
ModelSim® User’s Manual

Software Version 6.2g

February 2007

© 1991-2007 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation

8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000

Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://www.mentor.com/terms_conditions/trademarks.cfm

ModelSim User’s Manual, v6.2g 3
February 2007

Table of Contents

Chapter 1
Introduction. 21

Tool Structure and Flow . 21
Simulation Task Overview . 22
Basic Steps for Simulation. 23

Step 1 — Collecting Files and Mapping Libraries . 24
Step 2 — Compiling the Design (vlog, vcom, sccom) . 25
Step 3 — Loading the Design for Simulation. 26
Step 4 — Simulating the Design. 26
Step 5 — Debugging the Design . 26

Modes of Operation . 27
Command Line Mode . 27
Batch Mode. 28

Standards Supported . 28
Assumptions. 29
Sections In This Document . 29
What is an "Object" . 30
Text Conventions . 31
Installation Directory Pathnames. 31

Chapter 2
Simulator Windows . 33

Design Object Icons and Their Meaning . 35
Setting Fonts . 35

Main Window . 36
Workspace. 37
Transcript . 38
Message Viewer . 40
Multiple Document Interface (MDI) Frame . 41

Organizing Windows with Tab Groups . 42
Navigating in the Main Window . 43

Main Window Status Bar . 44
Main Window Toolbar . 45

Active Processes Pane . 47
Process Status . 48

Call Stack Pane . 48
Dataflow Window . 49

Dataflow Window Toolbar . 50
List Window. 53
Locals Pane . 55
Memory Panes . 56

Associative Arrays in Verilog/SystemVerilog . 57

Table of Contents

4
February 2007

ModelSim User’s Manual, v6.2g

Viewing Single and Multidimensional Memories . 57
Viewing Packed Arrays . 57
Viewing Memory Contents. 57
Saving Memory Formats in a DO File . 58
Direct Address Navigation . 58
Splitting the Memory Contents Pane . 58

Objects Pane. 60
Filtering the Objects List . 60
Filtering by Name . 60
Filtering by Signal Type . 61

Source Window . 62
Opening Source Files . 62
Displaying Multiple Source Files . 63
Dragging and Dropping Objects into the Wave and List Windows 63
Setting your Context by Navigating Source Files. 64
Language Templates . 65
Setting File-Line Breakpoints . 67
Checking Object Values and Descriptions . 67
Marking Lines with Bookmarks . 68
Customizing the Source Window . 68

Watch Pane . 70
Adding Objects to the Pane. 70
Expanding Objects to Show Individual Bits. 70
Grouping and Ungrouping Objects. 71
Saving and Reloading Format Files . 71

Wave Window . 72
Wave Window Panes . 75
Wave Window Toolbar. 76

Chapter 3
Projects. 81

What are Projects? . 81
What are the Benefits of Projects? . 81
Project Conversion Between Versions . 82

Getting Started with Projects . 82
Step 1 — Creating a New Project . 83
Step 2 — Adding Items to the Project . 84
Step 3 — Compiling the Files. 85
Step 4 — Simulating a Design . 86
Other Basic Project Operations. 88

The Project Tab . 88
Sorting the List . 89

Changing Compile Order. 89
Auto-Generating Compile Order . 90
Grouping Files . 90

Creating a Simulation Configuration . 91
Organizing Projects with Folders. 92

Adding a Folder . 92

Table of Contents

ModelSim User’s Manual, v6.2g 5
February 2007

Specifying File Properties and Project Settings. 94
File Compilation Properties . 94
Project Settings . 96

Accessing Projects from the Command Line. 97

Chapter 4
Design Libraries . 99

Design Library Overview . 99
Design Unit Information . 99
Working Library Versus Resource Libraries . 99
Archives . 100

Working with Design Libraries . 100
Creating a Library . 101
Managing Library Contents . 101
Assigning a Logical Name to a Design Library . 102
Moving a Library . 104
Setting Up Libraries for Group Use . 104

Specifying the Resource Libraries . 105
Verilog Resource Libraries . 105
VHDL Resource Libraries . 105
Predefined Libraries . 105
Alternate IEEE Libraries Supplied . 106
Regenerating Your Design Libraries . 106
Maintaining 32- and 64-bit Versions in the Same Library . 107

Importing FPGA Libraries. 107

Chapter 5
VHDL Simulation . 109

Basic VHDL Flow . 109
Compiling VHDL Files . 109

Creating a Design Library for VHDL. 109
Invoking the VHDL Compiler . 110
Dependency Checking . 110
Range and Index Checking . 110
Subprogram Inlining . 110
Differences Between Language Versions. 111

Simulating VHDL Designs . 114
Simulator Resolution Limit (VHDL) . 114
Default Binding. 115
Delta Delays . 116

Using the TextIO Package . 118
Syntax for File Declaration. 119
Using STD_INPUT and STD_OUTPUT Within the Tool . 119

TextIO Implementation Issues. 120
Writing Strings and Aggregates . 120
Reading and Writing Hexadecimal Numbers . 121
Dangling Pointers . 121
The ENDLINE Function. 121

Table of Contents

6
February 2007

ModelSim User’s Manual, v6.2g

The ENDFILE Function . 122
Using Alternative Input/Output Files . 122
Flushing the TEXTIO Buffer . 122
Providing Stimulus . 122

VITAL Specification and Source Code . 123
VITAL Packages . 123
VITAL Compliance . 124

VITAL Compliance Checking . 124
Compiling and Simulating with Accelerated VITAL Packages . 124
Util Package . 124

get_resolution . 125
init_signal_driver() . 125
init_signal_spy() . 125
signal_force() . 126
signal_release() . 126
to_real(). 126
to_time() . 127

Modeling Memory . 128
VHDL87 and VHDL93 Example . 129
VHDL02 example. 132

Affecting Performance by Cancelling Scheduled Events . 136
Converting an Integer Into a bit_vector . 136

Chapter 6
Verilog and SystemVerilog Simulation. 139

Terminology. 139
Basic Verilog Flow . 139
Compiling Verilog Files . 139

Creating a Working Library . 140
Invoking the Verilog Compiler. 140
Incremental Compilation . 141
Library Usage . 144
SystemVerilog Multi-File Compilation Issues . 145
Verilog-XL Compatible Compiler Arguments . 146
Verilog-XL uselib Compiler Directive . 147
Verilog Configurations . 149
Verilog Generate Statements . 150

Simulating Verilog Designs. 151
Simulator Resolution Limit (Verilog). 151
Event Ordering in Verilog Designs. 154
Debugging Event Order Issues . 157
Negative Timing Check Limits. 159
Verilog-XL Compatible Simulator Arguments . 160
Using Escaped Identifiers . 161

Cell Libraries . 162
SDF Timing Annotation . 162
Delay Modes . 162

System Tasks and Functions . 163

Table of Contents

ModelSim User’s Manual, v6.2g 7
February 2007

IEEE Std 1364 System Tasks and Functions . 164
SystemVerilog System Tasks and Functions . 166
System Tasks and Functions Specific to the Tool . 167
Verilog-XL Compatible System Tasks and Functions . 168

Compiler Directives . 171
IEEE Std 1364 Compiler Directives . 171
Verilog-XL Compatible Compiler Directives . 172

Verilog PLI/VPI and SystemVerilog DPI . 173

Chapter 7
WLF Files (Datasets) and Virtuals . 175

Saving a Simulation to a WLF File . 176
WLF File Parameter Overview. 177

Opening Datasets . 178
Viewing Dataset Structure . 179

Structure Tab Columns . 179
Managing Multiple Datasets . 180

GUI . 180
Command Line . 180
Restricting the Dataset Prefix Display . 181

Saving at Intervals with Dataset Snapshot. 182
Collapsing Time and Delta Steps. 182
Virtual Objects . 183

Virtual Signals . 184
Virtual Functions . 185
Virtual Regions . 186
Virtual Types . 186

Chapter 8
Waveform Analysis. 187

Objects You Can View . 187
Wave Window Overview. 187
List Window Overview . 190
Adding Objects to the Wave or List Window . 191

Adding Objects with Drag and Drop . 191
Adding Objects with a Menu Command . 191
Adding Objects with a Command. 191
Adding Objects with a Window Format File . 192

Measuring Time with Cursors in the Wave Window . 192
Working with Cursors. 193
Understanding Cursor Behavior . 194
Jumping to a Signal Transition . 195

Setting Time Markers in the List Window . 195
Working with Markers . 195

Zooming the Wave Window Display . 196
Zooming with the Menu, Toolbar and Mouse . 196
Saving Zoom Range and Scroll Position with Bookmarks. 197

Searching in the Wave and List Windows. 198

Table of Contents

8
February 2007

ModelSim User’s Manual, v6.2g

Finding Signal Names. 198
Searching for Values or Transitions . 199
Using the Expression Builder for Expression Searches . 200

Formatting the Wave Window. 202
Setting Wave Window Display Preferences . 202
Formatting Objects in the Wave Window . 204
Dividing the Wave Window . 206
Splitting Wave Window Panes . 207

Wave Groups . 208
Creating a Wave Group . 208
Deleting or Ungrouping a Wave Group . 210
Adding Items to an Existing Wave Group . 210
Removing Items from an Existing Wave Group. 210
Miscellaneous Wave Group Features . 210

Formatting the List Window . 211
Setting List Window Display Properties. 211
Formatting Objects in the List Window . 211

Saving the Window Format . 213
Printing and Saving Waveforms in the Wave window . 214

Saving a .eps Waveform File and Printing in UNIX . 214
Printing from the Wave Window on Windows Platforms . 214
Printer Page Setup. 214

Saving List Window Data to a File . 214
Combining Objects into Buses . 215
Configuring New Line Triggering in the List Window. 217

Using Gating Expressions to Control Triggering . 219
Sampling Signals at a Clock Change . 221

Miscellaneous Tasks . 221
Examining Waveform Values. 221
Displaying Drivers of the Selected Waveform . 221
Sorting a Group of Objects in the Wave Window . 222

Creating and managing breakpoints. 222
Signal breakpoints. 222
File-line breakpoints . 222

Chapter 9
Tracing Signals with the Dataflow Window. 225

Dataflow Window Overview . 225
Objects You Can View in the Dataflow Window. 225

Adding Objects to the Window . 226
Links to Other Windows . 226
Exploring the Connectivity of the Design . 227

Tracking Your Path Through the Design . 228
The Embedded Wave Viewer . 228
Zooming and Panning . 229

Panning with the Mouse . 230
Tracing Events (Causality) . 230
Tracing the Source of an Unknown State (StX) . 231

Table of Contents

ModelSim User’s Manual, v6.2g 9
February 2007

Finding Objects by Name in the Dataflow Window . 232
Printing and Saving the Display . 233

Saving a .eps File and Printing the Dataflow Display from UNIX 233
Printing from the Dataflow Display on Windows Platforms . 234

Configuring Page Setup . 235
Symbol Mapping . 235
Configuring Window Options . 237

Chapter 10
Signal Spy . 239

Designed for Testbenches . 239
disable_signal_spy . 241
enable_signal_spy . 242
init_signal_driver . 243
init_signal_spy . 245
signal_force. 248
signal_release . 250
$disable_signal_spy . 252
$enable_signal_spy . 253
$init_signal_driver . 254
$init_signal_spy . 256
$signal_force. 258
$signal_release . 260

Chapter 11
Standard Delay Format (SDF) Timing Annotation. 263

Specifying SDF Files for Simulation. 263
Instance Specification . 263
SDF Specification with the GUI . 264
Errors and Warnings . 264

VHDL VITAL SDF . 265
SDF to VHDL Generic Matching . 265
Resolving Errors . 265

Verilog SDF. 266
$sdf_annotate . 267
SDF to Verilog Construct Matching . 268
Optional Edge Specifications . 271
Optional Conditions . 272
Rounded Timing Values . 273

SDF for Mixed VHDL and Verilog Designs . 273
Interconnect Delays . 273
Disabling Timing Checks . 274
Troubleshooting . 274

Specifying the Wrong Instance. 274
Mistaking a Component or Module Name for an Instance Label. 275
Forgetting to Specify the Instance . 275

Table of Contents

10
February 2007

ModelSim User’s Manual, v6.2g

Chapter 12
Value Change Dump (VCD) Files . 277

Creating a VCD File . 277
Flow for Four-State VCD File . 277
Flow for Extended VCD File . 278
Case Sensitivity. 278

Using Extended VCD as Stimulus. 278
Simulating with Input Values from a VCD File . 278
Replacing Instances with Output Values from a VCD File . 280

VCD Commands and VCD Tasks . 281
Compressing Files with VCD Tasks. 282

VCD File from Source To Output . 282
VHDL Source Code . 282
VCD Simulator Commands . 283
VCD Output . 283

Capturing Port Driver Data . 286
Driver States . 286
Driver Strength . 287
Identifier Code . 288
Resolving Values . 288

Chapter 13
Tcl and Macros (DO Files) . 293

Tcl Features . 293
Tcl References . 293

Tcl Commands . 293
Tcl Command Syntax . 294

If Command Syntax . 297
Command Substitution . 297
Command Separator . 298
Multiple-Line Commands. 298
Evaluation Order. 298
Tcl Relational Expression Evaluation. 298
Variable Substitution . 299
System Commands . 299

List Processing . 300
Simulator Tcl Commands . 300
Simulator Tcl Time Commands. 301

Conversions. 302
Relations . 302
Arithmetic . 303

Tcl Examples . 303
Macros (DO Files) . 307

Creating DO Files . 307
Using Parameters with DO Files. 308
Deleting a File from a .do Script. 308
Making Macro Parameters Optional. 309
Useful Commands for Handling Breakpoints and Errors . 310

Table of Contents

ModelSim User’s Manual, v6.2g 11
February 2007

Error Action in DO Files. 311

Appendix A
Simulator Variables . 313

Variable Settings Report . 313
Environment Variables . 313

Environment Variable Expansion . 313
Setting Environment Variables . 314
Creating Environment Variables in Windows . 317
Referencing Environment Variables. 318
Removing Temp Files (VSOUT) . 319

Simulator Control Variables . 319
Library Path Variables . 319
Verilog Compiler Control Variables. 321
VHDL Compiler Control Variables . 324
Simulation Control Variables . 329
Setting Simulator Control Variables With The GUI. 342
Message System Variables . 344
Commonly Used INI Variables . 346

Variable Precedence. 349
Simulator State Variables . 349

Referencing Simulator State Variables. 350
Special Considerations for the now Variable . 350

Appendix B
Location Mapping. 353

Referencing Source Files with Location Maps . 353
Using Location Mapping . 353
Pathname Syntax. 354
How Location Mapping Works . 354
Mapping with TCL Variables . 354

Appendix C
Error and Warning Messages . 355

Message System. 355
Message Format . 355
Getting More Information. 355
Changing Message Severity Level . 356

Suppressing Warning Messages . 356
Suppressing VCOM Warning Messages . 356
Suppressing VLOG Warning Messages . 357
Suppressing VSIM Warning Messages . 357

Exit Codes . 357
Miscellaneous Messages . 359
Enforcing Strict 1076 Compliance. 362

Appendix D

Table of Contents

12
February 2007

ModelSim User’s Manual, v6.2g

Verilog PLI/VPI/DPI . 365
Implementation Information . 365

g++ Compiler Support for use with PLI/VPI/DPI . 365
Registering PLI Applications. 366
Registering VPI Applications . 367
Registering DPI Applications . 369
DPI Use Flow. 370

When Your DPI Export Function is Not Getting Called . 371
Simplified Import of FLI / PLI / C Library Functions . 371
Use Model for Read-Only Work Libraries . 372

Compiling and Linking C Applications for PLI/VPI/DPI . 373
For all UNIX Platforms . 374
Windows Platforms. 374
32-bit Linux Platform . 376
64-bit Linux for IA64 Platform. 376
64-bit Linux for Opteron/Athlon 64 and EM64T Platforms. 376
32-bit Solaris Platform . 377
64-bit Solaris Platform . 377
32-bit HP700 Platform . 377
64-bit HP Platform . 378
64-bit HP for IA64 Platform. 378
32-bit IBM RS/6000 Platform . 378
64-bit IBM RS/6000 Platform . 379

Compiling and Linking C++ Applications for PLI/VPI/DPI. 380
Windows Platforms. 381
32-bit Linux Platform . 382
64-bit Linux for IA64 Platform. 382
64-bit Linux for Opteron/Athlon 64 and EM64T Platforms. 382
32-bit Solaris Platform . 383
64-bit Solaris Platform . 383
32-bit HP700 Platform . 383
64-bit HP Platform . 384
64-bit HP for IA64 Platform. 384
32-bit IBM RS/6000 Platform . 384
64-bit IBM RS/6000 Platform . 385

Specifying Application Files to Load . 386
PLI/VPI file loading . 386
DPI File Loading. 387
Loading Shared Objects with Global Symbol Visibility . 387

PLI Example . 387
VPI Example . 388
DPI Example . 389
The PLI Callback reason Argument . 390
The sizetf Callback Function . 391
PLI Object Handles . 392
Third Party PLI Applications. 392
Support for VHDL Objects . 393
IEEE Std 1364 ACC Routines . 395

Table of Contents

ModelSim User’s Manual, v6.2g 13
February 2007

IEEE Std 1364 TF Routines. 397
SystemVerilog DPI Access Routines. 397
Verilog-XL Compatible Routines . 398
64-bit Support for PLI . 398

Using 64-bit ModelSim with 32-bit Applications . 398
PLI/VPI Tracing. 398

The Purpose of Tracing Files . 399
Invoking a Trace . 399

Debugging PLI/VPI/DPI Application Code . 400
Troubleshooting a Missing DPI Import Function. 400
HP-UX Specific Warnings . 401

Appendix E
Command and Keyboard Shortcuts . 403

Command Shortcuts. 403
Command History Shortcuts. 403

Main and Source Window Mouse and Keyboard Shortcuts . 404
List Window Keyboard Shortcuts . 407
Wave Window Mouse and Keyboard Shortcuts . 408

Appendix F
Setting GUI Preferences . 411

Customizing the Simulator GUI Layout . 411
Layouts and Modes of Operation . 411
Custom Layouts . 411
Automatic Saving of Layouts . 413
Resetting Layouts to Their Defaults . 413

Navigating the Graphic User Interface . 413
Manipulating Panes. 413
Columnar Information Display . 415
Quick Access Toolbars . 415

Simulator GUI Preferences . 415
Setting Preference Variables from the GUI . 416
Saving GUI Preferences . 417
The modelsim.tcl File . 417

Appendix G
System Initialization . 419

Files Accessed During Startup. 419
Environment Variables Accessed During Startup . 420
Initialization Sequence. 421

Index

Third-Party Information

End-User License Agreement

14
February 2007

ModelSim User’s Manual, v6.2g

List of Examples

Example 2-1. Wave Window Panes. 74
Example 6-1. Invocation of the Verilog Compiler . 140
Example 6-2. Incremental Compilation Example . 142
Example 6-3. Sub-Modules with Common Names . 145
Example 6-4. Negative Timing Check. 159
Example 12-1. Verilog Counter. 279
Example 12-2. VHDL Adder. 279
Example 12-3. Mixed-HDL Design. 279
Example 12-4. Replacing Instances. 280
Example 12-5. VCD Output from vcd dumpports. 290
Example D-1. VPI Application Registration . 368
Example F-1. Configure Window Layouts Dialog Box . 412

15
February 2007

ModelSim User’s Manual, v6.2g

List of Figures

Figure 1-1. Tool Structure and Flow . 22
Figure 2-1. Graphical User Interface . 33
Figure 2-2. Main Window . 37
Figure 2-3. Message Viewer Tab. 41
Figure 2-4. Tabs in the MDI Frame. 42
Figure 2-5. Organizing Files in Tab Groups . 43
Figure 2-6. Main Window Status Bar . 44
Figure 2-7. Active Processes Pane. 47
Figure 2-8. Call Stack Pane . 48
Figure 2-9. Dataflow Window . 49
Figure 2-10. List Window Docked in Main Window MDI Frame . 53
Figure 2-11. List Window Undocked . 54
Figure 2-12. Locals Pane . 55
Figure 2-13. Memory Panes. 56
Figure 2-14. Viewing Multiple Memories . 58
Figure 2-15. Split Screen View of Memory Contents . 59
Figure 2-16. Objects Pane . 60
Figure 2-17. Objects Filter . 60
Figure 2-18. Filtering the Objects List by Name . 61
Figure 2-19. Source Window Showing Language Templates . 62
Figure 2-20. Displaying Multiple Source Files . 63
Figure 2-21. Setting Context from Source Files . 64
Figure 2-22. Language Templates . 65
Figure 2-23. Create New Design Wizard. 66
Figure 2-24. Inserting Module Statement from Verilog Language Template 66
Figure 2-25. Language Template Context Menus . 67
Figure 2-26. Preferences Dialog for Customizing Source Window 69
Figure 2-27. .Watch Pane. 70
Figure 2-28. Grouping Objects in the Watch Pane . 71
Figure 2-29. Wave Window Undock Button . 72
Figure 2-30. Wave Window Dock Button . 73
Figure 3-1. Create Project Dialog . 83
Figure 3-2. Project Tab in Workspace Pane . 83
Figure 3-3. Add items to the Project Dialog . 84
Figure 3-4. Create Project File Dialog. 85
Figure 3-5. Add file to Project Dialog . 85
Figure 3-6. Right-click Compile Menu in Project Tab of Workspace. 86
Figure 3-7. Click Plus Sign to Show Design Hierarchy . 86
Figure 3-8. Start Simulation Dialog. 87
Figure 3-9. Structure Tab of the Workspace . 87

List of Figures

16
February 2007

ModelSim User’s Manual, v6.2g

Figure 3-10. Project Displayed in Workspace . 88
Figure 3-11. Setting Compile Order . 89
Figure 3-12. Grouping Files. 90
Figure 3-13. Simulation Configuration Dialog . 91
Figure 3-14. Simulation Configuration in the Project Tab . 92
Figure 3-15. Add Folder Dialog. 93
Figure 3-16. Specifying a Project Folder. 93
Figure 3-17. Project Compiler Settings Dialog . 94
Figure 3-18. Specifying File Properties . 95
Figure 3-19. Project Settings Dialog . 96
Figure 4-1. Creating a New Library. 101
Figure 4-2. Design Unit Information in the Workspace . 102
Figure 4-3. Edit Library Mapping Dialog . 103
Figure 4-4. Import Library Wizard . 108
Figure 5-1. VHDL Delta Delay Process . 116
Figure 6-1. Selecting ‘Use System Verilog’ Compile Option . 141
Figure 7-1. Displaying Two Datasets in the Wave Window . 176
Figure 7-2. Open Dataset Dialog Box . 178
Figure 7-3. Structure Tabs in Workspace Pane . 179
Figure 7-4. The Dataset Browser . 180
Figure 7-5. Dataset Snapshot Dialog . 182
Figure 7-6. Virtual Objects Indicated by Orange Diamond. 184
Figure 8-1. Undocking the Wave Window . 188
Figure 8-2. Docking the Wave Window . 189
Figure 8-3. Panes in the Wave Window . 190
Figure 8-4. Tabular Format of the List Window . 191
Figure 8-5. Cursor Names, Values and Time Measurements . 193
Figure 8-6. Time Markers in the List Window . 195
Figure 8-7. Bookmark Properties Dialog. 198
Figure 8-8. Find Signals by Name or Value . 199
Figure 8-9. Wave Signal Search Dialog . 200
Figure 8-10. Expression Builder Dialog . 201
Figure 8-11. Display Tab of the Wave Window Preferences Dialog 203
Figure 8-12. Grid & Timeline Tab of Wave Window Preferences Dialog 204
Figure 8-13. Clock Cycles in Timeline of Wave Window . 204
Figure 8-14. Changing Signal Radix . 205
Figure 8-15. Separate Signals with Wave Window Dividers . 206
Figure 8-16. Splitting Wave Window Panes . 208
Figure 8-17. Fill in the name of the group in the Group Name field. 209
Figure 8-18. Wave groups denoted by red diamond . 209
Figure 8-19. Modifying List Window Display Properties . 211
Figure 8-20. List Signal Properties Dialog . 212
Figure 8-21. Changing the Radix in the List Window. 213
Figure 8-22. Signals Combined to Create Virtual Bus . 216
Figure 8-23. Line Triggering in the List Window . 217

List of Figures

ModelSim User’s Manual, v6.2g 17
February 2007

Figure 8-24. Setting Trigger Properties . 218
Figure 8-25. Trigger Gating Using Expression Builder. 220
Figure 9-1. The Dataflow Window (undocked). 225
Figure 9-2. Green Highlighting Shows Your Path Through the Design 228
Figure 9-3. Wave Viewer Displays Inputs and Outputs of Selected Process 229
Figure 9-4. Unknown States Shown as Red Lines in Wave Window 231
Figure 9-5. Find in Dataflow Dialog . 233
Figure 9-6. The Print Postscript Dialog . 234
Figure 9-7. The Print Dialog . 234
Figure 9-8. The Dataflow Page Setup Dialog . 235
Figure 9-9. Configuring Dataflow Options . 237
Figure 11-1. SDF Tab in Start Simulation Dialog . 264
Figure A-1. Runtime Options Dialog: Defaults Tab . 342
Figure A-2. Runtime Options Dialog Box: Assertions Tab. 343
Figure A-3. Runtime Options Dialog Box, WLF Files Tab . 344
Figure D-1. DPI Use Flow Diagram . 370
Figure F-1. Save Current Window Layout Dialog Box. 412
Figure F-2. GUI: Window Pane. 413
Figure F-3. GUI: Double Bar. 414
Figure F-4. GUI: Undock Button. 414
Figure F-5. GUI: Dock Button. 414
Figure F-6. GUI: Zoom Button . 414
Figure F-7. GUI: Zoom Button . 415
Figure F-8. Toolbar Manipulation . 415
Figure F-9. Preferences Dialog Box: By Window Tab . 416
Figure F-10. Preferences Dialog Box: By Name Tab . 417

ModelSim User’s Manual, v6.2g 18
February 2007

List of Tables

Table 1-1. Simulation Tasks . 23
Table 1-2. Use Modes . 27
Table 1-3. Definition of Object by Language . 30
Table 1-4. Text Conventions . 31
Table 2-1. GUI Windows and Panes . 34
Table 2-2. Design Object Icons . 35
Table 2-3. Icon Shapes and Design Object Types . 35
Table 2-4. Message Viewer Tasks . 41
Table 2-5. Commands for Tab Groups . 43
Table 2-6. Information Displayed in Status Bar . 44
Table 2-7. Main Window Toolbar Buttons . 45
Table 2-8. Dataflow Window Toolbar . 50
Table 2-9. Memories . 56
Table 2-10. Wave Window Toolbar Buttons and Menu Selections 76
Table 6-1. Sample Modules With and Without Timescale Directive 152
Table 6-2. Evaluation 1 of always Statements . 155
Table 6-3. Evaluation 2 of always Statement . 156
Table 6-4. IEEE Std 1364 System Tasks and Functions - 1 . 164
Table 6-5. IEEE Std 1364 System Tasks and Functions - 2 . 164
Table 6-6. IEEE Std 1364 System Tasks . 164
Table 6-7. IEEE Std 1364 File I/O Tasks . 165
Table 6-8. SystemVerilog System Tasks and Functions - 1 . 166
Table 6-9. SystemVerilog System Tasks and Functions - 2 . 166
Table 6-10. SystemVerilog System Tasks and Functions - 4 . 166
Table 7-1. WLF File Parameters . 177
Table 7-2. Structure Tab Columns . 179
Table 7-3. vsim Arguments for Collapsing Time and Delta Steps . 183
Table 8-1. Actions for Cursors . 193
Table 8-2. Actions for Time Markers . 195
Table 8-3. Actions for Bookmarks . 197
Table 8-4. Actions for Dividers . 207
Table 8-5. Triggering Options . 218
Table 9-1. Dataflow Window Links to Other Windows and Panes 226
Table 9-2. Icon and Menu Selections for Exploring Design Connectivity 227
Table 10-1. Signal Spy: Mapping VHDL Procedures to Verilog System Tasks 239
Table 11-1. Matching SDF to VHDL Generics . 265
Table 11-2. Matching SDF IOPATH to Verilog . 268
Table 11-3. Matching SDF INTERCONNECT and PORT to Verilog 268
Table 11-4. Matching SDF PATHPULSE and GLOBALPATHPULSE to Verilog 269

List of Tables

ModelSim User’s Manual, v6.2g 19
February 2007

Table 11-5. Matching SDF DEVICE to Verilog . 269
Table 11-6. Matching SDF SETUP to Verilog . 269
Table 11-7. Matching SDF HOLD to Verilog . 269
Table 11-8. Matching SDF SETUPHOLD to Verilog . 270
Table 11-9. Matching SDF RECOVERY to Verilog . 270
Table 11-10. Matching SDF REMOVAL to Verilog . 270
Table 11-11. Matching SDF RECREM to Verilog . 270
Table 11-12. Matching SDF SKEW to Verilog . 270
Table 11-13. Matching SDF WIDTH to Verilog . 271
Table 11-14. Matching SDF PERIOD to Verilog . 271
Table 11-15. Matching SDF NOCHANGE to Verilog . 271
Table 11-16. Matching Verilog Timing Checks to SDF SETUP . 271
Table 11-17. SDF Data May Be More Accurate Than Model . 272
Table 11-18. Matching Explicit Verilog Edge Transitions to Verilog 272
Table 11-19. SDF Timing Check Conditions . 272
Table 11-20. SDF Path Delay Conditions . 273
Table 11-21. Disabling Timing Checks . 274
Table 12-1. VCD Commands and SystemTasks . 281
Table 12-2. VCD Dumpport Commands and System Tasks . 281
Table 12-3. VCD Commands and System Tasks for Multiple VCD Files 282
Table 12-4. Driver States . 286
Table 12-5. State When Direction is Unknown . 287
Table 12-6. Driver Strength . 287
Table 12-7. Values for file_format Argument . 289
Table 12-8. Sample Driver Data . 290
Table 13-1. 294
Table 13-2. Tcl Backslash Sequences . 296
Table 13-3. Tcl List Commands . 300
Table 13-4. Simulator-Specific Tcl Commands . 300
Table 13-5. Tcl Time Conversion Commands . 302
Table 13-6. Tcl Time Relation Commands . 302
Table 13-7. Tcl Time Arithmetic Commands . 303
Table 13-8. Commands for Handling Breakpoints and Errors in Macros 310
Table A-1. Add Library Mappings to modelsim.ini File . 318
Table A-2. AssertionFormat Variable: Accepted Values . 329
Table A-3. License Variable: License Options . 335
Table C-1. Severity Level Types . 355
Table C-2. Exit Codes . 357
Table D-1. vsim Arguments for DPI Application . 387
Table D-2. Supported VHDL Objects . 393
Table D-3. Supported ACC Routines . 395
Table D-4. Supported TF Routines . 397
Table D-5. Values for <action> Argument . 399
Table E-1. Command History Shortcuts . 403
Table E-2. Mouse Shortcuts . 404

List of Tables

20
February 2007

ModelSim User’s Manual, v6.2g

Table E-3. Keyboard Shortcuts . 404
Table E-4. List Window Keyboard Shortcuts . 407
Table E-5. Wave Window Mouse Shortcuts . 408
Table E-6. Wave Window Keyboard Shortcuts . 408
Table F-1. Predefined GUI Layouts . 411
Table G-1. Files Accessed During Startup . 419
Table G-2. Environment Variables Accessed During Startup . 420

ModelSim User’s Manual, v6.2g 21
February 2007

Chapter 1
Introduction

This documentation was written for UNIX, Linux, and Microsoft Windows users. Not all
versions of ModelSim are supported on all platforms. Contact your Mentor Graphics sales
representative for details.

Tool Structure and Flow
The diagram below illustrates the structure of the ModelSim tool, and the flow of that tool as it
is used to verify a design.

ModelSim User’s Manual, v6.2g22

Introduction
Simulation Task Overview

February 2007

Figure 1-1. Tool Structure and Flow

Simulation Task Overview
The following table provides a reference for the tasks required for compiling, loading, and
simulating a design in ModelSim.

Simulate

Simulation Output
(e.g., vcd)

Debug

.ini or Compile

vlog/

.mpf file

Libraries
Vendor

Design
files

vsim

Interactive Debugging
activities i.e.

Analyze/

Verilog/VHDL

Compile

compiled
database

vcom

Analyze/

vmap

VHDL
Design
Libraries vlib

local work
library

Map libraries

Post-processing Debug

Introduction
Basic Steps for Simulation

ModelSim User’s Manual, v6.2g 23
February 2007

Basic Steps for Simulation
This section provides further detail related to each step in the process of simulating your design
using ModelSim.

Table 1-1. Simulation Tasks

Task Example Command Line
Entry

GUI Menu Pull-down GUI Icons

Step 1:
Map libraries

vlib <library_name>
vmap work <library_name>

a. File > New > Project
b. Enter library name
c. Add design files to
project

N/A

Step 2:
Compile the
design

vlog file1.v file2.v ...
(Verilog)
vcom file1.vhd file2.vhd ...
(VHDL)

a. Compile > Compile
or
Compile > Compile All

Compile or
Compile All
icons:

Step 3:
Load the
design into the
simulator

vsim <top> or
vsim <opt_name>

a. Simulate > Start
Simulation
b. Click on top design
module or optimized
design unit name
c. Click OK
This action loads the
design for simulation

Simulate icon:

Step 4:
Run the
simulation

run
step

Simulate > Run Run, or
Run continue, or
Run -all icons:

Step 5:
Debug the
design

Common debugging
commands:
bp
describe
drivers
examine
force
log
show

N/A N/A

ModelSim User’s Manual, v6.2g24

Introduction
Basic Steps for Simulation

February 2007

Step 1 — Collecting Files and Mapping Libraries
Files needed to run ModelSim on your design:

• design files (VHDL and/or Verilog), including stimulus for the design

• libraries, both working and resource

• modelsim.ini (automatically created by the library mapping command

Providing Stimulus to the Design
You can provide stimulus to your design in several ways:

• Language based testbench

• Tcl-based ModelSim interactive command, force

• VCD files / commands

See Creating a VCD File and Using Extended VCD as Stimulus

• 3rd party testbench generation tools

What is a Library?
A library is a location where data to be used for simulation is stored. Libraries are ModelSim’s
way of managing the creation of data before it is needed for use in simulation. It also serves as a
way to streamline simulation invocation. Instead of compiling all design data each and every
time you simulate, ModelSim uses binary pre-compiled data from these libraries. So, if you
make a changes to a single Verilog module, only that module is recompiled, rather than all
modules in the design.

Working and Resource Libraries
Design libraries can be used in two ways: 1) as a local working library that contains the
compiled version of your design; 2) as a resource library. The contents of your working library
will change as you update your design and recompile. A resource library is typically
unchanging, and serves as a parts source for your design. Examples of resource libraries might
be: shared information within your group, vendor libraries, packages, or previously compiled
elements of your own working design. You can create your own resource libraries, or they may
be supplied by another design team or a third party (e.g., a silicon vendor).

For more information on resource libraries and working libraries, see Working Library Versus
Resource Libraries, Managing Library Contents, Working with Design Libraries, and
Specifying the Resource Libraries.

Introduction
Basic Steps for Simulation

ModelSim User’s Manual, v6.2g 25
February 2007

Creating the Logical Library (vlib)
Before you can compile your source files, you must create a library in which to store the
compilation results. You can create the logical library using the GUI, using File > New >
Library (see Creating a Library), or you can use the vlib command. For example, the
command:

vlib work

creates a library named work. By default, compilation results are stored in the work library.

Mapping the Logical Work to the Physical Work Directory (vmap)
VHDL uses logical library names that can be mapped to ModelSim library directories. If
libraries are not mapped properly, and you invoke your simulation, necessary components will
not be loaded and simulation will fail. Similarly, compilation can also depend on proper library
mapping.

By default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name to
the pathname of the library.

You can use the GUI (Library Mappings with the GUI, a command (Library Mapping from the
Command Line), or a project (Getting Started with Projects to assign a logical name to a design
library.

The format for command line entry is:

vmap <logical_name> <directory_pathname>

This command sets the mapping between a logical library name and a directory.

Step 2 — Compiling the Design (vlog, vcom, sccom)
Designs are compiled with one of the three language compilers.

Compiling Verilog (vlog)
ModelSim’s compiler for the Verilog modules in your design is vlog. Verilog files may be
compiled in any order, as they are not order dependent. See Compiling Verilog Files for details.

Compiling VHDL (vcom)
ModelSim’s compiler for VHDL design units is vcom. VHDL files must be compiled according
to the design requirements of the design. Projects may assist you in determining the compile
order: for more information, see Auto-Generating Compile Order. See Compiling VHDL Files
for details. on VHDL compilation.

ModelSim User’s Manual, v6.2g26

Introduction
Basic Steps for Simulation

February 2007

Step 3 — Loading the Design for Simulation

vsim topLevelModule
Your design is ready for simulation after it has been compiled. You may then invoke vsim with
the names of the top-level modules (many designs contain only one top-level module). For
example, if your top-level modules are "testbench" and "globals", then invoke the simulator as
follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPs in the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references.

Using SDF
You can incorporate actual delay values to the simulation by applying SDF back-annotation
files to the design. For more information on how SDF is used in the design, see Specifying SDF
Files for Simulation.

Step 4 — Simulating the Design
Once the design has been successfully loaded, the simulation time is set to zero, and you must
enter a run command to begin simulation. For more information, see Verilog and
SystemVerilog Simulation, and VHDL Simulation.

The basic simulator commands are:

• add wave

• force

• bp

• run

• step

Step 5 — Debugging the Design
Numerous tools and windows useful in debugging your design are available from the ModelSim
GUI. In addition, several basic simulation commands are available from the command line to
assist you in debugging your design:

• describe

• drivers

Introduction
Modes of Operation

ModelSim User’s Manual, v6.2g 27
February 2007

• examine

• force

• log

• show

Modes of Operation
Many users run ModelSim interactively–pushing buttons and/or pulling down menus in a series
of windows in the GUI (graphical user interface). But there are really three modes of ModelSim
operation, the characteristics of which are outlined in the following table.:

The ModelSim User’s Manual focuses primarily on the GUI mode of operation. However, this
section provides an introduction to the Command-line and Batch modes.

Command Line Mode
In command line mode ModelSim executes any startup command specified by the Startup
variable in the modelsim.ini file. If vsim is invoked with the -do "command_string" option, a
DO file (macro) is called. A DO file executed in this manner will override any startup command
in the modelsim.ini file.

During simulation a transcript file is created containing any messages to stdout. A transcript file
created in command line mode may be used as a DO file if you invoke the transcript on
command after the design loads (see the example below). The transcript on command writes all
of the commands you invoke to the transcript file. For example, the following series of
commands results in a transcript file that can be used for command input if top is re-simulated
(remove the quit -f command from the transcript file if you want to remain in the simulator).

Table 1-2. Use Modes

ModelSim use
mode

Characteristics How ModelSim is invoked

GUI interactive; has graphical
windows, push-buttons,
menus, and a command
line in the transcript.
Default mode

via a desktop icon or from the OS command
shell prompt. Example:

OS> vsim

Command-line interactive command
line; no GUI

with -c argument at the OS command prompt.
Example:

OS> vsim -c

Batch non-interactive batch
script; no windows or
interactive command line

at OS command shell prompt using redirection
of standard input. Example:

C:\ vsim vfiles.v <infile >outfile

ModelSim User’s Manual, v6.2g28

Introduction
Standards Supported

February 2007

vsim -c top

library and design loading messages… then execute:

transcript on
force clk 1 50, 0 100 -repeat 100
run 500
run @5000
quit -f

Rename transcript files that you intend to use as DO files. They will be overwritten the next
time you run vsim if you don’t rename them. Also, simulator messages are already commented
out, but any messages generated from your design (and subsequently written to the transcript
file) will cause the simulator to pause. A transcript file that contains only valid simulator
commands will work fine; comment out anything else with a "#".

Stand-alone tools pick up project settings in command line mode if they are invoked in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODELSIM environment variable to the path to the project
file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch Mode
Batch mode is an operational mode that provides neither an interactive command line nor
interactive windows. In a Windows environment, vsim is run from a Windows command
prompt and standard input and output are redirected from and to files.

Here is an example of a batch mode simulation using redirection of std input and output:

vsim counter < yourfile > outfile

where "yourfile" is a script containing various ModelSim commands.

You can use the CTRL-C keyboard interrupt to break batch simulation in UNIX and Windows
environments.

Standards Supported
ModelSim VHDL implements the VHDL language as defined by IEEE Standards 1076-1987,
1076-1993, and 1076-2002. ModelSim also supports the 1164-1993 Standard Multivalue Logic
System for VHDL Interoperability, and the 1076.2-1996 Standard VHDL Mathematical
Packages standards. Any design developed with ModelSim will be compatible with any other
VHDL system that is compliant with the 1076 specs.

ModelSim Verilog implements the Verilog language as defined by the IEEE Std 1364-1995 and
1364-2005. ModelSim Verilog also supports a partial implementation of SystemVerilog P1800-
2005 (see /<install_dir>/modeltech/docs/technotes/sysvlog.note for implementation details).

Introduction
Assumptions

ModelSim User’s Manual, v6.2g 29
February 2007

Both PLI (Programming Language Interface) and VCD (Value Change Dump) are supported
for ModelSim users.

In addition, all products support SDF 1.0 through 4.0 (except the NETDELAY statement),
VITAL 2.2b, VITAL’95 – IEEE 1076.4-1995, and VITAL 2000 – IEEE 1076.4-2000.

Assumptions
We assume that you are familiar with the use of your operating system and its graphical
interface.

We also assume that you have a working knowledge of the design languages. Although
ModelSim is an excellent tool to use while learning HDL concepts and practices, this document
is not written to support that goal.

Finally, we assume that you have worked the appropriate lessons in the ModelSim Tutorial and
are familiar with the basic functionality of ModelSim. The ModelSim Tutorial is available from
the ModelSim Help menu.

Sections In This Document
In addition to this introduction, you will find the following major sections in this document:

Chapter 3, Projects — This chapter discusses ModelSim "projects", a container for
design files and their associated simulation properties.

Chapter 4, Design Libraries — To simulate an HDL design using ModelSim, you need
to know how to create, compile, maintain, and delete design libraries as described in this
chapter.

Chapter 5, VHDL Simulation — This chapter is an overview of compilation and
simulation for VHDL within the ModelSim environment.

Chapter 6, Verilog and SystemVerilog Simulation — This chapter is an overview of
compilation and simulation for Verilog and SystemVerilog within the ModelSim
environment.

Chapter 7, WLF Files (Datasets) and Virtuals — This chapter describes datasets and
virtuals - both methods for viewing and organizing simulation data in ModelSim.

Chapter 8, Waveform Analysis — This chapter describes how to perform waveform
analysis with the ModelSim Wave and List windows.

Chapter 9, Tracing Signals with the Dataflow Window — This chapter describes how to
trace signals and assess causality using the ModelSim Dataflow window.

ModelSim User’s Manual, v6.2g30

Introduction
What is an "Object"

February 2007

Chapter 10, Signal Spy — This chapter describes Signal Spy, a set of VHDL procedures
and Verilog system tasks that let you monitor, drive, force, or release a design object
from anywhere in the hierarchy of a VHDL or mixed design.

Chapter 11, Standard Delay Format (SDF) Timing Annotation — This chapter discusses
ModelSim’s implementation of SDF (Standard Delay Format) timing annotation.
Included are sections on VITAL SDF and Verilog SDF, plus troubleshooting.

Chapter 12, Value Change Dump (VCD) Files — This chapter explains Model
Technology’s Verilog VCD implementation for ModelSim. The VCD usage is extended
to include VHDL designs.

Chapter 13, Tcl and Macros (DO Files) — This chapter provides an overview of Tcl
(tool command language) as used with ModelSim.

Appendix A, Simulator Variables — This appendix describes environment, system, and
preference variables used in ModelSim.

Appendix C, Error and Warning Messages — This appendix describes ModelSim error
and warning messages.

Appendix D, Verilog PLI/VPI/DPI — This appendix describes the ModelSim
implementation of the Verilog PLI and VPI.

Appendix E, Command and Keyboard Shortcuts — This appendix describes ModelSim
keyboard and mouse shortcuts.

Appendix G, System Initialization — This appendix describes what happens during
ModelSim startup.

What is an "Object"
Because ModelSim works with so many languages (Verilog, VHDL, SystemVerilog,), an
“object” refers to any valid design element in those languages. The word "object" is used
whenever a specific language reference is not needed. Depending on the context, “object” can
refer to any of the following:

Table 1-3. Definition of Object by Language

Language An object can be

VHDL block statement, component instantiation, constant,
generate statement, generic, package, signal, alias,
or variable

Verilog function, module instantiation, named fork, named
begin, net, task, register, or variable

SystemVerilog In addition to those listed above for Verilog:
class, package, program, interface, array, directive,
property, or sequence

Introduction
Text Conventions

ModelSim User’s Manual, v6.2g 31
February 2007

Text Conventions
Text conventions used in this manual include:

Installation Directory Pathnames
When referring to installation paths, this manual uses “modeltech” as a generic representation
of the installation directory for all versions of ModelSim. The actual installation directory on
your system may contain version information.

PSL property, sequence, directive, or endpoint

Table 1-4. Text Conventions

Text Type Description

italic text provides emphasis and sets off filenames,
pathnames, and design unit names

bold text indicates commands, command options, menu
choices, package and library logical names, as
well as variables, dialog box selections, and
language keywords

monospace type monospace type is used for program and
command examples

The right angle (>) is used to connect menu choices when
traversing menus as in: File > Quit

UPPER CASE denotes file types used by ModelSim (e.g., DO,
WLF, INI, MPF, PDF, etc.)

Table 1-3. Definition of Object by Language

Language An object can be

ModelSim User’s Manual, v6.2g32

Introduction
Installation Directory Pathnames

February 2007

ModelSim User’s Manual, v6.2g 33
February 2007

Chapter 2
Simulator Windows

ModelSim’s graphical user interface (GUI) consists of various windows that give access to
parts of your design and numerous debugging tools. Some of the windows display as panes
within the ModelSim Main window and some display as windows in the Multiple Document
Interface (MDI) frame.

Figure 2-1. Graphical User Interface

ModelSim User’s Manual, v6.2g34

Simulator Windows

February 2007

The following table summarizes all of the available windows and panes.

The windows and panes are customizable in that you can position and size them as you see fit,
and ModelSim will remember your settings upon subsequent invocations. See Navigating the
Graphic User Interface for more details.

Table 2-1. GUI Windows and Panes

Window/pane name Description More details

Main central GUI access point Main Window

Active Processes displays all processes that are scheduled
to run during the current simulation
cycle

Active Processes Pane

Dataflow displays "physical" connectivity and
lets you trace events (causality)

Dataflow Window

List shows waveform data in a tabular
format

List Window

Locals displays data objects that are
immediately visible at the current PC of
the selected process

Locals Pane

Memory a Workspace tab and MDI windows
that show memories and their contents

Memory Panes

Watch displays signal or variable values at the
current simulation time

Watch Pane

Objects displays all declared data objects in the
current scope

Objects Pane

Source a text editor for viewing and editing
HDL, DO, etc. files

Source Window

Transcript keeps a running history of commands
and messages and provides a command-
line interface

Transcript

Wave displays waveforms Wave Window

Workspace provides easy access to projects,
libraries, compiled design units,
memories, etc.

Workspace

Simulator Windows
Design Object Icons and Their Meaning

ModelSim User’s Manual, v6.2g 35
February 2007

Design Object Icons and Their Meaning
The color and shape of icons convey information about the language and type of a design
object. shows the icon colors and the languages they indicate.

Here is a list of icon shapes and the design object types they indicate:

Setting Fonts
You may need to adjust font settings to accommodate the aspect ratios of wide screen and
double screen displays or to handle launching ModelSim from an X-session.

Font Scaling
To change font scaling, select Tools > Options > Adjust Font Scaling. You’ll need a ruler to
complete the instructions in the lower right corner of the dialog. When you have entered the
pixel and inches information, click OK to close the dialog. Then, restart ModelSim to see the
change. This is a one time setting; you shouldn't have to set it again unless you change display

Table 2-2. Design Object Icons

Icon color Design Language

light blue Verilog or SystemVerilog

dark blue VHDL

orange virtual object

Table 2-3. Icon Shapes and Design Object Types

icon shape example design object type

square any scope (VHDL block, Verilog named block, SC
module, class, interface, task, function, etc.)

circle process

diamond valued object (signals, nets, registers, etc.)

caution sign comparison object

diamond
with red dot

an editable waveform created with the waveform editor

star transaction; The color of the star for each transaction
depends on the language of the region in which the
transaction stream occurs: dark blue for VHDL, light blue
for Verilog and SystemVerilog, green for SystemC,
magenta for PSL.

ModelSim User’s Manual, v6.2g36

Simulator Windows
Main Window

February 2007

resolution or the hardware (monitor or video card). The font scaling applies to Windows and
UNIX operating systems. On UNIX systems, the font scaling is stored based on the $DISPLAY
environment variable.

Controlling Fonts in an X-session
When executed via an X-session (e.g., Exceed, VNC), ModelSim uses font definitions from the
.Xdefaults file. To ensure that the fonts look correct, create a .Xdefaults file with the following
lines:

vsim*Font: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*
vsim*SystemFont: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*
vsim*StandardFont: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*
vsim*MenuFont: -adobe-courier-medium-r-normal--*-120-*-*-*-*-*

Alternatively, you can choose a different font. Use the program "xlsfonts" to identify which
fonts are available on your system.

Also, the following command can be used to update the X resources if you make changes to the
.Xdefaults and wish to use those changes on a UNIX machine:

xrdb -merge .Xdefaults

Main Window
The primary access point in the ModelSim GUI is called the Main window. It provides
convenient access to design libraries and objects, source files, debugging commands, simulation
status messages, etc. When you load a design, or bring up debugging tools, ModelSim adds
panes or opens windows appropriate for your debugging environment (Figure 2-2).

Simulator Windows
Main Window

ModelSim User’s Manual, v6.2g 37
February 2007

Figure 2-2. Main Window

Notice some of the elements that appear:

• Workspace tabs organize and display design objects in a hierarchical tree format

• The Transcript pane tracks command history and messages and provides a command-
line interface where you can enter ModelSim commands

• The Objects pane displays design objects such as signals, nets, generics, etc. in the
current design scope

Workspace
The Workspace provides convenient access to projects, libraries, design files, compiled design
units, simulation/dataset structures, and Waveform Comparison objects. It can be hidden or
displayed by selecting View > Windows > Workspace (Main window).

The Workspace can display the types of tabs listed below.

Workspace tabs
organize design
elements in a
hierarchical tree
structure

The Transcript pane
reports status and
provides a command-
line interface

The Objects pane
displays data
objects in the
current scope

Multiple document interface
(MDI) pane

ModelSim User’s Manual, v6.2g38

Simulator Windows
Main Window

February 2007

• Project tab — Shows all files that are included in the open project. Refer to Projects for
details.

• Library tab — Shows design libraries and compiled design units. To update the current
view of the library, select a library, and then Right click > Update. See Managing
Library Contents for details on library management.

• Structure tabs —Shows a hierarchical view of the active simulation and any open
datasets. There is one tab for the current simulation (named "sim") and one tab for each
open dataset. See Viewing Dataset Structure for details.

An entry is created by each object within the design. When you select a region in a
structure tab, it becomes the current region and is highlighted. The Source Window and
Objects Pane change dynamically to reflect the information for the current region. This
feature provides a useful method for finding the source code for a selected region
because the system keeps track of the pathname where the source is located and displays
it automatically, without the need for you to provide the pathname.

Also, when you select a region in the structure pane, the Active Processes Pane is
updated. The Active Processes window will in turn update the Locals Pane.

Objects can be dragged from the structure tabs to the Dataflow, List and Wave windows.

You can toggle the display of processes by clicking in a Structure tab and selecting
View > Filter > Processes.

You can also control implicit wire processes using a preference variable. By default
Structure tabs suppress the display of implicit wire processes. To enable the display of
implicit wire processes, set PrefMain(HideImplicitWires) to 0 (select Tools > Edit
Preferences, By Name tab, and expand the Main object).

• Files tab — Shows the source files for the loaded design.

You can disable the display of this tab by setting the PrefMain(ShowFilePane)
preference variable to 0. See Simulator GUI Preferences for information on setting
preference variables.

• Memories tab — Shows a hierarchical list of all memories in the design. To display this
tab, select View > Windows > Memory. When you select a memory on the tab, a
memory contents page opens in the MDI frame. See Memory Panes.

Transcript
The Transcript portion of the Main window maintains a running history of commands that are
invoked and messages that occur as you work with ModelSim. When a simulation is running,
the Transcript displays a VSIM prompt, allowing you to enter command-line commands from
within the graphic interface.

Simulator Windows
Main Window

ModelSim User’s Manual, v6.2g 39
February 2007

You can scroll backward and forward through the current work history by using the vertical
scrollbar. You can also use arrow keys to recall previous commands, or copy and paste using
the mouse within the window (see Main and Source Window Mouse and Keyboard Shortcuts
for details).

Saving the Transcript File
Variable settings determine the filename used for saving the transcript. If either PrefMain(file)
in the .modelsim file or TranscriptFile in the modelsim.ini file is set, then the transcript output
is logged to the specified file. By default the TranscriptFile variable in modelsim.ini is set to
transcript. If either variable is set, the transcript contents are always saved and no explicit
saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, click in
the Transcript pane and then select File > Save As, or File > Save. The initial save must be
made with the Save As selection, which stores the filename in the Tcl variable
PrefMain(saveFile). Subsequent saves can be made with the Save selection. Since no
automatic saves are performed for this file, it is written only when you invoke a Save command.
The file is written to the specified directory and records the contents of the transcript at the time
of the save.

Using the Saved Transcript as a Macro (DO file)
Saved transcript files can be used as macros (DO files). Refer to the do command for more
information.

Changing the Number of Lines Saved in the Transcript Window
By default, the Transcript window retains the last 5000 lines of output from the transcript. You
can change this default by altering the saveLines preference variable. Setting this variable to 0
instructs the tool to retain all lines of the transcript. See Simulator GUI Preferences for details
on setting preference variables.

Disabling Creation of the Transcript File
You can disable the creation of the transcript file by using the following ModelSim command
immediately after ModelSim starts:

transcript file ""

Automatic Command Help
When you start typing a command at the Transcript prompt, a dropdown box appears which lists
the available commands matching what has been typed so far. You may use the Up and Down
arrow keys or the mouse to select the desired command. When a unique command has been
entered, the command usage is presented in the drop down box.

ModelSim User’s Manual, v6.2g40

Simulator Windows
Main Window

February 2007

You can disable this feature by selecting Help > Command Completion or by setting the
PrefMain(EnableCommandHelp) preference variable to 0. See Simulator GUI Preferences for
details on setting preference variables.

Message Viewer
The Message Viewer tab, found in the Transcript pane, allows you to easily access, organize,
and analyze any Note, Warning, Error or other elaboration and runtime messages written to the
transcript during the simulation run.

By default, the tool writes transcripted messages to both the transcript and the WLF file. By
writing to the WLF file, the Message Viewer tab is able to organize the messages for your
analysis.

Controlling the Message Viewer Data
• Command Line — The -msgmode argument to vsim controls where the simulator

outputs the messages.

vsim -msgmode {both | tran | wlf}

where:

o both — outputs messages to both the transcript and the WLF file. Default behavior.

o tran — outputs messages only to the transcript, therefore they are not available in the
Message Viewer.

o wlf — outputs messages only to the WLF file/Message Viewer, therefore they are
not available in the transcript.

• modelsim.ini File — The msgmode variable in the modelsim.ini file accepts the same
values described above for the -msgmode argument.

Message Viewer Interface and Tasks
The Message Viewer tab does not display by default. You can bring it up after a simulation run
with the View > Message Viewer menu item. The message viewer is also automatically
displayed when you perform the dataset open command. Figure 2-3 and Table 2-4 provide an
overview of the Message Viewer and several tasks you can perform.

Simulator Windows
Main Window

ModelSim User’s Manual, v6.2g 41
February 2007

Figure 2-3. Message Viewer Tab

Multiple Document Interface (MDI) Frame
The MDI frame is an area in the Main window where source editor, memory content, wave, and
list windows display. The frame allows multiple windows to be displayed simultaneously, as
shown below. A tab appears for each window.

Table 2-4. Message Viewer Tasks

Icon Task Action

1 Display a detailed description of the
message.

right click the message text then
select View Verbose Message.

2 Open the source file and add a bookmark to
the location of the object(s).

double click the object name(s).

3 Change the focus of the Workspace and
Objects panes.

double click the hierarchical
reference.

4 Open the source file and set a marker at the
line number.

double click the file name.

ModelSim User’s Manual, v6.2g42

Simulator Windows
Organizing Windows with Tab Groups

February 2007

Figure 2-4. Tabs in the MDI Frame

The object name is displayed in the title bar at the top of the window. You can switch between
the windows by clicking on a tab.

Organizing Windows with Tab Groups
The MDI can quickly become unwieldy if many windows are open. You can create "tab groups"
to help organize the windows. A tab group is a collection of tabs that are separated from other
groups of tabs. Figure 2-5 shows how the collection of files in Figure 2-4 could be organized
into two tab groups.

Window tabs

Object name

Simulator Windows
Navigating in the Main Window

ModelSim User’s Manual, v6.2g 43
February 2007

Figure 2-5. Organizing Files in Tab Groups

The commands for creating and organizing tab groups are accessed by right-clicking on any
window tab. The table below describes the commands associated with tab groups:

Note that you can also move the tabs within a tab group by dragging them with the middle
mouse button.

Navigating in the Main Window
The Main window can contain of a number of "panes" and sub-windows that display various
types of information about your design, simulation, or debugging session. Here are a few
important points to keep in mind about the Main window interface:

• Windows/panes can be resized, moved, zoomed, undocked, etc. and the changes are
persistent.

Table 2-5. Commands for Tab Groups

Command Description

New Tab Group Creates a new tab group containing the selected tab

Move Next Group Moves the selected tab to the next group in the
MDI

Move Prev Group Moves the selected tab to the previous group in the
MDI

View > Vertical /
Horizontal

Arranges tab groups top-to-bottom (vertical) or
right-to-left (horizontal)

ModelSim User’s Manual, v6.2g44

Simulator Windows
Navigating in the Main Window

February 2007

You have a number of options for re-sizing, re-positioning, undocking/redocking, and
generally modifying the physical characteristics of windows and panes.

Windows and panes can be undocked from the main window by pressing the Undock
button in the header or by using the view -undock <window_name> command. For
example, view -undock objects will undock the Objects window. The default docked or
undocked status of each window or pane can be set with the
PrefMain(ViewUnDocked) <window_name> preference variable.

When you exit ModelSim, the current layout is saved so that it appears the same the next
time you invoke the tool.

• Menus are context sensitive.

The menu items that are available and how certain menu items behave depend on which
pane or window is active. For example, if the sim tab in the Workspace is active and you
choose Edit from the menu bar, the Clear command is disabled. However, if you click in
the Transcript pane and choose Edit, the Clear command is enabled. The active pane is
denoted by a blue title bar.

For more information, see Navigating the Graphic User Interface.

Main Window Status Bar

Figure 2-6. Main Window Status Bar

Fields at the bottom of the Main window provide the following information about the current
simulation:

Table 2-6. Information Displayed in Status Bar

Field Description

Project name of the current project

Now the current simulation time

Delta the current simulation iteration number

Profile Samples the number of profile samples collected during the
current simulation

Memory the total memory used during the current simulation

environment name of the current context (object selected in the
active Structure tab of the Workspace)

line/column line and column numbers of the cursor in the active
Source window

Simulator Windows
Navigating in the Main Window

ModelSim User’s Manual, v6.2g 45
February 2007

Main Window Toolbar
Buttons on the Main window toolbar give you quick access to various ModelSim commands
and functions.

Table 2-7. Main Window Toolbar Buttons

Button Menu equivalent Command
equivalents

New File
create a new source file

File > New > Source

Open
open the Open File dialog

File > Open

Save
save the contents of the active pane

File > Save

Print
open the Print dialog

File > Print

Cut
cut the selected text to the clipboard

Edit > Cut

Copy
copy the selected text to the clipboard

Edit > Copy

Paste
paste the clipboard text

Edit > Paste

Undo
undo the last edit

Edit > Undo

Redo
redo the last undone edit

Edit > Redo

Find
find text in the active window

Edit > Find

Collapse All
collapse all instances in the active
window

Edit > Expand > Collapse All

Expand All
expand all instance in the active
window

Edit > Expand > Expand All

ModelSim User’s Manual, v6.2g46

Simulator Windows
Navigating in the Main Window

February 2007

Compile
open the Compile Source Files dialog
to select files for compilation

Compile > Compile vcom
vlog

Compile All
compile all files in the open project

Compile > Compile All vcom
vlog

Simulate
load the selected design unit or
simulation configuration object

Simulate > Start Simulation vsim

Break
stop the current simulation run

Simulate > Break

Environment up
move up one level in the design
hierarchy

Environment back
navigate backward to a previously
selected context

Environment forward
navigate forward to a previously
selected context

Restart
reload the design elements and reset
the simulation time to zero, with the
option of maintaining various settings
and objects

Simulate > Run > Restart restart

Run Length
specify the run length for the
current simulation

Simulate > Runtime Options run

Run
run the current simulation for the
specified run length

Simulate > Run >
Run default_run_length

run

Continue Run
continue the current simulation run
until the end of the specified run
length or until it hits a breakpoint or
specified break event

Simulate > Run > Continue run
-continue

Table 2-7. Main Window Toolbar Buttons

Button Menu equivalent Command
equivalents

Simulator Windows
Active Processes Pane

ModelSim User’s Manual, v6.2g 47
February 2007

Active Processes Pane
The Active Processes pane displays a list of HDL processes. Processes are also displayed in the
structure tabs of the Main window Workspace. To filter displayed processes in the structure
tabs, select View > Filter > Processes.

Figure 2-7. Active Processes Pane

Run -All
run the current simulation forever, or
until it hits a breakpoint or specified
break event

Simulate > Run > Run -All run -all

Step
step the current simulation to the next
statement

Simulate > Run > Step step

Step Over
HDL statements are executed but
treated as simple statements instead of
entered and traced line by line

Simulate > Run >
Step -Over

step -over

Contains
filter items in Objects pane

Show Language Templates
display language templates

View > Source >
Show Language Templates

Table 2-7. Main Window Toolbar Buttons

Button Menu equivalent Command
equivalents

ModelSim User’s Manual, v6.2g48

Simulator Windows
Call Stack Pane

February 2007

Process Status
Each object in the scrollbox is preceded by one of the following indicators:

• <Ready> — Indicates that the process is scheduled to be executed within the current
delta time. If you select a "Ready" process, it will be executed next by the simulator.

• <Wait> — Indicates that the process is waiting for a VHDL signal or Verilog net or
variable to change or for a specified time-out period.

• <Done> — Indicates that the process has executed a VHDL wait statement without a
time-out or a sensitivity list. The process will not restart during the current simulation
run.

Call Stack Pane
The Call Stack pane displays the current call stack when you single step your simulation or
when the simulation has encountered a breakpoint. When debugging your design, you can use
the call stack data to analyze the depth of function calls, which include Verilog functions and
tasks and VHDL functions and procedures, that led up to the current point of the simulation.

Accessing the Call Stack Pane

View > Call Stack

Figure 2-8. Call Stack Pane

Using the Call Stack Pane

The Call Stack pane contains five columns of information to assist you in debugging your
design:

• # — indicates the depth of the function call, with the most recent at the top.

• In — indicates the function.

• Line — indicates the line number containing the function call.

• File — indicates the location of the file containing the function call.

Simulator Windows
Dataflow Window

ModelSim User’s Manual, v6.2g 49
February 2007

• Address — indicates the address of the execution in a foreign subprogram, such as C.

The Call Stack pane allows you to perform the following actions within the pane:

• Double-click on the line of any function call:

o Displays the local variables at that level in the Locals Pane.

o Displays the corresponding source code in the Source Window.

• Right-click in the column headings

o Displays a pop-up window that allows you to show or hide columns.

Dataflow Window
The Dataflow window allows you to explore the "physical" connectivity of your design.

Note
OEM versions of ModelSim have limited Dataflow functionality. Many of the features
described below will operate differently. The window will show only one process and its
attached signals or one signal and its attached processes, as displayed in Figure 2-9.

Figure 2-9. Dataflow Window

The Dataflow window displays:

• processes

ModelSim User’s Manual, v6.2g50

Simulator Windows
Dataflow Window

February 2007

• signals, nets, and registers

The window has built-in mappings for all Verilog primitive gates (i.e., AND, OR, PMOS,
NMOS, etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. See Symbol Mapping for details.

Dataflow Window Toolbar
The buttons on the Dataflow window toolbar are described below.

Table 2-8. Dataflow Window Toolbar

Button Menu equivalent

Print — print the current view of the Dataflow
window

File > Print (Windows)
File > Print Postscript (UNIX)

Select mode — set left mouse button to select
mode and middle mouse button to zoom mode

View > Select

Zoom mode — set left mouse button to zoom
mode and middle mouse button to pan mode

View > Zoom

Pan mode — set left mouse button to pan mode
and middle mouse button to zoom mode

View > Pan

Cut — cut the selected object(s) Edit > Cut

Copy — copy the selected object(s) Edit > Copy

Paste — paste the previously cut or copied
object(s)

Edit > Paste

Undo — undo the last action Edit > Undo

Redo — redo the last undone action Edit > Redo

Find — search for an instance or signal Edit > Find

Simulator Windows
Dataflow Window

ModelSim User’s Manual, v6.2g 51
February 2007

Trace input net to event — move the next event
cursor to the next input event driving the selected
output

Trace > Trace next event

Trace Set — jump to the source of the selected
input event

Trace > Trace event set

Trace Reset — return the next event cursor to the
selected output

Trace > Trace event reset

Trace net to driver of X — step back to the last
driver of an unknown value

Trace > TraceX

Expand net to all drivers — display driver(s) of
the selected signal, net, or register

Navigate > Expand net to drivers

Expand net to all drivers and readers — display
driver(s) and reader(s) of the selected signal, net, or
register

Navigate > Expand net

Expand net to all readers — display reader(s) of
the selected signal, net, or register

Navigate > Expand net to readers

Erase highlight — clear the green highlighting
which identifies the path you’ve traversed through
the design

Edit > Erase highlight

Erase all — clear the window Edit > Erase all

Regenerate — clear and redraw the display using
an optimal layout

Edit > Regenerate

Zoom In — zoom in by a factor of two from
current view

none

Zoom Out — zoom out by a factor of two from
current view

none

Zoom Full — zoom out to show all components in
the window

none

Table 2-8. Dataflow Window Toolbar

Button Menu equivalent

ModelSim User’s Manual, v6.2g52

Simulator Windows
Dataflow Window

February 2007

Stop Drawing — halt any drawing currently
happening in the window

none

Show Wave — display the embedded wave viewer
pane

View > Show Wave

Table 2-8. Dataflow Window Toolbar

Button Menu equivalent

Simulator Windows
List Window

ModelSim User’s Manual, v6.2g 53
February 2007

List Window
The List window displays the results of your simulation run in tabular format. The window is
divided into two adjustable columns, which allow you to scroll horizontally through the listing
on the right, while keeping time and delta visible on the left.

The List window opens by default in the MDI frame of the Main window as shown in
Figure 2-10.

Figure 2-10. List Window Docked in Main Window MDI Frame

The window can be undocked from the Main window by clicking the Undock button in the
window header or by using the view -undock list command.

ModelSim User’s Manual, v6.2g54

Simulator Windows
List Window

February 2007

Figure 2-11. List Window Undocked

The following type of objects can be viewed in the List pane:

• VHDL — signals, aliases, process variables, and shared variables

• Verilog — nets, registers, and variables

• Virtuals — Virtual signals and functions

Simulator Windows
Locals Pane

ModelSim User’s Manual, v6.2g 55
February 2007

Locals Pane
The Locals pane displays data objects that are immediately visible from the statement that will
be executed next (that statement is denoted by a blue arrow in the Source editor window). The
contents of the window change from one statement to the next.

The Locals pane includes two columns. The first column lists the names of the immediately
visible data objects. The second column lists the current value(s) associated with each name.

Figure 2-12. Locals Pane

ModelSim User’s Manual, v6.2g56

Simulator Windows
Memory Panes

February 2007

Memory Panes
The Main window lists all memories in your design in the Memories tab of the Main window
Workspace and displays the contents of a selected memory in the Main window MDI frame.

Figure 2-13. Memory Panes

The memory list is from the top-level of the design. In other words, it is not sensitive to the
context selected in the Structure tab.

ModelSim identifies certain kinds of arrays in various scopes as memories. Memory
identification depends on the array element kind as well as the overall array kind (i.e.
associative array, unpacked array, etc.).

Table 2-9. Memories

VHDL Verilog/SystemVerilog

Element kind enum1,
std_logic_vector,
std_bit_vector, or
integer.

any integral type. (i.e. integer_type):
shortint, int, longint, byte, bit (2 state),
logic, reg, integer, time (4 state),
packed_struct / packed_union (2 state),
packed_struct / packed_union (4 state),
packed_array (single-Dim, multi-D,
2 state and 4 state),
enum or string.

Scope: recognizable in architecture, process,
or record

module, interface, package, compilation
unit, struct, or static variables
within a task / function / named block /
class

Array kind single-dimensional or
multi-dimensional

any combination of unpacked, dynamic
and associative arrays2

Simulator Windows
Memory Panes

ModelSim User’s Manual, v6.2g 57
February 2007

Associative Arrays in Verilog/SystemVerilog
For an associative array to be recognized as a memory, the index must be of an integral type
(see above) or wildcard type.

For associative arrays, the element kind can be any type allowed for fixed-size arrays.

Viewing Single and Multidimensional Memories
Single dimensional arrays of integers are interpreted as 2D memory arrays. In these cases, the
word width listed in the Memory List pane is equal to the integer size, and the depth is the size
of the array itself.

Memories with three or more dimensions display with a plus sign ’+’ next to their names in the
Memory List. Click the ’+’ to show the array indices under that level. When you finally expand
down to the 2D level, you can double-click on the index, and the data for the selected 2D slice
of the memory will appear in a memory contents pane in the MDI frame.

Viewing Packed Arrays
By default packed dimensions are treated as single vectors in the memory contents pane. To
expand packed dimensions of packed arrays, select View > Memory Contents > Expand
Packed Memories.

To change the permanent default, edit the PrefMemory(ExpandPackedMem) variable. This
variable affects only packed arrays. If the variable is set to 1, the packed arrays are treated as
unpacked arrays and are expanded along the packed dimensions such that they appear as a
linearized bit vector. See Simulator GUI Preferences for details on setting preference variables.

Viewing Memory Contents
When you double-click an instance on the Memory tab, ModelSim automatically displays a
memory contents pane in the MDI frame (see Multiple Document Interface (MDI) Frame). You
can also enter the command add mem <instance> at the vsim command prompt.

Viewing Multiple Memory Instances
You can view multiple memory instances simultaneously. A memory tab appears in the MDI
frame for each instance you double-click in the Memory list.

1. These enumerated type value sets must have values that are longer than one character. The listed width
is the number of entries in the enumerated type definition and the depth is the size of the array itself.
2. Any combination of unpacked, dynamic, and associative arrays is considered a memory, provided the
leaf level of the data structure is a string or an integral type.

ModelSim User’s Manual, v6.2g58

Simulator Windows
Memory Panes

February 2007

Figure 2-14. Viewing Multiple Memories

See Organizing Windows with Tab Groups for more information on tabs.

Saving Memory Formats in a DO File
You can save all open memory instances and their formats (e.g., address radix, data radix, etc.)
by creating a DO file. With the memory tab active, select File > Save As. The Save memory
format dialog box opens, where you can specify the name for the saved file. By default it is
named mem.do. The file will contain all open memory instances and their formats. To load it at
a later time, select File > Load.

Direct Address Navigation
You can navigate to any address location directly by editing the address in the address column.
Double-click on any address, type in the desired address, and hit Enter. The address display
scrolls to the specified location.

Splitting the Memory Contents Pane
To split a memory contents window into two screens displaying the contents of a single
memory instance, so any one of the following:

• select Memories > Split Screen if the Memory Contents Pane is docked in the Main
window,

• select View > Split Screen if the Memory Contents Pane is undocked,

• right-click in the pane and select Split Screen from the pop-up menu.

This allows you to view different address locations within the same memory instance
simultaneously.

Simulator Windows
Memory Panes

ModelSim User’s Manual, v6.2g 59
February 2007

Figure 2-15. Split Screen View of Memory Contents

ModelSim User’s Manual, v6.2g60

Simulator Windows
Objects Pane

February 2007

Objects Pane
The Objects pane shows the names and current values of declared data objects in the current
region (selected in the structure tabs of the Workspace). Data objects include signals, nets,
registers, constants and variables not declared in a process, generics, parameters.

Clicking an entry in the window highlights that object in the Dataflow and Wave windows.
Double-clicking an entry highlights that object in a Source editor window (opening a Source
editor window if one is not open already). You can also right click an object name and add it to
the List or Wave window, or the current log file.

Figure 2-16. Objects Pane

Filtering the Objects List
You can filter the objects list by name or by object type.

Filtering by Name
To filter by name, undock the Objects pane from the Main window and start typing letters in the
Contains field in the toolbar.

Figure 2-17. Objects Filter

As you type, the objects list filters to show only those signals that contain those letters.

Simulator Windows
Objects Pane

ModelSim User’s Manual, v6.2g 61
February 2007

Figure 2-18. Filtering the Objects List by Name

To display all objects again, click the Eraser icon to clear the entry.

Filters are stored relative to the region selected in the Structure window. If you re-select a
region that had a filter applied, that filter is restored. This allows you to apply different filters to
different regions.

Filtering by Signal Type
The View > Filter menu selection allows you to specify which signal types to display in the
Objects window. Multiple options can be selected.

ModelSim User’s Manual, v6.2g62

Simulator Windows
Source Window

February 2007

Source Window
Source files display by default in the MDI frame of the Main window. The window can be
undocked from the Main window by pressing the Undock button in the window header or by
using the view -undock source command.

You can edit source files as well as set breakpoints, step through design files, and view code
coverage statistics.

By default, the Source window displays your source code with line numbers. You may also see
the following graphic elements:

• Red line numbers — denote lines on which you can set a breakpoint

• Blue arrow — denotes the currently active line or a process that you have selected in the
Active Processes Pane

• Red circles — denote file-line breakpoints; gray circles denote breakpoints that are
currently disabled

• Blue circles — denote line bookmarks

• Language Templates pane — displays Language Templates (Figure 2-19)

Figure 2-19. Source Window Showing Language Templates

Opening Source Files
You can open source files using the File > Open command. Alternatively, you can open source
files by double-clicking objects in other windows. For example, if you double-click an item in

Simulator Windows
Source Window

ModelSim User’s Manual, v6.2g 63
February 2007

the Objects window or in the structure tab of the Workspace, the underlying source file for the
object will open, and the cursor will scroll to the line where the object is defined.

By default files you open from within the design (e.g., by double-clicking an object in the
Objects pane) open in Read Only mode. To make the file editable, right-click in the Source
window and select Read Only. To change this default behavior, set the PrefSource(ReadOnly)
variable to 0. See Simulator GUI Preferences for details on setting preference variables.

Displaying Multiple Source Files
By default each file you open or create is marked by a window tab, as shown in the graphic
below.

Figure 2-20. Displaying Multiple Source Files

See Organizing Windows with Tab Groups for more information on these tabs.

Dragging and Dropping Objects into the Wave and List
Windows

ModelSim allows you to drag and drop objects from the Source window to the Wave and List
windows. Double-click an object to highlight it, then drag the object to the Wave or List
window. To place a group of objects into the Wave and List windows, drag and drop any
section of highlighted code.

ModelSim User’s Manual, v6.2g64

Simulator Windows
Source Window

February 2007

Setting your Context by Navigating Source Files
When debugging your design from within the GUI, you can change your context while
analyzing your source files. Figure 2-21 shows the pop-up menu the tool displays after you
select then right-click an instance name in a source file.

Figure 2-21. Setting Context from Source Files

This functionality allows you to easily navigate your design for debugging purposes by
remembering where you have been, similar to the functionality in most web browsers. The
navigation options in the pop-up menu function as follows:

• Open Instance — changes your context to the instance you have selected within the
source file. This is not available if you have not placed your cursor in, or highlighted the
name of, an instance within your source file.

If any ambiguities exists, most likely due to generate statements, this option opens a
dialog box allowing you to choose from all available instances.

• Ascend Env — changes your context to the next level up within the design. This is not
available if you are at the top-level of your design.

Simulator Windows
Source Window

ModelSim User’s Manual, v6.2g 65
February 2007

• Forward/Back — allows you to change to previously selected contexts. This is not
available if you have not changed your context.

The Open Instance option is essentially executing an environment command to change your
context, therefore any time you use this command manually at the command prompt, that
information is also saved for use with the Forward/Back options.

Language Templates
ModelSim language templates help you write code. They are a collection of wizards, menus,
and dialogs that produce code for new designs, testbenches, language constructs, logic blocks,
etc.

Note
The language templates are not intended to replace thorough knowledge of coding. They
are intended as an interactive "reference" for creating small sections of code. If you are
unfamiliar with a particular language, you should attend a training class or consult one of
the many available books.

To use the templates, either open an existing file, or select File > New > Source to create a new
file. Once the file is open, select Source > Show Language Templates if the Source window is
docked in the Main window; select View > Show Language Templates of the Source window
is undocked. This displays a pane that shows the available templates.

Figure 2-22. Language Templates

ModelSim User’s Manual, v6.2g66

Simulator Windows
Source Window

February 2007

The templates that appear depend on the type of file you create. For example Module and
Primitive templates are available for Verilog files, and Entity and Architecture templates are
available for VHDL files.

Double-click an object in the list to open a wizard or to begin creating code. Some of the objects
bring up wizards while others insert code into your source file. The dialog below is part of the
wizard for creating a new design. Simply follow the directions in the wizards.

Figure 2-23. Create New Design Wizard

Code inserted into your source contains a variety of highlighted fields. The example below
shows a module statement inserted from the Verilog template.

Figure 2-24. Inserting Module Statement from Verilog Language Template

Some of the fields, such as module_name in the example above, are to be replaced with names
you type. Other fields can be expanded by double-clicking and still others offer a context menu

Simulator Windows
Source Window

ModelSim User’s Manual, v6.2g 67
February 2007

of options when double-clicked. The example below shows the menu that appears when you
double-click module_item then select gate_instantiation.

Figure 2-25. Language Template Context Menus

Setting File-Line Breakpoints
You can easily set File-line breakpoints in a Source window using your mouse. Click on a red
line number at the left side of the Source window, and a red circle denoting a breakpoint will
appear. The breakpoints are toggles – click once to create the breakpoint; click again to disable
or enable the breakpoint.

To delete the breakpoint completely, right click the red circle, and select Remove Breakpoint.
Other options on the context menu include:

• Disable/Enable Breakpoint — Deactivate or activate the selected breakpoint.

• Edit Breakpoint — Open the File Breakpoint dialog to change breakpoint arguments.

• Edit All Breakpoints — Open the Modify Breakpoints dialog

Checking Object Values and Descriptions
There are two quick methods to determine the value and description of an object displayed in
the Source window:

• select an object, then right-click and select Examine or Describe from the context menu

• pause over an object with your mouse pointer to see an examine pop-up

ModelSim User’s Manual, v6.2g68

Simulator Windows
Source Window

February 2007

Select Tools > Options > Examine Now or Tools > Options > Examine Current Cursor to
choose at what simulation time the object is examined or described.

You can also invoke the examine and/or describe commands on the command line or in a
macro.

Marking Lines with Bookmarks
Source window bookmarks are blue circles that mark lines in a source file. These graphical
icons may ease navigation through a large source file by "highlighting" certain lines.

As noted above in the discussion about finding text in the Source window, you can insert
bookmarks on any line containing the text for which you are searching. The other method for
inserting bookmarks is to right-click a line number and select Add/Remove Bookmark. To
remove a bookmark, right-click the line number and select Add/Remove Bookmark again.

Customizing the Source Window
You can customize a variety of settings for Source windows. For example, you can change
fonts, spacing, colors, syntax highlighting, and so forth. To customize Source window settings,
select Tools > Edit Preferences. This opens the Preferences dialog. Select Source Windows
from the Window List.

Simulator Windows
Source Window

ModelSim User’s Manual, v6.2g 69
February 2007

Figure 2-26. Preferences Dialog for Customizing Source Window

Select an item from the Category list and then edit the available properties on the right. Click
OK or Apply to accept the changes.

The changes will be active for the next Source window you open. The changes are saved
automatically when you quit ModelSim.

ModelSim User’s Manual, v6.2g70

Simulator Windows
Watch Pane

February 2007

Watch Pane
The Watch pane shows values for signals and variables at the current simulation time. Unlike
the Objects or Locals pane, the Watch pane allows you to view any signal or variable in the
design regardless of the current context.

Figure 2-27. .Watch Pane

You can view the following objects in the watch pane.

• VHDL objects — signals, aliases, generics, constants, and variables

• Verilog objects — nets, registers, variables, named events, and module parameters

• Virtual objects — virtual signals and virtual functions

Adding Objects to the Pane
To add objects to the Watch pane, drag-and-drop objects from the Structure tab, Objects pane,
or Locals pane. Alternatively, use the add watch command.

Expanding Objects to Show Individual Bits
If you add an array or record to the Watch pane, you can view individual bit values by double-
clicking the array or record. As shown in the graphic above, /ram_tb/dpram1/inaddr has been
expanded to show all the individual bit values. Notice the arrow that "ties" the array to the
individual bit display.

Simulator Windows
Watch Pane

ModelSim User’s Manual, v6.2g 71
February 2007

Grouping and Ungrouping Objects
You can group objects in the Watch pane so they display and move together. Select the objects,
then right click one of the objects and choose Group.

In the graphic below, two different sets of objects have been grouped together.

Figure 2-28. Grouping Objects in the Watch Pane

To ungroup them, right-click the group and select Ungroup.

Saving and Reloading Format Files
You can save a format file (a DO file, actually) that will redraw the contents of the Watch
window. Right-click anywhere in the window and select Save Format.

Once you have saved the file, you can reload it by right-clicking and selecting Load Format.

ModelSim User’s Manual, v6.2g72

Simulator Windows
Wave Window

February 2007

Wave Window
The Wave window, like the List window, allows you to view the results of your simulation. In
the Wave window, however, you can see the results as waveforms and their values.

The Wave window opens by default in the MDI frame of the Main window as shown below.
The window can be undocked from the main window by clicking the Undock button in the
window header or by using the view -undock wave command. The preference variable
PrefMain(ViewUnDocked) wave can be used to control this default behavior. Setting this
variable will open the Wave Window undocked each time you start ModelSim.

Figure 2-29. Wave Window Undock Button

Here is an example of a Wave window that is undocked from the MDI frame. All menus and
icons associated with Wave window functions now appear in the menu and toolbar areas of the
Wave window.

Simulator Windows
Wave Window

ModelSim User’s Manual, v6.2g 73
February 2007

Figure 2-30. Wave Window Dock Button

If the Wave window is docked into the Main window MDI frame, all menus and icons that were
in the standalone version of the Wave window move into the Main window menu bar and
toolbar.

The Wave window is divided into a number of window panes. All window panes in the Wave
window can be resized by clicking and dragging the bar between any two panes.

ModelSim User’s Manual, v6.2g74

Simulator Windows
Wave Window

February 2007

Example 2-1. Wave Window Panes

The following types of objects can be viewed in the Wave window

• VHDL objects (indicated by a dark blue diamond) — signals, aliases, process variables,
and shared variables

• Verilog objects (indicated by a light blue diamond) — nets, registers, variables, and
named events

• Virtual objects (indicated by an orange diamond) — virtual signals, buses, and
functions, see; Virtual Objects for more information

The data in the object values pane is very similar to the Objects window, except that the values
change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see a time line, tick marks, and the time value of
each cursor’s position. As you click and drag to move a cursor, the time value at the cursor
location is updated at the bottom of the cursor.

You can resize the window panes by clicking on the bar between them and dragging the bar to a
new location.

Simulator Windows
Wave Window

ModelSim User’s Manual, v6.2g 75
February 2007

Waveform and signal-name formatting are easily changed via the Format menu. You can reuse
any formatting changes you make by saving a Wave window format file (see Saving the
Window Format).

Wave Window Panes
The sections below describe the various Wave window panes.

Pathname Pane
The pathname pane displays signal pathnames. Signals can be displayed with full pathnames, as
shown here, or with only the leaf element displayed. You can increase the size of the pane by
clicking and dragging on the right border. The selected signal is highlighted.

The white bar along the left margin indicates the selected dataset (see Splitting Wave Window
Panes).

Value Pane
The value pane displays the values of the displayed signals.

The radix for each signal can be symbolic, binary, octal, decimal, unsigned, hexadecimal,
ASCII, or default. The default radix can be set by selecting Simulate > Runtime Options.

Note
When the symbolic radix is chosen for SystemVerilog reg and integer types, the values
are treated as binary. When the symbolic radix is chosen for SystemVerilog bit and int
types, the values are considered to be decimal.

The data in this pane is similar to that shown in the Objects Pane, except that the values change
dynamically whenever a cursor in the waveform pane is moved.

Waveform Pane
The waveform pane displays the waveforms that correspond to the displayed signal pathnames.
It also displays up to 20 cursors. Signal values can be displayed in analog step, analog
interpolated, analog backstep, literal, logic, and event formats. The radix of each signal can be
set individually by selecting the signal and then choosing . The default radix is logic.

If you rest your mouse pointer on a signal in the waveform pane, a popup displays with
information about the signal. You can toggle this popup on and off in the Wave Window
Properties dialog.

ModelSim User’s Manual, v6.2g76

Simulator Windows
Wave Window

February 2007

Cursor Panes
There are three cursor panes–the left pane shows the cursor names; the middle pane shows the
current simulation time and the value for each cursor; and the right pane shows the absolute
time value for each cursor and relative time between cursors. Up to 20 cursors can be displayed.
See Measuring Time with Cursors in the Wave Window for more information.

Wave Window Toolbar
The Wave window toolbar (in the undocked Wave window) gives you quick access to these
ModelSim commands and functions.

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button Menu equivalent Other options

Open Dataset
open a previously saved
dataset

File > Open File > Open from Main
window when Transcript
window sim tab is active

Save Format
save the current Wave window
display and signal preferences
to a DO (macro) file

File > Save none

Print
print a user-selected range of
the current Wave window
display to a printer or a file

File > Print
File > Print Postscript

none

Export Waveform
export a created waveform

File > Export >
Waveform

none

Cut
cut the selected signal from the
Wave window

Edit > Cut right mouse in pathname pane
> Cut

Copy
copy the signal selected in the
pathname pane

Edit > Copy right mouse in pathname pane
> Copy

Paste
paste the copied signal above
another selected signal

Edit > Paste right mouse in pathname pane
> Paste

Find
find a name or value in the
Wave window

Edit > Find <control-f> Windows
<control-s> UNIX

Simulator Windows
Wave Window

ModelSim User’s Manual, v6.2g 77
February 2007

Insert Cursor
add a cursor to the waveform
pane

Add > Wave > Cursor
(Main window)
Add > Cursor
(undocked Wave
window)

right click in cursor pane and
select New Cursor

Delete Cursor
delete the selected cursor from
the window

Edit > Delete Cursor right mouse in cursor pane >
Delete Cursor n

Find Previous Transition
locate the previous signal
value change for the selected
signal

Edit > Search
(Search Reverse)

keyboard: Shift + Tab

Find Next Transition
locate the next signal value
change for the selected signal

Edit > Search
(Search Forward)

keyboard: Tab

Select Mode
set mouse to Select Mode –
click left mouse button to
select, drag middle mouse

button to zoom

View > Zoom >
Mouse Mode > Select
Mode

none

Zoom Mode
set mouse to Zoom Mode –
drag left mouse button to
zoom, click middle mouse
button to select

View > Zoom >
Mouse Mode > Zoom
Mode

none

Zoom In 2x
zoom in by a factor of two
from the current view

View > Zoom > Zoom
In

keyboard: i I or +
right mouse in wave pane >
Zoom In

Zoom Out 2x
zoom out by a factor of two
from current view

View > Zoom > Zoom
Out

keyboard: o O or -
right mouse in wave pane >
Zoom Out

Zoom in on Active Cursor
center active cursor in the
display and zoom in

View > Zoom > Zoom
Cursor

keyboard: c or C

Zoom Full
zoom out to view the full
range of the simulation from
time 0 to the current time

View > Zoom > Zoom
Full

keyboard: f or F
right mouse in wave pane >
Zoom Full

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button Menu equivalent Other options

ModelSim User’s Manual, v6.2g78

Simulator Windows
Wave Window

February 2007

Stop Wave Drawing
halts any waves currently
being drawn in the Wave
window

none

Show Drivers
display driver(s) of the
selected signal, net, or register
in the Dataflow window

[Dataflow window]
Navigate > Expand
net to drivers

[Dataflow window] Expand
net to all drivers
right mouse in wave pane >
Show Drivers

Restart
reloads the design elements
and resets the simulation time
to zero, with the option of
keeping the current
formatting, breakpoints, and
WLF file

Main menu:
Simulate > Run >
Restart

restart <arguments>

Run
run the current simulation for
the default time length

Main menu:
Simulate > Run > Run
<default_length>

use the run command at the
VSIM prompt

Continue Run
continue the current
simulation run

Main menu:
Simulate > Run >
Continue

use the run -continue
command at the VSIM prompt

Run -All
run the current simulation
forever, or until it hits a
breakpoint or specified break
event

Main menu:
Simulate > Run > Run
-All

use the run -all command at
the VSIM prompt

Break
stop the current simulation run

none none

Find First Difference
find the first difference in a
waveform comparison

none none

Find Previous Annotated
Difference
find the previous annotated
difference in a waveform
comparison

none none

Find Previous Difference
find the previous difference in
a waveform comparison

none none

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button Menu equivalent Other options

Simulator Windows
Wave Window

ModelSim User’s Manual, v6.2g 79
February 2007

Find Next Difference
find the next difference in a
waveform comparison

none none

Find Next Annotated
Difference
find the next annotated
difference in a waveform
comparison

none none

Find Last Difference
find the last difference in a
waveform comparison

none none

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button Menu equivalent Other options

ModelSim User’s Manual, v6.2g80

Simulator Windows
Wave Window

February 2007

ModelSim User’s Manual, v6.2g 81
February 2007

Chapter 3
Projects

Projects simplify the process of compiling and simulating a design and are a great tool for
getting started with ModelSim.

What are Projects?
Projects are collection entities for designs under specification or test. At a minimum, projects
have a root directory, a work library, and "metadata" which are stored in a .mpf file located in a
project's root directory. The metadata include compiler switch settings, compile order, and file
mappings. Projects may also include:

• Source files or references to source files

• other files such as READMEs or other project documentation

• local libraries

• references to global libraries

• Simulation Configurations (see Creating a Simulation Configuration)

• Folders (see Organizing Projects with Folders)

Note
Project metadata are updated and stored only for actions taken within the project itself.
For example, if you have a file in a project, and you compile that file from the command
line rather than using the project menu commands, the project will not update to reflect
any new compile settings.

What are the Benefits of Projects?
Projects offer benefits to both new and advanced users. Projects

• simplify interaction with ModelSim; you don’t need to understand the intricacies of
compiler switches and library mappings

• eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project. Compile order is maintained for HDL-only designs.

• remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to source files

ModelSim User’s Manual, v6.2g82

Projects
Getting Started with Projects

February 2007

• allow users to share libraries without copying files to a local directory; you can establish
references to source files that are stored remotely or locally

• allow you to change individual parameters across multiple files; in previous versions
you could only set parameters one file at a time

• enable "what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

• reload the initial settings from the project .mpf file every time the project is opened

Project Conversion Between Versions
Projects are generally not backwards compatible for either number or letter releases. When you
open a project created in an earlier version, you will see a message warning that the project will
be converted to the newer version. You have the option of continuing with the conversion or
cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named <project name>.mpf.bak and is created in the
same directory in which the original project is located.

Getting Started with Projects
This section describes the four basic steps to working with a project.

• Step 1 — Creating a New Project

This creates a .mpf file and a working library.

• Step 2 — Adding Items to the Project

Projects can reference or include source files, folders for organization, simulations, and
any other files you want to associate with the project. You can copy files into the project
directory or simply create mappings to files in other locations.

• Step 3 — Compiling the Files

This checks syntax and semantics and creates the pseudo machine code ModelSim uses
for simulation.

• Step 4 — Simulating a Design

This specifies the design unit you want to simulate and opens a structure tab in the
Workspace pane.

Projects
Getting Started with Projects

ModelSim User’s Manual, v6.2g 83
February 2007

Step 1 — Creating a New Project
Select File > New > Project to create a new project. This opens the Create Project dialog
where you can specify a project name, location, and default library name. You can generally
leave the Default Library Name set to "work." The name you specify will be used to create a
working library subdirectory within the Project Location. This dialog also allows you to
reference library settings from a selected .ini file or copy them directly into the project.

Figure 3-1. Create Project Dialog

After selecting OK, you will see a blank Project tab in the Workspace pane of the Main window
(Figure 3-2)

Figure 3-2. Project Tab in Workspace Pane

and the Add Items to the Project dialog (Figure 3-3).

ModelSim User’s Manual, v6.2g84

Projects
Getting Started with Projects

February 2007

Figure 3-3. Add items to the Project Dialog

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding Items to the Project
The Add Items to the Project dialog includes these options:

• Create New File — Create a new VHDL, Verilog, Tcl, or text file using the Source
editor. See below for details.

• Add Existing File — Add an existing file. See below for details.

• Create Simulation — Create a Simulation Configuration that specifies source files and
simulator options. See Creating a Simulation Configuration for details.

• Create New Folder — Create an organization folder. See Organizing Projects with
Folders for details.

Create New File
The File > New > Source menu selections allow you to create a new VHDL, Verilog, Tcl, or
text file using the Source editor.

You can also create a new project file by selecting Project > Add to Project > New File (the
Project tab in the Workspace must be active) or right-clicking in the Project tab and selecting
Add to Project > New File. This will open the Create Project File dialog (Figure 3-4).

Projects
Getting Started with Projects

ModelSim User’s Manual, v6.2g 85
February 2007

Figure 3-4. Create Project File Dialog

Specify a name, file type, and folder location for the new file.

When you select OK, the file is listed in the Project tab. Double-click the name of the new file
and a Source editor window will open, allowing you to create source code.

Add Existing File
You can add an existing file to the project by selecting Project > Add to Project > Existing
File or by right-clicking in the Project tab and selecting Add to Project > Existing File.

Figure 3-5. Add file to Project Dialog

When you select OK, the file(s) is added to the Project tab.

Step 3 — Compiling the Files
The question marks in the Status column in the Project tab denote either the files haven’t been
compiled into the project or the source has changed since the last compile. To compile the files,
select Compile > Compile All or right click in the Project tab and select Compile > Compile
All (Figure 3-6).

ModelSim User’s Manual, v6.2g86

Projects
Getting Started with Projects

February 2007

Figure 3-6. Right-click Compile Menu in Project Tab of Workspace

Once compilation is finished, click the Library tab, expand library work by clicking the "+", and
you will see the compiled design units.

Figure 3-7. Click Plus Sign to Show Design Hierarchy

Step 4 — Simulating a Design
To simulate a design, do one of the following:

• double-click the Name of an appropriate design object (such as a testbench module or
entity) in the Library tab of the Workspace

• right-click the Name of an appropriate design object and select Simulate from the
popup menu

Projects
Getting Started with Projects

ModelSim User’s Manual, v6.2g 87
February 2007

• select Simulate > Start Simulation from the menus to open the Start Simulation dialog
(Figure 3-8). Select a design unit in the Design tab. Set other options in the VHDL,
Verilog, Libraries, SDF, and Others tabs. Then click OK to start the simulation.

Figure 3-8. Start Simulation Dialog

A new tab named sim appears that shows the structure of the active simulation (Figure 3-9).

Figure 3-9. Structure Tab of the Workspace

At this point you are ready to run the simulation and analyze your results. You often do this by
adding signals to the Wave window and running the simulation for a given period of time. See
the ModelSim Tutorial for examples.

ModelSim User’s Manual, v6.2g88

Projects
The Project Tab

February 2007

Other Basic Project Operations

Open an Existing Project
If you previously exited ModelSim with a project open, ModelSim automatically will open that
same project upon startup. You can open a different project by selecting File > Open and
choosing Project Files from the Files of type drop-down.

Close a Project
Right-click in the Project tab and select Close Project. This closes the Project tab but leaves the
Library tab open in the workspace. Note that you cannot close a project while a simulation is in
progress.

The Project Tab
The Project tab contains information about the objects in your project. By default the tab is
divided into five columns.

Figure 3-10. Project Displayed in Workspace

• Name – The name of a file or object.

• Status – Identifies whether a source file has been successfully compiled. Applies only to
VHDL or Verilog files. A question mark means the file hasn’t been compiled or the
source file has changed since the last successful compile; an X means the compile
failed; a check mark means the compile succeeded; a checkmark with a yellow triangle
behind it means the file compiled but there were warnings generated.

• Type – The file type as determined by registered file types on Windows or the type you
specify when you add the file to the project.

• Order – The order in which the file will be compiled when you execute a Compile All
command.

Projects
Changing Compile Order

ModelSim User’s Manual, v6.2g 89
February 2007

• Modified – The date and time of the last modification to the file.

You can hide or show columns by right-clicking on a column title and selecting or deselecting
entries.

Sorting the List
You can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down arrow)
or ascending (up arrow).

Changing Compile Order
The Compile Order dialog box is functional for HDL-only designs. When you compile all files
in a project, ModelSim by default compiles the files in the order in which they were added to the
project. You have two alternatives for changing the default compile order: 1) select and compile
each file individually; 2) specify a custom compile order.

To specify a custom compile order, follow these steps:

1. Select Compile > Compile Order or select it from the context menu in the Project tab.

Figure 3-11. Setting Compile Order

2. Drag the files into the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

ModelSim User’s Manual, v6.2g90

Projects
Changing Compile Order

February 2007

Auto-Generating Compile Order
Auto Generate is supported for HDL-only designs. The Auto Generate button in the Compile
Order dialog (see above) "determines" the correct compile order by making multiple passes
over the files. It starts compiling from the top; if a file fails to compile due to dependencies, it
moves that file to the bottom and then recompiles it after compiling the rest of the files. It
continues in this manner until all files compile successfully or until a file(s) can’t be compiled
for reasons other than dependency.

Files can be displayed in the Project tab in alphabetical or compile order (by clicking the
column headings). Keep in mind that the order you see in the Project tab is not necessarily the
order in which the files will be compiled.

Grouping Files
You can group two or more files in the Compile Order dialog so they are sent to the compiler at
the same time. For example, you might have one file with a bunch of Verilog define statements
and a second file that is a Verilog module. You would want to compile these two files together.

To group files, follow these steps:

1. Select the files you want to group.

Figure 3-12. Grouping Files

2. Click the Group button.

Projects
Creating a Simulation Configuration

ModelSim User’s Manual, v6.2g 91
February 2007

To ungroup files, select the group and click the Ungroup button.

Creating a Simulation Configuration
A Simulation Configuration associates a design unit(s) and its simulation options. For example,
say you routinely load a particular design and you have to specify the simulator resolution,
generics, and SDF timing files. Ordinarily you would have to specify those options each time
you load the design. With a Simulation Configuration, you would specify the design and those
options and then save the configuration with a name (e.g., top_config). The name is then listed
in the Project tab and you can double-click it to load the design along with its options.

To create a Simulation Configuration, follow these steps:

1. Select Project > Add to Project > Simulation Configuration from the main menu, or
right-click the Project tab and select Add to Project > Simulation Configuration from
the popup context menu in the Project tab.

Figure 3-13. Simulation Configuration Dialog

2. Specify a name in the Simulation Configuration Name field.

ModelSim User’s Manual, v6.2g92

Projects
Organizing Projects with Folders

February 2007

3. Specify the folder in which you want to place the configuration (see Organizing Projects
with Folders).

4. Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select
them.

5. Use the other tabs in the dialog to specify any required simulation options.

Click OK and the simulation configuration is added to the Project tab.

Figure 3-14. Simulation Configuration in the Project Tab

Double-click the Simulation Configuration verilog_sim to load the design.

Organizing Projects with Folders
The more files you add to a project, the harder it can be to locate the item you need. You can
add "folders" to the project to organize your files. These folders are akin to directories in that
you can have multiple levels of folders and sub-folders. However, no actual directories are
created via the file system–the folders are present only within the project file.

Adding a Folder
To add a folder to your project, select Project > Add to Project > Folder or right-click in the
Project tab and select Add to Project > Folder (Figure 3-15).

Projects
Organizing Projects with Folders

ModelSim User’s Manual, v6.2g 93
February 2007

Figure 3-15. Add Folder Dialog

Specify the Folder Name, the location for the folder, and click OK. The folder will be displayed
in the Project tab.

You use the folders when you add new objects to the project. For example, when you add a file,
you can select which folder to place it in.

Figure 3-16. Specifying a Project Folder

If you want to move a file into a folder later on, you can do so using the Properties dialog for the
file. Simply right-click on the filename in the Project tab and select Properties from the context
menu that appears. This will open the Project Compiler Settings Dialog (Figure 3-17). Use the
Place in Folder field to specify a folder.

ModelSim User’s Manual, v6.2g94

Projects
Specifying File Properties and Project Settings

February 2007

Figure 3-17. Project Compiler Settings Dialog

On Windows platforms, you can also just drag-and-drop a file into a folder.

Specifying File Properties and Project Settings
You can set two types of properties in a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File Compilation Properties
The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options that
affect how a design is compiled and subsequently simulated. You can customize the settings on
individual files or a group of files.

Note
Any changes you make to the compile properties outside of the project, whether from the
command line, the GUI, or the modelsim.ini file, will not affect the properties of files
already in the project.

Projects
Specifying File Properties and Project Settings

ModelSim User’s Manual, v6.2g 95
February 2007

To customize specific files, select the file(s) in the Project tab, right click on the file names, and
select Properties. The resulting Project Compiler Settings dialog (Figure 3-18) varies
depending on the number and type of files you have selected. If you select a single VHDL or
Verilog file, you will see the General tab, Coverage tab, and the VHDL or Verilog tab,
respectively. On the General tab, you will see file properties such as Type, Location, and Size.
If you select multiple files, the file properties on the General tab are not listed. Finally, if you
select both a VHDL file and a Verilog file, you will see all tabs but no file information on the
General tab.

Figure 3-18. Specifying File Properties

When setting options on a group of files, keep in mind the following:

• If two or more files have different settings for the same option, the checkbox in the
dialog will be "grayed out." If you change the option, you cannot change it back to a
"multi- state setting" without cancelling out of the dialog. Once you click OK,
ModelSim will set the option the same for all selected files.

• If you select a combination of VHDL and Verilog files, the options you set on the
VHDL and Verilog tabs apply only to those file types.

ModelSim User’s Manual, v6.2g96

Projects
Specifying File Properties and Project Settings

February 2007

Project Settings
To modify project settings, right-click anywhere within the Project tab and select Project
Settings.

Figure 3-19. Project Settings Dialog

Converting Pathnames to Softnames for Location Mapping
If you are using location mapping, you can convert a relative pathname, full pathname, or
pathname with an environment variable to a softname. A softname is a term for a pathname that
uses the location mapping (MGC_LOCATION_MAP). It looks like a pathname containing an
environment variable, however it is resolved using the location map rather than the
environment.

To convert the pathname to a softname for projects using location mapping, follow these steps:

1. Right-click anywhere within the Project tab and select Project Settings

2. Enable the Convert pathnames to softnames within the Location map area of the
dialog (Figure 3-19).

Once enabled, all pathnames currently in the project and any that are added later are then
converted to softnames.

During conversion, if there is no softname in the mgc location map matching the entry, the
pathname is converted in to a full (hardened) pathname. A pathname is hardened by removing
the environment variable or the relative portion of the path. If this happens, any existing

Projects
Accessing Projects from the Command Line

ModelSim User’s Manual, v6.2g 97
February 2007

pathnames that are either relative or use environment variables are also changed: either to
softnames if possible, or to hardened pathnames if not.

For more information on location mapping and pathnames, see Location Mapping.

Accessing Projects from the Command Line
Generally, projects are used from within the ModelSim GUI. However, standalone tools will
use the project file if they are invoked in the project's root directory. If you want to invoke
outside the project directory, set the MODELSIM environment variable with the path to the
project file (<Project_Root_Dir>/<Project_Name>.mpf).

You can also use the project command from the command line to perform common operations
on projects.

ModelSim User’s Manual, v6.2g98

Projects
Accessing Projects from the Command Line

February 2007

ModelSim User’s Manual, v6.2g 99
February 2007

Chapter 4
Design Libraries

VHDL designs are associated with libraries, which are objects that contain compiled design
units. Verilog and SystemVerilog designs simulated within ModelSim are compiled into
libraries as well.

Design Library Overview
A design library is a directory or archive that serves as a repository for compiled design units.
The design units contained in a design library consist of VHDL entities, packages, architectures,
and configurations; Verilog modules and UDPs (user-defined primitives). The design units are
classified as follows:

• Primary design units — Consist of entities, package declarations, configuration
declarations, modulesUDPs. Primary design units within a given library must have
unique names.

• Secondary design units — Consist of architecture bodiespackage bodies. Secondary
design units are associated with a primary design unit. Architectures by the same name
can exist if they are associated with different entities or modules.

Design Unit Information
The information stored for each design unit in a design library is:

• retargetable, executable code

• debugging information

• dependency information

Working Library Versus Resource Libraries
Design libraries can be used in two ways:

1. as a local working library that contains the compiled version of your design;

2. as a resource library.

The contents of your working library will change as you update your design and recompile. A
resource library is typically static and serves as a parts source for your design. You can create

ModelSim User’s Manual, v6.2g100

Design Libraries
Working with Design Libraries

February 2007

your own resource libraries or they may be supplied by another design team or a third party
(e.g., a silicon vendor).

Only one library can be the working library.

Any number of libraries can be resource libraries during a compilation. You specify which
resource libraries will be used when the design is compiled, and there are rules to specify in
which order they are searched (refer to Specifying the Resource Libraries).

A common example of using both a working library and a resource library is one in which your
gate-level design and testbench are compiled into the working library and the design references
gate-level models in a separate resource library.

The Library Named "work"
The library named "work" has special attributes within ModelSim — it is predefined in the
compiler and need not be declared explicitly (i.e. library work). It is also the library name used
by the compiler as the default destination of compiled design units (i.e., it does not need to be
mapped). In other words, the work library is the default working library.

Archives
By default, design libraries are stored in a directory structure with a sub-directory for each
design unit in the library. Alternatively, you can configure a design library to use archives. In
this case, each design unit is stored in its own archive file. To create an archive, use the -archive
argument to the vlib command.

Generally you would do this only in the rare case that you hit the reference count limit on I-
nodes due to the ".." entries in the lower-level directories (the maximum number of sub-
directories on UNIX and Linux is 65533). An example of an error message that is produced
when this limit is hit is:

mkdir: cannot create directory `65534': Too many links

Archives may also have limited value to customers seeking disk space savings.

Note
GMAKE won’t work with these archives on the IBM platform.

Working with Design Libraries
The implementation of a design library is not defined within standard VHDL or Verilog. Within
ModelSim, design libraries are implemented as directories and can have any legal name allowed
by the operating system, with one exception: extended identifiers are not supported for library
names.

Design Libraries
Working with Design Libraries

ModelSim User’s Manual, v6.2g 101
February 2007

Creating a Library
When you create a project (refer to Getting Started with Projects), ModelSim automatically
creates a working design library. If you don’t create a project, you need to create a working
design library before you run the compiler. This can be done from either the command line or
from the ModelSim graphic interface.

From the ModelSim prompt or a UNIX/DOS prompt, use this vlib command:

vlib <directory_pathname>

To create a new library with the graphic interface, select File > New > Library.

Figure 4-1. Creating a New Library

When you click OK, ModelSim creates the specified library directory and writes a specially-
formatted file named _info into that directory. The _info file must remain in the directory to
distinguish it as a ModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. Refer to Library
Path Variables for more information.

Note
Remember that a design library is a special kind of directory. The only way to create a
library is to use the ModelSim GUI or the vlib command. Do not try to create libraries
using UNIX, DOS, or Windows commands.

Managing Library Contents
Library contents can be viewed, deleted, recompiled, edited and so on using either the graphic
interface or command line.

ModelSim User’s Manual, v6.2g102

Design Libraries
Working with Design Libraries

February 2007

The Library tab in the Workspace pane provides access to design units (configurations,
modules, packages, entitiesarchitectures) in a library. Various information about the design
units is displayed in columns to the right of the design unit name.

Figure 4-2. Design Unit Information in the Workspace

The Library tab has a context menu with various commands that you access by clicking your
right mouse button (Windows—2nd button, UNIX—3rd button) in the Library tab.

The context menu includes the following commands:

• Simulate — Loads the selected design unit and opens structure and Files tabs in the
workspace. Related command line command is vsim.

• Edit — Opens the selected design unit in the Source window; or, if a library is selected,
opens the Edit Library Mapping dialog (refer to Library Mappings with the GUI).

• Refresh — Rebuilds the library image of the selected library without using source code.
Related command line command is vcom or vlog with the -refresh argument.

• Recompile — Recompiles the selected design unit. Related command line command is
vcom or vlog.

• Update — Updates the display of available libraries and design units.

Assigning a Logical Name to a Design Library
VHDL uses logical library names that can be mapped to ModelSim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name to
the pathname of the library.

You can use the GUI, a command, or a project to assign a logical name to a design library.

Design Libraries
Working with Design Libraries

ModelSim User’s Manual, v6.2g 103
February 2007

Library Mappings with the GUI
To associate a logical name with a library, select the library in the workspace, right-click you
mouse, and select Edit from the context menu that appears. This brings up a dialog box that
allows you to edit the mapping.

Figure 4-3. Edit Library Mapping Dialog

The dialog box includes these options:

• Library Mapping Name — The logical name of the library.

• Library Pathname — The pathname to the library.

Library Mapping from the Command Line
You can set the mapping between a logical library name and a directory with the vmap
command using the following syntax:

vmap <logical_name> <directory_pathname>

You may invoke this command from either a UNIX/DOS prompt or from the command line
within ModelSim.

The vmap command adds the mapping to the library section of the modelsim.ini file. You can
also modify modelsim.ini manually by adding a mapping line. To do this, use a text editor and
add a line under the [Library] section heading using the syntax:

<logical_name> = <directory_pathname>

More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

ModelSim User’s Manual, v6.2g104

Design Libraries
Working with Design Libraries

February 2007

This would allow you to use either the logical name work or my_asic in a library or use clause
to refer to the same design library.

Unix Symbolic Links
You can also create a UNIX symbolic link to the library using the host platform command:

ln -s <directory_pathname> <logical_name>

The vmap command can also be used to display the mapping of a logical library name to a
directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Library Search Rules
The system searches for the mapping of a logical name in the following order:

• First the system looks for a modelsim.ini file.

• If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify a logical name that does not resolve to an
existing directory.

Moving a Library
Individual design units in a design library cannot be moved. An entire design library can be
moved, however, by using standard operating system commands for moving a directory or an
archive.

Setting Up Libraries for Group Use
By adding an “others” clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the tool does not find a mapping in the modelsim.ini file, then it will search the
[library] section of the initialization file specified by the “others” clause. For example:

[library]
asic_lib = /cae/asic_lib
work = my_work
others = /usr/modeltech/modelsim.ini

You can specify only one "others" clause in the library section of a given modelsim.ini file.

The others clause only instructs the tool to look in the specified modelsim.ini file for a library, it
does not load any other part of the specified file.

Design Libraries
Specifying the Resource Libraries

ModelSim User’s Manual, v6.2g 105
February 2007

Specifying the Resource Libraries

Verilog Resource Libraries
ModelSim supports separate compilation of distinct portions of a Verilog design. The vlog
compiler is used to compile one or more source files into a specified library. The library thus
contains pre-compiled modules and UDPs that are referenced by the simulator as it loads the
design.

Note
Resource libraries are specified differently for Verilog and VHDL. For Verilog you use
either the -L or -Lf argument to vlog. Refer to Library Usage for more information.

VHDL Resource Libraries
Within a VHDL source file, you use the VHDL library clause to specify logical names of one
or more resource libraries to be referenced in the subsequent design unit. The scope of a library
clause includes the text region that starts immediately after the library clause and extends to the
end of the declarative region of the associated design unit. It does not extend to the next design
unit in the file.

Note that the library clause is not used to specify the working library into which the design unit
is placed after compilation. The vcom command adds compiled design units to the current
working library. By default, this is the library named work. To change the current working
library, you can use vcom -work and specify the name of the desired target library.

Predefined Libraries
Certain resource libraries are predefined in standard VHDL. The library named std contains the
packages standard and textio, which should not be modified. The contents of these packages
and other aspects of the predefined language environment are documented in the IEEE Standard
VHDL Language Reference Manual, Std 1076. Refer also to, Using the TextIO Package.

A VHDL use clause can be specified to select particular declarations in a library or package that
are to be visible within a design unit during compilation. A use clause references the compiled
version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarations in a library or package can be referenced, add the suffix .all to
the library/package name. For example, the use clause above specifies that all declarations in
the package standard, in the design library named std, are to be visible to the VHDL design unit

ModelSim User’s Manual, v6.2g106

Design Libraries
Specifying the Resource Libraries

February 2007

immediately following the use clause. Other libraries or packages are not visible unless they are
explicitly specified using a library or use clause.

Another predefined library is work, the library where a design unit is stored after it is compiled
as described earlier. There is no limit to the number of libraries that can be referenced, but only
one library is modified during compilation.

Alternate IEEE Libraries Supplied
The installation directory may contain two or more versions of the IEEE library:

• ieeepure — Contains only IEEE approved packages (accelerated for ModelSim).

• ieee — Contains precompiled Synopsys and IEEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, and vital_timing.

You can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.

Regenerating Your Design Libraries
Depending on your current ModelSim version, you may need to regenerate your design libraries
before running a simulation. Check the installation README file to see if your libraries require
an update. You can regenerate your design libraries using the Refresh command from the
Library tab context menu (refer to Managing Library Contents), or by using the -refresh
argument to vcom and vlog.

From the command line, you would use vcom with the -refresh argument to update VHDL
design units in a library, and vlog with the -refresh argument to update Verilog design units. By
default, the work library is updated. Use either vcom or vlog with the -work <library>
argument to update a different library. For example, if you have a library named mylib that
contains both VHDL and Verilog design units:

vcom -work mylib -refresh

vlog -work mylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source code.
This means that models delivered as compiled libraries without source code can be rebuilt for a
specific release of ModelSim. In general, this works for moving forwards or backwards on a
release. Moving backwards on a release may not work if the models used compiler switches,
directives, language constructs, or features that do not exist in the older release.

Design Libraries
Importing FPGA Libraries

ModelSim User’s Manual, v6.2g 107
February 2007

Note
You don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you
cannot use the -refresh option to update libraries that were built before the 4.6 release.

Maintaining 32- and 64-bit Versions in the Same Library
ModelSim allows you to maintain 32-bit and 64-bit versions of a design in the same library.

To do this, you must compile the design with the 32-bit version and then "refresh" the design
with the 64-bit version. For example:

Using the 32-bit version of ModelSim:

vlog file1.v file2.v -forcecode -work asic_lib

Next, using the 64-bit version of ModelSim:

vlog -work asic_lib -refresh

This allows you to use either version without having to do a refresh.

Do not compile the design with one version, and then recompile it with the other. If you do this,
ModelSim will remove the first module, because it could be "stale."

Importing FPGA Libraries
ModelSim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct mappings
and target directories.

Note
The FPGA libraries you import must be pre-compiled. Most FPGA vendors supply pre-
compiled libraries configured for use with ModelSim.

To import an FPGA library, select File > Import > Library.

ModelSim User’s Manual, v6.2g108

Design Libraries
Importing FPGA Libraries

February 2007

Figure 4-4. Import Library Wizard

Follow the instructions in the wizard to complete the import.

ModelSim User’s Manual, v6.2g 109
February 2007

Chapter 5
VHDL Simulation

This chapter describes how to compile, optimize, and simulate VHDL designs in ModelSim. It
also discusses using the TextIO package with ModelSim; ModelSim’s implementation of the
VITAL (VHDL Initiative Towards ASIC Libraries) specification for ASIC modeling; and
ModelSim’s special built-in utilities package.

The TextIO package is defined within the VHDL Language Reference Manual, IEEE Std 1076;
it allows human-readable text input from a declared source within a VHDL file during
simulation.

Basic VHDL Flow
Simulating VHDL designs with ModelSim includes four general steps:

1. Compile your VHDL code into one or more libraries using the vcom command. See
Compiling VHDL Files for details.

2. Load your design with the vsim command. See Simulating VHDL Designs for details.

3. Run and debug your design.

Compiling VHDL Files

Creating a Design Library for VHDL
Before you can compile your source files, you must create a library in which to store the
compilation results. Use vlib to create a new library. For example:

vlib work

This creates a library named work. By default, compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a special
file named _info. Do not create libraries using UNIX, MS Windows, or DOS commands –
always use the vlib command.

See Design Libraries for additional information on working with libraries.

ModelSim User’s Manual, v6.2g110

VHDL Simulation
Compiling VHDL Files

February 2007

Invoking the VHDL Compiler
ModelSim compiles one or more VHDL design units with a single invocation of vcom, the
VHDL compiler. The design units are compiled in the order that they appear on the command
line. For VHDL, the order of compilation is important – you must compile any entities or
configurations before an architecture that references them.

You can simulate a design containing units written with 1076 -1987, 1076 -1993, and
1076-2002 versions of VHDL. To do so you will need to compile units from each VHDL
version separately. The vcom command compiles using 1076 -2002 rules by default; use the -87
or -93 argument to vcom to compile units written with version 1076-1987 or 1076 -1993,
respectively. You can also change the default by modifying the VHDL93 variable in the
modelsim.ini file (see Simulator Control Variables for more information).

Dependency Checking
Dependent design units must be reanalyzed when the design units they depend on are changed
in the library. vcom determines whether or not the compilation results have changed. For
example, if you keep an entity and its architectures in the same source file and you modify only
an architecture and recompile the source file, the entity compilation results will remain
unchanged and you will not have to recompile design units that depend on the entity.

Range and Index Checking
A range check verifies that a scalar value defined with a range subtype is always assigned a
value within its range. An index check verifies that whenever an array subscript expression is
evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. You can
disable range checks (potentially offering a performance advantage) and index checks using
arguments to the vcom command. Or, you can use the NoRangeCheck and NoIndexCheck
variables in the modelsim.ini file to specify whether or not they are performed. See Simulator
Control Variables.

Range checks in ModelSim are slightly more restrictive than those specified by the VHDL
LRM. ModelSim requires any assignment to a signal to also be in range whereas the LRM
requires only that range checks be done whenever a signal is updated. Most assignments to
signals update the signal anyway, and the more restrictive requirement allows ModelSim to
generate better error messages.

Subprogram Inlining
ModelSim attempts to inline subprograms at compile time to improve simulation performance.
This happens automatically and should be largely transparent. However, you can disable
automatic inlining two ways:

VHDL Simulation
Compiling VHDL Files

ModelSim User’s Manual, v6.2g 111
February 2007

• Invoke vcom with the -O0 or -O1 argument

• Use the mti_inhibit_inline attribute as described below

Single-stepping through a simulation varies slightly depending on whether inlining occurred.
When single-stepping to a subprogram call that has not been inlined, the simulator stops first at
the line of the call, and then proceeds to the line of the first executable statement in the called
subprogram. If the called subprogram has been inlined, the simulator does not first stop at the
subprogram call, but stops immediately at the line of the first executable statement.

mti_inhibit_inline Attribute
You can disable inlining for individual design units (a package, architecture, or entity) or
subprograms with the mti_inhibit_inline attribute. Follow these rules to use the attribute:

• Declare the attribute within the design unit's scope as follows:

attribute mti_inhibit_inline : boolean;

• Assign the value true to the attribute for the appropriate scope. For example, to inhibit
inlining for a particular function (e.g., "foo"), add the following attribute assignment:

attribute mti_inhibit_inline of foo : procedure is true;

To inhibit inlining for a particular package (e.g., "pack"), add the following attribute
assignment:

attribute mti_inhibit_inline of pack : package is true;

Do similarly for entities and architectures.

Differences Between Language Versions
There are three versions of the IEEE VHDL 1076 standard: VHDL-1987, VHDL-1993, and
VHDL-2002. The default language version for ModelSim is VHDL-2002. If your code was
written according to the ’87 or ’93 version, you may need to update your code or instruct
ModelSim to use the earlier versions’ rules.

To select a specific language version, do one of the following:

• Select the appropriate version from the compiler options menu in the GUI

• Invoke vcom using the argument -87, -93, or -2002

• Set the VHDL93 variable in the [vcom] section of the modelsim.ini file. Appropriate
values for VHDL93 are:

- 0, 87, or 1987 for VHDL-1987

- 1, 93, or 1993 for VHDL-1993

ModelSim User’s Manual, v6.2g112

VHDL Simulation
Compiling VHDL Files

February 2007

- 2, 02, or 2002 for VHDL-2002

The following is a list of language incompatibilities that may cause problems when compiling a
design.

• VHDL-93 and VHDL-2002 — The only major problem between VHDL-93 and VHDL-
2002 is the addition of the keyword "PROTECTED". VHDL-93 programs which use
this as an identifier should choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

• VITAL and SDF — It is important to use the correct language version for VITAL.
VITAL2000 must be compiled with VHDL-93 or VHDL-2002. VITAL95 must be
compiled with VHDL-87. A typical error message that indicates the need to compile
under language version VHDL-87 is:

"VITALPathDelay DefaultDelay parameter must be locally static"

• Purity of NOW — In VHDL-93 the function "now" is impure. Consequently, any
function that invokes "now" must also be declared to be impure. Such calls to "now"
occur in VITAL. A typical error message:

"Cannot call impure function 'now' from inside pure function
'<name>'"

• Files — File syntax and usage changed between VHDL-87 and VHDL-93. In many
cases vcom issues a warning and continues:

"Using 1076-1987 syntax for file declaration."

In addition, when files are passed as parameters, the following warning message is
produced:

"Subprogram parameter name is declared using VHDL 1987 syntax."

This message often involves calls to endfile(<name>) where <name> is a file parameter.

• Files and packages — Each package header and body should be compiled with the same
language version. Common problems in this area involve files as parameters and the size
of type CHARACTER. For example, consider a package header and body with a
procedure that has a file parameter:

procedure proc1 (out_file : out std.textio.text) ...

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as:

"** Error: mixed_package_b.vhd(4): Parameter kinds do not conform
between declarations in package header and body: 'out_file'."

• Direction of concatenation — To solve some technical problems, the rules for direction
and bounds of concatenation were changed from VHDL-87 to VHDL-93. You won't see
any difference in simple variable/signal assignments such as:

VHDL Simulation
Compiling VHDL Files

ModelSim User’s Manual, v6.2g 113
February 2007

v1 := a & b;

But if you (1) have a function that takes an unconstrained array as a parameter, (2) pass
a concatenation expression as a formal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all
arrays have "downto" direction.

• xnor — "xnor" is a reserved word in VHDL-93. If you declare an xnor function in
VHDL-87 (without quotes) and compile it under VHDL-2002, you will get an error
message like the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRING IDENTIFIER

• 'FOREIGN attribute — In VHDL-93 package STANDARD declares an attribute
'FOREIGN. If you declare your own attribute with that name in another package, then
ModelSim issues a warning such as the following:

-- Compiling package foopack

** Warning: foreign.vhd(9): (vcom-1140) VHDL-1993 added a definition
of the attribute foreign to package std.standard. The attribute is
also defined in package 'standard'. Using the definition from
package 'standard'.

• Size of CHARACTER type — In VHDL-87 type CHARACTER has 128 values; in
VHDL-93 it has 256 values. Code which depends on this size will behave incorrectly.
This situation occurs most commonly in test suites that check VHDL functionality. It's
unlikely to occur in practical designs. A typical instance is the replacement of warning
message:

"range nul downto del is null"

by

"range nul downto 'ÿ' is null" -- range is nul downto y(umlaut)

• bit string literals — In VHDL-87 bit string literals are of type bit_vector. In VHDL-93
they can also be of type STRING or STD_LOGIC_VECTOR. This implies that some
expressions that are unambiguous in VHDL-87 now become ambiguous is VHDL-93. A
typical error message is:

** Error: bit_string_literal.vhd(5): Subprogram '=' is ambiguous.
Suitable definitions exist in packages 'std_logic_1164' and
'standard'.

• Sub-element association — In VHDL-87 when using individual sub-element association
in an association list, associating individual sub-elements with NULL is discouraged. In
VHDL-93 such association is forbidden. A typical message is:

"Formal '<name>' must not be associated with OPEN when subelements
are associated individually."

ModelSim User’s Manual, v6.2g114

VHDL Simulation
Simulating VHDL Designs

February 2007

Simulating VHDL Designs
A VHDL design is ready for simulation after it has been compiled with vcom . The simulator
may then be invoked with the name of the configuration or entity/architecture pair.

Note
This section discusses simulation from the UNIX or Windows/DOS command line. You
can also use a project to simulate (see Getting Started with Projects) or the Simulate
dialog box.

This example invokes vsim on the entity my_asic and the architecture structure:

vsim my_asic structure

vsim is capable of annotating a design using VITAL compliant models with timing data from an
SDF file. You can specify the min:typ:max delay by invoking vsim with the -sdfmin, -sdftyp,
or -sdfmax option. Using the SDF file f1.sdf in the current work directory, the following
invocation of vsim annotates maximum timing values for the design unit my_asic:

vsim -sdfmax /my_asic=f1.sdf my_asic

By default, the timing checks within VITAL models are enabled. They can be disabled with the
+notimingchecks option. For example:

vsim +notimingchecks topmod

Simulator Resolution Limit (VHDL)
The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit. The default resolution
limit is set to the value specified by the Resolution variable in the modelsim.ini file. You can
view the current resolution by invoking the report command with the simulator state option.

Overriding the Resolution
You can override ModelSim’s default resolution by specifying the -t option on the command
line or by selecting a different Simulator Resolution in the Simulate dialog box. Available
resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resolution:

vsim -t 10ps topmod

Clearly you need to be careful when doing this type of operation. If the resolution set by -t is
larger than a delay value in your design, the delay values in that design unit are rounded to the
closest multiple of the resolution. In the example above, a delay of 4 ps would be rounded to 0
ps.

VHDL Simulation
Simulating VHDL Designs

ModelSim User’s Manual, v6.2g 115
February 2007

Choosing the Resolution for VHDL
You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it will
limit the maximum simulation time limit, and it will degrade performance in some cases.

Default Binding
By default ModelSim performs default binding when you load the design with vsim. The
advantage of performing default binding at load time is that it provides more flexibility for
compile order. Namely, entities don't necessarily have to be compiled before other
entities/architectures which instantiate them.

However, you can force ModelSim to perform default binding at compile time. This may allow
you to catch design errors (e.g., entities with incorrect port lists) earlier in the flow. Use one of
these two methods to change when default binding occurs:

• Specify the -bindAtCompile argument to vcom

• Set the BindAtCompile variable in the modelsim.ini to 1 (true)

Default Binding Rules
When looking for an entity to bind with, ModelSim searches the currently visible libraries for
an entity with the same name as the component. ModelSim does this because IEEE 1076-1987
contained a flaw that made it almost impossible for an entity to be directly visible if it had the
same name as the component. In short, if a component was declared in an architecture, any like-
named entity above that declaration would be hidden because component/entity names cannot
be overloaded. As a result we implemented the following rules for determining default binding:

• If performing default binding at load time, search the libraries specified with the -Lf
argument to vsim.

• If a directly visible entity has the same name as the component, use it.

• If an entity would be directly visible in the absence of the component declaration, use it.

• If the component is declared in a package, search the library that contained the package
for an entity with the same name.

If none of these methods is successful, ModelSim will also do the following:

• Search the work library.

• Search all other libraries that are currently visible by means of the library clause.

• If performing default binding at load time, search the libraries specified with the -L
argument to vsim.

ModelSim User’s Manual, v6.2g116

VHDL Simulation
Simulating VHDL Designs

February 2007

Note that these last three searches are an extension to the 1076 standard.

Disabling Default Binding
If you want default binding to occur only via configurations, you can disable ModelSim’s
normal default binding methods by setting the RequireConfigForAllDefaultBinding variable in
the modelsim.ini to 1 (true).

Delta Delays
Event-based simulators such as ModelSim may process many events at a given simulation time.
Multiple signals may need updating, statements that are sensitive to these signals must be
executed, and any new events that result from these statements must then be queued and
executed as well. The steps taken to evaluate the design without advancing simulation time are
referred to as "delta times" or just "deltas."

The diagram below represents the process for VHDL designs. This process continues until the
end of simulation time.

Figure 5-1. VHDL Delta Delay Process

This mechanism in event-based simulators may cause unexpected results. Consider the
following code snippet:

Execute concurrent
statements at
current time

Advance delta time

Any transactions to
process?

No

Yes

Any events to
process?

No

Execute concurrent
statements that are
sensitive to events

Advance simulation
time

Yes

VHDL Simulation
Simulating VHDL Designs

ModelSim User’s Manual, v6.2g 117
February 2007

clk2 <= clk;

process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;

end if;
 end process;

process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0;
 end if;
 end process;

In this example you have two synchronous processes, one triggered with clk and the other with
clk2. To your surprise, the signals change in the clk2 process on the same edge as they are set in
the clk process. As a result, the value of inp appears at s1 rather than s0.

During simulation an event on clk occurs (from the testbench). From this event ModelSim
performs the "clk2 <= clk" assignment and the process which is sensitive to clk. Before
advancing the simulation time, ModelSim finds that the process sensitive to clk2 can also be
run. Since there are no delays present, the effect is that the value of inp appears at s1 in the same
simulation cycle.

In order to get the expected results, you must do one of the following:

• Insert a delay at every output

• Make certain to use the same clock

• Insert a delta delay

To insert a delta delay, you would modify the code like this:

ModelSim User’s Manual, v6.2g118

VHDL Simulation
Using the TextIO Package

February 2007

process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;
 s0_delayed <= s0;
 end if;
 end process;

 process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0_delayed;
 end if;
 end process;

The best way to debug delta delay problems is observe your signals in the List window. There
you can see how values change at each delta time.

Detecting Infinite Zero-Delay Loops
If a large number of deltas occur without advancing time, it is usually a symptom of an infinite
zero-delay loop in the design. In order to detect the presence of these loops, ModelSim defines a
limit, the “iteration limit", on the number of successive deltas that can occur. When ModelSim
reaches the iteration limit, it issues a warning message.

The iteration limit default value is 1000. If you receive an iteration limit warning, first increase
the iteration limit and try to continue simulation. You can set the iteration limit from the
Simulate > Runtime Options menu or by modifying the IterationLimit variable in the
modelsim.ini. See Simulator Control Variables for more information on modifying the
modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which signals
or variables are continuously oscillating. Two common causes are a loop that has no exit, or a
series of gates with zero delay where the outputs are connected back to the inputs.

Using the TextIO Package
To access the routines in TextIO, include the following statement in your VHDL source code:

USE std.textio.all;

VHDL Simulation
Using the TextIO Package

ModelSim User’s Manual, v6.2g 119
February 2007

A simple example using the package TextIO is:

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN

PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;

BEGIN
WRITE (LLL, i);
WRITELINE (OUTPUT, LLL);
WAIT;

END PROCESS;
END simple_behavior;

Syntax for File Declaration
The VHDL’87 syntax for a file declaration is:

file identifier : subtype_indication is [mode] file_logical_name ;

where "file_logical_name" must be a string expression.

In newer versions of the 1076 spec, syntax for a file declaration is:

file identifier_list : subtype_indication [file_open_information] ;

where "file_open_information" is:

[open file_open_kind_expression] is file_logical_name

You can specify a full or relative path as the file_logical_name; for example (VHDL’87):

Normally if a file is declared within an architecture, process, or package, the file is opened when
you start the simulator and is closed when you exit from it. If a file is declared in a subprogram,
the file is opened when the subprogram is called and closed when execution RETURNs from
the subprogram. Alternatively, the opening of files can be delayed until the first read or write by
setting the DelayFileOpen variable in the modelsim.ini file. Also, the number of concurrently
open files can be controlled by the ConcurrentFileLimit variable. These variables help you
manage a large number of files during simulation. See Simulator Variables for more details.

Using STD_INPUT and STD_OUTPUT Within the Tool
The standard VHDL’87 TextIO package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

ModelSim User’s Manual, v6.2g120

VHDL Simulation
TextIO Implementation Issues

February 2007

Updated versions of the TextIO package contain these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

STD_INPUT is a file_logical_name that refers to characters that are entered interactively from
the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current buffer
from a prompt in the Transcript pane. The lines written to the STD_OUTPUT file appear in the
Transcript.

TextIO Implementation Issues

Writing Strings and Aggregates
A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the VHDL
procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the TextIO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit vector,
but the compiler is not allowed to determine the argument type until it knows which function is
being called.

The following procedure call also generates an error:

WRITE (L, "010101");

This call is even more ambiguous, because the compiler could not determine, even if allowed to,
whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

• Use a qualified expression to specify the type, as in:

VHDL Simulation
TextIO Implementation Issues

ModelSim User’s Manual, v6.2g 121
February 2007

WRITE (L, string’("hello"));

• Call a procedure that is not overloaded, as in:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the io_utils
package, which is located in the file <install_dir>/modeltech/examples/misc/io_utils.vhd.

Reading and Writing Hexadecimal Numbers
The reading and writing of hexadecimal numbers is not specified in standard VHDL. The Issues
Screening and Analysis Committee of the VHDL Analysis and Standardization Group (ISAC-
VASG) has specified that the TextIO package reads and writes only decimal numbers.

To expand this functionality, ModelSim supplies hexadecimal routines in the package io_utils,
which is located in the file <install_dir>/modeltech/examples/misc/io_utils.vhd. To use these
routines, compile the io_utils package and then include the following use clauses in your VHDL
source code:

use std.textio.all;
use work.io_utils.all;

Dangling Pointers
Dangling pointers are easily created when using the TextIO package, because WRITELINE de-
allocates the access type (pointer) that is passed to it. Following are examples of good and bad
VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(L1.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE Function
The ENDLINE function described in the IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-1987 contains invalid VHDL syntax and cannot be implemented in VHDL. This

ModelSim User’s Manual, v6.2g122

VHDL Simulation
TextIO Implementation Issues

February 2007

is because access values must be passed as variables, but functions do not allow variable
parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed from the
TextIO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE Function
In the VHDL Language Reference Manuals, the ENDFILE function is listed as:

-- function ENDFILE (L: in TEXT) return BOOLEAN;

As you can see, this function is commented out of the standard TextIO package. This is because
the ENDFILE function is implicitly declared, so it can be used with files of any type, not just
files of type TEXT.

Using Alternative Input/Output Files
You can use the TextIO package to read and write to your own files. To do this, just declare an
input or output file of type TEXT. For example, for an input file:

The VHDL’87 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL’93 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

Then include the identifier for this file ("myinput" in this example) in the READLINE or
WRITELINE procedure call.

Flushing the TEXTIO Buffer
Flushing of the TEXTIO buffer is controlled by the UnbufferedOutput variable in the
modelsim.ini file.

Providing Stimulus
You can stimulate and test a design by reading vectors from a file, using them to drive values
onto signals, and testing the results. A VHDL test bench has been included with the ModelSim
install files as an example. Check for this file:

<install_dir>/modeltech/examples/misc/stimulus.vhd

VHDL Simulation
VITAL Specification and Source Code

ModelSim User’s Manual, v6.2g 123
February 2007

VITAL Specification and Source Code
VITAL ASIC Modeling Specification

The IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

IEEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packages is provided in the directories:

/<install_dir>/vhdl_src/vital22b
/vital95
/vital2000

VITAL Packages
VITAL 1995 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 2000 accelerated packages are pre-compiled into the vital2000 library. If you
need to use the newer library, you either need to change the ieee library mapping or add a use
clause to your VHDL code to access the VITAL 2000 packages.

To change the ieee library mapping, issue the following command:

vmap ieee <modeltech>/vital2000

Or, alternatively, add use clauses to your code:

LIBRARY vital2000;
USE vital2000.vital_primitives.all;
USE vital2000.vital_timing.all;
USE vital2000.vital_memory.all;

Note that if your design uses two libraries -one that depends on vital95 and one that depends on
vital2000 - then you will have to change the references in the source code to vital2000.
Changing the library mapping will not work.

http://www.ieee.org

ModelSim User’s Manual, v6.2g124

VHDL Simulation
VITAL Compliance

February 2007

VITAL Compliance
A simulator is VITAL compliant if it implements the SDF mapping and if it correctly simulates
designs using the VITAL packages, as outlined in the VITAL Model Development
Specification. ModelSim is compliant with the IEEE 1076.4 VITAL ASIC Modeling
Specification. In addition, ModelSim accelerates the VITAL_Timing, VITAL_Primitives, and
VITAL_memory packages. The optimized procedures are functionally equivalent to the IEEE
1076.4 VITAL ASIC Modeling Specification (VITAL 1995 and 2000).

VITAL Compliance Checking
If you are using VITAL 2.2b, you must turn off the compliance checking either by not setting
the attributes, or by invoking vcom with the option -novitalcheck.

Compiling and Simulating with Accelerated
VITAL Packages

vcom automatically recognizes that a VITAL function is being referenced from the ieee library
and generates code to call the optimized built-in routines.

Invoke with the -novital option if you do not want to use the built-in VITAL routines (when
debugging for instance). To exclude all VITAL functions, use -novital all:

vcom -novital all design.vhd

To exclude selected VITAL functions, use one or more -novital <fname> options:

vcom -novital VitalTimingCheck -novital VitalAND design.vhd

The -novital switch only affects calls to VITAL functions from the design units currently being
compiled. Pre-compiled design units referenced from the current design units will still call the
built-in functions unless they too are compiled with the -novital option.

ModelSim VITAL built-ins will be updated in step with new releases of the VITAL packages.

Util Package
The util package serves as a container for various VHDL utilities. The package is part of the
modelsim_lib library which is located in the modeltech tree and is mapped in the default
modelsim.ini file.

To access the utilities in the package, you would add lines like the following to your VHDL
code:

library modelsim_lib;
use modelsim_lib.util.all;

VHDL Simulation
Util Package

ModelSim User’s Manual, v6.2g 125
February 2007

get_resolution
get_resolution returns the current simulator resolution as a real number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution;

Returns

Arguments

None

Related functions

• to_real()

• to_time()

Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

init_signal_driver()
The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net onto an
existing VHDL signal or Verilog net. This allows you to drive signals or nets at any level of the
design hierarchy from within a VHDL architecture (e.g., a testbench).

See init_signal_driver for complete details.

init_signal_spy()
The init_signal_spy() utility mirrors the value of a VHDL signal or Verilog register/net onto an
existing VHDL signal or Verilog register. This allows you to reference signals, registers, or nets
at any level of hierarchy from within a VHDL architecture (e.g., a testbench).

See init_signal_spy for complete details.

Name Type Description

resval real The simulator resolution represented as a
real

ModelSim User’s Manual, v6.2g126

VHDL Simulation
Util Package

February 2007

signal_force()
The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net. This allows you to force signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (e.g., a testbench). A signal_force works the
same as the force command with the exception that you cannot issue a repeating force.

See signal_force for complete details.

signal_release()
The signal_release() procedure releases any force that was applied to an existing VHDL signal
or Verilog register or net. This allows you to release signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (e.g., a testbench). A signal_release works
the same as the noforce command.

See signal_release for complete details.

to_real()
to_real() converts the physical type time value into a real value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fs to a real and the simulator resolution
was ps, then the real value would be 2.0 (i.e., 2 ps).

Syntax

realval := to_real(timeval);

Returns

Arguments

Related functions

• get_resolution

• to_time()

Example

If the simulator resolution is set to ps, and you enter the following function:

Name Type Description

realval real The time value represented as a real with
respect to the simulator resolution

Name Type Description

timeval time The value of the physical type time

VHDL Simulation
Util Package

ModelSim User’s Manual, v6.2g 127
February 2007

realval := to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be in
units of nanoseconds (ns) instead, you would use the get_resolution function to recalculate the
value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

to_time()
to_time() converts a real value into a time value with respect to the current simulator resolution.
The precision of the converted value is determined by the simulator resolution. For example, if
you were converting 5.9 to a time and the simulator resolution was ps, then the time value
would be 6 ps.

Syntax

timeval := to_time(realval);

Returns

Arguments

Related functions

• get_resolution

• to_real()

Example

If the simulator resolution is set to ps, and you enter the following function:

timeval := to_time(72.49);

then the value returned to timeval would be 72 ps.

Name Type Description

timeval time The real value represented as a physical
type time with respect to the simulator
resolution

Name Type Description

realval real The value of the type real

ModelSim User’s Manual, v6.2g128

VHDL Simulation
Modeling Memory

February 2007

Modeling Memory
As a VHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

• You may get a "memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate enough storage.

• Or, you may get very long load, elaboration, or run times.

These problems are usually explained by the fact that signals consume a substantial amount of
memory (many dozens of bytes per bit), all of which needs to be loaded or initialized before
your simulation starts.

Modeling memory with variables or protected types instead provides some excellent
performance benefits:

• storage required to model the memory can be reduced by 1-2 orders of magnitude

• startup and run times are reduced

• associated memory allocation errors are eliminated

In the VHDL example below, we illustrate three alternative architectures for entity memory:

• Architecture bad_style_87 uses a vhdl signal to store the ram data.

• Architecture style_87 uses variables in the memory process

• Architecture style_93 uses variables in the architecture.

For large memories, architecture bad_style_87 runs many times longer than the other two, and
uses much more memory. This style should be avoided.

Architectures style_87 and style_93 work with equal efficiently. However, VHDL 1993 offers
additional flexibility because the ram storage can be shared between multiple processes. For
example, a second process is shown that initializes the memory; you could add other processes
to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use it you
will probably need to convert integers to vectors.

Example functions are provided below in package "conversions".

For completeness sake we also show an example using VHDL 2002 protected types, though in
this example, protected types offer no advantage over shared variables.

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v6.2g 129
February 2007

VHDL87 and VHDL93 Example
library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;

data_bits : integer := 32);
port(add_in : in std_ulogic_vector(add_bits-1 downto 0);

data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ulogic_vector(data_bits-1 downto 0);
cs, mwrite : in std_ulogic;
do_init : in std_ulogic);

subtype word is std_ulogic_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;
type ram_type is array(0 to nwords-1) of word;

end;

architecture style_93 of memory is

shared variable ram : ram_type;

begin
memory:
process (cs)

variable address : natural;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process memory;

-- illustrates a second process using the shared variable
initialize:
process (do_init)

variable address : natural;
begin

if rising_edge(do_init) then
for address in 0 to nwords-1 loop

ram(address) := data_in;
end loop;

end if;
end process initialize;

end architecture style_93;

architecture style_87 of memory is
begin
memory:
process (cs)

variable ram : ram_type;

variable address : natural;

ModelSim User’s Manual, v6.2g130

VHDL Simulation
Modeling Memory

February 2007

begin
if rising_edge(cs) then

address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) := data_in;
end if;
data_out <= ram(address);

end if;
end process;

end style_87;

architecture bad_style_87 of memory is

signal ram : ram_type;

begin
memory:
process (cs)

variable address : natural := 0;
begin

if rising_edge(cs) then
address := sulv_to_natural(add_in);
if (mwrite = '1') then

ram(address) <= data_in;
data_out <= data_in;

else
data_out <= ram(address);

end if;
end if;

end process;
end bad_style_87;

--
--
library ieee;
use ieee.std_logic_1164.all;

package conversions is
function sulv_to_natural(x : std_ulogic_vector) return

natural;
function natural_to_sulv(n, bits : natural) return

std_ulogic_vector;
end conversions;

package body conversions is

function sulv_to_natural(x : std_ulogic_vector) return
natural is

variable n : natural := 0;
variable failure : boolean := false;

begin
assert (x'high - x'low + 1) <= 31

report "Range of sulv_to_natural argument exceeds
natural range"

severity error;
for i in x'range loop

n := n * 2;
case x(i) is

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v6.2g 131
February 2007

when '1' | 'H' => n := n + 1;
when '0' | 'L' => null;
when others => failure := true;

end case;
end loop;
assert not failure

report "sulv_to_natural cannot convert indefinite
std_ulogic_vector"

severity error;

if failure then
return 0;

else
return n;

end if;
end sulv_to_natural;

function natural_to_sulv(n, bits : natural) return
std_ulogic_vector is

variable x : std_ulogic_vector(bits-1 downto 0) :=
(others => '0');

variable tempn : natural := n;
begin

for i in x'reverse_range loop
if (tempn mod 2) = 1 then

x(i) := '1';
end if;
tempn := tempn / 2;

end loop;
return x;

end natural_to_sulv;

end conversions;

ModelSim User’s Manual, v6.2g132

VHDL Simulation
Modeling Memory

February 2007

VHDL02 example

-- Source: sp_syn_ram_protected.vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Various VHDL examples: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY sp_syn_ram_protected IS
 GENERIC (
 data_width : positive := 8;
 addr_width : positive := 3
);
 PORT (
 inclk : IN std_logic;
 outclk : IN std_logic;
 we : IN std_logic;
 addr : IN unsigned(addr_width-1 DOWNTO 0);
 data_in : IN std_logic_vector(data_width-1 DOWNTO 0);
 data_out : OUT std_logic_vector(data_width-1 DOWNTO 0)
);

END sp_syn_ram_protected;

ARCHITECTURE intarch OF sp_syn_ram_protected IS

TYPE mem_type IS PROTECTED
 PROCEDURE write (data : IN std_logic_vector(data_width-1 downto 0);

 addr : IN unsigned(addr_width-1 DOWNTO 0));
 IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))

RETURN
 std_logic_vector;

 END PROTECTED mem_type;

TYPE mem_type IS PROTECTED BODY
 TYPE mem_array IS ARRAY (0 TO 2**addr_width-1) OF

 std_logic_vector(data_width-1 DOWNTO 0);
 VARIABLE mem : mem_array;

 PROCEDURE write (data : IN std_logic_vector(data_width-1 downto 0);
 addr : IN unsigned(addr_width-1 DOWNTO 0)) IS

 BEGIN
 mem(to_integer(addr)) := data;

 END;

 IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))
RETURN

 std_logic_vector IS
 BEGIN
 return mem(to_integer(addr));
 END;

 END PROTECTED BODY mem_type;

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v6.2g 133
February 2007

 SHARED VARIABLE memory : mem_type;

BEGIN

 ASSERT data_width <= 32
 REPORT "### Illegal data width detected"
 SEVERITY failure;

 control_proc : PROCESS (inclk, outclk)

 BEGIN
 IF (inclk'event AND inclk = '1') THEN
 IF (we = '1') THEN
 memory.write(data_in, addr);
 END IF;
 END IF;

 IF (outclk'event AND outclk = '1') THEN
 data_out <= memory.read(addr);
 END IF;
 END PROCESS;

END intarch;

-- Source: ram_tb.vhd
-- Component: VHDL testbench for RAM memory example
-- Remarks: Simple VHDL example: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram_tb IS
END ram_tb;

ARCHITECTURE testbench OF ram_tb IS

 -- Component declaration single-port RAM

 COMPONENT sp_syn_ram_protected
 GENERIC (
 data_width : positive := 8;
 addr_width : positive := 3
);
 PORT (
 inclk : IN std_logic;
 outclk : IN std_logic;
 we : IN std_logic;
 addr : IN unsigned(addr_width-1 DOWNTO 0);
 data_in : IN std_logic_vector(data_width-1 DOWNTO 0);
 data_out : OUT std_logic_vector(data_width-1 DOWNTO 0)
);
 END COMPONENT;

ModelSim User’s Manual, v6.2g134

VHDL Simulation
Modeling Memory

February 2007

 -- Intermediate signals and constants

 SIGNAL addr : unsigned(19 DOWNTO 0);
 SIGNAL inaddr : unsigned(3 DOWNTO 0);
 SIGNAL outaddr : unsigned(3 DOWNTO 0);
 SIGNAL data_in : unsigned(31 DOWNTO 0);
 SIGNAL data_in1 : std_logic_vector(7 DOWNTO 0);
 SIGNAL data_sp1 : std_logic_vector(7 DOWNTO 0);
 SIGNAL we : std_logic;
 SIGNAL clk : std_logic;
 CONSTANT clk_pd : time := 100 ns;

BEGIN

 -- instantiations of single-port RAM architectures.
 -- All architectures behave equivalently, but they
 -- have different implementations. The signal-based
 -- architecture (rtl) is not a recommended style.

 spram1 : entity work.sp_syn_ram_protected
 GENERIC MAP (
 data_width => 8,
 addr_width => 12)
 PORT MAP (
 inclk => clk,
 outclk => clk,
 we => we,
 addr => addr(11 downto 0),
 data_in => data_in1,
 data_out => data_sp1);

 -- clock generator

 clock_driver : PROCESS
 BEGIN
 clk <= '0';
 WAIT FOR clk_pd / 2;
 LOOP
 clk <= '1', '0' AFTER clk_pd / 2;
 WAIT FOR clk_pd;
 END LOOP;
 END PROCESS;

 -- data-in process

 datain_drivers : PROCESS(data_in)
 BEGIN
 data_in1 <= std_logic_vector(data_in(7 downto 0));
 END PROCESS;

 -- simulation control process

 ctrl_sim : PROCESS

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v6.2g 135
February 2007

 BEGIN
 FOR i IN 0 TO 1023 LOOP
 we <= '1';
 data_in <= to_unsigned(9000 + i, data_in'length);
 addr <= to_unsigned(i, addr'length);
 inaddr <= to_unsigned(i, inaddr'length);
 outaddr <= to_unsigned(i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(7 + i, data_in'length);
 addr <= to_unsigned(1 + i, addr'length);
 inaddr <= to_unsigned(1 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(3, data_in'length);
 addr <= to_unsigned(2 + i, addr'length);
 inaddr <= to_unsigned(2 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(30330, data_in'length);
 addr <= to_unsigned(3 + i, addr'length);
 inaddr <= to_unsigned(3 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 we <= '0';
 addr <= to_unsigned(i, addr'length);
 outaddr <= to_unsigned(i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(1 + i, addr'length);
 outaddr <= to_unsigned(1 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(2 + i, addr'length);
 outaddr <= to_unsigned(2 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(3 + i, addr'length);
 outaddr <= to_unsigned(3 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 END LOOP;
 ASSERT false
 REPORT "### End of Simulation!"
 SEVERITY failure;
 END PROCESS;

END testbench;

ModelSim User’s Manual, v6.2g136

VHDL Simulation
Affecting Performance by Cancelling Scheduled Events

February 2007

Affecting Performance by Cancelling Scheduled
Events

Performance will suffer if events are scheduled far into the future but then cancelled before they
take effect. This situation will act like a memory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected waveforms in signal assignments.

The following code shows a wait with a time-out:

signals synch : bit := '0';
...
p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goes to 1 at 10 ns, the event at
10 ms is marked as cancelled but not deleted, and a new event is scheduled at 10ms + 10ns. The
cancelled events are not reclaimed until time 10ms is reached and the cancelled event is
processed. As a result there will be 500000 (10ms/20ns) cancelled but un-deleted events. Once
10ms is reached, memory will no longer increase because the simulator will be reclaiming
events as fast as they are added.

For projected waveforms the following would behave the same way:

signals synch : bit := '0';
...
p: process(synch)
begin
 output <= '0', '1' after 10ms;
end process;

synch <= not synch after 10 ns;

Converting an Integer Into a bit_vector
The following code demonstrates how to convert an integer into a bit_vector.

VHDL Simulation
Converting an Integer Into a bit_vector

ModelSim User’s Manual, v6.2g 137
February 2007

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
signal s1 : bit_vector(7 downto 0);
signal int : integer := 45;

begin
p:process
begin
wait for 10 ns;
s1 <= bit_vector(to_signed(int,8));

end process p;
end only;

ModelSim User’s Manual, v6.2g138

VHDL Simulation
Converting an Integer Into a bit_vector

February 2007

ModelSim User’s Manual, v6.2g 139
February 2007

Chapter 6
Verilog and SystemVerilog Simulation

This chapter describes how to compile and simulate Verilog and SystemVerilog designs with
ModelSim. ModelSim implements the Verilog language as defined by the IEEE Standards
1364-1995 and 1364-2005. We recommend that you obtain these specifications for reference.

The following functionality is partially implemented in ModelSim:

• Verilog Procedural Interface (VPI) (see
/<install_dir>/modeltech/docs/technotes/Verilog_VPI.note for details)

• IEEE Std P1800-2005 SystemVerilog (see
/<install_dir>/modeltech/docs/technotes/sysvlog.note for implementation details)

Terminology
This chapter uses the term “Verilog” to represent both Verilog and SystemVerilog, unless
otherwise noted.

Basic Verilog Flow
Simulating Verilog designs with ModelSim includes four general steps:

1. Compile your Verilog code into one or more libraries using the vlog command. See
Compiling Verilog Files for details.

2. Load your design with the vsim command. See Simulating Verilog Designs for details.

3. Run and debug your design.

Compiling Verilog Files
The first time you compile a design there is a two-step process:

1. Create a working library with vlib or select File > New > Library.

2. Compile the design using vlog or select Compile > Compile.

ModelSim User’s Manual, v6.2g140

Verilog and SystemVerilog Simulation
Compiling Verilog Files

February 2007

Creating a Working Library
Before you can compile your design, you must create a library in which to store the compilation
results. Use the vlib command or select File > New > Library to create a new library. For
example:

vlib work

This creates a library named work. By default compilation results are stored in the work
library.

The work library is actually a subdirectory named work. This subdirectory contains a special
file named _info. Do not create libraries using UNIX commands – always use the vlib.

See Design Libraries for additional information on working with libraries.

Invoking the Verilog Compiler
The Verilog compiler, vlog, compiles Verilog source code into retargetable, executable code.
The library format is compatible across all supported platforms, and you can simulate your
design on any platform without having to recompile your design.

As the design compiles, the resulting object code for modules and UDPs is generated into a
library. As noted above, the compiler places results into the work library by default. You can
specify an alternate library with the -work argument.

Example 6-1. Invocation of the Verilog Compiler

Here is a sample invocation of vlog:

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vlog will scan the vlog_lib library for files with modules with the same
name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u implies
filenames with a .v or .u suffix (any combination of suffixes may be used). Only referenced
definitions will be compiled.

Parsing SystemVerilog Keywords
With standard Verilog files (<filename>.v), vlog will not automatically parse SystemVerilog
keywords. SystemVerilog keywords are parsed when any of the following situations exists:

• any file within the design contains the .sv file extension,

• the -sv argument is used with the vlog command,

Verilog and SystemVerilog Simulation
Compiling Verilog Files

ModelSim User’s Manual, v6.2g 141
February 2007

• the Use System Verilog option is selected in the Verilog tab of the Compiler Options
dialog. Access this dialog by selecting Compile > Compile Options from the Main
window menu bar.

Figure 6-1. Selecting ‘Use System Verilog’ Compile Option

Here are two examples of the vlog command that will enable SystemVerilog features and
keywords in ModelSim:

vlog testbench.sv top.v memory.v cache.v

vlog -sv testbench.v proc.v

In the first example, the .sv extension for testbench automatically instructs ModelSim to parse
SystemVerilog keywords. The -sv option used in the second example enables SystemVerilog
features and keywords.

Though a primary goal of the SystemVerilog standardization efforts has been to ensure full
backward compatibility with the Verilog standard, there is an issue with keywords.
SystemVerilog adds several new keywords to the Verilog language (see Table B-1 in Appendix
B of the P1800 SystemVerilog standard). If your design uses one of these keywords as a regular
identifier for a variable, module, task, function, etc., your design will not compile in ModelSim.

Incremental Compilation
ModelSim Verilog supports incremental compilation of designs. Unlike other Verilog
simulators, there is no requirement that you compile the entire design in one invocation of the
compiler.

You are not required to compile your design in any particular order (unless you are using
SystemVerilog packages; see note below) because all module and UDP instantiations and
external hierarchical references are resolved when the design is loaded by the simulator.

ModelSim User’s Manual, v6.2g142

Verilog and SystemVerilog Simulation
Compiling Verilog Files

February 2007

Note
Compilation order may matter when using SystemVerilog packages. As stated in the
IEEE std p1800-2005 LRM, section entitled Referencing data in packages, which states:
"Packages must exist in order for the items they define to be recognized by the scopes in
which they are imported.”

Incremental compilation is made possible by deferring these bindings, and as a result some
errors cannot be detected during compilation. Commonly, these errors include: modules that
were referenced but not compiled, incorrect port connections, and incorrect hierarchical
references.

Example 6-2. Incremental Compilation Example

Contents of testbench.sv

module testbench;
timeunit 1ns;
timeprecision 10ps;
bit d=1, clk = 0;
wire q;
initial

for (int cycles=0; cycles < 100; cycles++)
#100 clk = !clk;

design dut(q, d, clk);
endmodule

Contents of design.v:

module design(output bit q, input bit d, clk);
timeunit 1ns;
timeprecision 10ps;
always @(posedge clk)

q = d;
endmodule

Compile the design incrementally as follows:

ModelSim> vlog testbench.sv
.
Top level modules:
testbench
ModelSim> vlog -sv test1.v
.
Top level modules:
dut

Note that the compiler lists each module as a top-level module, although, ultimately, only
testbench is a top-level module. If a module is not referenced by another module compiled in
the same invocation of the compiler, then it is listed as a top-level module. This is just an
informative message and can be ignored during incremental compilation.

Verilog and SystemVerilog Simulation
Compiling Verilog Files

ModelSim User’s Manual, v6.2g 143
February 2007

The message is more useful when you compile an entire design in one invocation of the
compiler and need to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2
Top level modules:

top

Automatic Incremental Compilation with -incr
The most efficient method of incremental compilation is to manually compile only the modules
that have changed. However, this is not always convenient, especially if your source files have
compiler directive interdependencies (such as macros). In this case, you may prefer to compile
your entire design along with the -incr argument. This causes the compiler to automatically
determine which modules have changed and generate code only for those modules.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2
Top level modules:

top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top
-- Skipping module and2
-- Compiling module or2
Top level modules:

top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in a recompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note
Changes to your source code that do not change functionality but that do affect source
code line numbers (such as adding a comment line) will cause all affected modules to be
recompiled. This happens because debug information must be kept current so that
ModelSim can trace back to the correct areas of the source code.

ModelSim User’s Manual, v6.2g144

Verilog and SystemVerilog Simulation
Compiling Verilog Files

February 2007

Library Usage
All modules and UDPs in a Verilog design must be compiled into one or more libraries. One
library is usually sufficient for a simple design, but you may want to organize your modules into
various libraries for a complex design. If your design uses different modules having the same
name, then you are required to put those modules in different libraries because design unit
names must be unique within a library.

The following is an example of how you may organize your ASIC cells into one library and the
rest of your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top
Top level modules:

top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
the results in the asiclib library rather than the default work library.

Library Search Rules for vlog
Since instantiation bindings are not determined at compile time, you must instruct the simulator
to search your libraries when loading the design. The top-level modules are loaded from the
library named work unless you prefix the modules with the <library>. option. All other
Verilog instantiations are resolved in the following order:

• Search libraries specified with -Lf arguments in the order they appear on the command
line.

• Search the library specified in the Verilog-XL uselib Compiler Directive section.

• Search libraries specified with -L arguments in the order they appear on the command
line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.

Handling Sub-Modules with Common Names
Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and

Verilog and SystemVerilog Simulation
Compiling Verilog Files

ModelSim User’s Manual, v6.2g 145
February 2007

you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Example 6-3. Sub-Modules with Common Names

The normal library search rules will fail in this situation. For example, if you load the design as
follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolve to the lib1 version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, ModelSim implements a special interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the example above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

SystemVerilog Multi-File Compilation Issues

Declarations in Compilation Unit Scope
SystemVerilog allows the declaration of types, variables, functions, tasks, and other constructs
in compilation unit scope ($unit). The visibility of declarations in $unit scope does not extend
outside the current compilation unit. Thus, it is important to understand how compilation units
are defined by the tool during compilation.

By default, vlog operates in Single File Compilation Unit mode (SFCU). This means the
visibility of declarations in $unit scope terminates at the end of each source file. Visibility does
not carry forward from one file to another, except when a module, interface, or package

top

modA modB

modA modB

cellX cellX

lib1: lib2:

ModelSim User’s Manual, v6.2g146

Verilog and SystemVerilog Simulation
Compiling Verilog Files

February 2007

declaration begins in one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the declaration to the file containing the end of the
declaration.

vlog also supports a non-default behavior called Multi File Compilation Unit mode (MFCU). In
MFCU mode, vlog compiles all files given on the command line into one compilation unit. You
can invoke vlog in MFCU mode as follows:

• For a specific compilation -- with the -mfcu argument to vlog.

• For all compilations -- by setting the variable MultiFileCompilationUnit = 1 in the
modelsim.ini file.

By using either of these methods, you allow declarations in $unit scope to remain in effect
throughout the compilation of all files.

In case you have made MFCU the default behavior by setting MultiFileCompilationUnit = 1
in your modelsim.ini file, it is possible to override the default behavior on specific compilations
by using the -sfcu argument to vlog.

Macro Definitions and Compiler Directives in Compilation Unit
Scope

According to the SystemVerilog IEEE Std p1800-2005 LRM, the visibility of macro definitions
and compiler directives span the lifetime of a single compilation unit. By default, this means the
definitions of macros and settings of compiler directives terminate at the end of each source file.
They do not carry forward from one file to another, except when a module, interface, or package
declaration begins in one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the definition to the file containing the end of the
definition.

See Declarations in Compilation Unit Scope for instructions on how to control vlog's handling
of compilation units.

Note
Compiler directives revert to their default values at the end of a compilation unit.

If a compiler directive is specified as an option to the compiler, this setting is used for all
compilation units present in the current compilation.

Verilog-XL Compatible Compiler Arguments
The compiler arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to ModelSim. See the vlog command for a description of each argument.

Verilog and SystemVerilog Simulation
Compiling Verilog Files

ModelSim User’s Manual, v6.2g 147
February 2007

+define+<macro_name>[=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero
-f <filename>
+incdir+<directory>
+mindelays
+maxdelays
+nowarn<mnemonic>
+typdelays
-u

Arguments Supporting Source Libraries
The compiler arguments listed below support source libraries in the same manner as Verilog-
XL. See the vlog command for a description of each argument.

Note that these source libraries are very different from the libraries that the ModelSim compiler
uses to store compilation results. You may find it convenient to use these arguments if you are
porting a design to ModelSim or if you are familiar with these arguments and prefer to use
them.

Source libraries are searched after the source files on the command line are compiled. If there
are any unresolved references to modules or UDPs, then the compiler searches the source
libraries to satisfy them. The modules compiled from source libraries may in turn have
additional unresolved references that cause the source libraries to be searched again. This
process is repeated until all references are resolved or until no new unresolved references are
found. Source libraries are searched in the order they appear on the command line.

-v <filename>
-y <directory>
+libext+<suffix>
+librescan
+nolibcell
-R [<simargs>]

Verilog-XL uselib Compiler Directive
The `uselib compiler directive is an alternative source library management scheme to the -v, -y,
and +libext compiler arguments. It has the advantage that a design may reference different
modules having the same name. You compile designs that contain `uselib directive statements
using the -compile_uselibs argument (described below) to vlog.

The syntax for the `uselib directive is:

`uselib <library_reference>...

where <library_reference> can be one or more of the following:

ModelSim User’s Manual, v6.2g148

Verilog and SystemVerilog Simulation
Compiling Verilog Files

February 2007

• dir=<library_directory>, which is equivalent to the command line argument:

-y <library_directory>

• file=<library_file>, which is equivalent to the command line argument:

-v <library_file>

• libext=<file_extension>, which is equivalent to the command line argument:

+libext+<file_extension>

• lib=<library_name>, which references a library for instantiated objects. This behaves
similarly to a LIBRARY/USE clause in VHDL. You must ensure the correct mappings
are set up if the library does not exist in the current working directory. The
-compile_uselibs argument does not affect this usage of `uselib.

For example, the following directive

`uselib dir=/h/vendorA libext=.v

is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Since the `uselib directives are embedded in the Verilog source code, there is more flexibility in
defining the source libraries for the instantiations in the design. The appearance of a `uselib
directive in the source code explicitly defines how instantiations that follow it are resolved,
completely overriding any previous `uselib directives.

-compile_uselibs Argument
Use the -compile_uselibs argument to vlog to reference `uselib directives. The argument finds
the source files referenced in the directive, compiles them into automatically created object
libraries, and updates the modelsim.ini file with the logical mappings to the libraries.

When using -compile_uselibs, ModelSim determines into which directory to compile the object
libraries by choosing, in order, from the following three values:

• The directory name specified by the -compile_uselibs argument. For example,

-compile_uselibs=./mydir

• The directory specified by the MTI_USELIB_DIR environment variable (see
Environment Variables)

• A directory named mti_uselibs that is created in the current working directory

The following code fragment and compiler invocation show how two different modules that
have the same name can be instantiated within the same design:

Verilog and SystemVerilog Simulation
Compiling Verilog Files

ModelSim User’s Manual, v6.2g 149
February 2007

module top;
`uselib dir=/h/vendorA libext=.v
NAND2 u1(n1, n2, n3);
`uselib dir=/h/vendorB libext=.v
NAND2 u2(n4, n5, n6);

endmodule

vlog -compile_uselibs top

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

uselib is Persistent
As mentioned above, the appearance of a `uselib directive in the source code explicitly defines
how instantiations that follow it are resolved. This may result in unexpected consequences. For
example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a `uselib directive. Since srtr.v is compiled after dut.v, the `uselib
directive is still in effect. When srtr is loaded it is using the `uselib directive from dut.v to
decide where to locate modules. If this is not what you intend, then you need to put an empty
`uselib at the end of dut.v to "close" the previous `uselib statement.

Verilog Configurations
The Verilog 2001 specification added configurations. Configurations specify how a design is
"assembled" during the elaboration phase of simulation. Configurations actually consist of two
pieces: the library mapping and the configuration itself. The library mapping is used at compile
time to determine into which libraries the source files are to be compiled. Here is an example of
a simple library map file:

library work ../top.v;
library rtlLib lrm_ex_top.v;
library gateLib lrm_ex_adder.vg;
library aLib lrm_ex_adder.v;

Here is an example of a library map file that uses -incdir:

library lib1 src_dir/*.v -incdir ../include_dir2, ../, my_incdir;

The name of the library map file is arbitrary. You specify the library map file using the -libmap
argument to the vlog command. Alternatively, you can specify the file name as the first item on
the vlog command line, and the compiler will read it as a library map file.

The library map file must be compiled along with the Verilog source files. Multiple map files
are allowed but each must be preceded by the -libmap argument.

ModelSim User’s Manual, v6.2g150

Verilog and SystemVerilog Simulation
Compiling Verilog Files

February 2007

The library map file and the configuration can exist in the same or different files. If they are
separate, only the map file needs the -libmap argument. The configuration is treated as any
other Verilog source file.

Configurations and the Library Named work
The library named “work” is treated specially by ModelSim (see The Library Named "work" for
details) for Verilog configurations. Consider the following code example:

config cfg;
design top;
instance top.u1 use work.u1;

endconfig

In this case, work.u1 indicates to load u1 from the current library.

Verilog Generate Statements
The Verilog 2001 rules for generate statements had numerous inconsistencies and ambiguities.
As a result, ModelSim implements the rules that have been adopted for Verilog 2005. Most of
the rules are backwards compatible, but there is one key difference related to name visibility.

Name Visibility in Generate Statements
Consider the following code example:

module m;
parameter p = 1;

generate
if (p)

integer x = 1;
else

real x = 2.0;
endgenerate

initial $display(x);
endmodule

This code sample is legal under 2001 rules. However, it is illegal under the 2005 rules and will
cause an error in ModelSim. Under the new rules, you cannot hierarchically reference a name in
an anonymous scope from outside that scope. In the example above, x does not propagate its
visibility upwards, and each condition alternative is considered to be an anonymous scope.

To fix the code such that it will simulate properly in ModelSim, write it like this instead:

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

ModelSim User’s Manual, v6.2g 151
February 2007

module m;
parameter p = 1;

if (p) begin:s
integer x = 1;

end
else begin:s

real x = 2.0;
end

initial $display(s.x);
endmodule

Since the scope is named in this example, normal hierarchical resolution rules apply and the
code is fine.

Note too that the keywords generate - endgenerate are optional under the 2005 rules and are
excluded in the second example.

Simulating Verilog Designs
A Verilog design is ready for simulation after it has been compiled with vlog. The simulator
may then be invoked with the names of the top-level modules (many designs contain only one
top-level module). For example, if your top-level modules are "testbench" and "globals", then
invoke the simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPs in the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references. By default all modules and UDPs are loaded from the library named
work. Modules and UDPs from other libraries can be specified using the -L or -Lf arguments to
vsim (see Library Usage for details).

On successful loading of the design, the simulation time is set to zero, and you must enter a run
command to begin simulation. Commonly, you enter run -all to run until there are no more
simulation events or until $finish is executed in the Verilog code. You can also run for specific
time periods (e.g., run 100 ns). Enter the quit command to exit the simulator.

Simulator Resolution Limit (Verilog)
The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit. The resolution limit
defaults to the smallest time precision found among all of the `timescale compiler directives in
the design. Here is an example of a `timescale directive:

`timescale 1 ns / 100 ps

ModelSim User’s Manual, v6.2g152

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

February 2007

The first number is the time units and the second number is the time precision. The directive
above causes time values to be read as ns and to be rounded to the nearest 100 ps.

Time units and precision can also be specified with SystemVerilog keywords as follows:

timeunit 1 ns
timeprecision 100 ps

Modules Without Timescale Directives
You may encounter unexpected behavior if your design contains some modules with timescale
directives and others without. The time units for modules without a timescale directive default
to the simulator resolution. For example, say you have the two modules shown in the table
below:

If you invoke vsim as vsim mod2 mod1 then Module 1 sets the simulator resolution to 10 ps.
Module 2 has no timescale directive, so the time units default to the simulator resolution, in this
case 10 ps. If you watched /mod1/set and /mod2/set in the Wave window, you’d see that in
Module 1 it transitions every 1.55 ns as expected (because of the 1 ns time unit in the timescale
directive). However, in Module 2, set transitions every 20 ps. That’s because the delay of 1.55
in Module 2 is read as 15.5 ps and is rounded up to 20 ps.

In such cases ModelSim will issue the following warning message during elaboration:

Table 6-1. Sample Modules With and Without Timescale Directive

Module 1 Module 2

`timescale 1 ns / 10 ps

module mod1 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin
set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule

module mod2 (set);

output set;
reg set;
parameter d = 1.55;

initial
begin
set = 1'bz;
#d set = 1'b0;
#d set = 1'b1;

end

endmodule

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

ModelSim User’s Manual, v6.2g 153
February 2007

** Warning: (vsim-3010) [TSCALE] - Module 'mod1' has a `timescale
directive in effect, but previous modules do not.

If you invoke vsim as vsim mod1 mod2, the simulation results would be the same but
ModelSim would produce a different warning message:

** Warning: (vsim-3009) [TSCALE] - Module 'mod2' does not have a
`timescale directive in effect, but previous modules do.

These warnings should ALWAYS be investigated.

If the design contains no `timescale directives, then the resolution limit and time units default to
the value specified by the Resolution variable in the modelsim.ini file. (The variable is set to 1
ps by default.)

-timescale Option
The -timescale option can be used with the vlog and vopt to specifies the default timescale for
modules not having an explicit `timescale directive in effect during compilation. The format of
the -timescale argument is the same as that of the `timescale directive

-timescale <time_units>/<time_precision>

The format for <time_units> and <time_precision> is <n><units>. The value of <n> must be
1, 10, or 100. The value of <units> must be fs, ps, ns, us, ms, or s. In addition, the <time_units>
must be greater than or equal to the <time_precision>. For example:

-timescale "1ns / 1ps"

The argument above needs quotes because it contains white space.

Multiple Timescale Directives
As alluded to above, your design can have multiple timescale directives. The timescale directive
takes effect where it appears in a source file and applies to all source files which follow in the
same vlog command. Separately compiled modules can also have different timescales. The
simulator determines the smallest timescale of all the modules in a design and uses that as the
simulator resolution.

timescale, -t, and Rounding
The optional vsim argument -t sets the simulator resolution limit for the overall simulation. If
the resolution set by -t is larger than the precision set in a module, the time values in that
module are rounded up. If the resolution set by -t is smaller than the precision of the module, the
precision of that module remains whatever is specified by the `timescale directive. Consider the
following code:

ModelSim User’s Manual, v6.2g154

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

February 2007

`timescale 1 ns / 100 ps

module foo;

initial
#12.536 $display

The list below shows three possibilities for -t and how the delays in the module would be
handled in each case:

• -t not set

The delay will be rounded to 12.5 as directed by the module’s ‘timescale directive.

• -t is set to 1 fs

The delay will be rounded to 12.5. Again, the module’s precision is determined by the
‘timescale directive. ModelSim does not override the module’s precision.

• -t is set to 1 ns

The delay will be rounded to 12. The module’s precision is determined by the -t setting.
ModelSim has no choice but to round the module’s time values because the entire
simulation is operating at 1 ns.

Choosing the Resolution for Verilog
You should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it will
limit the maximum simulation time limit, and it will degrade performance in some cases.

Event Ordering in Verilog Designs
Event-based simulators such as ModelSim may process multiple events at a given simulation
time. The Verilog language is defined such that you cannot explicitly control the order in which
simultaneous events are processed. Unfortunately, some designs rely on a particular event
order, and these designs may behave differently than you expect.

Event Queues
Section 5 of the IEEE Std 1364-1995 LRM defines several event queues that determine the
order in which events are evaluated. At the current simulation time, the simulator has the
following pending events:

• active events

• inactive events

• non-blocking assignment update events

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

ModelSim User’s Manual, v6.2g 155
February 2007

• monitor events

• future events

o inactive events

o non-blocking assignment update events

The LRM dictates that events are processed as follows – 1) all active events are processed; 2)
the inactive events are moved to the active event queue and then processed; 3) the non-blocking
events are moved to the active event queue and then processed; 4) the monitor events are moved
to the active queue and then processed; 5) simulation advances to the next time where there is
an inactive event or a non-blocking assignment update event.

Within the active event queue, the events can be processed in any order, and new active events
can be added to the queue in any order. In other words, you cannot control event order within
the active queue. The example below illustrates potential ramifications of this situation.

Say you have these four statements:

1. always@(q) p = q;

2. always @(q) p2 = not q;

3. always @(p or p2) clk = p and p2;

4. always @(posedge clk)

and current values as follows: q = 0, p = 0, p2=1

The tables below show two of the many valid evaluations of these statements. Evaluation events
are denoted by a number where the number is the statement to be evaluated. Update events are
denoted <name>(old->new) where <name> indicates the reg being updated and new is the
updated value.\

Table 6-2. Evaluation 1 of always Statements

Event being processed Active event queue

q(0 -> 1)

q(0 -> 1) 1, 2

1 p(0 -> 1), 2

p(0 -> 1) 3, 2

3 clk(0 -> 1), 2

clk(0 -> 1) 4, 2

4 2

2 p2(1 -> 0)

ModelSim User’s Manual, v6.2g156

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

February 2007

Again, both evaluations are valid. However, in Evaluation 1, clk has a glitch on it; in Evaluation
2, clk doesn’t. This indicates that the design has a zero-delay race condition on clk.

Controlling Event Queues with Blocking or Non-Blocking
Assignments

The only control you have over event order is to assign an event to a particular queue. You do
this via blocking or non-blocking assignments.

Blocking Assignments

Blocking assignments place an event in the active, inactive, or future queues depending on what
type of delay they have:

• a blocking assignment without a delay goes in the active queue

• a blocking assignment with an explicit delay of 0 goes in the inactive queue

• a blocking assignment with a non-zero delay goes in the future queue

p2(1 -> 0) 3

3 clk(1 -> 0)

clk(1 -> 0) <empty>

Table 6-3. Evaluation 2 of always Statement

Event being processed Active event queue

q(0 -> 1)

q(0 -> 1) 1, 2

1 p(0 -> 1), 2

2 p2(1 -> 0), p(0 -> 1)

p(0 -> 1) 3, p2(1 -> 0)

p2(1 −> 0) 3

3 <empty> (clk doesn’t change)

Table 6-2. Evaluation 1 of always Statements (cont.)

Event being processed Active event queue

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

ModelSim User’s Manual, v6.2g 157
February 2007

Non-Blocking Assignments

A non-blocking assignment goes into either the non-blocking assignment update event queue or
the future non-blocking assignment update event queue. (Non-blocking assignments with no
delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This insures that all
outputs of flip-flops do not change until after all flip-flops have been evaluated. Attempting to
use non-blocking assignments in combinational logic paths to remove race conditions may only
cause more problems. (In the preceding example, changing all statements to non-blocking
assignments would not remove the race condition.) This includes using non-blocking
assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

gen1: always @(master)
clk1 = master;

gen2: always @(clk1)
clk2 = clk1;

f1 : always @(posedge clk1)
begin
q1 <= d1;

end

f2: always @(posedge clk2)
begin
q2 <= q1;

end

If written this way, a value on d1 always takes two clock cycles to get from d1 to q2.
If you change clk1 = master and clk2 = clk1 to non-blocking assignments or q2 <= q1 and q1
<= d1 to blocking assignments, then d1 may get to q2 is less than two clock cycles.

Debugging Event Order Issues
Since many models have been developed on Verilog-XL, ModelSim tries to duplicate Verilog-
XL event ordering to ease the porting of those models to ModelSim. However, ModelSim does
not match Verilog-XL event ordering in all cases, and if a model ported to ModelSim does not
behave as expected, then you should suspect that there are event order dependencies.

ModelSim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the vlog command for descriptions of -compat and -hazards.

ModelSim User’s Manual, v6.2g158

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

February 2007

Hazard Detection
The -hazard argument to vsim detects event order hazards involving simultaneous reading and
writing of the same register in concurrently executing processes. vsim detects the following
kinds of hazards:

• WRITE/WRITE — Two processes writing to the same variable at the same time.

• READ/WRITE — One process reading a variable at the same time it is being written to
by another process. ModelSim calls this a READ/WRITE hazard if it executed the read
first.

• WRITE/READ — Same as a READ/WRITE hazard except that ModelSim executed the
write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable and
the two processes involved. You can have the simulator break on the statement where the
hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog with the -hazards argument when you
compile your source code and you must also invoke vsim with the -hazards argument when
you simulate.

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

Hazard Detection and Optimization Levels
In certain cases hazard detection results are affected by the optimization level used in the
simulation. Some optimizations change the read/write operations performed on a variable if the
transformation is determined to yield equivalent results. Since the hazard detection algorithm
doesn’t know whether or not the read/write operations can affect the simulation results, the
optimizations can result in different hazard detection results. Generally, the optimizations
reduce the number of false hazards by eliminating unnecessary reads and writes, but there are
also optimizations that can produce additional false hazards.

Limitations of Hazard Detection
• Reads and writes involving bit and part selects of vectors are not considered for hazard

detection. The overhead of tracking the overlap between the bit and part selects is too
high.

• A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

• A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

ModelSim User’s Manual, v6.2g 159
February 2007

• Glitches on nets caused by non-guaranteed event ordering are not detected.

• A non-blocking assignment is not treated as a WRITE for hazard detection purposes.
This is because non-blocking assignments are not normally involved in hazards. (In fact,
they should be used to avoid hazards.)

• Hazards caused by simultaneous forces are not detected.

Negative Timing Check Limits
Verilog supports negative limit values in the $setuphold and $recrem system tasks. These tasks
have optional delayed versions of input signals to insure proper evaluation of models with
negative timing check limits. Delay values for these delayed nets are determined by the
simulator so that valid data is available for evaluation before a clocking signal.

Example 6-4. Negative Timing Check

$setuphold(posedge clk, negedge d, 5, -3, Notifier,,, clk_dly, d_dly);

ModelSim calculates the delay for signal d_dly as 4 time units instead of 3. It does this to
prevent d_dly and clk_dly from occurring simultaneously when a violation isn’t reported.

ModelSim accepts negative limit checks by default, unlike current versions of Verilog-XL. To
match Verilog-XL default behavior (i.e., zeroing all negative timing check limits), use the
+no_neg_tcheck argument to vsim.

Negative Timing Constraint Algorithm
The algorithm ModelSim uses to calculate delays for delayed nets isn’t described in IEEE Std
1364. Rather, ModelSim matches Verilog-XL behavior. The algorithm attempts to find a set of
delays so the data net is valid when the clock net transitions and the timing checks are satisfied.
The algorithm is iterative because a set of delays can be selected that satisfies all timing checks
for a pair of inputs but then causes mis-ordering of another pair (where both pairs of inputs
share a common input). When a set of delays that satisfies all timing checks is found, the delays
are said to converge.

Using Delayed Inputs for Timing Checks
By default ModelSim performs timing checks on inputs specified in the timing check. If you
want timing checks performed on the delayed inputs, use the +delayed_timing_checks
argument with the vsim command.

3

clk

d violation 5
region

0

ModelSim User’s Manual, v6.2g160

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

February 2007

Consider an example. This timing check:

$setuphold(posedge clk, posedge t, 20, -12, NOTIFIER,,, clk_dly, t_dly);

reports a timing violation when posedge t occurs in the violation region:

With the +delayed_timing_checks argument, the violation region between the delayed inputs
is:

Although the check is performed on the delayed inputs, the timing check violation message is
adjusted to reference the undelayed inputs. Only the report time of the violation message is
noticeably different between the delayed and undelayed timing checks.

By far the greatest difference between these modes is evident when there are conditions on a
delayed check event because the condition is not implicitly delayed. Also, timing checks
specified without explicit delayed signals are delayed, if necessary, when they reference an
input that is delayed for a negative timing check limit.

Other simulators perform timing checks on the delayed inputs. To be compatible, ModelSim
supports both methods.

Verilog-XL Compatible Simulator Arguments
The simulator arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to ModelSim. See the vsim command for a description of each argument.

+alt_path_delays
-l <filename>
+maxdelays
+mindelays
+multisource_int_delays
+no_cancelled_e_msg
+no_neg_tchk
+no_notifier
+no_path_edge
+no_pulse_msg
-no_risefall_delaynets
+no_show_cancelled_e
+nosdfwarn
+nowarn<mnemonic>

-12

clk

20
t

0

1

clk_dly

7
t_dly

0

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

ModelSim User’s Manual, v6.2g 161
February 2007

+ntc_warn
+pulse_e/<percent>
+pulse_e_style_ondetect
+pulse_e_style_onevent
+pulse_int_e/<percent>
+pulse_int_r/<percent>
+pulse_r/<percent>
+sdf_nocheck_celltype
+sdf_verbose
+show_cancelled_e
+transport_int_delays
+transport_path_delays
+typdelays

Using Escaped Identifiers
ModelSim always converts Verilog escaped identifiers to VHDL syntax.

In Verilog, escaped identifiers start with the backslash character and end with a white space.
Neither the backslash at the beginning or the white space at the end are considered to be a part
of the identifier. When a ModelSim displays Verilog escaped identifiers, however, a backslash
is added at the end in order to match the VHDL syntax for escaped identifiers. This is because
all Verilog escaped identifiers can be easily converted to VHDL but the converse is not true.

So, for example, a Verilog escaped identifier like the following:

\/top/dut/03

will be displayed as follows:

\/top/dut/03\

When entering Verilog identifiers with the ModelSim command line interface, you should use
the VHDL syntax, with a backslash at the beginning and end of the identifier.

In Tcl, the backslash is one of a number of characters that have a special meaning. For example,

\n

creates a new line.

When a Tcl command is used in the command line interface, the TCL backslash should be
escaped by adding another backslash. For example:

force -freeze /top/ix/iy/\\yw\[1\]\\ 10 0, 01 {50 ns} -r 100

The Verilog identifier, in this example, is \yw[1]. Here, double backslashes are used because it
is necessary to escape the square brackets ([]), which have a special meaning in Tcl.

For a more detailed description of special characters in Tcl and how backslashes should be used
with those characters, click Help > Tcl Syntax in the menu bar of the graphic interface, or
simply open the docs/tcl_help_html/TclCmd directory in your ModelSim installation.

ModelSim User’s Manual, v6.2g162

Verilog and SystemVerilog Simulation
Cell Libraries

February 2007

Cell Libraries
Model Technology passed the ASIC Council’s Verilog test suite and achieved the "Library
Tested and Approved" designation from Si2 Labs. This test suite is designed to ensure Verilog
timing accuracy and functionality and is the first significant hurdle to complete on the way to
achieving full ASIC vendor support. As a consequence, many ASIC and FPGA vendors’
Verilog cell libraries are compatible with ModelSim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays and
timing constraints for the cells. See section 13 in the IEEE Std 1364-1995 for details on specify
blocks, and section 14.5 for details on timing constraints. ModelSim Verilog fully implements
specify blocks and timing constraints as defined in IEEE Std 1364 along with some Verilog-XL
compatible extensions.

SDF Timing Annotation
ModelSim Verilog supports timing annotation from Standard Delay Format (SDF) files. See
Standard Delay Format (SDF) Timing Annotation for details.

Delay Modes
Verilog models may contain both distributed delays and path delays. The delays on primitives,
UDPs, and continuous assignments are the distributed delays, whereas the port-to-port delays
specified in specify blocks are the path delays. These delays interact to determine the actual
delay observed. Most Verilog cells use path delays exclusively, with the distributed delays set
to zero. For example,

module and2(y, a, b);
input a, b;
output y;
and(y, a, b);
specify

(a => y) = 5;
(b => y) = 5;

endspecify
endmodule

In the above two-input "and" gate cell, the distributed delay for the "and" primitive is zero, and
the actual delays observed on the module ports are taken from the path delays. This is typical for
most cells, but a complex cell may require non-zero distributed delays to work properly. Even
so, these delays are usually small enough that the path delays take priority over the distributed
delays. The rule is that if a module contains both path delays and distributed delays, then the
larger of the two delays for each path shall be used (as defined by the IEEE Std 1364). This is
the default behavior, but you can specify alternate delay modes with compiler directives and

Verilog and SystemVerilog Simulation
System Tasks and Functions

ModelSim User’s Manual, v6.2g 163
February 2007

arguments. These arguments and directives are compatible with Verilog-XL. Compiler delay
mode arguments take precedence over delay mode directives in the source code.

Distributed Delay Mode
In distributed delay mode the specify path delays are ignored in favor of the distributed delays.
Select this delay mode with the +delay_mode_distributed compiler argument or the
`delay_mode_distributed compiler directive.

Path Delay Mode
In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler argument or the
`delay_mode_path compiler directive.

Unit Delay Mode
In unit delay mode the non-zero distributed delays are set to one unit of simulation resolution
(determined by the minimum time_precision argument in all ‘timescale directives in your
design or the value specified with the -t argument to vsim), and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_unit compiler
argument or the `delay_mode_unit compiler directive.

Zero Delay Mode
In zero delay mode the distributed delays are set to zero, and the specify path delays and timing
constraints are ignored. Select this delay mode with the +delay_mode_zero compiler argument
or the `delay_mode_zero compiler directive.

System Tasks and Functions
ModelSim supports system tasks and functions as follows:

• All system tasks and functions defined in IEEE Std 1364

• Some system tasks and functions defined in SystemVerilog IEEE std p1800-2005 LRM

• Several system tasks and functions that are specific to ModelSim

• Several non-standard, Verilog-XL system tasks

The system tasks and functions listed in this section are built into the simulator, although some
designs depend on user-defined system tasks implemented with the Programming Language
Interface (PLI), Verilog Procedural Interface (VPI), or the SystemVerilog DPI (Direct
Programming Interface). If the simulator issues warnings regarding undefined system tasks or
functions, then it is likely that these tasks or functions are defined by a PLI/VPI application that
must be loaded by the simulator.

ModelSim User’s Manual, v6.2g164

Verilog and SystemVerilog Simulation
System Tasks and Functions

February 2007

IEEE Std 1364 System Tasks and Functions
The following system tasks and functions are described in detail in the IEEE Std 1364.

Table 6-4. IEEE Std 1364 System Tasks and Functions - 1

Timescale tasks Simulator control
tasks

Simulation time
functions

Command line input

$printtimescale $finish $realtime $test$plusargs

$timeformat $stop $stime $value$plusargs

$time

Table 6-5. IEEE Std 1364 System Tasks and Functions - 2

Probabilistic
distribution
functions

Conversion
functions

Stochastic analysis
tasks

Timing check tasks

$dist_chi_square $bitstoreal $q_add $hold

$dist_erlang $itor $q_exam $nochange

$dist_exponential $realtobits $q_full $period

$dist_normal $rtoi $q_initialize $recovery

$dist_poisson $signed $q_remove $setup

$dist_t $unsigned $setuphold

$dist_uniform $skew

$random $width1

1. Verilog-XL ignores the threshold argument even though it is part of the Verilog spec. ModelSim does not
ignore this argument. Be careful that you don’t set the threshold argument greater-than-or-equal to the limit
argument as that essentially disables the $width check. Note too that you cannot override the threshold
argument via SDF annotation.

$removal

$recrem

Table 6-6. IEEE Std 1364 System Tasks

Display tasks PLA modeling tasks Value change dump
(VCD) file tasks

$display $async$and$array $dumpall

Verilog and SystemVerilog Simulation
System Tasks and Functions

ModelSim User’s Manual, v6.2g 165
February 2007

$displayb $async$nand$array $dumpfile

$displayh $async$or$array $dumpflush

$displayo $async$nor$array $dumplimit

$monitor $async$and$plane $dumpoff

$monitorb $async$nand$plane $dumpon

$monitorh $async$or$plane $dumpvars

$monitoro $async$nor$plane

$monitoroff $sync$and$array

$monitoron $sync$nand$array

$strobe $sync$or$array

$strobeb $sync$nor$array

$strobeh $sync$and$plane

$strobeo $sync$nand$plane

$write $sync$or$plane

$writeb $sync$nor$plane

$writeh

$writeo

Table 6-7. IEEE Std 1364 File I/O Tasks

File I/O tasks

$fclose $fmonitoro $fwriteh

$fdisplay $fopen $fwriteo

$fdisplayb $fread $readmemb

$fdisplayh $fscanf $readmemh

$fdisplayo $fseek $rewind

$feof $fstrobe $sdf_annotate

$ferror $fstrobeb $sformat

$fflush $fstrobeh $sscanf

$fgetc $fstrobeo $swrite

Table 6-6. IEEE Std 1364 System Tasks (cont.)

Display tasks PLA modeling tasks Value change dump
(VCD) file tasks

ModelSim User’s Manual, v6.2g166

Verilog and SystemVerilog Simulation
System Tasks and Functions

February 2007

SystemVerilog System Tasks and Functions
The following ModelSim-supported system tasks and functions are described in detail in the
SystemVerilog IEEE Std p1800-2005 LRM.

$fgets $ftell $swriteb

$fmonitor $fwrite $swriteh

$fmonitorb $fwriteb $swriteo

$fmonitorh $ungetc

Table 6-8. SystemVerilog System Tasks and Functions - 1

Expression size function Range function

$bits $isunbounded

Table 6-9. SystemVerilog System Tasks and Functions - 2

Shortreal
conversions

Array querying
functions

$shortrealbits $dimensions

$bitstoshortreal $left

$right

$low

$high

$increment

$size

Table 6-10. SystemVerilog System Tasks and Functions - 4

Reading packed data
functions

Writing packed data
functions

Other functions

$readmemb $writememb $root

$readmemh $writememh $unit

Table 6-7. IEEE Std 1364 File I/O Tasks (cont.)

File I/O tasks

Verilog and SystemVerilog Simulation
System Tasks and Functions

ModelSim User’s Manual, v6.2g 167
February 2007

System Tasks and Functions Specific to the Tool
The following system tasks and functions are specific to ModelSim. They are not included in
the IEEE Std 1364, nor are they likely supported in other simulators. Their use may limit the
portability of your code.

$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
onto an existing VHDL signal or Verilog net. This allows you to drive signals or nets at
any level of the design hierarchy from within a Verilog module (e.g., a testbench). See
$init_signal_driver for complete details.

$init_signal_spy

The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog
register/net onto an existing Verilog register or VHDL signal. This system task allows
you to reference signals, registers, or nets at any level of hierarchy from within a Verilog
module (e.g., a testbench). See $init_signal_spy for complete details.

$psprintf()

The $psprintf() system function behaves like the $sformat() file I/O task except that the
string result is passed back to the user as the function return value for $psprintf(), not
placed in the first argument as for $sformat(). Thus $psprintf() can be used where a
string is valid. Note that at this time, unlike other system tasks and functions, $psprintf()
cannot be overridden by a user-defined system function in the PLI.

$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal
or Verilog register or net. This allows you to force signals, registers, or nets at any level
of the design hierarchy from within a Verilog module (e.g., a testbench). A
$signal_force works the same as the force command with the exception that you cannot
issue a repeating force. See $signal_force for complete details.

$signal_release

The $signal_release() system task releases a value that had previously been forced onto
an existing VHDL signal or Verilog register or net. A $signal_release works the same as
the noforce command. See $signal_release for complete details.

$sdf_done

This task is a "cleanup" function that removes internal buffers, called MIPDs, that have
a delay value of zero. These MIPDs are inserted in response to the -v2k_int_delay
argument to the vsim command. In general the simulator will automatically remove all
zero delay MIPDs. However, if you have $sdf_annotate() calls in your design that are
not getting executed, the zero-delay MIPDs are not removed. Adding the $sdf_done task
after your last $sdf_annotate() will remove any zero-delay MIPDs that have been
created.

ModelSim User’s Manual, v6.2g168

Verilog and SystemVerilog Simulation
System Tasks and Functions

February 2007

Verilog-XL Compatible System Tasks and Functions
ModelSim supports a number of Verilog-XL specific system tasks and functions.

Supported Tasks and Functions Mentioned in IEEE Std 1364
The following supported system tasks and functions, though not part of the IEEE standard, are
described in an annex of the IEEE Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

Supported Tasks not Described in the IEEE Std 1364
The following system tasks are also provided for compatibility with Verilog-XL, though they
are not described in the IEEE Std 1364.

$deposit(variable, value);

This system task sets a Verilog register or net to the specified value. variable is the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim
force -deposit command.

$disable_warnings("<keyword>"[,<module_instance>...]);

This system task instructs ModelSim to disable warnings about timing check violations
or triregs that acquire a value of ‘X’ due to charge decay. <keyword> may be decay or
timing. You can specify one or more module instance names. If you don’t specify a
module instance, ModelSim disables warnings for the entire simulation.

$enable_warnings("<keyword>"[,<module_instance>...]);

This system task enables warnings about timing check violations or triregs that acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. You can specify
one or more module instance names. If you don’t specify a module_instance, ModelSim
enables warnings for the entire simulation.

$system("command");

This system function takes a literal string argument, executes the specified operating
system command, and displays the status of the underlying OS process. Double quotes
are required for the OS command. For example, to list the contents of the working
directory on Unix:

$system("ls -l");

Verilog and SystemVerilog Simulation
System Tasks and Functions

ModelSim User’s Manual, v6.2g 169
February 2007

Return value of the $system function is a 32-bit integer that is set to the exit status code
of the underlying OS process.

Note
There is a known issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin the gcc command line.

$systemf(list_of_args)

This system function can take any number of arguments. The list_of_args is treated
exactly the same as with the $display() function. The OS command that will be run is the
final output from $display() given the same list_of_args. Return value of the $systemf
function is a 32-bit integer that is set to the exit status code of the underlying OS
process.

Note
There is a known issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin the gcc command line.

Supported Tasks that Have Been Extended
The following system tasks are extended to provide additional functionality for negative timing
constraints and an alternate method of conditioning, as in Verilog-XL.

$recovery(reference event, data_event, removal_limit, recovery_limit, [notifier],
[tstamp_cond], [tcheck_cond], [delayed_reference], [delayed_data])

The $recovery system task normally takes a recovery_limit as the third argument and an
optional notifier as the fourth argument. By specifying a limit for both the third and
fourth arguments, the $recovery timing check is transformed into a combination
removal and recovery timing check similar to the $recrem timing check. The only
difference is that the removal_limit and recovery_limit are swapped.

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier], [tstamp_cond],
[tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This alternate method of conditioning precludes specifying
conditions in the clk_event and data_event arguments.

ModelSim User’s Manual, v6.2g170

Verilog and SystemVerilog Simulation
System Tasks and Functions

February 2007

The tcheck_cond argument conditions the data_event for the hold check and the
clk_event for the setup check. This alternate method of conditioning precludes
specifying conditions in the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model's logic should reference
the delayed_clk and delayed_data nets in place of the normal clk and data nets. This
ensures that the correct data is latched in the presence of negative constraints. The
simulator automatically calculates the delays for delayed_clk and delayed_data such that
the correct data is latched as long as a timing constraint has not been violated. See
Negative Timing Check Limits for more details.

Unsupported Verilog-XL System Tasks
The following system tasks are Verilog-XL system tasks that are not implemented in ModelSim
Verilog, but have equivalent simulator commands.

$input("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the structure pane of the Workspace.
The corresponding source code is displayed in a Source window.

$reset

This system task resets the simulation back to its time 0 state. The equivalent simulator
command is restart.

$restart("filename")

This system task sets the simulation to the state specified by filename, saved in a
previous call to $save. The equivalent simulator command is restore <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

Verilog and SystemVerilog Simulation
Compiler Directives

ModelSim User’s Manual, v6.2g 171
February 2007

This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays a list of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showvars

This system task displays a list of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.

Compiler Directives
ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364, some
Verilog-XL compiler directives, and some that are proprietary. The SystemVerilog IEEE Std
P1800-2005 version of the ‘define and ‘include compiler directives are not currently supported.

Many of the compiler directives (such as `timescale) take effect at the point they are defined in
the source code and stay in effect until the directive is redefined or until it is reset to its default
by a `resetall directive. The effect of compiler directives spans source files, so the order of
source files on the compilation command line could be significant. For example, if you have a
file that defines some common macros for the entire design, then you might need to place it first
in the list of files to be compiled.

The `resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

`celldefine
‘default_decay_time
`default_nettype
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`protected
`timescale
`unconnected_drive
`uselib

ModelSim Verilog implicitly defines the following macro:

`define MODEL_TECH

IEEE Std 1364 Compiler Directives
The following compiler directives are described in detail in the IEEE Std 1364.

ModelSim User’s Manual, v6.2g172

Verilog and SystemVerilog Simulation
Compiler Directives

February 2007

`celldefine
`default_nettype
`define
`else
`elsif
`endcelldefine
`endif
`ifdef
‘ifndef
`include
‘line
`nounconnected_drive
`resetall
`timescale
`unconnected_drive
`undef

Verilog-XL Compatible Compiler Directives
The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that
do not explicitly declare a decay time. The decay time can be expressed as a real or
integer number, or as "infinite" to specify that the charge never decays.

`delay_mode_distributed

This directive disables path delays in favor of distributed delays. See Delay Modes for
details.

`delay_mode_path

This directive sets distributed delays to zero in favor of path delays. See Delay Modes
for details.

`delay_mode_unit

This directive sets path delays to zero and non-zero distributed delays to one time unit.
See Delay Modes for details.

`delay_mode_zero

This directive sets path delays and distributed delays to zero. See Delay Modes for
details.

`uselib

This directive is an alternative to the -v, -y, and +libext source library compiler
arguments. See Verilog-XL uselib Compiler Directive for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog. Many
of these directives are irrelevant to ModelSim Verilog, but may appear in code being ported
from Verilog-XL.

Verilog and SystemVerilog Simulation
Verilog PLI/VPI and SystemVerilog DPI

ModelSim User’s Manual, v6.2g 173
February 2007

`accelerate
`autoexpand_vectornets
`disable_portfaults
`enable_portfaults
`expand_vectornets
`noaccelerate
`noexpand_vectornets
`noremove_gatenames
`noremove_netnames
`nosuppress_faults
`remove_gatenames
`remove_netnames
`suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in ModelSim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

`default_trireg_strength
`signed
`unsigned

Verilog PLI/VPI and SystemVerilog DPI
ModelSim supports the use of the Verilog PLI (Programming Language Interface) and VPI
(Verilog Procedural Interface) and the SystemVerilog DPI (Direct Programming Interface).
These three interfaces provide a mechanism for defining tasks and functions that communicate
with the simulator through a C procedural interface. For more information on the ModelSim
implementation, see Verilog PLI/VPI/DPI.

ModelSim User’s Manual, v6.2g174

Verilog and SystemVerilog Simulation
Verilog PLI/VPI and SystemVerilog DPI

February 2007

ModelSim User’s Manual, v6.2g 175
February 2007

Chapter 7
WLF Files (Datasets) and Virtuals

This chapter describes the Wave Log Format (WLF) file and how you should and can use it in
your simulation flow.

A ModelSim simulation can be saved to a wave log format (WLF) file for future viewing or
comparison to a current simulation. We use the term "dataset" to refer to a WLF file that has
been reopened for viewing.

You can open more than one WLF file for simultaneous viewing. You can also create virtual
signals that are simple logical combinations of, or logical functions of, signals from different
datasets.

WLF files are recordings of simulation runs. The WLF file is written as an archive file in binary
format and is used to drive the debug windows at a later time. The files contain data from
logged objects (e.g., signals and variables) and the design hierarchy in which the logged objects
are found. You can record the entire design or choose specific objects.

The WLF file provides you with precise in-simulation and post-simulation debugging
capability. Any number of WLF files can be reloaded for viewing or comparing to the active
simulation.

A dataset is a previously recorded simulation that has been loaded into ModelSim. Each dataset
has a logical name to let you indicate the dataset to which any command applies. This logical
name is displayed as a prefix. The current, active simulation is prefixed by "sim:", while any
other datasets are prefixed by the name of the WLF file by default.

Two datasets are displayed in the Wave window in Figure 7-1. The current simulation is shown
in the top pane and is indicated by the "sim" prefix. A dataset from a previous simulation is
shown in the bottom pane and is indicated by the "gold" prefix.

ModelSim User’s Manual, v6.2g176

WLF Files (Datasets) and Virtuals
Saving a Simulation to a WLF File

February 2007

Figure 7-1. Displaying Two Datasets in the Wave Window

The simulator resolution (see Simulator Resolution Limit (Verilog) or Simulator Resolution
Limit (VHDL)) must be the same for all datasets you are comparing, including the current
simulation. If you have a WLF file that is in a different resolution, you can use the wlfman
command to change it.

Saving a Simulation to a WLF File
If you add objects to the Dataflow, List, or Wave windows, or log objects with the log
command, the results of each simulation run are automatically saved to a WLF file called
vsim.wlf in the current directory. If you then run a new simulation in the same directory, the
vsim.wlf file is overwritten with the new results.

If you want to save the WLF file and not have it be overwritten, select the dataset tab in the
Workspace and then select File > Save. Or, you can use the -wlf <filename> argument to the
vsim command or the dataset save command.

WLF Files (Datasets) and Virtuals
Saving a Simulation to a WLF File

ModelSim User’s Manual, v6.2g 177
February 2007

Note
If you do not use dataset save or dataset snapshot, you must end a simulation session
with a quit or quit -sim command in order to produce a valid WLF file. If you don’t end
the simulation in this manner, the WLF file will not close properly, and ModelSim may
issue the error message "bad magic number" when you try to open an incomplete dataset
in subsequent sessions. If you end up with a "damaged" WLF file, you can try to "repair"
it using the wlfrecover command.

WLF File Parameter Overview
There are a number of WLF file parameters that you can control via the modelsim.ini file or a
simulator argument. This section summarizes the various parameters.

• WLF Filename — Specify the name of the WLF file.

• WLF Size Limit — Limit the size of a WLF file to <n> megabytes by truncating from
the front of the file as necessary.

• WLF Time Limit — Limit the size of a WLF file to <t> time by truncating from the
front of the file as necessary.

• WLF Compression — Compress the data in the WLF file.

• WLF Optimization — Write additional data to the WLF file to improve draw
performance at large zoom ranges. Optimization results in approximately 15% larger

Table 7-1. WLF File Parameters

Feature vsim argument modelsim.ini Default

WLF Filename -wlf <filename> WLFFilename=<filename> vsim.wlf

WLF Size Limit -wlfslim <n> WLFSizeLimit = <n> no limit

WLF Time Limit -wlftlim <t> WLFTimeLimit = <t> no limit

WLF Compression -wlfcompress
-wlfnocompress

WLFCompress = 0|1 1 (-wlfcompress)

WLF Optimization1

1. These parameters can also be set using the dataset config command.

-wlfopt
-wlfnoopt

WLFOptimize = 0|1 1 (-wlfopt)

WLF Delete on Quita -wlfdeleteonquit
-wlfnodeleteonquit

WLFDeleteOnQuit = 0|1 0

WLF Cache Sizea -wlfcachesize <n> WLFCacheSize = <n> 256

WLF Collapse Mode -wlfnocollapse
-wlfcollapsedelta
-wlfcollapsetime

WLFCollapseModel = 0|1|2 1

ModelSim User’s Manual, v6.2g178

WLF Files (Datasets) and Virtuals
Opening Datasets

February 2007

WLF files. Disabling WLF optimization also prevents ModelSim from reading a
previously generated WLF file that contains optimized data.

• WLF Delete on Quit — Delete the WLF file automatically when the simulation exits.
Valid for current simulation dataset (vsim.wlf) only.

• WLF Cache Size — Specify the size in megabytes of the WLF reader cache. WLF
reader cache is enabled by default. The default value is 256. This feature caches blocks
of the WLF file to reduce redundant file I/O. If the cache is made smaller or disabled,
least recently used data will be freed to reduce the cache to the specified size.

• WLF Collapse Mode —WLF event collapsing has three settings: disabled, delta, time:

o When disabled, all events and event order are preserved.

o Delta mode records an object's value at the end of a simulation delta (iteration) only.
Default.

o Time mode records an object's value at the end of a simulation time step only.

Opening Datasets
To open a dataset, do one of the following:

• Select File > Open and choose Log Files or use the dataset open command.

Figure 7-2. Open Dataset Dialog Box

The Open Dataset dialog includes the following options:

• Dataset Pathname — Identifies the path and filename of the WLF file you want to
open.

• Logical Name for Dataset — This is the name by which the dataset will be referred. By
default this is the name of the WLF file.

WLF Files (Datasets) and Virtuals
Viewing Dataset Structure

ModelSim User’s Manual, v6.2g 179
February 2007

Viewing Dataset Structure
Each dataset you open creates a structure tab in the Main window workspace. The tab is labeled
with the name of the dataset and displays a hierarchy of the design units in that dataset.

The graphic below shows three structure tabs: one for the active simulation (sim) and one each
for two datasets (test and gold).

Figure 7-3. Structure Tabs in Workspace Pane

If you have too many tabs to display in the available space, you can scroll the tabs left or right
by clicking the arrow icons at the bottom right-hand corner of the window.

Structure Tab Columns
Each structure tab displays three columns by default:

Table 7-2. Structure Tab Columns

Column name Description

Instance the name of the instance

Design unit the name of the design unit

Click here
to scroll
tabs

ModelSim User’s Manual, v6.2g180

WLF Files (Datasets) and Virtuals
Managing Multiple Datasets

February 2007

You can hide or show columns by right-clicking a column name and selecting the name on the
list.

Managing Multiple Datasets

GUI
When you have one or more datasets open, you can manage them using the Dataset Browser.
To open the browser, select File > Datasets.

Figure 7-4. The Dataset Browser

Command Line
You can open multiple datasets when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the WLF
file. You can specify a different dataset name as an optional qualifier to the vsim -view switch
on the command line using the following syntax:

-view <dataset>=<filename>

For example:

vsim -view foo=vsim.wlf

Design unit type the type (e.g., Module, Entity, etc.) of the design
unit

Table 7-2. Structure Tab Columns (cont.)

Column name Description

WLF Files (Datasets) and Virtuals
Managing Multiple Datasets

ModelSim User’s Manual, v6.2g 181
February 2007

ModelSim designates one of the datasets to be the "active" dataset, and refers all names without
dataset prefixes to that dataset. The active dataset is displayed in the context path at the bottom
of the Main window. When you select a design unit in a dataset’s structure tab, that dataset
becomes active automatically. Alternatively, you can use the Dataset Browser or the
environment command to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using the
dataset name as a prefix in the path. For example:

sim:/top/alu/out

view:/top/alu/out

golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer to
something outside the active dataset. When more than one dataset is open, ModelSim will
automatically prefix names in the Wave and List windows with the dataset name. You can
change this default by selecting Tools > Window Preferences (Wave and List windows).

ModelSim also remembers a "current context" within each open dataset. You can toggle
between the current context of each dataset using the environment command, specifying the
dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo. The
context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context") is used
for finding objects specified without a path.

The Objects pane can be locked to a specific context of a dataset. Being locked to a dataset
means that the pane will update only when the content of that dataset changes. If locked to both
a dataset and a context (e.g., test: /top/foo), the pane will update only when that specific context
changes. You specify the dataset to which the pane is locked by selecting File > Environment.

Restricting the Dataset Prefix Display
The default for dataset prefix viewing is set with a variable in pref.tcl,
PrefMain(DisplayDatasetPrefix). Setting the variable to 1 will display the prefix, setting it to
0 will not. It is set to 1 by default. Either edit the pref.tcl file directly or use the Tools > Edit
Preferences command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment command
with the -dataset option (you won’t need to specify this option if the variable noted above is set
to 1). The environment command line switches override the pref.tcl variable.

ModelSim User’s Manual, v6.2g182

WLF Files (Datasets) and Virtuals
Saving at Intervals with Dataset Snapshot

February 2007

Saving at Intervals with Dataset Snapshot
Dataset Snapshot lets you periodically copy data from the current simulation WLF file to
another file. This is useful for taking periodic "snapshots" of your simulation or for clearing the
current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate objects, select Tools > Dataset Snapshot (Wave
window).

Figure 7-5. Dataset Snapshot Dialog

Collapsing Time and Delta Steps
By default ModelSim collapses delta steps. This means each logged signal that has events
during a simulation delta has its final value recorded to the WLF file when the delta has expired.
The event order in the WLF file matches the order of the first events of each signal.

WLF Files (Datasets) and Virtuals
Virtual Objects

ModelSim User’s Manual, v6.2g 183
February 2007

You can configure how ModelSim collapses time and delta steps using arguments to the vsim
command or by setting the WLFCollapseMode variable in the modelsim.ini file. The table
below summarizes the arguments and how they affect event recording.

When a run completes that includes single stepping or hitting a breakpoint, all events are
flushed to the WLF file regardless of the time collapse mode. It’s possible that single stepping
through part of a simulation may yield a slightly different WLF file than just running over that
piece of code. If particular detail is required in debugging, you should disable time collapsing.

Virtual Objects
Virtual objects are signal-like or region-like objects created in the GUI that do not exist in the
ModelSim simulation kernel. ModelSim supports the following kinds of virtual objects:

• Virtual Signals

• Virtual Functions

• Virtual Regions

• Virtual Types

Virtual objects are indicated by an orange diamond as illustrated by bus in Figure 7-6:

Table 7-3. vsim Arguments for Collapsing Time and Delta Steps

vsim argument effect modelsim.ini setting

-wlfnocollapse All events for each logged signal are
recorded to the WLF file in the exact order
they occur in the simulation.

WLFCollapseMode = 0

-wlfdeltacollapse Each logged signal which has events during a
simulation delta has its final value recorded
to the WLF file when the delta has expired.
Default.

WLFCollapseMode = 1

-wlftimecollapse Same as delta collapsing but at the timestep
granularity.

WLFCollapseMode = 2

ModelSim User’s Manual, v6.2g184

WLF Files (Datasets) and Virtuals
Virtual Objects

February 2007

Figure 7-6. Virtual Objects Indicated by Orange Diamond

Virtual Signals
Virtual signals are aliases for combinations or subelements of signals written to the WLF file by
the simulation kernel. They can be displayed in the Objects, List, and Wave windows, accessed
by the examine command, and set using the force command. You can create virtual signals
using the Tools > Combine Signals (Wave and List windows) menu selections or by using the
virtual signal command. Once created, virtual signals can be dragged and dropped from the
Objects pane to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that corresponds
to the nearest common ancestor of all the elements of the virtual signal. The virtual signal
command has an -install <region> option to specify where the virtual signal should be
installed. This can be used to install the virtual signal in a user-defined region in order to
reconstruct the original RTL hierarchy when simulating and driving a post-synthesis, gate-level
implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command can be used to hide the display of the broken-down
bits if you don't want them cluttering up the Objects pane.

If the virtual signal has elements from more than one WLF file, it will be automatically installed
in the virtual region virtuals:/Signals.

WLF Files (Datasets) and Virtuals
Virtual Objects

ModelSim User’s Manual, v6.2g 185
February 2007

Virtual signals are not hierarchical – if two virtual signals are concatenated to become a third
virtual signal, the resulting virtual signal will be a concatenation of all the scalar elements of the
first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command. By
default, when quitting, ModelSim will append any newly-created virtuals (that have not been
saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave or
List format, you will need to execute the virtuals.do file (or some other equivalent) to restore
the virtual signal definitions before you re-load the Wave or List format during a later run.
There is one exception: "implicit virtuals" are automatically saved with the Wave or List
format.

Implicit and Explicit Virtuals
An implicit virtual is a virtual signal that was automatically created by ModelSim without your
knowledge and without you providing a name for it. An example would be if you expand a bus
in the Wave window, then drag one bit out of the bus to display it separately. That action creates
a one-bit virtual signal whose definition is stored in a special location, and is not visible in the
Objects pane or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual Functions
Virtual functions behave in the GUI like signals but are not aliases of combinations or elements
of signals logged by the kernel. They consist of logical operations on logged signals and can be
dependent on simulation time. They can be displayed in the Objects, Wave, and List windows
and accessed by the examine command, but cannot be set by the force command.

Examples of virtual functions include the following:

• a function defined as the inverse of a given signal

• a function defined as the exclusive-OR of two signals

• a function defined as a repetitive clock

• a function defined as "the rising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

The result type of a virtual function can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these types.
Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net strengths
are ignored.

ModelSim User’s Manual, v6.2g186

WLF Files (Datasets) and Virtuals
Virtual Objects

February 2007

Virtual functions can be created using the virtual function command.

Virtual functions are also implicitly created by ModelSim when referencing bit-selects or part-
selects of Verilog registers in the GUI, or when expanding Verilog registers in the Objects,
Wave, or List window. This is necessary because referencing Verilog register elements requires
an intermediate step of shifting and masking of the Verilog "vreg" data structure.

Virtual Regions
User-defined design hierarchy regions can be defined and attached to any existing design region
or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in a gate-level
design and to locate virtual signals. Thus, virtual signals and virtual regions can be used in a
gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command.

Virtual Types
User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in a type conversion expression
to convert a signal to values of the new type. When the converted signal is displayed in any of
the windows, the value will be displayed as the enumeration string corresponding to the value of
the original signal.

Virtual types are created using the virtual type command.

ModelSim User’s Manual, v6.2g 187
February 2007

Chapter 8
Waveform Analysis

When your simulation finishes, you will often want to analyze waveforms to assess and debug
your design. Designers typically use the Wave window for waveform analysis. However, you
can also look at waveform data in a textual format in the List window.

To analyze waveforms in ModelSim, follow these steps:

1. Compile your files.

2. Load your design.

3. Add objects to the Wave or List window.

add wave <object_name>
add list <object_name>

4. Run the design.

Objects You Can View
The list below identifies the types of objects can be viewed in the Wave or List window.

• VHDL objects — (indicated by dark blue diamond in the Wave window)

signals, aliases, process variables, and shared variables

• Verilog objects — (indicated by light blue diamond in the Wave window)

nets, registers, variables, and named events

• Virtual objects — (indicated by an orange diamond in the Wave window)

virtual signals, buses, and functions, see; Virtual Objects for more information

Wave Window Overview
The Wave window opens by default in the MDI frame of the Main window as shown below.
The window can be undocked from the main window by pressing the Undock button in the
window header or by using the view -undock wave command. The preference variable
PrefMain(ViewUnDocked) wave can be used to control this default behavior. Setting this
variable will open the Wave Window undocked each time you start ModelSim.

ModelSim User’s Manual, v6.2g188

Waveform Analysis
Wave Window Overview

February 2007

Figure 8-1. Undocking the Wave Window

Here is an example of a Wave window that is undocked from the MDI frame. All menus and
icons associated with Wave window functions now appear in the menu and toolbar areas of the
Wave window.

Waveform Analysis
Wave Window Overview

ModelSim User’s Manual, v6.2g 189
February 2007

Figure 8-2. Docking the Wave Window

If the Wave window is docked into the Main window MDI frame, all menus and icons that were
in the standalone version of the Wave window move into the Main window menu bar and
toolbar.

The Wave window is divided into a number of window panes. All window panes in the Wave
window can be resized by clicking and dragging the bar between any two panes.

ModelSim User’s Manual, v6.2g190

Waveform Analysis
List Window Overview

February 2007

Figure 8-3. Panes in the Wave Window

List Window Overview
The List window displays simulation results in tabular format. Common tasks that people use
the window for include:

• Using gating expressions and trigger settings to focus in on particular signals or events.
See Configuring New Line Triggering in the List Window.

• Debugging delta delay issues. See Delta Delays for more information.

The window is divided into two adjustable panes, which allows you to scroll horizontally
through the listing on the right, while keeping time and delta visible on the left.

Waveform Analysis
Adding Objects to the Wave or List Window

ModelSim User’s Manual, v6.2g 191
February 2007

Figure 8-4. Tabular Format of the List Window

Adding Objects to the Wave or List Window
You can add objects to the Wave or List window in several ways.

Adding Objects with Drag and Drop
You can drag and drop objects into the Wave or List window from the Workspace, Active
Processes, Memory, Objects, Source, or Locals panes. You can also drag objects from the Wave
window to the List window and vice versa.

Select the objects in the first window, then drop them into the Wave window. Depending on
what you select, all objects or any portion of the design can be added.

Adding Objects with a Menu Command
The Add menu in the Main windows let you add objects to the Wave window, List window, or
Log file.

Adding Objects with a Command
Use the add list or add wave commands to add objects from the command line. For example:

VSIM> add wave /proc/a

Adds signal /proc/a to the Wave window.

ModelSim User’s Manual, v6.2g192

Waveform Analysis
Measuring Time with Cursors in the Wave Window

February 2007

VSIM> add list *

Adds all the objects in the current region to the List window.

VSIM> add wave -r /*

Adds all objects in the design to the Wave window.

Adding Objects with a Window Format File
Select File > Open > Format and specify a previously saved format file. See Saving the
Window Format for details on how to create a format file.

Measuring Time with Cursors in the Wave
Window

ModelSim uses cursors to measure time in the Wave window. Cursors extend a vertical line
over the waveform display and identify a specific simulation time. Multiple cursors can be used
to measure time intervals, as shown in the graphic below.

When the Wave window is first drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. The selected cursor
is drawn as a bold solid line; all other cursors are drawn with thin lines.

As shown in the graphic below, three window panes relate to cursors: the cursor name pane on
the bottom left, the cursor value pane in the bottom middle, and the cursor pane with horizontal
"tracks" on the bottom right.

Waveform Analysis
Measuring Time with Cursors in the Wave Window

ModelSim User’s Manual, v6.2g 193
February 2007

Figure 8-5. Cursor Names, Values and Time Measurements

Working with Cursors
The table below summarizes common cursor actions.

Table 8-1. Actions for Cursors

Action Menu command
(Wave window docked)

Menu command
(Wave window undocked)

Toolbar button

Add cursor Add > Wave > Cursor Add > Cursor

Delete cursor Wave > Delete Cursor Edit > Delete Cursor

Zoom In on
Active Cursor

Wave > Zoom > Zoom
Cursor

View > Zoom > Zoom
Cursor

ModelSim User’s Manual, v6.2g194

Waveform Analysis
Measuring Time with Cursors in the Wave Window

February 2007

Shortcuts for Working with Cursors
There are a number of useful keyboard and mouse shortcuts related to the actions listed above:

• Select a cursor by clicking the cursor name.

• Jump to a "hidden" cursor (one that is out of view) by double-clicking the cursor name.

• Name a cursor by right-clicking the cursor name and entering a new value. Press
<Enter> on your keyboard after you have typed the new name.

• Move a locked cursor by holding down the <shift> key and then clicking-and-dragging
the cursor.

• Move a cursor to a particular time by right-clicking the cursor value and typing the value
to which you want to scroll. Press <Enter> on your keyboard after you have typed the
new value.

Understanding Cursor Behavior
The following list describes how cursors "behave" when you click in various panes of the Wave
window:

• If you click in the waveform pane, the cursor closest to the mouse position is selected
and then moved to the mouse position.

• Clicking in a horizontal "track" in the cursor pane selects that cursor and moves it to the
mouse position.

• Cursors "snap" to a waveform edge if you click or drag a cursor along the selected
waveform to within ten pixels of a waveform edge. You can set the snap distance in the
Window Preferences dialog. Select Tools > Options > Wave Preferences when the
Wave window is docked in the Main window MDI frame. Select Tools > Window
Preferences when the Wave window is a stand-alone, undocked window.

• You can position a cursor without snapping by dragging in the cursor pane below the
waveforms.

Lock cursor Wave > Edit Cursor Edit > Edit Cursor NA

Name cursor Wave > Edit Cursor Edit > Edit Cursor NA

Select cursor Wave > Cursors View > Cursors NA

Table 8-1. Actions for Cursors (cont.)

Action Menu command
(Wave window docked)

Menu command
(Wave window undocked)

Toolbar button

Waveform Analysis
Setting Time Markers in the List Window

ModelSim User’s Manual, v6.2g 195
February 2007

Jumping to a Signal Transition
You can move the active cursor to the next or previous transition on the selected signal using
these two buttons on the toolbar:

Setting Time Markers in the List Window
Time markers in the List window are similar to cursors in the Wave window. Time markers tag
lines in the data table so you can quickly jump back to that time. Markers are indicated by a thin
box surrounding the marked line.

Figure 8-6. Time Markers in the List Window

Working with Markers
The table below summarizes actions you can take with markers.

Find Previous
Transition
locate the previous
signal value change

for the selected signal

Find Next Transition
locate the next signal
value change for the
selected signal

Table 8-2. Actions for Time Markers

Action Method

Add marker Select a line and then select Edit > Add Marker

ModelSim User’s Manual, v6.2g196

Waveform Analysis
Zooming the Wave Window Display

February 2007

Zooming the Wave Window Display
Zooming lets you change the simulation range in the waveform pane. You can zoom using the
context menu, toolbar buttons, mouse, keyboard, or commands.

Zooming with the Menu, Toolbar and Mouse
You can access Zoom commands from the View menu in the Wave window when it is
undocked, from the Wave > Zoom menu selections in the Main window when the Wave
window is docked, or by clicking the right mouse button in the waveform pane of the Wave
window.

These zoom buttons are available on the toolbar:

To zoom with the mouse, first enter zoom mode by selecting View > Zoom > Mouse Mode >
Zoom Mode. The left mouse button then offers 3 zoom options by clicking and dragging in
different directions:

• Down-Right or Down-Left: Zoom Area (In)

• Up-Right: Zoom Out

• Up-Left: Zoom Fit

Also note the following about zooming with the mouse:

Delete marker Select a tagged line and then select Edit > Delete
Marker

Goto marker Select View > Goto > <time>

Zoom In 2x
zoom in by a factor of two
from the current view

Zoom Out 2x
zoom out by a factor of two
from current view

Zoom In on Active Cursor
centers the active cursor in
the waveform display and
zooms in

Zoom Full
zoom out to view the full
range of the simulation from
time 0 to the current time

Zoom Mode
change mouse pointer to
zoom mode; see below

Table 8-2. Actions for Time Markers (cont.)

Action Method

Waveform Analysis
Zooming the Wave Window Display

ModelSim User’s Manual, v6.2g 197
February 2007

• The zoom amount is displayed at the mouse cursor. A zoom operation must be more
than 10 pixels to activate.

• You can enter zoom mode temporarily by holding the <Ctrl> key down while in select
mode.

• With the mouse in the Select Mode, the middle mouse button will perform the above
zoom operations.

Saving Zoom Range and Scroll Position with Bookmarks
Bookmarks save a particular zoom range and scroll position. This lets you return easily to a
specific view later. You save the bookmark with a name and then access the named bookmark
from the Bookmark menu. Bookmarks are saved in the Wave format file (see Adding Objects
with a Window Format File) and are restored when the format file is read.

Managing Bookmarks
The table below summarizes actions you can take with bookmarks.

Adding Bookmarks
To add a bookmark, follow these steps:

1. Zoom the wave window as you see fit using one of the techniques discussed in Zooming
the Wave Window Display.

2. If the Wave window is docked, select Add > Wave > Bookmark. If the Wave window
is undocked, select Add > Bookmark.

Table 8-3. Actions for Bookmarks

Action Menu commands
(Wave window
docked)

Menu commands
(Wave window
undocked)

Command

Add bookmark Add > Wave >
Bookmark

Add > Bookmark bookmark add wave

View bookmark Wave > Bookmarks >
<bookmark_name>

View > Bookmarks >
<bookmark_name>

bookmark goto wave

Delete bookmark Wave > Bookmarks >
Bookmarks > <select
bookmark then Delete>

View > Bookmarks >
Bookmarks > <select
bookmark then Delete>

bookmark delete wave

ModelSim User’s Manual, v6.2g198

Waveform Analysis
Searching in the Wave and List Windows

February 2007

Figure 8-7. Bookmark Properties Dialog

3. Give the bookmark a name and click OK.

Editing Bookmarks
Once a bookmark exists, you can change its properties by selecting Wave > Bookmarks >
Bookmarks if the Wave window is docked; or by selecting Tools > Bookmarks if the Wave
window is undocked.

Searching in the Wave and List Windows
The Wave and List windows provide two methods for locating objects:

• Finding signal names – Select Edit > Find or use the find command to search for the
name of a signal.

• Search for values or transitions – Select Edit > Signal Search to locate transitions or
signal values. The search feature is not available in all versions of ModelSim.

Finding Signal Names
The Find command is used to locate a signal name or value in the Wave or List window. When
you select Edit > Find, the Find dialog appears.

Waveform Analysis
Searching in the Wave and List Windows

ModelSim User’s Manual, v6.2g 199
February 2007

Figure 8-8. Find Signals by Name or Value

One option of note is the "Exact" checkbox. Check Exact if you only want to find objects that
match your search exactly. For example, searching for "clk" without Exact will find /top/clk
and clk1.

There are two differences between the Wave and List windows as it relates to the Find feature:

• In the Wave window you can specify a value to search for in the values pane.

• The find operation works only within the active pane in the Wave window.

Searching for Values or Transitions
Available in some versions of ModelSim, the Search command lets you search for transitions or
values on selected signals. When you select Edit > Search Signals, the Signal Search dialog
appears.

ModelSim User’s Manual, v6.2g200

Waveform Analysis
Searching in the Wave and List Windows

February 2007

Figure 8-9. Wave Signal Search Dialog

One option of note is Search for Expression. The expression can involve more than one signal
but is limited to signals currently in the window. Expressions can include constants, variables,
and DO files. See Expression Syntax for more information.

Using the Expression Builder for Expression Searches
The Expression Builder is a feature of the Wave and List Signal Search dialog boxes, and the
List trigger properties dialog box. It aids in building a search expression that follows the
GUI_expression_format.

To locate the Builder:

• select Edit > Search Signals (List or Wave window)

• select the Search for Expression option in the resulting dialog box

• select the Builder button

Waveform Analysis
Searching in the Wave and List Windows

ModelSim User’s Manual, v6.2g 201
February 2007

Figure 8-10. Expression Builder Dialog

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in a signal name, you can select the signal in the
associated Wave or List window and press Insert Selected Signal. All Expression Builder
buttons correspond to the Expression Syntax.

Saving an Expression to a Tcl Variable
Clicking the Save button will save the expression to a Tcl variable. Once saved this variable can
be used in place of the expression. For example, say you save an expression to the variable
"foo". Here are some operations you could do with the saved variable:

• Read the value of foo with the set command:

set foo

• Put $foo in the Expression: entry box for the Search for Expression selection.

• Issue a searchlog command using foo:

searchlog -expr $foo 0

Searching for when a Signal Reaches a Particular Value
Select the signal in the Wave window and click Insert Selected Signal and ==. Then, click the
value buttons or type a value.

ModelSim User’s Manual, v6.2g202

Waveform Analysis
Formatting the Wave Window

February 2007

Evaluating Only on Clock Edges
Click the && button to AND this condition with the rest of the expression. Then select the
clock in the Wave window and click Insert Selected Signal and ‘rising. You can also select the
falling edge or both edges.

Operators
Other buttons will add operators of various kinds (see Expression Syntax), or you can type them
in.

Formatting the Wave Window

Setting Wave Window Display Preferences
You can set Wave Window display preferences by selecting Tools > Options > Wave
Preferences (when the window is docked in the MDI frame) or Tools > Window Preferences
(when the window is undocked). These commands open the Wave Window Preferences dialog
(Figure 8-11).

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v6.2g 203
February 2007

Figure 8-11. Display Tab of the Wave Window Preferences Dialog

Hiding/Showing Path Hierarchy
You can set how many elements of the object path display by changing the Display Signal Path
value in the Wave Window Preferences dialog (Figure 8-11). Zero indicates the full path while
a non-zero number indicates the number of path elements to be displayed.

Setting the Timeline to Count Clock Cycles
You can set the timeline of the Wave window to count clock cycles rather than elapsed time. If
the Wave window is docked in the MDI frame, open the Wave Window Preferences dialog by
selecting Tools > Options > Wave Preferences from the Main window menus. If the Wave
window is undocked, select Tools > Window Preferences from the Wave window menus. This
opens the Wave Window Preferences dialog. In the dialog, select the Grid & Timeline tab
(Figure 8-12).

ModelSim User’s Manual, v6.2g204

Waveform Analysis
Formatting the Wave Window

February 2007

Figure 8-12. Grid & Timeline Tab of Wave Window Preferences Dialog

Enter the period of your clock in the Grid Period field and select “Display grid period count
(cycle count).” The timeline will now show the number of clock cycles, as shown in
Figure 8-13.

Figure 8-13. Clock Cycles in Timeline of Wave Window

Formatting Objects in the Wave Window
You can adjust various object properties to create the view you find most useful. Select one or
more objects and then select View > Properties or use the selections in the Format menu.

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v6.2g 205
February 2007

Changing Radix (base) for the Wave Window
One common adjustment is changing the radix (base) of an object. When you select View >
Properties, the Wave Signal Properties dialog appears.

Figure 8-14. Changing Signal Radix

The default radix is symbolic, which means that for an enumerated type, the value pane lists the
actual values of the enumerated type of that object. For the other radixes - binary, octal,
decimal, unsigned, hexadecimal, or ASCII - the object value is converted to an appropriate
representation in that radix.

Note
When the symbolic radix is chosen for SystemVerilog reg and integer types, the values
are treated as binary. When the symbolic radix is chosen for SystemVerilog bit and int
types, the values are considered to be decimal.

Aside from the Wave Signal Properties dialog, there are three other ways to change the radix:

• Change the default radix for the current simulation using Simulate > Runtime Options
(Main window)

• Change the default radix for the current simulation using the radix command.

• Change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

ModelSim User’s Manual, v6.2g206

Waveform Analysis
Formatting the Wave Window

February 2007

Dividing the Wave Window
Dividers serve as a visual aid for debugging, allowing you to separate signals and waveforms
for easier viewing. In the graphic below, a bus is separated from the two signals above it with a
divider called "Bus."

Figure 8-15. Separate Signals with Wave Window Dividers

To insert a divider, follow these steps:

1. Select the signal above which you want to place the divider.

2. If the Wave pane is docked in MDI frame of the Main window, select Add > Wave >
Divider from the Main window menu bar. If the Wave window stands alone, undocked
from the Main window, select Add > Divider from the Wave window menu bar.

3. Specify the divider name in the Wave Divider Properties dialog. The default name is
New Divider. Unnamed dividers are permitted. Simply delete "New Divider" in the
Divider Name field to create an unnamed divider.

4. Specify the divider height (default height is 17 pixels) and then click OK.

You can also insert dividers with the -divider argument to the add wave command.

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v6.2g 207
February 2007

Working with Dividers
The table below summarizes several actions you can take with dividers:

Splitting Wave Window Panes
The pathnames, values, and waveforms panes of the Wave window display can be split to
accommodate signals from one or more datasets. For more information on viewing multiple
simulations, see WLF Files (Datasets) and Virtuals.

To split the window, select Add > Window Pane.

In the illustration below, the top split shows the current active simulation with the prefix "sim,"
and the bottom split shows a second dataset with the prefix "gold".

Table 8-4. Actions for Dividers

Action Method

Move a divider Click-and-drag the divider to the desired location

Change a divider’s
name or size

Right-click the divider and select Divider Properties

Delete a divider Right-click the divider and select Delete

ModelSim User’s Manual, v6.2g208

Waveform Analysis
Wave Groups

February 2007

Figure 8-16. Splitting Wave Window Panes

The Active Split
The active split is denoted with a solid white bar to the left of the signal names. The active split
becomes the target for objects added to the Wave window.

Wave Groups
Wave groups are a wave window specific container object for creating arbitrary groups of
items. A wave group may contain 0, 1 or many items. The command line as well as drag and
drop may be used to add or remove items from a group. Groups themselves may be dragged
around the wave window or to another wave window.

Currently, groups may not be nested.

Creating a Wave Group
There are two ways to create a wave group.

1. Use the Tools > Group menu selection.

Waveform Analysis
Wave Groups

ModelSim User’s Manual, v6.2g 209
February 2007

a. Select a set of signals in the wave window.

b. Select the Tools > Group menu item. The Wave Group Create dialog will appear.

Figure 8-17. Fill in the name of the group in the Group Name field.

c. Click Ok. The new wave group will be denoted by a red diamond in the Wave
window pathnames.

Figure 8-18. Wave groups denoted by red diamond

2. Use the -group argument to the add wave command.

Example 1 — The following command will create a group named mygroup containing
three items:

add wave -group mygroup sig1 sig2 sig3

Example 2 — The following command will create an empty group named mygroup:

add wave -group mygroup

ModelSim User’s Manual, v6.2g210

Waveform Analysis
Wave Groups

February 2007

Deleting or Ungrouping a Wave Group
If a wave group is selected and cut or deleted the entire group and all its contents will be
removed from the wave window. Likewise, the delete wave command will remove the entire
group if the group name is specified.

If a wave group is selected and the Tools > Ungroup menu item is selected the group will be
removed and all of its contents will remain in the Wave window in existing order.

Adding Items to an Existing Wave Group
There are three ways to add items to an existing wave group.

1. Using the drag and drop capability to move items outside of the group or from other
windows within ModelSim into the group. The insertion indicator will show the position
the item will be dropped into the group. If the cursor is moved over the lower portion of
the group item name a box will be drawn around the group name indicating the item will
be dropped into the last position in the group.

2. The cut/copy/paste functions may be used to paste items into a group.

3. Use the add wave -group command.

The following example adds two more signals to an existing group called mygroup.

add wave -group mygroup sig4 sig5

Removing Items from an Existing Wave Group
You can use any of the following methods to remove an item from a wave group.

1. Use the drag and drop capability to move an item outside of the group.

2. Use menu or icon selections to cut or delete an item or items from the group.

3. Use the delete wave command to specify a signal to be removed from the group.

Note
The delete wave command removes all occurrences of a specified name from the wave
window, not just an occurrence within a group.

Miscellaneous Wave Group Features
Dragging a wave group from the Wave window to the List window will result in all of the items
within the group being added to the List window.

Waveform Analysis
Formatting the List Window

ModelSim User’s Manual, v6.2g 211
February 2007

Dragging a group from the Wave window to the Transcript window will result in a list of all of
the items within the group being added to the existing command line, if any.

Formatting the List Window

Setting List Window Display Properties
Before you add objects to the List window, you can set the window’s display properties. To
change when and how a signal is displayed in the List window, select Tools > List Preferences
from the List window menu bar (when the window is undocked).

Figure 8-19. Modifying List Window Display Properties

Formatting Objects in the List Window
You can adjust various properties of objects to create the view you find most useful. Select one
or more objects and then select View > Signal Properties from the List window menu bar
(when the window is undocked).

Changing Radix (base) for the List Window
One common adjustment is changing the radix (base) of an object. When you select View >
Signal Properties, the List Signal Properties dialog appears (Figure 8-20).

ModelSim User’s Manual, v6.2g212

Waveform Analysis
Formatting the List Window

February 2007

Figure 8-20. List Signal Properties Dialog

The default radix is symbolic, which means that for an enumerated type, the window lists the
actual values of the enumerated type of that object. For the other radixes - binary, octal,
decimal, unsigned, hexadecimal, or ASCII - the object value is converted to an appropriate
representation in that radix.

Changing the radix can make it easier to view information in the List window. Compare the
image below (with decimal values) with the image in the section List Window Overview (with
symbolic values).

Waveform Analysis
Saving the Window Format

ModelSim User’s Manual, v6.2g 213
February 2007

Figure 8-21. Changing the Radix in the List Window

Aside from the List Signal Properties dialog, there are three other ways to change the radix:

• Change the default radix for the current simulation using Simulate > Runtime Options
(Main window)

• Change the default radix for the current simulation using the radix command.

• Change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

Saving the Window Format
By default all Wave and List window information is forgotten once you close the windows. If
you want to restore the windows to a previously configured layout, you must save a window
format file. Follow these steps:

1. Add the objects you want to the Wave or List window.

2. Edit and format the objects to create the view you want.

3. Save the format to a file by selecting File > Save > Format.

To use the format file, start with a blank Wave or List window and run the DO file in one of two
ways:

• Invoke the do command from the command line:

VSIM> do <my_format_file>

ModelSim User’s Manual, v6.2g214

Waveform Analysis
Printing and Saving Waveforms in the Wave window

February 2007

• Select File > Load.

Note
Window format files are design-specific. Use them only with the design you were
simulating when they were created.

Printing and Saving Waveforms in the Wave
window

You can print the waveform display or save it as an encapsulated postscript (EPS) file.

Saving a .eps Waveform File and Printing in UNIX
Select File > Print Postscript (Wave window) to print all or part of the waveform in the current
Wave window in UNIX, or save the waveform as a .eps file on any platform (see also the write
wave command).

Printing from the Wave Window on Windows Platforms
Select File > Print (Wave window) to print all or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).

Printer Page Setup
Select File > Page setup or click the Setup button in the Write Postscript or Print dialog box to
define how the printed page will appear.

Saving List Window Data to a File
Select File > Write List in the List window to save the data in one of these formats:

• Tabular — writes a text file that looks like the window listing

ns delta /a /b /cin /sum /cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 +0 0 1 0 X U

• Events — writes a text file containing transitions during simulation

Waveform Analysis
Combining Objects into Buses

ModelSim User’s Manual, v6.2g 215
February 2007

@0 +0
/a X
/b X
/cin U
/sum X
/cout U
@0 +1
/a 0
/b 1
/cin 0

• TSSI — writes a file in standard TSSI format; see also, the write tssi command.

0 00000000000000010?????????
2 00000000000000010???????1?
3 00000000000000010??????010
4 00000000000000010000000010
100 00000001000000010000000010

You can also save List window output using the write list command.

Combining Objects into Buses
You can combine signals in the Wave or List window into buses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value. A virtual
compare signal (the result of a comparison simulation) is not supported for combination with
any other signal.

To combine signals into a bus, use one of the following methods:

• Select two or more signals in the Wave or List window and then choose Tools >
Combine Signals from the menu bar. A virtual signal that is the result of a comparison
simulation is not supported for combining with any other signal.

• Use the virtual signal command at the Main window command prompt.

In the illustration below, three signals have been combined to form a new bus called "Bus1".
Note that the component signals are listed in the order in which they were selected in the Wave
window. Also note that the value of the bus is made up of the values of its component signals,
arranged in a specific order.

ModelSim User’s Manual, v6.2g216

Waveform Analysis
Combining Objects into Buses

February 2007

Figure 8-22. Signals Combined to Create Virtual Bus

Waveform Analysis
Configuring New Line Triggering in the List Window

ModelSim User’s Manual, v6.2g 217
February 2007

Configuring New Line Triggering in the List
Window

New line triggering refers to what events cause a new line of data to be added to the List
window. By default ModelSim adds a new line for any signal change including deltas within a
single unit of time resolution.

You can set new line triggering on a signal-by-signal basis or for the whole simulation. To set
for a single signal, select View > Signal Properties from the List window menu bar (when the
window is undocked) and select the Triggers line setting. Individual signal settings override
global settings.

Figure 8-23. Line Triggering in the List Window

To modify new line triggering for the whole simulation, select Tools > List Preferences from
the List window menu bar (when the window is undocked), or use the configure command.
When you select Tools > List Preferences, the Modify Display Properties dialog appears:

ModelSim User’s Manual, v6.2g218

Waveform Analysis
Configuring New Line Triggering in the List Window

February 2007

Figure 8-24. Setting Trigger Properties

The following table summaries the triggering options:

Table 8-5. Triggering Options

Option Description

Deltas Choose between displaying all deltas (Expand
Deltas), displaying the value at the final delta
(Collapse Delta). You can also hide the delta
column all together (No Delta), however this will
display the value at the final delta.

Strobe trigger Specify an interval at which you want to trigger
data display

Trigger gating Use a gating expression to control triggering; see
Using Gating Expressions to Control Triggering for
more details

Waveform Analysis
Configuring New Line Triggering in the List Window

ModelSim User’s Manual, v6.2g 219
February 2007

Using Gating Expressions to Control Triggering
Trigger gating controls the display of data based on an expression. Triggering is enabled once
the gating expression evaluates to true. This setup behaves much like a hardware signal analyzer
that starts recording data on a specified setup of address bits and clock edges.

Here are some points about gating expressions:

• Gating expressions affect the display of data but not acquisition of the data.

• The expression is evaluated when the List window would normally have displayed a
row of data (given the other trigger settings).

• The duration determines for how long triggering stays enabled after the gating
expression returns to false (0). The default of 0 duration will enable triggering only
while the expression is true (1). The duration is expressed in x number of default
timescale units.

• Gating is level-sensitive rather than edge-triggered.

Trigger Gating Example Using the Expression Builder
This example shows how to create a gating expression with the ModelSim Expression Builder.
Here is the procedure:

1. Select Tools > Window Preferences from the List window menu bar (when the
window is undocked) and select the Triggers tab.

2. Click the Use Expression Builder button.

ModelSim User’s Manual, v6.2g220

Waveform Analysis
Configuring New Line Triggering in the List Window

February 2007

Figure 8-25. Trigger Gating Using Expression Builder

3. Select the signal in the List window that you want to be the enable signal by clicking on
its name in the header area of the List window.

4. Click Insert Selected Signal and then 'rising in the Expression Builder.

5. Click OK to close the Expression Builder.

You should see the name of the signal plus "'rising" added to the Expression entry box
of the Modify Display Properties dialog box.

6. Click OK to close the dialog.

If you already have simulation data in the List window, the display should immediately switch
to showing only those cycles for which the gating signal is rising. If that isn't quite what you
want, you can go back to the expression builder and play with it until you get it the way you
want it.

If you want the enable signal to work like a "One-Shot" that would display all values for the
next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10 ns.

Trigger Gating Example Using Commands
The following commands show the gating portion of a trigger configuration statement:

configure list -usegating 1
configure list -gateduration 100
configure list -gateexpr {/test_delta/iom_dd'rising}

See the configure command for more details.

Waveform Analysis
Miscellaneous Tasks

ModelSim User’s Manual, v6.2g 221
February 2007

Sampling Signals at a Clock Change
You easily can sample signals at a clock change using the add list command with the
-notrigger argument. The -notrigger argument disables triggering the display on the specified
signals. For example:

add list clk -notrigger a b c

When you run the simulation, List window entries for clk, a, b, and c appear only when clk
changes.

If you want to display on rising edges only, you have two options:

1. Turn off the List window triggering on the clock signal, and then define a repeating
strobe for the List window.

2. Define a "gating expression" for the List window that requires the clock to be in a
specified state. See above.

Miscellaneous Tasks

Examining Waveform Values
You can use your mouse to display a dialog that shows the value of a waveform at a particular
time. You can do this two ways:

• Rest your mouse pointer on a waveform. After a short delay, a dialog will pop-up that
displays the value for the time at which your mouse pointer is positioned. If you’d prefer
that this popup not display, it can be toggled off in the display properties. See Setting
Wave Window Display Preferences.

• Right-click a waveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse. This method works in the List window as well.

Displaying Drivers of the Selected Waveform
You can automatically display in the Dataflow window the drivers of a signal selected in the
Wave window. You can do this three ways:

• Select a waveform and click the Show Drivers button on the toolbar.

• Select a waveform and select Show Drivers from the shortcut menu

• Double-click a waveform edge (you can enable/disable this option in the display
properties dialog; see Setting Wave Window Display Preferences)

This operation opens the Dataflow window and displays the drivers of the signal selected in the
Wave window. The Wave pane in the Dataflow window also opens to show the selected signal

ModelSim User’s Manual, v6.2g222

Waveform Analysis
Creating and managing breakpoints

February 2007

with a cursor at the selected time. The Dataflow window shows the signal(s) values at the
current cursor position.

Sorting a Group of Objects in the Wave Window
Select View > Sort to sort the objects in the pathname and values panes.

Creating and managing breakpoints
ModelSim supports both signal (i.e., when conditions) and file-line breakpoints. Breakpoints
can be set from multiple locations in the GUI or from the command line.

Signal breakpoints
Signal breakpoints (when conditions) instruct ModelSim to perform actions when the specified
conditions are met. For example, you can break on a signal value or at a specific simulator time
(see the when command for additional details). When a breakpoint is hit, a message in the Main
window transcript identifies the signal that caused the breakpoint.

Setting signal breakpoints from the command line
You use the when command to set a signal breakpoint from the VSIM> prompt.

Setting signal breakpoints from the GUI
Signal breakpoints are most easily set in the Objects Pane and the Wave Window Overview.
Right-click a signal and select Insert Breakpoint from the context menu. A breakpoint is set on
that signal and will be listed in the Breakpoints dialog.

File-line breakpoints
File-line breakpoints are set on executable lines in your source files. When the line is hit, the
simulator stops and the Source window opens to show the line with the breakpoint. You can
change this behavior by editing the PrefSource(OpenOnBreak) variable. See Simulator GUI
Preferences for details on setting preference variables.

Setting file-line breakpoints from the command line
You use the bp command to set a file-line breakpoint from the VSIM> prompt.

Setting file-line breakpoints from the GUI
File-line breakpoints are most easily set using your mouse in the Source Window. Click on a
blue line number at the left side of the Source window, and a red diamond denoting a breakpoint

Waveform Analysis
Creating and managing breakpoints

ModelSim User’s Manual, v6.2g 223
February 2007

will appear. The breakpoints are toggles – click once to create the colored diamond; click again
to disable or enable the breakpoint. To delete the breakpoint completely, click the red diamond
with your right mouse button, and select Remove Breakpoint.

ModelSim User’s Manual, v6.2g224

Waveform Analysis
Creating and managing breakpoints

February 2007

ModelSim User’s Manual, v6.2g 225
February 2007

Chapter 9
Tracing Signals with the Dataflow Window

This chapter discusses how to use the Dataflow window for tracing signal values and browsing
the physical connectivity of your design.

Dataflow Window Overview
The Dataflow window allows you to explore the "physical" connectivity of your design.

Note
OEM versions of ModelSim have limited Dataflow functionality. Many of the features
described below will operate differently. The window will show only one process and its
attached signals or one signal and its attached processes, as displayed in Figure 9-1.

Figure 9-1. The Dataflow Window (undocked)

Objects You Can View in the Dataflow Window
The Dataflow window displays:

• processes

ModelSim User’s Manual, v6.2g226

Tracing Signals with the Dataflow Window
Adding Objects to the Window

February 2007

• signals, nets, and registers

The window has built-in mappings for all Verilog primitive gates (i.e., AND, OR, etc.). For
components other than Verilog primitives, you can define a mapping between processes and
built-in symbols. See Symbol Mapping for details.

Adding Objects to the Window
You can use any of the following methods to add objects to the Dataflow window:

• drag and drop objects from other windows

• use the Navigate menu options in the Dataflow window

• use the add dataflow command

• double-click any waveform in the Wave window display

The Navigate menu offers four commands that will add objects to the window. The commands
include:

• View region — clear the window and display all signals from the current region

• Add region — display all signals from the current region without first clearing window

• View all nets — clear the window and display all signals from the entire design

• Add ports — add port symbols to the port signals in the current region

When you view regions or entire nets, the window initially displays only the drivers of the
added objects in order to reduce clutter. You can easily view readers by selecting an object and
invoking Navigate > Expand net to readers.

A small circle above an input signal on a block denotes a trigger signal that is on the process’
sensitivity list.

Links to Other Windows
The Dataflow window has links to other windows as described below:

Table 9-1. Dataflow Window Links to Other Windows and Panes

Window Link

Main Window select a signal or process in the Dataflow
window, and the structure tab updates if that
object is in a different design unit

Active Processes Pane select a process in either window, and that
process is highlighted in the other

Tracing Signals with the Dataflow Window
Exploring the Connectivity of the Design

ModelSim User’s Manual, v6.2g 227
February 2007

Exploring the Connectivity of the Design
A primary use of the Dataflow window is exploring the "physical" connectivity of your design.
One way of doing this is by expanding the view from process to process. This allows you to see
the drivers/receivers of a particular signal, net, or register.

You can expand the view of your design using menu commands or your mouse. To expand with
the mouse, simply double click a signal, register, or process. Depending on the specific object
you click, the view will expand to show the driving process and interconnect, the reading
process and interconnect, or both.

Alternatively, you can select a signal, register, or net, and use one of the toolbar buttons or
menu commands described in Table 9-2:

As you expand the view, note that the "layout" of the design may adjust to best show the
connectivity. For example, the location of an input signal may shift from the bottom to the top
of a process.

Objects Pane select a design object in either window, and
that object is highlighted in the other

Wave Window • trace through the design in the Dataflow
window, and the associated signals are
added to the Wave window

• move a cursor in the Wave window, and
the values update in the Dataflow window

Source Window select an object in the Dataflow window, and
the Source window updates if that object is in
a different source file

Table 9-2. Icon and Menu Selections for Exploring Design Connectivity

Expand net to all drivers
display driver(s) of the selected signal, net,
or register

Navigate > Expand net to drivers

Expand net to all drivers and readers
display driver(s) and reader(s) of the
selected signal, net, or register

Navigate > Expand net

Expand net to all readers
display reader(s) of the selected signal,
net, or register

Navigate > Expand net to readers

Table 9-1. Dataflow Window Links to Other Windows and Panes (cont.)

Window Link

ModelSim User’s Manual, v6.2g228

Tracing Signals with the Dataflow Window
The Embedded Wave Viewer

February 2007

Tracking Your Path Through the Design
You can quickly traverse through many components in your design. To help mark your path, the
objects that you have expanded are highlighted in green.

Figure 9-2. Green Highlighting Shows Your Path Through the Design

You can clear this highlighting using the Edit > Erase highlight command or by
clicking the Erase highlight icon in the toolbar.

The Embedded Wave Viewer
Another way of exploring your design is to use the Dataflow window’s embedded wave viewer.
This viewer closely resembles, in appearance and operation, the stand-alone Wave window (see
Waveform Analysis for more information).

The wave viewer is opened using the View > Show Wave command or by clicking the
Show Wave icon.

One common scenario is to place signals in the wave viewer and the Dataflow panes, run the
design for some amount of time, and then use time cursors to investigate value changes. In other
words, as you place and move cursors in the wave viewer pane (see Measuring Time with
Cursors in the Wave Window for details), the signal values update in the Dataflow pane.

Tracing Signals with the Dataflow Window
Zooming and Panning

ModelSim User’s Manual, v6.2g 229
February 2007

Figure 9-3. Wave Viewer Displays Inputs and Outputs of Selected Process

Another scenario is to select a process in the Dataflow pane, which automatically adds to the
wave viewer pane all signals attached to the process.

See Tracing Events (Causality) for another example of using the embedded wave viewer.

Zooming and Panning
The Dataflow window offers several tools for zooming and panning the display.

ModelSim User’s Manual, v6.2g230

Tracing Signals with the Dataflow Window
Tracing Events (Causality)

February 2007

These zoom buttons are available on the toolbar:

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode by
selecting View > Zoom and then use the left mouse button.

Four zoom options are possible by clicking and dragging in different directions:

• Down-Right: Zoom Area (In)

• Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)

• Down-Left: Zoom Selected

• Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than 10
pixels to activate.

Panning with the Mouse
You can pan with the mouse in two ways: 1) enter Pan Mode by selecting View > Pan and then
drag with the left mouse button to move the design; 2) hold down the <Ctrl> key and drag with
the middle mouse button to move the design.

Tracing Events (Causality)
One of the most useful features of the Dataflow window is tracing an event to see the cause of
an unexpected output. This feature uses the Dataflow window’s embedded wave viewer (see
The Embedded Wave Viewer for more details).

In short you identify an output of interest in the Dataflow pane and then use time cursors in the
wave viewer pane to identify events that contribute to the output.

The process for tracing events is as follows:

1. Log all signals before starting the simulation (add log -r /*).

2. After running a simulation for some period of time, open the Dataflow window and the
wave viewer pane.

3. Add a process or signal of interest into the Dataflow window (if adding a signal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

Zoom In
zoom in by a factor
of two from the
current view

Zoom Out
zoom out by a
factor of two from
current view

Zoom Full
zoom out to view
the entire schematic

Tracing Signals with the Dataflow Window
Tracing the Source of an Unknown State (StX)

ModelSim User’s Manual, v6.2g 231
February 2007

4. Place a time cursor on an edge of interest; the edge should be on a signal that is an
output of the process.

5. Select Trace > Trace input net to event.

A second cursor is added at the most recent input event.

6. Keep selecting Trace > Trace next event until you've reached an input event of
interest. Note that the signals with the events are selected in the wave pane.

7. Now select Trace > Trace Set.

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. You can change which signals are
followed by changing the selection.

8. To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, select Trace > Trace event reset.

Tracing the Source of an Unknown State (StX)
Another useful Dataflow window debugging tool is the ability to trace an unknown state (StX)
back to its source. Unknown values are indicated by red lines in the Wave window (Figure 9-4)
and in the wave viewer of the Dataflow window.

Figure 9-4. Unknown States Shown as Red Lines in Wave Window

The procedure for tracing to the source of an unknown state in the Dataflow window is as
follows:

1. Load your design.

ModelSim User’s Manual, v6.2g232

Tracing Signals with the Dataflow Window
Finding Objects by Name in the Dataflow Window

February 2007

2. Log all signals in the design or any signals that may possibly contribute to the unknown
value (log -r /* will log all signals in the design).

3. Add signals to the Wave window or wave viewer pane, and run your design the desired
length of time.

4. Put a Wave window cursor on the time at which the signal value is unknown (StX). In
Figure 9-4, Cursor 1 at time 2305 shows an unknown state on signal t_out.

5. Add the signal of interest to the Dataflow window by doing one of the following:

o double-clicking on the signal’s waveform in the Wave window,

o right-clicking the signal in the Objects window and selecting Add to Dataflow >
Selected Signals from the popup menu,

o selecting the signal in the Objects window and selecting Add > Dataflow > Selected
Signals from the menu bar.

6. In the Dataflow window, make sure the signal of interest is selected.

7. Trace to the source of the unknown by doing one of the following:

o If the Dataflow window is docked, select Tools > Trace > TraceX, Tools > Trace >
TraceX Delay, Tools > Trace > ChaseX, or Tools > Trace > ChaseX Delay.

o If the Dataflow window is undocked, select Trace > TraceX, Trace > TraceX
Delay, Trace > ChaseX, or Trace > ChaseX Delay.

These commands behave as follows:

• TraceX / TraceX Delay— Steps back to the last driver of an X value. TraceX
Delay works similarly but it steps back in time to the last driver of an X value.
TraceX should be used for RTL designs; TraceX Delay should be used for gate-
level netlists with back annotated delays.

• ChaseX / ChaseX Delay — "Jumps" through a design from output to input,
following X values. ChaseX Delay acts the same as ChaseX but also moves
backwards in time to the point where the output value transitions to X. ChaseX
should be used for RTL designs; ChaseX Delay should be used for gate-level
netlists with back annotated delays.

Finding Objects by Name in the Dataflow
Window

Select Edit > Find from the menu bar, or click the Find icon in the toolbar, to search
for signal, net, or register names or an instance of a component. This opens the Find in
Dataflow dialog (Figure 9-5).

Tracing Signals with the Dataflow Window
Printing and Saving the Display

ModelSim User’s Manual, v6.2g 233
February 2007

Figure 9-5. Find in Dataflow Dialog

With the Find in Dataflow dialog you can limit the search by type to instances or signals. You
select Exact to find an item that exactly matches the entry you’ve typed in the Find field. The
Match case selection will enforce case-sensitive matching of your entry. And the Zoom to
selection will zoom in to the item in Find field.

The Find All button allows you to find and highlight all occurrences of the item in the Find
field. If Zoom to is checked, the view will change such that all selected items are viewable. If
Zoom to is not selected, then no change is made to zoom or scroll state.

Printing and Saving the Display

Saving a .eps File and Printing the Dataflow Display from
UNIX

Select File > Print Postscript to setup and print the Dataflow display in UNIX, or save the
waveform as a .eps file on any platform.

ModelSim User’s Manual, v6.2g234

Tracing Signals with the Dataflow Window
Printing and Saving the Display

February 2007

Figure 9-6. The Print Postscript Dialog

Printing from the Dataflow Display on Windows Platforms
Select File > Print to print the Dataflow display or to save the display to a file.

Figure 9-7. The Print Dialog

Tracing Signals with the Dataflow Window
Configuring Page Setup

ModelSim User’s Manual, v6.2g 235
February 2007

Configuring Page Setup
Clicking the Setup button in the Print Postscript or Print dialog box allows you to configure
page view, highlight, color mode, orientation, and paper options (this is the same dialog that
opens via File > Page setup).

Figure 9-8. The Dataflow Page Setup Dialog

Symbol Mapping
The Dataflow window has built-in mappings for all Verilog primitive gates (i.e., AND, OR,
etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. This is done through a file containing name pairs, one per line,
where the first name is the concatenation of the design unit and process names,
(DUname.Processname), and the second name is the name of a built-in symbol. For example:

xorg(only).p1 XOR
org(only).p1 OR
andg(only).p1 AND

Entities and modules are mapped the same way:

ModelSim User’s Manual, v6.2g236

Tracing Signals with the Dataflow Window
Symbol Mapping

February 2007

AND1 AND
AND2 AND # A 2-input and gate
AND3 AND
AND4 AND
AND5 AND
AND6 AND
xnor(test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

The Dataflow window looks in the current working directory and inside each library referenced
by the design for the file dataflow.bsm (.bsm stands for "Built-in Symbol Map"). It will read all
files found.

User-defined symbols
You can also define your own symbols using an ASCII symbol library file format for defining
symbol shapes. This capability is delivered via Concept Engineering’s NlviewTM widget
Symlib format.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to the
Nlview widget to use for symbol lookups. Again, as with the built-in symbols, the DU name and
optional process name is used for the symbol lookup. Here's an example of a symbol for a full
adder:

symbol adder(structural) * DEF \
port a in -loc -12 -15 0 -15 \
pinattrdsp @name -cl 2 -15 8 \
port b in -loc -12 15 0 15 \
pinattrdsp @name -cl 2 15 8 \
port cin in -loc 20 -40 20 -28 \
pinattrdsp @name -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \

pinattrdsp @name -lc 19 26 8 \
port sum out -loc 63 0 51 0 \
pinattrdsp @name -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35 \
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35 \
path 0 -35 0 -7 \
path 0 -7 10 0

Port mapping is done by name for these symbols, so the port names in the symbol definition
must match the port names of the Entity|Module|Process (in the case of the process, it’s the
signal names that the process reads/writes).

Tracing Signals with the Dataflow Window
Configuring Window Options

ModelSim User’s Manual, v6.2g 237
February 2007

Note
When you create or modify a symlib file, you must generate a file index. This index is
how the Nlview widget finds and extracts symbols from the file. To generate the index,
select Tools > Create symlib index (Dataflow window) and specify the symlib file. The
file will be rewritten with a correct, up-to-date index.

Configuring Window Options
You can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select Tools > Options to open the Dataflow Options dialog box.

Figure 9-9. Configuring Dataflow Options

ModelSim User’s Manual, v6.2g238

Tracing Signals with the Dataflow Window
Configuring Window Options

February 2007

ModelSim User’s Manual, v6.2g 239
February 2007

Chapter 10
Signal Spy

The Verilog language allows access to any signal from any other hierarchical block without
having to route it via the interface. This means you can use hierarchical notation to either assign
or determine the value of a signal in the design hierarchy from a testbench. This capability fails
when a Verilog testbench attempts to reference a signal in a VHDL block or reference a signal
in a Verilog block through a VHDL level of hierarchy.

This limitation exists because VHDL does not allow hierarchical notation. In order to reference
internal hierarchical signals, you have to resort to defining signals in a global package and then
utilize those signals in the hierarchical blocks in question. But, this requires that you keep
making changes depending on the signals that you want to reference.

The Signal Spy procedures and system tasks overcome the aforementioned limitations. They
allow you to monitor (spy), drive, force, or release hierarchical objects in a VHDL or mixed
design.

The VHDL procedures are provided via the Util Package within the modelsim_lib library. To
access the procedures you would add lines like the following to your VHDL code:

library modelsim_lib;
use modelsim_lib.util.all;

The Verilog tasks are available as built-in System Tasks and Functions. The table below shows
the VHDL procedures and their corresponding Verilog system tasks.

Designed for Testbenches
Signal Spy limits the portability of your code. HDL code with Signal Spy procedures or tasks
works only in ModelSim, not other simulators. We therefore recommend using Signal Spy only

Table 10-1. Signal Spy: Mapping VHDL Procedures to Verilog System Tasks

VHDL procedures Verilog system tasks

disable_signal_spy $disable_signal_spy

enable_signal_spy $enable_signal_spy

init_signal_driver $init_signal_driver

init_signal_spy $init_signal_spy

signal_force $signal_force

signal_release $signal_release

ModelSim User’s Manual, v6.2g240

Signal Spy

February 2007

in testbenches, where portability is less of a concern, and the need for such a tool is more
applicable.

Signal Spy
disable_signal_spy

ModelSim User’s Manual, v6.2g 241
February 2007

disable_signal_spy
The disable_signal_spy() procedure disables the associated init_signal_spy. The association
between the disable_signal_spy call and the init_signal_spy call is based on specifying the same
src_object and dest_object arguments to both functions. The disable_signal_spy call can only
affect init_signal_spy calls that had their control_state argument set to "0" or "1".

Syntax

disable_signal_spy(<src_object>, <dest_object>, <verbose>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to disable.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to disable.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that a disable occurred and the simulation time that it occurred.
Default is 0, no message

Related procedures

init_signal_spy, enable_signal_spy

Example

See init_signal_spy Example

ModelSim User’s Manual, v6.2g242

Signal Spy
enable_signal_spy

February 2007

enable_signal_spy
The enable_signal_spy() procedure enables the associated init_signal_spy. The association
between the enable_signal_spy call and the init_signal_spy call is based on specifying the same
src_object and dest_object arguments to both functions. The enable_signal_spy call can only
affect init_signal_spy calls that had their control_state argument set to "0" or "1".

Syntax

enable_signal_spy(<src_object>, <dest_object>, <verbose>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to enable.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to enable.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that an enable occurred and the simulation time that it occurred.
Default is 0, no message

Related procedures

init_signal_spy, disable_signal_spy

Example

See init_signal_spy Example

Signal Spy
init_signal_driver

ModelSim User’s Manual, v6.2g 243
February 2007

init_signal_driver
The init_signal_driver() procedure drives the value of a VHDL signal or Verilog net (called the
src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This allows
you to drive signals or nets at any level of the design hierarchy from within a VHDL
architecture (e.g., a testbench).

The init_signal_driver procedure drives the value onto the destination signal just as if the
signals were directly connected in the HDL code. Any existing or subsequent drive or force of
the destination signal, by some other means, will be considered with the init_signal_driver
value in the resolution of the signal.

Call only once

The init_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular pair of
signals. Once init_signal_driver is called, any change on the source signal will be driven on the
destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_driver calls in a VHDL process. You need to
code the VHDL process correctly so that it is executed only once. The VHDL process should
not be sensitive to any signals and should contain only init_signal_driver calls and a simple wait
statement. The process will execute once and then wait forever. See the example below.

Syntax

init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog net. Use the path separator to which your
simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".". The
path must be contained within double quotes.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog net. Use the path separator to which
your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".".
The path must be contained within double quotes.

• delay

Optional time value. Specifies a delay relative to the time at which the src_object changes.
The delay can be an inertial or transport delay. If no delay is specified, then a delay of zero
is assumed.

ModelSim User’s Manual, v6.2g244

Signal Spy
init_signal_driver

February 2007

• delay_type

Optional del_mode. Specifies the type of delay that will be applied. The value must be
either mti_inertial or mti_transport. The default is mti_inertial.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object is driving the dest_object. Default is 0, no
message.

Related procedures

init_signal_spy, signal_force, signal_release

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to mti_transport, the setting will be ignored and the delay type will be mti_inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to
the nearest resolution unit; no special warning will be issued.

init_signal_driver Example

This example creates a local clock (clk0) and connects it to two clocks within the design
hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed. The open
entries allow the default delay and delay_type while setting the verbose parameter to a 1. The
.../blk2/clk will match the local clk0 but be delayed by 100 ps.

library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clk0 : std_logic;

begin
gen_clk0 : process
begin
clk0 <= '1' after 0 ps, '0' after 20 ps;
wait for 40 ps;

end process gen_clk0;

drive_sig_process : process
begin
init_signal_driver("clk0", "/testbench/uut/blk1/clk", open, open, 1);
init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100 ps,

mti_transport);
wait;

end process drive_sig_process;
...

end;

Signal Spy
init_signal_spy

ModelSim User’s Manual, v6.2g 245
February 2007

init_signal_spy
The init_signal_spy() procedure mirrors the value of a VHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a VHDL architecture (e.g., a testbench).

The init_signal_spy procedure only sets the value onto the destination signal and does not drive
or force the value. Any existing or subsequent drive or force of the destination signal, by some
other means, will override the value that was set by init_signal_spy.

Call only once

The init_signal_spy procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_spy once for a particular pair of signals.
Once init_signal_spy is called, any change on the source signal will mirror on the destination
signal until the end of the simulation unless the control_state is set.

The control_state determines whether the mirroring of values can be enabled/disabled and what
the initial state is. Subsequent control of whether the mirroring of values is enabled/disabled is
handled by the enable_signal_spy and disable_signal_spy calls.

We recommend that you place all init_signal_spy calls in a VHDL process. You need to code
the VHDL process correctly so that it is executed only once. The VHDL process should not be
sensitive to any signals and should contain only init_signal_spy calls and a simple wait
statement. The process will execute once and then wait forever, which is the desired behavior.
See the example below.

Syntax

init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. Use the path separator to which
your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".".
The path must be contained within double quotes.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register. Use the path separator to
which your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or
".". The path must be contained within double quotes.

ModelSim User’s Manual, v6.2g246

Signal Spy
init_signal_spy

February 2007

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object’s value is mirrored onto the dest_object. Default
is 0, no message.

• control_state

Optional integer. Possible values are -1, 0, or 1. Specifies whether or not you want the
ability to enable/disable mirroring of values and, if so, specifies the initial state. The default
is -1, no ability to enable/disable and mirroring is enabled. "0" turns on the ability to
enable/disable and initially disables mirroring. "1" turns on the ability to enable/disable and
initially enables mirroring.

Related procedures

init_signal_driver, signal_force, signal_release, enable_signal_spy, disable_signal_spy

Limitations

• When mirroring the value of a Verilog register/net onto a VHDL signal, the VHDL
signal must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

init_signal_spy Example

In this example, the value of /top/uut/inst1/sig1 is mirrored onto /top/top_sig1. A message is
issued to the transcript. The ability to control the mirroring of values is turned on and the
init_signal_spy is initially enabled.

The mirroring of values will be disabled when enable_sig transitions to a ’0’ and enable when
enable_sig transitions to a ’1’.

library ieee;
library modelsim_lib;
use ieee.std_logic_1164.all;
use modelsim_lib.util.all;
entity top is
end;
architecture only of top is
signal top_sig1 : std_logic;

begin
...
spy_process : process
begin
init_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",1,1);
wait;

end process spy_process;
...
spy_enable_disable : process(enable_sig)
begin
if (enable_sig = '1') then
enable_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",0);

elseif (enable_sig = '0')

Signal Spy
init_signal_spy

ModelSim User’s Manual, v6.2g 247
February 2007

disable_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",0);
end if;

end process spy_enable_disable;
...

end;

ModelSim User’s Manual, v6.2g248

Signal Spy
signal_force

February 2007

signal_force
The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net (called the dest_object). This allows you to force signals, registers, or
nets at any level of the design hierarchy from within a VHDL architecture (e.g., a testbench).

A signal_force works the same as the force command with the exception that you cannot issue a
repeating force. The force will remain on the signal until a signal_release, a force or release
command, or a subsequent signal_force is issued. Signal_force can be called concurrently or
sequentially in a process.

This command acquires displays any signals using your radix setting (either the default, or as
you specify) unless you specify the radix in the value you set.

Syntax

signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>, <verbose>)

Returns

Nothing

Arguments

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or
".". The path must be contained within double quotes.

• value

Required string. Specifies the value to which the dest_object is to be forced. The specified
value must be appropriate for the type.

• rel_time

Optional time. Specifies a time relative to the current simulation time for the force to occur.
The default is 0.

• force_type

Optional forcetype. Specifies the type of force that will be applied. The value must be one of
the following; default, deposit, drive, or freeze. The default is "default" (which is "freeze"
for unresolved objects or "drive" for resolved objects). See the force command for further
details on force type.

• cancel_period

Optional time. Cancels the signal_force command after the specified period of time units.
Cancellation occurs at the last simulation delta cycle of a time unit. A value of zero cancels
the force at the end of the current time period. Default is -1 ms. A negative value means that
the force will not be cancelled.

Signal Spy
signal_force

ModelSim User’s Manual, v6.2g 249
February 2007

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the value is being forced on the dest_object at the specified
time. Default is 0, no message.

Related procedures

init_signal_driver, init_signal_spy, signal_release

Limitations

You cannot force bits or slices of a register; you can force only the entire register.

signal_force Example

This example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced to a "0", 2
ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to use
the keyword "open" as a placeholder for the skipped parameter(s). The first signal_force
procedure illustrates this, where an "open" for the cancel_period parameter means that the
default value of -1 ms is used.

library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
begin

force_process : process
begin
signal_force("/testbench/uut/blk1/reset", "1", 0 ns, freeze, open, 1);
signal_force("/testbench/uut/blk1/reset", "0", 40 ns, freeze, 2 ms,

1);
wait;

end process force_process;

...

end;

ModelSim User’s Manual, v6.2g250

Signal Spy
signal_release

February 2007

signal_release
The signal_release() procedure releases any force that was applied to an existing VHDL signal
or Verilog register/net (called the dest_object). This allows you to release signals, registers or
nets at any level of the design hierarchy from within a VHDL architecture (e.g., a testbench).

A signal_release works the same as the noforce command. Signal_release can be called
concurrently or sequentially in a process.

Syntax

signal_release(<dest_object>, <verbose>)

Returns

Nothing

Arguments

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or
".". The path must be contained within double quotes.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the signal is being released and the time of the release. Default
is 0, no message.

Related procedures

init_signal_driver, init_signal_spy, signal_force

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

signal_release Example

This example releases any forces on the signals data and clk when the signal release_flag is a
"1". Both calls will send a message to the transcript stating which signal was released and when.

library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is

signal release_flag : std_logic;

Signal Spy
signal_release

ModelSim User’s Manual, v6.2g 251
February 2007

begin

stim_design : process
begin
...
wait until release_flag = '1';
signal_release("/testbench/dut/blk1/data", 1);
signal_release("/testbench/dut/blk1/clk", 1);
...

end process stim_design;

...

end;

ModelSim User’s Manual, v6.2g252

Signal Spy
$disable_signal_spy

February 2007

$disable_signal_spy
The $disable_signal_spy() system task disables the associated $init_signal_spy task. The
association between the $disable_signal_spy task and the $init_signal_spy task is based on
specifying the same src_object and dest_object arguments to both tasks. The
$disable_signal_spy task can only affect $init_signal_spy tasks that had their control_state
argument set to "0" or "1".

Syntax

$disable_signal_spy(<src_object>, <dest_object>, <verbose>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to disable.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to disable.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that a disable occurred and the simulation time that it occurred.
Default is 0, no message

Related tasks

$init_signal_spy, $enable_signal_spy

Example

See $init_signal_spy Example

Signal Spy
$enable_signal_spy

ModelSim User’s Manual, v6.2g 253
February 2007

$enable_signal_spy
The $enable_signal_spy() system task enables the associated $init_signal_spy task. The
association between the $enable_signal_spy task and the $init_signal_spy task is based on
specifying the same src_object and dest_object arguments to both tasks. The
$enable_signal_spy task can only affect $init_signal_spys tasks that had their control_state
argument set to "0" or "1".

Syntax

$enable_signal_spy(<src_object>, <dest_object>, <verbose>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to enable.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. This path should match the path that
was specified in the init_signal_spy call that you wish to enable.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that an enable occurred and the simulation time that it occurred.
Default is 0, no message

Related tasks

$init_signal_spy, $disable_signal_spy

Example

See $init_signal_spy Example

ModelSim User’s Manual, v6.2g254

Signal Spy
$init_signal_driver

February 2007

$init_signal_driver
The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net (called
the src_object) onto an existing VHDL signal or Verilog register/net (called the dest_object).
This allows you to drive signals or nets at any level of the design hierarchy from within a
Verilog module (e.g., a testbench).

The $init_signal_driver system task drives the value onto the destination signal just as if the
signals were directly connected in the HDL code. Any existing or subsequent drive or force of
the destination signal, by some other means, will be considered with the $init_signal_driver
value in the resolution of the signal.

Call only once

The $init_signal_driver system task creates a persistent relationship between the source and
destination signals. Hence, you need to call $init_signal_driver only once for a particular pair of
signals. Once $init_signal_driver is called, any change on the source signal will be driven on the
destination signal until the end of the simulation.

Thus, we recommend that you place all $init_signal_driver calls in a Verilog initial block. See
the example below.

Syntax

$init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog net. Use the path separator to which your
simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".". The
path must be contained within double quotes.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog net. Use the path separator to which
your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".".
The path must be contained within double quotes.

• delay

Optional integer, real, or time. Specifies a delay relative to the time at which the src_object
changes. The delay can be an inertial or transport delay. If no delay is specified, then a delay
of zero is assumed.

Signal Spy
$init_signal_driver

ModelSim User’s Manual, v6.2g 255
February 2007

• delay_type

Optional integer. Specifies the type of delay that will be applied. The value must be either 0
(inertial) or 1 (transport). The default is 0.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object is driving the dest_object. Default is 0, no
message.

Related tasks

$init_signal_spy, $signal_force, $signal_release

Limitations

• When driving a Verilog net, the only delay_type allowed is inertial. If you set the delay
type to 1 (transport), the setting will be ignored, and the delay type will be inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to
the nearest resolution unit; no special warning will be issued.

• Verilog memories (arrays of registers) are not supported.

$init_signal_driver Example

This example creates a local clock (clk0) and connects it to two clocks within the design
hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed. The .../blk2/clk
will match the local clk0 but be delayed by 100 ps. For the second call to work, the .../blk2/clk
must be a VHDL based signal, because if it were a Verilog net a 100 ps inertial delay would
consume the 40 ps clock period. Verilog nets are limited to only inertial delays and thus the
setting of 1 (transport delay) would be ignored.

`timescale 1 ps / 1 ps

module testbench;

reg clk0;

initial begin
clk0 = 1;
forever begin
#20 clk0 = ~clk0;
end

end

initial begin
$init_signal_driver("clk0", "/testbench/uut/blk1/clk", , , 1);
$init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100, 1);

end

...

endmodule

ModelSim User’s Manual, v6.2g256

Signal Spy
$init_signal_spy

February 2007

$init_signal_spy
The $init_signal_spy() system task mirrors the value of a VHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or nets at any level of hierarchy
from within a Verilog module (e.g., a testbench).

The $init_signal_spy system task only sets the value onto the destination signal and does not
drive or force the value. Any existing or subsequent drive or force of the destination signal, by
some other means, will override the value set by $init_signal_spy.

Call only once

The $init_signal_spy system task creates a persistent relationship between the source and the
destination signal. Hence, you need to call $init_signal_spy only once for a particular pair of
signals. Once $init_signal_spy is called, any change on the source signal will mirror on the
destination signal until the end of the simulation unless the control_state is set.

The control_state determines whether the mirroring of values can be enabled/disabled and what
the initial state is. Subsequent control of whether the mirroring of values is enabled/disabled is
handled by the $enable_signal_spy and $disable_signal_spy tasks.

We recommend that you place all $init_signal_spy tasks in a Verilog initial block. See the
example below.

Syntax

$init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

Returns

Nothing

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog register/net. Use the path separator to which
your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".".
The path must be contained within double quotes.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a Verilog register or VHDL signal. Use the path separator to which your
simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or ".". The
path must be contained within double quotes.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object’s value is mirrored onto the dest_object. Default
is 0, no message.

Signal Spy
$init_signal_spy

ModelSim User’s Manual, v6.2g 257
February 2007

• control_state

Optional integer. Possible values are -1, 0, or 1. Specifies whether or not you want the
ability to enable/disable mirroring of values and, if so, specifies the initial state. The default
is -1, no ability to enable/disable and mirroring is enabled. "0" turns on the ability to
enable/disable and initially disables mirroring. "1" turns on the ability to enable/disable and
initially enables mirroring.

Related tasks

$init_signal_driver, $signal_force, $signal_release, $disable_signal_spy

Limitations

• When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std_logic, or std_logic_vector.

• Verilog memories (arrays of registers) are not supported.

$init_signal_spy Example

In this example, the value of .top.uut.inst1.sig1 is mirrored onto .top.top_sig1. A message is
issued to the transcript. The ability to control the mirroring of values is turned on and the
init_signal_spy is initially enabled.

The mirroring of values will be disabled when enable_reg transitions to a ’0’ and enabled when
enable_reg transitions to a ’1’.

module top;
...
reg top_sig1;
reg enable_reg;
...
initial
begin
$init_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",1,1);
end
always @ (posedge enable_reg)
begin
$enable_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",0);
end
always @ (negedge enable_reg)
begin
$disable_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",0);
end

...
endmodule

ModelSim User’s Manual, v6.2g258

Signal Spy
$signal_force

February 2007

$signal_force
The $signal_force() system task forces the value specified onto an existing VHDL signal or
Verilog register/net (called the dest_object). This allows you to force signals, registers, or nets
at any level of the design hierarchy from within a Verilog module (e.g., a testbench).

A $signal_force works the same as the force command with the exception that you cannot issue
a repeating force. The force will remain on the signal until a $signal_release, a force or release
command, or a subsequent $signal_force is issued. $signal_force can be called concurrently or
sequentially in a process.

Syntax

$signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>,
<verbose>)

Returns

Nothing

Arguments

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or
".". The path must be contained within double quotes.

• value

Required string. Specifies the value to which the dest_object is to be forced. The specified
value must be appropriate for the type.

• rel_time

Optional integer, real, or time. Specifies a time relative to the current simulation time for the
force to occur. The default is 0.

• force_type

Optional integer. Specifies the type of force that will be applied. The value must be one of
the following; 0 (default), 1 (deposit), 2 (drive), or 3 (freeze). The default is "default"
(which is "freeze" for unresolved objects or "drive" for resolved objects). See the force
command for further details on force type.

• cancel_period

Optional integer, real, time. Cancels the $signal_force command after the specified period
of time units. Cancellation occurs at the last simulation delta cycle of a time unit. A value of
zero cancels the force at the end of the current time period. Default is -1. A negative value
means that the force will not be cancelled.

Signal Spy
$signal_force

ModelSim User’s Manual, v6.2g 259
February 2007

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the value is being forced on the dest_object at the specified
time. Default is 0, no message.

Related tasks

$init_signal_driver, $init_signal_spy, $signal_release

Limitations

• You cannot force bits or slices of a register; you can force only the entire register.

• Verilog memories (arrays of registers) are not supported.

$signal_force Example

This example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced to a "0",
200000 ns after the second $signal_force call was executed.

`timescale 1 ns / 1 ns

module testbench;

initial
begin
$signal_force("/testbench/uut/blk1/reset", "1", 0, 3, , 1);
$signal_force("/testbench/uut/blk1/reset", "0", 40, 3, 200000, 1);
end

...

endmodule

ModelSim User’s Manual, v6.2g260

Signal Spy
$signal_release

February 2007

$signal_release
The $signal_release() system task releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers, or nets at any level of the design hierarchy from within a Verilog module (e.g., a
testbench).

A $signal_release works the same as the noforce command. $signal_release can be called
concurrently or sequentially in a process.

Syntax

$signal_release(<dest_object>, <verbose>)

Returns

Nothing

Arguments

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your simulation is set (i.e., "/" or "."). A full hierarchical path must begin with a "/" or
".". The path must be contained within double quotes.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the signal is being released and the time of the release. Default
is 0, no message.

Related tasks

$init_signal_driver, $init_signal_spy, $signal_force

Limitations

• You cannot release a bit or slice of a register; you can release only the entire register.

$signal_release Example

This example releases any forces on the signals data and clk when the register release_flag
transitions to a "1". Both calls will send a message to the transcript stating which signal was
released and when.

Signal Spy
$signal_release

ModelSim User’s Manual, v6.2g 261
February 2007

module testbench;

reg release_flag;

always @(posedge release_flag) begin
$signal_release("/testbench/dut/blk1/data", 1);
$signal_release("/testbench/dut/blk1/clk", 1);

end

...

endmodule

ModelSim User’s Manual, v6.2g262

Signal Spy
$signal_release

February 2007

ModelSim User’s Manual, v6.2g 263
February 2007

Chapter 11
Standard Delay Format (SDF) Timing

Annotation

This chapter discusses ModelSim’s implementation of SDF (Standard Delay Format) timing
annotation. Included are sections on VITAL SDF and Verilog SDF, plus troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’s built-in SDF annotator.

Note
SDF timing annotations can be applied only to your FPGA vendor’s libraries; all other
libraries will simulate without annotation.

Specifying SDF Files for Simulation
ModelSim supports SDF versions 1.0 through 4.0 (except the NETDELAY statement). The
simulator’s built-in SDF annotator automatically adjusts to the version of the file. Use the
following vsim command-line options to specify the SDF files, the desired timing values, and
their associated design instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of the
above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical, and
-sdfmax to select maximum timing values from the SDF file.

Instance Specification
The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, this instance is an ASIC or FPGA model instantiated under a testbench. For example,
to annotate maximum timing values from the SDF file myasic.sdf to an instance u1 under a top-
level named testbench, invoke the simulator as follows:

vsim -sdfmax /testbench/u1=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. This is usually
incorrect because in most cases the model is instantiated under a testbench or within a larger
system level simulation. In fact, the design can have several models, each having its own SDF
file. In this case, specify an SDF file for each instance. For example,

ModelSim User’s Manual, v6.2g264

Standard Delay Format (SDF) Timing Annotation
Specifying SDF Files for Simulation

February 2007

vsim -sdfmax /system/u1=asic1.sdf -sdfmax /system/u2=asic2.sdf system

SDF Specification with the GUI
As an alternative to the command-line options, you can specify SDF files in the Start
Simulation dialog box under the SDF tab.

Figure 11-1. SDF Tab in Start Simulation Dialog

You can access this dialog by invoking the simulator without any arguments or by selecting
Simulate > Start Simulation. See the GUI chapter for a description of this dialog.

For Verilog designs, you can also specify SDF files by using the $sdf_annotate system task.
See $sdf_annotate for more details.

Errors and Warnings
Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim to change SDF
errors to warnings so that the simulation can continue. Warning messages can be suppressed by
using vsim with either the -sdfnowarn or +nosdfwarn options.

Standard Delay Format (SDF) Timing Annotation
VHDL VITAL SDF

ModelSim User’s Manual, v6.2g 265
February 2007

Another option is to use the SDF tab from the Start Simulation dialog box (shown above).
Select Disable SDF warnings (-sdfnowarn +nosdfwarn) to disable warnings, or select Reduce
SDF errors to warnings (-sdfnoerror) to change errors to warnings.

See Troubleshooting for more information on errors and warnings and how to avoid them.

VHDL VITAL SDF
VHDL SDF annotation works on VITAL cells only. The IEEE 1076.4 VITAL ASIC Modeling
Specification describes how cells must be written to support SDF annotation. Once again, the
designer does not need to know the details of this specification because the library provider has
already written the VITAL cells and tools that create compatible SDF files. However, the
following summary may help you understand simulator error messages. For additional VITAL
specification information, see VITAL Specification and Source Code.

SDF to VHDL Generic Matching
An SDF file contains delay and timing constraint data for cell instances in the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the timing
data. Each type of SDF timing construct is mapped to the name of a generic as specified by the
VITAL modeling specification. The annotator locates the generic and updates it with the timing
value from the SDF file. It is an error if the annotator fails to find the cell instance or the named
generic. The following are examples of SDF constructs and their associated generic names:

The SDF statement CONDELSE, when targeted for Vital cells, is annotated to a tpd generic of
the form tpd_<inputPort>_<outputPort>.

Resolving Errors
If the simulator finds the cell instance but not the generic then an error message is issued. For
example,

Table 11-1. Matching SDF to VHDL Generics

SDF construct Matching VHDL generic name

(IOPATH a y (3)) tpd_a_y

(IOPATH (posedge clk) q (1) (2)) tpd_clk_q_posedge

(INTERCONNECT u1/y u2/a (5)) tipd_a

(SETUP d (posedge clk) (5)) tsetup_d_clk_noedge_posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d_clk_negedge_posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1’b0) clk) (5)) tpw_clk_reset_eq_0

ModelSim User’s Manual, v6.2g266

Standard Delay Format (SDF) Timing Annotation
Verilog SDF

February 2007

** Error (vsim-SDF-3240) myasic.sdf(18):
Instance ’/testbench/dut/u1’ does not have a generic named ’tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If it is, then
there is probably a mismatch between the SDF and the VITAL cells. You need to find the cell
instance and compare its generic names to those expected by the annotator. Look in the VHDL
source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the VITAL
library cells are not being used. If the generic names do look like VITAL timing generic names
but don’t match the names expected by the annotator, then there are several possibilities:

• The vendor’s tools are not conforming to the VITAL specification.

• The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

• The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim with the
-vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/u1=myasic.sdf testbench

For more information on resolving errors see Troubleshooting.

Verilog SDF
Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The command-
line options annotate the design immediately after it is loaded, but before any simulation events
take place. The $sdf_annotate task annotates the design at the time it is called in the Verilog
source code. This provides more flexibility than the command-line options.

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v6.2g 267
February 2007

$sdf_annotate
Syntax

$sdf_annotate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"], ["<mtm_spec>"],
["<scale_factor>"], ["<scale_type>"]);

Arguments

• "<sdffile>"

String that specifies the SDF file. Required.

• <instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance where
the $sdf_annotate call is made.

• "<config_file>"

String that specifies the configuration file. Optional. Currently not supported, this argument
is ignored.

• "<log_file>"

String that specifies the logfile. Optional. Currently not supported, this argument is ignored.

• "<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum",
"typical", "maximum", and "tool_control". Case is ignored and the default is "tool_control".
The "tool_control" argument means to use the delay specified on the command line by
+mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

• "<scale_factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier is a real number that is used to
scale the corresponding delay in the SDF file.

• "<scale_type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is always used to select the delay scaling factor, but if a <scale_type> is specified,
then it will determine the min/typ/max selection from the SDF file. The allowed strings are
"from_min", "from_minimum", "from_typ", "from_typical", "from_max",
"from_maximum", and "from_mtm". Case is ignored, and the default is "from_mtm", which
means to use the <mtm_spec> value.

Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at the
end of the argument list. For example, to specify only the SDF file and the instance to which it
applies:

ModelSim User’s Manual, v6.2g268

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

February 2007

$sdf_annotate("myasic.sdf", testbench.u1);

To also specify maximum delay values:

$sdf_annotate("myasic.sdf", testbench.u1, , , "maximum");

SDF to Verilog Construct Matching
The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each SDF
construct, the annotator locates the cell instance and updates each specify path delay or timing
check that matches. An SDF construct can have multiple matches, in which case each matching
specify statement is updated with the SDF timing value. SDF constructs are matched to Verilog
constructs as follows.

• IOPATH is matched to specify path delays or primitives:

The IOPATH construct usually annotates path delays. If ModelSim can’t locate a
corresponding specify path delay, it returns an error unless you use the
+sdf_iopath_to_prim_ok argument to vsim. If you specify that argument and the
module contains no path delays, then all primitives that drive the specified output port
are annotated.

• INTERCONNECT and PORT are matched to input ports:

Both of these constructs identify a module input or inout port and create an internal net
that is a delayed version of the port. This is called a Module Input Port Delay (MIPD).
All primitives, specify path delays, and specify timing checks connected to the original
port are reconnected to the new MIPD net.

Table 11-2. Matching SDF IOPATH to Verilog

SDF Verilog

(IOPATH (posedge clk) q (3) (4)) (posedge clk => q) = 0;

(IOPATH a y (3) (4)) buf u1 (y, a);

Table 11-3. Matching SDF INTERCONNECT and PORT to Verilog

SDF Verilog

(INTERCONNECT u1.y u2.a (5)) input a;

(PORT u2.a (5)) inout a;

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v6.2g 269
February 2007

• PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

If the input and output ports are omitted in the SDF, then all path delays are matched in
the cell.

• DEVICE is matched to primitives or specify path delays:

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated.
If it is a module instance, then all specify path delays are annotated that drive the output
port specified in the DEVICE construct (all path delays are annotated if the output port
is omitted). If the module contains no path delays, then all primitives that drive the
specified output port are annotated (or all primitives that drive any output port if the
output port is omitted).

SETUP is matched to $setup and $setuphold:

• HOLD is matched to $hold and $setuphold:

Table 11-4. Matching SDF PATHPULSE and GLOBALPATHPULSE to Verilog

SDF Verilog

(PATHPULSE a y (5) (10)) (a => y) = 0;

(GLOBALPATHPULSE a y (30) (60)) (a => y) = 0;

Table 11-5. Matching SDF DEVICE to Verilog

SDF Verilog

(DEVICE y (5)) and u1(y, a, b);

(DEVICE y (5)) (a => y) = 0; (b => y) = 0;

Table 11-6. Matching SDF SETUP to Verilog

SDF Verilog

(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);

(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

Table 11-7. Matching SDF HOLD to Verilog

SDF Verilog

(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);

(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

ModelSim User’s Manual, v6.2g270

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

February 2007

• SETUPHOLD is matched to $setup, $hold, and $setuphold:

• RECOVERY is matched to $recovery:

• REMOVAL is matched to $removal:

• RECREM is matched to $recovery, $removal, and $recrem:

• SKEW is matched to $skew:

Table 11-8. Matching SDF SETUPHOLD to Verilog

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

Table 11-9. Matching SDF RECOVERY to Verilog

SDF Verilog

(RECOVERY (negedge reset) (posedge clk)
(5))

$recovery(negedge reset, posedge clk, 0);

Table 11-10. Matching SDF REMOVAL to Verilog

SDF Verilog

(REMOVAL (negedge reset) (posedge clk)
(5))

$removal(negedge reset, posedge clk, 0);

Table 11-11. Matching SDF RECREM to Verilog

SDF Verilog

(RECREM (negedge reset) (posedge clk)
(5) (5))

$recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk)
(5) (5))

$removal(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk)
(5) (5))

$recrem(negedge reset, posedge clk, 0);

Table 11-12. Matching SDF SKEW to Verilog

SDF Verilog

(SKEW (posedge clk1) (posedge clk2) (5)) $skew(posedge clk1, posedge clk2, 0);

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v6.2g 271
February 2007

• WIDTH is matched to $width:

• PERIOD is matched to $period:

• NOCHANGE is matched to $nochange:

Optional Edge Specifications
Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

• A match occurs if the SDF port does not have an edge.

• A match occurs if the specify port does not have an edge.

• A match occurs if the SDF port edge is identical to the specify port edge.

• A match occurs if explicit edge transitions in the specify port edge overlap with the SDF
port edge.

These rules allow SDF annotation to take place even if there is a difference between the number
of edge-specific constructs in the SDF file and the Verilog specify block. For example, the
Verilog specify block may contain separate setup timing checks for a falling and rising edge on
data with respect to clock, while the SDF file may contain only a single setup check for both
edges:

Table 11-13. Matching SDF WIDTH to Verilog

SDF Verilog

(WIDTH (posedge clk) (5)) $width(posedge clk, 0);

Table 11-14. Matching SDF PERIOD to Verilog

SDF Verilog

(PERIOD (posedge clk) (5)) $period(posedge clk, 0);

Table 11-15. Matching SDF NOCHANGE to Verilog

SDF Verilog

(NOCHANGE (negedge write) addr (5) (5)) $nochange(negedge write, addr, 0, 0);

Table 11-16. Matching Verilog Timing Checks to SDF SETUP

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

ModelSim User’s Manual, v6.2g272

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

February 2007

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value.

Likewise, the SDF file may contain more accurate data than the model can accommodate.

In this case, both SDF constructs are matched and the timing check receives the value from the
last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF file is limited to posedge and negedge. For example,

The explicit edge specifiers are 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is equivalent to
posedge, while the set of [10, 1x, x0] is equivalent to negedge. A match occurs if any of the
explicit edges in the specify port match any of the explicit edges implied by the SDF port.

Optional Conditions
Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

• A match occurs if the SDF does not have a condition.

• A match occurs for a timing check if the SDF port condition is semantically equivalent
to the specify port condition.

• A match occurs for a path delay if the SDF condition is lexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

Table 11-17. SDF Data May Be More Accurate Than Model

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

Table 11-18. Matching Explicit Verilog Edge Transitions to Verilog

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);

Table 11-19. SDF Timing Check Conditions

SDF Verilog

(SETUP data (COND (reset!=1)
(posedge clock)) (5))

$setup(data, posedge clk &&&
(reset==0),0);

Standard Delay Format (SDF) Timing Annotation
SDF for Mixed VHDL and Verilog Designs

ModelSim User’s Manual, v6.2g 273
February 2007

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded Timing Values
The SDF TIMESCALE construct specifies time units of values in the SDF file. The annotator
rounds timing values from the SDF file to the time precision of the module that is annotated. For
example, if the SDF TIMESCALE is 1ns and a value of .016 is annotated to a path delay in a
module having a time precision of 10ps (from the timescale directive), then the path delay
receives a value of 20ps. The SDF value of 16ps is rounded to 20ps. Interconnect delays are
rounded to the time precision of the module that contains the annotated MIPD.

SDF for Mixed VHDL and Verilog Designs
Annotation of a mixed VHDL and Verilog design is very flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. This flexibility is available only by
using the simulator’s SDF command-line options. The Verilog $sdf_annotate system task can
annotate Verilog cells only. See the vsim command for more information on SDF command-
line options.

Interconnect Delays
An interconnect delay represents the delay from the output of one device to the input of another.
ModelSim can model single interconnect delays or multisource interconnect delays for Verilog,
VHDL/VITAL, or mixed designs. See the vsim command for more information on the relevant
command-line arguments.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the constraint
while the delayed versions may not. If the simulator seems to report incorrect violations, be sure
to account for the effect of interconnect delays.

Table 11-20. SDF Path Delay Conditions

SDF Verilog

(COND (r1 || r2) (IOPATH clk q (5))) if (r1 || r2) (clk => q) = 5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) if (r2 || r1) (clk => q) = 5; // does not match

ModelSim User’s Manual, v6.2g274

Standard Delay Format (SDF) Timing Annotation
Disabling Timing Checks

February 2007

Disabling Timing Checks
ModelSim offers a number of options for disabling timing checks on a "global" or individual
basis. The table below provides a summary of those options. See the command and argument
descriptions in the Reference Manual for more details.

Troubleshooting

Specifying the Wrong Instance
By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common case is to leave off the instance altogether, which is
the same as selecting the top-level design unit. This is generally wrong because the instance
paths in the SDF are relative to the ASIC or FPGA model, which is usually instantiated under a
top-level testbench. See Instance Specification for an example.

A common example for both VHDL and Verilog testbenches is provided below. For simplicity,
the test benches do nothing more than instantiate a model that has no ports.

VHDL Testbench
entity testbench is end;

Table 11-21. Disabling Timing Checks

Command and argument Effect

vlog +notimingchecks disables timing check system tasks for all instances in the
specified Verilog design

vlog +nospecify disables specify path delays and timing checks for all
instances in the specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to
zero for all instances in the specified design

vsim +no_notifier disables the toggling of the notifier register argument of
the timing check system tasks for all instances in the
specified design

vsim +no_tchk_msg disables error messages issued by timing check system
tasks when timing check violations occur for all instances
in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checks for all
instances in the specified design

vsim +nospecify disables specify path delays and timing checks for all
instances in the specified design

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

ModelSim User’s Manual, v6.2g 275
February 2007

architecture only of testbench is
component myasic
end component;

begin
dut : myasic;

end;

Verilog Testbench
module testbench;

myasic dut();
endmodule

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is deep
within the design hierarchy, an easy way to find the instance name is to first invoke the
simulator without SDF options, view the structure pane, navigate to the model instance, select
it, and enter the environment command. This command displays the instance name that should
be used in the SDF command-line option.

Mistaking a Component or Module Name for an Instance
Label

Another common error is to specify the component or module name rather than the instance
label. For example, the following invocation is wrong for the above testbenches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

This results in the following error message:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/myasic’.

Forgetting to Specify the Instance
If you leave off the instance altogether, then the simulator issues a message for each instance
path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Results in:

ModelSim User’s Manual, v6.2g276

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

February 2007

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u1’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u2’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u3’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u4’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u5’
** Warning (vsim-SDF-3432) myasic.sdf:
This file is probably applied to the wrong instance.
** Warning (vsim-SDF-3432) myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues a summary of how many instances were not found
and possibly a suggestion for a qualifying instance:

** Warning (vsim-SDF-3440) myasic.sdf:
Failed to find any of the 358 instances from this file.
** Warning (vsim-SDF-3442) myasic.sdf:
Try instance ’/testbench/dut’. It contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see Resolving Errors for specific VHDL VITAL SDF troubleshooting.

ModelSim User’s Manual, v6.2g 277
February 2007

Chapter 12
Value Change Dump (VCD) Files

This chapter describes how to use VCD files in ModelSim. The VCD file format is specified in
the IEEE 1364 standard. It is an ASCII file containing header information, variable definitions,
and variable value changes.

VCD is in common use for Verilog designs, and is controlled by VCD system task calls in the
Verilog source code. ModelSim provides command equivalents for these system tasks and
extends VCD support to VHDL designs. The ModelSim commands can be used on VHDL,
Verilog, or mixed designs.

If you need vendor-specific ASIC design-flow documentation that incorporates VCD, please
contact your ASIC vendor.

Creating a VCD File
There are two flows in ModelSim for creating a VCD file. One flow produces a four-state VCD
file with variable changes in 0, 1, x, and z with no strength information; the other produces an
extended VCD file with variable changes in all states and strength information and port driver
data.

Both flows will also capture port driver changes unless filtered out with optional command-line
arguments.

Flow for Four-State VCD File
First, compile and load the design:

% cd ~/modeltech/examples/misc
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name with the vcd file command and add
objects to the file with the vcd add command:

VSIM 1> vcd file myvcdfile.vcd
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be a VCD file in the working directory.

ModelSim User’s Manual, v6.2g278

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

February 2007

Flow for Extended VCD File
First, compile and load the design:

% cd ~/modeltech/examples/misc
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

Next, with the design loaded, specify the VCD file name and objects to add with the
vcd dumpports command:

VSIM 1> vcd dumpports -file myvcdfile.vcd /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be an extended VCD file called myvcdfile.vcd in the working directory.

Note
There is an internal limit to the number of port driver changes that can be created with the
vcd dumpports command. If that limit is reached, use the vcd add command with the
-dumpports option to create additional port driver changes.

By default ModelSim uses strength ranges for resolving conflicts as specified by IEEE
1364-2005. You can ignore strength ranges using the -no_strength_range argument to the
vcd dumpports command. See Resolving Values for more details.

Case Sensitivity
VHDL is not case sensitive so ModelSim converts all signal names to lower case when it
produces a VCD file. Conversely, Verilog designs are case sensitive so ModelSim maintains
case when it produces a VCD file.

Using Extended VCD as Stimulus
You can use an extended VCD file as stimulus to re-simulate your design. There are two ways
to do this: 1) simulate the top level of a design unit with the input values from an extended VCD
file; and 2) specify one or more instances in a design to be replaced with the output values from
the associated VCD file.

Simulating with Input Values from a VCD File
When simulating with inputs from an extended VCD file, you can simulate only one design unit
at a time. In other words, you can apply the VCD file inputs only to the top level of the design
unit for which you captured port data.

The general procedure includes two steps:

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

ModelSim User’s Manual, v6.2g 279
February 2007

1. Create a VCD file for a single design unit using the vcd dumpports command.

2. Resimulate the single design unit using the -vcdstim argument to vsim. Note that
-vcdstim works only with VCD files that were created by a ModelSim simulation.

Example 12-1. Verilog Counter

First, create the VCD file for the single instance using vcd dumpports:

% cd ~/modeltech/examples/misc
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter
VSIM 1> vcd dumpports -file counter.vcd /test_counter/dut/*
VSIM 2> run
VSIM 3> quit -f

Next, rerun the counter without the testbench, using the -vcdstim argument:

% vsim -vcdstim counter.vcd counter
VSIM 1> add wave /*
VSIM 2> run 200

Example 12-2. VHDL Adder

First, create the VCD file using vcd dumpports:

% cd ~/modeltech/examples/misc
% vlib work
% vcom gates.vhd adder.vhd stimulus.vhd
% vsim testbench2
VSIM 1> vcd dumpports -file addern.vcd /testbench2/uut/*
VSIM 2> run 1000
VSIM 3> quit -f

Next, rerun the adder without the testbench, using the -vcdstim argument:

% vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

Example 12-3. Mixed-HDL Design

First, create three VCD files, one for each module:

% cd ~/modeltech/examples/tutorials/mixed/projects
% vlib work
% vlog cache.v memory.v proc.v
% vcom util.vhd set.vhd top.vhd
% vsim top
VSIM 1> vcd dumpports -file proc.vcd /top/p/*
VSIM 2> vcd dumpports -file cache.vcd /top/c/*
VSIM 3> vcd dumpports -file memory.vcd /top/m/*
VSIM 4> run 1000
VSIM 5> quit -f

ModelSim User’s Manual, v6.2g280

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

February 2007

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.vcd proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.vcd cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.vcd memory -do "add wave /*; run 1000"
VSIM 1> quit -f

Replacing Instances with Output Values from a VCD File
Replacing instances with output values from a VCD file lets you simulate without the instance’s
source or even the compiled object. The general procedure includes two steps:

1. Create VCD files for one or more instances in your design using the vcd dumpports
command. If necessary, use the -vcdstim switch to handle port order problems (see
below).

2. Re-simulate your design using the -vcdstim <instance>=<filename> argument to vsim.
Note that this works only with VCD files that were created by a ModelSim simulation.

Example 12-4. Replacing Instances

In the following example, the three instances /top/p, /top/c, and /top/m are replaced in
simulation by the output values found in the corresponding VCD files.

First, create VCD files for all instances you want to replace:

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
vcd dumpports -vcdstim -file memory.vcd /top/m/*
run 1000

Next, simulate your design and map the instances to the VCD files you created:

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd
-vcdstim /top/m=memory.vcd

Port Order Issues
The -vcdstim argument to the vcd dumpports command ensures the order that port names
appear in the VCD file matches the order that they are declared in the instance’s module or
entity declaration. Consider the following module declaration:

module proc(clk, addr, data, rw, strb, rdy);
input clk, rdy;
output addr, rw, strb;
inout data;

Value Change Dump (VCD) Files
VCD Commands and VCD Tasks

ModelSim User’s Manual, v6.2g 281
February 2007

The order of the ports in the module line (clk, addr, data, ...) does not match the order of those
ports in the input, output, and inout lines (clk, rdy, addr, ...). In this case the -vcdstim argument
to the vcd dumpports command needs to be used.

In cases where the order is the same, you do not need to use the -vcdstim argument to vcd
dumpports. Also, module declarations of the form:

module proc(input clk, output addr, inout data, ...)

do not require use of the argument.

VCD Commands and VCD Tasks
ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the VCD
file along with the results of those commands. The table below maps the VCD commands to
their associated tasks.

ModelSim also supports extended VCD (dumpports system tasks). The table below maps the
VCD dumpports commands to their associated tasks.

Table 12-1. VCD Commands and SystemTasks

VCD commands VCD system tasks

vcd add $dumpvars

vcd checkpoint $dumpall

vcd file $dumpfile

vcd flush $dumpflush

vcd limit $dumplimit

vcd off $dumpoff

vcd on $dumpon

Table 12-2. VCD Dumpport Commands and System Tasks

VCD dumpports commands VCD system tasks

vcd dumpports $dumpports

vcd dumpportsall $dumpportsall

vcd dumpportsflush $dumpportsflush

vcd dumpportslimit $dumpportslimit

vcd dumpportsoff $dumpportsoff

vcd dumpportson $dumpportson

ModelSim User’s Manual, v6.2g282

Value Change Dump (VCD) Files
VCD File from Source To Output

February 2007

ModelSim supports multiple VCD files. This functionality is an extension of the IEEE Std 1364
specification. The tasks behave the same as the IEEE equivalent tasks such as $dumpfile,
$dumpvar, etc. The difference is that $fdumpfile can be called multiple times to create more
than one VCD file, and the remaining tasks require a filename argument to associate their
actions with a specific file.

Compressing Files with VCD Tasks
ModelSim can produce compressed VCD files using the gzip compression algorithm. Since we
cannot change the syntax of the system tasks, we act on the extension of the output file name. If
you specify a .gz extension on the filename, ModelSim will compress the output.

VCD File from Source To Output
The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL Source Code
The design is a simple shifter device represented by the following VHDL source code:

Table 12-3. VCD Commands and System Tasks for Multiple VCD Files

VCD commands VCD system tasks

vcd add -file <filename> $fdumpvars

vcd checkpoint <filename> $fdumpall

vcd files <filename> $fdumpfile

vcd flush <filename> $fdumpflush

vcd limit <filename> $fdumplimit

vcd off <filename> $fdumpoff

vcd on <filename> $fdumpon

Value Change Dump (VCD) Files
VCD File from Source To Output

ModelSim User’s Manual, v6.2g 283
February 2007

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD is
port (CLK, RESET, data_in : IN STD_LOGIC;

Q : INOUT STD_LOGIC_VECTOR(8 downto 0));
END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD is
begin

process (CLK,RESET)
begin

if (RESET = '1') then
Q <= (others => '0') ;

elsif (CLK'event and CLK = '1') then
Q <= Q(Q'left - 1 downto 0) & data_in ;

end if ;
end process ;

end ;

VCD Simulator Commands
At simulator time zero, the designer executes the following commands:

vcd file output.vcd
vcd add -r *
force reset 1 0
force data_in 0 0
force clk 0 0
run 100
force clk 1 0, 0 50 -repeat 100
run 100
vcd off
force reset 0 0
force data_in 1 0
run 100
vcd on
run 850
force reset 1 0
run 50
vcd checkpoint
quit -sim

VCD Output
The VCD file created as a result of the preceding scenario would be called output.vcd. The
following pages show how it would look.

ModelSim User’s Manual, v6.2g284

Value Change Dump (VCD) Files
VCD File from Source To Output

February 2007

$date
Thu Sep 18 11:07:43 2003

$end
$version

ModelSim Version 6.1
$end
$timescale

1ns
$end
$scope module shifter_mod $end
$var wire 1 ! clk $end
$var wire 1 " reset $end
$var wire 1 # data_in $end
$var wire 1 $ q [8] $end
$var wire 1 % q [7] $end
$var wire 1 & q [6] $end
$var wire 1 ' q [5] $end
$var wire 1 (q [4] $end
$var wire 1) q [3] $end
$var wire 1 * q [2] $end
$var wire 1 + q [1] $end
$var wire 1 , q [0] $end
$upscope $end
$enddefinitions $end
#0
$dumpvars
0!
1"
0#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end
#100
1!
#150
0!
#200
1!
$dumpoff
x!
x"
x#
x$
x%
x&
x'
x(
x)
x*
x+
x,

Value Change Dump (VCD) Files
VCD File from Source To Output

ModelSim User’s Manual, v6.2g 285
February 2007

$end
#300
$dumpon
1!
0"
1#
0$
0%
0&
0'
0(
0)
0*
0+
1,
$end
#350
0!
#400
1!
1+
#450
0!
#500
1!
1*
#550
0!
#600
1!
1)
#650
0!
#700
1!
1(
#750
0!
#800
1!
1'
#850
0!
#900
1!
1&
#950
0!
#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
0!

ModelSim User’s Manual, v6.2g286

Value Change Dump (VCD) Files
Capturing Port Driver Data

February 2007

1"
0,
0+
0*
0)
0(
0'
0&
0%
0$
#1200
1!
$dumpall
1!
1"
1#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end

Capturing Port Driver Data
Some ASIC vendors’ toolkits read a VCD file format that provides details on port drivers. This
information can be used, for example, to drive a tester. See the ASIC vendor’s documentation
for toolkit specific information.

In ModelSim use the vcd dumpports command to create a VCD file that captures port driver
data. Each time an external or internal port driver changes values, a new value change is
recorded in the VCD file with the following format:

 p<state> <0 strength> <1 strength> <identifier_code>

Driver States
The driver states are recorded as TSSI states if the direction is known, as detailed in this table:

Table 12-4. Driver States

Input (testfixture) Output (dut)

D low L low

U high H high

N unknown X unknown

Z tri-state T tri-state

Value Change Dump (VCD) Files
Capturing Port Driver Data

ModelSim User’s Manual, v6.2g 287
February 2007

If the direction is unknown, the state will be recorded as one of the following:

Driver Strength
The recorded 0 and 1 strength values are based on Verilog strengths:

d low (two or more
drivers active)

l low (two or more
drivers active)

u high (two or more
drivers active)

h high (two or
more drivers active)

Table 12-5. State When Direction is Unknown

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving
unknown)

F three-state (input and output unconnected)

A unknown (input driving low and output driving
high)

a unknown (input driving low and output driving
unknown)

B unknown (input driving high and output driving
low)

b unknown (input driving high and output driving
unknown)

C unknown (input driving unknown and output
driving low)

c unknown (input driving unknown and output
driving high)

f unknown (input and output three-stated)

Table 12-6. Driver Strength

Strength VHDL std_logic mappings

0 highz ’Z’

1 small

Table 12-4. Driver States (cont.)

Input (testfixture) Output (dut)

ModelSim User’s Manual, v6.2g288

Value Change Dump (VCD) Files
Capturing Port Driver Data

February 2007

Identifier Code
The <identifier_code> is an integer preceded by < that starts at zero and is incremented for each
port in the order the ports are specified. Also, the variable type recorded in the VCD header is
"port".

Resolving Values
The resolved values written to the VCD file depend on which options you specify when creating
the file.

Default Behavior
By default ModelSim generates output according to IEEE 1364-2005. The standard states that
the values 0 (both input and output are active with value 0) and 1 (both input and output are
active with value 1) are conflict states. The standard then defines two strength ranges:

• Strong: strengths 7, 6, and 5

• Weak: strengths 4, 3, 2, 1

The rules for resolving values are as follows:

• If the input and output are driving the same value with the same range of strength, the
resolved value is 0 or 1, and the strength is the stronger of the two.

• If the input is driving a strong strength and the output is driving a weak strength, the
resolved value is D, d, U or u, and the strength is the strength of the input.

• If the input is driving a weak strength and the output is driving a strong strength, the
resolved value is L, l, H or h, and the strength is the strength of the output.

2 medium

3 weak

4 large

5 pull ’W’,’H’,’L’

6 strong ’U’,’X’,’0’,’1’,’-’

 7 supply

Table 12-6. Driver Strength (cont.)

Strength VHDL std_logic mappings

Value Change Dump (VCD) Files
Capturing Port Driver Data

ModelSim User’s Manual, v6.2g 289
February 2007

Ignoring Strength Ranges
You may wish to ignore strength ranges and have ModelSim handle each strength separately.
Any of the following options will produce this behavior:

• Use the -no_strength_range argument to the vcd dumpports command

• Use an optional argument to $dumpports (see Extended $dumpports Syntax below)

• Use the +dumpports+no_strength_range argument to vsim command

In this situation, ModelSim reports strengths for both the zero and one components of the value
if the strengths are the same. If the strengths are different, ModelSim reports only the “winning”
strength. In other words, the two strength values either match (e.g., pA 5 5 !) or the winning
strength is shown and the other is zero (e.g., pH 0 5 !).

Extended $dumpports Syntax
ModelSim extends the $dumpports system task in order to support exclusion of strength ranges.
The extended syntax is as follows:

$dumpports (scope_list, file_pathname, ncsim_file_index, file_format)

The nc_sim_index argument is required yet ignored by ModelSim. It is required only to be
compatible with NCSim’s argument list.

The file_format argument accepts the following values or an ORed combination thereof (see
examples below):

Here are some examples:

// ignore strength range
$dumpports(top, "filename", 0, 0)
// compress and ignore strength range
$dumpports(top, "filename", 0, 4)
// print direction and ignore strength range
$dumpports(top, "filename", 0, 8)

Table 12-7. Values for file_format Argument

File_format value Meaning

0 Ignore strength range

2 Use strength ranges; produces IEEE 1364-compliant
behavior

4 Compress the EVCD output

8 Include port direction information in the EVCD file
header; same as using -direction argument to vcd
dumpports

ModelSim User’s Manual, v6.2g290

Value Change Dump (VCD) Files
Capturing Port Driver Data

February 2007

// compress, print direction, and ignore strength range
$dumpports(top, "filename", 0, 12)

Example 12-5. VCD Output from vcd dumpports

This example demonstrates how vcd dumpports resolves values based on certain combinations
of driver values and strengths and whether or not you use strength ranges. Table 12-8 is sample
driver data.

Given the driver data above and use of 1364 strength ranges, here is what the VCD file output
would look like:

#0
p0 7 0 <0
#100
p0 7 0 <0
#200
p0 7 0 <0
#300
pL 7 0 <0
#900
pB 7 0 <0
#27400
pU 0 5 <0
#27500
p1 0 4 <0
#27600
p1 0 4 <0

Here is what the output would look like if you ignore strength ranges:

Table 12-8. Sample Driver Data

time in value out value in strength value
(range)

out strength value
(range)

0 0 0 7 (strong) 7 (strong)

100 0 0 6 (strong) 7 (strong)

200 0 0 5 (strong) 7 (strong)

300 0 0 4 (weak) 7 (strong)

900 1 0 6 (strong) 7 (strong)

27400 1 1 5 (strong) 4 (weak)

27500 1 1 4 (weak) 4 (weak)

27600 1 1 3 (weak) 4 (weak)

Value Change Dump (VCD) Files
Capturing Port Driver Data

ModelSim User’s Manual, v6.2g 291
February 2007

#0
p0 7 0 <0
#100
pL 7 0 <0
#200
pL 7 0 <0
#300
pL 7 0 <0
#900
pL 7 0 <0
#27400
pU 0 5 <0
#27500
p1 0 4 <0
#27600
pH 0 4 <0

ModelSim User’s Manual, v6.2g292

Value Change Dump (VCD) Files
Capturing Port Driver Data

February 2007

ModelSim User’s Manual, v6.2g 293
February 2007

Chapter 13
Tcl and Macros (DO Files)

Tcl is a scripting language for controlling and extending ModelSim. Within ModelSim you can
develop implementations from Tcl scripts without the use of C code. Because Tcl is interpreted,
development is rapid; you can generate and execute Tcl scripts on the fly without stopping to
recompile or restart ModelSim. In addition, if ModelSim does not provide the command you
need, you can use Tcl to create your own commands.

Tcl Features
Using Tcl with ModelSim gives you these features:

• command history (like that in C shells)

• full expression evaluation and support for all C-language operators

• a full range of math and trig functions

• support of lists and arrays

• regular expression pattern matching

• procedures

• the ability to define your own commands

• command substitution (that is, commands may be nested)

• robust scripting language for macros

Tcl References
Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by Addison-
Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by Brent Welch
published by Prentice Hall. You can also consult the following online references:

• Select Help > Tcl Man Pages.

Tcl Commands
For complete information on Tcl commands, select Help > Tcl Man Pages. Also see Simulator
GUI Preferences for information on Tcl preference variables.

ModelSim User’s Manual, v6.2g294

Tcl and Macros (DO Files)
Tcl Command Syntax

February 2007

ModelSim command names that conflict with Tcl commands have been renamed or have been
replaced by Tcl commands. See the list below:

Tcl Command Syntax
The following eleven rules define the syntax and semantics of the Tcl language. Additional
details on If Command Syntax.

1. A Tcl script is a string containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

2. A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command
procedure to carry out the command, then all of the words of the command are passed to
the command procedure. The command procedure is free to interpret each of its words
in any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

3. Words of a command are separated by white space (except for newlines, which are
command separators).

4. If the first character of a word is a double-quote (") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

Table 13-1.

Previous ModelSim
command

Command changed to (or replaced by)

continue run with the -continue option

format list | wave write format with either list or wave specified

if replaced by the Tcl if command, see If Command
Syntax for more information

list add list

nolist | nowave delete with either list or wave specified

set replaced by the Tcl set command

source vsource

wave add wave

Tcl and Macros (DO Files)
Tcl Command Syntax

ModelSim User’s Manual, v6.2g 295
February 2007

5. If the first character of a word is an open brace ({) then the word is terminated by the
matching close brace (}). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6. If a word contains an open bracket ([) then Tcl performs command substitution. To do
this it invokes the Tcl interpreter recursively to process the characters following the
open bracket as a Tcl script. The script may contain any number of commands and must
be terminated by a close bracket (]). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

7. If a word contains a dollar-sign ($) then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable.
Variable substitution may take any of the following forms:

o $name

Name is the name of a scalar variable; the name is terminated by any character that
isn't a letter, digit, or underscore.

o $name(index)

Name gives the name of an array variable and index gives the name of an element
within that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on
the characters of index.

o ${name}

Name is the name of a scalar variable. It may contain any characters whatsoever
except for close braces.

There may be any number of variable substitutions in a single word. Variable
substitution is not performed on words enclosed in braces.

8. If a backslash (\) appears within a word then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is
treated as an ordinary character and included in the word. This allows characters such as
double quotes, close brackets, and dollar signs to be included in words without

ModelSim User’s Manual, v6.2g296

Tcl and Macros (DO Files)
Tcl Command Syntax

February 2007

triggering special processing. The following table lists the backslash sequences that are
handled specially, along with the value that replaces each sequence.

Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

9. If a hash character (#) appears at a point where Tcl is expecting the first character of the
first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10. Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

Table 13-2. Tcl Backslash Sequences

Sequence Value

\a Audible alert (bell) (0x7)

\b Backspace (0x8)

\f Form feed (0xc).

\n Newline (0xa)

\r Carriage-return (0xd)

\t Tab (0x9)

\v Vertical tab (0xb)

\<newline>whiteSpace A single space character replaces the backslash, newline,
and all spaces and tabs after the newline. This backslash
sequence is unique in that it is replaced in a separate pre-
pass before the command is actually parsed. This means
that it will be replaced even when it occurs between
braces, and the resulting space will be treated as a word
separator if it isn't in braces or quotes.

\\ Backslash ("\")

\ooo The digits ooo (one, two, or three of them) give the octal
value of the character.

\xhh The hexadecimal digits hh give the hexadecimal value of
the character. Any number of digits may be present.

Tcl and Macros (DO Files)
Tcl Command Syntax

ModelSim User’s Manual, v6.2g 297
February 2007

11. Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable's value contains spaces.

If Command Syntax
The Tcl if command executes scripts conditionally. Note that in the syntax below the question
mark (?) indicates an optional argument.

Syntax

if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else is true, or a string value such as
true or yes for true and false or no for false); if it is true then body1 is executed by passing it to
the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is true then body2 is
executed, and so on. If none of the expressions evaluates to true then bodyN is executed. The
then and else arguments are optional "noise words" to make the command easier to read. There
may be any number of elseif clauses, including zero. BodyN may also be omitted as long as else
is omitted too. The return value from the command is the result of the body script that was
executed, or an empty string if none of the expressions was non-zero and there was no bodyN.

Command Substitution
Placing a command in square brackets ([]) will cause that command to be evaluated first and its
results returned in place of the command. An example is:

set a 25
set b 11
set c 3
echo "the result is [expr ($a + $b)/$c]"

will output:

"the result is 12"

This feature allows VHDL variables and signals, and Verilog nets and registers to be accessed
using:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you now
can use [examine -value -<radix> name] which allows the flexibility of specifying command
options. The radix specification is optional.

ModelSim User’s Manual, v6.2g298

Tcl and Macros (DO Files)
Tcl Command Syntax

February 2007

Command Separator
A semicolon character (;) works as a separator for multiple commands on the same line. It is not
required at the end of a line in a command sequence.

Multiple-Line Commands
With Tcl, multiple-line commands can be used within macros and on the command line. The
command line prompt will change (as in a C shell) until the multiple-line command is complete.

In the example below, note the way the opening brace ’{’ is at the end of the if and else lines.
This is important because otherwise the Tcl scanner won't know that there is more coming in the
command and will try to execute what it has up to that point, which won't be what you intend.

if { [exa sig_a] == "0011ZZ"} {
echo "Signal value matches"
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do

}

Evaluation Order
An important thing to remember when using Tcl is that anything put in braces ({}) is not
evaluated immediately. This is important for if-then-else statements, procedures, loops, and so
forth.

Tcl Relational Expression Evaluation
When you are comparing values, the following hints may be useful:

• Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want a literal to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...

The following will also work:

if {[exa var_1] == "345"}...

• However, if a literal cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

if {[exa var_2] == "001Z"}...

Tcl and Macros (DO Files)
Tcl Command Syntax

ModelSim User’s Manual, v6.2g 299
February 2007

will work okay.

• Don't quote single characters in single quotes:

if {[exa var_3] == 'X'}...

will give an error

if {[exa var_3] == "X"}...

will work okay.

• For the equal operator, you must use the C operator (==). For not-equal, you must use
the C operator (!=).

Variable Substitution
When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by ModelSim or by you, and substitute the value of the variable.

Note
Tcl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh

See Simulator State Variables for more information about ModelSim-defined variables.

System Commands
To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

ModelSim User’s Manual, v6.2g300

Tcl and Macros (DO Files)
List Processing

February 2007

List Processing
In Tcl a "list" is a set of strings in curly braces separated by spaces. Several Tcl commands are
available for creating lists, indexing into lists, appending to lists, getting the length of lists and
shifting lists. These commands are:

Two other commands, lsearch and lsort, are also available for list manipulation. See the Tcl
man pages (Help > Tcl Man Pages) for more information on these commands.

Simulator Tcl Commands
These additional commands enhance the interface between Tcl and ModelSim. Only brief
descriptions are provided here; for more information and command syntax see the Reference
Manual.

Table 13-3. Tcl List Commands

Command syntax Description

lappend var_name val1 val2 ... appends val1, val2, etc. to list var_name

lindex list_name index returns the index-th element of list_name; the first
element is 0

linsert list_name index val1 val2 ... inserts val1, val2, etc. just before the index-th element
of list_name

list val1, val2 ... returns a Tcl list consisting of val1, val2, etc.

llength list_name returns the number of elements in list_name

lrange list_name first last returns a sublist of list_name, from index first to index
last; first or last may be "end", which refers to the last
element in the list

lreplace list_name first last val1,
val2, ...

replaces elements first through last with val1, val2, etc.

Table 13-4. Simulator-Specific Tcl Commands

Command Description

alias creates a new Tcl procedure that evaluates the specified
commands; used to create a user-defined alias

find locates incrTcl classes and objects

lshift takes a Tcl list as argument and shifts it in-place one place
to the left, eliminating the 0th element

lsublist returns a sublist of the specified Tcl list that matches the
specified Tcl glob pattern

Tcl and Macros (DO Files)
Simulator Tcl Time Commands

ModelSim User’s Manual, v6.2g 301
February 2007

Simulator Tcl Time Commands
ModelSim Tcl time commands make simulator-time-based values available for use within other
Tcl procedures.

Time values may optionally contain a units specifier where the intervening space is also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are always in the current
Time Scale Units. All time values are converted to a 64-bit integer value in the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

printenv echoes to the Transcript pane the current names and values
of all environment variables

Table 13-4. Simulator-Specific Tcl Commands

Command Description

ModelSim User’s Manual, v6.2g302

Tcl and Macros (DO Files)
Simulator Tcl Time Commands

February 2007

Conversions

Relations

All relation operations return 1 or 0 for true or false respectively and are suitable return values
for TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {
...

}

Table 13-5. Tcl Time Conversion Commands

Command Description

 intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Time in
ModelSim is a 64-bit integer)

 RealToTime <real> converts a <real> number to a 64-bit
integer in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by
the <scaleFactor> integer

Table 13-6. Tcl Time Relation Commands

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than

gteTime <time> <time> evaluates for greater than or equal

ltTime <time> <time> evaluates for less than

lteTime <time> <time> evaluates for less than or equal

Tcl and Macros (DO Files)
Tcl Examples

ModelSim User’s Manual, v6.2g 303
February 2007

Arithmetic

Tcl Examples
This is an example of using the Tcl while loop to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
set i [expr {[llength $a] - 1}]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy a list from variable a to variable b, reversing
the order of the elements along the way:

set b [list]
for {set i [expr {[llength $a] - 1}]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

This example uses the Tcl foreach command to copy a list from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all of the
elements of a list):

set b [list]
foreach i $a { set b [linsert $b 0 $i] }

This example shows a list reversal as above, this time aborting on a particular element using the
Tcl break command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} break
set b [linsert $b 0 $i]

}

This example is a list reversal that skips a particular element by using the Tcl continue
command:

Table 13-7. Tcl Time Arithmetic Commands

Command Description

addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide

mulTime <time> <time> 64-bit integer multiply

subTime <time> <time> subtract time

ModelSim User’s Manual, v6.2g304

Tcl and Macros (DO Files)
Tcl Examples

February 2007

set b [list]
foreach i $a {

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

}

The next example works in UNIX only. In a Windows environment, the Tcl exec command will
execute compiled files only, not system commands.) The example shows how you can access
system information and transfer it into VHDL variables or signals and Verilog nets or registers.
When a particular HDL source breakpoint occurs, a Tcl function is called that gets the date and
time and deposits it into a VHDL signal of type STRING. If a particular environment variable
(DO_ECHO) is set, the function also echoes the new date and time to the transcript file by
examining the VHDL variable.

(in VHDL source):

signal datime : string(1 to 28) := " ";# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
global env
set do_the_echo [set env(DO_ECHO)]
set s [clock format [clock seconds]]
force -deposit datime $s
if {do_the_echo} {

echo "New time is [examine -value datime]"
}

}

bp src/waveadd.vhd 133 {set_date; continue}
 --sets the breakpoint to call set_date

This next example shows a complete Tcl script that restores multiple Wave windows to their
state in a previous simulation, including signals listed, geometry, and screen position. It also
adds buttons to the Main window toolbar to ease management of the wave files.

This file contains procedures to manage multiple wave files.
Source this file from the command line or as a startup script.
source <path>/wave_mgr.tcl
add_wave_buttons
Add wave management buttons to the main toolbar (new, save and
load)
new_wave
Dialog box creates a new wave window with the user provided name
named_wave <name>
Creates a new wave window with the specified title
save_wave <file-root>
Saves name, window location and contents for all open windows
wave windows
Creates <file-root><n>.do file for each window where <n> is 1
to the number of windows. Default file-root is "wave". Also
creates windowSet.do file that contains title and geometry info.

Tcl and Macros (DO Files)
Tcl Examples

ModelSim User’s Manual, v6.2g 305
February 2007

load_wave <file-root>
Opens and loads wave windows for all files matching <file-
root><n>.do
where <n> are the numbers from 1-9. Default <file-root> is "wave".
Also runs windowSet.do file if it exists.
Add wave management buttons to the main toolbar
proc add_wave_buttons {} {
_add_menu main controls right SystemMenu SystemWindowFrame {Load Waves} \
load_wave
_add_menu main controls right SystemMenu SystemWindowFrame {Save Waves} \
save_wave
_add_menu main controls right SystemMenu SystemWindowFrame {New Wave} \
new_wave
}
Simple Dialog requests name of new wave window. Defaults to Wave<n>

proc new_wave {} {
global vsimPriv
set defaultName "Wave[llength $vsimPriv(WaveWindows)]"
set windowName [GetValue . "Create Named Wave Window:" $defaultName]
if {$windowName == ""} {

Dialog canceled
abort operation
return

}
Debug
puts "Window name: $windowName\n"
if {$windowName == "{}"} {

set windowName ""
}
if {$windowName != ""} {

named_wave $windowName
} else {

named_wave $defaultName
}

}

Creates a new wave window with the provided name (defaults to "Wave")

proc named_wave {{name "Wave"}} {
set newWave [view -new wave]
if {[string length $name] > 0} {

wm title $newWave $name
}

}

Writes out format of all wave windows, stores geometry and title info
in
windowSet.do file. Removes any extra files with the same fileroot.
Default file name is wave<n> starting from 1.

ModelSim User’s Manual, v6.2g306

Tcl and Macros (DO Files)
Tcl Examples

February 2007

proc save_wave {{fileroot "wave"}} {
global vsimPriv
set n 1
if {[catch {open windowSet_$fileroot.do w 755} fileId]} {

error "Open failure for $fileroot ($fileId)"
}
foreach w $vsimPriv(WaveWindows) {

echo "Saving: [wm title $w]"
set filename $fileroot$n.do
if {[file exists $filename]} {

Use different file
set n2 0
while {[file exists ${fileroot}${n}${n2}.do]} {

incr n2
}
set filename ${fileroot}${n}${n2}.do

}
write format wave -window $w $filename
puts $fileId "wm title $w \"[wm title $w]\""
puts $fileId "wm geometry $w [wm geometry $w]"
puts $fileId "mtiGrid_colconfig $w.grid name -width \

[mtiGrid_colcget $w.grid name -width]"
puts $fileId "mtiGrid_colconfig $w.grid value -width \

[mtiGrid_colcget $w.grid value -width]"
flush $fileId
incr n

}

foreach f [lsort [glob -nocomplain $fileroot\[$n-9\].do]] {
echo "Removing: $f"
exec rm $f

}
}

}

Provide file root argument and load_wave restores all saved windows.
Default file root is "wave".

proc load_wave {{fileroot "wave"}} {
foreach f [lsort [glob -nocomplain $fileroot\[1-9\].do]] {

echo "Loading: $f"
view -new wave
do $f

}
if {[file exists windowSet_$fileroot.do]} {

do windowSet_$fileroot.do
}

}

...

This next example specifies the compiler arguments and lets you compile any number of files.

Tcl and Macros (DO Files)
Macros (DO Files)

ModelSim User’s Manual, v6.2g 307
February 2007

set Files [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set lappend Files $1
shift

}
eval vcom -93 -explicit -noaccel $Files

This example is an enhanced version of the last one. The additional code determines whether
the files are VHDL or Verilog and uses the appropriate compiler and arguments depending on
the file type. Note that the macro assumes your VHDL files have a .vhd file extension.

set vhdFiles [list]
set vFiles [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
lappend vhdFiles $1

} else {
lappend vFiles $1

}
shift

}
if {[llength $vhdFiles] > 0} {

eval vcom -93 -explicit -noaccel $vhdFiles
}
if {[llength $vFiles] > 0} {

eval vlog $vFiles
}

Macros (DO Files)
ModelSim macros (also called DO files) are simply scripts that contain ModelSim and,
optionally, Tcl commands. You invoke these scripts with the Tools > TCL > Execute Macro
menu selection or the do command.

Creating DO Files
You can create DO files, like any other Tcl script, by typing the required commands in any
editor and saving the file. Alternatively, you can save the transcript as a DO file (see Saving the
Transcript File).

All "event watching" commands (e.g. onbreak, onerror, etc.) must be placed before run
commands within the macros in order to take effect.

The following is a simple DO file that was saved from the transcript. It is used in the dataset
exercise in the ModelSim Tutorial. This DO file adds several signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

ModelSim User’s Manual, v6.2g308

Tcl and Macros (DO Files)
Macros (DO Files)

February 2007

add wave ld
add wave rst
add wave clk
add wave d
add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force ld 0
force d 1010
onerror {cont}
run 1700
force ld 1
run 100
force ld 0
run 400
force rst 1
run 200
force rst 0 10
run 1500

Using Parameters with DO Files
You can increase the flexibility of DO files by using parameters. Parameters specify values that
are passed to the corresponding parameters $1 through $9 in the macro file. For example say the
macro "testfile" contains the line bp $1 $2. The command below would place a breakpoint in
the source file named design.vhd at line 127:

do testfile design.vhd 127

There is no limit on the number of parameters that can be passed to macros, but only nine values
are visible at one time. You can use the shift command to see the other parameters.

Deleting a File from a .do Script
To delete a file from a .do script, use the Tcl file command as follows:

file delete myfile.log

This will delete the file "myfile.log."

You can also use the transcript file command to perform a deletion:

transcript file ()
transcript file my file.log

The first line will close the current log file. The second will open a new log file. If it has the
same name as an existing file, it will replace the previous one.

Tcl and Macros (DO Files)
Macros (DO Files)

ModelSim User’s Manual, v6.2g 309
February 2007

Making Macro Parameters Optional
If you want to make macro parameters optional (i.e., be able to specify fewer parameter values
with the do command than the number of parameters referenced in the macro), you must use the
argc simulator state variable. The argc simulator state variable returns the number of
parameters passed. The examples below show several ways of using argc.

Example 1

This macro specifies the files to compile and handles 0-2 compiler arguments as parameters. If
you supply more arguments, ModelSim generates a message.

switch $argc {
0 {vcom file1.vhd file2.vhd file3.vhd }
1 {vcom $1 file1.vhd file2.vhd file3.vhd }
2 {vcom $1 $2 file1.vhd file2.vhd file3.vhd }
default {echo Too many arguments. The macro accepts 0-2 args. }

}

Example 2

This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {
set Files [concat $Files $1]
shift

}
eval vcom -93 -explicit -noaccel $Files

Example 3

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the files are VHDL or Verilog and uses the appropriate compiler and
arguments depending on the file type. Note that the macro assumes your VHDL files have a
.vhd file extension.

ModelSim User’s Manual, v6.2g310

Tcl and Macros (DO Files)
Macros (DO Files)

February 2007

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFilesExist 0
set vFilesExist 0
for {set x 1} {$x <= $nbrArgs} {incr x} {
if {[string match *.vhd $1]} {
set vhdFiles [concat $vhdFiles $1]
set vhdFilesExist 1

} else {
set vFiles [concat $vFiles $1]
set vFilesExist 1

}
shift

}
if {$vhdFilesExist == 1} {
eval vcom -93 -explicit -noaccel $vhdFiles

}
if {$vFilesExist == 1} {
eval vlog $vFiles

}

Useful Commands for Handling Breakpoints and Errors
If you are executing a macro when your simulation hits a breakpoint or causes a run-time error,
ModelSim interrupts the macro and returns control to the command line. The following
commands may be useful for handling such events. (Any other legal command may be executed
as well.)

Table 13-8. Commands for Handling Breakpoints and Errors in Macros

command result

run -continue continue as if the breakpoint had not been executed,
completes the run that was interrupted

onbreak specify a command to run when you hit a breakpoint
within a macro

onElabError specify a command to run when an error is
encountered during elaboration

onerror specify a command to run when an error is
encountered within a macro

status get a traceback of nested macro calls when a macro is
interrupted

abort terminate a macro once the macro has been
interrupted or paused

pause cause the macro to be interrupted; the macro can be
resumed by entering a resume command via the
command line

Tcl and Macros (DO Files)
Macros (DO Files)

ModelSim User’s Manual, v6.2g 311
February 2007

You can also set the OnErrorDefaultAction Tcl variable to determine what action ModelSim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in a modelsim.tcl file (see The modelsim.tcl File for details).

Error Action in DO Files
If a command in a macro returns an error, ModelSim does the following:

1. If an onerror command has been set in the macro script, ModelSim executes that
command. The onerror command must be placed prior to the run command in the DO
file to take effect.

2. If no onerror command has been specified in the script, ModelSim checks the
OnErrorDefaultAction variable. If the variable is defined, its action will be invoked.

3. If neither 1 or 2 is true, the macro aborts.

Using the Tcl Source Command with DO Files
Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the source command, the DO file is executed exactly as if the commands in it were typed
in by hand at the prompt. Each time a breakpoint is hit, the Source window is updated to show
the breakpoint. This behavior could be inconvenient with a large DO file containing many
breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any windows,
and keeps the DO file "locked". This keeps the Source window from flashing, scrolling, and
moving the arrow when a complex DO file is executed. Typically an onbreak resume
command is used to keep the macro running as it hits breakpoints. Add an onbreak abort
command to the DO file if you want to exit the macro and update the Source window.

ModelSim User’s Manual, v6.2g312

Tcl and Macros (DO Files)
Macros (DO Files)

February 2007

ModelSim User’s Manual, v6.2g 313
February 2007

Appendix A
Simulator Variables

This appendix documents the following types of variables:

• Environment Variables — Variables referenced and set according to operating system
conventions. Environment variables prepare the ModelSim environment prior to
simulation.

• Simulator Control Variables — Variables used to control compiler, simulator, and
various other functions.

• Simulator State Variables — Variables that provide feedback on the state of the current
simulation.

Variable Settings Report
The report command returns a list of current settings for either the simulator state or simulator
control variables. Use the following commands at either the ModelSim or VSIM prompt:

report simulator state
report simulator control

Environment Variables

Environment Variable Expansion
The shell commands vcom, vlog, vsim, and vmap, no longer expand environment variables in
filename arguments and options. Instead, variables should be expanded by the shell beforehand,
in the usual manner. The -f option that most of these commands support, now performs
environment variable expansion throughout the file.

Environment variable expansion is still performed in the following places:

• Pathname and other values in the modelsim.ini file

• Strings used as file pathnames in VHDL and Verilog

• VHDL Foreign attributes

• The PLIOBJS environment variable may contain a path that has an environment
variable.

• Verilog `uselib file and dir directives

ModelSim User’s Manual, v6.2g314

Simulator Variables
Environment Variables

February 2007

• Anywhere in the contents of a -f file

The recommended method for using flexible pathnames is to make use of the MGC Location
Map system (see Using Location Mapping). When this is used, then pathnames stored in
libraries and project files (.mpf) will be converted to logical pathnames.

If a file or path name contains the dollar sign character ($), and must be used in one of the places
listed above that accepts environment variables, then the explicit dollar sign must be escaped by
using a double dollar sign ($$).

Setting Environment Variables
Before compiling or simulating, several environment variables may be set to provide the
functions described below. The variables are set through the System control panel on Windows
2000 and XP machines. For UNIX, the variables are typically found in the .login script. The
LM_LICENSE_FILE variable is required; all others are optional.

DOPATH

The toolset uses the DOPATH environment variable to search for DO files (macros). DOPATH
consists of a colon-separated (semi-colon for Windows) list of paths to directories. You can
override this environment variable with the DOPATH Tcl preference variable.

The DOPATH environment variable isn’t accessible when you invoke vsim from a UNIX shell
or from a Windows command prompt. It is accessible once ModelSim or vsim is invoked. If
you need to invoke from a shell or command line and use the DOPATH environment variable,
use the following syntax:

vsim -do "do <dofile_name>" <design_unit>

EDITOR

The EDITOR environment variable specifies the editor to invoke with the edit command

HOME

The toolset uses the HOME environment variable to look for an optional graphical preference
file and optional location map file. Refer to Simulator Control Variables for additional
information.

HOME_0IN

The HOME_0IN environment variable identifies the location of the 0-In executables directory.
Refer to the 0-In documentation for more information.

Simulator Variables
Environment Variables

ModelSim User’s Manual, v6.2g 315
February 2007

LD_LIBRARY_PATH

A UNIX shell environment variable setting the search directories for shared libraries. It
instructs the OS where to search for the shared libraries for FLI/PLI/VPI/DPI. This variable is
used for both 32-bit and 64-bit shared libraries on Solaris/Linux systems.

LD_LIBRARY_PATH_32

A UNIX shell environment variable setting the search directories for shared libraries. It
instructs the OS where to search for the shared libraries for FLI/PLI/VPI/DPI. This variable is
used only for 32-bit shared libraries on Solaris/Linux systems.

LD_LIBRARY_PATH_64

A UNIX shell environment variable setting the search directories for shared libraries. It
instructs the OS where to search for the shared libraries for FLI/PLI/VPI/DPI. This variable is
used only for 64-bit shared libraries on Solaris/Linux systems.

LM_LICENSE_FILE

The toolset’s file manager uses the LM_LICENSE_FILE environment variable to find the
location of the license file. The argument may be a colon-separated (semi-colon for Windows)
set of paths, including paths to other vendor license files. The environment variable is required.

MODEL_TECH

The toolset automatically sets the MODEL_TECH environment variable to the directory in
which the binary executable resides; DO NOT SET THIS VARIABLE!

MODEL_TECH_TCL

The toolset uses the MODEL_TECH_TCL environment variable to find Tcl libraries for Tcl/Tk
8.3 and vsim, and may also be used to specify a startup DO file. This variable defaults to
/modeltech/../tcl, however you may set it to an alternate path

MGC_LOCATION_MAP

The toolset uses the MGC_LOCATION_MAP environment variable to find source files based
on easily reallocated "soft" paths.

MODELSIM

The toolset uses the MODELSIM environment variable to find the modelsim.ini file. The
argument consists of a path including the file name.

An alternative use of this variable is to set it to the path of a project file
(<Project_Root_Dir>/<Project_Name>.mpf). This allows you to use project settings with

ModelSim User’s Manual, v6.2g316

Simulator Variables
Environment Variables

February 2007

command line tools. However, if you do this, the .mpf file will replace modelsim.ini as the
initialization file for all tools.

MODELSIM_PREFERENCES

The MODELSIM_PREFERENCES environment variable specifies the location to store user
interface preferences. Setting this variable with the path of a file instructs the toolset to use this
file instead of the default location (your HOME directory in UNIX or in the registry in
Windows). The file does not need to exist beforehand, the toolset will initialize it. Also, if this
file is read-only, the toolset will not update or otherwise modify the file. This variable may
contain a relative pathname – in which case the file will be relative to the working directory at
the time the tool is started.

MODELSIM_TCL

The toolset uses the MODELSIM_TCL environment variable to look for an optional graphical
preference file. The argument can be a colon-separated (UNIX) or semi-colon separated
(Windows) list of file paths.

MTI_COSIM_TRACE

The MTI_COSIM_TRACE environment variable creates an mti_trace_cosim file containing
debugging information about FLI/PLI/VPI function calls. You should set this variable to any
value before invoking the simulator.

MTI_TF_LIMIT

The MTI_TF_LIMIT environment variable limits the size of the VSOUT temp file (generated
by the toolset’s kernel). Set the argument of this variable to the size of k-bytes

The environment variable TMPDIR controls the location of this file, while STDOUT controls
the name. The default setting is 10, and a value of 0 specifies that there is no limit. This variable
does not control the size of the transcript file.

MTI_RELEASE_ON_SUSPEND

The MTI_RELEASE_ON_SUSPEND environment variable allows you to turn off or modify
the delay for the functionality of releasing all licenses when the tool is suspended. The default
setting is 10 (in seconds), which means that if you do not set this variable your licenses will be
released 10 seconds after your run is suspended. If you set this environment variable with an
argument of 0 (zero) the tool will not release the licenses after being suspended. You can
change the default length of time (number of seconds) by setting this environment variable to an
integer greater than 0 (zero).

Simulator Variables
Environment Variables

ModelSim User’s Manual, v6.2g 317
February 2007

MTI_USELIB_DIR

The MTI_USELIB_DIR environment variable specifies the directory into which object libraries
are compiled when using the -compile_uselibs argument to the vlog command

NOMMAP

When set to 1, the NOMMAP environment variable disables memory mapping in the toolset.
You should only use this variable when running on Linux 7.1 because it will decrease the speed
with which the tool reads files.

PLIOBJS

The toolset uses the PLIOBJS environment variable to search for PLI object files for loading.
The argument consists of a space-separated list of file or path names

STDOUT

The argument to the STDOUT environment variable specifies a filename to which the simulator
saves the VSOUT temp file information. Typically this information is deleted when the
simulator exits. The location for this file is set with the TMPDIR variable, which allows you to
find and delete the file in the event of a crash, because an unnamed VSOUT file is not deleted
after a crash.

TMP

(Windows environments) The TMP environment variable specifies the path to a tempnam()
generated file (VSOUT) containing all stdout from the simulation kernel.

TMPDIR

(UNIX environments) The TMPDIR environment variable specifies the path to a tempnam()
generated file (VSOUT) containing all stdout from the simulation kernel.

Creating Environment Variables in Windows
In addition to the predefined variables shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced by the
vmap command to add library mapping to the modelsim.ini file.

1. From your desktop, right-click your My Computer icon and select Properties

2. In the System Properties dialog box, select the Advanced tab

3. Click Environment Variables

4. In the Environment Variables dialog box and User variables for <user> pane, select
New:

ModelSim User’s Manual, v6.2g318

Simulator Variables
Environment Variables

February 2007

5. In the New User Variable dialog box, add the new variable with this data

Variable ame: MY_PATH
Variable value:\temp\work

6. OK (New User Variable, Environment Variable, and System Properties dialog boxes)

Library Mapping with Environment Variables
Once the MY_PATH variable is set, you can use it with the vmap command to add library
mappings to the current modelsim.ini file.

You can easily add additional hierarchy to the path. For example,

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path

vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

Referencing Environment Variables
There are two ways to reference environment variables within ModelSim. Environment
variables are allowed in a FILE variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begin

process
FILE in_file : text is in "$ENV_VAR_NAME";

begin
wait;

end process;
end;

Environment variables may also be referenced from the ModelSim command line or in macros
using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME)"

Table A-1. Add Library Mappings to modelsim.ini File

Prompt Type Command Result added to modelsim.ini

DOS prompt vmap MY_VITAL %MY_PATH% MY_VITAL = c:\temp\work

ModelSim or
vsim prompt

vmap MY_VITAL \$MY_PATH1

1. The dollar sign ($) character is Tcl syntax that indicates a variable. The backslash (\) character is an escape
character that prevents the variable from being evaluated during the execution of vmap.

MY_VITAL = $MY_PATH

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 319
February 2007

Note
Environment variable expansion does not occur in files that are referenced via the -f
argument to vcom, vlog, or vsim.

Removing Temp Files (VSOUT)
The VSOUT temp file is the communication mechanism between the simulator kernel and the
Graphical User Interface. In normal circumstances the file is deleted when the simulator exits. If
the tool crashes, however, the temp file must be deleted manually. Specifying the location of the
temp file with TMPDIR (above) will help you locate and remove the file.

Simulator Control Variables
Initialization (INI) files contain control variables that specify reference library paths and
compiler and simulator settings. The default initialization file is modelsim.ini and is located in
your install directory.

To set these variables, edit the initialization file directly with any text editor. The syntax for
variables in the file is:

<variable> = <value>

Comments within the file are preceded with a semicolon (;).

The following sections contain information about the variables:

• Library Path Variables

• Verilog Compiler Control Variables

• VHDL Compiler Control Variables

• Simulation Control Variables

Library Path Variables
You can find these variables under the heading [Library] in the modelsim.ini file.

ieee

This variable sets the path to the library containing IEEE and Synopsys arithmetic packages.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../ieee

ModelSim User’s Manual, v6.2g320

Simulator Variables
Simulator Control Variables

February 2007

modelsim_lib

This variable sets the path to the library containing Model Technology VHDL utilities such as
Signal Spy.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../modelsim_lib

std

This variable sets the path to the VHDL STD library.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../std

std_developerskit

This variable sets the path to the libraries for MGC standard developer’s kit.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../std_developerskit

synopsys

This variable sets the path to the accelerated arithmetic packages.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../synopsys

sv_std

This variable sets the path to the SystemVerilog STD library.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../sv_std

verilog

This variable sets the path to the library containing VHDL/Verilog type mappings.

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../verilog

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 321
February 2007

vital2000

This variable sets the path to the VITAL 2000 library

• Value Range: any valid path; may include environment variables

• Default: $MODEL_TECH/../vital2000

others

This variable points to another modelsim.ini file whose library path variables will also be read;
the pathname must include "modelsim.ini"; only one others variable can be specified in any
modelsim.ini file.

• Value Range: any valid path; may include environment variables

• Default: none

Verilog Compiler Control Variables
You can find these variables under the heading [vlog] in the modelsim.ini file.

DisableOpt

This variable, when on, disables all optimizations enacted by the compiler; same as the -O0
argument to vlog.

• Value Range: 0, 1

• Default: off (0)

GenerateLoopIterationMax

This variable specifies the maximum number of iterations permitted for a generate loop;
restricting this permits the implementation to recognize infinite generate loops.

• Value Range: natural integer (>=0)

• Default: 100000

GenerateRecursionDepthMax

This variable specifies the maximum depth permitted for a recursive generate instantiation;
restricting this permits the implementation to recognize infinite recursions.

• Value Range: natural integer (>=0)

• Default: 200

ModelSim User’s Manual, v6.2g322

Simulator Variables
Simulator Control Variables

February 2007

Hazard

This variable turns on Verilog hazard checking (order-dependent accessing of global variables).

• Value Range: 0, 1

• Default: off (0)

Incremental

This variable activates the incremental compilation of modules.

• Value Range: 0, 1

• Default: off (0)

MultiFileCompilationUnit

Controls how Verilog files are compiled into compilation units. Valid arguments:

• 1 -- (0n) Compiles all files on command line into a single compilation unit. This
behavior is called Multi File Compilation Unit (MFCU) mode; same as -mfcu argument
to

• 0 -- (Off) Default value. Compiles each file in the compilation command line into
separate compilation units. This behavior is called Single File Compilation Unit (SFCU)
mode.

Refer to SystemVerilog Multi-File Compilation Issues for details on the implications of these
settings.

Note
The default behavior in versions prior to 6.1 was opposite of the current default behavior.

NoDebug

This variable, when on, disables the inclusion of debugging info within design units.

• Value Range: 0, 1

• Default: off (0)

Quiet

This variable turns off "loading…" messages.

• Value Range: 0, 1

• Default: off (0)

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 323
February 2007

Show_BadOptionWarning

This variable instructs the tool to generate a warning whenever an unknown plus argument is
encountered.

• Value Range: 0, 1

• Default: off (0)

Show_Lint

This variable instructs the tool to display lint warning messages.

• Value Range: 0, 1

• Default: off (0)

Show_WarnCantDoCoverage

This variable instructs the tool to display warning messages when the simulator encounters
constructs which code coverage cannot handle.

• Value Range: 0,1

• Default: on (1)

Show_WarnMatchCadence

This variable instructs the tool to display warning messages about non-LRM compliance in
order to match Cadence behavior.

• Value Range: 0, 1

• Default: on (1)

Show_source

This variable instructs the tool to show any source line containing an error.

• Value Range: 0, 1

• Default: off (0)

vlog95compat

This variable instructs the tool to disable SystemVerilog and Verilog 2001 support, making the
compiler compatible with IEEE Std 1364-1995.

• Value Range: 0, 1

ModelSim User’s Manual, v6.2g324

Simulator Variables
Simulator Control Variables

February 2007

• Default: off (0)

VHDL Compiler Control Variables
You can find these variables under the heading [vcom].

BindAtCompile

This variable instructs the tool to perform VHDL default binding at compile time rather than
load time. Refer to Default Binding for more information.

• Value Range: 0, 1

• Default: off (0)

CheckSynthesis

This variable turns on limited synthesis rule compliance checking, which includes checking
only signals used (read) by a process and understanding only combinational logic, not clocked
logic.

• Value Range: 0, 1

• Default: off (0)

DisableOpt

This variable disables all optimizations enacted by the compiler, similar to using the -O0
argument to vcom.

• Value Range: 0, 1

• Default: off (0)

Explicit

This variable enables the resolving of ambiguous function overloading in favor of the "explicit"
function declaration (not the one automatically created by the compiler for each type
declaration).

• Value Range: 0, 1

• Default: on (1)

IgnoreVitalErrors

This variable instructs the tool to ignore VITAL compliance checking errors.

• Value Range: 0, 1

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 325
February 2007

• Default: off (0)

NoCaseStaticError

This variable changes case statement static errors to warnings.

• Value Range: 0, 1

• Default: off (0)

NoDebug

This variable disables turns off inclusion of debugging info within design units.

• Value Range: 0, 1

• Default: off (0)

NoIndexCheck

This variable disables run time index checks.

• Value Range: 0, 1

• Default: off (0)

NoOthersStaticError

This variable disables errors caused by aggregates that are not locally static.

• Value Range: 0, 1

• Default: off (0)

NoRangeCheck

This variable disables run time range checking.

• Value Range: 0, 1

• Default: off (0)

NoVital

This variable disables acceleration of the VITAL packages.

• Value Range: 0, 1

• Default: off (0)

ModelSim User’s Manual, v6.2g326

Simulator Variables
Simulator Control Variables

February 2007

NoVitalCheck

This variable disables VITAL compliance checking.

• Value Range: 0, 1

• Default: off (0)

Optimize_1164

This variable disables optimization for the IEEE std_logic_1164 package.

• Value Range: 0, 1

• Default: on (1)

PedanticErrors

This variable overrides NoCaseStaticError and NoOthersStaticError

• Value Range: 0, 1

• Default: off(0)

Quiet

This variable disables the “loading…” messages.

• Value Range: 0, 1

• Default: off (0)

RequireConfigForAllDefaultBinding

This variable instructs the compiler not to generate a default binding during compilation.

• Value Range: 0, 1

• Default: off (0)

Show_Lint

This variable enables lint-style checking.

• Value Range: 0, 1

• Default: off (0)

Show_source

This variable shows source line containing error.

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 327
February 2007

• Value Range: 0, 1

• Default: off (0)

Show_VitalChecksOpt

This variable enables VITAL optimization warnings.

• Value Range: 0, 1

• Default: on (1)

Show_VitalChecksWarnings

This variable enables VITAL compliance-check warnings.

• Value Range: 0, 1

• Default: on (1)

Show_WarnCantDoCoverage

This variable enables warnings when the simulator encounters constructs which code coverage
cannot handle.

• Value Range: 0, 1

• Default: on (1)

Show_Warning1

This variable enables unbound-component warnings.

• Value Range: 0, 1

• Default: on (1)

Show_Warning2

This variable enables process-without-a-wait-statement warnings.

• Value Range: 0, 1

• Default: on (1)

Show_Warning3

This variable enables null-range warnings.

• Value Range: 0, 1

ModelSim User’s Manual, v6.2g328

Simulator Variables
Simulator Control Variables

February 2007

• Default: on (1)

Show_Warning4

This variable enables no-space-in-time-literal warnings.

• Value Range: 0, 1

• Default: on (1)

Show_Warning5

This variable enables multiple-drivers-on-unresolved-signal warnings.

• Value Range: 0, 1

• Default: on (1)

Show_Warning9

This variable enables warnings about signal value dependency at elaboration.

• Value Range: 0, 1

• Default: on (1)

Show_Warning10

This variable enables warnings about VHDL-1993 constructs in VHDL-1987 code.

• Value Range: 0, 1

• Default: on (1)

Show_WarnLocallyStaticError

This variable enables warnings about locally static errors deferred until run time.

• Value Range: 0, 1

• Default: on (1)

VHDL93

This variable enables support for VHDL-1987, where “1” enables support for VHDL-1993 and
“2” enables support for VHDL-2002.

• Value Range: 0, 1, 2

• Default: 2

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 329
February 2007

Simulation Control Variables
You can find these variables under the heading [vsim] in the modelsim.ini file.

AssertFile

This variable specifies an alternative file for storing VHDL assertion messages.

• Value Range: any valid filename

• Default: transcript

AssertionDebug

This variable specifies that SVA assertion passes are reported.

• Value Range: 0, 1

• Default: off (0)

AssertionFormat

This variable defines the format of VHDL assertion messages.

• Value Range:

Table A-2. AssertionFormat Variable: Accepted Values

Variable Description

%S severity level

%R report message

%T time of assertion

%D delta

%I instance or region pathname (if available)

%i instance pathname with process

%O process name

%K kind of object path points to; returns Instance, Signal,
Process, or Unknown

%P instance or region path without leaf process

%F file

%L line number of assertion, or if from subprogram, line from
which call is made

%% print ’%’ character

ModelSim User’s Manual, v6.2g330

Simulator Variables
Simulator Control Variables

February 2007

• Default: "** %S: %R\n Time: %T Iteration: %D%I\n"

AssertionFormatBreak

This variable defines the format of messages for VHDL assertions that trigger a breakpoint.

• Value Range: Refer to Table A-2

• Default: "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"

AssertionFormatError

This variable defines the format of messages for VHDL Error assertions.

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used.

• Value Range: Refer to Table A-2

• Default: "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"

AssertionFormatFail

This variable defines the format of messages for VHDL Fail assertions.

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used

• Value Range: Refer to Table A-2

• Default: "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"

AssertionFormatFatal

This variable defines the format of messages for VHDL Fatal assertions

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used.

• Value Range: Refer to Table A-2

• Default: "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"

AssertionFormatNote

This variable defines the format of messages for VHDL Note assertions

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 331
February 2007

• Value Range: Refer to Table A-2

• Default: "** %S: %R\n Time: %T Iteration: %D%I\n"

AssertionFormatWarning

This variable defines the format of messages for VHDL Warning assertions

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used

• Value Range: Refer to Table A-2

• Default: "** %S: %R\n Time: %T Iteration: %D%I\n"

BreakOnAssertion

This variable defines the severity of VHDL assertions that cause a simulation break. It also
controls any messages in the source code that use assertion_failure_*. For example, since most
runtime messages use some form of assertion_failure_*, any runtime error will cause the
simulation to break if the user sets BreakOnAssertion to 2.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: 0 (note), 1 (warning), 2 (error), 3 (failure), 4 (fatal)

• Default: 3 (failure)

CheckPlusargs

This variable defines the simulator’s behavior when encountering unrecognized plusargs.

• Value Range: 0 (ignores), 1 (issues warning, simulates while ignoring), 2 (issues error,
exits)

• Default: 0 (ignores)

CheckpointCompressMode

This variable specifies that checkpoint files are written in compressed format

• Value Range: 0, 1

• Default: on (1)

CommandHistory

This variable specifies the name of a file in which to store the Main window command history.

ModelSim User’s Manual, v6.2g332

Simulator Variables
Simulator Control Variables

February 2007

• Value Range: any valid filename

• Default: commented out (;)

ConcurrentFileLimit

This variable controls the number of VHDL files open concurrently. This number should be less
than the current limit setting for max file descriptors.

• Value Range: any positive integer or 0 (unlimited)

• Default: 40

DatasetSeparator

This variable specifies the dataset separator for fully-rooted contexts, for example:

sim:/top

The argument to DatasetSeparator must not be the same character as PathSeparator

• Value Range: any character except those with special meaning, such as \, {, }, etc.

• Default: :

DefaultForceKind

This variable defines the kind of force used when not otherwise specified.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: freeze, drive, or deposit

• Default: drive, for resolved signals; freeze, for unresolved signals

DefaultRadix

This variable specifies a numeric radix may be specified as a name or number. For example,
you can specify binary as “binary” or “2” or octal as “octal” or “8”.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: symbolic, binary, octal, decimal, unsigned, hexadecimal, ascii

• Default: symbolic

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 333
February 2007

DefaultRestartOptions

This variable sets the default behavior for the restart command

• Value Range: one or more of: -force, -noassertions, -nobreakpoint, -nofcovers, -nolist,
-nolog, -nowave

• Default: commented out (;)

DelayFileOpen

This variable instructs the tool to open VHDL87 files on first read or write, else open files when
elaborated.

• Value Range: 0, 1

• Default: off (0)

DumpportsCollapse

This variable collapses vectors (VCD id entries) in dumpports output.

• Value Range: 0, 1

• Default: off (0)

GenerateFormat

This variable controls the format of a generate statement label. Do not enclose the argument in
quotation marks.

• Value Range: Any non-quoted string containing at a minimum a %s followed by a %d

• Default: %s__%d

GlobalSharedObjectsList

This variable instruct the tool to load the specified PLI/FLI shared objects with global symbol
visibility.

• Value Range: comma separated list of filenames

• Default: commented out (;)

IgnoreError

This variable instructs the tool to ignore VHDL assertion errors.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

ModelSim User’s Manual, v6.2g334

Simulator Variables
Simulator Control Variables

February 2007

• Value Range: 0,1

• Default: off (0)

IgnoreFailure

This variable instructs the tool to ignore VHDL assertion failures.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: 0,1

• Default: off (0)

IgnoreNote

This variable instructs the tool to ignore VHDL assertion notes.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: 0,1

• Default: off (0)

IgnoreWarning

This variable instructs the tool to ignore VHDL assertion warnings.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: 0,1

• Default: off (0)

IterationLimit

This variable specifies a limit on simulation kernel iterations allowed without advancing time.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: positive integer

• Default: 5000

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 335
February 2007

License

This variable controls the license file search.

• Value Range: one ore more of the following <license_option>, separated by spaces if
using multiple entries. Refer also to the vsim <license_option>.

• Default: search all licenses

LockedMemory

For HP-UX 10.2 use only. This variable enables memory locking to speed up large designs (>
500mb memory footprint)

• Value Range: positive integer in units of MB.

• Default: disabled

MaxReportRhsCrossProducts

This variable specifies a limit on number of Cross (bin) products which are listed against a
Cross when a XML or UCDB report is generated. The warning reports when any instance of
unusually high number of Cross (bin) product and truncation of Cross (bin) product list for a
Cross.

• Value Range: positive integer

Table A-3. License Variable: License Options

license_option Description

lnlonly only use msimhdlsim and hdlsim

mixedonly exclude single language licenses

nomgc exclude MGC licenses

nolnl exclude language neutral licenses

nomix exclude msimhdlmix and hdlmix

nomti exclude MTI licenses

noqueue do not wait in license queue if no licenses are available

noslvhdl exclude qhsimvh and vsim

noslvlog exclude qhsimvl and vsimvlog

plus only use PLUS license

vlog only use VLOG license

vhdl only use VHDL license

ModelSim User’s Manual, v6.2g336

Simulator Variables
Simulator Control Variables

February 2007

• Default: 1000

NumericStdNoWarnings

This variable disables warnings generated within the accelerated numeric_std and numeric_bit
packages.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: 0, 1

• Default: off (0)

OnFinish

This variable controls the behavior of the tool when it encounters $finish in the design code.

• Value Range:

• ask —

o In batch mode, the simulation exits.

o In GUI mode, a dialog box pops up and asks for user confirmation on whether to
quit the simulation.

• stop — Causes the simulation to stay loaded in memory. This can make some post-
simulation tasks easier.

• exit — The simulation exits without asking for any confirmation.

• Default: ask — Exits in batch mode; prompts user in GUI mode.

PathSeparator

This variable specifies the character used for hierarchical boundaries of HDL modules. This
variable does not affect file system paths. The argument to PathSeparator must not be the same
character as DatasetSeparator.

• Value Range: any character except those with special meaning, such as \, {, }, etc.

• Default: /

PrintSimStats

This variable instructs the simulator to print the output of the simstats command upon exit. You
can set this variable interactively with the -printsimstats argument to the vsim command.

• Value Range: 0, 1

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 337
February 2007

• Default: 0

Resolution

This variable specifies the simulator resolution. The argument must be less than or equal to the
UserTimeUnit and must not contain a space between value and units, for example:

Resoultion = 10fs

You can override this value with the -t argument to vsim. You should set a smaller resolution if
your delays get truncated.

• Value Range: fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or 100

• Default: ps

RunLength

This variable specifies the default simulation length in units specified by the UserTimeUnit
variable

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: positive integer

• Default: 100

ShowFunctions

This variable sets the format for Breakpoint and Fatal error messages. When set to 1 (the default
value), messages will display the name of the function, task, subprogram, module, or
architecture where the condition occurred, in addition to the file and line number. Set to 0 to
revert messages to previous format.

• Value Range: 0, 1

• Default: 1

SignalSpyPathSeparator

This variable specifies a unique path separator for the Signal Spy functions. The argument to
SignalSpyPathSeparator must not be the same character as DatasetSeparator.

• Value Range: any character except those with special meaning, such as \, {, }, etc.

• Default: /

ModelSim User’s Manual, v6.2g338

Simulator Variables
Simulator Control Variables

February 2007

Startup

This variable specifies a simulation startup macro. Refer to the do command

• Value Range: = do <DO filename>; any valid macro (do) file

• Default: commented out (;)

StdArithNoWarnings

This variable suppresses warnings generated within the accelerated Synopsys std_arith
packages.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: 0, 1

• Default: off (0)

ToggleMaxIntValues

This variable sets the maximum number of VHDL integer values to record with toggle
coverage.

• Value Range: positive integer

• Default: 100

TranscriptFile

This variable specifies a file for saving command transcript. You can specify environment
variables in the pathname.

• Value Range: any valid filename

• Default: transcript

UnbufferedOutput

This variable controls VHDL and Verilog files open for write.

• Value Range: 0 (buffered), 1 (unbuffered)

• Default: 0

UseCsupV2

Applies only to HP-UX 11.00 and when you compiled FLI/PLI/VPI C++ code with the -AA
option for aCC.

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 339
February 2007

This variable instructs vsim to use /usr/lib/libCsup_v2.sl for shared object loading.

• Value Range: 0, 1

• Default: off (0)

UserTimeUnit

This variable specifies scaling for the Wave window and the default time units to use for
commands such as force and run. You should generally set this variable to default, in which
case it takes the value of the Resolution variable.

• Value Range: fs, ps, ns, us, ms, sec, or default

• Default: default

Veriuser

This variable specifies a list of dynamically loadable objects for Verilog PLI/VPI applications.

• Value Range: one or more valid shared object names

• Default: commented out (;)

WarnConstantChange

This variable controls whether a warning is issued when the change command changes the
value of a VHDL constant or generic.

• Value Range: 0, 1

• Default: on (1)

WaveSignalNameWidth

This variable controls the number of visible hierarchical regions of a signal name shown in the
Wave Window.

• Value Range: 0 (display full name), positive integer (display corresponding level of
hierarchy)

• Default: 0

WLFCacheSize

This variable sets the number of megabytes for the WLF reader cache; WLF reader caching
caches blocks of the WLF file to reduce redundant file I/O

• Value Range: positive integer

ModelSim User’s Manual, v6.2g340

Simulator Variables
Simulator Control Variables

February 2007

• Default: 0

WLFCollapseMode

This variable controls when the WLF file records values.

• Value Range: 0 (every change of logged object), 1 (end of each delta step), 2 (end of
simulator time step)

• Default: 1

WLFCompress

This variable enables WLF file compression.

• Value Range: 0, 1

• Default: 1 (on)

WLFDeleteOnQuit

This variable specifies whether a WLF file should be deleted when the simulation ends.

• Value Range: 0, 1

• Default: 0 (do not delete)

WLFFilename

This variable specifies the default WLF file name.

• Value Range: 0, 1

• Default: vsim.wlf

WLFOptimize

This variable specifies whether the viewing of waveforms is optimized.

• Value Range: 0, 1

• Default: 1 (on)

WLFSaveAllRegions

This variable specifies the regions to save in the WLF file.

• Value Range: 0 (only regions containing logged signals), 1 (all design hierarchy)

• Default: 0

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 341
February 2007

WLFSizeLimit

This variable limits the WLF file by size (as closely as possible) to the specified number of
megabytes; if both size and time limits are specified the most restrictive is used.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: any positive integer in units of MB or 0 (unlimited)

• Default: 0 (unlimited)

WLFTimeLimit

This variable limits the WLF file by time (as closely as possible) to the specified amount of
time. If both time and size limits are specified the most restrictive is used.

You can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

• Value Range: any positive integer or 0 (unlimited)

• Default: 0 (unlimited)

ModelSim User’s Manual, v6.2g342

Simulator Variables
Simulator Control Variables

February 2007

Setting Simulator Control Variables With The GUI
Changes made in the Runtime Options dialog are written to the active modelsim.ini file, if it is
writable, and affect the current session as well as all future sessions. If the file is read-only, the
changes affect only the current session. The Runtime Options dialog is accessible by selecting
Simulate > Runtime Options in the Main window. The dialog contains three tabs - Defaults,
Assertions, and WLF Files.

The Defaults tab includes these options:

Figure A-1. Runtime Options Dialog: Defaults Tab

• Default Radix — Sets the default radix for the current simulation run. You can also use
the radix command to set the same temporary default. The chosen radix is used for all
commands (force, examine, change are examples) and for displayed values in the
Objects, Locals, Dataflow, List, and Wave windows. The corresponding modelsim.ini
variable is DefaultRadix.

• Suppress Warnings

o Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. The corresponding modelsim.ini variable
is StdArithNoWarnings.

o Selecting From IEEE Numeric Std Packages suppresses warnings generated
within the accelerated numeric_std and numeric_bit packages. The corresponding
modelsim.ini variable is NumericStdNoWarnings.

• Default Run — Sets the default run length for the current simulation. The
corresponding modelsim.ini variable is RunLength.

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 343
February 2007

• Iteration Limit — Sets a limit on the number of deltas within the same simulation time
unit to prevent infinite looping. The corresponding modelsim.ini variable is
IterationLimit.

• Default Force Type — Selects the default force type for the current simulation. The
corresponding modelsim.ini variable is DefaultForceKind.

The Assertions tab includes these options:

Figure A-2. Runtime Options Dialog Box: Assertions Tab

• No Message Display For -VHDL — Selects the VHDL assertion severity for which
messages will not be displayed (even if break on assertion is set for that severity).
Multiple selections are possible. The corresponding modelsim.ini variables are
IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote.

The WLF Files tab includes these options:

ModelSim User’s Manual, v6.2g344

Simulator Variables
Simulator Control Variables

February 2007

Figure A-3. Runtime Options Dialog Box, WLF Files Tab

• WLF File Size Limit — Limits the WLF file by size (as closely as possible) to the
specified number of megabytes. If both size and time limits are specified, the most
restrictive is used. Setting it to 0 results in no limit. The corresponding modelsim.ini
variable is WLFSizeLimit.

• WLF File Time Limit — Limits the WLF file by size (as closely as possible) to the
specified amount of time. If both time and size limits are specified, the most restrictive
is used. Setting it to 0 results in no limit. The corresponding modelsim.ini variable is
WLFTimeLimit.

• WLF Attributes — Specifies whether to compress WLF files and whether to delete the
WLF file when the simulation ends. You would typically only disable compression for
troubleshooting purposes. The corresponding modelsim.ini variables are WLFCompress
for compression and WLFDeleteOnQuit for WLF file deletion.

• Design Hierarchy — Specifies whether to save all design hierarchy in the WLF file or
only regions containing logged signals. The corresponding modelsim.ini variable is
WLFSaveAllRegions.

Message System Variables
The message system variables (located under the [msg_system] heading) help you identify and
troubleshoot problems while using the application. See also Message System.

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 345
February 2007

error

This variable changes the severity of the listed message numbers to "error". Refer to Changing
Message Severity Level for more information.

• Value Range: list of message numbers

• Default: none

fatal

This variable changes the severity of the listed message numbers to "fatal". Refer to Changing
Message Severity Level for more information.

• Value Range: list of message numbers

• Default: none

note

This variable changes the severity of the listed message numbers to "note". Refer to Changing
Message Severity Level for more information

• Value Range: list of message numbers

• Default: none

suppress

This variable suppresses the listed message numbers. Refer to Changing Message Severity
Level for more information

• Value Range: list of message numbers

• Default: none

warning

This variable changes the severity of the listed message numbers to "warning". Refer to
Changing Message Severity Level for more information

• Value Range: list of message numbers

• Default: none

msgmode

This variable controls where the simulator outputs elaboration and runtime messages. Refer to
the section “Message Viewer” for more information.

ModelSim User’s Manual, v6.2g346

Simulator Variables
Simulator Control Variables

February 2007

• Value Range: tran (transcript only), wlf (wlf file only), both

• Default: both

Commonly Used INI Variables
Several of the more commonly used modelsim.ini variables are further explained below.

Common Environment Variables
You can use environment variables in your initialization files. Use a dollar sign ($) before the
environment variable name. For example:

[Library]
work = $HOME/work_lib
test_lib = ./$TESTNUM/work
...
[vsim]
IgnoreNote = $IGNORE_ASSERTS
IgnoreWarning = $IGNORE_ASSERTS
IgnoreError = 0
IgnoreFailure = 0

There is one environment variable, MODEL_TECH, that you cannot — and should not — set.
MODEL_TECH is a special variable set by Model Technology software. Its value is the name
of the directory from which the VCOM or VLOG compilers or VSIM simulator was invoked.
MODEL_TECH is used by the other Model Technology tools to find the libraries.

Hierarchical Library Mapping
By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools don’t find a mapping in the modelsim.ini file, then they will
search only the library section of the initialization file specified by the "others" clause. For
example:

[Library]
asic_lib = /cae/asic_lib
work = my_work
others = /install_dir/modeltech/modelsim.ini

Since the file referred to by the "others" clause may itself contain an "others" clause, you can
use this feature to chain a set of hierarchical INI files for library mappings.

Creating a Transcript File
A feature in the system initialization file allows you to keep a record of everything that occurs
in the transcript: error messages, assertions, commands, command outputs, etc. To do this, set

Simulator Variables
Simulator Control Variables

ModelSim User’s Manual, v6.2g 347
February 2007

the value for the TranscriptFile line in the modelsim.ini file to the name of the file in which you
would like to record the ModelSim history.

; Save the command window contents to this file
TranscriptFile = trnscrpt

You can disable the creation of the transcript file by using the following ModelSim command
immediately after ModelSim starts:

transcript file ""

Using a Startup File
The system initialization file allows you to specify a command or a do file that is to be executed
after the design is loaded. For example:

; VSIM Startup command
Startup = do mystartup.do

The line shown above instructs ModelSim to execute the commands in the macro file named
mystartup.do.

; VSIM Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.

See the do command for additional information on creating do files.

Turning Off Assertion Messages
You can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge number of
warnings.

[vsim]
IgnoreNote = 1
IgnoreWarning = 1
IgnoreError = 1
IgnoreFailure = 1

Turning off Warnings from Arithmetic Packages
You can disable warnings from the Synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsim]
NumericStdNoWarnings = 1
StdArithNoWarnings = 1

ModelSim User’s Manual, v6.2g348

Simulator Variables
Simulator Control Variables

February 2007

Force Command Defaults
The force command has -freeze, -drive, and -deposit options. When none of these is specified,
then -freeze is assumed for unresolved signals and -drive is assumed for resolved signals. But if
you prefer -freeze as the default for both resolved and unresolved signals, you can change the
defaults in the modelsim.ini file.

[vsim]
; Default Force Kind
; The choices are freeze, drive, or deposit
DefaultForceKind = freeze

Restart Command Defaults
The restart command has -force, -nobreakpoint, -nofcovers, -nolist, -nolog, and -nowave
options. You can set any of these as defaults by entering the following line in the modelsim.ini
file:

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nofcovers, -nolist, -nolog, and -
nowave.

Example:

DefaultRestartOptions = -nolog -force

VHDL Standard
You can specify which version of the 1076 Std ModelSim follows by default using the
VHDL93 variable:

[vcom]
; VHDL93 variable selects language version as the default.
; Default is VHDL-2002.
; Value of 0 or 1987 for VHDL-1987.
; Value of 1 or 1993 for VHDL-1993.
; Default or value of 2 or 2002 for VHDL-2002.
VHDL93 = 2002

Opening VHDL Files
You can delay the opening of VHDL files with an entry in the INI file if you wish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen option is
enabled, then the file is not opened until the first read or write to that file.

[vsim]
DelayFileOpen = 1

Simulator Variables
Variable Precedence

ModelSim User’s Manual, v6.2g 349
February 2007

Variable Precedence
Note that some variables can be set in a .modelsim file (Registry in Windows) or a .ini file. A
variable set in the .modelsim file takes precedence over the same variable set in a .ini file. For
example, assume you have the following line in your modelsim.ini file:

TranscriptFile = transcript

And assume you have the following line in your .modelsim file:

set PrefMain(file) {}

In this case the setting in the .modelsim file overrides that in the modelsim.ini file, and a
transcript file will not be produced.

Simulator State Variables
Unlike other variables that must be explicitly set, simulator state variables return a value
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO files (macros). The variables are referenced in
commands by prefixing the name with a dollar sign ($).

argc

This variable returns the total number of parameters passed to the current macro.

architecture

This variable returns the name of the top-level architecture currently being simulated; for a
configuration or Verilog module, this variable returns an empty string.

configuration

This variable returns the name of the top-level configuration currently being simulated; returns
an empty string if no configuration.

delta

This variable returns the number of the current simulator iteration.

entity

This variable returns the name of the top-level VHDL entity or Verilog module currently being
simulated.

library

This variable returns the library name for the current region.

ModelSim User’s Manual, v6.2g350

Simulator Variables
Simulator State Variables

February 2007

MacroNestingLevel

This variable returns the current depth of macro call nesting.

n

This variable represents a macro parameter, where n can be an integer in the range 1-9.

Now

This variable always returns the current simulation time with time units (e.g., 110,000 ns) Note:
will return a comma between thousands.

now

This variable when time resolution is a unary unit (i.e., 1ns, 1ps, 1fs): returns the current
simulation time without time units (e.g., 100000) when time resolution is a multiple of the unary
unit (i.e., 10ns, 100ps, 10fs): returns the current simulation time with time units (e.g. 110000 ns)
Note: will not return comma between thousands.

resolution

This variable returns the current simulation time resolution.

Referencing Simulator State Variables
Variable values may be referenced in simulator commands by preceding the variable name with
a dollar sign ($). For example, to use the now and resolution variables in an echo command
type:

echo "The time is $now $resolution."

Depending on the current simulator state, this command could result in:

The time is 12390 ps 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a "\". For
example, \$now will not be interpreted as the current simulator time.

Special Considerations for the now Variable
For the when command, special processing is performed on comparisons involving the now
variable. If you specify "when {$now=100}...", the simulator will stop at time 100 regardless of
the multiplier applied to the time resolution.

You must use 64-bit time operators if the time value of now will exceed 2147483647 (the limit
of 32-bit numbers). For example:

Simulator Variables
Simulator State Variables

ModelSim User’s Manual, v6.2g 351
February 2007

if { [gtTime $now 2us] } {
.
.
.

See Simulator Tcl Time Commands for details on 64-bit time operators.

ModelSim User’s Manual, v6.2g352

Simulator Variables
Simulator State Variables

February 2007

ModelSim User’s Manual, v6.2g 353
February 2007

Appendix B
Location Mapping

Pathnames to source files are recorded in libraries by storing the working directory from which
the compile is invoked and the pathname to the file as specified in the invocation of the
compiler. The pathname may be either a complete pathname or a relative pathname.

Referencing Source Files with Location Maps
ModelSim tools that reference source files from the library locate a source file as follows:

• If the pathname stored in the library is complete, then this is the path used to reference
the file.

• If the pathname is relative, then the tool looks for the file relative to the current working
directory. If this file does not exist, then the path relative to the working directory stored
in the library is used.

This method of referencing source files generally works fine if the libraries are created and used
on a single system. However, when multiple systems access a library across a network, the
physical pathnames are not always the same and the source file reference rules do not always
work.

Using Location Mapping
Location maps are used to replace prefixes of physical pathnames in the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

ModelSim tools open the location map file on invocation if the MGC_LOCATION_MAP
environment variable is set. If MGC_LOCATION_MAP is not set, ModelSim will look for a
file named "mgc_location_map" in the following locations, in order:

• the current directory

• your home directory

• the directory containing the ModelSim binaries

• the ModelSim installation directory

Use these two steps to map your files:

ModelSim User’s Manual, v6.2g354

Location Mapping
Referencing Source Files with Location Maps

February 2007

1. Set the environment variable MGC_LOCATION_MAP to the path to your location map
file.

2. Specify the mappings from physical pathnames to logical pathnames:

$SRC
/home/vhdl/src
/usr/vhdl/src

$IEEE
/usr/modeltech/ieee

Pathname Syntax
The logical pathnames must begin with $ and the physical pathnames must begin with /. The
logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have different
pathnames on different systems).

How Location Mapping Works
When a pathname is stored, an attempt is made to map the physical pathname to a path relative
to a logical pathname. This is done by searching the location map file for the first physical
pathname that is a prefix to the pathname in question. The logical pathname is then substituted
for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/test.vhd". If a mapping
can be made to a logical pathname, then this is the pathname that is saved. The path to a source
file entry for a design unit in a library is a good example of a typical mapping.

For mapping from a logical pathname back to the physical pathname, ModelSim expects an
environment variable to be set for each logical pathname (with the same name). ModelSim
reads the location map file when a tool is invoked. If the environment variables corresponding
to logical pathnames have not been set in your shell, ModelSim sets the variables to the first
physical pathname following the logical pathname in the location map. For example, if you
don't set the SRC environment variable, ModelSim will automatically set it to "/home/vhdl/src".

Mapping with TCL Variables
Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and
SourceMap. You would define these variables in a modelsim.tcl file. See the The modelsim.tcl
File for details.

ModelSim User’s Manual, v6.2g 355
February 2007

Appendix C
Error and Warning Messages

Message System
The ModelSim message system helps you identify and troubleshoot problems while using the
application. The messages display in a standard format in the Transcript pane. Accordingly, you
can also access them from a saved transcript file (see Saving the Transcript File for more
details).

Message Format
The format for the messages is:

** <SEVERITY LEVEL>: ([<Tool>[-<Group>]]-<MsgNum>) <Message>

• SEVERITY LEVEL — may be one of the following:

• Tool — indicates which ModelSim tool was being executed when the message was
generated. For example tool could be vcom, vdel, vsim, etc.

• Group — indicates the topic to which the problem is related. For example group could
be FLI, PLI, VCD, etc.

Example

** Error: (vsim-PLI-3071) ./src/19/testfile(77): $fdumplimit : Too few
arguments.

Getting More Information
Each message is identified by a unique MsgNum id. You can access additional information
about a message using the unique id and the verror command. For example:

Table C-1. Severity Level Types

severity level meaning

Note This is an informational message.

Warning There may be a problem that will affect the accuracy of
your results.

Error The tool cannot complete the operation.

Fatal The tool cannot complete execution.

ModelSim User’s Manual, v6.2g356

Error and Warning Messages
Suppressing Warning Messages

February 2007

% verror 3071
Message # 3071:
Not enough arguments are being passed to the specified system task or
function.

Changing Message Severity Level
You can suppress or change the severity of notes, warnings, and errors that come from vcom,
vlog, and vsim. You cannot change the severity of or suppress Fatal or Internal messages.

There are two ways to modify the severity of or suppress notes, warnings, and errors:

• Use the -error, -fatal, -note, -suppress, and -warning arguments to vcom, vlog, or vsim.
See the command descriptions in the Reference Manual for details on those arguments.

• Set a permanent default in the [msg_system] section of the modelsim.ini file. See
Simulator Control Variables for more information.

Suppressing Warning Messages
You can suppress some warning messages. For example, you may receive warning messages
about unbound components about which you are not concerned.

Suppressing VCOM Warning Messages
Use the -nowarn <number> argument to vcom to suppress a specific warning message. For
example:

vcom -nowarn 1

suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles via the modelsim.ini file (see Verilog
Compiler Control Variables).

The warning message numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = compliance checks
7 = optimization messages
8 = lint checks
9 = signal value dependency at elaboration
10 = VHDL93 constructs in VHDL87 code
14 = locally static error deferred until simulation run

Error and Warning Messages
Exit Codes

ModelSim User’s Manual, v6.2g 357
February 2007

These numbers are category-of-warning message numbers. They are unrelated to vcom
arguments that are specified by numbers, such as vcom -87 – which disables support for
VHDL-1993 and 2002.

Suppressing VLOG Warning Messages
Use the +nowarn<CODE> argument to vlog to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vlog +nowarnDECAY

suppresses decay warning messages.

Suppressing VSIM Warning Messages
Use the +nowarn<CODE> argument to vsim to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vsim +nowarnTFMPC

suppresses warning messages about too few port connections.

Exit Codes
The table below describes exit codes used by ModelSim tools.

Table C-2. Exit Codes

Exit code Description

0 Normal (non-error) return

1 Incorrect invocation of tool

2 Previous errors prevent continuing

3 Cannot create a system process (execv, fork, spawn, etc.)

4 Licensing problem

5 Cannot create/open/find/read/write a design library

6 Cannot create/open/find/read/write a design unit

7 Cannot open/read/write/dup a file (open, lseek, write, mmap,
munmap, fopen, fdopen, fread, dup2, etc.)

8 File is corrupted or incorrect type, version, or format of file

9 Memory allocation error

ModelSim User’s Manual, v6.2g358

Error and Warning Messages
Exit Codes

February 2007

10 General language semantics error

11 General language syntax error

12 Problem during load or elaboration

13 Problem during restore

14 Problem during refresh

15 Communication problem (Cannot create/read/write/close
pipe/socket)

16 Version incompatibility

19 License manager not found/unreadable/unexecutable
(vlm/mgvlm)

42 Lost license

43 License read/write failure

44 Modeltech daemon license checkout failure #44

45 Modeltech daemon license checkout failure #45

90 Assertion failure (SEVERITY_QUIT)

99 Unexpected error in tool

100 GUI Tcl initialization failure

101 GUI Tk initialization failure

102 GUI IncrTk initialization failure

111 X11 display error

202 Interrupt (SIGINT)

204 Illegal instruction (SIGILL)

205 Trace trap (SIGTRAP)

206 Abort (SIGABRT)

208 Floating point exception (SIGFPE)

210 Bus error (SIGBUS)

211 Segmentation violation (SIGSEGV)

213 Write on a pipe with no reader (SIGPIPE)

214 Alarm clock (SIGALRM)

215 Software termination signal from kill (SIGTERM)

Table C-2. Exit Codes

Exit code Description

Error and Warning Messages
Miscellaneous Messages

ModelSim User’s Manual, v6.2g 359
February 2007

Miscellaneous Messages
This section describes miscellaneous messages which may be associated with ModelSim.

Compilation of DPI Export TFs Error

** Fatal: (vsim-3740) Can't locate a C compiler for compilation of
DPI export tasks/functions.

• Description — ModelSim was unable to locate a C compiler to compile the DPI
exported tasks or functions in your design.

• Suggested Action —Make sure that a C compiler is visible from where you are running
the simulation.

Empty port name warning

** WARNING: [8] <path/file_name>: empty port name in port list.

• Description — ModelSim reports these warnings if you use the -lint argument to vlog. It
reports the warning for any NULL module ports.

• Suggested action — If you wish to ignore this warning, do not use the -lint argument.

Lock message

waiting for lock by user@user. Lockfile is <library_path>/_lock

• Description — The _lock file is created in a library when you begin a compilation into
that library, and it is removed when the compilation completes. This prevents
simultaneous updates to the library. If a previous compile did not terminate properly,
ModelSim may fail to remove the _lock file.

• Suggested action — Manually remove the _lock file after making sure that no one else is
actually using that library.

216 User-defined signal 1 (SIGUSR1)

217 User-defined signal 2 (SIGUSR2)

218 Child status change (SIGCHLD)

230 Exceeded CPU limit (SIGXCPU)

231 Exceeded file size limit (SIGXFSZ)

Table C-2. Exit Codes

Exit code Description

ModelSim User’s Manual, v6.2g360

Error and Warning Messages
Miscellaneous Messages

February 2007

Metavalue detected warning

Warning: NUMERIC_STD.">": metavalue detected, returning FALSE

• Description — This warning is an assertion being issued by the IEEE numeric_std
package. It indicates that there is an 'X' in the comparison.

• Suggested action — The message does not indicate which comparison is reporting the
problem since the assertion is coming from a standard package. To track the problem,
note the time the warning occurs, restart the simulation, and run to one time unit before
the noted time. At this point, start stepping the simulator until the warning appears. The
location of the blue arrow in a Source window will be pointing at the line following the
line with the comparison.

These messages can be turned off by setting the NumericStdNoWarnings variable to 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

signal is read by the process but is not in the sensitivity list

• Description — ModelSim outputs this message when you use the -check_synthesis
argument to vcom. It reports the warning for any signal that is read by the process but is
not in the sensitivity list.

• Suggested action — There are cases where you may purposely omit signals from the
sensitivity list even though they are read by the process. For example, in a strictly
sequential process, you may prefer to include only the clock and reset in the sensitivity
list because it would be a design error if any other signal triggered the process. In such
cases, your only option is to not use the -check_synthesis argument.

Tcl Initialization error 2

Tcl_Init Error 2 : Can't find a usable Init.tcl in the following
directories :

./../tcl/tcl8.3 .

• Description — This message typically occurs when the base file was not included in a
Unix installation. When you install ModelSim, you need to download and install 3 files
from the ftp site. These files are:

modeltech-base.tar.gz
modeltech-docs.tar.gz
modeltech-<platform>.exe.gz

If you install only the <platform> file, you will not get the Tcl files that are located in
the base file.

This message could also occur if the file or directory was deleted or corrupted.

• Suggested action — Reinstall ModelSim with all three files.

Error and Warning Messages
Miscellaneous Messages

ModelSim User’s Manual, v6.2g 361
February 2007

Too few port connections

** Warning (vsim-3017): foo.v(1422): [TFMPC] - Too few port
connections. Expected 2, found 1.

Region: /foo/tb

• Description — This warning occurs when an instantiation has fewer port connections
than the corresponding module definition. The warning doesn’t necessarily mean
anything is wrong; it is legal in Verilog to have an instantiation that doesn’t connect all
of the pins. However, someone that expects all pins to be connected would like to see
such a warning.

Here are some examples of legal instantiations that will and will not cause the warning
message.

Module definition:

module foo (a, b, c, d);

Instantiation that does not connect all pins but will not produce the warning:

foo inst1(e, f, g,); // positional association
foo inst1(.a(e), .b(f), .c(g), .d()); // named association

Instantiation that does not connect all pins but will produce the warning:

foo inst1(e, f, g); // positional association
foo inst1(.a(e), .b(f), .c(g)); // named association

Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Here’s another example:

foo inst1(e, , g, h);
foo inst1(.a(e), .b(), .c(g), .d(h));

• Suggested actions —

o Check that there is not an extra comma at the end of the port list. (e.g., model(a,b,)).
The extra comma is legal Verilog and implies that there is a third port connection
that is unnamed.

o If you are purposefully leaving pins unconnected, you can disable these messages
using the +nowarnTFMPC argument to vsim.

ModelSim User’s Manual, v6.2g362

Error and Warning Messages
Enforcing Strict 1076 Compliance

February 2007

VSIM license lost

Console output:
Signal 0 caught... Closing vsim vlm child.
vsim is exiting with code 4
FATAL ERROR in license manager

transcript/vsim output:
** Error: VSIM license lost; attempting to re-establish.
Time: 5027 ns Iteration: 2
** Fatal: Unable to kill and restart license process.
Time: 5027 ns Iteration: 2

• Description — ModelSim queries the license server for a license at regular intervals.
Usually these "License Lost" error messages indicate that network traffic is high, and
communication with the license server times out.

• Suggested action — Anything you can do to improve network communication with the
license server will probably solve or decrease the frequency of this problem.

Enforcing Strict 1076 Compliance
The optional -pedanticerrors argument to vcom enforces strict compliance to the IEEE 1076
LRM in the cases listed below. The default behavior for these cases is to issue an insuppressible
warning message. If you compile with -pedanticerrors, the warnings change to an error, unless
otherwise noted. Descriptions in quotes are actual warning/error messages emitted by vcom. As
noted, in some cases you can suppress the warning using -nowarn [level].

• Type conversion between array types, where the element subtypes of the arrays do not
have identical constraints.

• "Extended identifier terminates at newline character (0xa)."

• "Extended identifier contains non-graphic character 0x%x."

• "Extended identifier \"%s\" contains no graphic characters."

• "Extended identifier \"%s\" did not terminate with backslash character."

• "An abstract literal and an identifier must have a separator between them."

This is for forming physical literals, which comprise an optional numeric literal,
followed by a separator, followed by an identifier (the unit name). Warning is level 4,
which means "-nowarn 4" will suppress it.

• In VHDL 1993 or 2002, a subprogram parameter was declared using VHDL 1987
syntax (which means that it was a class VARIABLE parameter of a file type, which is
the only way to do it in VHDL 1987 and is illegal in later VHDLs). Warning is level 10.

• "Shared variables must be of a protected type." Applies to VHDL 2002 only.

Error and Warning Messages
Enforcing Strict 1076 Compliance

ModelSim User’s Manual, v6.2g 363
February 2007

• Expressions evaluated during elaboration cannot depend on signal values. Warning is
level 9.

• "Non-standard use of output port '%s' in PSL expression." Warning is level 11.

• "Non-standard use of linkage port '%s' in PSL expression." Warning is level 11.

• Type mark of type conversion expression must be a named type or subtype, it can't have
a constraint on it.

• When the actual in a PORT MAP association is an expression, it must be a (globally)
static expression. The port must also be of mode IN.

• The expression in the CASE and selected signal assignment statements must follow the
rules given in 8.8 of the LRM. In certain cases we can relax these rules, but
-pedanticerrors forces strict compliance.

• A CASE choice expression must be a locally static expression. We allow it to be only
globally static, but -pedanticerrors will check that it is locally static. Same rule for
selected signal assignment statement choices. Warning level is 8.

• When making a default binding for a component instantiation, ModelSim's non-standard
search rules found a matching entity. VHDL 2002 LRM Section 5.2.2 spells out the
standard search rules. Warning level is 1.

• Both FOR GENERATE and IF GENERATE expressions must be globally static. We
allow non-static expressions unless -pedanticerrors is present.

• When the actual part of an association element is in the form of a conversion function
call [or a type conversion], and the formal is of an unconstrained array type, the return
type of the conversion function [type mark of the type conversion] must be of a
constrained array subtype. We relax this (with a warning) unless -pedanticerrors is
present when it becomes an error.

• OTHERS choice in a record aggregate must refer to at least one record element.

• In an array aggregate of an array type whose element subtype is itself an array, all
expressions in the array aggregate must have the same index constraint, which is the
element's index constraint. No warning is issued; the presence of -pedanticerrors will
produce an error.

• Non-static choice in an array aggregate must be the only choice in the only element
association of the aggregate.

• The range constraint of a scalar subtype indication must have bounds both of the same
type as the type mark of the subtype indication.

• The index constraint of an array subtype indication must have index ranges each of
whose both bounds must be of the same type as the corresponding index subtype.

• When compiling VHDL 1987, various VHDL 1993 and 2002 syntax is allowed. Use
-pedanticerrors to force strict compliance. Warnings are all level 10.

ModelSim User’s Manual, v6.2g364

Error and Warning Messages
Enforcing Strict 1076 Compliance

February 2007

ModelSim User’s Manual, v6.2g 365
February 2007

Appendix D
Verilog PLI/VPI/DPI

This appendix describes the ModelSim implementation of the Verilog PLI (Programming
Language Interface), VPI (Verilog Procedural Interface) and SystemVerilog DPI (Direct
Programming Interface). These three interfaces provide a mechanism for defining tasks and
functions that communicate with the simulator through a C procedural interface. There are
many third party applications available that interface to Verilog simulators through the PLI (see
Third Party PLI Applications). In addition, you may write your own PLI/VPI/DPI applications.

Implementation Information
ModelSim Verilog implements the PLI as defined in the IEEE Std 1364-2001, with the
exception of the acc_handle_datapath() routine. We did not implement the
acc_handle_datapath() routine because the information it returns is more appropriate for a
static timing analysis tool.

The VPI is partially implemented as defined in the IEEE Std 1364-2005. The list of currently
supported functionality can be found in the following file:

<install_dir>/modeltech/docs/technotes/Verilog_VPI.note

ModelSim SystemVerilog implements DPI as defined in IEEE Std P1800-2005.

The IEEE Std 1364 is the reference that defines the usage of the PLI/VPI routines, and the IEEE
Std P1800-2005 Language Reference Manual (LRM) defines the usage of DPI routines. This
manual describes only the details of using the PLI/VPI/DPI with ModelSim Verilog and
SystemVerilog.

g++ Compiler Support for use with PLI/VPI/DPI
We strongly encourage that unless you have a reason to do otherwise, you should use the built-
in g++ compiler that is shipped with the ModelSim compiler to compile your C++ code. This is
the version that has been tested and is supported for any given release.

Specifying Your Own g++ Compiler
If you must use a different g++ compiler, other than that shipped with ModelSim, you need to
set a variable in your modelsim.ini file, as follows:

CppPath = /usr/bin/g++

to point to the desired g++ version.

ModelSim User’s Manual, v6.2g366

Verilog PLI/VPI/DPI
Registering PLI Applications

February 2007

Registering PLI Applications
Each PLI application must register its system tasks and functions with the simulator, providing
the name of each system task and function and the associated callback routines. Since many PLI
applications already interface to Verilog-XL, ModelSim Verilog PLI applications make use of
the same mechanism to register information about each system task and function in an array of
s_tfcell structures. This structure is declared in the veriuser.h include file as follows:

typedef int (*p_tffn)();
typedef struct t_tfcell {

short type;/* USERTASK, USERFUNCTION, or USERREALFUNCTION */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */
p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn misctf; /* miscellaneous reason callback function */
char *tfname;/* name of system task or function */

/* The following fields are ignored by ModelSim Verilog */
int forwref;
char *tfveritool;
char *tferrmessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *namecell_p;
int warning_printed;

} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in the
IEEE Std 1364. The simulator calls these functions for various reasons. All callback functions
are optional, but most applications contain at least the calltf function, which is called when the
system task or function is executed in the Verilog code. The first argument to the callback
functions is the value supplied in the data field (many PLI applications don't use this field). The
type field defines the entry as either a system task (USERTASK) or a system function that
returns either a register (USERFUNCTION) or a real (USERREALFUNCTION). The tfname
field is the system task or function name (it must begin with $). The remaining fields are not
used by ModelSim Verilog.

On loading of a PLI application, the simulator first looks for an init_usertfs function, and then a
veriusertfs array. If init_usertfs is found, the simulator calls that function so that it can call
mti_RegisterUserTF() for each system task or function defined. The mti_RegisterUserTF()
function is declared in veriuser.h as follows:

void mti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the simulation
because the simulator de-references the usertf pointer to call the callback functions. We
recommend that you define your entries in an array, with the last entry set to 0. If the array is
named veriusertfs (as is the case for linking to Verilog-XL), then you don't have to provide an

Verilog PLI/VPI/DPI
Registering VPI Applications

ModelSim User’s Manual, v6.2g 367
February 2007

init_usertfs function, and the simulator will automatically register the entries directly from the
array (the last entry must be 0). For example,

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry must be 0 */

};

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:

void init_usertfs()
{

p_tfcell usertf = veriusertfs;
while (usertf->type)

mti_RegisterUserTF(usertf++);
}

It is an error if a PLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see Compiling
and Linking C Applications for PLI/VPI/DPI). The PLI applications are specified as follows
(note that on a Windows platform the file extension would be .dll):

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The libraries
are loaded in the order listed above. Environment variable references can be used in the paths to
the libraries in all cases.

Registering VPI Applications
Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created registration routines must be called at
simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and vpi_register_cb() to
register callbacks. The registration routines must be placed in a table named

ModelSim User’s Manual, v6.2g368

Verilog PLI/VPI/DPI
Registering VPI Applications

February 2007

vlog_startup_routines so that the simulator can find them. The table must be terminated with a 0
entry.

Example D-1. VPI Application Registration

PLI_INT32 MyFuncCalltf(PLI_BYTE8 *user_data)
{ ... }
PLI_INT32 MyFuncCompiletf(PLI_BYTE8 *user_data)
{ ... }
PLI_INT32 MyFuncSizetf(PLI_BYTE8 *user_data)
{ ... }
PLI_INT32 MyEndOfCompCB(p_cb_data cb_data_p)
{ ... }
PLI_INT32 MyStartOfSimCB(p_cb_data cb_data_p)
{ ... }
void RegisterMySystfs(void)
{

vpiHandle tmpH;
s_cb_data callback;

 s_vpi_systf_data systf_data;

 systf_data.type = vpiSysFunc;
 systf_data.sysfunctype = vpiSizedFunc;
 systf_data.tfname = "$myfunc";
 systf_data.calltf = MyFuncCalltf;
 systf_data.compiletf = MyFuncCompiletf;
 systf_data.sizetf = MyFuncSizetf;
 systf_data.user_data = 0;
 tmpH = vpi_register_systf(&systf_data);

vpi_free_object(tmpH);

 callback.reason = cbEndOfCompile;
 callback.cb_rtn = MyEndOfCompCB;
 callback.user_data = 0;
 tmpH = vpi_register_cb(&callback);

vpi_free_object(tmpH);

callback.reason = cbStartOfSimulation;
 callback.cb_rtn = MyStartOfSimCB;
 callback.user_data = 0;

tmpH = vpi_register_cb(&callback);
vpi_free_object(tmpH);

}

void (*vlog_startup_routines[]) () = {
RegisterMySystfs,

 0 /* last entry must be 0 */
};

Loading VPI applications into the simulator is the same as described in Registering PLI
Applications.

Verilog PLI/VPI/DPI
Registering DPI Applications

ModelSim User’s Manual, v6.2g 369
February 2007

Using PLI and VPI Together
PLI and VPI applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

• If an init_usertfs() function exists, then it is executed and only those system tasks and
functions registered by calls to mti_RegisterUserTF() will be defined.

• If an init_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

• If an init_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functions in the vlog_startup_routines table will be defined.

As a result, when PLI and VPI applications exist in the same application object file, they must
be registered in the same manner. VPI registration functions that would normally be listed in a
vlog_startup_routines table can be called from an init_usertfs() function instead.

Registering DPI Applications
DPI applications do not need to be registered. However, each DPI imported or exported task or
function must be identified using SystemVerilog ‘import “DPI-C”’ or ‘export “DPI-C”’syntax.
Examples of the syntax follow:

export "DPI-C" task t1;
task t1(input int i, output int o);
.
.
.
end task
import "DPI-C" function void f1(input int i, output int o);

Your code must provide imported functions or tasks, compiled with an external compiler. An
imported task must return an int value, "1" indicating that it is returning due to a disable, or "0"
indicating otherwise.

These imported functions or objects may then be loaded as a shared library into the simulator
with either the command line option -sv_lib <lib> or -sv_liblist <bootstrap_file>. For
example,

vlog dut.v
gcc -shared -Bsymbolic -o imports.so imports.c
vsim -sv_lib imports top -do <do_file>

The -sv_lib option specifies the shared library name, without an extension. A file extension is
added by the tool, as appropriate to your platform. For a list of file extensions accepted by
platform, see DPI File Loading.

ModelSim User’s Manual, v6.2g370

Verilog PLI/VPI/DPI
DPI Use Flow

February 2007

You can also use the command line options -sv_root and -sv_liblist to control the process for
loading imported functions and tasks. These options are defined in the IEEE Std P1800-2005
LRM.

DPI Use Flow
Correct use of ModelSim DPI depends on the flow presented in this section.

Figure D-1. DPI Use Flow Diagram

1. Run vlog to generate a dpiheader.h file.

This file defines the interface between C and ModelSim for exported and imported tasks
and functions. Though the dpiheader.h is a user convenience file rather than
requirement, including dpiheader.h in your C code can immediately solve problems

vlog

gcc
C compiler

.v

dpiheader.h

.c

vsim

#include "dpiheader.h"

vlog -dpiheader dpiheader.h

vsim

<exportobj>

vsim -dpiexportobj <exportobj>

.o
mtipli.lib

ld/link
loader/linker

<test>.so
shared object

Step 1 Create header

Step 1.5 Required for

Step 2 Include header

Step 3

Compile

C code

vsim -sv_lib <test>

compiled
user code

and load/link

Step 4 Simulate

Windows only

Verilog PLI/VPI/DPI
DPI Use Flow

ModelSim User’s Manual, v6.2g 371
February 2007

caused by an improperly defined interface. An example command for creating the
header file would be:

vlog -dpiheader <dpiheader>.h files.v

2. Required for Windows only; Run a preliminary invocation of vsim with the
-dpiexportobj argument.

Because of limitations with the linker/loader provided on Windows, this additional step
is required. You must create the exported task/function compiled object file (exportobj)
by running a preliminary vsim command, such as:

vsim -dpiexportobj exportobj top

3. Include the dpiheader.h file in your C code.

ModelSim recommends that any user DPI C code that accesses exported tasks/functions,
or defines imported tasks/functions, will include the dpiheader.h file. This allows the C
compiler to verify the interface between C and ModelSim.

4. Compile the C code into a shared object.

Compile your code, providing any .a or other .o files required.

For Windows users — In this step, the object file needs to be bound together with the
.obj that you created using the -dpiexportobj argument, into a single .dll file.

5. Simulate the design.

When simulating, specify the name of the imported DPI C shared object (according to
the SystemVerilog LRM). For example:

vsim -sv_lib <test> top

When Your DPI Export Function is Not Getting Called
This issue can arise in your C code due to the way the C linker resolves symbols. It happens if a
name you choose for a SystemVerilog export function happens to match a function name in a
custom, or even standard C library. In this case, your C compiler will bind calls to the function
in that C library, rather than to the export function in the SystemVerilog simulator.

The symptoms of such a misbinding can be difficult to detect. Generally, the misbound function
silently returns an unexpected or incorrect value.

To determine if you have this type of name aliasing problem, consult the C library
documentation (either the online help or man pages).

Simplified Import of FLI / PLI / C Library Functions
In addition to the traditional method of importing FLI / PLI / C library functions, a simplified
method can be used: you can declare VPI and FLI functions as DPI-C imports. When you

ModelSim User’s Manual, v6.2g372

Verilog PLI/VPI/DPI
DPI Use Flow

February 2007

declare VPI and FLI functions as DPI-C imports, the DPI shared object is loaded at runtime
automatically. Neither the C implementation of the import tf, nor the -sv_lib argument is
required.

Also, on most platforms (see Platform Specific Information), you can declare most standard C
library functions as DPI-C imports.

The following example is processed directly, without DPI C code:

package cmath;
 import "DPI-C" function real sin(input real x);
 import "DPI-C" function real sqrt(input real x);
endpackage

package fli;
 import "DPI-C" function mti_Cmd(input string cmd);
endpackage

module top;
 import cmath::*;
 import fli::*;
 int status, A;
 initial begin
 $display("sin(0.98) = %f", sin(0.98));
 $display("sqrt(0.98) = %f", sqrt(0.98));
 status = mti_Cmd("change A 123");
 $display("A = %1d, status = %1d", A, status);
 end
endmodule

To simulate, you would simply enter a command such as: vsim top.

Platform Specific Information

This feature is not supported on AIX.

On Windows, only FLI and PLI commands may be imported in this fashion. C library functions
are not automatically importable. They must be wrapped in user DPI C functions, which are
brought into the simulator using the -sv_lib argument.

Use Model for Read-Only Work Libraries
You may want to create the work library as a read-only entity, which enables multiple users to
simultaneously share the design library at runtime. The steps are as follows:

• Windows and RS6000/RS64

On these platforms, simply change the permissions on the design library to read only by
issuing a command such as "chmod -R a-w <libname>". Do this after you have finished
compiling with vlog/vcom and vopt.

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 373
February 2007

• All Other Platforms

If a design contains no DPI export tasks or functions, the work library can be changed by
simply changing the permissions, as shown for win32 and rs6000/rs64 above.

For designs that contain DPI export tasks and functions, and are not run on Windows or
RS6000/RS64, by default vsim creates a shared object in directory <libname>/_dpi.
This shared object is called exportwrapper.so (Linux and Solaris) or exportwrapper.sl
(hp700, hppa64, and hpux_ia64). If you are using a read-only library, vsim must not
create any objects in the library.

To prevent vsim from creating objects in the library at runtime, the vsim -dpiexportobj flow is
available on all platforms. Use this flow after compilation, but before you start simulation using
the design library.

An example command sequence on Linux would be:

vlib work
vlog -dpiheader dpiheader.h test.sv
gcc -shared -Bsymbolic -o test.so test.c
vsim -c -dpiexportobj work/_dpi/exportwrapper top
chmod -R a-w work

The library is now ready for simulation by multiple simultaneous users, as follows:

vsim top -sv_lib test

The work/_dpi/exportwrapper argument provides a basename for the shared object.

At runtime, vsim automatically checks to see if the file work/_dpi/exportwrapper.so is up-to-
date with respect to its C source code. If it is out of date, an error message is issued and
elaboration stops.

Compiling and Linking C Applications for
PLI/VPI/DPI

The following platform-specific instructions show you how to compile and link your
PLI/VPI/DPI C applications so that they can be loaded by ModelSim. Various native C/C++
compilers are supported on different platforms. The gcc compiler is supported on all platforms.

The following PLI/VPI/DPI routines are declared in the include files located in the ModelSim
<install_dir>/modeltech/include directory:

• acc_user.h — declares the ACC routines

• veriuser.h — declares the TF routines

• vpi_user.h — declares the VPI routines

• svdpi.h — declares DPI routines

ModelSim User’s Manual, v6.2g374

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

February 2007

The following instructions assume that the PLI, VPI, or DPI application is in a single source
file. For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared libraries is
the same for all platforms. For information on loading libraries for PLI/VPI see PLI/VPI file
loading. For DPI loading instructions, see DPI File Loading.

For all UNIX Platforms
The information in this section applies to all UNIX platforms.

app.so
If app.so is not in your current directory, you must tell the OS where to search for the shared
object. You can do this one of two ways:

• Add a path before app.so in the command line option or control variable (The path may
include environment variables.)

• Put the path in a UNIX shell environment variable:

LD_LIBRARY_PATH_32= <library path without filename> (for Solaris/Linux 32-bit)

or

LD_LIBRARY_PATH_64= <library path without filename> (for Solaris 64-bit)

or

SHLIB_PATH= <library path without filename> (for HP-UX)

Correct Linking of Shared Libraries with -Bsymbolic

In the examples shown throughout this appendix, the -Bsymbolic linker option is used with the
compilation (gcc or g++) or link (ld) commands to correctly resolve symbols. This option
instructs the linker to search for the symbol within the local shared library and bind to that
symbol if it exists. If the symbol is not found within the library, the linker searches for the
symbol within the vsimk executable and binds to that symbol, if it exists.

When using the -Bsymbolic option, the linker may warn about symbol references that are not
resolved within the local shared library. It is safe to ignore these warnings, provided the
symbols are present in other shared libraries or the vsimk executable. (An example of such a
warning would be a reference to a common API call such as vpi_printf()).

Windows Platforms
• Microsoft Visual C 4.1 or Later

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 375
February 2007

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj <install_dir>\win32\mtipli.lib -out:app.dll

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there
is no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be
"vlog_startup_routines". These requirements ensure that the appropriate symbol is
exported, and thus ModelSim can find the symbol when it dynamically loads the DLL.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

• MinGW gcc 3.2.3

gcc -c -I<install_dir>\include app.c
gcc -shared -Bsymbolic -o app.dll app.o -L<install_dir>\win32 -lmtipli

The ModelSim tool requires the use of MinGW gcc compiler rather than the Cygwin gcc
compiler. MinGW gcc is available on the ModelSim FTP site. Remember to add the
path to your gcc executable in the Windows environment variables.

DPI Imports on Windows Platforms
When linking the shared objects, be sure to specify one export option for each DPI imported
task or function in your linking command line. You can use the -isymfile argument from the
vlog command to obtain a complete list of all imported tasks/functions expected by ModelSim.

As an alternative to specifying one -export option for each imported task or function, you can
make use of the __declspec (dllexport) macro supported by Visual C. You can place this macro
before every DPI import task or function declaration in your C source. All the marked functions
will be available for use by vsim as DPI import tasks and functions.

DPI Flow for Exported Tasks and Functions on Windows Platforms

Since the Windows platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions. You need to invoke a special run of vsim. The command is as
follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates an object file <objname>.obj that contains "glue" code for
exported tasks and functions. You must add that object file to the link line for your .dll, listed
after the other object files. For example, a link line for MinGW would be:

gcc -shared -Bsymbolic -o app.dll app.obj <objname>.obj
-L<install_dir>\modeltech\win32 -lmtipli

and a link line for Visual C would be:

ModelSim User’s Manual, v6.2g376

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

February 2007

link -dll -export:<init_function> app.obj <objname>.obj\
<install_dir>\modeltech\win32\mtipli.lib -out:app.dll

32-bit Linux Platform
If your PLI/VPI/DPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VPI/DPI application. For example, to use the standard C
library, specify ‘-lc’ to the ‘ld’ command.

• gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -shared -Bsymbolic -E -o app.so app.o -lc

If you are using ModelSim with RedHat version 7.1 or below, you also need to add the
-noinhibit-exec switch when you specify -Bsymbolic.

The compiler switch -freg-struct-return must be used when compiling any FLI
application code that contains foreign functions that return real or time values.

64-bit Linux for IA64 Platform
64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

• gcc compiler (gcc 3.2 or later)

gcc -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI/DPI application. For example, to use the system math library libm, specify -lm
to the ld command:

gcc -c -fPIC -I/<install_dir>/modeltech/include math_app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
64-bit Linux is supported on RedHat Linux EWS 3.0 for Opteron/Athlon 64 and EM64T.

• gcc compiler (gcc 3.2 or later)

gcc -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

To compile for 32-bit operation, specify the -m32 argument on the gcc command line.

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 377
February 2007

PLI/VPI/DPI application. For example, to use the system math library libm, specify -lm
to the ld command:

gcc -c -fPIC -I/<install_dir>/modeltech/include math_app.c
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

32-bit Solaris Platform
If your PLI/VPI/DPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VPI/DPI application. For example, to use the standard C
library, specify ‘-lc’ to the ‘ld’ command.

• gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -G -Bsymbolic -o app.so app.o -lc

• cc compiler

cc -c -I/<install_dir>/modeltech/include app.c
ld -G -Bsymbolic -o app.so app.o -lc

64-bit Solaris Platform
• gcc compiler

gcc -c -I<install_dir>/modeltech/include -m64 -fPIC app.c
gcc -shared -Bsymbolic -o app.so -m64 app.o

This was tested with gcc 3.2.2. You may need to add the location of libgcc_s.so.1 to the
LD_LIBRARY_PATH_64 environment variable.

• cc compiler

cc -v -xarch=v9 -O -I<install_dir>/modeltech/include -c app.c
ld -G -Bsymbolic app.o -o app.so

32-bit HP700 Platform
A shared library is created by creating object files that contain position-independent code (use
the +z or -fPIC compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PLI/VPI/DPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI/DPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command.

• gcc compiler

gcc -c -fPIC -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

ModelSim User’s Manual, v6.2g378

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

February 2007

Note that -fPIC may not work with all versions of gcc.

• cc compiler

cc -c +z +DD32 -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o -lc

64-bit HP Platform
• cc compiler

cc -v +DD64 -O -I<install_dir>/modeltech/include -c app.c
ld -b -o app.sl app.o -lc

64-bit HP for IA64 Platform
• cc compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -I/<install_dir>/modeltech/include app.c
ld -b -o app.sl app.o

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI/DPI application. For example, to use the system math library, specify '-lm' to
the 'ld' command:

cc -c +DD64 -I/<install_dir>/modeltech/include math_app.c
ld -b -o math_app.sl math_app.o -lm

32-bit IBM RS/6000 Platform
ModelSim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSim's PLI/VPI/DPI symbols, and it must export the PLI or VPI application’s
initialization function or table. The ModelSim tool’s export file is located in the ModelSim
installation directory in rs6000/mti_exports.

If your PLI/VPI/DPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI/DPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command. The resulting object must be marked as shared reentrant using
these gcc or cc compiler commands for AIX 4.x:

• gcc compiler

gcc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

• cc compiler

cc -c -I/<install_dir>/modeltech/include app.c
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 379
February 2007

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs". Alternatively, if there is no init_usertfs function, then
the exported symbol should be "veriusertfs". For the VPI, the exported symbol should be
"vlog_startup_routines". These requirements ensure that the appropriate symbol is exported,
and thus ModelSim can find the symbol when it dynamically loads the shared object.

DPI Imports on 32-bit IBM RS/6000 Platform
When linking the shared objects, be sure to specify -bE:<isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the vlog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by ModelSim.

DPI Flow for Exported Tasks and Functions on 32-bit IBM RS/6000 Platform

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. You need to invoke a special run of vsim.
The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname>.o that contains "glue" code for exported
tasks and functions. You must add that object file to the link line, listed after the other object
files. For example, a link line would be:

ld -o app.so app.o <objname>.o
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

64-bit IBM RS/6000 Platform
Only versions 5.1 and later of AIX support the 64-bit platform. A gcc 64-bit compiler is not
available at this time.

• VisualAge cc compiler

cc -c -q64 -I/<install_dir>/modeltech/include app.c
ld -o app.s1 app.o -b64 -bE:app.exports \

-bI:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -lc

DPI Imports on 64-bit IBM RS/6000 Platform
When linking the shared objects, be sure to specify -bE:<isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the vlog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by ModelSim.

ModelSim User’s Manual, v6.2g380

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

February 2007

DPI Flow for Exported Tasks and Functions on 64-bit IBM RS/6000 Platform

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. You need to invoke a special run of vsim.
The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname>.o that contains "glue" code for exported
tasks and functions. You must add that object file to the link line, listed after the other object
files. For example, a link line would be:

ld -o app.dll app.o <objname>.o
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

Compiling and Linking C++ Applications for
PLI/VPI/DPI

ModelSim does not have direct support for any language other than standard C; however, C++
code can be loaded and executed under certain conditions.

Since ModelSim's PLI/VPI/DPI functions have a standard C prototype, you must prevent the
C++ compiler from mangling the PLI/VPI/DPI function names. This can be accomplished by
using the following type of extern:

extern "C"
{
<PLI/VPI/DPI application function prototypes>

}

The header files veriuser.h, acc_user.h, and vpi_user.h, svdpi.h, and dpiheader.h already
include this type of extern. You must also put the PLI/VPI/DPI shared library entry point
(veriusertfs, init_usertfs, or vlog_startup_routines) inside of this type of extern.

The following platform-specific instructions show you how to compile and link your
PLI/VPI/DPI C++ applications so that they can be loaded by ModelSim.

Although compilation and simulation switches are platform-specific, loading shared libraries is
the same for all platforms. For information on loading libraries, see DPI File Loading.

For PLI/VPI only
If app.so is not in your current directory you must tell Solaris where to search for the shared
object. You can do this one of two ways:

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 381
February 2007

• Add a path before app.so in the foreign attribute specification. (The path may include
environment variables.)

• Put the path in a UNIX shell environment variable:
LD_LIBRARY_PATH_32= <library path without filename> (32-bit)
or
LD_LIBRARY_PATH_64= <library path without filename> (64-bit)

Windows Platforms
• Microsoft Visual C++ 4.1 or Later

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there
is no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs". For the Verilog VPI, the <init_function> should be
"vlog_startup_routines". These requirements ensure that the appropriate symbol is
exported, and thus ModelSim can find the symbol when it dynamically loads the DLL.

When executing cl commands in a DO file, use the /NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

• MinGW C++ Version 3.2.3

g++ -c -I<install_dir>\modeltech\include app.cpp
g++ -shared -Bsymbolic -o app.dll app.o -L<install_dir>\modeltech\win32 -lmtipli

ModelSim requires the use of MinGW gcc compiler rather than the Cygwin gcc
compiler.

DPI Imports on Windows Platforms
When linking the shared objects, be sure to specify one -export option for each DPI imported
task or function in your linking command line. You can use Verilog’s -isymfile option to obtain
a complete list of all imported tasks and functions expected by ModelSim.

DPI Special Flow for Exported Tasks and Functions
Since the Windows platform lacks the necessary runtime linking complexity, you must perform
an additional manual step in order to compile the HDL source files into the shared object file.
You need to invoke a special run of vsim. The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

ModelSim User’s Manual, v6.2g382

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

February 2007

The -dpiexportobj generates the object file <objname>.obj that contains "glue" code for
exported tasks and functions. You must add that object file to the link line, listed after the other
object files. For example, if the object name was dpi1, the link line for MinGW would be:

g++ -shared -Bsymbolic -o app.dll app.obj <objname>.obj
-L<install_dir>\modeltech\win32 -lmtipli

32-bit Linux Platform
• GNU C++ Version 2.95.3 or Later

g++ -c -fPIC -I<install_dir>/modeltech/include app.cpp
g++ -shared -Bsymbolic -fPIC -o app.so app.o

64-bit Linux for IA64 Platform
64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

• GNU C++ compiler version gcc 3.2 or later

g++ -c -fPIC -I/<install_dir>/modeltech/include app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI application. For example, to use the system math library libm, specify '-lm' to
the 'ld' command:

g++ -c -fPIC -I/<install_dir>/modeltech/include math_app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
64-bit Linux is supported on RedHat Linux EWS 3.0 for Opteron/Athlon 64 and EM64T.

• GNU C++ compiler version gcc 3.2 or later

g++ -c -fPIC -I/<install_dir>/modeltech/include app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o app.so app.o

To compile for 32-bit operation, specify the -m32 argument on the gcc command line.

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI/DPI application. For example, to use the system math library libm, specify -lm
to the ld command:

g++ -c -fPIC -I/<install_dir>/modeltech/include math_app.cpp
ld -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -lm

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 383
February 2007

32-bit Solaris Platform
If your PLI/VPI application uses anything from a system library, you will need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command.

• GNU C++ compiler version gcc 3.2 or later

g++ -c -I/<install_dir>/modeltech/include app.cpp
ld -G -Bsymbolic -o app.so app.o -lc

• Sun Forte C++ Compiler

cc -c -I/<install_dir>/modeltech/include app.cpp
ld -G -Bsymbolic -o app.so app.o -lc

64-bit Solaris Platform
• GNU C++ compiler version gcc 3.2 or later

g++ -c -I<install_dir>/modeltech/include -m64 -fPIC app.cpp
g++ -shared -Bsymbolic -o app.so -m64 app.o

This was tested with gcc 3.2.2. You may need to add the location of libgcc_s.so.1 to the
LD_LIBRARY_PATH_64 environment variable.

• cc compiler

cc -v -xarch=v9 -O -I<install_dir>/modeltech/include -c app.cpp
ld -G -Bsymbolic app.o -o app.so

32-bit HP700 Platform
A shared library is created by creating object files that contain position-independent code (use
the +z or -fPIC compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command.

• GNU C++ compiler

g++ -c -fPIC -I/<install_dir>/modeltech/include app.cpp
ld -b -o app.sl app.o -lc

• cc compiler

cc -c +z +DD32 -I/<install_dir>/modeltech/include app.cpp
ld -b -o app.sl app.o -lc

Note that -fPIC may not work with all versions of gcc.

ModelSim User’s Manual, v6.2g384

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

February 2007

64-bit HP Platform
• cc Compiler

cc -v +DD64 -O -I<install_dir>/modeltech/include -c app.cpp
ld -b -o app.sl app.o -lc

64-bit HP for IA64 Platform
• HP ANSI C++ Compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -I/<install_dir>/modeltech/include app.cpp
ld -b -o app.sl app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI application. For example, to use the system math library, specify '-lm' to the 'ld'
command:

cc -c +DD64 -I/<install_dir>/modeltech/include math_app.c
ld -b -o math_app.sl math_app.o -lm

32-bit IBM RS/6000 Platform
ModelSim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import ModelSim's PLI/VPI symbols, and it must export the PLI or VPI application’s
initialization function or table. The ModelSim tool's export file is located in the ModelSim
installation directory in rs6000/mti_exports.

If your PLI/VPI application uses anything from a system library, you’ll need to specify that
library when you link your PLI/VPI application. For example, to use the standard C library,
specify ‘-lc’ to the ‘ld’ command. The resulting object must be marked as shared reentrant using
these gcc or cc compiler commands for AIX 4.x:

• GNU C++ compiler version gcc 3.2 or later

g++ -c -I/<install_dir>/modeltech/include app.cpp
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

• VisualAge C++ Compiler

cc -c -I/<install_dir>/modeltech/include app.cpp
ld -o app.sl app.o -bE:app.exp \

-bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -lc

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs". Alternatively, if there is no init_usertfs function, then
the exported symbol should be "veriusertfs". For the VPI, the exported symbol should be
"vlog_startup_routines". These requirements ensure that the appropriate symbol is exported,
and thus ModelSim can find the symbol when it dynamically loads the shared object.

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

ModelSim User’s Manual, v6.2g 385
February 2007

For DPI Imports
When linking the shared objects, be sure to specify -bE:<isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the vlog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by ModelSim.

DPI Special Flow for Exported Tasks and Functions
Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. You need to invoke a special run of vsim.
The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname>.o that contains "glue" code for exported
tasks and functions. You must add that object file to the link line, listed after the other object
files. For example, a link line would be:

ld -o app.dll app.o <objname>.o
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

64-bit IBM RS/6000 Platform
Only version 5.1 and later of AIX supports the 64-bit platform. A gcc 64-bit compiler is not
available at this time.

• VisualAge C++ Compiler

cc -c -q64 -I/<install_dir>/modeltech/include app.cpp
ld -o app.s1 app.o -b64 -bE:app.exports \

-bI:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -lc

For DPI Imports
When linking the shared objects, be sure to specify -bE:<isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the vlog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by ModelSim.

DPI Special Flow for Exported Tasks and Functions
Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. You need to invoke a special run of vsim.
The command is as follows:

ModelSim User’s Manual, v6.2g386

Verilog PLI/VPI/DPI
Specifying Application Files to Load

February 2007

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates the object file <objname>.o that contains "glue" code for exported
tasks and functions. You must add that object file to the link line, listed after the other object
files. For example, a link line would be:

ld -o app.so app.o <objname>.o
-bE:<isymfile> -bI:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

Specifying Application Files to Load
PLI and VPI file loading is identical. DPI file loading uses switches to the vsim command.

PLI/VPI file loading
The PLI/VPI applications are specified as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

Note
On Windows platforms, the file names shown above should end with .dll rather than .so.

The various methods of specifying PLI/VPI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used in the
paths to the libraries in all cases.

See also Simulator Variables for more information on the modelsim.ini file.

Verilog PLI/VPI/DPI
PLI Example

ModelSim User’s Manual, v6.2g 387
February 2007

DPI File Loading
DPI applications are specified to vsim using the following SystemVerilog arguments:

When the simulator finds an imported task or function, it searches for the symbol in the
collection of shared objects specified using these arguments.

For example, you can specify the DPI application as follows:

vsim -sv_lib dpiapp1 -sv_lib dpiapp2 -sv_lib dpiappn top

It is a mistake to specify DPI import tasks and functions (tf) inside PLI/VPI shared objects.
However, a DPI import tf can make calls to PLI/VPI C code, providing that vsim -gblso was
used to mark the PLI/VPI shared object with global symbol visibility. See Loading Shared
Objects with Global Symbol Visibility.

Loading Shared Objects with Global Symbol Visibility
On Unix platforms you can load shared objects such that all symbols in the object have global
visibility. To do this, use the -gblso argument to vsim when you load your PLI/VPI application.
For example:

vsim -pli obj1.so -pli obj2.so -gblso obj1.so top

The -gblso argument works in conjunction with the GlobalSharedObjectList variable in the
modelsim.ini file. This variable allows user C code in other shared objects to refer to symbols in
a shared object that has been marked as global. All shared objects marked as global are loaded
by the simulator earlier than any non-global shared objects.

PLI Example
The following example is a trivial, but complete PLI application.

hello.c:

Table D-1. vsim Arguments for DPI Application

Argument Description

-sv_lib <name> specifies a library name to be searched and used. No filename
extensions must be specified. (The extensions ModelSim expects
are: .sl for HP, .dll for Win32, .so for all other platforms.)

-sv_root <name> specifies a new prefix for shared objects as specified by -sv_lib

-sv_liblist specifies a “bootstrap file” to use

ModelSim User’s Manual, v6.2g388

Verilog PLI/VPI/DPI
VPI Example

February 2007

#include "veriuser.h"
static PLI_INT32 hello()
{

io_printf("Hi there\n");
return 0;

}
s_tfcell veriusertfs[] = {

{usertask, 0, 0, 0, hello, 0, "$hello"},
{0} /* last entry must be 0 */

};
hello.v:

module hello;
initial $hello;

endmodule
Compile the PLI code for the Solaris operating system:

% cc -c -I<install_dir>/modeltech/include hello.c
% ld -G -Bsymbolic -o hello.sl hello.o

Compile the Verilog code:
% vlib work
% vlog hello.v

Simulate the design:
% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hi there
VSIM 2> quit

VPI Example
The following example is a trivial, but complete VPI application. A general VPI example can be
found in <install_dir>/modeltech/examples/verilog/vpi.

hello.c:

#include "vpi_user.h"
static PLI_INT32 hello(PLI_BYTE8 * param)
{

vpi_printf("Hello world!\n");
return 0;

}
void RegisterMyTfs(void)
{

s_vpi_systf_data systf_data;
vpiHandle systf_handle;
systf_data.type = vpiSysTask;
systf_data.sysfunctype = vpiSysTask;
systf_data.tfname = "$hello";
systf_data.calltf = hello;
systf_data.compiletf = 0;
systf_data.sizetf = 0;
systf_data.user_data = 0;
systf_handle = vpi_register_systf(&systf_data);
vpi_free_object(systf_handle);

}

Verilog PLI/VPI/DPI
DPI Example

ModelSim User’s Manual, v6.2g 389
February 2007

void (*vlog_startup_routines[])() = {
RegisterMyTfs,
0

};
hello.v:

module hello;
initial $hello;

endmodule
Compile the VPI code for the Solaris operating system:

% gcc -c -I<install_dir>/include hello.c
% ld -G -Bsymbolic -o hello.sl hello.o

Compile the Verilog code:
% vlib work
% vlog hello.v

Simulate the design:
% vsim -c -pli hello.sl hello
Loading work.hello
Loading ./hello.sl
VSIM 1> run -all
Hello world!
VSIM 2> quit

DPI Example
The following example is a trivial but complete DPI application. For win32 and RS6000
platforms, an additional step is required. For additional examples, see the
<install_dir>/modeltech/examples/systemverilog/dpi directory.

hello_c.c:
#include "svdpi.h"
#include "dpiheader.h"
int c_task(int i, int *o)
{

printf("Hello from c_task()\n");
verilog_task(i, o); /* Call back into Verilog */
*o = i;
return(0); /* Return success (required by tasks) */

}
hello.v:
module hello_top;

int ret;
export "DPI-C" task verilog_task;
task verilog_task(input int i, output int o);

#10;
$display("Hello from verilog_task()");

endtask
import "DPI-C" context task c_task(input int i, output int o);
initial
begin

c_task(1, ret); // Call the c task named 'c_task()'
end

endmodule
Compile the Verilog code:

% vlib work
% vlog -sv -dpiheader dpiheader.h hello.v

ModelSim User’s Manual, v6.2g390

Verilog PLI/VPI/DPI
The PLI Callback reason Argument

February 2007

Compile the DPI code for the Solaris operating system:
% gcc -c -g -I<install_dir>/modeltech/include hello_c.c
% ld -G -Bsymbolic -o hello_c.so hello_c.o

Simulate the design:
% vsim -c -sv_lib hello_c hello_top
Loading work.hello_c
Loading ./hello_c.so
VSIM 1> run -all
Hello from c_task()
Hello from verilog_task()
VSIM 2> quit

The PLI Callback reason Argument
The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See IEEE Std 1364 for a
description of the reason constants. The following details relate to ModelSim Verilog, and may
not be obvious in the IEEE Std 1364. Specifically, the simulator passes the reason values to the
misctf callback functions under the following circumstances:

reason_endofcompile
For the completion of loading the design.

reason_finish
For the execution of the $finish system task or the quit command.

reason_startofsave
For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its data with calls to tf_write_save() until it is called with reason_save.

reason_save
For the execution of the checkpoint command. This is when the PLI application must
save its state with calls to tf_write_save().

reason_startofrestart
For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restore its state with calls to tf_read_restart() until it is called with
reason_restart. The reason_startofrestart value is passed only for a restore command,
and not in the case that the simulator is invoked with -restore.

reason_restart
For the execution of the restore command. This is when the PLI application must
restore its state with calls to tf_read_restart().

reason_reset
For the execution of the restart command. This is when the PLI application should free
its memory and reset its state. We recommend that all PLI applications reset their
internal state during a restart as the shared library containing the PLI code might not be

Verilog PLI/VPI/DPI
The sizetf Callback Function

ModelSim User’s Manual, v6.2g 391
February 2007

reloaded. (See the -keeploaded and -keeploadedrestart arguments to vsim for related
information.)

reason_endofreset
For the completion of the restart command, after the simulation state has been reset but
before the design has been reloaded.

reason_interactive
For the execution of the $stop system task or any other time the simulation is interrupted
and waiting for user input.

reason_scope
For the execution of the environment command or selecting a scope in the structure
window. Also for the call to acc_set_interactive_scope() if the callback_flag argument is
non-zero.

reason_paramvc
For the change of value on the system task or function argument.

reason_synch
For the end of time step event scheduled by tf_synchronize().

reason_rosynch
For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate
For the simulation event scheduled by tf_setdelay().

reason_paramdrc
Not supported in ModelSim Verilog.

reason_force
Not supported in ModelSim Verilog.

reason_release
Not supported in ModelSim Verilog.

reason_disable
Not supported in ModelSim Verilog.

The sizetf Callback Function
A user-defined system function specifies the width of its return value with the sizetf callback
function, and the simulator calls this function while loading the design. The following details on
the sizetf callback function are not found in the IEEE Std 1364:

• If you omit the sizetf function, then a return width of 32 is assumed.

• The sizetf function should return 0 if the system function return value is of Verilog type
"real".

• The sizetf function should return -32 if the system function return value is of Verilog
type "integer".

ModelSim User’s Manual, v6.2g392

Verilog PLI/VPI/DPI
PLI Object Handles

February 2007

PLI Object Handles
Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routine is called. However, some of the
objects are created on demand, and the handles to these objects become invalid after acc_close()
is called. The following object types are created on demand in ModelSim Verilog:

accOperator (acc_handle_condition)
accWirePath (acc_handle_path)
accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and

acc_next_load)
accPathTerminal (acc_next_input and acc_next_output)
accTchkTerminal (acc_handle_tchkarg1 and acc_handle_tchkarg2)
accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)

If your PLI application uses these types of objects, then it is important to call acc_close() to free
the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects, do
not call acc_close() while these callbacks are in effect.

Third Party PLI Applications
Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelines are for preparing a Verilog-XL PLI application to work with ModelSim Verilog.

Generally, a Verilog-XL PLI application comes with a collection of object files and a veriuser.c
file. The veriuser.c file contains the registration information as described above in Registering
PLI Applications. To prepare the application for ModelSim Verilog, you must compile the
veriuser.c file and link it to the object files to create a dynamically loadable object (see
Compiling and Linking C Applications for PLI/VPI/DPI). For example, if you have a veriuser.c
file and a library archive libapp.a file that contains the application's object files, then the
following commands should be used to create a dynamically loadable object for the Solaris
operating system:

% cc -c -I<install_dir>/modeltech/include veriuser.c
% ld -G -o app.sl veriuser.o libapp.a

The PLI application is now ready to be run with ModelSim Verilog. All that's left is to specify
the resulting object file to the simulator for loading using the Veriuser entry in the modesim.ini
file, the -pli simulator argument, or the PLIOBJS environment variable (see Registering PLI
Applications).

Verilog PLI/VPI/DPI
Support for VHDL Objects

ModelSim User’s Manual, v6.2g 393
February 2007

Note
On the HP700 platform, the object files must be compiled as position-independent code
by using the +z compiler argument. Since, the object files supplied for Verilog-XL may
be compiled for static linking, you may not be able to use the object files to create a
dynamically loadable object for ModelSim Verilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent
code.

Support for VHDL Objects
The PLI ACC routines also provide limited support for VHDL objects in either an all VHDL
design or a mixed VHDL/Verilog design. The following table lists the VHDL objects for which
handles may be obtained and their type and fulltype constants:

Table D-2. Supported VHDL Objects

Type Fulltype Description

accArchitecture accArchitecture instantiation of an architecture

accArchitecture accEntityVitalLevel0 instantiation of an architecture whose entity is
marked with the attribute VITAL_Level0

accArchitecture accArchVitalLevel0 instantiation of an architecture which is
marked with the attribute VITAL_Level0

accArchitecture accArchVitalLevel1 instantiation of an architecture which is
marked with the attribute VITAL_Level1

accArchitecture accForeignArch instantiation of an architecture which is
marked with the attribute FOREIGN and
which does not contain any VHDL statements
or objects other than ports and generics

accArchitecture accForeignArchMixed instantiation of an architecture which is
marked with the attribute FOREIGN and
which contains some VHDL statements or
objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()

accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration

ModelSim User’s Manual, v6.2g394

Verilog PLI/VPI/DPI
Support for VHDL Objects

February 2007

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include file. All
of these objects (except signals) are scope objects that define levels of hierarchy in the structure
window. Currently, the PLI ACC interface has no provision for obtaining handles to generics,
types, constants, variables, attributes, subprograms, and processes.

Verilog PLI/VPI/DPI
IEEE Std 1364 ACC Routines

ModelSim User’s Manual, v6.2g 395
February 2007

IEEE Std 1364 ACC Routines
ModelSim Verilog supports the following ACC routines:

Table D-3. Supported ACC Routines

Routines

acc_append_delays
acc_append_pulsere
acc_close
acc_collect
acc_compare_handles
acc_configure
acc_count
acc_fetch_argc
acc_fetch_argv
acc_fetch_attribute
acc_fetch_attribute_int
acc_fetch_attribute_str
acc_fetch_defname
acc_fetch_delay_mode
acc_fetch_delays
acc_fetch_direction
acc_fetch_edge
acc_fetch_fullname
acc_fetch_fulltype
acc_fetch_index
acc_fetch_location
acc_fetch_name
acc_fetch_paramtype
acc_fetch_paramval
acc_fetch_polarity
acc_fetch_precision
acc_fetch_pulsere
acc_fetch_range
acc_fetch_size
acc_fetch_tfarg
acc_fetch_itfarg
acc_fetch_tfarg_int
acc_fetch_itfarg_int
acc_fetch_tfarg_str
acc_fetch_itfarg_str
acc_fetch_timescale_info
acc_fetch_type
acc_fetch_type_str
acc_fetch_value

acc_free
acc_handle_by_name
acc_handle_calling_mod_m
acc_handle_condition
acc_handle_conn
acc_handle_hiconn
acc_handle_interactive_scope
acc_handle_loconn
acc_handle_modpath
acc_handle_notifier
acc_handle_object
acc_handle_parent
acc_handle_path
acc_handle_pathin
acc_handle_pathout
acc_handle_port
acc_handle_scope
acc_handle_simulated_net
acc_handle_tchk
acc_handle_tchkarg1
acc_handle_tchkarg2
acc_handle_terminal
acc_handle_tfarg
acc_handle_itfarg
acc_handle_tfinst
acc_initialize

acc_next
acc_next_bit
acc_next_cell
acc_next_cell_load
acc_next_child
acc_next_driver
acc_next_hiconn
acc_next_input
acc_next_load
acc_next_loconn
acc_next_modpath
acc_next_net
acc_next_output
acc_next_parameter
acc_next_port
acc_next_portout
acc_next_primitive
acc_next_scope
acc_next_specparam
acc_next_tchk
acc_next_terminal
acc_next_topmod
acc_object_in_typelist
acc_object_of_type
acc_product_type
acc_product_version
acc_release_object
acc_replace_delays
acc_replace_pulsere
acc_reset_buffer
acc_set_interactive_scope
acc_set_pulsere
acc_set_scope
acc_set_value
acc_vcl_add
acc_vcl_delete
acc_version

ModelSim User’s Manual, v6.2g396

Verilog PLI/VPI/DPI
IEEE Std 1364 ACC Routines

February 2007

acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string value of a parameter.
Because of this, the function acc_fetch_paramval_str() has been added to the PLI for this use.
acc_fetch_paramval_str() is declared in acc_user.h. It functions in a manner similar to
acc_fetch_paramval() except that it returns a char *. acc_fetch_paramval_str() can be used on
all platforms.

Verilog PLI/VPI/DPI
IEEE Std 1364 TF Routines

ModelSim User’s Manual, v6.2g 397
February 2007

IEEE Std 1364 TF Routines
ModelSim Verilog supports the following TF (task and function) routines;

SystemVerilog DPI Access Routines
ModelSim SystemVerilog supports all routines defined in the "svdpi.h" file defined in P1800-
2005.

Table D-4. Supported TF Routines

Routines

io_mcdprintf
io_printf
mc_scan_plusargs
tf_add_long
tf_asynchoff
tf_iasynchoff
tf_asynchon
tf_iasynchon
tf_clearalldelays
tf_iclearalldelays
tf_compare_long
tf_copypvc_flag
tf_icopypvc_flag
tf_divide_long
tf_dofinish
tf_dostop
tf_error
tf_evaluatep
tf_ievaluatep
tf_exprinfo
tf_iexprinfo
tf_getcstringp
tf_igetcstringp
tf_getinstance
tf_getlongp
tf_igetlongp
tf_getlongtime
tf_igetlongtime
tf_getnextlongtime
tf_getp
tf_igetp
tf_getpchange
tf_igetpchange
tf_getrealp
tf_igetrealp

tf_getrealtime
tf_igetrealtime
tf_gettime
tf_igettime
tf_gettimeprecision
tf_igettimeprecision
tf_gettimeunit
tf_igettimeunit
tf_getworkarea
tf_igetworkarea
tf_long_to_real
tf_longtime_tostr
tf_message
tf_mipname
tf_imipname
tf_movepvc_flag
tf_imovepvc_flag
tf_multiply_long
tf_nodeinfo
tf_inodeinfo
tf_nump
tf_inump
tf_propagatep
tf_ipropagatep
tf_putlongp
tf_iputlongp
tf_putp
tf_iputp
tf_putrealp
tf_iputrealp
tf_read_restart
tf_real_to_long
tf_rosynchronize
tf_irosynchronize

tf_scale_longdelay
tf_scale_realdelay
tf_setdelay
tf_isetdelay
tf_setlongdelay
tf_isetlongdelay
tf_setrealdelay
tf_isetrealdelay
tf_setworkarea
tf_isetworkarea
tf_sizep
tf_isizep
tf_spname
tf_ispname
tf_strdelputp
tf_istrdelputp
tf_strgetp
tf_istrgetp
tf_strgettime
tf_strlongdelputp
tf_istrlongdelputp
tf_strrealdelputp
tf_istrrealdelputp
tf_subtract_long
tf_synchronize
tf_isynchronize
tf_testpvc_flag
tf_itestpvc_flag
tf_text
tf_typep
tf_itypep
tf_unscale_longdelay
tf_unscale_realdelay
tf_warning
tf_write_save

ModelSim User’s Manual, v6.2g398

Verilog PLI/VPI/DPI
Verilog-XL Compatible Routines

February 2007

Verilog-XL Compatible Routines
The following PLI routines are not defined in IEEE Std 1364, but ModelSim Verilog provides
them for compatibility with Verilog-XL.

char *acc_decompile_exp(handle condition)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr routine. The
condition argument must be a handle obtained from the acc_handle_condition routine. The
value returned by acc_decompile_exp is the string representation of the condition expression.

char *tf_dumpfilename(void)

This routine returns the name of the VCD file.

void tf_dumpflush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsimtime(int *aof_hightime)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are returned
by the routine, while the high-order bits are stored in the aof_hightime argument.

64-bit Support for PLI
The PLI function acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been added to
the PLI for this use. acc_fetch_paramval_str() is declared in acc_user.h. It functions in a manner
similar to acc_fetch_paramval() except that it returns a char *. acc_fetch_paramval_str() can be
used on all platforms.

Using 64-bit ModelSim with 32-bit Applications
If you have 32-bit PLI/VPI/DPI applications and wish to use 64-bit ModelSim, you will need to
port your code to 64 bits by moving from the ILP32 data model to the LP64 data model. We
strongly recommend that you consult the 64-bit porting guides for Sun and HP.

PLI/VPI Tracing
The foreign interface tracing feature is available for tracing PLI and VPI function calls. Foreign
interface tracing creates two kinds of traces: a human-readable log of what functions were
called, the value of the arguments, and the results returned; and a set of C-language files that
can be used to replay what the foreign interface code did.

Verilog PLI/VPI/DPI
PLI/VPI Tracing

ModelSim User’s Manual, v6.2g 399
February 2007

The Purpose of Tracing Files
The purpose of the logfile is to aid you in debugging PLI or VPI code. The primary purpose of
the replay facility is to send the replay files to support for debugging co-simulation problems, or
debugging PLI/VPI problems for which it is impractical to send the PLI/VPI code. We still need
you to send the VHDL/Verilog part of the design to actually execute a replay, but many
problems can be resolved with the trace only.

Invoking a Trace
To invoke the trace, call vsim with the -trace_foreign argument:

Syntax

vsim
-trace_foreign <action> [-tag <name>]

Arguments

<action>
Can be either the value 1, 2, or 3. Specifies one of the following actions:

-tag <name>
Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 mydesign
Creates a logfile.

vsim -trace_foreign 3 mydesign
Creates both a logfile and a set of replay files.

vsim -trace_foreign 1 -tag 2 mydesign
Creates a logfile with a tag of "2".

Table D-5. Values for <action> Argument

Value Operation Result

1 create log only writes a local file called
"mti_trace_<tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and
replay

writes all above files

ModelSim User’s Manual, v6.2g400

Verilog PLI/VPI/DPI
Debugging PLI/VPI/DPI Application Code

February 2007

The tracing operations will provide tracing during all user foreign code-calls, including PLI/VPI
user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog VCL callbacks.

Debugging PLI/VPI/DPI Application Code
In order to debug your PLI/VPI/DPI application code in a debugger, you must first:

1. Compile the application code with debugging information (using the -g option) and
without optimizations (for example, don’t use the -O option).

2. Load vsim into a debugger.

Even though vsim is stripped, most debuggers will still execute it. You can invoke the
debugger directly on vsimk, the simulation kernel where your application code is loaded
(for example, "ddd `which vsimk`"), or you can attach the debugger to an already
running vsim process. In the second case, you must attach to the PID for vsimk, and you
must specify the full path to the vsimk executable (for example, "gdb
$MTI_HOME/sunos5/vsimk 1234").

On Solaris, AIX, and Linux systems you can use either gdb or ddd. On HP-UX systems
you can use the wdb debugger from HP. You will need version 1.2 or later.

3. Set an entry point using breakpoint.

Since initially the debugger recognizes only vsim's PLI/VPI/DPI function symbols,
when invoking the debugger directly on vsim you need to place a breakpoint in the first
PLI/VPI/DPI function that is called by your application code. An easy way to set an
entry point is to put a call to acc_product_version() as the first executable statement in
your application code. Then, after vsim has been loaded into the debugger, set a
breakpoint in this function. Once you have set the breakpoint, run vsim with the usual
arguments.

When the breakpoint is reached, the shared library containing your application code has
been loaded.

4. In some debuggers, you must use the share command to load the application's symbols.

At this point all of the application's symbols should be visible. You can now set breakpoints in
and single step through your application code.

Troubleshooting a Missing DPI Import Function
DPI uses C function linkage. If your DPI application is written in C++, it is important to
remember to use extern "C" declaration syntax appropriately. Otherwise the C++ compiler will
produce a mangled C++ name for the function, and the simulator is not able to locate and bind
the DPI call to that function.

Verilog PLI/VPI/DPI
Debugging PLI/VPI/DPI Application Code

ModelSim User’s Manual, v6.2g 401
February 2007

Also, if you do not use the -Bsymbolic argument on the command line for specifying a link, the
system may bind to an incorrect function, resulting in unexpected behavior. For more
information, see Correct Linking of Shared Libraries with -Bsymbolic.

HP-UX Specific Warnings
On HP-UX you might see some warning messages that vsim does not have debugging
information available. This is normal. If you are using Exceed to access an HP machine from
Windows NT, it is recommended that you run vsim in command line or batch mode because
your NT machine may hang if you run vsim in GUI mode. Click on the "go" button, or use F5
or the go command to execute vsim in wdb.

You might also see a warning about not finding "__dld_flags" in the object file. This warning
can be ignored. You should see a list of libraries loaded into the debugger. It should include the
library for your PLI/VPI/DPI application. Alternatively, you can use share to load only a single
library.

ModelSim User’s Manual, v6.2g402

Verilog PLI/VPI/DPI
Debugging PLI/VPI/DPI Application Code

February 2007

ModelSim User’s Manual, v6.2g 403
February 2007

Appendix E
Command and Keyboard Shortcuts

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSim GUI.

Command Shortcuts
• You may abbreviate command syntax, but there’s a catch — the minimum number of

characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
ModelSim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

• Multiple commands may be entered on one line if they are separated by semi-colons (;).
For example:

vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

You probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts
You can review the simulator command history, or reuse previously entered commands with the
following shortcuts at the ModelSim/VSIM prompt:

Table E-1. Command History Shortcuts

Shortcut Description

!! repeats the last command

!n repeats command number n; n is the VSIM prompt
number (e.g., for this prompt: VSIM 12>, n =12)

!abc repeats the most recent command starting with "abc"

ModelSim User’s Manual, v6.2g404

Command and Keyboard Shortcuts
Main and Source Window Mouse and Keyboard Shortcuts

February 2007

Main and Source Window Mouse and Keyboard
Shortcuts

The following mouse actions and special keystrokes can be used to edit commands in the entry
region of the Main window. They can also be used in editing the file displayed in the Source
window and all Notepad windows (enter the notepad command within ModelSim to open the
Notepad editor).

^xyz^ab^ replaces "xyz" in the last command with "ab"

up arrow and down
arrow keys

scrolls through the command history

click on prompt left-click once on a previous ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history shows the last few commands (up to 50 are kept)

Table E-2. Mouse Shortcuts

Mouse - UNIX and Windows Result

Click the left mouse button relocate the cursor

Click and drag the left mouse button select an area

Shift-click the left mouse button extend selection

Double-click the left mouse button select a word

Double-click and drag the left mouse button select a group of words

Ctrl-click the left mouse button move insertion cursor without changing the
selection

Click the left mouse button on a previous
ModelSim or VSIM prompt

copy and paste previous command string to
current prompt

Click the middle mouse button paste selection to the clipboard

Click and drag the middle mouse button scroll the window

Table E-3. Keyboard Shortcuts

Keystrokes - UNIX and Windows Result

Left Arrow
Right Arrow

move cursor left or right one character

Table E-1. Command History Shortcuts (cont.)

Shortcut Description

Command and Keyboard Shortcuts
Main and Source Window Mouse and Keyboard Shortcuts

ModelSim User’s Manual, v6.2g 405
February 2007

Ctrl + Left Arrow
Ctrl + Right Arrow

move cursor left or right one word

Shift + Any Arrow extend text selection

Ctrl + Shift + Left Arrow
Ctrl + Shift + Right Arrow

extend text selection by one word

Up Arrow
Down Arrow

Transcript Pane: scroll through command history
Source Window: move cursor one line up or down

Ctrl + Up Arrow
Ctrl + Down Arrow

Transcript Pane: moves cursor to first or last line
Source Window: moves cursor up or down one
paragraph

Ctrl + Home move cursor to the beginning of the text

Ctrl + End move cursor to the end of the text

Backspace
Ctrl + h (UNIX only)

delete character to the left

Delete
Ctrl + d (UNIX only)

delete character to the right

Esc (Windows only) cancel

Alt activate or inactivate menu bar mode

Alt-F4 close active window

Home
Ctrl + a (UNIX only)

move cursor to the beginning of the line

Ctrl + b move cursor left

Ctrl + d delete character to the right

End
Ctrl + e

move cursor to the end of the line

Ctrl + f (UNIX)
Right Arrow (Windows)

move cursor right one character

Ctrl + k delete to the end of line

Ctrl + n move cursor one line down (Source window only
under Windows)

Ctrl + o (UNIX only) insert a new line character at the cursor

Ctrl + p move cursor one line up (Source window only under
Windows)

Table E-3. Keyboard Shortcuts (cont.)

Keystrokes - UNIX and Windows Result

ModelSim User’s Manual, v6.2g406

Command and Keyboard Shortcuts
Main and Source Window Mouse and Keyboard Shortcuts

February 2007

Ctrl + s (UNIX)
Ctrl + f (Windows)

find

Ctrl + t reverse the order of the two characters on either side of
the cursor

Ctrl + u delete line

Page Down
Ctrl + v (UNIX only)

move cursor down one screen

Ctrl + w (UNIX)
Ctrl + x (Windows)

cut the selection

Ctrl + s
Ctrl + x (UNIX Only)

save

Ctrl + y (UNIX)
Ctrl + v (Windows)

paste the selection

Ctrl + a (Windows Only) select the entire contents of the widget

Ctrl + \ clear any selection in the widget

Ctrl + - (UNIX)
Ctrl + / (UNIX)
Ctrl + z (Windows)

undoes previous edits in the Source window

Meta + < (UNIX only) move cursor to the beginning of the file

Meta + > (UNIX only) move cursor to the end of the file

Page Up
Meta + v (UNIX only)

move cursor up one screen

Meta + w (UNIX)
Ctrl + c (Windows)

copy selection

F3 Peforms a Find Next action in the Source Window.

F4
Shift+F4

Change focus to next pane in main window
Change focus to previous pane in main window

F5

Shift+F5

Toggle between expanding and restoring size of pane
to fit the entire main window
Toggle on/off the pane headers.

F8 search for the most recent command that matches the
characters typed (Main window only)

F9 run simulation

F10 continue simulation

F11 (Windows only) single-step

Table E-3. Keyboard Shortcuts (cont.)

Keystrokes - UNIX and Windows Result

Command and Keyboard Shortcuts
List Window Keyboard Shortcuts

ModelSim User’s Manual, v6.2g 407
February 2007

The Main window allows insertions or pastes only after the prompt; therefore, you don’t need to
set the cursor when copying strings to the command line.

List Window Keyboard Shortcuts
Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

F12 (Windows only) step-over

Table E-4. List Window Keyboard Shortcuts

Key - UNIX and Windows Action

Left Arrow scroll listing left (selects and highlights the item to the
left of the currently selected item)

Right Arrow scroll listing right (selects and highlights the item to
the right of the currently selected item)

Up Arrow scroll listing up

Down Arrow scroll listing down

Page Up
Ctrl + Up Arrow

scroll listing up by page

Page Down
Ctrl + Down Arrow

scroll listing down by page

Tab searches forward (down) to the next transition on the
selected signal

Shift + Tab searches backward (up) to the previous transition on
the selected signal (does not function on HP
workstations)

Shift + Left Arrow
Shift + Right Arrow

extends selection left/right

Ctrl + f (Windows)
Ctrl + s (UNIX)

opens the Find dialog box to find the specified item
label within the list display

Table E-3. Keyboard Shortcuts (cont.)

Keystrokes - UNIX and Windows Result

ModelSim User’s Manual, v6.2g408

Command and Keyboard Shortcuts
Wave Window Mouse and Keyboard Shortcuts

February 2007

Wave Window Mouse and Keyboard Shortcuts
The following mouse actions and keystrokes can be used in the Wave window.

Table E-5. Wave Window Mouse Shortcuts

Mouse action Result

Ctrl + Click left mouse button
and drag1

1. If you enter zoom mode by selecting View > Zoom > Mouse Mode > Zoom
Mode, you do not need to hold down the <Ctrl> key.

zoom area (in)

Ctrl + Click left mouse button
and drag

zoom out

Ctrl + Click left mouse button
and drag

zoom fit

Click left mouse button and drag moves closest cursor

Ctrl + Click left mouse button on a
scroll bar arrow

scrolls window to very top or
bottom (vertical scroll) or far
left or right (horizontal scroll)

Click middle mouse button in scroll bar
(UNIX only)

scrolls window to position of
click

Table E-6. Wave Window Keyboard Shortcuts

Keystroke Action

s bring into view and center the currently active cursor

i
Shift + i
+

zoom in
(mouse pointer must be over the cursor or waveform panes)

o
Shift + o
-

zoom out
(mouse pointer must be over the cursor or waveform panes)

f
Shift + f

zoom full
(mouse pointer must be over the cursor or waveform panes)

l
Shift + l

zoom last
(mouse pointer must be over the cursor or waveform panes)

r
Shift + r

zoom range
(mouse pointer must be over the cursor or waveform panes)

Command and Keyboard Shortcuts
Wave Window Mouse and Keyboard Shortcuts

ModelSim User’s Manual, v6.2g 409
February 2007

Up Arrow
Down Arrow

scrolls entire window up or down one line, when mouse
pointer is over waveform pane
scrolls highlight up or down one line, when mouse pointer is
over pathname or values pane

Left Arrow scroll pathname, values, or waveform pane left

Right Arrow scroll pathname, values, or waveform pane right

Page Up scroll waveform pane up by a page

Page Down scroll waveform pane down by a page

Tab search forward (right) to the next transition on the selected
signal - finds the next edge

Shift + Tab search backward (left) to the previous transition on the
selected signal - finds the previous edge

Ctrl + f (Windows)
Ctrl + s (UNIX)

open the find dialog box; searches within the specified field in
the pathname pane for text strings

Ctrl + Left Arrow
Ctrl + Right Arrow

scroll pathname, values, or waveform pane left or right by a
page

Table E-6. Wave Window Keyboard Shortcuts

Keystroke Action

ModelSim User’s Manual, v6.2g410

Command and Keyboard Shortcuts
Wave Window Mouse and Keyboard Shortcuts

February 2007

ModelSim User’s Manual, v6.2g 411
February 2007

Appendix F
Setting GUI Preferences

The ModelSim GUI is programmed using Tcl/Tk. It is highly customizable. You can control
everything from window size, position, and color to the text of window prompts, default output
filenames, and so forth.

Most user GUI preferences are stored as Tcl variables in the .modelsim file on Unix/Linux
platforms or the Registry on Windows platforms. The variable values save automatically when
you exit ModelSim. Some of the variables are modified by actions you take with menus or
windows (e.g., resizing a window changes its geometry variable). Or, you can edit the variables
directly either from the ModelSim > prompt or the Edit Preferences dialog.

Customizing the Simulator GUI Layout
You can customize the layout of panes, windows, toolbars, etc. This section discusses layouts
and how they are used in ModelSim.

Layouts and Modes of Operation
ModelSim ships with three default layouts that correspond to three modes of operation.

As you load and unload designs, ModelSim switches between the layouts.

Custom Layouts
You can create custom layouts or modify the three default layouts.

Creating Custom Layouts
To create a custom layout or modify one of the default layouts, follow these steps:

1. Rearrange the GUI as you see fit (see Navigating the Graphic User Interface for details).

Table F-1. Predefined GUI Layouts

Layout Mode

NoDesign a design is not yet loaded

Simulate a design is loaded

Coverage a design is loaded with code coverage enabled

ModelSim User’s Manual, v6.2g412

Setting GUI Preferences
Customizing the Simulator GUI Layout

February 2007

2. Select Layout > Save.

Figure F-1. Save Current Window Layout Dialog Box

3. Specify a new name or use an existing name to overwrite that layout.

4. Click OK.

The layout is saved to the .modelsim file (or Registry on Windows).

Assigning Layouts to Modes
You can assign which layout appears in each mode (no design loaded, design loaded, design
loaded with coverage). Follow these steps:

1. Create your custom layouts as described above.

2. Select Layout > Configure.

Example F-1. Configure Window Layouts Dialog Box

3. Select a layout for each mode.

4. Click OK.

The layout assignment is saved to the .modelsim file (Registry on Windows).

Setting GUI Preferences
Navigating the Graphic User Interface

ModelSim User’s Manual, v6.2g 413
February 2007

Automatic Saving of Layouts
By default any changes you make to a layout are saved automatically when you exit the tool or
when you change modes. For example, if you load a design with code coverage, rearrange some
windows, and then quit the simulation, the changes are saved to whatever layout was assigned
to the "load with coverage" mode.

To disable automatic saving of layouts, select Layout > Configure and uncheck Save Window
Layout Automatically.

Resetting Layouts to Their Defaults
You can reset the layouts for the three modes to their original defaults. Select Layout > Reset.
This command does not delete custom layouts.

Navigating the Graphic User Interface
This section discusses how to rearrange various elements of the GUI.

Manipulating Panes
Window panes (e.g., Workspace) can be positioned at various places within the parent window
or they can be dragged out ("undocked") of the parent window altogether.

Figure F-2. GUI: Window Pane

ModelSim User’s Manual, v6.2g414

Setting GUI Preferences
Navigating the Graphic User Interface

February 2007

Moving Panes
When you see a double bar at the top edge of a pane, it means you can modify the pane position.

Figure F-3. GUI: Double Bar

Click-and drag the pane handle in the middle of a double bar (your mouse pointer will change to
a four-headed arrow when it is in the correct location) to reposition the pane inside the parent
window. As you move the mouse to various parts of the main window, a gray outline will show
you valid locations to drop the pane.

Or, drag the pane outside of the parent window, and when you let go of the mouse button, the
pane becomes a free-floating window.

Docking and Undocking Panes
You can undock a pane by clicking the undock button in the heading of a pane.

Figure F-4. GUI: Undock Button

To redock a floating pane, click on the pane handle at the top of the window and drag it back
into the parent window, or click the dock icon.

Figure F-5. GUI: Dock Button

Zooming Panes
You can expand panes to fill the entire Main window by clicking the zoom icon in the heading
of the pane.

Figure F-6. GUI: Zoom Button

To restore the pane to its original size and position click the unzoom button in the heading of the
pane.

Setting GUI Preferences
Simulator GUI Preferences

ModelSim User’s Manual, v6.2g 415
February 2007

Figure F-7. GUI: Zoom Button

Columnar Information Display
Many panes (e.g., Objects, Workspace, etc.) display information in a columnar format. You can
perform a number of operations on columnar formats:

• Click and drag on a column heading to rearrange columns

• Click and drag on a border between column names to increase/decrease column size

• Sort columns by clicking once on the column heading to sort in ascending order;
clicking twice to sort in descending order; and clicking three times to sort in default
order.

• Hide or show columns by either right-clicking a column heading and selecting an object
from the context menu or by clicking the column-list drop down arrow and selecting an
object.

Quick Access Toolbars
Toolbar buttons provide access to commonly used commands and functions. Toolbars can be
docked and undocked (moved to or from the main toolbar area) by clicking and dragging on the
toolbar handle at the left-edge of a toolbar.

Figure F-8. Toolbar Manipulation

You can also hide/show the various toolbars. To hide or show a toolbar, right-click on a blank
spot of the main toolbar area and select a toolbar from the list.

To reset toolbars to their original state, right-click on a blank spot of the main toolbar area and
select Reset.

Simulator GUI Preferences
Simulator GUI preferences are stored by default either in the .modelsim file in your HOME
directory on UNIX/Linux platforms or the Registry on Windows platforms.

ModelSim User’s Manual, v6.2g416

Setting GUI Preferences
Simulator GUI Preferences

February 2007

Setting Preference Variables from the GUI
To edit a variable value from the GUI, select Tools > Edit Preferences.

The dialog organizes preferences by window and by name. The By Window tab primarily
allows you to change colors and fonts for various GUI objects. For example, if you want to
change the color of assertion messages in the Main window, you would select "Main window"
in the first column, select "assertColor" in the second column, and click a color on the palette.
Clicking OK or Apply changes the variable, and the change is saved when you exit ModelSim.

Figure F-9. Preferences Dialog Box: By Window Tab

The By Name tab lists every Tcl variable in a tree structure. Expand the tree, highlight a
variable, and click Change Value to edit the current value.

Setting GUI Preferences
Simulator GUI Preferences

ModelSim User’s Manual, v6.2g 417
February 2007

Figure F-10. Preferences Dialog Box: By Name Tab

Saving GUI Preferences
GUI preferences are saved automatically when you exit the tool.

If you prefer to store GUI preferences elsewhere, set the MODELSIM_PREFERENCES
environment variable to designate where these preferences are stored. Setting this variable
causes ModelSim to use a specified path and file instead of the default location. Here are some
additional points to keep in mind about this variable setting:

• The file does not need to exist before setting the variable as ModelSim will initialize it.

• If the file is read-only, ModelSim will not update or otherwise modify the file.

• This variable may contain a relative pathname, in which case the file is relative to the
working directory at the time the tool is started.

The modelsim.tcl File
Previous versions saved user GUI preferences into a modelsim.tcl file. Current versions will still
read in a modelsim.tcl file if it exists. ModelSim searches for the file as follows:

ModelSim User’s Manual, v6.2g418

Setting GUI Preferences
Simulator GUI Preferences

February 2007

• use MODELSIM_TCL environment variable if it exists (if MODELSIM_TCL is a list
of files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

Note that in versions 6.1 and later, ModelSim will save to the .modelsim file any variables it
reads in from a modelsim.tcl file. The values from the modelsim.tcl file will override like
variables in the .modelsim file.

ModelSim User’s Manual, v6.2g 419
February 2007

Appendix G
System Initialization

ModelSim goes through numerous steps as it initializes the system during startup. It accesses
various files and environment variables to determine library mappings, configure the GUI,
check licensing, and so forth.

Files Accessed During Startup
The table below describes the files that are read during startup. They are listed in the order in
which they are accessed.

Table G-1. Files Accessed During Startup

File Purpose

modelsim.ini contains initial tool settings; see Simulator Control
Variables for specific details on the modelsim.ini file

location map file used by ModelSim tools to find source files based on
easily reallocated "soft" paths; default file name is
mgc_location_map

pref.tcl contains defaults for fonts, colors, prompts, window
positions, and other simulator window characteristics

.modelsim (UNIX) or
Windows registry

contains last working directory, project file, printer
defaults, and other user-customized GUI
characteristics

modelsim.tcl contains user-customized settings for fonts, colors,
prompts, other GUI characteristics; maintained for
backwards compatibility with older versions (see The
modelsim.tcl File)

<project_name>.mpf if available, loads last project file which is specified in
the registry (Windows) or $(HOME)/.modelsim
(UNIX); see What are Projects? for details on project
settings

ModelSim User’s Manual, v6.2g420

System Initialization
Environment Variables Accessed During Startup

February 2007

Environment Variables Accessed During Startup
The table below describes the environment variables that are read during startup. They are listed
in the order in which they are accessed. For more information on environment variables, see
Environment Variables.

Table G-2. Environment Variables Accessed During Startup

Environment variable Purpose

MODEL_TECH set by ModelSim to the directory in which the binary
executables reside (e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM identifies the pathname of the modelsim.ini file

MGC_WD identifies the Mentor Graphics working directory

MGC_LOCATION_MAP identifies the pathname of the location map file; set by
ModelSim if not defined

MODEL_TECH_TCL identifies the pathname of all Tcl libraries installed with
ModelSim

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the pathname of the MGC tool suite

TCL_LIBRARY identifies the pathname of the Tcl library; set by ModelSim to
the same pathname as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

TK_LIBRARY identifies the pathname of the Tk library; set by ModelSim to
the same pathname as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

ITCL_LIBRARY identifies the pathname of the [incr]Tcl library; set by
ModelSim to the same path as MODEL_TECH_TCL; must
point to libraries supplied by Model Technology

ITK_LIBRARY identifies the pathname of the [incr]Tk library; set by
ModelSim to the same pathname as MODEL_TECH_TCL;
must point to libraries supplied by Model Technology

VSIM_LIBRARY identifies the pathname of the Tcl files that are used by
ModelSim; set by ModelSim to the same pathname as
MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

MTI_COSIM_TRACE creates an mti_trace_cosim file containing debugging
information about FLI/PLI/VPI function calls; set to any
value before invoking the simulator

MTI_LIB_DIR identifies the path to all Tcl libraries installed with ModelSim

System Initialization
Initialization Sequence

ModelSim User’s Manual, v6.2g 421
February 2007

Initialization Sequence
The following list describes in detail ModelSim’s initialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the existence
of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except MTI_LIB_DIR
which is a Tcl variable). Instances of $(NAME) denote paths that are determined by an
environment variable (except $(MTI_LIB_DIR) which is determined by a Tcl variable).

1. Determines the path to the executable directory (../modeltech/<platform>). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

2. Finds the modelsim.ini file by evaluating the following conditions:

• use $(MODELSIM)/modelsim.ini if it exists; else

• use $(MGC_PWD)/modelsim.ini; else

• use ./modelsim.ini; else

• use $(MODEL_TECH)/modelsim.ini; else

• use $(MODEL_TECH)/../modelsim.ini; else

• use $(MGC_HOME)/lib/modelsim.ini; else

• set path to ./modelsim.ini even though the file doesn’t exist

3. Finds the location map file by evaluating the following conditions:

• use MGC_LOCATION_MAP if it exists (if this variable is set to "no_map",
ModelSim skips initialization of the location map); else

MTI_VCO_MODE determines which version of ModelSim to use on platforms
that support both 32- and 64-bit versions when ModelSim
executables are invoked from the modeltech/bin directory by
a Unix shell command (using full path specification or PATH
search)

MODELSIM_TCL identifies the pathname to a user preference file (e.g.,
C:\modeltech\modelsim.tcl); can be a list of file pathnames,
separated by semicolons (Windows) or colons (UNIX); note
that user preferences are now stored in the .modelsim file
(Unix) or registry (Windows); ModelSim will still read this
environment variable but it will then save all the settings to
the .modelsim file when you exit the tool

Table G-2. Environment Variables Accessed During Startup

Environment variable Purpose

ModelSim User’s Manual, v6.2g422

System Initialization
Initialization Sequence

February 2007

• use mgc_location_map if it exists; else

• use $(HOME)/mgc/mgc_location_map; else

• use $(HOME)/mgc_location_map; else

• use $(MGC_HOME)/etc/mgc_location_map; else

• use $(MGC_HOME)/shared/etc/mgc_location_map; else

• use $(MODEL_TECH)/mgc_location_map; else

• use $(MODEL_TECH)/../mgc_location_map; else

• use no map

4. Reads various variables from the [vsim] section of the modelsim.ini file. See Simulation
Control Variables for more details.

5. Parses any command line arguments that were included when you started ModelSim and
reports any problems.

6. Defines the following environment variables:

• use MODEL_TECH_TCL if it exists; else

• set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl

• set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.3

• set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.3

• set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0

• set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

• set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

7. Initializes the simulator’s Tcl interpreter.

8. Checks for a valid license (a license is not checked out unless specified by a
modelsim.ini setting or command line option).

9. The next four steps relate to initializing the graphical user interface.

10. Sets Tcl variable MTI_LIB_DIR=$(MODEL_TECH_TCL)

11. Loads $(MTI_LIB_DIR)/vsim/pref.tcl.

12. Loads GUI preferences, project file, etc. from the registry (Windows) or
$(HOME)/.modelsim (UNIX).

13. Searches for the modelsim.tcl file by evaluating the following conditions:

• use MODELSIM_TCL environment variable if it exists (if MODELSIM_TCL is a
list of files, each file is loaded in the order that it appears in the list); else

System Initialization
Initialization Sequence

ModelSim User’s Manual, v6.2g 423
February 2007

• use ./modelsim.tcl; else

• use $(HOME)/modelsim.tcl if it exists

That completes the initialization sequence. Also note the following about the modelsim.ini file:

• When you change the working directory within ModelSim, the tool reads the [library],
[vcom], and [vlog] sections of the local modelsim.ini file. When you make changes in
the compiler or simulator options dialog or use the vmap command, the tool updates the
appropriate sections of the file.

• The pref.tcl file references the default .ini file via the [GetPrivateProfileString] Tcl
command. The .ini file that is read will be the default file defined at the time pref.tcl is
loaded.

ModelSim User’s Manual, v6.2g424

System Initialization
Initialization Sequence

February 2007

425

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ModelSim User’s Manual, v6.2g
February 2007

— Symbols —
#, comment character, 296
$disable_signal_spy, 252
$enable_signal_spy, 253
$finish

behavior, customizing, 336
$unit scope, visibility in SV declarations, 145
.ini control variables

AssertFile, 329
AssertionDebug, 329
AssertionFormat, 329
AssertionFormatBreak, 330
AssertionFormatError, 330
AssertionFormatFail, 330
AssertionFormatFatal, 330
AssertionFormatNote, 330
AssertionFormatWarning, 331
BreakOnAssertion, 331
CheckPlusargs, 331
CheckpointCompressMode, 331
CommandHistory, 331
ConcurrentFileLimit, 332
DatasetSeparator, 332
DefaultForceKind, 332
DefaultRadix, 332
DefaultRestartOptions, 333
DelayFileOpen, 333
DumpportsCollapse, 333
GenerateFormat, 333
GlobalSharedObjectList, 333
IgnoreError, 333
IgnoreFailure, 334
IgnoreNote, 334
IgnoreWarning, 334
IterationLimit, 334
License, 335
LockedMemory, 335
NumericStdNoWarnings, 336
PathSeparator, 336
Resolution, 337

RunLength, 337
Startup, 338
StdArithNoWarnings, 338
ToggleMaxIntValues, 338
TranscriptFile, 338
UnbufferedOutput, 338
UseCsupV2, 338
UserTimeUnit, 339
Veriuser, 339
WarnConstantChange, 339
WaveSignalNameWidth, 339
WLFCacheSize, 339
WLFCollapseMode, 340
WLFCompress, 340
WLFDeleteOnQuit, 340
WLFFilename, 340
WLFOptimize, 340
WLFSaveAllRegions, 340
WLFSizeLimit, 341
WLFTimeLimit, 341

.ini variables
set simulator control with GUI, 342

.modelsim file
in initialization sequence, 422
purpose, 419

.so, shared object file
loading PLI/VPI/DPI C applications, 373
loading PLI/VPI/DPI C++ applications,

380

— Numerics —
0-In tools

setting environment variable, 314
1076, IEEE Std, 28

differences between versions, 111
1364, IEEE Std, 28, 139
64-bit libraries, 107
64-bit time

now variable, 350
Tcl time commands, 301

Index

426
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

64-bit vsim, using with 32-bit FLI apps, 398

— A —
ACC routines, 395
accelerated packages, 106
access

hierarchical objects, 239
Active Processes pane, 47

see also windows, Active Processes pane
architecture simulator state variable, 349
archives

described, 100
argc simulator state variable, 349
arguments

passing to a DO file, 308
arithmetic package warnings, disabling, 347
AssertFile .ini file variable, 329
AssertionDebug .ini variable, 329
AssertionFormat .ini file variable, 329
AssertionFormatBreak .ini file variable, 330
AssertionFormatError .ini file variable, 330
AssertionFormatFail .ini file variable, 330
AssertionFormatFatal .ini file variable, 330
AssertionFormatNote .ini file variable, 330
AssertionFormatWarning .ini file variable, 331
assertions

file and line number, 329
message display, 343
messages

turning off, 347
setting format of messages, 329
warnings, locating, 329

— B —
bad magic number error message, 177
base (radix)

List window, 211
Wave window, 205

batch-mode simulations, 28
BindAtCompile .ini file variable, 324
binding, VHDL, default, 115
blocking assignments, 156
bookmarks

Source window, 68
Wave window, 197

break

stop simulation run, 46
BreakOnAssertion .ini file variable, 331
breakpoints

deleting, 67, 223
setting, 67
Source window, viewing in, 62

.bsm file, 235
buffered/unbuffered output, 338
busses

RTL-level, reconstructing, 184
user-defined, 215

— C —
C applications

compiling and linking, 373
C++ applications

compiling and linking, 380
Call Stack pane, 48
cancelling scheduled events, performance, 136
causality, tracing in Dataflow window, 230
cell libraries, 162
chasing X, 231
-check_synthesis argument

warning message, 360
CheckPlusargs .ini file variable (VLOG), 331
CheckpointCompressMode .ini file variable,

331
CheckSynthesis .ini file variable, 324
clock change, sampling signals at, 221
clock cycles

display in timeline, 203
collapsing time and delta steps, 182
colorization, in Source window, 68
columns

hide/showing in GUI, 415
moving, 415
sorting by, 415

combining signals, busses, 215
CommandHistory .ini file variable, 331
command-line mode, 27
commands

event watching in DO file, 307
system, 299
VSIM Tcl commands, 300

comment character
Tcl and DO files, 296

427ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

compare signal, virtual
restrictions, 215

compare simulations, 175
compilation

multi-file issues (SystemVerilog), 145
compilation unit scope, 145
compile order

auto generate, 90
changing, 89
SystemVerilog packages, 142

compiler directives, 171
IEEE Std 1364-2000, 171
XL compatible compiler directives, 172

compiling
overview, 25
changing order in the GUI, 89
grouping files, 90
order, changing in projects, 89
properties, in projects, 94
range checking in VHDL, 110
Verilog, 140

incremental compilation, 141
XL ’uselib compiler directive, 147
XL compatible options, 146

VHDL, 109, 110
VITAL packages, 124

compiling C code, gcc, 375
component, default binding rules, 115
Compressing files

VCD tasks, 282
ConcurrentFileLimit .ini file variable, 332
configuration simulator state variable, 349
configurations

Verilog, 149
connectivity, exploring, 227
context menus

Library tab, 102
convert real to time, 127
convert time to real, 126
cursors

adding, deleting, locking, naming, 193
link to Dataflow window, 227
measuring time with, 192
trace events with, 230
Wave window, 192

customizing
via preference variables, 415

— D —
deltas

explained, 116
Dataflow window, 49, 225

extended mode, 225
pan, 229
zoom, 229
see also windows, Dataflow window

dataflow.bsm file, 235
Dataset Browser, 180
Dataset Snapshot, 182
datasets, 175

managing, 180
opening, 178
restrict dataset prefix display, 181
view structure, 179

DatasetSeparator .ini file variable, 332
debugging the design, overview, 26
default binding

BindAtCompile .ini file variable, 324
disabling, 116

default binding rules, 115
Default editor, changing, 314
DefaultForceKind .ini file variable, 332
DefaultRadix .ini file variable, 332
DefaultRestartOptions .ini variable, 333
DefaultRestartOptions variable, 348
delay

delta delays, 116
modes for Verilog models, 162

DelayFileOpen .ini file variable, 333
deleting library contents, 101
delta collapsing, 182
delta simulator state variable, 349
deltas

in List window, 218
referencing simulator iteration

as a simulator state variable, 349
dependent design units, 110
descriptions of HDL items, 67
design library

creating, 101
logical name, assigning, 102

428
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

mapping search rules, 104
resource type, 99
VHDL design units, 109
working type, 99

design object icons, described, 35
design units, 99
DEVICE

matching to specify path delays, 269
dialogs

Runtime Options, 342
Direct Programming Interface, 365
directories

moving libraries, 104
disable_signal_spy, 241
DisableOpt .ini file variable, 321
display preferences

Wave window, 202
distributed delay mode, 163
dividers

Wave window, 206
DLL files, loading, 373, 380
DO files (macros)

error handling, 311
executing at startup, 315, 338
parameters, passing to, 308
Tcl source command, 311

docking
window panes, 413

DOPATH environment variable, 314
DPI

export TFs, 359
missing DPI import function, 400
registering applications, 369
use flow, 370

DPI access routines, 397
DPI export TFs, 359
DPI/VPI/PLI, 365
drivers

Dataflow Window, 227
show in Dataflow window, 221
Wave window, 221

dumpports tasks, VCD files, 281
DumpportsCollapse .ini file variable, 333

— E —
Editing

in notepad windows, 404
in the Main window, 404
in the Source window, 404

EDITOR environment variable, 314
editor, default, changing, 314
embedded wave viewer, 228
empty port name warning, 359
enable_signal_spy, 242
ENDFILE function, 122
ENDLINE function, 121
entities

default binding rules, 115
entity simulator state variable, 349
environment variables, 313

accessed during startup, 420
expansion, 313
referencing from command line, 318
referencing with VHDL FILE variable, 318
setting, 314
setting in Windows, 317
TranscriptFile, specifying location of, 338
used in Solaris linking for FLI, 374, 381
used in Solaris linking for

PLI/VPI/DPI/FLI, 315
using with location mapping, 353
variable substitution using Tcl, 299

error
can’t locate C compiler, 359

Error .ini file variable, 345
errors

bad magic number, 177
DPI missing import function, 400
getting more information, 355
severity level, changing, 356
SystemVerilog, missing declaration, 322
Tcl_init error, 360
VSIM license lost, 362

escaped identifiers, 161
event order

in Verilog simulation, 154
event queues, 154
event watching commands, placement of, 307
events, tracing, 230
exit codes, 357
expand

429ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

environment variables, 313
expand net, 227
Explicit .ini file variable, 324
export TFs, in DPI, 359
Expression Builder, 200

configuring a List trigger with, 219
saving expressions to Tcl variable, 201

— F —
F8 function key, 406
Fatal .ini file variable, 345
File compression

VCD tasks, 282
file I/O

TextIO package, 118
file-line breakpoints, 67
files

.modelsim, 419
files, grouping for compile, 90
filter

processes, 47
filtering

signals in Objects window, 60
folders, in projects, 92
fonts

controlling in X-sessions, 36
scaling, 35

force command
defaults, 348

format file, 213
Wave window, 213

FPGA libraries, importing, 107
Function call, debugging, 48
functions

virtual, 185

— G —
generate statements, Veilog, 150
GenerateFormat .ini file variable, 333
GenerateLoopIterationMax .ini file variable,

321
GenerateRecursionDepthMax .ini variable,

321
get_resolution() VHDL function, 125
global visibility

PLI/FLI shared objects, 387

GLOBALPATHPULSE
matching to specify path delays, 269

GlobalSharedObjectsList .ini file variable, 333
graphic interface, 187, 225
grouping files for compile, 90
grouping objects, Monitor window, 71
groups

in wave window, 208
GUI_expression_format

GUI expression builder, 200

— H —
Hazard .ini file variable (VLOG), 322
hazards

limitations on detection, 158
hierarchy

driving signals in, 243, 254
forcing signals in, 126, 248, 258
referencing signals in, 125, 245, 256
releasing signals in, 126, 250, 260

highlighting, in Source window, 68
history

of commands
shortcuts for reuse, 403

HOLD
matching to Verilog, 269

HOME environment variable, 314
HOME_0IN environment variable, 314

— I —
I/O

TextIO package, 118
icons

shapes and meanings, 35
identifiers

escaped, 161
ieee .ini file variable, 319
IEEE libraries, 106
IEEE Std 1076, 28

differences between versions, 111
IEEE Std 1364, 28, 139
IgnoreError .ini file variable, 333
IgnoreFailure .ini file variable, 334
IgnoreNote .ini file variable, 334
IgnoreVitalErrors .ini file variable, 324
IgnoreWarning .ini file variable, 334

430
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

importing FPGA libraries, 107
Incremental .ini file variable, 322
incremental compilation

automatic, 143
manual, 143
with Verilog, 141

index checking, 110
$init_signal_driver, 254
init_signal_driver, 243
$init_signal_spy, 256
init_signal_spy, 125, 245
init_usertfs function, 366
initialization sequence, 421
inlining

VHDL subprograms, 110
input ports

matching to INTERCONNECT, 268
matching to PORT, 268

INTERCONNECT
matching to input ports, 268

interconnect delays, 273
IOPATH

matching to specify path delays, 268
iteration_limit, infinite zero-delay loops, 118
IterationLimit .ini file variable, 334

— K —
keyboard shortcuts

List window, 407
Main window, 404
Source window, 404
Wave window, 408

keywords
SystemVerilog, 140

— L —
-L work, 144
language templates, 65
language versions, VHDL, 111
libraries

64-bit and 32-bit in same library, 107
creating, 101
design libraries, creating, 101
design library types, 99
design units, 99
group use, setting up, 104

IEEE, 106
importing FPGA libraries, 107
mapping

from the command line, 103
from the GUI, 103
hierarchically, 346
search rules, 104

modelsim_lib, 124
moving, 104
multiple libraries with common modules,

144
naming, 102
predefined, 105
refreshing library images, 106
resource libraries, 99
std library, 105
Synopsys, 106
Verilog, 144
VHDL library clause, 105
working libraries, 99
working vs resource, 24
working with contents of, 101

library map file, Verilog configurations, 149
library mapping, overview, 25
library maps, Verilog 2001, 149
library simulator state variable, 349
library, definition, 24
License .ini file variable, 335
licensing

License variable in .ini file, 335
List pane

see also pane, List pane
List window, 53, 190

setting triggers, 219
see also windows, List window

LM_LICENSE_FILE environment variable,
315

loading the design, overview, 26
Locals window, 55

see also windows, Locals window
location maps, referencing source files, 353
locations maps

specifying source files with, 353
lock message, 359
LockedMemory .ini file variable, 335

431ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

locking cursors, 193
log file

overview, 175
see also WLF files

long simulations
saving at intervals, 182

— M —
MacroNestingLevel simulator state variable,

350
macros (DO files), 307

creating from a saved transcript, 39
depth of nesting, simulator state variable,

350
error handling, 311
parameters

as a simulator state variable (n), 350
passing, 308
total number passed, 349

startup macros, 347
Main window, 36

see also windows, Main window
mapping

libraries
from the command line, 103
hierarchically, 346

symbols
Dataflow window, 235

mapping libraries, library mapping, 103
math_complex package, 106
math_real package, 106
MDI frame, 41
MDI pane

tab groups, 42
memories

displaying the contents of, 56
navigation, 58
saving formats, 58
selecting memory instances, 57
viewing contents, 57
viewing multiple instances, 57

memory
modeling in VHDL, 128

memory leak, cancelling scheduled events, 136
Memory pane, 56
pane

Memory pane
see also Memory pane

memory tab
memories you can view, 56

Memory window, 56
see also windows, Memory window

message system, 355
Message Viewer tab, 40
Messages, 40
messages, 355

bad magic number, 177
empty port name warning, 359
exit codes, 357
getting more information, 355
lock message, 359
long description, 355
message system variables, 344
metavalue detected, 360
redirecting, 338
sensitivity list warning, 360
suppressing warnings from arithmetic

packages, 347
Tcl_init error, 360
too few port connections, 361
turning off assertion messages, 347
VSIM license lost, 362
warning, suppressing, 356

metavalue detected warning, 360
MGC_LOCATION_MAP env variable, 353
MGC_LOCATION_MAP variable, 315
MinGW gcc, 375, 381
missing DPI import function, 400
MODEL_TECH environment variable, 315
MODEL_TECH_TCL environment variable,

315
modeling memory in VHDL, 128
MODELSIM environment variable, 315
modelsim.ini

found by the tool, 421
default to VHDL93, 348
delay file opening with, 348
environment variables in, 346
force command default, setting, 348
hierarchical library mapping, 346
opening VHDL files, 348

432
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

restart command defaults, setting, 348
startup file, specifying with, 347
transcript file created from, 346
turning off arithmetic package warnings,

347
turning off assertion messages, 347

modelsim.tcl, 417
modelsim_lib, 124

path to, 320
MODELSIM_PREFERENCES variable, 316,

417
MODELSIM_TCL environment variable, 316
modes of operation, 27
Modified field, Project tab, 89
modules

handling multiple, common names, 144
Monitor window

grouping/ungrouping objects, 71
monitor window, 70
mouse shortcuts

Main window, 404
Source window, 404
Wave window, 408

.mpf file, 81
loading from the command line, 97
order of access during startup, 419

msgmode .ini file variable, 345
msgmode variable, 40
mti_cosim_trace environment variable, 316
mti_inhibit_inline attribute, 111
MTI_TF_LIMIT environment variable, 316
multi-file compilation issues, SystemVerilog,

145
MultiFileCompilationUnit .ini file variable,

322
multiple document interface, 41
Multiple simulations, 175

— N —
n simulator state variable, 350
Name field

Project tab, 88
name visibility in Verilog generates, 150
names, modules with the same, 144
negative timing

$setuphold/$recovery, 169

algorithm for calculating delays, 159
check limits, 159

nets
Dataflow window, displaying in, 49, 225
values of

displaying in Objects window, 60
saving as binary log file, 175

waveforms, viewing, 72
Nlview widget Symlib format, 236
NoCaseStaticError .ini file variable, 325
NOCHANGE

matching to Verilog, 271
NoDebug .ini file variable (VCOM), 325
NoDebug .ini file variable (VLOG), 322
NoIndexCheck .ini file variable, 325
NOMMAP environment variable, 317
non-blocking assignments, 156
NoOthersStaticError .ini file variable, 325
NoRangeCheck .ini file variable, 325
Note .ini file variable, 345
Notepad windows, text editing, 404
-notrigger argument, 221
NoVital .ini file variable, 325
NoVitalCheck .ini file variable, 326
Now simulator state variable, 350
now simulator state variable, 350
numeric_bit package, 106
numeric_std package, 106

disabling warning messages, 347
NumericStdNoWarnings .ini file variable, 336

— O —
object

defined, 30
objects

virtual, 183
Objects window, 60

see also windows, Objects window
operating systems supported, See Installation

Guide
optimizations

VHDL subprogram inlining, 110
Optimize_1164 .ini file variable, 326
ordering files for compile, 89
organizing projects with folders, 92
organizing windows, MDI pane, 42

433ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

others .ini file variable, 321
overview, simulation tasks, 22

— P —
packages

standard, 105
textio, 105
util, 124
VITAL 1995, 123
VITAL 2000, 123

page setup
Dataflow window, 235
Wave window, 214

pan, Dataflow window, 229
panes

docking and undocking, 413
Memory panes, 56

parameters
making optional, 309
using with macros, 308

path delay mode, 163
path delays,matching to DEVICE statements,

269
path delays,matching to

GLOBALPATHPULSE statements,
269

path delays,matching to IOPATH statements,
268

path delays,matching to PATHPULSE
statements, 269

pathnames
hiding in Wave window, 203

PATHPULSE
matching to specify path delays, 269

PathSeparator .ini file variable, 336
PedanticErrors .ini file variable, 326
performance

cancelling scheduled events, 136
PERIOD

matching to Verilog, 271
platforms supported, See Installation Guide
PLI

loading shared objects with global symbol
visibility, 387

specifying which apps to load, 367
Veriuser entry, 367

PLI/VPI, 173
tracing, 398

PLI/VPI/DPI, 365
registering DPIapplications, 369
specifying the DPI file to load, 387

PLIOBJS environment variable, 317, 367
PORT

matching to input ports, 268
Port driver data, capturing, 286
Postscript

saving a waveform in, 214
saving the Dataflow display in, 233

precedence of variables, 349
precision, simulator resolution, 151
preference variables

.ini files, located in, 319
editing, 415
saving, 415

preferences
saving, 415
Wave window display, 202

PrefMain(EnableCommandHelp), 40
PrefMain(ShowFilePane) preference variable,

38
PrefMemory(ExpandPackedMem) variable, 57
primitives, symbols in Dataflow window, 235
printing

Dataflow window display, 233
waveforms in the Wave window, 214

Programming Language Interface, 173, 365
project tab

information in, 88
sorting, 89

projects, 81
accessing from the command line, 97
adding files to, 84
benefits, 81
close, 88
compile order, 89

changing, 89
compiler properties in, 94
compiling files, 85
creating, 83
creating simulation configurations, 91
folders in, 92

434
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

grouping files in, 90
loading a design, 86
MODELSIM environment variable, 315
open and existing, 88
overview, 81

protected types, 128

— Q —
quick reference

table of simulation tasks, 22
Quiet .ini file variable

VCOM, 326
Quiet .ini file variable (VLOG), 322

— R —
race condition, problems with event order, 154
radix

List window, 211
SystemVerilog types, 75, 205
Wave window, 205

range checking, 110
readers and drivers, 227
real type, converting to time, 127
reconstruct RTL-level design busses, 184
RECOVERY

matching to Verilog, 270
$recovery, 169
RECREM

matching to Verilog, 270
redirecting messages, TranscriptFile, 338
refreshing library images, 106
regions

virtual, 186
registers

values of
displaying in Objects window, 60
saving as binary log file, 175

waveforms, viewing, 72
REMOVAL

matching to Verilog, 270
report

simulator control, 313
simulator state, 313

RequireConfigForAllDefaultBinding variable,
326

resolution

returning as a real, 125
verilog simulation, 151
VHDL simulation, 114

Resolution .ini file variable, 337
resolution simulator state variable, 350
resource libraries, 105
restart command

defaults, 348
toolbar button, 46, 78

results, saving simulations, 175
RTL-level design busses

reconstructing, 184
RunLength .ini file variable, 337
Runtime Options dialog, 342

— S —
saveLines preference variable, 39
saving

simulation options in a project, 91
waveforms, 175

scaling fonts, 35
SDF

disabling timing checks, 274
errors and warnings, 264
instance specification, 263
interconnect delays, 273
mixed VHDL and Verilog designs, 273
specification with the GUI, 264
troubleshooting, 274
Verilog

$sdf_annotate system task, 267
optional conditions, 272
optional edge specifications, 271
rounded timing values, 273
SDF to Verilog construct matching, 268

VHDL
resolving errors, 265
SDF to VHDL generic matching, 265

SDF DEVICE
matching to Verilog constructs, 269

SDF GLOBALPATHPULSE
matching to Verilog constructs, 269

SDF HOLD
matching to Verilog constructs, 269

SDF INTERCONNECT
matching to Verilog constructs, 268

435ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

SDF IOPATH
matching to Verilog constructs, 268

SDF NOCHANGE
matching to Verilog constructs, 271

SDF PATHPULSE
matching to Verilog constructs, 269

SDF PERIOD
matching to Verilog constructs, 271

SDF PORT
matching to Verilog constructs, 268

SDF RECOVERY
matching to Verilog constructs, 270

SDF RECREM
matching to Verilog constructs, 270

SDF REMOVAL
matching to Verilog constructs, 270

SDF SETUPHOLD
matching to Verilog constructs, 270

SDF SKEW
matching to Verilog constructs, 270

SDF WIDTH
matching to Verilog constructs, 271

$sdf_done, 167
searching

Expression Builder, 200
Verilog libraries, 144

sensitivity list warning, 360
set simulator control with GUI, 342
SETUP

matching to Verilog, 269
SETUPHOLD

matching to Verilog, 270
$setuphold, 169
severity, changing level for errors, 356
shared objects

loading FLI applications
see FLI Reference manual

loading PLI/VPI/DPI C applications, 373
loading PLI/VPI/DPI C++ applications,

380
loading with global symbol visibility, 387

Shortcuts
text editing, 404

shortcuts
command history, 403

command line caveat, 403
List window, 407
Main window, 404
Source window, 404
Wave window, 408

show drivers
Dataflow window, 227
Wave window, 221

Show_ WarnMatchCadence .ini file variable,
323

Show_BadOptionWarning .ini file variable,
323

Show_Lint .ini file variable
VCOM, 326

Show_Lint .ini file variable (VLOG), 323
Show_source .ini file variable

VCOM, 326
Show_source .ini file variable (VLOG), 323
Show_VitalChecksOpt .ini file variable, 327
Show_VitalChecksWarning .ini file variable,

327
Show_WarnCantDoCoverage .ini file variable,

323
Show_WarnCantDoCoverage variable, 327
Show_Warning1 .ini file variable, 327
Show_Warning10 .ini file variable, 328
Show_Warning2 .ini file variable, 327
Show_Warning3 .ini file variable, 327
Show_Warning4 .ini file variable, 328
Show_Warning5 .ini file variable, 328
Show_Warning9 .ini file variable, 328
Show_WarnLocallyStaticError variable, 328
signal groups

in wave window, 208
Signal Spy, 125, 245

disable, 241, 252
enable, 242, 253

$signal_force, 258
signal_force, 126, 248
$signal_release, 260
signal_release, 126, 250
signals

combining into a user-defined bus, 215
Dataflow window, displaying in, 49, 225
driving in the hierarchy, 243

436
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

filtering in the Objects window, 60
hierarchy

driving in, 243, 254
referencing in, 125, 245, 256
releasing anywhere in, 250
releasing in, 126, 260

sampling at a clock change, 221
transitions, searching for, 196
types, selecting which to view, 60
values of

displaying in Objects window, 60
forcing anywhere in the hierarchy, 126,

248, 258
saving as binary log file, 175

virtual, 184
waveforms, viewing, 72

simulating
batch mode, 27
command-line mode, 27
comparing simulations, 175
default run length, 342
iteration limit, 343
saving dataflow display as a Postscript file,

233
saving options in a project, 91
saving simulations, 175
saving waveform as a Postscript file, 214
Verilog, 151

delay modes, 162
hazard detection, 158
resolution limit, 151
XL compatible simulator options, 160

VHDL, 114
viewing results in List pane, 53
viewing results in List window, 190
VITAL packages, 124

simulating the design, overview, 26
simulation

basic steps for, 23
Simulation Configuration

creating, 91
simulation task overview, 22
simulations

event order in, 154
saving results, 175

saving results at intervals, 182
simulator control

with .ini variables, 342
simulator resolution

returning as a real, 125
Verilog, 151
VHDL, 114

simulator state variables, 349
sizetf callback function, 391
SKEW

matching to Verilog, 270
so, shared object file

loading PLI/VPI/DPI C applications, 373
loading PLI/VPI/DPI C++ applications,

380
source files, referencing with location maps,

353
source files, specifying with location maps, 353
source highlighting, customizing, 68
source libraries

arguments supporting, 147
Source window, 62

colorization, 68
tab stops in, 68
see also windows, Source window

specify path delays
matching to DEVICE construct, 269
matching to GLOBALPATHPULSE

construct, 269
matching to IOPATH statements, 268
matching to PATHPULSE construct, 269

standards supported, 28
startup

environment variables access during, 420
files accessed during, 419
macro in the modelsim.ini file, 338
macros, 347
startup macro in command-line mode, 27
using a startup file, 347

Startup .ini file variable, 338
state variables, 349
status bar

Main window, 44
Status field

Project tab, 88

437ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

std .ini file variable, 320
std_arith package

disabling warning messages, 347
std_developerskit .ini file variable, 320
std_logic_arith package, 106
std_logic_signed package, 106
std_logic_textio, 106
std_logic_unsigned package, 106
StdArithNoWarnings .ini file variable, 338
STDOUT environment variable, 317
steps for simulation, overview, 23
subprogram inlining, 110
subprogram write is ambiguous error, fixing,

120
Suppress .ini file variable, 345
sv_std .ini file variable, 320
symbol mapping

Dataflow window, 235
symbolic link to design libraries (UNIX), 104
synopsys .ini file variable, 320
Synopsys libraries, 106
syntax highlighting, 68
synthesis

rule compliance checking, 324
system calls

VCD, 282
Verilog, 163

system commands, 299
system tasks

proprietary, 167
VCD, 282
Verilog, 163
Verilog-XL compatible, 168

SystemVerilog
keyword considerations, 140
multi-file compilation, 145
suppported implementation details, 28

SystemVerilog DPI
specifying the DPI file to load, 387

SystemVerilog types
radix, 75, 205

— T —
tab groups, 42
tab stops

Source window, 68

Tcl, ?? to 303
command separator, 298
command substitution, 297
command syntax, 294
evaluation order, 298
history shortcuts, 403
preference variables, 415
relational expression evaluation, 298
time commands, 301
variable

substitution, 299
VSIM Tcl commands, 300

Tcl_init error message, 360
temp files, VSOUT, 319
testbench, accessing internal objectsfrom, 239
text and command syntax, 31
Text editing, 404
TEXTIO

buffer, flushing, 122
TextIO package

alternative I/O files, 122
containing hexadecimal numbers, 121
dangling pointers, 121
ENDFILE function, 122
ENDLINE function, 121
file declaration, 119
implementation issues, 120
providing stimulus, 122
standard input, 120
standard output, 120
WRITE procedure, 120
WRITE_STRING procedure, 121

TF routines, 397
TFMPC

explanation, 361
time

measuring in Wave window, 192
time resolution as a simulator state

variable, 350
time collapsing, 182
time resolution

in Verilog, 151
in VHDL, 114

time type
converting to real, 126

438
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

timeline
display clock cycles, 203

timescale directive warning
investigating, 152

timing
$setuphold/$recovery, 169
disabling checks, 274
negative check limits

described, 159
TMPDIR environment variable, 317
to_real VHDL function, 126
to_time VHDL function, 127
toggle coverage

max VHDL integer values, 338
too few port connections, explanation, 361
tool structure, 21
toolbar

Dataflow window, 50
Main window, 45

tracing
events, 230
source of unknown, 231

transcript
disable file creation, 39, 347
file name, specifed in modelsim.ini, 346
saving, 39
using as a DO file, 39

Transcript window
changing buffer size, 39
changing line count, 39

TranscriptFile .ini file variable, 338
triggers, in the List window, 219
triggers, in the List window, setting, 217
troubleshooting

DPI, missing import funtion, 400
TSSI

in VCD files, 286
type

converting real to time, 127
converting time to real, 126

Type field, Project tab, 88
types

virtual, 186

— U —
UnbufferedOutput .ini file variable, 338

ungrouping
in wave window, 210

ungrouping objects, Monitor window, 71
unit delay mode, 163
unknowns, tracing, 231
use clause, specifying a library, 105
use flow

DPI, 370
UseCsupV2 .ini file variable, 338
user-defined bus, 183, 215
UserTimeUnit .ini file variable, 339
util package, 124

— V —
values

of HDL items, 67
variables, 342

environment, 313
expanding environment variables, 313
LM_LICENSE_FILE, 315
precedence between .ini and .tcl, 349
setting environment variables, 314
simulator state variables

current settings report, 313
iteration number, 349
name of entity or module as a variable,

349
resolution, 349
simulation time, 349

values of
displaying in Objects window, 60
saving as binary log file, 175

VCD files
capturing port driver data, 286
case sensitivity, 278
creating, 277
dumpports tasks, 281
from VHDL source to VCD output, 282
stimulus, using as, 278
supported TSSI states, 286
VCD system tasks, 282

Verilog
ACC routines, 395
capturing port driver data with -dumpports,

286
cell libraries, 162

439ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

compiler directives, 171
compiling and linking PLI C applications,

373
compiling and linking PLI C++

applications, 380
compiling design units, 140
compiling with XL ’uselib compiler

directive, 147
configurations, 149
DPI access routines, 397
event order in simulation, 154
generate statements, 150
language templates, 65
library usage, 144
SDF annotation, 266
sdf_annotate system task, 266
simulating, 151

delay modes, 162
XL compatible options, 160

simulation hazard detection, 158
simulation resolution limit, 151
source code viewing, 62
standards, 28
system tasks, 163
TF routines, 397
XL compatible compiler options, 146
XL compatible routines, 398
XL compatible system tasks, 168

verilog .ini file variable, 320
Verilog 2001

disabling support, 323
Verilog PLI/VP/DPII

registering VPI applications, 367
Verilog PLI/VPI

64-bit support in the PLI, 398
debugging PLI/VPI code, 399

Verilog PLI/VPI/DPI
compiling and linking PLI/VPI C++

applications, 380
compiling and linking PLI/VPI/CPI C

applications, 373
PLI callback reason argument, 390
PLI support for VHDL objects, 393
registering PLI applications, 366
specifying the PLI/VPI file to load, 386

Verilog-XL
compatibility with, 139, 365

Veriuser .ini file variable, 339, 367
Veriuser, specifying PLI applications, 367
veriuser.c file, 392
VHDL

compiling design units, 109
creating a design library, 109
delay file opening, 348
dependency checking, 110
file opening delay, 348
language templates, 65
language versions, 111
library clause, 105
object support in PLI, 393
optimizations

inlining, 110
simulating, 114
source code viewing, 62
standards, 28
timing check disabling, 114
VITAL package, 106

VHDL utilities, 124, 125, 245, 256
get_resolution(), 125
to_real(), 126
to_time(), 127

VHDL-1987, compilation problems, 111
VHDL-1993, enabling support for, 328
VHDL-2002, enabling support for, 328
VHDL93 .ini file variable, 328
viewing, 40

library contents, 101
waveforms, 175

virtual compare signal, restrictions, 215
virtual hide command, 184
virtual objects, 183

virtual functions, 185
virtual regions, 186
virtual signals, 184
virtual types, 186

virtual region command, 186
virtual regions

reconstruct RTL hierarchy, 186
virtual save command, 185
virtual signal command, 184

440
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

virtual signals
reconstruct RTL-level design busses, 184
reconstruct the original RTL hierarchy, 184
virtual hide command, 184

visibility
of declarations in $unit, 145

VITAL
compiling and simulating with accelerated

VITAL packages, 124
disabling optimizations for debugging, 124
specification and source code, 123
VITAL packages, 124

vital95 .ini file variable, 321
vlog95compat .ini file variable, 323
VPI, registering applications, 367
VPI/PLI, 173
VPI/PLI/DPI, 365

compiling and linking C applications, 373
compiling and linking C++ applications,

380
VSIM license lost, 362
VSOUT temp file, 319

— W —
WarnConstantChange .ini file variable, 339
Warning .ini file variable, 345
warnings

empty port name, 359
exit codes, 357
getting more information, 355
messages, long description, 355
metavalue detected, 360
severity level, changing, 356
suppressing VCOM warning messages,

356
suppressing VLOG warning messages, 357
suppressing VSIM warning messages, 357
Tcl initialization error 2, 360
too few port connections, 361
turning off warnings from arithmetic

packages, 347
waiting for lock, 359

watching a signal value, 70
wave groups, 208

add items to existing, 210
creating, 208

deleting, 210
drag from Wave to List, 210
drag from Wave to Transcript, 210
removing items from existing, 210
ungrouping, 210

Wave Log Format (WLF) file, 175
wave log format (WLF) file

see also WLF files
wave viewer, Dataflow window, 228
Wave window, 72, 187

docking and undocking, 72, 188
in the Dataflow window, 228
saving layout, 213
timeline

display clock cycles, 203
see also windows, Wave window

waveform logfile
overview, 175
see also WLF files

waveforms, 175
optimize viewing of, 340
viewing, 72

WaveSignalNameWidth .ini file variable, 339
WIDTH

matching to Verilog, 271
windows

Active Processes pane, 47
Dataflow window, 49, 225

toolbar, 50
zooming, 229

List window, 53, 190
display properties of, 211
formatting HDL items, 211
saving data to a file, 214
setting triggers, 217, 219

Locals window, 55
Main window, 36

status bar, 44
text editing, 404
time and delta display, 44
toolbar, 45

Memory window, 56
monitor, 70
Objects window, 60
Signals window

441ModelSim User’s Manual, v6.2g
February 2007

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

VHDL and Verilog items viewed in, 60
Source window, 62

text editing, 404
viewing HDL source code, 62

Variables window
VHDL and Verilog items viewed in, 55

Wave window, 72, 187
adding HDL items to, 191
cursor measurements, 192
display preferences, 202
display range (zoom), changing, 196
format file, saving, 213
path elements, changing, 339
time cursors, 192
zooming, 196

WLF file parameters
cache size, 178
collapse mode, 178
compression, 177
delete on quit, 178
filename, 177
optimization, 177
overview, 177
size limit, 177
time limit, 177

WLF files
collapsing events, 182
optimizing waveform viewing, 340
saving, 176
saving at intervals, 182

WLFCacheSize .ini file variable, 339
WLFCollapseMode .ini file variable, 340
WLFCompress .ini variable, 340
WLFDeleteOnQuit .ini variable, 340
WLFFilename .ini file variable, 340
WLFSaveAllRegions .ini variable, 340
WLFSizeLimit .ini variable, 341
WLFTimeLimit .ini variable, 341
work library, 100

creating, 101
workspace, 37
WRITE procedure, problems with, 120

— X —
X

tracing unknowns, 231

.Xdefaults file, controlling fonts, 36
X-session

controlling fonts, 36

— Z —
zero delay elements, 116
zero delay mode, 163
zero-delay loop, infinite, 118
zero-delay oscillation, 118
zero-delay race condition, 154
zoom

Dataflow window, 229
saving range with bookmarks, 197

zooming window panes, 414

442
February 2007

ModelSim User’s Manual, v6.2g

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Third-Party Information

This section provides information on third-party software that may be included in the ModelSim product, including any
additional license terms.

• This product may include Valgrind third-party software.

©Julian Seward. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

• This product may use MinGW GCC third-party software.

©Red Hat, Inc. All rights reserved.

©Pipeline Associates, Inc. All rights reserved.

©Matthew Self. All rights reserved.

©National Research Council of Canada. All rights reserved.

©The Regents of the University of California.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

©Free Software Foundation, Inc. All rights reserved.

Refer to the license file in your install directory:

<install_directory>/docs/legal/mingw_gcc.pdf

• This software application may include GNU GCC third-party software.

© AT&T. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that
this entire notice is included in all copies of any software which is or includes a copy or modification of this software and
in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY REPRESENTATION OR WARRANTY OF
ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This software application may include GNU GCC third-party software.

© Doug Bell. All Rights Reserved.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This software application may include GNU third-party software distributed by The Free Software Foundation.

© Free Software Foundation.

To view a copy of the GNU GPL, LGPL, Library, and Documentation licenses, refer to:

http://www.fsf.org/licensing/licenses.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This software application may include GNU GCC third-party software.

©The Regents of the University of California. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf

• This product may include freeWrap open source software

© Dennis R. LaBelle All Rights Reserved.

Disclaimer of warranty: Licensor provides the software on an ``as is'' basis. Licensor does not warrant, guarantee, or make
any representations regarding the use or results of the software with respect to it correctness, accuracy, reliability or
performance. The entire risk of the use and performance of the software is assumed by licensee. ALL WARANTIES
INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
MERCHANTABILITY ARE HEREBY EXCLUDED.

• This software application may include MinGW GNU diffutils version 2.7 third-party software.

© 1991, 1993 The Regents of the University of California. All rights reserved.

© UNIX System Laboratories, Inc.

All or some portions of this file are derived from material licensed to the University of California by American Telephone
and Telegraph Co. or Unix System Laboratories, Inc. and are reproduced herein with the permission of UNIX System
Laboratories, Inc.

* This code is derived from software contributed to Berkeley by
* Hugh Smith at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*

 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

• This software application may include MinGW GNU diffutils version 2.7 third-party software. You can view the
complete license at:http://www.fsf.org/licensing/licenses/lgpl.html

Refer to the license file in your install directory:

<install_directory>/docs/legal/lgpl.pdf

End-User License Agreement
The latest version of the End-User License Agreement is available on-line at:

www.mentor.com/terms_conditions/enduser.cfm

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software between you, the end user, as an authorized
representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries (collectively “Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by you and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties'
entire understanding relating to the subject matter and supersede all prior or contemporaneous agreements. If you
do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of
Software and all accompanying items within five days after receipt of Software and receive a full refund of any
license fee paid.

1. GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation
and design data (“Software”), are copyrighted, trade secret and confidential information of Mentor Graphics or its
licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license
term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half
mile (800 meter) radius. Mentor Graphics’ standard policies and programs, which vary depending on Software, license
fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be
limited, for example, to execution of a single session by a single user on the authorized hardware or for a restricted period
of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and
(c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.

2. EMBEDDED SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, if
applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler
Software that are linked into a composite program as an integral part of your compiled computer program, provided that
you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant
you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other
embedded software products into your products or applications without first signing or otherwise agreeing to a separate
agreement with Mentor Graphics for such purpose.

3. BETA CODE. Software may contain code for experimental testing and evaluation (“Beta Code”), which may not be used
without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’ authorization, Mentor Graphics grants to you a
temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge
for a limited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell a license to the Beta Code, which Mentor Graphics may choose not to release
commercially in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Beta Code under normal conditions as directed by Mentor Graphics. You will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements. You agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this
Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall
survive the termination or expiration of this Agreement.

 IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/terms_conditions/enduser.cfm

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each
copy must include all notices and legends embedded in Software and affixed to its medium and container as received from
Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. You shall maintain a record of
the number and primary location of all copies of Software, including copies merged with other software, and shall make
those records available to Mentor Graphics upon request. You shall not make Software available in any form to any
person other than employees and on-site contractors, excluding Mentor Graphics' competitors, whose job performance
requires access and who are under obligations of confidentiality. You shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does not disclose it or use it except as
permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable
and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from
Software any source code. You may not sublicense, assign or otherwise transfer Software, this Agreement or the rights
under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics’ prior written consent
and payment of Mentor Graphics’ then-current applicable transfer charges. Any attempted transfer without Mentor
Graphics' prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics' option, result in
the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement,
including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest
and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially
conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. You
must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be
valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR
GRAPHICS' ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS'
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR
GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS
LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT.
MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE
WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR
(C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “AS IS.”

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITS LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS' OR ITS LICENSORS'
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE
PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS
AGREEMENT.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE
EXPIRATION OR TERMINATION OF THIS AGREEMENT.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR
TERMINATION OF THIS AGREEMENT.

9. INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. You understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, less a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (a) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process; (e) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor
Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphics for its attorney fees and other costs
related to the action upon a final judgment.

9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION
BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

10. TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate
upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or
4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days
written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was
provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and
destruction of Software, including all copies, to Mentor Graphics’ reasonable satisfaction.

11. EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export
or diversion of certain products, information about the products, and direct products of the products to certain countries
and certain persons. You agree that you will not export any Software or direct product of Software in any manner without
first obtaining all necessary approval from appropriate local and United States government agencies.

12. RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer
software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (c)(1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

13. THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Microsoft
or other licensors, Microsoft or the applicable licensor is a third party beneficiary of this Agreement with the right to
enforce the obligations set forth herein.

14. AUDIT RIGHTS. You will monitor access to, location and use of Software. With reasonable prior notice and during
your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and
reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this
Agreement or U.S. or other local export laws. Such review may include FLEXlm or FLEXnet report log files that you
shall capture and provide at Mentor Graphics’ request. Mentor Graphics shall treat as confidential information all of your
information gained as a result of any request or review and shall only use or disclose such information as required by law
or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall
survive the expiration or termination of this Agreement.

15. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE
LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED
OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the
laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia (except for Japan) arising out of or in relation to
this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of
the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the
Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference
in this section 15. This section shall not restrict Mentor Graphics’ right to bring an action against you in the jurisdiction
where your place of business is located. The United Nations Convention on Contracts for the International Sale of Goods
does not apply to this Agreement.

16. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in
full force and effect.

17. PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition
of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect,
whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be
modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing
and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Tool Structure and Flow
	Simulation Task Overview
	Basic Steps for Simulation
	Step 1 - Collecting Files and Mapping Libraries
	Providing Stimulus to the Design
	What is a Library?
	Working and Resource Libraries
	Creating the Logical Library (vlib)
	Mapping the Logical Work to the Physical Work Directory (vmap)

	Step 2 - Compiling the Design (vlog, vcom, sccom)
	Compiling Verilog (vlog)
	Compiling VHDL (vcom)

	Step 3 - Loading the Design for Simulation
	vsim topLevelModule
	Using SDF

	Step 4 - Simulating the Design
	Step 5 - Debugging the Design

	Modes of Operation
	Command Line Mode
	Batch Mode

	Standards Supported
	Assumptions
	Sections In This Document
	What is an "Object"
	Text Conventions
	Installation Directory Pathnames

	Chapter 2 Simulator Windows
	Design Object Icons and Their Meaning
	Setting Fonts
	Font Scaling
	Controlling Fonts in an X-session

	Main Window
	Workspace
	Transcript
	Saving the Transcript File
	Using the Saved Transcript as a Macro (DO file)
	Changing the Number of Lines Saved in the Transcript Window
	Disabling Creation of the Transcript File
	Automatic Command Help

	Message Viewer
	Controlling the Message Viewer Data
	Message Viewer Interface and Tasks

	Multiple Document Interface (MDI) Frame

	Organizing Windows with Tab Groups
	Navigating in the Main Window
	Main Window Status Bar
	Main Window Toolbar

	Active Processes Pane
	Process Status

	Call Stack Pane
	Dataflow Window
	Dataflow Window Toolbar

	List Window
	Locals Pane
	Memory Panes
	Associative Arrays in Verilog/SystemVerilog
	Viewing Single and Multidimensional Memories
	Viewing Packed Arrays
	Viewing Memory Contents
	Viewing Multiple Memory Instances

	Saving Memory Formats in a DO File
	Direct Address Navigation
	Splitting the Memory Contents Pane

	Objects Pane
	Filtering the Objects List
	Filtering by Name
	Filtering by Signal Type

	Source Window
	Opening Source Files
	Displaying Multiple Source Files
	Dragging and Dropping Objects into the Wave and List Windows
	Setting your Context by Navigating Source Files
	Language Templates
	Setting File-Line Breakpoints
	Checking Object Values and Descriptions
	Marking Lines with Bookmarks
	Customizing the Source Window

	Watch Pane
	Adding Objects to the Pane
	Expanding Objects to Show Individual Bits
	Grouping and Ungrouping Objects
	Saving and Reloading Format Files

	Wave Window
	Wave Window Panes
	Pathname Pane
	Value Pane
	Waveform Pane
	Cursor Panes

	Wave Window Toolbar

	Chapter 3 Projects
	What are Projects?
	What are the Benefits of Projects?
	Project Conversion Between Versions

	Getting Started with Projects
	Step 1 - Creating a New Project
	Step 2 - Adding Items to the Project
	Create New File
	Add Existing File

	Step 3 - Compiling the Files
	Step 4 - Simulating a Design
	Other Basic Project Operations
	Open an Existing Project
	Close a Project

	The Project Tab
	Sorting the List

	Changing Compile Order
	Auto-Generating Compile Order
	Grouping Files

	Creating a Simulation Configuration
	Organizing Projects with Folders
	Adding a Folder

	Specifying File Properties and Project Settings
	File Compilation Properties
	Project Settings
	Converting Pathnames to Softnames for Location Mapping

	Accessing Projects from the Command Line

	Chapter 4 Design Libraries
	Design Library Overview
	Design Unit Information
	Working Library Versus Resource Libraries
	The Library Named "work"

	Archives

	Working with Design Libraries
	Creating a Library
	Managing Library Contents
	Assigning a Logical Name to a Design Library
	Library Mappings with the GUI
	Library Mapping from the Command Line
	Unix Symbolic Links
	Library Search Rules

	Moving a Library
	Setting Up Libraries for Group Use

	Specifying the Resource Libraries
	Verilog Resource Libraries
	VHDL Resource Libraries
	Predefined Libraries
	Alternate IEEE Libraries Supplied
	Regenerating Your Design Libraries
	Maintaining 32- and 64-bit Versions in the Same Library

	Importing FPGA Libraries

	Chapter 5 VHDL Simulation
	Basic VHDL Flow
	Compiling VHDL Files
	Creating a Design Library for VHDL
	Invoking the VHDL Compiler
	Dependency Checking
	Range and Index Checking
	Subprogram Inlining
	mti_inhibit_inline Attribute

	Differences Between Language Versions

	Simulating VHDL Designs
	Simulator Resolution Limit (VHDL)
	Overriding the Resolution
	Choosing the Resolution for VHDL

	Default Binding
	Default Binding Rules
	Disabling Default Binding

	Delta Delays
	Detecting Infinite Zero-Delay Loops

	Using the TextIO Package
	Syntax for File Declaration
	Using STD_INPUT and STD_OUTPUT Within the Tool

	TextIO Implementation Issues
	Writing Strings and Aggregates
	Reading and Writing Hexadecimal Numbers
	Dangling Pointers
	The ENDLINE Function
	The ENDFILE Function
	Using Alternative Input/Output Files
	Flushing the TEXTIO Buffer
	Providing Stimulus

	VITAL Specification and Source Code
	VITAL Packages
	VITAL Compliance
	VITAL Compliance Checking

	Compiling and Simulating with Accelerated VITAL Packages
	Util Package
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	Modeling Memory
	VHDL87 and VHDL93 Example
	VHDL02 example

	Affecting Performance by Cancelling Scheduled Events
	Converting an Integer Into a bit_vector

	Chapter 6 Verilog and SystemVerilog Simulation
	Terminology
	Basic Verilog Flow
	Compiling Verilog Files
	Creating a Working Library
	Invoking the Verilog Compiler
	Parsing SystemVerilog Keywords

	Incremental Compilation
	Automatic Incremental Compilation with -incr

	Library Usage
	Library Search Rules for vlog
	Handling Sub-Modules with Common Names

	SystemVerilog Multi-File Compilation Issues
	Declarations in Compilation Unit Scope
	Macro Definitions and Compiler Directives in Compilation Unit Scope

	Verilog-XL Compatible Compiler Arguments
	Arguments Supporting Source Libraries

	Verilog-XL uselib Compiler Directive
	-compile_uselibs Argument
	uselib is Persistent

	Verilog Configurations
	Configurations and the Library Named work

	Verilog Generate Statements
	Name Visibility in Generate Statements

	Simulating Verilog Designs
	Simulator Resolution Limit (Verilog)
	Modules Without Timescale Directives
	-timescale Option
	Multiple Timescale Directives
	timescale, -t, and Rounding
	Choosing the Resolution for Verilog

	Event Ordering in Verilog Designs
	Event Queues
	Controlling Event Queues with Blocking or Non-Blocking Assignments
	Blocking Assignments
	Non-Blocking Assignments

	Debugging Event Order Issues
	Hazard Detection
	Hazard Detection and Optimization Levels
	Limitations of Hazard Detection

	Negative Timing Check Limits
	Negative Timing Constraint Algorithm
	Using Delayed Inputs for Timing Checks

	Verilog-XL Compatible Simulator Arguments
	Using Escaped Identifiers

	Cell Libraries
	SDF Timing Annotation
	Delay Modes
	Distributed Delay Mode
	Path Delay Mode
	Unit Delay Mode
	Zero Delay Mode

	System Tasks and Functions
	IEEE Std 1364 System Tasks and Functions
	SystemVerilog System Tasks and Functions
	System Tasks and Functions Specific to the Tool
	Verilog-XL Compatible System Tasks and Functions
	Supported Tasks and Functions Mentioned in IEEE Std 1364
	Supported Tasks not Described in the IEEE Std 1364
	Supported Tasks that Have Been Extended
	Unsupported Verilog-XL System Tasks

	Compiler Directives
	IEEE Std 1364 Compiler Directives
	Verilog-XL Compatible Compiler Directives

	Verilog PLI/VPI and SystemVerilog DPI

	Chapter 7 WLF Files (Datasets) and Virtuals
	Saving a Simulation to a WLF File
	WLF File Parameter Overview

	Opening Datasets
	Viewing Dataset Structure
	Structure Tab Columns

	Managing Multiple Datasets
	GUI
	Command Line
	Restricting the Dataset Prefix Display

	Saving at Intervals with Dataset Snapshot
	Collapsing Time and Delta Steps
	Virtual Objects
	Virtual Signals
	Implicit and Explicit Virtuals

	Virtual Functions
	Virtual Regions
	Virtual Types

	Chapter 8 Waveform Analysis
	Objects You Can View
	Wave Window Overview
	List Window Overview
	Adding Objects to the Wave or List Window
	Adding Objects with Drag and Drop
	Adding Objects with a Menu Command
	Adding Objects with a Command
	Adding Objects with a Window Format File

	Measuring Time with Cursors in the Wave Window
	Working with Cursors
	Shortcuts for Working with Cursors

	Understanding Cursor Behavior
	Jumping to a Signal Transition

	Setting Time Markers in the List Window
	Working with Markers

	Zooming the Wave Window Display
	Zooming with the Menu, Toolbar and Mouse
	Saving Zoom Range and Scroll Position with Bookmarks
	Managing Bookmarks
	Adding Bookmarks
	Editing Bookmarks

	Searching in the Wave and List Windows
	Finding Signal Names
	Searching for Values or Transitions
	Using the Expression Builder for Expression Searches
	Saving an Expression to a Tcl Variable
	Searching for when a Signal Reaches a Particular Value
	Evaluating Only on Clock Edges
	Operators

	Formatting the Wave Window
	Setting Wave Window Display Preferences
	Hiding/Showing Path Hierarchy
	Setting the Timeline to Count Clock Cycles

	Formatting Objects in the Wave Window
	Changing Radix (base) for the Wave Window

	Dividing the Wave Window
	Working with Dividers

	Splitting Wave Window Panes
	The Active Split

	Wave Groups
	Creating a Wave Group
	Deleting or Ungrouping a Wave Group
	Adding Items to an Existing Wave Group
	Removing Items from an Existing Wave Group
	Miscellaneous Wave Group Features

	Formatting the List Window
	Setting List Window Display Properties
	Formatting Objects in the List Window
	Changing Radix (base) for the List Window

	Saving the Window Format
	Printing and Saving Waveforms in the Wave window
	Saving a .eps Waveform File and Printing in UNIX
	Printing from the Wave Window on Windows Platforms
	Printer Page Setup

	Saving List Window Data to a File
	Combining Objects into Buses
	Configuring New Line Triggering in the List Window
	Using Gating Expressions to Control Triggering
	Trigger Gating Example Using the Expression Builder
	Trigger Gating Example Using Commands

	Sampling Signals at a Clock Change

	Miscellaneous Tasks
	Examining Waveform Values
	Displaying Drivers of the Selected Waveform
	Sorting a Group of Objects in the Wave Window

	Creating and managing breakpoints
	Signal breakpoints
	Setting signal breakpoints from the command line
	Setting signal breakpoints from the GUI

	File-line breakpoints
	Setting file-line breakpoints from the command line
	Setting file-line breakpoints from the GUI

	Chapter 9 Tracing Signals with the Dataflow Window
	Dataflow Window Overview
	Objects You Can View in the Dataflow Window

	Adding Objects to the Window
	Links to Other Windows
	Exploring the Connectivity of the Design
	Tracking Your Path Through the Design

	The Embedded Wave Viewer
	Zooming and Panning
	Panning with the Mouse

	Tracing Events (Causality)
	Tracing the Source of an Unknown State (StX)
	Finding Objects by Name in the Dataflow Window
	Printing and Saving the Display
	Saving a .eps File and Printing the Dataflow Display from UNIX
	Printing from the Dataflow Display on Windows Platforms

	Configuring Page Setup
	Symbol Mapping
	User-defined symbols

	Configuring Window Options

	Chapter 10 Signal Spy
	Designed for Testbenches
	disable_signal_spy
	enable_signal_spy
	init_signal_driver
	init_signal_spy
	signal_force
	signal_release
	$disable_signal_spy
	$enable_signal_spy
	$init_signal_driver
	$init_signal_spy
	$signal_force
	$signal_release

	Chapter 11 Standard Delay Format (SDF) Timing Annotation
	Specifying SDF Files for Simulation
	Instance Specification
	SDF Specification with the GUI
	Errors and Warnings

	VHDL VITAL SDF
	SDF to VHDL Generic Matching
	Resolving Errors

	Verilog SDF
	$sdf_annotate
	SDF to Verilog Construct Matching
	Optional Edge Specifications
	Optional Conditions
	Rounded Timing Values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect Delays
	Disabling Timing Checks
	Troubleshooting
	Specifying the Wrong Instance
	VHDL Testbench
	Verilog Testbench

	Mistaking a Component or Module Name for an Instance Label
	Forgetting to Specify the Instance

	Chapter 12 Value Change Dump (VCD) Files
	Creating a VCD File
	Flow for Four-State VCD File
	Flow for Extended VCD File
	Case Sensitivity

	Using Extended VCD as Stimulus
	Simulating with Input Values from a VCD File
	Replacing Instances with Output Values from a VCD File
	Port Order Issues

	VCD Commands and VCD Tasks
	Compressing Files with VCD Tasks

	VCD File from Source To Output
	VHDL Source Code
	VCD Simulator Commands
	VCD Output

	Capturing Port Driver Data
	Driver States
	Driver Strength
	Identifier Code
	Resolving Values
	Default Behavior
	Ignoring Strength Ranges
	Extended $dumpports Syntax

	Chapter 13 Tcl and Macros (DO Files)
	Tcl Features
	Tcl References

	Tcl Commands
	Tcl Command Syntax
	If Command Syntax
	Command Substitution
	Command Separator
	Multiple-Line Commands
	Evaluation Order
	Tcl Relational Expression Evaluation
	Variable Substitution
	System Commands

	List Processing
	Simulator Tcl Commands
	Simulator Tcl Time Commands
	Conversions
	Relations
	Arithmetic

	Tcl Examples
	Macros (DO Files)
	Creating DO Files
	Using Parameters with DO Files
	Deleting a File from a .do Script
	Making Macro Parameters Optional
	Example 1
	Example 2
	Example 3

	Useful Commands for Handling Breakpoints and Errors
	Error Action in DO Files
	Using the Tcl Source Command with DO Files

	Appendix A Simulator Variables
	Variable Settings Report
	Environment Variables
	Environment Variable Expansion
	Setting Environment Variables
	DOPATH
	EDITOR
	HOME
	HOME_0IN
	LD_LIBRARY_PATH
	LD_LIBRARY_PATH_32
	LD_LIBRARY_PATH_64
	LM_LICENSE_FILE
	MODEL_TECH
	MODEL_TECH_TCL
	MGC_LOCATION_MAP
	MODELSIM
	MODELSIM_PREFERENCES
	MODELSIM_TCL
	MTI_COSIM_TRACE
	MTI_TF_LIMIT
	MTI_RELEASE_ON_SUSPEND
	MTI_USELIB_DIR
	NOMMAP
	PLIOBJS
	STDOUT
	TMP
	TMPDIR

	Creating Environment Variables in Windows
	Library Mapping with Environment Variables

	Referencing Environment Variables
	Removing Temp Files (VSOUT)

	Simulator Control Variables
	Library Path Variables
	ieee
	modelsim_lib
	std
	std_developerskit
	synopsys
	sv_std
	verilog
	vital2000
	others

	Verilog Compiler Control Variables
	DisableOpt
	GenerateLoopIterationMax
	GenerateRecursionDepthMax
	Hazard
	Incremental
	MultiFileCompilationUnit
	NoDebug
	Quiet
	Show_BadOptionWarning
	Show_Lint
	Show_WarnCantDoCoverage
	Show_WarnMatchCadence
	Show_source
	vlog95compat

	VHDL Compiler Control Variables
	BindAtCompile
	CheckSynthesis
	DisableOpt
	Explicit
	IgnoreVitalErrors
	NoCaseStaticError
	NoDebug
	NoIndexCheck
	NoOthersStaticError
	NoRangeCheck
	NoVital
	NoVitalCheck
	Optimize_1164
	PedanticErrors
	Quiet
	RequireConfigForAllDefaultBinding
	Show_Lint
	Show_source
	Show_VitalChecksOpt
	Show_VitalChecksWarnings
	Show_WarnCantDoCoverage
	Show_Warning1
	Show_Warning2
	Show_Warning3
	Show_Warning4
	Show_Warning5
	Show_Warning9
	Show_Warning10
	Show_WarnLocallyStaticError
	VHDL93

	Simulation Control Variables
	AssertFile
	AssertionDebug
	AssertionFormat
	AssertionFormatBreak
	AssertionFormatError
	AssertionFormatFail
	AssertionFormatFatal
	AssertionFormatNote
	AssertionFormatWarning
	BreakOnAssertion
	CheckPlusargs
	CheckpointCompressMode
	CommandHistory
	ConcurrentFileLimit
	DatasetSeparator
	DefaultForceKind
	DefaultRadix
	DefaultRestartOptions
	DelayFileOpen
	DumpportsCollapse
	GenerateFormat
	GlobalSharedObjectsList
	IgnoreError
	IgnoreFailure
	IgnoreNote
	IgnoreWarning
	IterationLimit
	License
	LockedMemory
	MaxReportRhsCrossProducts
	NumericStdNoWarnings
	OnFinish
	PathSeparator
	PrintSimStats
	Resolution
	RunLength
	ShowFunctions
	SignalSpyPathSeparator
	Startup
	StdArithNoWarnings
	ToggleMaxIntValues
	TranscriptFile
	UnbufferedOutput
	UseCsupV2
	UserTimeUnit
	Veriuser
	WarnConstantChange
	WaveSignalNameWidth
	WLFCacheSize
	WLFCollapseMode
	WLFCompress
	WLFDeleteOnQuit
	WLFFilename
	WLFOptimize
	WLFSaveAllRegions
	WLFSizeLimit
	WLFTimeLimit

	Setting Simulator Control Variables With The GUI
	Message System Variables
	error
	fatal
	note
	suppress
	warning
	msgmode

	Commonly Used INI Variables
	Common Environment Variables
	Hierarchical Library Mapping
	Creating a Transcript File
	Using a Startup File
	Turning Off Assertion Messages
	Turning off Warnings from Arithmetic Packages
	Force Command Defaults
	Restart Command Defaults
	VHDL Standard
	Opening VHDL Files

	Variable Precedence
	Simulator State Variables
	argc
	architecture
	configuration
	delta
	entity
	library
	MacroNestingLevel
	n
	Now
	now
	resolution
	Referencing Simulator State Variables
	Special Considerations for the now Variable

	Appendix B Location Mapping
	Referencing Source Files with Location Maps
	Using Location Mapping
	Pathname Syntax
	How Location Mapping Works
	Mapping with TCL Variables

	Appendix C Error and Warning Messages
	Message System
	Message Format
	Getting More Information
	Changing Message Severity Level

	Suppressing Warning Messages
	Suppressing VCOM Warning Messages
	Suppressing VLOG Warning Messages
	Suppressing VSIM Warning Messages

	Exit Codes
	Miscellaneous Messages
	Enforcing Strict 1076 Compliance

	Appendix D Verilog PLI/VPI/DPI
	Implementation Information
	g++ Compiler Support for use with PLI/VPI/DPI
	Specifying Your Own g++ Compiler

	Registering PLI Applications
	Registering VPI Applications
	Using PLI and VPI Together

	Registering DPI Applications
	DPI Use Flow
	When Your DPI Export Function is Not Getting Called
	Simplified Import of FLI / PLI / C Library Functions
	Use Model for Read-Only Work Libraries

	Compiling and Linking C Applications for PLI/VPI/DPI
	For all UNIX Platforms
	app.so
	Correct Linking of Shared Libraries with -Bsymbolic

	Windows Platforms
	DPI Imports on Windows Platforms
	DPI Flow for Exported Tasks and Functions on Windows Platforms

	32-bit Linux Platform
	64-bit Linux for IA64 Platform
	64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
	32-bit Solaris Platform
	64-bit Solaris Platform
	32-bit HP700 Platform
	64-bit HP Platform
	64-bit HP for IA64 Platform
	32-bit IBM RS/6000 Platform
	DPI Imports on 32-bit IBM RS/6000 Platform
	DPI Flow for Exported Tasks and Functions on 32-bit IBM RS/6000 Platform

	64-bit IBM RS/6000 Platform
	DPI Imports on 64-bit IBM RS/6000 Platform
	DPI Flow for Exported Tasks and Functions on 64-bit IBM RS/6000 Platform

	Compiling and Linking C++ Applications for PLI/VPI/DPI
	For PLI/VPI only
	Windows Platforms
	DPI Imports on Windows Platforms
	DPI Special Flow for Exported Tasks and Functions

	32-bit Linux Platform
	64-bit Linux for IA64 Platform
	64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
	32-bit Solaris Platform
	64-bit Solaris Platform
	32-bit HP700 Platform
	64-bit HP Platform
	64-bit HP for IA64 Platform
	32-bit IBM RS/6000 Platform
	For DPI Imports
	DPI Special Flow for Exported Tasks and Functions

	64-bit IBM RS/6000 Platform
	For DPI Imports
	DPI Special Flow for Exported Tasks and Functions

	Specifying Application Files to Load
	PLI/VPI file loading
	DPI File Loading
	Loading Shared Objects with Global Symbol Visibility

	PLI Example
	VPI Example
	DPI Example
	The PLI Callback reason Argument
	The sizetf Callback Function
	PLI Object Handles
	Third Party PLI Applications
	Support for VHDL Objects
	IEEE Std 1364 ACC Routines
	IEEE Std 1364 TF Routines
	SystemVerilog DPI Access Routines
	Verilog-XL Compatible Routines
	64-bit Support for PLI
	Using 64-bit ModelSim with 32-bit Applications

	PLI/VPI Tracing
	The Purpose of Tracing Files
	Invoking a Trace
	Syntax
	Arguments
	Examples

	Debugging PLI/VPI/DPI Application Code
	Troubleshooting a Missing DPI Import Function
	HP-UX Specific Warnings

	Appendix E Command and Keyboard Shortcuts
	Command Shortcuts
	Command History Shortcuts

	Main and Source Window Mouse and Keyboard Shortcuts
	List Window Keyboard Shortcuts
	Wave Window Mouse and Keyboard Shortcuts

	Appendix F Setting GUI Preferences
	Customizing the Simulator GUI Layout
	Layouts and Modes of Operation
	Custom Layouts
	Creating Custom Layouts
	Assigning Layouts to Modes

	Automatic Saving of Layouts
	Resetting Layouts to Their Defaults

	Navigating the Graphic User Interface
	Manipulating Panes
	Moving Panes
	Docking and Undocking Panes
	Zooming Panes

	Columnar Information Display
	Quick Access Toolbars

	Simulator GUI Preferences
	Setting Preference Variables from the GUI
	Saving GUI Preferences
	The modelsim.tcl File

	Appendix G System Initialization
	Files Accessed During Startup
	Environment Variables Accessed During Startup
	Initialization Sequence

	Index
	Third-Party Information
	End-User License Agreement

