Standard

AHB Advanced High-performance Bus

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

AMD Advanced Micro Devices

AMTeS Architectures Matérielles pour le Traitement et la Sécurisation des Données

ANR Agence Nationale pour la Recherche - France national agency for research

APB Advanced Peripheral Bus

ARM Advanced RISC Machine. IP owned by ARM Ltd.

ASB Advanced System Bus

ASIC Application Specific Integrated Circuit

AT Affine Transfomation

AT_BT Combined Affine Transformation and Basis Transformation

BCB Borland C++ Builder

BT Basis Transformation

C general-purpose computer programming language developed in 1972 by Dennis

Ritchie at the Bell Telephone Laboratories

C++ general-purpose computer object programming language developed from C

programming language

CBC Cipher Block chaining – confidentiality block cipher mode

CCC Clock Conditioning Circuit

CCM Counter with CBC-MAC is a confidentiality and authenticity block cipher mode

CE Chip Enable signal

CFB Cipher FeedBack – confidentiality block cipher mode

CMAC Cipher MAC – authenticity block cipher mode

CMOS Complementary Metal-Oxide-Semiconductor

cmp Comparison

CTR Counter mode – confidentiality block cipher mode

CTRo Cipher-Text Register output

DDR Double Data Rate

DFF D-flip-flop circuit

DI Data In

DIP Dual In-line Package of switches

DMA Direct Memory Access

DO Data Out

DPRAM Dual-Port RAM

ECB Electronic CodeBook – confidentiality block cipher mode

ES Embedded System

FBGA Fine Ball Grid Array

FIFO First In, First Out

FIPS Federal Information Processing Standard

FLASH Flash memory is a non-volatile memory that can be electrically erased and re-

programmed

FPGA Field-programmable Gate Array

fps frames per second

GCM Galois/Counter mode – high-throughput block cipher mode for confidentiality

and authenticity

GF Galois Field

HSYNC Horizontal Synchronization signal

I2C Inter-Integrated Circuit

I/O Input/Output

IDE Integrated Development Environment

IP Intellectual Property

JTAG Joint Test Action Group

KI Key In

KO Key Out

LCD Liquid Crystal Display

LED Light-Emitting Diode

LFSR Linear Feedback Shift Register

LHC Laboratoire Hubert Curien, Saint-Etienne, France

LSB Least Significant bit

LUT Look-Up Table

MAC Message Authentication Code

MK Main Key

N/A Not Available

NIST National Institute for Standards and Technology

NLFSR Non-Linear Feedback Shift Register

OFB Output FeedBack – confidentiality block cipher mode

PCI Peripheral Component Interconnect - widely used computer peripheral bus

PLL Phase-Locked Loop

PSC Programmable System on Chip

PTRi Plain-Text Register input

QVGA Quarter VGA - display standard with resolution 320x240

RAM Random Access Memory

RC Resistor-Capacitor based oscillator

REG Register

RGB Red-Green-Blue color model

RISC Reduced Instruction Set Computer

RNG Random Number Generator

ROM Read Only Memory

RS232 Recommended Standard 232 is a standard for serial binary data transfer

S-box Substitution box

SCL Serial Clock signal of an I2C bus

SDA Serial Data signal of an I2C bus

SDF Standard Delay Format

SecReSoC Secured Reconfigurable System on Chip

SK Session Key

SM State Machine

SoC System on Chip

SRAM Static RAM

TDPRAM True Dual-Port RAM

USB Universal Serial Bus

VGA Video Graphic Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VSYNC Vertical Synchronization signal

XOR Exclusive OR logic operation

YUV color model YUV containing Luminance component and two Chrominance

components

FEI DEMC

Introduction

Humankind crossed the borders of the 21ST century with new fascinating technologies

and rapid technical advance. These technologies are, however the outcome of the previ-

ous progress and innovations change and replace each other to form a chain of our de-

velopment. But as nothing is so simple and onefold, there are many shades of utilization

of the technical progress. The only desired utilization of this progress is to help people,

whether in everyday life, or beyond the visible innovations for common people, with a

special emphasis on these improvements’ legality and correspondence with particular in-

ternational conventions and norms. Therefore the creation of new and original products

is just as important for progress as the protection of seals of originality, authorship and

copyrights. To keep it simple, it can be said that it is important to search for all the ways

of preventing fake products to get a chance to enter the market and thus violate the rights

of both authors and consumers.

Throughout the previous centuries there have been numerous attempts to create and

introduce new procedures for distinguishing between fake and original products. Begin-

ning with the old valuable paintings, proceeding throughout various works of arts and

coming to the modern brands of fashion, no original product could have been saved from

the threat of being copied. Smugglers have always tried to gain profit by using realizations

of ideas of other people. However with the expansion of supplies and demands beyond

the borders of individual countries and with the existence of the free market, the problem

with fake products starts to be more important nowadays than ever before. And it is the

task of new technologies to develop new systems and procedures to detect the originality

of products. As a result, this thesis deals with one of the possible technologies that could

be used for solving this problem.

The product authentication method proposed by the Hubert Curien Laboratory (later

just LHC) together with the SignOptic company permits to recognize and to authenticate

products using image processing. The image processing method algorithm proposed by

this consortium is relatively simple so that it could be embedded in a small and portable

1

FEI DEMC

hardware unit. Since the authentication device can be used in potentially hostile environ-

ment, the authentication data and other confidential information has to be protected by

secured cryptographic algorithms.

The aim of this thesis is to propose an architecture of secured embedded system (mod-

ule) composed of several functional parts: simple camera with integrated optics and digi-

tal output, image processing unit, data security (encryption and authentication) block and

communication block. The proposed architecture is determined by the requirement of the

use of Actel FPGAs (security reasons) and embedded soft-core processor ARM7. Most

of the hardware should be placed in one chip - FPGA. The only modules that could be

implemented outside FPGA are the communication (USB) interface and program/data

memory.

Since the required system is relatively complex, it cannot be designed and imple-

mented in one thesis. Instead, the aim of this work is the design of a global architecture

and a feasibility study of its selected blocks (e.g. image processing block). However,

some functional blocks have been designed and simulated in VHDL (e.g. AES cipher op-

timized for non-volatile FPGAs), some were designed, simulated and tested in hardware

(e.g. acquisition block and communication block using USB interface). The architecture

of the crypto-processor has been proposed on a structural level (without description in

VHDL and simulation).

Chapter 1 describes the overal secured embedded system for product authentication

and the roles of its modules. Chapter 2 describes available hardware platform, including

ARM processor and embedded camera module. Chapter 3 concerns all develpment tools

that have been used during the work. Chapter 4 introduces implementation of image ac-

quisition within the ARM7 subsystem. Chapter 5 analyses the used image processing,

signature extraction and final product’s authentication algorithms and its feasibility in the

selected hardware. The analysis of the possible cryptoprocessor implementations, im-

plementation of the AES cipher as well as implementation and mathematical description

of S-box generation in the logic are described in Chapter 6. Firmware for ARM7 and

software in PC development and its first version is introduced in Chapter 7.

2

FEI DEMC

1 Overview of the project

The architecture of the whole system is depicted in Fig. 1 – 1. It is composed of the

secured authentication device and external authentication authority including product

database (this authority usually is situated in the factory). The product authentication

procedure is composed of the preparation and evaluation phase.

Extraction
of optical
signature

Decryption
of product

code

Caption
of product

code

Secret key

Product
identification

Optical signature of

an original product

Optical signature of
a tested product

Comparison &

Authentication

Image

acquisition

Temporary internet
connection

Image part
containing marker

Encrypted
product code

Surface of

a product

Autonomous authentication

Authentication
authority

CAM

Embedded PC

 Controller

Secured
authentication

module

USB
interface

USB
interface

Ethernet
interface

Fig. 1 – 1 Block diagram of the secured opto-electornic system for product traceability

In the preparation stage (in the factory) the system prints an uncopyable characteristic

marker (e.g. a small point) on the product, scans this printed marker and calculates its

optical signature (unclonable function). The method must guarantee that it is impossible

to copy (to fake) the marker. The optical signature of the product is encrypted and printed

on the product package, too. We will call this encrypted signature of the original product

a reference signature.

In the authenticity evaluation phase a portable device containing camera (scanner) will

read the area containing marker and calculate its optical signature. Then it will read the

reference signature, decrypt it with the same key that was used in the factory. Finally, the

3

FEI DEMC

reference signature is compared with the acquired and calculated signature. If both are

equal, the product is original.

In order to authenticate the authentication device itself and to exchange encryption

keys, some protected channel (e.g. via Internet) must exist at least for some short time

intervals.

For some practical reasons (modularity), the authentication device has to be composed

of a secured authentication module connected to an embedded PC via USB interface. The

PC itself is connected to the authentication authority via Internet.

Regarding Fig. 1 – 1, the aim of this work is the design of the secured authentication

module including USB interface (without embedded PC and ethernet connection). For

practical reasons, the architecture have been decomposed to several independent func-

tional blocks that do not correspond exactly to those given in Fig. 1 – 1, but that were

more easy to design together.

First, the data acquisition block including camera initialization, ARM controller and

USB interface have been designed, simulated and tested. In order to validate the function-

ality, acquired image data have been saved in external RAM (outside FPGA, but inside

the module) and then transferred to the PC via USB bus in order to be visualized on the

screen. This part of the work has permitted to connect external devices to the module

(camera, external memory, PC via USB bus).

In the second phase of the project it was necessary to design the core of the cryp-

tographic module - the AES cipher including key expansion procedure. The cipher/de-

cipher had to be adapted to the required non-volatile FPGA family. Namely, S-boxes

implemented in a volatile embedded memory had to be generated inside the device. The

cipher/decipher block has been designed and simulated in VHDL and mapped to the se-

lected FPGA device.

The third phase of the project consisted in the feasibility study of the image processing

algorithm proposed by the laboratory. Together with A. Idrissa, which has implemented

the algorithm in software, I had to analyze each function (if possible) from the point of

view of its implementation in hardware.

4

FEI DEMC

In the fourth and the last phase of the project I had to work on the architecture of

the crypto-processor. This work has started with a study of existing crypto-processors

and the possibilities of the use of existing open-source microprocessor designs as a basis

to the future crypto-processor architecture. Following this study I have proposed two

architectures of the crypto-processor, having 128-bit and 32-bit datapath, respectively.

Course of development is illustrated in Fig. 1 – 2 to Fig. 1 – 6 in detail, respectively.

All stages carried out by the AMTeS team are visualized by green color. My own work or

in collaboration with the AMTeS team are illustrated by blue color. Acquired first version

of AES cipher (without decipher, key expansion and S-box generation) is shown by red

color. Expected development in the future is visualized by brown color.

1Q 2008 2Q 2008 2H 2008 2009

Im
a

g
e

a
c
q

u
is

it
io

n

Analysis

Hardware

acquired

VHDL

design
Testing

Implementation

in FPGA

ARM firmware

design

PC software

design

Future

Enhancements in

data security and

advanced protocols

Fig. 1 – 2 Image acquisition development stage

3Q 2008 4Q 2008 January 2009

AES

study

Galois fields (GF) mathematic study

S-box

generation

study

S-box implemented

in combinatorial logic

S-box generator based on

NLFSRs designed

S
-b

o
x
 w

it
h

g
e

n
e

ra
to

r
in

lo
g

ic

S-box in RAM as LUT

using combinatorial S-

box generator

S-box in RAM as LUT

using NLFSR based S-

box generator

Study of operations in

Galois Field expressed

by non-AES primitive polynomial

S-box in RAM as LUT

using LFSR based S-

box generator

Derived transformation matrices

between two GF expressed by two

different polynomials

S-box generator

based on LFSRs

designed

February 2009

Fig. 1 – 3 S-box development stage

5

FEI DEMC

Key forward

expansion

design

AES

encryptor

design

A
E

S

AES

decryptor

design

January 2009 February 2009

Key backward

expansion

design

AES

combined enc/dec

design

March 2009

AES speed and

power estimation

AES speed and

power measurement

in FPGA dev. boards

Fig. 1 – 4 AES development stage

C
ry

p
to

-

p
ro

c
e

s
s
o

r

1Q 2009 April 2009

128-bit

datapath

design

May 2009

Analysis of available open-

source processors

SecReSoC project,

ANR’09, France

32-bit

datapath

design

Analysis of

interconnection of

cryptoprocessor to ARM

Future

Implementation of cryptoprocessor

and testing against attacks

Fig. 1 – 5 Cryptoprocessor development stage

E
x
tr

a
c
ti
o

n

o
f
o

p
ti
c
a

l

s
ig

n
a

tu
re

1Q 2009 April 2009 May 2009

Feasibility study about implementation

of image processing algorithms for

extraction of optical signature

Implementation of

image processing in

FPGA

Development of algorithms for extraction of optical signature from image

Future

Fig. 1 – 6 Development and analysis of potential implementation of image processing and product authen-

tication stage

6

FEI DEMC

2 Description of hardware platform

Designing of such complex product as the product authentication device for secured trace-

ability of original products (later just scanner) requires certain subsequent steps in the

product’s design. As long as the product has to represent stand-alone system, the em-

bedded system (later just ES) has to be developed in the first step. Subsequently CMOS

camera chip has to be connected to the embedded system [5]. ES has to contain these

elements:

• SoC design inside the FPGA based on the ARM7 processor

• Static RAM memory

• USB interface

The hardware platform is the most important part of the design because it directly in-

fluences device’s costs, performance, power consumption and reliability. The following

hardware platform was obtained for the prototype:

• ST Microelectronics X24 development board [6] with 1.3 Mpix embedded camera

chip VS6524 [5]

• Actel System Management Board [7] with embedded:

- Actel Fusion M7AFS600 FBGA484 FPGA [2] (with ARM7 support)

- Santa Cruz interface

- Two SRAM modules (GSI GS88018BT-200) - 2 MB in total [8]

- Two FLASH modules (ST M29W800DT) - 2 MB in total [9]

• USB board [10] with Cypress USB module (CY7C68013A-100AXC) [11] - Santa

Cruz compliant

• PC (AMD Athlon XP 2600+, 1 GB DDR ram, USB 2.0 support)

7

FEI DEMC

The selection of VS6524 camera chip was a very good choice for its rich image pro-

cessing settings. In order to omit initial configuration of the FPGA, Actel FPGA was

selected as the only producer of non-volatile FPGAs on the market [2]. Cypress USB

module complies the Santa Cruz interface specifications [10] so it is suitable for the Actel

System Management Board. Flash memory modules were not used in this project but are

available for being used in the future.

2.1 Actel system management board

Actel System Management Board is a development kit [7]. It includes Actel Fusion

M7AFS600 FPGA [2]. ARM7 processor is also available for instantiation inside the

FPGA [2], [12]. The board is suitable for creating systems with enhanced power man-

agement, thermal management, serial and ethernet communication, ARM7 microproces-

sor subsystem with external memories, PCI ports and Santa Cruz extension connectors.

Board also includes simple user interface - small keyboard, DIP switches, red and green

LEDs and LCD display. Configuration as well as debugging is carried out through JTAG

circuitry. Additionally second A3P250 FPGA is present. M7AFS600 FG484 couldn’t

provide enough free pins, therefore A3P250 was included [7]. Fig. 2 – 1 illustrates Actel

System Management Board [7]. The following resources from all available are used:

• M7AFS600 FPGA [2]

• two SRAM memory chips [8]

• Santa Cruz interface

• Legacy interface

• Reset circuitry

• JTAG circuitry (for FPGA programming only)

• RS232 port (used during development instead of USB)

8

FEI DEMC

Fig. 2 – 1 Actel System Management Board

2.2 Actel Fusion FPGA architecture

2.2.1 Actel Fusion

Actel Fusion was designed as mixed-signal Programmable System Chip (PSC). It com-

bines advantages of flash FPGA core, flash memory blocks and configurable analog

blocks [2]. Flash-based non-volatile memory retains configuration even if power is turned

off, so in spite of other producer’s products, Actel Fusion can be used as a single-chip so-

lution. Fusion devices have a 128-bit flash-based lock and industry-leading AES decryp-

9

FEI DEMC

tion, used to secure programmed intellectual property (IP) and configuration data. Actel

Fusion is produced using 130 nm process technology. Highest supported clock frequency

is 350 MHz, but I/O pads allow at most 250 MHz. Chip’s source voltage is 3.3 V, however

the core is powered by 1.5 V (voltage regulated by on-chip 1.5 V regulator) [2].

The Fusion family consists of AFS250, AFS600 and AFS1500 devices [2]. Most pow-

erful AFS1500 has up to 1.5 M system gates. AFS600 and AFS1500 support CoreMP7

processor (derived from ARM7TDMI) and are denoted as M7AFS600 and M7AFS1500.

The particular design was targeted for M7AFS600 device, so it will be described in greater

details [2].

2.2.2 M7AFS600 device

M7AFS600 contains 600 000 system gates, which form 13,824 VersaTiles (also called

tiles) [2]. Chip includes two PLLs , six CCCs as well as internal RC oscillator (100 MHz)

and Crystal oscillator (50 MHz external crystal oscillator was used instead) [2]. Accuracy

of RC oscillator is 1%. The device includes 4 Mb of flash memory, which is divided into

two separate 2 Mb blocks. Flash ROM of capacity 1 kb is also included. Total amount

of SRAM is 108 kb divided into 24 SRAM blocks. Each block can store 4608 bits and

allows these configurations: 4608x1, 2304x2, 1152x4, 512x9 (Dual-Port) and 256x18

(Single-Port). M7AFS600 is packed in FG484 FBGA from which 172 pins form digital

I/Os and 40 pins form analog I/Os. Fig. 2 – 2 shows structure of M7AFS600 [2].

2.2.3 Fusion core

The Fusion core consists of logic cells called VersaTiles, which support 3-input LUTs,

Latches with clear or set and D-flip-flops with clear or set and enable [2]. LUTs are very

important when used to create combinatorial logic. Latches and D-flip-flops are essential

structures for sequential logic. Structure of VersaTile [2] is shown in Fig. 2 – 3.

Every VersaTile is connected to its 8 neighbors by ultra-fast local lines [2]. For con-

necting longer distances, long-line and very-long-line resources are used. Fig. 2 – 4 shows

10

FEI DEMC

Fig. 2 – 2 Structure of Actel Fusion

Fig. 2 – 3 Structure of VersaTile

ultra-fast local lines system. Clock and reset signals can be connected to VersaNet global

networks, which are connected to six CCCs (clock conditioning circuits). The core is

organized into quadrants. Three CCCs are connected to west global resources (in west

11

FEI DEMC

quadrants) and three CCCs are connected to east global resources (in east quadrant). For

more detailed description of Actel Fusion’s inner structure, please refer to Actel Fusion’s

documentation [2].

Fig. 2 – 4 Ultra-Fast Local Lines connected to the eight nearest neighbors

Analog blocks were not used in this project, so these parts will not be described in

this documentation. For further information about analog blocks, please refer to Actel

Fusion’s documentation [2].

2.3 IP processor based on ARM7TDMI

2.3.1 The ARM7TDMI-S processor architecture

ARM7TDMI-S (further just ARM7) [13], [12] is world-wide-spread soft IP processor

[12]. This processor was designed by ARM Ltd. company to be a part of ASIC’s design to

form powerful, low cost and flexible SoC [12]. ARM7 has found its application in Game

Boy Advance, Nintendo DS or iPod [14]. Many producers include this soft IP in their

microcontrollers, because of its unique features (e.g. Atmel AT91SAM7) [12]. ARM7 is

32-bit RISC processor, which also support 16-bit instructions via Thumb instruction set.

Registers are orthogonal. It has Von Neumann architecture with a 32-bit data bus carrying

both instructions and data. ARM7 uses 3-staged pipeline. The address bus provides 4 GB

of linear addressing space. Fig. 2 – 5 shows block diagram of ARM7 [13], [12]. Processor

12

FEI DEMC

is connected via the bridge to the AMBA bus [15], [13], [12]. This bus is a standard

and it includes AHB, ASB and APB buses. AHB bus is a high-performance system

bus, widely used to interconnect ARM7 core with memory interface, PCI interface, and

other interfaces which require short access time and high throughput. It is a multi-master

bus, so more ARM7 cores can share it. ASB was formerly a high-performance system

bus, but it was replaced by AHB. APB is a peripheral bus. It is optimized for minimal

power consumption and reduced interface complexity. It is low-performance and is not

pipelined. Main advantage is its simplicity [15]. Only one bus master is permitted, the

peripherals are connected to the APB as its slave devices [15], [13], [12].

2.3.2 The Actel CoreMP7 processor architecture

Actel’s CoreMP7 is the only soft IP ARM7 core that is used in FPGAs [12]. It is fully

compatible with ARM7TDMI-S core. Actel has minimized the size of ARM7 core and

maximized speed, so it could run in Actel’s ProASIC3 and Fusion flash-based FPGAs

[12], [2]. It is provided with or without the on-chip debug circuitry. The debug circuitry

is about half the size of ARM7 core, so being able to remove it after the debug may allow

design to be implemented in a smaller device. Instructions for CoreMP7 are stored in the

internal flash memory, so there is no need to connect external memory. Internal SRAM

blocks are also used. Using Actel’s CoreConsole software, CoreMP7 can be implemented

with other IP cores to form more complex design [12].

2.4 Micronic development module with Cypress USB

To establish communication and control between PC and FPGA design, Cypress USB

module is needed. Company Micronic designed USB_CYPRESS module [10], which con-

tains Cypress CY7C68013A - 100AXC chip [11]. This module complies with Santa Cruz

specification, therefore it fits to Actel System Management Board. After power-up, while

there is no non-volatile memory on the module, firmware for Cypress chip has to be al-

ways programmed inside. Socket for ROM memory is also on the board, but during the

13

FEI DEMC

Fig. 2 – 5 ARM7TDMI-S architecture

design period this memory wasn’t available. Cypress chip supports USB 2.0 and com-

municates with Santa Cruz interface by 16-bit wide tri-state bus. For more details about

the module, programmer’s model and firmware please refer to Cypress CY7C68013A -

100AXC manual [11] or Micronic documentation [10]. The module is illustrated in Fig.

2 – 6 and Fig. 2 – 7.

14

FEI DEMC

Fig. 2 – 6 Micronic USB_CYPRESS module - front side

Fig. 2 – 7 Micronic USB_CYPRESS module - back side

2.5 X24 camera integration kit

X24 kit [6] is a product of ST Microelectronics. It was created to demonstrate camera chip

features, to simplify design for developers and to improve time-to-market. X24 board

is shown in the Fig. 2 – 8. Camera chip (VS6524) [5] is soldered in a small connector

board, which is placed in the X24 board’s socket [6]. Logically, X24 evaluation board

is divided into 3 parts (see Fig. 2 – 8). The left part contains Cypress USB controller,

Altera FPGA and USB connector. This part was used in the first stages of project design.

It helps the developer to find the appropriate configuration for camera chip easily. This

part was later disconnected by jumpers in middle part. The middle part contains interface

select jumpers, 12 MHz crystal oscillator and camera socket. Camera mini-board is

placed in this socket. Camera chip is soldered to this mini-board in its center. The Right

part contains voltage translation chip and connectors for external interface. The camera

operates with 2.8 V [5], but Actel FPGA board supports 3.3 V [2]. This is the reason, why

15

FEI DEMC

Fig. 2 – 8 X24 camera integration kit

voltage translation chip is used in X24 board. X24 board has to be connected to Actel

FPGA System Management Board [7].

2.6 STM VS6524 camera

Camera chip VS6524 from ST Microelectronics is a configurable system on chip [5]. Cam-

era chip has 1.3 MPixel CMOS array [5]. Fig. 2 – 9 shows this camera chip in scale 7:1

[5].

System consists of a microprocessor, clock generation circuit, video timing circuit,

VGA pixel array, video pipe and I2C interface [5].

Inside the camera, clock generator is driven with the external clock signal [5]. In this

project 12 MHz external clock source was used.

All the external control of the camera is carried out by modifying internal camera reg-

isters through I2C interface (signals SDA and SCL) [5]. By modifying register’s content,

user is able to adjust many camera features like contrast, saturation, white balance, out-

put format, fps, blanking data, HSYNC and VSYNC signals, sleep state, play-pause-stop

control, etc. [5].

Microprocessor monitors and controls all camera operations [5]. It is the main control

16

FEI DEMC

Fig. 2 – 9 Camera chip VS6524 in scale 7:1

element inside the camera chip. It performs the following tasks: handles I2C communica-

tion, video pipe configuration, automatic exposure control, flicker cancellation, automatic

white balance, dark calibration and active noise management.

According to the selected output video format, video timing and video pipe are ad-

justed [5]. VS6524 has very rich image processing features. All image processing features

are processed in video pipe (sharpening, gamma correction, YUV conversion, output for-

mat adjustment, cropping, contrast adjustment, saturation adjustment, etc.). There are

two equal video pipes in VS6524 (pipe 0 and pipe 1). Each pipe can have its own im-

age processing settings. Only one pipe can output at a time. Pipes can be used to alter

between two sets of settings very quickly. There is also possibility to alter pipes every

second frame. In this project, only pipe 0 was used.

Fig. 2 – 10 illustrates simplified structure of camera chip [5].

After power-up, initialization has to take place. During the initialization, internal

camera registers are being accessed and the camera is being configured. After the ini-

tialization has taken place, it is possible to start the capturing process and data are sent

to the output interface. These are the most important signals: PCLK, HSYNC, VSYNC

and D7. . . D0. A detailed description of initialization will be discussed later. For further

camera’s operation control description, refer to the camera reference manual [5].

17

FEI DEMC

Fig. 2 – 10 Simplified block diagram of ST VS6524 camera chip

2.6.1 Initialization of the camera

As mentioned before, the camera initialization is carried out by configuring appropriate

internal registers [5]. First of all, the camera chip has to be connected to 2,8 V voltage

source, external clock source (6,5 to 26 MHz), and CE pin set HIGH [5]. Subsequently

internal camera registers can be accessed through I2C interface (pins SDA and SCL) [5].

I2C 8-bit device address of the camera is permanently set to 0x20 while LSB bit is shared

with the read/write flag (will be described later).

Before any commands can be sent to the camera, internal microprocessor must be

enabled [5]. By writing value 0x06 to the register 0xC003 internal microprocessor is en-

abled. Subsequently, digital I/O pins has to be enabled by writing 0x01 to the register

0xC034. After these two registers have been configured, rest of registers can be config-

ured.

The next step could be the setting of contrast (reg. 0x039A) to 0xA0 and switching

the camera mode to RUN by writing 0x2 to the register 0x0180.

In this application, the image size was configured to QVGA by writing 0x2 to the

register 0x0380, synchronization codes were turned off (0x00 to the reg. 0x2104), HSYNC

synchronizes active lines only (0x0F to the reg. 0x2106) and clock is free-running (0x85

18

FEI DEMC

to the reg. 0x210A). Table and detailed description of all registers in the VS6524 camera

can be found in its user manual [5].

2.6.2 Output data format and synchronization

When initialization of the camera chip is finished, captured video data are sent to the

output pins of the camera chip [5]. There are 8 data output pins available. Synchronization

is carried out by monitoring HSYNC, VSYNC signals and synchronizing PLL to PCLK

signal producing camera synchronized clock domain inside the FPGA. All output data

are synchronized to PCLK. Data are sent to output on falling edge of PCLK. Also control

signals HSYNC and VSYNC are changed on the falling edge of PCLK.

Video stream consists of frames sent one after another. There are interframe blanking

data between each two frames [5]. Also between every two lines of frame there are

interline blanking data. By default, blanking data contains 0x1080 values. These values

can be changed in registers 0x2110 and 0x2112. Fig. 2 – 11 illustrates output frame.

Fig. 2 – 11 VGA 30fps output frame

Each pixel is represented by 2 bytes [5]. It depends on the chosen format how these 2

bytes will be used (format can be chosen by adjusting register 0x0416). Possible choices

are: YUV 4:2:2, RGB 565, RGB 444 and Bayer 10-bit [5]. I have chosen YUV 4:2:2

format, because only grayscale image was required. To obtain grayscale image, only

19

FEI DEMC

luminance component (Y component) has to be read from YUV stream. I have also

decided to use the resolution 320x240 (half resolution). According to the requirements for

further image processing, this resolution was suitable. The design can be easily adapted

to a different resolution in the future. This resolution is adjusted in the camera (register

0x0400) and in the output stream every second pixel is skipped and every second line is

skipped too [5]. This ensures the resolution 320x240. Therefore one Y component is sent

per every 4 clock periods as illustrated in the Fig. 2 – 12 to Fig. 2 – 15. Also camera was

set to transmit the Y component first and the C component (chrominance) as the second.

Fig. 2 – 12 to Fig. 2 – 15 illustrates the output format.

Signals HSYNC and VSYNC provide line and frame synchronization and PCLK pro-

vides pixel synchronization [5]. You may have noticed that every line has only 319 pixels

not 320. This issue was corrected in hardware part by copying the last pixel.

Fig. 2 – 12 nTH pixel in video stream

Fig. 2 – 13 Beginning of the frame

Fig. 2 – 14 End of the first line

20

FEI DEMC

Fig. 2 – 15 End of the frame

2.6.3 I2C communication description

The camera chip is controlled through I2C interface [16] where it acts as I2C slave periph-

eral with its device address 0x20 [5]. In our case, ARM7 processor acts as master device

and has full control of the I2C bus. According to unique states of SDA and SCL, data

exchange can be established. Basic parts of data exchange are: start, stop, acknowledge,

not-acknowledge commands, device address (containing read/write flag), register address

(high and low byte) and data part [16], [5].

Each communication (register access) starts with start command (both SDA and SCL

signals are pulled LOW) following by 8-bit device address [16], [5]. LSB bit of the device

address distinguishes if the next operation will be writing to the slave (0) or reading from

slave (1) (in this case device address is 0x21). Therefore write flag is sent to the bus (0).

Subsequently slave device confirms successful transfer by sending acknowledge bit. After

acknowledge a short pause follows, after which high 8 bits of register address are sent to

the slave. This pause is required by camera, so changes inside the chip have enough

time to take effect. Slave confirms transfer by sending acknowledge to the master device.

After acknowledge, a short pause follows after which low 8 bits of register address are

sent to the slave. Slave confirms transfer by sending acknowledge to the master device,

afterwards a short pause follows. The next action will be different when writing to the

slave than when reading from the slave.

WRITING TO THE SLAVE: After pause 8 bits of data are sent to the slave device.

Slave confirms successful transfer by sending acknowledge [16], [5]. Short pause follows.

After pause master sends stop command by pulling both SDA and SCL signals to HIGH.

READING FROM THE SLAVE: After a pause, stop command is passed to the bus by

21

FEI DEMC

pulling both signals to HIGH [16], [5]. A longer pause period follows (so the slave device

has enough time to prepare data to be sent to the master). It can be 100xSCLperiod long.

After this period, start command is sent to the bus. The device address follows with the

read flag (1). Slave confirms transfer by sending acknowledge and a short pause follows.

Subsequently the slave starts to send data to the master. It sends 8 bits of data. After

transfer is completed, master sends negative not-acknowledge to the slave. Immediately

after acknowledge, master sends stop command to force slave not to send more data [16],

[5].

If access to the other register is required, the whole process has to be repeated again

after a longer pause [5]. After configuring all the required registers, the camera should

operate according to the expectations. To prevent incorrect configuration of the camera

chip, always check the configuration by reading the content of the register after it has been

modified. Fig. 2 – 16 and Fig. 2 – 17 illustrate write and read operation with the register

of address 0xC003.

Fig. 2 – 16 Write operation with the internal register 0xC003

22

FEI DEMC

Fig. 2 – 17 Read operation with the internal register 0xC003

23

FEI DEMC

3 Description of the software development tools

The quality of special design environments with development tools is essential during the

design stage. The absence of debugging capabilities, syntax highlighting or possibility to

change unpractical eye-tiring background color can slow down the creative process and

lead to user’s exhaustion. Therefore a good development environment becomes essential.

During the design of the particular project,the following development environments

were used:

• Libero IDE from Actel Corporation, version 8.4 [17] with SP1

• ModelSim from Mentor Graphics Corporation, version 6.3g [18]

• µVision3 from Keil Corporation, version 3.62c [19]

• Borland C++ Builder, version 6.0 [20]

3.1 Libero IDE

Libero IDE represents a special development environment created by Actel Corporation

[17]. The user deals with this environment during all stages of VHDL design. Libero IDE

is illustrated in the Fig. 3 – 1.

Design flow with the Libero IDE consists of the following steps:

• Creation the VHDL code or generation by wizards

• Synthesis of the VHDL code by Synplify tool from Synplicity, Inc.

• Placement and Routing by Actel Designer tool [22]

• Generation of the configuration file and back annotation for timing analysis

• Configuration of the FPGA with the Actel FlashPro tool [23]

24

FEI DEMC

Fig. 3 – 1 Libero IDE

At the beginning VHDL structure has to be created. User can choose whether to write

his own entities, or to take an advantage of generating the entities. When writing the

code, user can insert some specific code structures from templates. For including ARM7

processor [12] with its peripherals to the design, CoreConsole tool [27] has to be used.

CoreConsole represents powerful tool for ARM7 inclusion in the design together with its

buses, peripherals and other AMBA compliant [15] IP peripheral blocks. If ARM7 is not

suitable for the application, other processor can be used (ARM Cortex, 8051, ABC, etc.).

After the VHDL design is created, it has to be synthesized with respect to FPGA

resources. Synthesis is carried out by Synplify tool [21]. During synthesis, combinatorial

and sequential logic minimization is carried out. At the end, user is provided with the

summary of the synthesis. Another synthesis with compatibility check is performed in

the Designer tool (button Compile).

Before configuring the FPGA, all FPGA resources used in the design have to be as-

signed to a special location of the FPGA. This stage is called Placement. When all re-

25

FEI DEMC

sources are placed, network of interconnections between resources has to be built up.

This stage is called Routing. There are several options available to further optimize the

Placement and Routing. The last stage is to create the configuration file. Back annotation

can also be generated for use in Timing analysis. Placement, Routing, configuration file

generation and back annotation generation operations are carried out by Actel Designer

tool (Layout button). The Designer tool [22] is illustrated in the Fig. 3 – 2.

Fig. 3 – 2 Actel Designer tool

The last stage of the design is the Configuration of the FPGA with FlashPro tool [23].

This tool communicates with the FlashPro3 device which transfers the configuration from

the PC to the FPGA via the JTAG interface. FlashPro tool allows the user to config-

ure separately the flash array and the internal flash memory. After the configuration is

finished, FlashPro performs configuration check.

Before the design is configured to the FPGA, several simulations on the PC are avail-

able. All simulations are performed by ModelSim [18]. When starting simulation, Libero

26

FEI DEMC

IDE generates batch file .do and executes it in the ModelSim. The following simulations

are available:

• Pre-synthesis

• Post-synthesis

• Post-layout

Pre-synthesis simulation can be carried out before the VHDL code is synthesized. This

simulation is only functional. Post-synthesis simulation is carried out on the synthesized

VHDL code. Although the simulation is still functional, it can be useful when comparing

the impact of the synthesis with the original design. Post-layout simulation represents

the timing simulation of the design and can be performed after the back annotation was

created [17], [22], [18]. This type of simulation is very critical when estimating the limits

of the design (maximal frequency, delays, glitches and other unusual behavior).

Maximum frequency and delays between gates can be also estimated by SmartTime

tool (part of the Designer tool) [24], [22]. Power consumption can be estimated by the

SmartPower tool (part of the Designer tool) [25], [22].

3.2 ModelSim

One of the most important issues during the design period is when the design doesn’t

behave properly after being configured into the FPGA. The method for correction of the

issue is called debugging. However, localization of the issue can be very difficult and

time consuming. The best way to localize difficulties is to run a simulation. There are

two common types of the simulation:

• functional simulation

• timing simulation

Functional simulation is used to observe waveforms of the signals without respect to

placement, routing and behavior of the FPGA. Timing simulation respects placement and

27

FEI DEMC

routing and all characteristics of the targeted FPGA. To perform timing simulation, .sdf

file [22], has to be imported into the ModelSim [18].

One of the most commonly used tools for VHDL simulation is ModelSim [18]. Before

the simulation can be performed, VHDL testbench has to be created. Afterwards design

with testbench is imported to the ModelSim. All used libraries have to be imported too.

Once imported, design has to be compiled. After the compilation is performed, simulation

can be executed. The designer has to specify the duration of the simulation. If the design

is very complex, computation of the simulation take very long.

Results of the simulation are displayed in the Waveform window (see Fig. 3 – 3) [18].

According to the complexity of the project, it is advantageous to read input values from

the text file and store the results of the simulation. Special warning messages or error

messages can be conditionally displayed in the transcript window.

Fig. 3 – 3 Waveform view in ModelSim

Furthermore, the whole simulation process can be automated by creating .do batch

file [18]. File can be executed inside the Modelsim command line by the command do

filename.do.

28

FEI DEMC

3.3 Keil µVision 3

After the processor is put into the design, the source code has to be created. One of the

best firmware development tools is Keil µVision 3 [19]. This professional development

tool allows users to write program in c code or assembler code, simulate the code, gener-

ate programming Intel-Hex file and debug the code directly in hardware if the hardware

is compatible with µVision 3. Keil µVision 3 main window is illustrated in the Fig. 3 – 4.

Since the original Keil µVision 3 compiler is not compatible with Actel CoreMP7 (de-

Fig. 3 – 4 Keil µVision 3 development tool

rived from ARM7) external GNU Sourcery G++ compiler had to be used. GNU debugger

hasn’t been adapted for µVision 3 yet, however Actel SoftConsole application [26] can

be used for debugging instead.

After the firmware is written, Intel-Hex file is generated. This file is subsequently

imported into the Flash memory system builder in Actel Libero IDE [17], [23]. After-

wards, the firmware is transferred into the internal flash memory of the FPGA during the

configuration stage.

29

FEI DEMC

3.4 C++ design environment (Borland C++ Builder)

After the system is developed, a communication link has to be established with the PC via

the USB. To control the transfer over the USB line, computer application has to be pro-

grammed. This application should be user-friendly and needs to be able to communicate

with the USB driver.

One of the easiest ways to program application containing GUI is by using Borland

C++ Builder [20]. This development tool is illustrated in the Fig. 3 – 5

Fig. 3 – 5 PC software development environment Borland C++ Builder

When a new project is created, an empty window is displayed. The user has to in-

sert all the objects like buttons, images, labels, combo boxes, etc. [20]. To create more

attractive application, object properties have to be tunned. After the visual part of the

application is created, functionality has to be programmed using C++ code. Every ob-

ject in the application is represented by a class in the hierarchy of classes. The class at

the bottom of a hierarchy inherits all attributes and properties of the above classes in the

hierarchy.

30

FEI DEMC

Before the application is compiled, the compiler has to be set to retail mode. In this

mode .exe file will be created without linking debug libraries [20]. And what is more,

special settings have to be specified, so resulting application will not depend on Borland

C++ Builder libraries, but only on standard windows libraries.

31

FEI DEMC

4 Structure of the image acquisition subsystem

4.1 Interconnection of the development boards

This chapter describes the structure of the image acquisition subsystem. During the de-

velopment phase, the system was composed of several development boards. The structure

of the system with its interconnected subparts is illustrated in the Fig. 4 – 1.

CYPRESS

USB

MODULE

X24 CAMERA BOARD

ACTEL DEVELOPMENT BOARD

LEGACY

INTERFACE ACTEL

FUSION

FPGA

SANTA CRUZ

INTERFACE

USB

CABLE

EMBEDDED SYSTEM

PC WITH USB

INTERFACE

SRAM

Fig. 4 – 1 Interconnection of development boards forming the system

The system is composed of the embedded system (ES) and the camera [5] (placed in

the X24 camera evaluation board). During the acquisition, images are transferred from the

camera to the ES where image processing has to take place. The control of the operation

by a PC, as well as data exchange, is provided via USB interface.

USB communication is established via the Cypress USB module [10] placed in the

Santa Cruz interface located on the Actel System Management board [7]. Essential part

of the ES is the System on Chip (SoC) based on the ARM7TDMI processor [12], [13].

32

FEI DEMC

4.2 System on chip based on the ARM7 processor

The SoC is instantiated inside the Actel Fusion FPGA (as shown in the Fig. 4 – 2).

ARM7

PROCESSOR

BRIDGE

EMBEDDED

FLASH

EMBEDDED

SRAM

MEMORY

CONTROLLER

DMA

CONTROLLER

I
2
C

CONTROLLER

AHB TO APB

BRIDGE

CYPRESS USB

CONTRLLER

A
H

B
 B

U
S

E
X

T
E

R
N

A
L

 S
R

A
M

 B
U

S

APB BUS

CRYPTO

PROCESSOR

(implemented

In future)

U
S

B
 I
N

T
E

R
F

A
C

E
C

A
M

 I
2
C Fusion FPGA

System on ChipC
A

M
 D

A
T

A

Fig. 4 – 2 System on Chip based on ARM7 processor

The main part of the SoC is the ARM7 processor [12], [13]. The processor represents

the main control unit of the SoC. AHB and APB buses represent convenient solution for

interconnecting peripherals with the ARM7. Bandwidth critical peripherals (i.e. SRAM

block) have to be connected to the AHB bus. In contrast, peripherals with lower band-

width demands, can benefit from the simplicity of the APB protocol.

The program for ARM7 processor is stored in an embedded flash memory. The em-

bedded SRAM is used for storing temporary results of the calculation. For interfacing

with an external SRAM memory, a memory controller block is necessary. Operation of

the camera is controlled via the I2C interface. If more than one device requires access

to the external memory, DMA controller has to be used. In this case external memory

is shared by the image acquisition system (part of the DMA controller) and the ARM7’s

memory controller. Cypress USB controller block enables ARM7 to communicate with

33

FEI DEMC

the PC via Cypress USB module [10].

All data traffic before being transmitted out of the FPGA has to be encrypted. For this

purpose, cryptoprocessor has to be included in the design in the future.

4.3 Image acquisition

Once the image acquisition is initiated, image data are sent from the external camera into

the FPGA. Inside the ES, DMA controller redirects the traffic outside the FPGA into the

external SRAM memory. Before a 32-bit word can be transferred into the external SRAM

memory, it has to be concatenated from a four 8-bit words (each pixel is encoded in one

byte). This concatenation is performed in 8/32-bit converter (concatenator) block.

Since incoming data and control signals from the camera have to be synchronized, the

design contains another PLL, which is synchronized to the external clock signal from the

camera. Afterwards, all control signals are registered within this clock domain.

Before the data can be transferred into the external SRAM memory, an address has

to be generated. For this purpose Address Generator is included in the project. This

generator is initialized by the controller, which communicates with the ARM7 processor

via the APB bus. Since ARM7 is the master of the DMA controller, acquisition of the

image is initiated by ARM7 by switching multiplexers in the DMA controller towards the

acquisition part. If the acquisition is not performed, multiplexers are switched towards

the memory controller, thus ARM7 is capable of accessing external SRAM memory. The

DMA controller is illustrated in the Fig. 4 – 3. Zones enclosed within the red line belong

to the ARM7’s clock domain and zones enclosed within the green line belong to the

camera synchronized clock domain.

I have chosen this solution as the only feasible one. If the data were acquired by

the ARM7 processor and subsequently transferred into the memory, it could consume all

processor time and no other control and processing would be possible.

State diagram of the main image acquisition state machine is illustrated in the Fig.

4 – 4. After the acquisition is initiated by ARM7, state machine abandons IDLE state and

34

FEI DEMC

APB BUS

DATA BUS

MULTIPLEXER

CONTROLLER

CAM 8bit DATA

EXT SRAM DATA

ADDRESS

GENERATOR

ADDRESS

BUS

MULTIPLEXER

MEMORY CONTROLLER ADDRESS BUS

8 TO 32 BIT

CONVERTER
32bit DATA

MEMORY CONTROLLER DATA BUS

ADDRESS

EXT SRAM ADDRESS

EXT SRAM CONTROL

Fig. 4 – 3 Illustration of the DMA controller with two clock domains

waits until vertical image synchronization signal (VSYNC) is LOW. In the next state, state

machine waits until vertical image synchronization signal changes to HIGH. If it happens

it signalizes the beginning of the image. State machine immediately enters capture state

where an acquisition is performed.

After the image is acquired, VSYNC signal changes to LOW and state machine enters

IDLE state. Status signals indicate successfully performed acquisition. ARM7’s task is

to monitor these signals.

35

FEI DEMC

IDLE Wait For

Zero

Wait For

One
Capture

nCS = 0

AND

FrCaptured = 0

FrCaptured = 0

n
C

S
 =

 0

A
N

D

F
rC

a
p

tu
re

d
 =

 1

nCS = 1

FrameReady = 0

n
C

S
 =

 1

nCS = 0

AND

VSYNCreg = 0

n
C

S
 =

 0

A
N

D

V
S

Y
N

C
re

g
 =

 1

nC
S
 = 1

F
ra

m
e

R
e

a
d

y
 =

 0

nCS = 0

AND

VSYNCreg = 1

nCS = 0

AND

VSYNCreg = 0

n
C

S
 =

 1

FrameReady = 1

FrCaptured = 1

n
C

S
 =

 0

A
N

D

V
S

Y
N

C
re

g
 =

 0

nCS = 0

AND

VSYNCreg = 1

Command execution

State of the State Machine

LEGEND

Fig. 4 – 4 State diagram of the main image acquisition state machine

36

FEI DEMC

5 Optical signature extraction algorithm

One of the most important steps during secured traceability of the product is the com-

parison of the optical signature of the product with the optical signature of the original

product. It is very important to evaluate optical signatures of two scanned images as dif-

ferent when these images were printed in two different printers. If images were printed

with the same printer, optical signatures of the scans have to be evaluated as matching.

Algorithm for the optical signature extraction and subsequent comparison with the optical

signature of the original product is described in next section.

5.1 Description of the image processing, signature extraction and

comparison algorithm

Before the algorithm can be applied, special uncopyable marker has to be recognized in

one of the acquired images. Afterwards, image has to be processed to be suitable for

extraction of the signature. Example of the marker is shown in the Fig. 5 – 1.

Fig. 5 – 1 Special uncopyable marker for optical signature extraction

After the marker is found in the image, image processing operations are performed as

follows:

1. Computation of optimal global image threshold using Otsu’s method

2. Binarization of the image

3. Application of 2D median filter

37

FEI DEMC

4. Localization of the circle and rectangle objects in the image

5. Compututation of the angle between horizontal plain and rectangle’s longer edge

6. Rotation of the image

7. Trimming of the image to contain only circle object

8. Move of the circle object to the center of the image

(A) (B) (C)

Fig. 5 – 2 A) Scan of original print, B) Binarized and filtered, C) Angle estimation

(A) (B) (C)

Fig. 5 – 3 A) Rotated, B) Dot localized, C) Centered and trimmed

Examples of image processing steps applied on the scan of original print are shown in the

Fig. 5 – 2 and Fig. 5 – 3.

After the image is processed, optical signature can be extracted. For this purpose,

computation of the Freeman code is favorable. Freeman code describes an outline of the

object. At the beginning, the first pixel of the object is located. Subsequently the next

pixels in the edge are located. Each pixel is described as one of eight possible directions

38

FEI DEMC

from the previous pixel in the edge. Algorithm is finished when all of the pixels in the

edge are described by the Freeman code.

As soon as the optical signature is extracted, it has to be compared with the signature

of the original product acquired from the encrypted data area on the surface (i.e. encrypted

data in barcode). The best way to compare two Freeman codes with different lengths is

to compute the Levenshtein distance. Big advantage of the Levenshtein distance is the

resistance to different lengths of the compared Freeman codes.

Fig. 5 – 4 Original print: scan A and scan B

Fig. 5 – 5 Fake print: scan A and scan B

Example is illustrated in the Fig. 5 – 4 and Fig. 5 – 5. Two scanns of the original image

are shown in the Fig. 5 – 4. Two scanns of the fake image are shown in the Fig. 5 – 5.

Levenshtein distances of the different prints and their scans are summarized in the Tab.

5 – 1. As shown in the table, Levenshtein distances between scans of original prints and

scans of fake prints are all over 200. In contrary, Levenshtein distances between two scans

of the same print are less than 150. It is important to note that images were scanned in

laboratory conditions, therefore Levenshtein distances are very different and it is easy to

39

FEI DEMC

Tab. 5 – 1 Levenshtein distance of different prints and corresponding scans

Original print Fake print

Scan A Scan B Scan A Scan B

Original Scan A 0 140 222 231

print Scan B 140 0 220 222

Fake Scan A 222 220 0 134

print Scan B 231 222 134 0

recognize the original from fake one. Recognition can be a questionable issue when light

conditions are worse and the difference between the original and fake ones are smaller.

5.2 Hardware implementation of image processing, signature extrac-

tion and comparison algorithms

One of the system’s constraints was the acquisition speed of at least 4 frames per second.

Therefore, system has to be able to capture the image, carry out the image processing,

extract a Freeman code, compute the Levenshtein distance and decide whether the product

is original or fake before the next image is captured. This gives the system approximately

250 ms to perform all the mentioned steps.

As explained in the previous section, algorithm is very robust. There are three possible

solutions for computation of algorithm:

• in ARM7 processor

• in coprocessor connected to ARM7

• part in the coprocessor and part in the ARM7

However, algorithm has a serial structure, thus parallelization can become an issue. This

40

FEI DEMC

limits the advantage of the FPGA which is its parallelism. And what is more, some

operations are carried out on every pixel of the image, or small blocks of the image.

These operations are very time consuming.

The whole algorithm has been developed in Matlab. The goal of this work is to es-

timate the number of ARM7 cycles required to carry out all operations of the algorithm

and to estimate the resource count in case of hardware implementation. As long as used

functions in Matlab haven’t been written in the c-code yet, cycle accurate estimation in

Keil µVision 3 couldn’t have been performed. Estimation issue was even greater when an

operation of the algorithm used several robust Matlab functions. Due to these issues and

lack of time, in some cases I wasn’t able to estimate required number of cycles. These

estimations have to be carried out in greater detail in the future.

Tab. 5 – 2 summarizes the estimations for the particular operations of the algorithm.

Size of the image is 320x240 pixels. Operations that couldn’t have been estimated are

denoted as N/A (Not Available). However, the provided estimations can be used to predict

the complexity of calculations. However, only three estimated operations require about

10 000 000 clock cycles. If the processor operated in the frequency of 40 MHz and the

algorithm consisted only from these three estimated operations, processing of the image

would take 250 ms. These estimations have to be proved by simulations in the future.

41

FEI DEMC

Tab. 5 – 2 Basic estimation of required ARM7 cycles as well as required logic resources for implementation

of particular operations within the algorithm.

ARM7 VHDL

[cycles] [tiles]

Computation of global image threshold 1 200 000 N/A

Binarization of the image 1 152 000 N/A

Application of 2D median filter N/A 120

Localization of circular and rectangular objects N/A N/A

Computation of rotation angle N/A N/A

Rotation of the image N/A N/A

Trimming of the image + relocation to the center N/A N/A

Computation of the Freeman code 60 000 N/A

Computation of the Levenshtein distance 8 000 000 N/A

Total N/A N/A

42

FEI DEMC

6 Analysis of the cryptoprocessor core

Every data before being transferred out the FPGA have to be encrypted. Strong encryption

will assure perfect protection of confidential data against attacks from outside. When data

enters the FPGA from outside, they have to be authenticated too. As long as big amounts

of data are processed in 128-bit blocks, a block cipher mode have to be used. According

to NIST specifications, the following block cipher modes are recommended:

• Confidentiality modes: ECB, CBC, CFB, OFB, CTR [28]

• Authentication mode: CMAC [29]

• Authenticated encryption mode: CCM [30]

• High-throughput authenticated encryption mode: GCM [31]

One of the most flexible ways to implement these block modes is to build a cryptopro-

cessor [4]. The main part of the cryptoprocessor is the encryptor/decryptor block. Other

operations required by a block mode can be performed in special ALU and intermediate

results can be temporarily stored in internal registers. To sustain security of the system,

it is preferable to implement two sets of registers: Data registers and key registers. Key

registers are special registers where main key as well as session keys are stored. These

key registers have to be inaccessible from outside of the cryptoprocessor [4].

6.1 AES Encryption/Decryption module

Main part of the cryptoprocessor is the AES module for encryption and decryption. AES

is a new encryption standard approved by NIST as FIPS-197 [1]. Robustness of the

algorithm assures sufficient security of the confidential data after being encrypted. AES is

symmetric cipher. Size of the plaintext is limited to 128 bits and size of the key can be 128,

192 or 256 bits. While sufficient security can be assured with 128-bit key, AES module

used in this project works only with 128-bit. If needed, the project can be expanded in the

future.

43

FEI DEMC

AES algorithm is divided into 10 rounds, while the following operations can be found

in individual rounds [1]:

• Substitute bytes

• Shift rows

• Mix columns

• Add round key

When decryption is performed, inverse operations are carried out [1]:

• Inverse shift rows

• Inverse substitute bytes

• Add round key

• Inverse mix columns

While the key length is only 128 bits, key has to be expanded [1]. After expansion ten new

128-bit round keys are generated. For more detailed description refer to AES standard

FIPS-197 [1].

While steps of the cipher (later denoted as direct cipher) and decipher (later denoted

as inverse cipher) are reversed to one another, implementation of encryptor and decryptor

consumes many logic resources. If some modifications are made (some operations in

inverse cipher are swapped) resource sharing between encryptor and decryptor is possible

[1].

6.1.1 Implementation of the shared AES encryptor/decryptor core

Implementation of shared AES Encryptor/Decryptor core is shown in the Fig. 6 – 1. User

has a possibility to select Encryptor, Decryptor, or shared Encryptor/Decryptor core. Red

components in the Fig. 6 – 1 are Encryptor core specific and green components are De-

cryptor core specific. Black components are used in all cores. As shown in the Fig. 6 – 1

44

FEI DEMC

1

0

Roundkey
nreset

SBOX (16x)

0

1

MixCols

d
2
(x)

01

Inverse

shift rows
Shift rows

Roundkey

1

0

DATA IN

REG

data_in

DATA OUT

REG

data_out

nreset

nreset round = 0

not (round = 0)

AND

decrypt = ‘1’

decrypt

decrypt

InvMixCols

128

Fig. 6 – 1 Shares AES Encryption/Decryption core

the following logic parts are shared:

1. Add round key A – Operation of XORing data with round key. It is implemented

after round zero multiplexer.

• Encryption:

o Round 0: XORing input data with original (0TH) round key

o Rounds 1 to 9: XORing output of MixCols with round key

o Round 10: not used, Add round key B used instead (reason: key has to be

added before MixCols operation)

• Decryption:

o Round 0: XORing input data with original (0TH) round key

o Rounds 1 to 10: not used

2. S-boxes – implemented as LUTs in embedded dual port memories. Each S-box

is switchable between being direct or inverse. Each embedded memory block can

operate as two direct S-boxes or two indirect S-boxes [3]. S-boxes will be discussed

in section 6.1.2 in more detail.

45

FEI DEMC

3. Add round key B – Operation of XORing data with round key. It is implemented

after Shift rows multiplexer.

• Encryption:

o Round 0 to 9: not used

o Round 10: XORing data from shift rows multiplexer with last round key

before registration and output

• Decryption:

o Round 0: not used, Add round key A used instead

o Round 1 to 10: XORring data from shift rows multiplexer with all round

keys except original key.

4. InvMixColumn – MixColumn block is shared by both encryption and decryption.

InvMixColumn was implemented according to V. Fischer & M. Drutarovský pro-

posed serial decomposition of InvMixCols [32].

5. Data_in_reg, Data_out, Key_in_reg, Key_out registers are shared

In the Fig. 6 – 2 implementation of the key expansion block is shown. In key ex-

pansion block, many resources are shared between forward (used during encryption) and

backward (used during decryption) expansion of the key. RCON and Inv_RCON are

generated by the RCON generator illustrated in the Fig. 6 – 3.

6.1.2 Implementation of S-boxes

One of the most important parts of the AES cipher are S-boxes. S-box represents complex

non-linear byte transformation [1], therefore it is difficult to implement it. Byte substitu-

tion according to FIPS-197 [1] composes of the following operations:

1. Computation of the multiplicative inverse in GF(28)

2. Affine transformation [1]

46

FEI DEMC

W0

W3

W2

W1

1 0
decrypt

1 0
decrypt

1 0
decrypt

0

1

decrypt

R

O

T

SBOX

Inv_RCON

RCON

Function

1

0

1

0

1

0

1

0

mux_sel

mux_sel

mux_sel

mux_sel

key_out

(128bit)

w0_in

w2_in

w3_in

w1_in

w4

w5

w6

w7

w0_out

w1_out

w2_out

w3_out

0

1

decrypt

= 32-bit XOR

w4

w5

w6

w7

nreset

nreset

nreset

nreset

nresetoriginal_key(127:96)

key_in

(128bit)

32

32

32

32

32

32

32

32

Fig. 6 – 2 Key expansion block for forward and backward expansion

0x01

Inv

RCON RCON

0x36

RCONInv_RCON

nresetnreset

0x8E 0x02

8 8

Fig. 6 – 3 RCON and Inv_RCON constants generator

Most usual implementations are [3]:

• Decomposition of GF(28) and mapping into two GF(24) – implemented in combi-

natorial logic

• Look-Up Table (LUT) – implemented in embedded dual port RAM

47

FEI DEMC

The decomposition method [33] is preferably used in ASIC circuits, where implementa-

tion of RAM memory is more expensive [3]. In contrary, LUT implementation is used

mainly in FPGAs where RAM memories are available and logic resources can be utilized

for the rest of the AES core [3]. For this reason, LUT implementation was chosen for the

particular project [3].

6.1.2.1 LUT based S-box implementation

Before the LUT based S-box can be used, LUT has to be created inside the embedded

RAM. In case of volatile FPGAs (Altera, Xilinx), LUT is created during initial configu-

ration of the FPGA. In case of non-volatile FPGAs, the configuration stage during initial-

ization is omitted. However, LUT has to be created inside the memory. For this purpose,

S-box generator has to be implemented in logic, thus memory can be initialized imme-

diately after power-up [3]. However, Actel Fusion FPGA contains true dual port RAMs

(TDPRAM) [2]. With TDPRAM both S-box and S-box−1 can be generated and saved in

TDPRAM simultaneously. And what is more, TDPRAM can be used as two S-boxes op-

erating simultaneously [3]. Combination of S-box generator and TDPRAM is illustrated

in the Fig. 6 – 4. One idea of generating addresses and corresponding S-box values is to

True dual port

RAM

S-box

generator

S-box

S-box
-1

S-box A

S-box B

Fig. 6 – 4 S-box and S-box−1 generation and connection to TDPRAM

implement one combinatorial S-box and source it with counter [3]. Counter value can be

considered as the memory address and output of the combinatorial S-box as the value to

be written to memory [3]. After 256 cycles, whole LUT is created in the memory [3].

However, implementation of combinatorial S-box utilizes about 200 tiles [3].

However, more convenient solution based on LFSRs exists and will be described in

the next section.

48

FEI DEMC

6.1.2.1.1 S-box generator based on LFSRs

One of the design constraints was the size of the S-box generator. Number of used re-

sources of the generator is very important when implementing in smaller FPGAs. There-

fore, S-box generator based on two LFSRs was designed [3].

Before the S-box pairs (address and value) could be created, multiplicative inversed

elements have to be generated simultaneously in LFSRs [3]. Implementation of both

LFSRs [3] is shown in the Fig. 6 – 5. Due to the limited number of pages of this thesis,

the mathematical description of the LFSRs will not be discussed and only main results

will be presented. Mathematical description is explained in article, which was submitted

to FPL’09 conference [3] and CryptArchi workshop [3].

7 6 5 4 3 2 1 0

01234567

0 1 2 3 4 5 6 7

76543210

Fig. 6 – 5 LFSRs for generation of multiplicative inversed pairs

Unfortunately, GF(28) generated by LFSRs is expressed by non-AES primitive poly-

nomial (6.2). Since GF(28) suitable for AES is expressed by AES irreducible polynomial

(6.1), all elements of the generated GF(28) have to be transformed into AES GF(28) by

the basis transformation.

m(x) = x8 + x4 + x3 + x+1 (6.1)

m′(x) = x8 + x4 + x3 + x2 +1 (6.2)

Let assume d is the element in the GF(28) expressed by primitive polynomial m’(x) (6.2).

Its polynomial representation [34] is

d(x) = d7x7 +d6x6 +d5x5 +d4x4 +d3x3 +d2x2 +d1x+d0 (6.3)

49

FEI DEMC

Let assume c is the element in the GF(28) expressed by the AES irreducible polyno-

mial m(y) (6.1). Its polynomial representation is

c(y) = c7y7 + c6y6 + c5y5 + c4y4 + c3y3 + c2y2 + c1y+ c0 (6.4)

If A is the root of the polynomial m(y) and B is the root of the polynomial m’(x) [34] than

it holds that

m(A) = A8 +A4 +A3 +A+1 = 0 (6.5)

m′(A) = B8 +B4 +B3 +B2 +1 = 0 (6.6)

Therefore the basis of both polynomials (6.1) and (6.2) can be expressed as [3]

[A7,A6,A5,A4,A3,A2,A1,A0] (6.7)

[B7,B6,B5,B4,B3,B2,B1,B0] (6.8)

The smallest root of the m(x) polynomial (6.1) is A = 0x02 [34]. The smallest root of the

m’(x) polynomial (6.2) is B = 0x03 [34]. Therefore, we can find the relationship between

A and B as

B = A⊕1 (6.9)

where ⊕ repesents logic operation exclusive-or (XOR). In order to find the relationship

between elements c and d, variables x and y in polynomials (6.3) and (6.4) have to be

substituted by the roots of the irreducible polynomials:

c(A) = c7A7 + c6A6 + c5A5 + c4A4 + c3A3 + c2A2 + c1A+ c0 (6.10)

d(B) = d7B7 +d6B6 +d5B5 +d4B4 +d3B3 +d2B2 +d1B+d0 (6.11)

After substitution according to equation (6.9)

d(A) = d7(A⊕1)7 +d6(A⊕1)6 +d5(A⊕1)5 +d4(A⊕1)4 +

d3(A⊕1)3 +d2(A⊕1)2 +d1(A⊕1)+d0 (6.12)

50

FEI DEMC

After simplification

d(A) = d7A7 +(d7⊕d6)A6 +(d7⊕d5)A5 +(d7⊕d6⊕d5⊕d4)A4 +

(d7⊕d3)A3 +(d7⊕d6⊕d3⊕d2)A2 +(d7⊕d5⊕d3⊕d1)A+

(d7⊕d6⊕d5⊕d4⊕d3⊕d2⊕d1⊕d0) (6.13)

If c(A) = d(A) than the relationship between coefficients can be described as

c = BT (d) =

c7

c6

c5

c4

c3

c2

c1

c0

=

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

d7

d6

d5

d4

d3

d2

d1

d0

=

d7

d7⊕d6

d7⊕d5

d7⊕d6⊕d5⊕d4

d7⊕d3

d7⊕d6⊕d3⊕d2

d7⊕d5⊕d3⊕d1

d7⊕d6⊕d5⊕d4⊕d3⊕d2⊕d1⊕d0

(6.14)

where c = BT(d) describes the basis transformation and 8x8 matrix is the basis transfor-
mation matrix. In some cases it is beneficial to combine basis transformation with affine
transformation forming compact combined transformation. Affine transformation [1] can
be described as

AT (c) =

s7

s6

s5

s4

s3

s2

s1

s0

=

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

c7

c6

c5

c4

c3

c2

c1

c0

⊕

0

1

1

0

0

0

1

1

(6.15)

After substitution c = BT(d)

AT _BT (d) =

g7

g6

g5

g4

g3

g2

g1

g0

=

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

×

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

d7

d6

d5

d4

d3

d2

d1

d0

⊕

0

1

1

0

0

0

1

1

(6.16)

51

FEI DEMC

where × operation represents matrix multiplication. After matrix multiplication

AT _BT (d) =

g7

g6

g5

g4

g3

g2

g1

g0

=

1 0 0 1 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 1 1 1 0

1 1 1 0 0 0 0 1

1 0 0 1 0 0 0 1

1 1 0 1 1 0 0 1

1 0 1 1 0 1 0 1

1 1 1 0 1 1 1 1

d7

d6

d5

d4

d3

d2

d1

d0

⊕

0

1

1

0

0

0

1

1

=

d7⊕d4⊕d3

(d7⊕d6⊕d4⊕d2)′

(d7⊕d5⊕d4⊕d3⊕d2⊕d1)′

d7⊕d6⊕d5⊕d0

d7⊕d4⊕d0

d7⊕d6⊕d4⊕d3⊕d0

(d7⊕d5⊕d4⊕d2⊕d0)′

(d7⊕d6⊕d5⊕d3⊕d2⊕d1⊕d0)′

(6.17)

where ()’ operation represents logic negation.

Complete S-box generator is shown in the Fig. 6 – 6. Detailed implementation of the

S-box is shown in the Fig. 6 – 7 [3].

LFSR A

LFSR B

Basis + Affine

transformation

Basis

transformation

S-box

value

(dir_do)

S-box

address

(inv_do)

S-box generator

8

8

Fig. 6 – 6 S-box generator with basis transformation

6.1.3 Implementation of AES enc/dec core in FPGA

AES core has been implemented and tested in Actel Fusion AFS600, Actel Igloo AGL600

and Altera Cyclone III C5E144 FPGAs [3]. Both S-boxes in logic and in memory were

tested. When implemented in Actel Fusion device, it turned out that AES with S-boxes

in memory utilized 2987 tiles and highest achieved frequency was 58.5 MHz and AES

with S-boxes in logic utilized 5499 tiles and highest achieved frequency was 28.7 MHz

[3]. In case of Altera Cyclone III, only AES with S-boxes in memory was measured. It

utilized 1705 logic elements (one logic element can implement one combinatorial gate

with register in series, therefore it can be compared with 2 tiles) and the highest achieved

52

FEI DEMC

wda

wdb

rda

rdb

addra(7:0)

addrb(7:0)

sel

dir_data

inv_data

rwa

sel

rwb

blka

blkb

0

0

1

1

0

clk
nreset

nreset
clk

dir_do

inv_do

S-box generator

addra(8)

addrb(8)

sel

1

0

1

0

RAM4K9

0

1

sboxa_in

sboxb_in

decrypta

decryptb

sboxa_out

sboxb_out

Fig. 6 – 7 Detailed implementation of the S-box in TDPRAM

frequency was 111.4 MHz [3]. AES with S-boxes in memory was the only tested in Actel

Igloo device. Highest achieved frequency was 24.5 MHz [3]. It is important to notice that

Actel Igloo device is targeted for low power applications and therefore its performance

was reduced [3]. When measuring power consumption, Actel Igloo outperformed both

Actel Fusion and Altera Cyclone III devices [3].

6.2 Analysis of cryptoprocessor core

There are two possible ways to design cryptoprocessor [4]. First way is to make analysis

of all regular available open-source processors if they are modifiable to cryptoproces-

sor. Other way is to start building the cryptoprocessor from scratch. During the design

time, designer can inspire in or even utilize control parts from open-source processors

and design new datapath. Nevertheless the cryptoprocessor topic is completely new and

no research has been carried out in this field before [4]. The cryptoprocessor hasn’t been

53

FEI DEMC

implemented yet and is just in the design stage.

6.2.1 Modifiability analysis of available open-source processors

All processors except the Leon 3 [35] were acquired from opencores.org [36]. Main

criteria for selecting the best processor to be reused were the following:

• suitable for implementing in FPGA

• easily modifiable to cryptoprocessor

• VHDL code should be readable and well commented/documented

• size of implementation has to be reasonable

According to these criteria most considered properties of processors were:

• synthesizability

• type of architecture (Harvard vs. von Neumann)

• implementation of registers (in logic vs. in RAM)

• readability and good modifiability of the VHDL code

• size of circuit (in tiles) and number of used RAM modules

• reusability of a control part of the processor

• number of stages in pipeline (preferred not more than 3)

Observed results are summarized in Tab 6 – 1 and Tab 6 – 2.

According to the results of the analysis, the following 10 processors (see Tab. 6 – 3)

have been chosen to be reusable:

Only 5 processors were optimized for FPGA (registers in RAM, Harvard architecture

. . .). For more appropriate decision, every chosen processor has to be reviewed more

carefully and tested on simulations. Most reusable part is the control logic. Datapaths

have to be usually modified completely.

54

FEI DEMC

Tab. 6 – 1 Architecture and implementation comparison of open-source processors

Name of CPU num of bits architecture pipeline registers in

Lightweight 8080 8 Von Neumann 2 16x in logic

68HC08 8 Von Neumann 3 In logic

LEON3 32 Harvard 7 In RAM

Ax8 8 Harvard N/A In RAM(2x)

HPC-16 16 Von Neumann N/A In logic

McAdam’s Marca 16 Von Neumann 4 16x in RAM

MiniMIPS 32 Von Neumann 5 In logic

PAVR 32 Von Neumann 6 In RAM(10x)

Plasma - MIPS 32 Von Neumann 3 In RAM

Ppx16 8 Harvard N/A In RAM, except acc.

RISC5x 8 Harvard 1 In RAM

Tiny64 32 Von Neumann 3 8x in logic

System68 8 Von Neumann N/A In logic

System11 8 Von Neumann N/A In logic

T48 8 Harvard N/A In logic

T65 8 Von Neumann N/A In logic

T80 8 Harvard N/A In RAM(2x)

T400 4 Harvard 3 In logic

55

FEI DEMC

Tab. 6 – 2 Comparison of code properties of open-source processors

Name of CPU synthesizability code length readability modifiability

Lightweight 8080 2007 1120 good, many comments very good

68HC08 5517 2430 very poor, poor comments poor

LEON3 9674 N/A very good, perfect doc. poor, too complex

Ax8 1315 1900 good, many comments good

HPC-16 2894 3759 good, good document. good

McAdam’s Marca N/A N/A very good, good doc. very good

MiniMIPS 16171 N/A medium, good doc. good

PAVR 7876 7900 good, medium doc. medium

Plasma - MIPS 4180 2000 medium, medium comments medium

Ppx16 1172 970 medium, poor comments good

RISC5x 2983 1700 good, good comments medium

Tiny64 3529 530 good, good comments good

System68 2802 3962 medium, medium comm. poor

System11 3529 4792 medium, medium comm. poor

T48 1547 5500 good, medium comments medium

T65 1603 1700 medium, poor comments good

T80 3229 3100 good, poor comments good

T400 1216 3550 medium, medium comm. medium

56

FEI DEMC

Tab. 6 – 3 Selected open-source processors to be reused in cryptoprocessor

Not very suitable for FPGA More suitable for FPGA

Lightweight 8080 Ax8

HPC-16 McAdam’s Marca

Tiny64 Ppx16

T48 RISC 5x

T65 T80

6.2.2 Design of new cryptoprocessor architecture

The other way to develop the cryptoprocessor is to create a new design. However, there

are many issues that need to be considered. Control logic has to be very stable, because

it directly influences the performance of the datapath. Number of used logic resources

also has to be considered. In this case datapath is the most expensive one. Thus it is very

important to decide to base the architecture on either 128-bit datapath or 32-bit datapath.

Block diagram of the cryptoprocessor is shown in the Fig. 6 – 8 [4]. As shown in the

Fig. 6 – 8, data and key registers are physically separated in different RAM modules. This

precaution helps to preserve security of the key inside the FPGA [4]. Even if it doesn’t

seem critical at first sight, it can turn to catastrophe if an unencrypted key is transferred

out of the cryptoprocessor via the data bus [4]. How is this possible? If an attacker

intentionally applies very strong magnetic field to the critical parts of the FPGA (i.e.

select signal of the multiplexer) key can be redirected to output data bus. However it is

not sufficient to physically separate data and key registers. The whole architecture (buses,

multiplexers, . . .) has to be designed carefully, otherwise the security is reduced. For

these reasons, parts of the architecture that operate with keys need to be specially treated.

In this case, resource optimization is not as important as the security of keys. Some key

paths can be doubled to assure safe transfer of the key from one block to another. In the

57

FEI DEMC

Fig. 6 – 8 critical key bus is illustrated in red color [4].

Despite the security of the AES cipher there is a possibility to extract a key from big

amount of encrypted data. For this reason it is recommended to change key every 64

kB of data [4]. This issue has been solved by using two sets of registers for keys: Main

key register (for permanent key) and Session key register (for temporary key) [4]. At the

beginning session key is generated by the RNG. After being stored in session registry,

it is encrypted by the main key and sent out to receiver. Afterwards receiver decrypts

the encrypted session key with the same main key. Subsequently, the sender can encrypt

data with generated session key and send them to the receiver. The receiver decrypts the

data with the previously received and decrypted session key. For each 64 kB of data new

session key is generated [4].

R1

R2

Rn

. .
 .

Encryptor

Decryptor

RNG

SKencrypt

Data

registers

(128 bits)

Key registers (128 bits)

MKauth

Data bus

Input and output registers

(Data are open)

Key bus

ALU

SKauth

MKencrypt

PTRo

PTRi

CTRo

CTRi

Input and output registers

(Data are encrypted)

 Main key (encryption)

 Main key (authent.)

Session key (encryption)

Session key (authent.)

 Program

memory

Control
unit

Main key entrance

Key for encryption/authentication

 Programmable or reconfigurable modules

Legend:

Fig. 6 – 8 Block diagram of the cryptoprocessor

58

FEI DEMC

6.2.2.1 Architecture with 128-bit datapath

Implementation of the 128-bit datapath of the cryptoprocessor is shown in the Fig. 6 –

9. Arithmetic logic unit is broken into separate parts: XOR, increment, compare and

flow-through operations. For most of the block cipher modes XOR operation is required.

Increment can be used in the CTR block mode (counter mode) and comparison is usually

used during authentication. In the center of the architecture is the cipher block. Archi-

RNG

Data register dual port

RAM (16 modules)

1 0 1 0

0

1

A B

Input

register
Output

register

din dout

1 0

Adder

1 0

1 0

“000...001”

“000...000”

(inc)

(flow through)

A B

1 0

Cipher

cmp(A,B)

1

0

Session Key

RAM

1 0

Main

Key

Inv Main

Key

1

0

Main

Key

ROM

1 0

DO

DI
KI

KO

1 0

Status

REG

128 128

128

128

128

128

128

128

128

Fig. 6 – 9 Implementation of cryptoprocessor with 128-bit datapath

59

FEI DEMC

tecture allows implementing any type of symmetric cipher with 128-bit data length and

128-bit key length. For the particular project AES was chosen as the one recommended

by NIST [1].

One may notice red colored buses in Fig. 6 – 9. These buses represent paths where

keys are transferred and require special treatment. All these paths could be doubled to

secure the integrity of transferred keys. Furthermore, all the red buses are designed in the

way that no key can be multiplexed to the data bus without being encrypted first.

In case of decryption, generated session key for encryption has to be expanded first,

the last expanded key has to be stored in session key register and only then it can be used

for decryption. In case of decryption with the main key, the last expanded key has to be

stored in inverse main key register.

As shown in the Fig. 6 – 9, 128-bit architecture is very convenient but is very ex-

pensive in terms of FPGA resources. If one decides to implement cryptoprocessor with

128-bit datapath, 16 memory modules for data registers have to be included as well as 8

memory modules for session key registers. AES cipher itself uses 10 memories for stor-

ing S-boxes. In this case all 24 memory modules available in Fusion FPGA [2] wouldn’t

be enough. This allows the implementation of the system in bigger FPGA families only.

The second disadvantage of this robust 128-bit architecture lies in number of used logic

resources. Each 128-bit multiplexer utilizes 128 tiles. In this case all multiplexers utilize

about 1400 tiles. Further, it is important to mention the critical path. The architecture was

designed to be as symmetric as possible in terms of critical paths’ delays. However, the

biggest delay is introduced in the right path because of the Adder. For all mentioned is-

sues it could be advantageous to design cryptoprocessor capable of working with 128-bit

words but using only 32-bit datapath.

6.2.2.2 Architecture with 32-bit datapath

Implementation of the 128-bit cryptoprocessor operating with 32-bit datapath is shown in

the Fig. 6 – 10. Despite the shift to 32-bit datapath, each operation has to be carried out

over 128-bit words. Therefore, each operation has to be performed in 4 steps where in

60

FEI DEMC

each step a sub-operation is carried out over 32-bit sub-words. However, computational

performance is 4 times lower.

When comparing number of used FPGA resources, number of tiles necessary for mul-

tiplexers decreases rapidly. In 32-bit datapath only about 360 tiles are needed to imple-

ment multiplexers when compared to about 1400 tiles needed in 128-bit datapath. All

other parts of datapath are smaller. For XOR operation only 32 tiles are needed. Adder

benefits from less resource count but the most important is the reduction of a delay in the

critical path because of a shorter carry chain within the Adder.

The most important are savings in the number of used memory modules. In contrast to

128-bit data registers (using 16 RAM modules) 32-bit data registers require only 4 RAM

modules. The session key register requires only 2 RAM modules when compared to 8

RAM modules needed in 128-bit datapath. This saving allows implementing cryptopro-

cessor in Actel Fusion FPGA [2] used in this project.

However, cipher module operates with 128-bit words. For this reason, word length

conversion blocks have to be added. The convertor block from 32-bit to 128-bit is shown

in the Fig. 6 – 11. One may notice three sets of 32-bit registers implemented in logic.

These registers are controlled by the enable signals E0, E1 and E2 and provide temporary

storage of successive 32-bit sub-words. Last 32-bit sub-word is not registered and is

transferred directly to 128-bit output bus. This solution helps to save one clock cycle,

which would have been needed in case of registration of the last 32-bit sub-word. The

whole conversion requires 4 clock cycles.

Inversed convertor is shown in the Fig. 6 – 12. One may notice that no registration is

necessary and all 32-bit sub-words are successively multiplexed into 32-bit bus. The only

necessity is the correct control of select signals S1, S2 and S3. The whole conversion

requires 4 clock cycles.

61

FEI DEMC

RNG

Data register dual port

RAM (4 modules)

1 0 1 0

0

1

A B

Input

register
Output

register

din dout

1 0

Adder

1 0

1 0

“000...001”

“000...000”

(inc)

(flow through)

A B

1 0

Cipher

cmp(A,B)

1

0

Session Key

RAM

1 0

Main

Key

Inv Main

Key

1

0

Main

Key

ROM

1 0

DO
DI

KI

KO

1 0

Status

REG

128/

32

32/

128

128/

32

32/

128

C

reg

1

0

„0‟

carry

carry

1

0

„0‟

32

32

32

32

32

32
128

32

128

1

1

1

32

Fig. 6 – 10 Implementation of cryptoprocessor with 32-bit datapath

6.3 Interconnection of cryptoprocessor with ARM7

After the whole cryptoprocessor is completed, it has to be connected to the main data bus

of the system. This interconnection is illustrated in the Fig. 6 – 13. The cryptoprocessor

should behave as a black box which would read data from 32-bit input FIFO, carry out its

task and write results to 32-bit output FIFO. The status should indicate accomplishment

of the task and APB access controller could read this status and send it to ARM7.

62

FEI DEMC

W0

W1

W2

32

32

32

32

128

31:0

63:32

95:64

127:96

32

E0 E1 E2

Fig. 6 – 11 Conversion of 4 successive 32-bit words into 128-bit word

31:0 0

1

0

1

63:32

95:64

127:96

0

1

128 32

32

32

32

32

S2

S1

S3

Fig. 6 – 12 Conversion of 128-bit word into 4 successive 32-bit words

OUTPUT

FIFO

INPUT

FIFO

DATA

IN
DATA

OUT

CRYPTO-

PROCESSOR

APB ACCESS

CONTROLLER

ARM CLOCK DOMAIN

CRYPTOPROCESSOR

CLOCK DOMAIN

S
T

A
T

U
S

B
U

S

Fig. 6 – 13 Interconnection of cryptoprocessor with ARM7

Since cryptoprocessor is separated from the rest of the system, special protocol has

to be created and applied on the data. First 32 bits of data should contain header. In

this header the whole necessary configuration should by present. Cryptoprocessor should

access this header, compare it with masks stored in special registers and decide which

63

FEI DEMC

action to perform. Afterwards data could be read from 32-bit input FIFO and processed.

This study is the first step and further work is necessary to design exact protocol for data

and control packets transfer and processing.

64

FEI DEMC

7 Software implementation

7.1 ARM7 firmware design

Firmware was written in c-code in Keil µVision3 development environment [19] using

external GNU compiler. Its complexity lies in close-to-hardware (low-level) program-

ming. At the first step, simple functions had to be created. These functions were directly

accessing registers in peripherals in the ARM7’s address space (peripherals connected to

APB bus). Functions were grouped in libraries according to peripheral they were writ-

ten for. Finally, Main function with an infinite loop was written. This function uses all

low-level functions to access ARM7’s peripherals.

ARM7 core [12], [13] has its firmware stored in the non-volatile flash memory in-

side FPGA [2]. This memory is accessed by CoreAhbNvm component (flash controller),

which translates communication between the processor and the flash memory. Because

the processor executes instructions from the beginning of the memory space, CoreAhb-

Nvm’s address space (range: 0x00000000 - 0x0FFFFFFF) is in the beginning of the

ARM7’s address space.

Firmware is divided into these parts:

• Main function - including infinite loop

• I2C library - containing functions for I2C bus control

• CamDMA library - containing functions for image acquisition and external

memory sharing

• Cyp_usb library - containing functions for USB communication

Firmware for ARM7 is responsible for image acquisition, memory sharing, camera

initialization and USB communication. This firmware is just the first version. In future it

has to be expanded to include optical signature extraction and cryptoprocessor control.

65

FEI DEMC

7.2 USB transport protocol

To transport data via USB, protocol had to be created. The idea was to divide data into

packets with headers. The transport protocol postulated asymmetric data rates in different

directions. Packets transferred from ARM7 to PC had bigger header and were capable to

contain more data. Packets transferred from PC to ARM7 had smaller header and smaller

data space. This asymmetry was due to requirements of the system. ARM7 had to send

big amount of image data while PC had to send only command with little data to specify

request.

The communication model is illustrated in the Fig. 7 – 1. Communication is carried

out by sending a pair of physical packets. First packet represents the logical header and

the other packets the logical data.

Time Time

PC

side

ARM

sideUSB

Header sent (data len.: 0B => No data part, cmd: CAP_FRAME)
Capture starts

Command to

start capturing

Capturing frame
Waiting for

the header

Header sent (data len.: 19200 words (75kB), cmd not used => null)
Sending packet header

Data sent (19200 words (75kB)
Header received

Data received

Waiting for

the header

Sending packet data

Fig. 7 – 1 Communication model between ARM7 and a PC

7.3 PC software implementation

PC software was programmed in the Borland C++ Builder 6.0 [20]. Its purpose is to

visualize the results of the capturing process on the PC. Even if embedded system was

able to capture frames at the speed of 30 fps, USB interface slowed down the process

to approximately 4 fps. As long as PC serves for visualization purposes only, 3-4 fps is

considered as sufficient. This visualization is used just to prove that captured frame inside

the memory was captured correctly.

66

FEI DEMC

7.3.1 PC interface from user’s point of view

PC interface is very easy to be used. It has a lot of comments displayed at the hint line

and the small glyphs for the user to intuitively understand the meaning of the buttons. The

interface contains two windows:

• Main window

• About window

7.3.1.1 The Main window

Main window is shown in the Fig. 7 – 2.

Camera

initialization

Frames Per

Second display
Start/Stop

Capture

System Time

reference

Clear the

console

Show the About

window

Hint line

Console

Screen

Fig. 7 – 2 Main window of the PC interface

67

FEI DEMC

Control panel is located in the bottom part of the window. To initialize camera, the

user has to click to the Camera initialization button. After the initialization, Start Capture

button displays. After clicking on the Start Capture button, the Screen starts to display the

captured picture. FPS will be dynamically measured and displayed in their FPS display

area. Time display area displays actual system time. After performing any user action, it

will be displayed in the console panel. The console can be cleared with the button located

in the lower right corner of the window. The last button in the lower right corner shows

the About window.

If there was a need to display the frame errors, the interface can be switched to the

debug mode by pressing the Ctrl+Shift+F12 key combination. When in debug mode,

small red "D" letter will be added in the left part of the hint line. If there was an error

during capturing process, it would be displayed in the console with the time when the

error occurred. Fig. 7 – 3 shows interface in debug mode.

Fig. 7 – 3 Application in the Debug mode

68

FEI DEMC

7.3.1.2 The About window

About window displays the basic information about the application. Fig. 7 – 4 shows the

About window.

Fig. 7 – 4 About window in the PC interface

69

FEI DEMC

8 Conclusion

As it has been stated in the introduction, one of the biggest problems of the modern world

is faking of original products and thus enabling to gain profit illegally from items being

in a declarable ownership of their sole authors. This research has been carried out to

establish hardware platform to install the procedures of distinguishing original and fake

products from each other with the highest possible accuracy.

From the technical point of view, this project dealt with the realization of the first

steps important for this new technology, particularly with the image acquisition, encryp-

tion, analysis of cryptoprocessor and feasibility study about implementation of optical

signature extraction algorithm to hardware. Image acquisition subsystem together with

ARM7 subsystem have been successfully implemented in hardwate and tested. Prototype

has been created. AES cipher/decipher subsystem have been implemented in FPGA and

basic parameters have been measured. It hasn’t been tested yet, since block cipher modes

are required for testing in hardware and cryptoprocessor for performing these block cipher

modes hasn’t been implemented yet. Architecture of cryptoprocessor has been proposed

in structural level. Future development lies in the implementation and testing of the cryp-

toprocessor. Product authentication algorithm has been designed and tested in Matlab.

Analysis of the complexity of this algorithm has been carried out. Other algorithms are

developed too and finally the best algorithm will be chosen.

The work has dealt with several questions and difficulties concerning the particular

project, whereas the most significant obstacles for the research were the stability of cam-

era operation with easy configuration, optimized VHDL design inside the Actel FPGA

and setup of the USB interface. During the design of AES cipher module, mathematic

basics in the field of Galois fields had to be studied and applied in the design. All these

difficulties have been overcome with success and the project has met all the requirements

needed for its realization.

The most discussed and researched parts were the VHDL optimization with frame

corruption issues, optimized generation of S-boxes inside the FPGA and study of third-

70

FEI DEMC

party processors’ VHDL codes. Embedded system was able to capture frames with the

frame rate of 30 fps. The only part that slowed down the frame rate was the USB part.

Because of the USB module and the USB driver obstacles, PC frame rate was rapidly

decreased to 3-4 fps. Because visualization served for frame-check only, speed of frames

per second in the PC is not important as long as embedded system is capable of real-time

capturing. A lot of mathematic calculations and simplifications were necessary to derive

transformation matrices. These matrices were successfully implemented in transforma-

tion blocks. Basic theory in the field of LFSRs, NLFSRs and generation of maximum

length sequences was studied too.

To sum it up, the first steps required for developing the above described technologies

has been carried out with success. Further development and the final realization lies on the

subsequent research and on the final technical realization. It can be concluded, that this

project has been finished successfully and it has fulfilled all the expectations connected

with its practical realization.

71

FEI DEMC

Bibliography

[1] NIST, FIPS 197: Advanced Encryption Standard, 2001, available online:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] ACTEL, Fusion Handbook, 2009, available online:

http://www.actel.com/documents/Fusion_HB.pdf

[3] L. GASPAR, M. DRUTAROVSKY, V. FISCHER AND N. BOCHARD, Efficient AES

S-boxes implementation in non-volatile FPGAs, submitted for FPL 2009 confer-

ence, Prague, Aug. 31-Sep. 2, 2009

[4] ANR, SecReSoC project, France, 2009

[5] ST MICROELECTRONICS, VS6524: VGA single-chip

camera module, datasheet, 2006, available online:

http://www.stdistributiondemandcreation.com/steval/datasheets/vs6524.pdf

[6] ST MICROELECTRONICS, X24 Camera integration kit: User manual, 2007

[7] ACTEL, Actel System Management Board: User’s Guide, 2006

[8] GSI TECHNOLOGY, GS88018/32/36BT-xxxV: 9Mb Sync Burst SRAMs, datasheet,

2007, available online: http://www.gigasemi.com/880xxB_V.pdf

[9] ST MICROELECTRONICS, M29W800DT: 8Mbit 3V Sup-

ply Flash Memory, datasheet, 2004, available online:

http://www.btdesigner.com/pdfs/M29W800D.pdf

[10] MICRONIC, USB board, datasheet, 2006

[11] CYPRESS, CY7C68013A: EZ-USB FX2LP USB Microcontroller, datasheet,2008,

available online: http://www.cypress.com/?docID=5485

[12] ACTEL, CoreMP7, datasheet, 2007, available online:

http://www.actel.com/documents/CoreMP7_DS.pdf

72

FEI DEMC

[13] ARM LTD., ARM7TDMI-S: Technical Reference Manual, 2001, available online:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0234b/DDI0234.pdf

[14] WIKIPEDIA, ARM7TDMI, 2009, available online:

http://en.wikipedia.org/wiki/ARM7TDMI

[15] ARM LTD., AMBA Specification, 2001,

[16] NXP, The I2C-Bus Specification, 2000, available online:

http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

[17] ACTEL, Libero IDE Quick Start Guide: for Software v8.4, 2008, available online:

http://www.actel.com/documents/gettingstarted_ug.pdf

[18] MENTOR GRAPHICS, ModelSim User’s Manual: software version 6.3g, 2008,

available online: http://www.actel.com/documents/modelsim_ug.pdf

[19] KEIL, µVision User’s Guide, 2009, available online:

http://www.keil.com/support/man/docs/uv3/

[20] BORLAND, Borland C++ Builder reference guide, 2002

[21] SYNPLICITY, Synplify FPGA Synthesis, 2008, available online:

http://www.actel.com/documents/synplify_ref_ug.pdf

[22] ACTEL, Designer v8.4 User’s Guide, 2008

[23] ACTEL, FlashPro User’s Guide v8.5, 2008, available online:

http://www.actel.com/documents/flashpro_ug.pdf

[24] ACTEL, SmartTime v8.5 User’s Guide, 2008, available online:

http://www.actel.com/documents/smarttime_ug.pdf

[25] ACTEL, SmartPower v8.5 User’s Guide, 2008, available online:

http://www.actel.com/documents/smartpower_ug.pdf

73

FEI DEMC

[26] ACTEL, SoftConsole: Quick Start Guide, 2006, available online:

http://www.actel.com/documents/SoftConsole_QS_UG.pdf

[27] ACTEL, CoreConsole v1.4 User’s Guide, 2007, available online:

http://www.actel.com/documents/CoreConsole_ug.pdf

[28] NIST, Special Publication 800-38A, Recommendation for Block Cipher Modes of

Operation, 2001, available online: http://csrc.nist.gov/publications/nistpubs/800-

38a/sp800-38a.pdf

[29] NIST, Special Publication 800-38B, Recommendation for Block Cipher Modes

of Operation: The CMAC Mode for Authentication, 2005, available online:

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

[30] NIST, Special Publication 800-38C, Recommendation for Block Cipher Modes of

Operation: The CCM Mode for Authentication and Confidentiality, 2004, available

online: http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-

July20_2007.pdf

[31] NIST, Special Publication 800-38D, Recommendation for Block Cipher Modes

of Operation: Galois/Counter Mode (GCM) and GMAC, 2007, available online:

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[32] V. FISCHER, M. DRUTAROVSKÝ, P. CHODOWIEC AND F. GRAMAIN, InvMix-

Column Decomposition and Multilevel Resource Sharing in AES Implementations,

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 13,

Issue 8, Aug. 2005, pp: 989-992. ISSN 10638210

[33] A. SATOH, S. MORIOKA, K. TAKANO, AND S. MUNETOH, A compact Rijndael

hardware architecture with S-Box optimization, Proc. Theory and Application of

Cryptology and Information Security (ASIACRYPT’01), ser. LNCS, vol. 2248.

Gold Coast, Australia: Springer-Verlag, Dec. 9-13, 2001, pp. 239–254.

74

FEI DEMC

[34] D. CANRIGHT, A very compact s-box for AES, Proc. International Workshop

on Cryptographic Hardware and Embedded Systems (CHES’05), ser. LNCS, vol.

3659. Edinburgh: Springer-Verlag, Aug. 29–31, 2005, pp. 441–455.

[35] JIRI GAISLER, SANDI HABINC AND EDVIN CATOVIC, GRLIB IP Library User’s

Manual: LEON3 quick-start guide Quick Start Guide, 2009, available online:

http://www.gaisler.com/products/grlib/grlib.pdf

[36] OPENCORES, OpenCores database: Processors, 2009, available online:

http://www.opencores.org/

75

FEI DEMC

Appendices

CD containing the following:

Appendix A electronic version of this document

Appendix B VHDL source codes of:

• ARM7 subsystem

• Image acquisition subsystem

• S-box with generator

• AES cipher/decipher core

Appendix C ARM7’s firmware souce codes for Keil µVision 3

Appendix D PC software source codes for Borland C++ Builder

76

	 Introduction
	1 Overview of the project
	2 Description of hardware platform
	2.1 Actel system management board
	2.2 Actel Fusion FPGA architecture
	2.2.1 Actel Fusion
	2.2.2 M7AFS600 device
	2.2.3 Fusion core

	2.3 IP processor based on ARM7TDMI
	2.3.1 The ARM7TDMI-S processor architecture
	2.3.2 The Actel CoreMP7 processor architecture

	2.4 Micronic development module with Cypress USB
	2.5 X24 camera integration kit
	2.6 STM VS6524 camera
	2.6.1 Initialization of the camera
	2.6.2 Output data format and synchronization
	2.6.3 I2C communication description

	3 Description of the software development tools
	3.1 Libero IDE
	3.2 ModelSim
	3.3 Keil Vision 3
	3.4 C++ design environment (Borland C++ Builder)

	4 Structure of the image acquisition subsystem
	4.1 Interconnection of the development boards
	4.2 System on chip based on the ARM7 processor
	4.3 Image acquisition

	5 Optical signature extraction algorithm
	5.1 Description of the image processing, signature extraction and comparison algorithm
	5.2 Hardware implementation of image processing, signature extraction and comparison algorithms

	6 Analysis of the cryptoprocessor core
	6.1 AES Encryption/Decryption module
	6.1.1 Implementation of the shared AES encryptor/decryptor core
	6.1.2 Implementation of S-boxes
	6.1.3 Implementation of AES enc/dec core in FPGA

	6.2 Analysis of cryptoprocessor core
	6.2.1 Modifiability analysis of available open-source processors
	6.2.2 Design of new cryptoprocessor architecture

	6.3 Interconnection of cryptoprocessor with ARM7

	7 Software implementation
	7.1 ARM7 firmware design
	7.2 USB transport protocol
	7.3 PC software implementation
	7.3.1 PC interface from user's point of view

	8 Conclusion
	 Bibliography
	 Appendices

