ModelSIim® User’'s Manual

Software Version 6.29g
February 2007

© 1991-2007 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS CORPORATION HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

RESTRICTED RIGHTS LEGEND 03/97

U.S. Government Restricted Rights. The SOFTWARE and documentation have been developed entirely
at private expense and are commercial computer software provided with restricted rights. Use,
duplication or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions set forth in the license agreement provided with the software pursuant to DFARS 227.7202-
3(a) or as set forth in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted
Rights clause at FAR 52.227-19, as applicable.

Contractor/manufacturer is:
Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777.
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other third parties. No one is permitted to use these Marks without the
prior written consent of Mentor Graphics or the respective third-party owner. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/terms_conditions/trademarks.cfm.

http://www.mentor.com
http://www.mentor.com/terms_conditions/trademarks.cfm

Table of Contents

Chapter 1
LNt OdUCTION. . .. e 21
Tool Structureand FlOW 21
SIMUIEioN Task OVEIVIEWottt e ettt ettt 22
Basic Stepsfor SImulation. 23
Step 1 — Collecting Filesand Mapping Libraries., 24
Step 2 — Compiling the Design (vlog, vCom, SCCOM)o oot i e e 25
Step 3— Loading the Design for Simulation. 26
Step 4 — SimulatingtheDesign. 26
Step 5— Debuggingthe Designt 26
MOOES Of OPEIaLION o\ ottt e e e e e e 27
Command LINEMOAE. e 27
BalCh MOde.o 28
Standards SUPPOItEd e 28
ASSUMPLIONS. . . . oottt e e e e e e e e 29
SectionsIN ThiSDOCUMENTot ettt e 29
What isan " Object” 30
TEXE CONVENTIONS. . . oottt et et e e e e e e e e e e e 31
Installation Directory Pathnames. 31

Chapter 2
Simulator WiNndOWSo e 33
Design Object Iconsand Their Meaning.t e e 35
SEttiNg FONES. . . .o 35
MaiN WiNOOW e 36
WOTKSDACE. . . . oot ettt e e e 37
= 1S 1) 38
M ESSa0E VIO . . o ettt et e e e e 40
Multiple Document Interface (MDI) Frame. i 41
Organizing Windowswith Tab Groups.o e 42
Navigating inthe Main Window e e 43
MainWindow StatuS Bar oot 44
Main Window Toolbar 45
ACHIVE PrOCESSES Pane oot 47
ProCESS StalUS oo 48
Cal Stack Pane 48
Dataflow WINdowo 49
Dataflow Window Toolbar. 50
LISt WINCOW. . . .ot e e e e e e e e 53
LOCalS PaNe . . .o 55
M EMOTY PaNESot 56
Associative Arraysin Verilog/SystemVerilogo 57
ModelSim User's Manual, v6.2g 3

February 2007

Table of Contents

Viewing Single and Multidimensional Memories 57
Viewing Packed Arrayso 57
Viewing Memory Contents.oo it e et et 57
Saving Memory FormatsinaDOFile. i 58
Direct Address Navigationot 58
Splitting the Memory ContentsPane 58
ObJECIS Pane. oo 60
Filteringthe Objects Listo e 60
Filteringby Name. 60
Filtering by Signal Type. . .. oo e 61
SOUrCEWINAOW . . . et e e e e e 62
Opening SoUrCe FIleso o 62
Displaying Multiple Source Files. 63
Dragging and Dropping Objectsinto the Wave and List Windows. 63
Setting your Context by Navigating SourceFiles. 64
Language Templates.ot 65
Setting File-Line Breakpoints.ot 67
Checking Object Valuesand DesCriptions. oot 67
Marking Lineswith BooKmarks. e 68
Customizing the Source Windowt e e e e 68
WaICh Pane 70
Adding ObjectstothePane. i e 70
Expanding Objectsto Show Individual Bits. 70
Grouping and Ungrouping ODJeCtS.ot 71
Savingand Reloading Format Files 71
WaVe WINGOWo e e e e e e e e 72
Wave Window Panes 75
WaveWindow Toolbar. 76
Chapter 3
PO ECES. . .o e e 81
What are ProjeCtS?.o 81
What arethe Benefitsof Projects? 81
Project Conversion Between Versions.t 82
Getting Started With Projects. e 82
Step1l— CreatingaNew Project. e 83
Step 2 — Adding Itemstothe Project 84
Step3— CompilingtheFiles. 85
Step 4 — SimulatingabDesign 86
Other BasiC Project Operations.o ottt et 88
The Project Taho 88
Sorting the List e 89
Changing Compile Order. o e e e e 89
Auto-Generating Compile Order e 90
Grouping Files . ..o 90
Creating aSimulation Configuration.o. ittt 91
Organizing Projectswith Folders. e 92
AddingaFolder 92
4 ModelSim User’s Manual, v6.2g

February 2007

Table of Contents

Specifying File Propertiesand Project Settings.c oo 9
File Compilation Properties e e 9
ProjeCt SEttiNgS.ot 96

Accessing Projectsfromthe Command Line. i, 97

Chapter 4
Design Libraries e 99

Design Library OVerview i 99
Design Unit INformation. ot e 99
Working Library Versus Resource Libraries, 99
ATCNIVES . . 100

Workingwith Design Libraries.t e e 100
Creating alibrary.o 101
Managing Library Contentst e 101
Assigning aLogical NametoaDesignLibrary o i 102
Moving aLibrary 104
Setting Up Librariesfor GroupUsSeot 104

Specifyingthe Resource Libraries. i 105
Verilog Resource Libraries. 105
VHDL Resource Libraries e 105
Predefined Librarieso 105
Alternate IEEE LibrariesSupplied. 106
Regenerating Your Design Libraries i 106
Maintaining 32- and 64-bit Versionsinthe Same Library......................... 107

Importing FPGA Libraries. e e 107

Chapter 5
VHDL SImulation 109
BasiC VHDL FlOW 109

Compiling VHDL Files.o 109
CreatingaDesignLibrary for VHDL o 109
Invokingthe VHDL Compiler o et e 110
Dependency CheCKingot e e e 110
Rangeand Index Checking. e e 110
Subprogram InliNiNg. 110
Differences Between Language VErSiONS.ottt e 111

SiMulating VHDL DESIGNS oottt e e e et 114
Simulator Resolution Limit (VHDL)t e e 114
Default BINding.o 115
DetaDElaySo 116

Usingthe TextiO Package. oot e e e e e e 118
Syntax for File Declaration. 119
Using STD_INPUT and STD_OUTPUT WithintheTool. 119

TextlO Implementation ISSUES.ottt e e e 120
Writing Stringsand Aggregalesottt 120
Reading and Writing Hexadecimal Numbers. 121
Dangling POINterS e 121
The ENDLINE FUNCHION.o e e e e et 121

ModelSim User's Manual, v6.2g 5

February 2007

Table of Contents

The ENDFILE FUNCHIONo e e et et 122
Using Alternative Input/Output Files. e 122
Flushingthe TEXTIO BUfer e 122
Providing StImUIUS oo 122
VITAL Specificationand Source Code.ottt e 123
VITAL PaCkages oot e 123
VITAL CompPlianCe. . . oottt e e e e e e e e e e e 124
VITAL Compliance Checking i e 124
Compiling and Simulating with Accelerated VITAL Packages 124
Util Package.o e 124
Qe TESOIULION . . . oo 125
INIt_SIgNal_driver()o e 125
INIE_SIGNAl_SPY() -« - o e ettt 125
SIgNAl TOrCE() . .o v vt 126
SIgNAl TElEASE() .« o v o vt 126
10 1Al (). .. ot e 126
B0 tIME) . . oot 127
MOdEliNG MEMOTYo e e e 128
VHDL87 and VHDLO3 EXample.ottt it e 129
VHDLOZ eXxample. . ..o 132
Affecting Performance by Cancelling Scheduled Events 136
Converting an Integer Intoabit vector. i 136
Chapter 6
Verilog and SystemVerilog Simulation. i i 139
TermMINOIOgY. . . ot 139
Basic Verilog Flow 139
Compiling VerilogFiles 139
CreatingaWorking Library 140
Invokingthe Verilog Compiler. e 140
Incremental Compilation 141
Library UsSageo e 144
SystemVerilog Multi-File Compilation ISSUeS. 145
Verilog-XL Compatible Compiler Arguments., 146
Verilog-XL uselib Compiler Directive. e 147
Verilog Configurations.t 149
Verilog Generate Statements e 150
Simulating Verilog DeSIgNS.o oot e 151
Simulator Resolution Limit (Verilog). e 151
Event Ordering in Verilog DeSIgNS.o e 154
Debugging Event Order ISSUES.ttt ettt e 157
Negative Timing Check Limits. e e 159
Verilog-XL Compatible Simulator Argumentsciiiiiiinnnen... 160
Using Escaped Identifiers. 161
el Libraries. . .o 162
SDF Timing ANNOLaLION oot e e e e e e e 162
Delay MOOES. . . .o 162
System Tasksand FUNCLIONSot et et et et 163
6 ModelSim User’s Manual, v6.2g

February 2007

Table of Contents

|EEE Std 1364 System Tasksand FUNCLIONSot e 164
SystemVerilog System Tasksand Functions 166
System Tasks and Functions SpecifictotheTool 167
Verilog-XL Compatible System Tasksand Functions. 168
Compiler DIrECHIVES.ot 171
|EEE Std 1364 Compiler DIreCtiVes.o 171
Verilog-XL Compatible Compiler Directives, 172
Verilog PLI/VPI and SystemVerilogDPI 173
Chapter 7
WLF Files(Datasets) and Virtuals e 175
SavingaSimulationtoaWLFFile. 176
WLF File Parameter OVEIVIBW.ot e e e 177
OpPENiNg DalaselS. oottt 178
Viewing Dataset SITUCTUNE.o e e 179
Structure Tab ColUMNS. e et 179
Managing Multiple Datasetsot 180
GUI L 180
Command Line 180
Restricting the Dataset Prefix Display 181
Saving at Intervalswith Dataset Snapshot. 182
Collapsing Timeand DEltaSteEps.ot e 182
Virtual ObjJeCtS.o 183
Virtual SIgnals ... oo 184
Virtual FUNCLIONS 185
Virtual RegIONS.o 186
ViIUAl TYPES o 186
Chapter 8
Waveform ANalySiS. . ..o 187
ObJectS YOU Can ViBWo e e e e e 187
Wave WINdoOW OVEIVIEIW.ottt e e e e e e e e e 187
List WINAOW OVEIVIEW . . . oottt e e et e e et 190
Adding ObjectstotheWaveor Liss Window 191
Adding ObjectswithDragand Drop e 191
Adding ObjectswithaMenuCommand, 191
Adding ObjectswithaCommand.t e 191
Adding ObjectswithaWindow FormatFile 192
Measuring Time with CursorsintheWaveWindow 192
WOrking With CUrSOrS.o e e e et 193
Understanding Cursor Behavior e 194
JumpingtoaSignal Transition. 195
Setting Time Markersinthe LisSs Window e 195
Working with Markerso 195
ZoomingtheWaveWindow Display 196
Zooming withthe Menu, Toolbar and MOUSEt 196
Saving Zoom Range and Scroll Position with Bookmarks. 197
SearchingintheWaveand List Windows. i 198
ModelSim User's Manual, v6.2g 7

February 2007

Table of Contents

Finding Signal Names.
Searching for Values or Transitions
Using the Expression Builder for Expression Searches
Formatting the Wave Window
Setting Wave Window Display Preferences
Formatting Objects in the Wave Window
Dividing the Wave Window
Splitting Wave Window Panes
WaveGroups. oo v
CreatingaWaveGroup
Deleting or Ungrouping a Wave Group
Adding Itemsto an Existing Wave Group
Removing Items from an Existing Wave Group
Miscellaneous Wave Group Features
Formatting the List Window
Setting List Window Display Properties.
Formatting Objectsin the List Window

Saving the Window Format

Printing and Saving Waveforms in the Wave window
Saving a.eps Waveform File and Printing in UNIX
Printing from the Wave Window on Windows Platforms
Printer Page Setup.

Saving List Window Datato aFile

Combining Objects into Buses

Configuring New Line Triggering in the List Window
Using Gating Expressions to Control Triggering
Sampling Signals at a Clock Change

Miscellaneous Taskst
Examining Waveform Values
Displaying Drivers of the Selected Waveform
Sorting a Group of Objects in the Wave Window

Creating and managing breakpoints.
Signal breakpoints.
File-linebreakpoints.

Chapter 9

Tracing Signals with the Dataflow Window

Dataflow Window Overview
Objects You Can View in the Dataflow Window
Adding Objects to the Window
Linksto Other Windows
Exploring the Connectivity of the Design
Tracking Y our Path Through the Design
The Embedded Wave Viewer
ZoomingandPanning
Panning withtheMouse.

Tracing Events (Causality)

Tracing the Source of an Unknown State (StX)

ModelSim User’s Manual, v6.2g
February 2007

Table of Contents

Finding Objects by Namein the Dataflow Window oo, 232
Printing and SavingtheDisplay i e e 233
Saving a.eps File and Printing the Dataflow Display fromUNIX 233
Printing from the Dataflow Display on Windows Platforms 234
Configuring Page SEtUPD. oo 235
Symbol MappIing oot e 235
Configuring Window OptioNnSttt e e 237
Chapter 10
SIgNAl SPY . e 239
Designedfor Testhenches. 239
disable Signal Sy . ..o 241
enable SIgNal SV . ..o 242
NI SIgNal_ArVer ... 243
NIt SIGNAl SOy - oottt e e e 245
SIgNAl_fOrCe. . . .o 248
SIONAl TRl EASE . . . ot it 250
$disable Signal SPYo 252
$enable signal Sy . ..o 253
Binit Signal driVer 254
BNt SIgNaAl Sy . o et 256
Ssignal_force. 258
Baignal rElease 260
Chapter 11
Standard Delay Format (SDF) Timing Annotation., 263
Specifying SDF Filesfor Simulation. i i 263
INstance SPeCIfiCalion.o 263
SDF Specificationwiththe GUI e 264
Errors and Warnings.o 264
VHDL VITAL SDF . . .t e e e e e 265
SDFto VHDL GenericMalChing.ot e e 265
RESOIVING ErTOrS. . ..t e e e 265
VErilog SDF . . . e 266
BsOf ANNOtale oo 267
SDF to Verilog Construct Matching. e 268
Optional Edge SPeCifiCalioNS oottt e e 271
Optional ConditioNst 272
Rounded TIMIiNG ValUES.ot e e et e 273
SDF for Mixed VHDL and VerilogDesigns.ot 273
Interconnect Delays.o e 273
Disabling TIming Checks 274
Troubleshooting.o 274
Specifying the Wrong INStance.ottt 274
Mistaking a Component or Module Name for an InstanceLabel. 275
Forgettingto Specify thelnstance i i, 275
ModelSim User's Manual, v6.2g 9

February 2007

Table of Contents

Chapter 12
ValueChangeDump (VCD) Files.o e 277
Creating @V CD File 277
Flow for Four-State VCD Fileo e 277
Flow for Extended VCD Fileo e 278
Case SENSIIVITY. . .ot 278
Using Extended VCD aSStIMUIUS. oot e 278
Simulating with Input ValuesfromaVCD File. 278
Replacing Instances with Output ValuesfromaVCD File 280
VCD Commandsand VECD TasKS. . ..o vvv ettt e et e 281
Compressing FileswithVCD Tasks.ot e e 282
VCD Filefrom Source TOOULPULot e et 282
VHDL SOUrCE COUE . . . oottt e e e e e e e 282
VCD Simulator Commandsottt e 283
VECD OUIPUL . . ottt e e e e e e e 283
Capturing POrt Driver Dataot ettt 286
D VN S ES . . o . ittt et et 286
Driver StreNgth 287
ldentifier Code 288
ResOIVINg ValUeS 288

Chapter 13
Tcland Macros (DO Files).o e 293
T FEaIUNES . . . oo 293
TC RE B ENCES . . . oo 293
TCl COMMEANGS. . . .o 293
Tl Command SyNtaXxot i 294
If Command SYNtaXxt 297
Command SUBSLITULION oo 297
CommaNd SEPAIELON ottt e e 298
Multiple-Line Commands. e 298
Evaluation Order.o 298
Tcl Relational Expression Evaluation. 298
Variable SUDSHITULIONo 299
SysStem ComMaNASo 299
LISt PrOCESSING. . . o ettt e e e 300
Simulator Tl ComMmMaNdS oot e 300
Simulator Tcl TIme Commanads.ottt e e 301
CONVEISIONS. & o\ttt ettt e et e e e e e e e 302
RE A ONS. . .. 302
ANNMELIC. . . o 303
TCl EXaMPIES . . . 303
MacroS (DO FIlES)o 307
Creating DO FIlEs. . ..o e 307
Using ParameterswithDO FIles. e 308
DeletingaFilefroma.do Script. 308
Making Macro ParametersOptional 309
Useful Commands for Handling Breakpointsand Errors. 310
10 ModelSim User's Manual, v6.2g

February 2007

Table of Contents

Error ACtioniNn DO FIES.ot 311
Appendix A
Simulator Variables 313
Variable SEttingS REPOIto 313
Environment Variables 313
Environment Variable EXpansion. 313
Setting Environment Variables. 314
Creating Environment VariablesinWindows 317
Referencing Environment Variables. 318
Removing Temp FIleS (VSOUT) . ..ot e et et 319
Simulator Control Variables 319
Library Path Variables e 319
Verilog Compiler Control Variables. o 321
VHDL Compiler Control Variables 324
Simulation Control Variables. 329
Setting Simulator Control VariablesWithTheGUI. 342
Message System Variables. 344
Commonly Used INI Variables e e 346
Variadble Precedence. o 349
Simulator State Variables 349
Referencing Simulator State Variables. 350
Specia Considerationsforthenow Variable. 350
Appendix B
LOCatioN MapPing. . . oottt e e e e e 353
Referencing Source FileswithLocationMaps 353
UsiNg LoCation Mappingottt e e e 353
Pathname Syntax.o 354
How Location Mapping WOrKSo e 354
Mapping with TCL Variables. e 354
Appendix C
Error and Warning MESSagesSottt e 355
M ESSagE Sy M. . . oottt 355
MESSagE FOIMEALo 355
Getting More Information. i e 355
Changing Message Severity Level 356
Suppressing Warning MESSagESo vttt e e 356
Suppressing VCOM Warning MESSAgESot v vt e e 356
Suppressing VLOG Warning MESSagES v oot o v ittt e e e e e e 357
Suppressing VSIM Warning MESSAgESot o v oot e e e e 357
EXIt COBS . . oottt 357
MiSCEllaNEOUS MESSA0ESo ittt 359
Enforcing Strict 1076 ComplianCe.ot 362

Appendix D

ModelSim User’s Manual, v6.2g 11
February 2007

Table of Contents

Verilog PLI/NV P DI . . 365
Implementation Information 365
g++ Compiler Support for usewith PLI/VPI/DPI 365
Registering PLI AppliCations. oot e e 366
Registering VPI Applications 367
Registering DPI AppliCationst e 369
DPl USE I OW. . .o 370
When Your DPI Export FunctionisNot GettingCalled 371
Simplified Import of FLI /PLI /CLibrary Functions.ccivuao... 371
Use Model for Read-Only Work Libraries. 372
Compiling and Linking C Applicationsfor PLI/VPI/DPI 373
Foral UNIX Platformso e 374
Windows Platforms.o 374
32-bit Linux Platform 376
64-bit Linux for IAG4 Platform. 376
64-bit Linux for Opteron/Athlon 64 and EM64T Platforms. 376
32-bit SolarisPlatformo 377
64-bit SolarisPlatform 377
32-bit HP700 Platformo 377
B64-Dit HP Platform 378
64-bit HPfor IAG4 Platform. 378
32-bit IBM RS/6000 Platform e 378
64-bit IBM RS/6000 Platformo e 379
Compiling and Linking C++ Applicationsfor PLI/VPI/DPI. 380
WiIndows Platforms.o 381
32-bit Linux Platform 382
64-bit Linux for IAG4 Platform. 382
64-bit Linux for Opteron/Athlon 64 and EM64T Platforms. 382
32-bit SolarisPlatform o 383
64-bit Solaris Platform 383
32-bit HP700 Platformo 383
B64-Dit HP Platform 384
64-bit HPfor IABG4 Platform. 384
32-bit IBM RS/6000 Platformo e 384
64-bit IBM RS/6000 Platformo 385
Specifying Application FilestoLoad i 386
PLI/VPIfileloadingo e e e e e e 386
DPI FleLoading.o e e e 387
Loading Shared Objects with Global Symbol Visibility 387
Pl EXaMPlE . . 387
VP EXaMPlE . . 388
PPl EXample . .. 389
The PLI Callback reason Argumentt et 390
Thesizetf Callback Function. e 391
PLIObject Handles o 392
Third Party PLI AppliCations.o e e 392
Support for VHDL ObJeCtSot e 393
IEEE Std 1364 ACC ROULINES. . . . o\ ottt et e et et ettt et 395
12 ModelSim User's Manual, v6.2g

February 2007

Table of Contents

IEEE Std 1364 TF ROULINES.ottt e e e et et 397
SystemVerilog DPl ACCESSROULINES.ottt e e e 397
Verilog-XL Compatible ROULINESot e 398
64-bit Support for PLI e 398
Using 64-bit Model Sim with 32-bit Applications 398
PLINVPETIACING. . . oottt e e e e e e e e e e e e e e e 398
ThePurposeof TraCing Files e 399
INVOKING @ TTaCE. . . ottt e e et 399
Debugging PLI/VPI/DPI ApplicationCode, 400
Troubleshooting aMissing DPI Import Function. ivo... 400
HP-UX SpeCifiCcWarningsSoo i e e e 401
Appendix E
Command and Keyboard Shortcuts. i 403
Command ShOMCULS.o e 403
Command History SNOMCULS. oo e 403
Main and Source Window Mouse and Keyboard Shortcuts 404
List Window Keyboard ShortCutSt e 407
Wave Window Mouse and Keyboard Shortcutso it 408
Appendix F
Setting GUI Preferences. 411
Customizing the Simulator GUI Layoutoi i 411
Layoutsand Modes of Operationt 411
CUSIOM LaYOULS . . . oo e e e e e e 411
Automatic Saving Of LayOuLS.ot e 413
Resetting Layoutsto Their Defaults. e 413
Navigating the GraphicUser Interfaceo i e 413
Manipulating Panes.t 413
Columnar Information Display 415
QuICk ACCESS TOOIDAIS.o 415
Simulator GUI PreferenCesot e 415
Setting Preference VariablesfromtheGUI i i 416
Saving GUI PreferenCes oo e 417
Themodelsim.tcl File. 417
Appendix G
System Initialization e 419
Files Accessed DUring Startup.ot e 419
Environment Variables Accessed During Startupo oo 420
INitialization SEQUENCE. oot 421
I ndex

Third-Party Information

End-User License Agreement

ModelSim User’s Manual, v6.2g 13
February 2007

List of Examples

Example 2-1. Wave Window Panes. 74
Example 6-1. Invocation of the Verilog Compiler 140
Example 6-2. Incremental CompilationExample. i, 142
Example 6-3. Sub-ModuleswithCommonNames., 145
Example 6-4. Negative Timing Check. o e 159
Example 12-1. Verilog Counter.ttt e e e 279
Example 12-2. VHDL Adder. oo 279
Example 12-3. Mixed-HDL DeSigN. oo ottt e 279
Example 12-4. Replacing INStanCes.ot 280
Example 12-5. VCD Output from ved dumpports.o 290
Example D-1. VPI Application Registration., 368
Example F-1. Configure Window LayoutsDialogBOXcoou.... 412
14 ModelSim User's Manual, v6.2g

February 2007

List of Figures

Figure1-1. Tool Structureand Flow 22
Figure 2-1. Graphical User Interface. 33
Figure2-2. Main Window i e e e 37
Figure 2-3. Message Viewer Tab. 41
Figure 2-4. Tabsinthe MDI Frame. e 42
Figure 2-5. Organizing Filesin Tab Groupsot 43
Figure 2-6. Main Window StatusBar 44
Figure 2-7. ACtIVE ProCeSSES Pane. oot 47
Figure2-8. Call Stack Pane. 48
Figure 2-9. Dataflow WIndowo 49
Figure 2-10. List Window Docked in Main Window MDI Frame 53
Figure2-11. List Window Undocked i, 54
Figure 2-12. LocalS Pane. oo 55
Figure 2-13. MemOry Panes.ottt 56
Figure 2-14. Viewing Multiple Memories. e 58
Figure 2-15. Split Screen View of Memory Contents., 59
Figure2-16. ObjectS Paneot 60
Figure2-17. ObjectsFilter o 60
Figure 2-18. Filtering the ObjectsListby Name. 61
Figure 2-19. Source Window Showing Language Templates. 62
Figure 2-20. Displaying Multiple Source Files. 63
Figure 2-21. Setting Context from SourceFiles i, 64
Figure 2-22. Language Templates.ottt et 65
Figure 2-23. Create New Design Wizard. i, 66
Figure 2-24. Inserting Module Statement from Verilog Language Template. 66
Figure 2-25. Language Template Context Menus., 67
Figure 2-26. Preferences Dialog for Customizing Source Window 69
Figure 2-27. WalCh Pane. 70
Figure 2-28. Grouping ObjectsintheWatchPane 71
Figure 2-29. Wave Window Undock Button. i, 72
Figure 2-30. Wave Window Dock Button. 73
Figure 3-1. Create Project Dialog oo oot e 83
Figure 3-2. Project TabinWorkspacePane i 83
Figure 3-3. Add itemstothe Project Dialogo 84
Figure 3-4. Create Project FileDialog.o e 85
Figure 3-5. Add fileto Project Dialog.o 85
Figure 3-6. Right-click Compile Menu in Project Tab of Workspace. 86
Figure 3-7. Click Plus Signto Show DesignHierarchy 86
Figure 3-8. Start Simulation Dialog.o 87
Figure 3-9. Structure Tab of theWorkspace 87
15 ModelSim User's Manual, v6.2g

February 2007

List of Figures

Figure 3-10. Project Displayed inWorkspace. e 88
Figure 3-11. Setting Compile Order e e 89
Figure 3-12. Grouping Files. oo 90
Figure 3-13. Simulation Configuration Dialog 91
Figure 3-14. Simulation ConfigurationintheProject Tab 92
Figure 3-15. Add Folder Dialog. oo oo 93
Figure 3-16. SpecifyingaProject Folder. 93
Figure 3-17. Project Compiler SettingsDialogot 9
Figure 3-18. Specifying File Properties. e 95
Figure 3-19. Project SettingsSDialogo oo 96
Figure4-1. CreatingaNew Library. i e 101
Figure 4-2. Design Unit InformationintheWorkspace 102
Figure 4-3. Edit Library Mapping Dialogo oo 103
Figure4-4. Import Library Wizard 108
Figure5-1. VHDL DeltaDelay Process e 116
Figure 6-1. Selecting ‘Use System Verilog CompileOption. 141
Figure 7-1. Displaying Two DatasetsintheWaveWindow 176
Figure 7-2. Open Dataset DIalogBOXo it 178
Figure 7-3. Structure Tabsin WorkspacePane., 179
Figure 7-4. The Dataset BrOWSer oot e et et 180
Figure 7-5. Dataset Snapshot Dialog.o oo 182
Figure 7-6. Virtual Objects Indicated by OrangeDiamond. 184
Figure 8-1. UndockingtheWaveWindow 188
Figure 8-2. DockingtheWave Window 189
Figure 8-3. PanesintheWave Window i, 190
Figure 8-4. Tabular Format of theListWindow 191
Figure 8-5. Cursor Names, Valuesand TimeMeasurements 193
Figure 8-6. Time MarkersintheLiss Window 195
Figure 8-7. Bookmark PropertiesDialog. 198
Figure 8-8. Find Signalsby NameorValue 199
Figure 8-9. Wave Signal SearchDialogo 200
Figure 8-10. Expression Builder Dialog 201
Figure 8-11. Display Tab of the Wave Window PreferencesDialog 203
Figure 8-12. Grid & Timeline Tab of Wave Window PreferencesDialog 204
Figure 8-13. Clock Cyclesin Timelineof WaveWindow 204
Figure 8-14. Changing Signal RadiX oo 205
Figure 8-15. Separate Signals with Wave Window Dividers 206
Figure 8-16. Splitting Wave Window Panes. i, 208
Figure 8-17. Fill in the name of the group in the Group Namefield. 209
Figure 8-18. Wave groupsdenoted by reddiamond, 209
Figure 8-19. Modifying List Window Display Properties. 211
Figure 8-20. List Signal PropertiesDialog 212
Figure 8-21. Changing the Radix intheList Window. oo, 213
Figure 8-22. Signals Combined to Create Virtual Bus 216
Figure 8-23. Line Triggering intheListWindow 217
16 ModelSim User's Manual, v6.2g

February 2007

List of Figures

Figure 8-24. Setting Trigger Properties. e 218
Figure 8-25. Trigger Gating Using Expression Builder. 220
Figure 9-1. The Dataflow Window (undocked). 225
Figure 9-2. Green Highlighting Shows Y our Path ThroughtheDesign................ 228
Figure 9-3. Wave Viewer Displays Inputs and Outputs of Selected Process 229
Figure 9-4. Unknown States Shown as Red Linesin WaveWindow 231
Figure 9-5. Find in Dataflow Dialogo oo 233
Figure 9-6. The Print Postscript Dialog. oo e 234
Figure O-7. The Print Dialogo o oo e e 234
Figure 9-8. The Dataflow Page Setup Dialogo vt 235
Figure 9-9. Configuring Dataflow Options 237
Figure 11-1. SDF Tabin Start SimulationDialog.o 264
Figure A-1. Runtime Options Dialog: DefaultsTab, 342
Figure A-2. Runtime Options Dialog Box: AssertionsTab. 343
Figure A-3. Runtime Options Dialog Box, WLF FilesTab 344
Figure D-1. DPl Use Flow Diagramot e e e e 370
Figure F-1. Save Current Window Layout DialogBox. 412
Figure F-2. GUL: Window Pane. 413
Figure F-3. GUI: Double Bar.o 414
Figure F-4. GUL: Undock BUtton. e e 414
Figure F-5. GUI: DOCK BULtON.o 414
Figure F-6. GUI: ZOOM BULIONo e 414
Figure F-7. GUL: ZOOM BULONo e et et 415
Figure F-8. Toolbar Manipulation. e 415
Figure F-9. Preferences Didlog Box: By Window Tab 416
Figure F-10. Preferences DidlogBox: By NameTab 417
ModelSim User’s Manual, v6.2g 17

February 2007

List of Tables

Table1-1. SIMulation Taskst e 23
Table 1-2. USeMOES oot e 27
Table 1-3. Definition of Objectby Language i 30
Table 1-4. Text CONVENtIONSottt e ettt 31
Table2-1. GUI Windowsand Panes.t e 34
Table2-2. Design ObjECt ICONSottt e e e e e 35
Table 2-3. Icon Shapesand Design Object TYPeso e e 35
Table 2-4. Message Viewer Taskst e 41
Table 2-5. Commandsfor Tab Groupscoi it e 43
Table 2-6. Information Displayed in StatusBar 44
Table2-7. Main Window Toolbar BUtONS e 45
Table 2-8. Dataflow Window Toolbarc e 50
Table 2-0. MEMOKIES . . . oo e e 56
Table 2-10. Wave Window Toolbar Buttonsand Menu Selections 76
Table 6-1. Sample Modules With and Without Timescale Directive 152
Table 6-2. Evaluation 1 of always Statementst 155
Table 6-3. Evaluation 2 of dwaysStatement i, 156
Table 6-4. IEEE Std 1364 System Tasksand Functions-1 164
Table 6-5. IEEE Std 1364 System Tasksand Functions-2 164
Table 6-6. IEEE Std 1364 System Tasks . ..o vttt e 164
Table6-7. IEEESId 1364 File /O TasksS . ..o oo e i e e 165
Table 6-8. SystemVerilog System Tasksand Functions-1 166
Table 6-9. SystemVerilog System Tasksand Functions-2 166
Table 6-10. SystemVerilog System Tasksand Functions-4 166
Table7-1. WLF File Parameterso e e 177
Table 7-2. Structure Tab Columns 179
Table 7-3. vsim Arguments for Collapsing Timeand DeltaSteps 183
Table8-1. ACtiONSTOr CUISOISottt e e et 193
Table 8-2. Actionsfor TimeMarkers e 195
Table 8-3. Actionsfor Bookmarks 197
Table8-4. Actionsfor DIVIDErS e 207
Table8-5. Triggering OptioNSot e e e e e et 218
Table 9-1. Dataflow Window Linksto Other WindowsandPanes 226
Table 9-2. Icon and Menu Selections for Exploring Design Connectivity 227
Table 10-1. Signal Spy: Mapping VHDL Proceduresto Verilog System Tasks 239
Table 11-1. Matching SDFtO VHDL GENerics 265
Table 11-2. Matching SDF IOPATH toVerilogcco . 268
Table 11-3. Matching SDF INTERCONNECT and PORT toVerilog 268
Table 11-4. Matching SDF PATHPUL SE and GLOBALPATHPULSE to Verilog 269
ModelSim User’s Manual, v6.2g 18

February 2007

List of Tables

Table 11-5. Matching SDF DEVICEtOVerilog 269
Table 11-6. Matching SDF SETUPtoVerilog 269
Table 11-7. Matching SDFHOLD toVerilogo 269
Table 11-8. Matching SDF SETUPHOLD toVerilog ..., 270
Table 11-9. Matching SDF RECOVERY toVerilog oo, 270
Table 11-10. Matching SDF REMOVAL toVerilog ... 270
Table 11-11. Matching SDFRECREM toVerilog 270
Table 11-12. Matching SDF SKEW toVerilog ... 270
Table 11-13. Matching SDFWIDTHtoVerilog ..., 271
Table 11-14. Matching SDF PERIOD toVerilog oo 271
Table 11-15. Matching SDF NOCHANGE toVerilog oo 271
Table 11-16. Matching Verilog Timing Checksto SDFSETUP 271
Table 11-17. SDF DataMay Be More Accurate ThanModel 272
Table 11-18. Matching Explicit Verilog Edge Transitionsto Verilog 272
Table 11-19. SDF Timing Check Conditions 272
Table 11-20. SDF Path Delay ConditionS.o it e e 273
Table 11-21. Disabling Timing Checks 274
Table 12-1. VCD Commandsand SystemTasks. 281
Table 12-2. VCD Dumpport Commandsand System Tasks 281
Table 12-3. VCD Commands and System Tasks for Multiple VCD Files 282
Table 12-4. Driver SEateSot 286
Table 12-5. State When DirectionisUnknown, 287
Table 12-6. Driver Strength 287
Table 12-7. Valuesfor file_format Argument 289
Table12-8. Sample Driver Dataot e 290
TaD e d3- L. 294
Table13-2. Tcl Backslash SeqUeNnCeSo e e 296
Table13-3. Tcl ListCommandsovi i e e e e 300
Table 13-4. Simulator-Specific Tcl Commands, 300
Table 13-5. Tcl Time ConversionCommands, 302
Table 13-6. Tcl TimeRelationCommands.t 302
Table 13-7. Tcl Time ArithmeticCommands e 303
Table 13-8. Commands for Handling Breakpoints and ErrorsinMacros 310
Table A-1. Add Library Mappingsto modelsm.ini File 318
Table A-2. AssertionFormat Variable: AcceptedValues 329
Table A-3. License Variable: License Optionso 335
Table C-1. Severity Level TYPeSt e e 355
Table C-2. EXIt COdESot 357
Table D-1. vaim Arguments for DPI Application 387
Table D-2. Supported VHDL ODJECtSot e e 393
Table D-3. Supported ACC ROULINESo oot e et 395
Table D-4. Supported TE ROULINESot e e e 397
Table D-5. Valuesfor <action> Argumentt 399
Table E-1. Command History ShortCutso 403
Table E-2. MOUSE SNOIMCULSot e e et 404
ModelSim User’s Manual, v6.2g 19

February 2007

List of Tables

Table E-3. Keyboard Shortcutso 404
Table E-4. List Window Keyboard Shortcuts o i 407
Table E-5. Wave Window Mouse Shortcuts 408
Table E-6. Wave Window Keyboard Shortcuts 408
Table F-1. Predefined GUI Layoutst e 411
Table G-1. FilesAccessed During Startup oot 419
Table G-2. Environment Variables Accessed During Startup 420
20 ModelSim User's Manual, v6.2g

February 2007

Chapter 1
Introduction

This documentation was written for UNIX, Linux, and Microsoft Windows users. Not all
versions of Model Sim are supported on all platforms. Contact your Mentor Graphics sales
representative for details.

Tool Structure and Flow

The diagram below illustrates the structure of the Model Sim tool, and the flow of that tool as it
isused to verify adesign.

ModelSim User’s Manual, v6.2g 21
February 2007

Introduction

Simulation Task Overview

Figure 1-1. Tool Structure and Flow

>
VHDL

~N_
< >

Vendor
Libraries

~ N

>

Design
files

~N__

< >
.ini or
.mpf file

Design ,.-
Libraries| V“b

_ vma local work

l_____l

v
viog/
vcom

Analyze/
Compile

~

(. vim)

Interactive Debugging

activitiesi.e.
Simulation Output
(e.g., vcd)

(Post-processing Debug)

Map libraries

Verilog/VHDL

Analyze/
Compile

Simulate

Debug

Simulation Task Overview

The following table provides areference for the tasks required for compiling, loading, and
simulating adesign in Model Sim.

22

ModelSim User’s Manual, v6.2g

February 2007

Introduction

Basic Steps for Simulation

Table 1-1. Simulation Tasks

Task Example Command Line | GUI Menu Pull-down GUI Icons
Entry
Step 1: vlib <library_name> a File>New > Project | N/A
Map libraries | vmap work <library_name> | b. Enter library name
c. Add design filesto
project
Step 2: vliog filel.v file2.v ... a. Compile> Compile | Compileor
Compilethe | (Verilog) or Compile All
design vcom filel.vhd file2.vhd ... | Compile> Compile All |icons:
(VHDL)
2
Step 3. vsim <top> or a Simulate > Start Simulateicon:
Load the vsim <opt_name> Simulation
designintothe b. Click on top design ﬁ
simulator module or optimized
design unit name
c. Click OK
This action loads the
design for simulation
Step 4: run Simulate > Run Run, or
Run the step Run continue, or
simulation Run -all icons:
B
Step 5: Common debugging N/A N/A
Debug the commands:
design bp
describe
drivers
examine
force
log
show

Basic Steps for Simulation

This section provides further detail related to each step in the process of simulating your design
using ModelSim.

ModelSim User’s Manual, v6.2g 23
February 2007

Introduction
Basic Steps for Simulation

Step 1 — Collecting Files and Mapping Libraries
Files needed to run Model Sim on your design:

» designfiles(VHDL and/or Verilog), including stimulus for the design
 libraries, both working and resource

* modelsim.ini (automatically created by the library mapping command

Providing Stimulus to the Design

Y ou can provide stimulus to your design in several ways.

» Language based testbench
» Tcl-based Model Sim interactive command, force
* VCD files/ commands
See Creating aVCD File and Using Extended VCD as Stimulus
» 3rd party testbench generation tools

What is a Library?

A library is alocation where data to be used for simulation is stored. Libraries are ModelSim’'s
way of managing the creation of data beforeit is needed for usein ssimulation. It also servesasa
way to streamline simulation invocation. Instead of compiling all design data each and every
time you simulate, Model Sim uses binary pre-compiled data from these libraries. So, if you
make a changesto asingle Verilog module, only that module is recompiled, rather than all
modulesin the design.

Working and Resource Libraries

Design libraries can be used in two ways:. 1) as alocal working library that contains the
compiled version of your design; 2) as aresource library. The contents of your working library
will change as you update your design and recompile. A resource library istypically
unchanging, and serves as a parts source for your design. Examples of resource libraries might
be: shared information within your group, vendor libraries, packages, or previously compiled
elements of your own working design. Y ou can create your own resource libraries, or they may
be supplied by another design team or a third party (e.g., asilicon vendor).

For more information on resource libraries and working libraries, see Working Library Versus
Resource Libraries, Managing Library Contents, Working with Design Libraries, and
Specifying the Resource Libraries.

24 ModelSim User’s Manual, v6.2g
February 2007

Introduction
Basic Steps for Simulation

Creating the Logical Library (vlib)

Before you can compile your source files, you must create alibrary in which to store the
compilation results. Y ou can create the logical library using the GUI, using File > New >
Library (see Creating aLibrary), or you can use the vlib command. For example, the
command:

vlib work

creates alibrary named wor k. By default, compilation results are stored in the work library.

Mapping the Logical Work to the Physical Work Directory (vmap)

VHDL useslogical library names that can be mapped to Model Sim library directories. If
libraries are not mapped properly, and you invoke your simulation, necessary components will
not be loaded and simulation will fail. Similarly, compilation can also depend on proper library

mapping.

By default, Model Sim can find librariesin your current directory (assuming they have the right
name), but for it to find libraries located el sewhere, you need to map alogical library name to
the pathname of the library.

Y ou can use the GUI (Library Mappings with the GUI, acommand (Library Mapping from the
Command Line), or aproject (Getting Started with Projects to assign alogical nameto adesign
library.

The format for command line entry is:

vmap <l ogi cal _nane> <directory_pat hnane>

This command sets the mapping between alogical library name and a directory.

Step 2 — Compiling the Design (vlog, vcom, sccom)

Designs are compiled with one of the three language compilers.

Compiling Verilog (vlog)

ModelSim’s compiler for the Verilog modulesin your design isvlog. Verilog files may be
compiled in any order, asthey are not order dependent. See Compiling Verilog Files for details.

Compiling VHDL (vcom)

Model Sim’s compiler for VHDL design unitsisvcom. VHDL files must be compiled according
to the design requirements of the design. Projects may assist you in determining the compile
order: for more information, see Auto-Generating Compile Order. See Compiling VHDL Files
for details. on VHDL compilation.

ModelSim User’s Manual, v6.2g 25
February 2007

Introduction
Basic Steps for Simulation

Step 3 — Loading the Design for Simulation

vsim topLevelModule

Y our design isready for ssimulation after it has been compiled. Y ou may then invoke vsim with
the names of the top-level modules (many designs contain only one top-level module). For
example, if your top-level modules are "testbench” and "globals’, then invoke the simulator as
follows:

vsi mtestbench gl obal s

After the smulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPsin the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references.

Using SDF

Y ou can incorporate actual delay values to the simulation by applying SDF back-annotation
filesto the design. For more information on how SDF is used in the design, see Specifying SDF
Filesfor Simulation.

Step 4 — Simulating the Design

Once the design has been successfully loaded, the simulation time is set to zero, and you must
enter arun command to begin simulation. For more information, see Verilog and
SystemVerilog Simulation, and VHDL Simulation.

The basic ssmulator commands are:

+ addwave
» force

. bp

e run

. dep

Step 5 — Debugging the Design

Numerous tools and windows useful in debugging your design are available from the ModelSim
GUI. In addition, several basic simulation commands are available from the command line to
assist you in debugging your design:

e describe

e drivers

26 ModelSim User’s Manual, v6.2g
February 2007

Introduction
Modes of Operation

* examine
o force

* log

* show

Modes of Operation

Many users run Model Sim interactivel y—pushing buttons and/or pulling down menusin a series
of windows in the GUI (graphical user interface). But there are really three modes of ModelSim
operation, the characteristics of which are outlined in the following table.:

Table 1-2. Use Modes

ModelSim use Characteristics How ModelSim isinvoked
mode
GUI interactive; has graphica | viaadesktop icon or from the OS command
windows, push-buttons, | shell prompt. Example:
menus, and a command 0S> vsim
line in the transcript.
Default mode
Command-line interactive command with -c argument at the OS command prompt.
line; no GUI Example:
0CS> vsim-c
Batch non-interactive batch at OS command shell prompt using redirection
script; no windows or of standard input. Example:
interactive command line C\ vsimvfiles.v <infile >outfile

The ModelSim User’s Manual focuses primarily on the GUI mode of operation. However, this
section provides an introduction to the Command-line and Batch modes.

Command Line Mode

In command line mode Model Sim executes any startup command specified by the Startup
variable in the modelsim.ini file. If vsim isinvoked with the -do " command_string" option, a
DO file (macro) iscalled. A DO file executed in this manner will override any startup command
in the modelsim.ini file.

During simulation atranscript fileis created containing any messages to stdout. A transcript file
created in command line mode may be used as a DO fileif you invoke the transcript on
command after the design loads (see the example below). The transcript on command writes all
of the commands you invoke to the transcript file. For example, the following series of
commands results in atranscript file that can be used for command input if top is re-simulated
(remove the quit -f command from the transcript file if you want to remain in the simulator).

ModelSim User’s Manual, v6.2g 27
February 2007

Introduction
Standards Supported

vsim-c top

library and design loading messages... then execute:

transcript on

force clk 1 50, 0 100 -repeat 100
run 500

run @000

quit -f

Rename transcript files that you intend to use as DO files. They will be overwritten the next
time you run vsim if you don’t rename them. Also, simulator messages are already commented
out, but any messages generated from your design (and subsequently written to the transcript
file) will cause the ssimulator to pause. A transcript file that contains only valid ssmulator
commands will work fine; comment out anything else with a"#".

Stand-alone tools pick up project settings in command line mode if they are invoked in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODEL SIM environment variable to the path to the project
file (<Project_Root_Dir>/<Project_Name>.mpf).

Batch Mode

Batch mode is an operational mode that provides neither an interactive command line nor
interactive windows. In a Windows environment, vsim is run from a Windows command
prompt and standard input and output are redirected from and to files.

Here is an example of a batch mode simulation using redirection of std input and output:

vsi m counter < yourfile > outfile

where "yourfile" is ascript containing various Model Sim commands.

Y ou can use the CTRL-C keyboard interrupt to break batch simulation in UNIX and Windows
environments.

Standards Supported

ModelSim VHDL implements the VHDL language as defined by | EEE Standards 1076-1987,
1076-1993, and 1076-2002. Model Sim also supports the 1164-1993 Sandard Multivalue Logic
System for VHDL Interoperability, and the 1076.2-1996 Standard VHDL Mathematical
Packages standards. Any design developed with Model Sim will be compatible with any other
VHDL system that is compliant with the 1076 specs.

Model Sim Verilog implements the Verilog language as defined by the IEEE Std 1364-1995 and
1364-2005. ModelSim Verilog aso supports a partial implementation of SystemV erilog P1800-
2005 (see/<install_dir>/modeltech/docs/technotes/sysviog.note for implementation details).

28 ModelSim User’s Manual, v6.2g
February 2007

Introduction
Assumptions

Both PLI (Programming Language Interface) and VCD (Vaue Change Dump) are supported
for Model Sim users.

In addition, all products support SDF 1.0 through 4.0 (except the NETDELAY statement),
VITAL 2.2b, VITAL’ 95— |EEE 1076.4-1995, and VITAL 2000 — |EEE 1076.4-2000.

Assumptions

We assume that you are familiar with the use of your operating system and its graphical
interface.

We also assume that you have a working knowledge of the design languages. Although
Model Sim isan excellent tool to use while learning HDL concepts and practices, this document
IS not written to support that goal.

Finally, we assume that you have worked the appropriate lessons in the Model Sm Tutorial and
are familiar with the basic functionality of ModelSim. The Model Sm Tutorial is available from
the Model Sim Help menu.

Sections In This Document

In addition to this introduction, you will find the following major sectionsin this document:

Chapter 3, Projects — This chapter discusses Model Sim "projects’, a container for
design files and their associated simulation properties.

Chapter 4, Design Libraries— To simulate an HDL design using Model Sim, you need
to know how to create, compile, maintain, and delete design libraries as described in this
chapter.

Chapter 5, VHDL Simulation — This chapter is an overview of compilation and
simulation for VHDL within the Model Sim environment.

Chapter 6, Verilog and SystemV erilog Simulation — This chapter is an overview of
compilation and simulation for Verilog and SystemV erilog within the ModelSim
environment.

Chapter 7, WLF Files (Datasets) and Virtuals — This chapter describes datasets and
virtuals - both methods for viewing and organizing simulation datain Model Sim.

Chapter 8, Waveform Analysis— This chapter describes how to perform waveform
analysis with the Model Sim Wave and List windows.

Chapter 9, Tracing Signals with the Dataflow Window — This chapter describes how to
trace signals and assess causality using the Model Sim Dataflow window.

ModelSim User’s Manual, v6.2g 29
February 2007

Introduction
What is an "Object"

Chapter 10, Signal Spy — This chapter describes Signal Spy, a set of VHDL procedures
and Verilog system tasks that let you monitor, drive, force, or release a design object
from anywhere in the hierarchy of a VHDL or mixed design.

Chapter 11, Standard Delay Format (SDF) Timing Annotation — This chapter discusses
ModelSim’ s implementation of SDF (Standard Delay Format) timing annotation.
Included are sections on VITAL SDF and Verilog SDF, plus troubleshooting.

Chapter 12, Vaue Change Dump (VCD) Files— This chapter explains Model
Technology’ s Verilog VCD implementation for ModelSim. The VCD usage is extended
toinclude VHDL designs.

Chapter 13, Tcl and Macros (DO Files) — This chapter provides an overview of Tcl
(tool command language) as used with Model Sim.

Appendix A, Simulator Variables— This appendix describes environment, system, and
preference variables used in Model Sim.

Appendix C, Error and Warning Messages — This appendix describes Model Sim error
and warning messages.

Appendix D, Verilog PLI/VPI/DPI — This appendix describes the ModelSim
implementation of the Verilog PLI and VPI.

Appendix E, Command and Keyboard Shortcuts — This appendix describes ModelSim
keyboard and mouse shortcuts.

Appendix G, System Initialization — This appendix describes what happens during
Model Sim startup.

What is an "Object"

Because Model Sim works with so many languages (Verilog, VHDL, SystemVerilog,), an
“object” refersto any valid design element in those languages. The word "object” is used
whenever a specific language reference is not needed. Depending on the context, “object” can
refer to any of the following:

Table 1-3. Definition of Object by Language

Language An object can be

VHDL block statement, component instantiation, constant,
generate statement, generic, package, signal, alias,
or variable

Verilog function, module instantiation, named fork, named
begin, net, task, register, or variable

SystemVerilog In addition to those listed above for Verilog:
class, package, program, interface, array, directive,
property, or sequence

30 ModelSim User’s Manual, v6.2g
February 2007

Introduction
Text Conventions

Table 1-3. Definition of Object by Language

Language An object can be

PSL property, sequence, directive, or endpoint

Text Conventions

Text conventions used in this manual include:

Table 1-4. Text Conventions

Text Type Description

italic text provides emphasis and sets off filenames,
pathnames, and design unit names

bold text indicates commands, command options, menu
choices, package and library logical names, as
well as variables, dialog box selections, and

language keywords

monospace type monospace type is used for program and
command examples

Theright angle (>) is used to connect menu choices when
traversing menus asin: File > Quit

UPPER CASE denotesfile types used by ModelSim (e.g., DO,

WLF, INI, MPF, PDF, etc.)

Installation Directory Pathnames

When referring to installation paths, this manual uses “modeltech” as a generic representation
of the installation directory for all versions of Model Sim. The actual installation directory on
your system may contain version information.

ModelSim User’s Manual, v6.2g 31
February 2007

Introduction
Installation Directory Pathnames

32

ModelSim User’'s Manual, v6.2g
February 2007

Chapter 2
Simulator Windows

ModelSim’s graphical user interface (GUI) consists of various windows that give access to
parts of your design and numerous debugging tools. Some of the windows display as panes
within the Model Sim Main window and some display as windows in the Multiple Document
Interface (MDI) frame.

Figure 2-1. Graphical User Interface

Fie Edit View Format Compile Simulate Add Tools Window Help

|DSE@ s @02 A% || SHEN|| 4« [ool BER || ol 2|
]MWH Mﬂ::rl [Faziaqaaks @[asliie nixti@ 2@ RAA 0

wikal_primitives
wikal_liming
ehd_|ogic_lestio
lelia
rurmetic_gld
#d_|ogie_utl
Ad_legic_1164
slandard

o = =
T iy | 2 Browear | & sim [54

1 = Mobe: 2700 rez: Read kil 1o set 3
B Times 2700 fs Itersbon: O |nstance: Mopie
1 = Mote: 2740 re: Reading from add=00001 007

B Times 2740 fig Iterabor: O |nstance: Mopdp
1 = Mobe: 2780 re: Read kit 1o set 3

B Time: 2780 mie Itersbon: O |nstance: Mopdc
W = Mote: ReadAsfite test done

B Time: 2820 mie Iberabior: O |nstance: Mtopdp

WEIM T
] A Transciipt | LIE
|ow: 2840 ns Dehta: 1 |sim:ftop - Limited Visibility Region 1890 ns to 2040 ns 4
ModelSim User's Manual, v6.2g 33

February 2007

Simulator Windows

The following table summarizes al of the available windows and panes.

Table 2-1. GUI Windows and Panes

Window/pane name | Description More details

Main central GUI access point Main Window

Active Processes displaysall processesthat are scheduled | Active Processes Pane
to run during the current ssmulation
cycle

Dataflow displays "physical" connectivity and Dataflow Window
lets you trace events (causality)

List shows waveform data in a tabular List Window
format

Locals displays data objects that are Locals Pane
immediately visible at the current PC of
the selected process

Memory aWorkspace tab and MDI windows Memory Panes
that show memories and their contents

Watch displays signa or variable values at the | Watch Pane
current simulation time

Objects displays al declared data objectsin the | Objects Pane
current scope

Source atext editor for viewing and editing Source Window
HDL, DO, etc. files

Transcript keeps arunning history of commands | Transcript
and messages and provides a command-
line interface

Wave displays waveforms Wave Window

Workspace provides easy access to projects, Workspace
libraries, compiled design units,
memories, etc.

The windows and panes are customizable in that you can position and size them as you see fit,
and Model Sim will remember your settings upon subsequent invocations. See Navigating the
Graphic User Interface for more details.

34

ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Design Object Icons and Their Meaning

Design Object Icons and Their Meaning

The color and shape of icons convey information about the language and type of adesign
object. shows the icon colors and the languages they indicate.

Table 2-2. Design Object Icons

I con color Design Language

light blue Verilog or SystemVerilog
dark blue VHDL

orange virtual object

Hereisalist of icon shapes and the design object types they indicate:

Table 2-3. Icon Shapes and Design Object Types

icon shape | example design object type

square o any scope (VHDL block, Verilog named block, SC
module, class, interface, task, function, etc.)

circle J process

diamond Q valued object (signals, nets, registers, etc.)

caution sign A comparison object

diamond ‘ﬁ an editable waveform created with the waveform editor

with red dot

star 4 transaction; The color of the star for each transaction

depends on the language of the region in which the
transaction stream occurs: dark blue for VHDL, light blue
for Verilog and SystemV erilog, green for SystemC,
magenta for PSL.

Setting Fonts

Y ou may need to adjust font settings to accommodate the aspect ratios of wide screen and
double screen displays or to handle launching Model Sim from an X-session.

Font Scaling

To change font scaling, select Tools > Options> Adjust Font Scaling. You'll need aruler to
complete the instructions in the lower right corner of the dialog. When you have entered the
pixel and inches information, click OK to close the dialog. Then, restart Model Sim to see the
change. Thisis aone time setting; you shouldn't have to set it again unless you change display

ModelSim User’s Manual, v6.2g 35
February 2007

Simulator Windows
Main Window

resolution or the hardware (monitor or video card). The font scaling applies to Windows and
UNIX operating systems. On UNIX systems, the font scaling is stored based on the $DISPLAY
environment variable.

Controlling Fonts in an X-session

When executed viaan X-session (e.g., Exceed, VNC), Model Sim uses font definitions from the
Xdefaultsfile. To ensure that the fonts ook correct, create a . Xdefaults file with the following
lines:

vsi nfFont: -adobe-courier-nmediumr-normal--*-120-*-*-*_-*_
vsi nt Syst enfont: -adobe-courier-nedi umr-normal --*-120-*-*-*-*
vsi n¥ St andar dFont : - adobe-courier-nmediumr-normal --*-120-*-*-*-*_*
vsi nFMenuFont: -adobe-courier-nmediumr-normal --*-120-*-*-*-*_%

Alternatively, you can choose a different font. Use the program "xlIsfonts" to identify which
fonts are available on your system.

Also, the following command can be used to update the X resources if you make changesto the
.Xdefaults and wish to use those changes on a UNIX machine:

xrdb -merge .Xdefaults

Main Window

The primary access point in the Model Sim GUI is called the Main window. It provides
convenient accessto design libraries and objects, source files, debugging commands, simulation
status messages, etc. When you load a design, or bring up debugging tools, Model Sim adds
panes or opens windows appropriate for your debugging environment (Figure 2-2).

36 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Main Window

Figure 2-2. Main Window

File Edit Wiew Format Compile Simulate Add Tools

Window Help

Des@& & @

‘Workspace

"1 Instance

|Design uriit ‘Design u |

=\ ram_th

Al clock_driver
ol ctrl_sim
ol spraml
ol spram2
ol spram3
ol spramd

£

o dprami

@ HMPLICITWIRE(data...
@ HIMPLICITARE [outa...
o #IMPLICITWIRE(inad...
@ HMPLICITWIRE [wel...
@ HMPLICITWIRE(clk)...
@ HMPLICITWIRE(clk)...
@ §MPLICITWIRE(data...
@ HIMPLICIT WIRE (addr]...

ram_th

ram_th

ram_th
\gp_syn_ram..
\gp_syn_ram..
\sp_syn_ram..
\sp_syn_ra..
Sdp_syn_ra...
ram_th

ram_th

ram_th

ram_th

ram_th

ram_th

ram_th

ram_th

Module
Statemer

Statemner
Module
Module
todule
Module
Module
Process
Process
Process
Process
Process
Process
Frocess

Process d

o

ibrary l E 3im l 2 Files l B Memories

R}

.ram_tb
Loading work.ram_th
Loading ork. \ap_spn_ram-itl

Loading seork. \zp_sypn_ram-30%
1 Loading dark. \dp_sun_rarnet])
WSIM 3> |

|N0w: Ong Delta: 0

|S|m:fram_tb

Workspace tabs
organize design
elements in a
hierarchical tree
structure

The Transcript pane
reports status and
provides a command-
line interface

The Objects pane
displays data
objects in the
current scope

Multiple document interface
(MDI) pane

Notice some of the elements that appear:

* Workspace tabs organize and display design objectsin ahierarchical tree format

» The Transcript pane tracks command history and messages and provides a command-
line interface where you can enter Model Sim commands

» The Objects pane displays design objects such as signals, nets, generics, etc. in the

current design scope

Workspace

The Workspace provides convenient access to projects, libraries, design files, compiled design
units, simulation/dataset structures, and Waveform Comparison objects. It can be hidden or
displayed by selecting View > Windows > Wor kspace (Main window).

The Workspace can display the types of tabs listed below.

ModelSim User's Manual, v6.2g

February 2007

37

Simulator Windows
Main Window

* Project tab — Shows all filesthat are included in the open project. Refer to Projectsfor
details.

* Librarytab — Showsdesign libraries and compiled design units. To update the current
view of the library, select alibrary, and then Right click > Update. See Managing
Library Contents for details on library management.

e Structuretabs—Shows ahierarchical view of the active simulation and any open
datasets. There is one tab for the current smulation (named "sim") and one tab for each
open dataset. See Viewing Dataset Structure for details.

An entry is created by each object within the design. When you select aregionin a
structure tab, it becomes the current region and is highlighted. The Source Window and
Objects Pane change dynamically to reflect the information for the current region. This
feature provides a useful method for finding the source code for a selected region
because the system keeps track of the pathname where the source islocated and displays
it automatically, without the need for you to provide the pathname.

Also, when you select aregion in the structure pane, the Active Processes Paneis
updated. The Active Processes window will in turn update the Locals Pane.

Objects can be dragged from the structure tabs to the Dataflow, List and Wave windows.

Y ou can toggle the display of processes by clicking in a Structure tab and selecting
View > Filter > Processes.

Y ou can also control implicit wire processes using a preference variable. By default
Structure tabs suppress the display of implicit wire processes. To enable the display of
implicit wire processes, set PrefMain(HidelmplicitWires) to O (select Tools > Edit
Prefer ences, By Name tab, and expand the Main object).

* Filestab — Showsthe source files for the loaded design.

Y ou can disable the display of thistab by setting the PrefMain(ShowFilePane)
preference variable to 0. See Simulator GUI Preferences for information on setting
preference variables.

 Memoriestab — Showsahierarchical list of all memoriesin the design. To display this
tab, select View > Windows > M emory. When you select amemory on thetab, a
memory contents page opens in the MDI frame. See Memory Panes.

Transcript

The Transcript portion of the Main window maintains a running history of commands that are
invoked and messages that occur as you work with Model Sim. When a simulation is running,

the Transcript displaysaVSIM prompt, allowing you to enter command-line commands from
within the graphic interface.

38 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Main Window

Y ou can scroll backward and forward through the current work history by using the vertical
scrollbar. Y ou can also use arrow keysto recall previous commands, or copy and paste using
the mouse within the window (see Main and Source Window Mouse and Keyboard Shortcuts
for details).

Saving the Transcript File

Variable settings determine the filename used for saving the transcript. If either PrefMain(file)
in the .modelsimfile or TranscriptFilein the modelsim.ini file is set, then the transcript output
islogged to the specified file. By default the TranscriptFile variable in modelsim.ini is set to
transcript. If either variable is set, the transcript contents are always saved and no explicit
saving is necessary.

If you would like to save an additional copy of the transcript with a different filename, click in
the Transcript pane and then select File > Save As, or File > Save. The initial save must be
made with the Save As selection, which stores the filename in the Tcl variable

PrefM ain(saveFile). Subsequent saves can be made with the Save selection. Since no
automatic saves are performed for thisfile, it iswritten only when you invoke a Save command.
Thefileiswritten to the specified directory and records the contents of the transcript at the time
of the save.

Using the Saved Transcript as a Macro (DO file)

Saved transcript files can be used as macros (DO files). Refer to the do command for more
information.

Changing the Number of Lines Saved in the Transcript Window

By default, the Transcript window retains the last 5000 lines of output from the transcript. You
can change this default by altering the savel ines preference variable. Setting this variableto 0

instructs the tool to retain all lines of the transcript. See Simulator GUI Preferences for details

on setting preference variables.

Disabling Creation of the Transcript File

Y ou can disable the creation of the transcript file by using the following Model Sim command
immediately after ModelSim starts:

transcript file ""

Automatic Command Help

When you start typing acommand at the Transcript prompt, adropdown box appears which lists
the available commands matching what has been typed so far. Y ou may use the Up and Down
arrow keys or the mouse to select the desired command. When a unique command has been
entered, the command usage is presented in the drop down box.

ModelSim User’s Manual, v6.2g 39
February 2007

Simulator Windows
Main Window

Y ou can disable this feature by selecting Help > Command Completion or by setting the
PrefMain(EnableCommandHelp) preference variable to 0. See Simulator GUI Preferences for
details on setting preference variables.

Message Viewer

The Message Viewer tab, found in the Transcript pane, allows you to easily access, organize,
and analyze any Note, Warning, Error or other elaboration and runtime messages written to the
transcript during the ssmulation run.

By default, the tool writes transcripted messages to both the transcript and the WLF file. By
writing to the WLF file, the Message Viewer tab is able to organize the messages for your
analysis.

Controlling the Message Viewer Data

e Command Line— The -msgmode argument to vsim controls where the simulator
outputs the messages.

vsi m -nmsgnode {both | tran | wf}
where:
o both — outputs messages to both the transcript and the WLF file. Default behavior.

o tran— outputs messages only to the transcript, therefore they are not available in the
Message Viewer.

o wlf — outputs messages only to the WLF file/Message Viewer, therefore they are
not available in the transcript.

* modelsim.ini File— The msgmode variable in the modelsim.ini file accepts the same
values described above for the -msgmode argument.

Message Viewer Interface and Tasks

The Message Viewer tab does not display by default. Y ou can bring it up after a simulation run
with the View > M essage Viewer menu item. The message viewer is also automatically
displayed when you perform the dataset open command. Figure 2-3 and Table 2-4 provide an
overview of the Message Viewer and several tasks you can perform.

40 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Main Window

Figure 2-3. Message Viewer Tab

Column Headings:
Right-click to view heading options
Left-click to toggle sort order

_ioi
?[Hma;us -'n[ld [Tirm |Ell:iu|:!s iﬁﬂﬂi:l’l |Fhlrl|:| ”
= iz

L-',-, H-:u[li][ll
=} ‘wharring (1]
: [wsm-347 3] Component instance "uf - Wioghul2 i not bound, 2472 Dine{+0) Mop top.vhd
=i SDF [2)
=Ig% Waming 2]
[Waming [aim-S0F-3240) tect 2c[18] Entity “hdlchk' does 240 O best self(12]
’ m “Waming [vaim-S0F-3240) test =18 Enkky vhdichi' does 240 One bt self{12]

ol have & geneiic named Yselup_d_ck_nosdge_regedge’
= i Tmnglhecks [B]
=g Enor[3)
[a callsw{15): feehpl d:20 ns, posedge ol 25 ns. Bz ;
calzW15): frebupl d:40 ne, posedge cladS ne, B s |;
f= cels 18] fhold posedge clk 25 ns, &30 re, Ins),
gy Warning [3)

e
e
e

25 s +1] dc.::_]L-:;:up-"Lﬁ celzv(15]
45 e+ g ﬁuSJLehk(-i-E-J

Mrel+1) ckd MapidS celgw(1E]

| F1 Teanserpt | [0 Messagelfiewer

Table 2-4. Message Viewer Tasks

the location of the object(s).

Icon | Task Action

1 Display a detailed description of the right click the message text then
message. select View Verbose M essage.

2 Open the source file and add abookmark to | double click the object name(s).

3 Change the focus of the Workspace and
Objects panes.

double click the hierarchical
reference.

line number.

4 Open the source file and set a marker at the

double click the file name.

Multiple Document Interface (MDI) Frame

The MDI frameisan areain the Main window where source editor, memory content, wave, and
list windows display. The frame allows multiple windows to be displayed simultaneously, as

shown below. A tab appears for each window.

ModelSim User's Manual, v6.2g
February 2007

41

Simulator Windows
Organizing Windows with Tab Groups

Figure 2-4. Tabs in the MDI Frame

Object name

1 FF Copyright ® Mentor Graphics Corporation 2004

z

3 £ All Bights BReserved.

4

5 S4 THIS WORE CONTAINS TRADE SECEET AND PROPRIETARY INFOPMATION WHICH IS THE PROPE

& J4 MEMNTOE GRAPHICS CORPOBATION COR ITS LICENEORE AND IS SUEBJECT TO LICEMSE TERME.

o

2 ‘define clk_pd 100

2

10 ‘timescale lnsflns

11 hndule ram th {);

1z reg we;

1z raeg clk;

14 reg [15:0] addr;

15 reg [3:0] inaddr ;

1& reg [3:0] outaddr:

17 reg [21:0] data in;

1z

13 wire [7:0] data =pl; d

*| | 2
Em|wave | hjram_thv lﬂsp_syn_ram.vl Ememl B mem (1) I LIE!
Window tabs

The object nameis displayed in the title bar at the top of the window. Y ou can switch between
the windows by clicking on atab.

Organizing Windows with Tab Groups

The MDI can quickly become unwieldy if many windows are open. Y ou can create "tab groups’
to help organize the windows. A tab group is a collection of tabs that are separated from other
groups of tabs. Figure 2-5 shows how the collection of filesin Figure 2-4 could be organized
into two tab groups.

42 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Navigating in the Main Window

Figure 2-5. Organizing Files in Tab Groups

]
r

£ C:/modeltech/examples/memory/verilog/dp_syr_ram.v{ | | RGNS RN
L B 00000000 00010001100101000
1 Sf Copyright Model Technology, gooooool o00oo0o000000000111
z Sf Corporation company Z004, - goooooo0z o0000o000000000011
3 oooooo0z 00111011001111010
L) "timescale lnsgflns 0O000004d XXX EHAXANNNERENERR
E module hdp syn ram-rtl 00000005 XEMMMNNENNNNREENENN
= fiparaneter data width = &, Q0000005 HEEXEEMENEENEXENEN
7 parameter addr_width = 3) 00000007 HEXEHEHMXEHEXHEAHEN
g {input [addr_width-1:0] i Q0000008 HExXEXENEHXENEENHEH
2 input [addr_width-1:0]1 o Q0000009 XErXEaEMEXXXALAREN
10 input [data width-1:0] 4 OO00000a HEXEENHEEEMNXNNENX
11 input i OO00000h HErryEEErE EEErysy
1z input D,:J 0000000 Ny dENEE NN EEEN:

| | B
lmsp_syn_ram.v lmram_tl:u.v l |h]dp_syr_ram.y mem [1]

The commands for creating and organizing tab groups are accessed by right-clicking on any
window tab. The table below describes the commands associated with tab groups:

Table 2-5. Commands for Tab Groups

Command Description

New Tab Group Creates a new tab group containing the selected tab

Move Next Group Moves the selected tab to the next group in the
MDI

Move Prev Group m g{&s the selected tab to the previous group in the

View > Vertica /
Horizontal

Arranges tab groups top-to-bottom (vertical) or
right-to-left (horizontal)

Note that you can also move the tabs within atab group by dragging them with the middle
mouse button.

Navigating in the Main Window

The Main window can contain of a number of "panes" and sub-windows that display various
types of information about your design, ssmulation, or debugging session. Here are afew
important points to keep in mind about the Main window interface:

Windows/panes can be resized, moved, zoomed, undocked, etc. and the changes are
persistent.

ModelSim User's Manual, v6.2g
February 2007

43

Simulator Windows
Navigating in the Main Window

Y ou have a number of options for re-sizing, re-positioning, undocking/redocking, and
generally modifying the physical characteristics of windows and panes.

Windows and panes can be undocked from the main window by pressing the Undock
button in the header or by using the view -undock <window_name> command. For
example, view -undock objectswill undock the Objects window. The default docked or
undocked status of each window or pane can be set with the
PrefMain(ViewUnDocked) <window_name> preference variable.

When you exit Model Sim, the current layout is saved so that it appears the same the next
time you invoke the tool.

* Menus are context sensitive.

The menu items that are available and how certain menu items behave depend on which
pane or window is active. For example, if the sim tab in the Workspace is active and you
choose Edit from the menu bar, the Clear command is disabled. However, if you click in
the Transcript pane and choose Edit, the Clear command is enabled. The active paneis
denoted by abluetitle bar.

For more information, see Navigating the Graphic User Interface.

Main Window Status Bar

Figure 2-6. Main Window Status Bar

|F'rn:u_ieu::t sl |N|:|w: Ons Delta: 0 sim:ftap/p p

Fields at the bottom of the Main window provide the following information about the current
simulation:

Table 2-6. Information Displayed in Status Bar

Field Description

Project name of the current project

Now the current simulation time

Delta the current simulation iteration number

Profile Samples the number of profile samples collected during the
current simulation

Memory the total memory used during the current simulation

environment name of the current context (object selected in the

active Structure tab of the Workspace)

line/column line and column numbers of the cursor in the active
Source window

44 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Navigating in the Main Window

Main Window Toolbar

Buttons on the Main window toolbar give you quick access to various Model Sim commands
and functions.

Table 2-7. Main Window Toolbar Buttons

Button Menu equivalent Command
equivalents
New File File> New > Source
]| createanew source file
Open File> Open
= | openthe Open Filedialog
Save File> Save
save the contents of the active pane
Print File> Print
&8 | open the Print dialog
Cut Edit > Cut
&£ | cut the selected text to the clipboard
Copy Edit > Copy
copy the selected text to the clipboard
Paste Edit > Paste
2 | paste the clipboard text
Undo Edit > Undo
i‘j undo the last edit
Redo Edit > Redo
(¥ | redo the last undone edit
Find Edit > Find
% | find text in the active window
Collapse All Edit > Expand > Collapse All
% collapse all instancesin the active
window

&

Expand All
expand al instance in the active
window

Edit > Expand > Expand All

ModelSim User's Manual, v6.2g
February 2007

45

Simulator Windows
Navigating in the Main Window

Table 2-7. Main Window Toolbar Buttons

Button

Menu equivalent

Command
equivalents

Compile
open the Compile Source Files dialog
to select files for compilation

Compile> Compile

vcom
viog

Compile All
compile all filesin the open project

Compile > Compile All

vcom
viog

Simulate
load the selected design unit or
simulation configuration object

Simulate > Start Simulation

vsim

Break
stop the current simulation run

Simulate > Break

Environment up
move up one level in the design
hierarchy

Environment back
navigate backward to a previously
selected context

Environment forward
navigate forward to a previously
selected context

Restart

reload the design elements and reset
the simulation time to zero, with the
option of maintaining various settings
and objects

Simulate > Run > Restart

restart

[

Run Length
specify the run length for the
current simulation

Simulate > Runtime Options

run

Run
run the current simulation for the
specified run length

Simulate > Run >
Run default_run_length

run

=

Continue Run

continue the current simulation run
until the end of the specified run
length or until it hits a breakpoint or
specified break event

Simulate > Run > Continue

run
-continue

46

ModelSim User’s Manual, v6.2g

February 2007

Simulator Windows

Active Processes Pane

Table 2-7. Main Window Toolbar Buttons

Button Menu equivalent Command
equivalents
Run -All Simulate > Run > Run -All | run -all
run the current simulation forever, or
until it hits a breakpoint or specified
break event
Step Simulate > Run > Step step
F} step the current simulation to the next
Statement
Step Over Simulate > Run > step -over
{#* | HDL statements are executed but Step -Over

treated as simple statements instead of
entered and traced line by line

Filter
J Containz: lig

5 Contains

filter itemsin Objects pane

i

Show L anguage Templates
display language templates

View > Source >

Show Language Templates

Active Processes Pane

The Active Processes pane displaysalist of HDL processes. Processes are also displayed in the
structure tabs of the Main window Workspace. To filter displayed processes in the structure

tabs, select View > Filter > Processes.

Figure 2-7. Active Processes Pane

activeproc

ModelSim User's Manual, v6.2g
February 2007

47

Simulator Windows
Call Stack Pane

Process Status
Each object in the scrollbox is preceded by one of the following indicators:

* <Ready> — Indicates that the process is scheduled to be executed within the current
deltatime. If you select a"Ready" process, it will be executed next by the simulator.

» <Wait>— Indicates that the processiswaiting for aVVHDL signal or Verilog net or
variable to change or for a specified time-out period.

» <Done> — Indicates that the process has executed a VHDL wait statement without a
time-out or a sensitivity list. The process will not restart during the current simulation
run.

Call Stack Pane

The Call Stack pane displays the current call stack when you single step your simulation or
when the smulation has encountered a breakpoint. When debugging your design, you can use
the call stack data to analyze the depth of function calls, which include Verilog functions and
tasksand VHDL functions and procedures, that led up to the current point of the simulation.

Accessing the Call Stack Pane
View > Call Stack

Figure 2-8. Call Stack Pane

#]ln Line |File
0 Module biot 20 C:/QuestaTestcases/callstacky -
1 Function (3 25 C:/Muestal estcases/callstackView/callstack. sv

feb.

Ted3adlf

2 Function 12 20 C:/QuestaT estcases/callstackView/callstack. 5w Te83al8f
3 Funetion 1 15 C:/QuestaT estcases/callstackView/callstack.sv 7e839ald

4 Module top 35 C:/QuestaT estcases/callstackView/callstack. sv -~ 7eB3a965

Using the Call Stack Pane
The Call Stack pane contains five columns of information to assist you in debugging your
design:
* #—indicates the depth of the function call, with the most recent at the top.
* In—indicates the function.
* Line— indicates the line number containing the function call.

* File— indicates the location of the file containing the function call.

48 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Dataflow Window

* Address — indicates the address of the execution in aforeign subprogram, such as C.

The Call Stack pane allows you to perform the following actions within the pane:

» Double-click on theline of any function call:

o Displaysthelocal variables at that level in the Locals Pane.

o Displays the corresponding source code in the Source Window.
* Right-click in the column headings

o Displaysa pop-up window that allows you to show or hide columns.

Dataflow Window

The Dataflow window allows you to explore the "physical" connectivity of your design.

Note
D OEM versions of Model Sim have limited Dataflow functionality. Many of the features

described below will operate differently. The window will show only one process and its

attached signals or one signal and its attached processes, as displayed in Figure 2-9.

Figure 2-9. Dataflow Window

== dataflow -10] x|

File Edit Wiew Mawigake Trace Tools Window

SN ad PBRBOOH e » %NS D2 2D
CRSE S - T

#IMITIALASS

Extended mode disabled I |Keep| 1 | fprociclk 7]

The Dataflow window displays:

* processes

ModelSim User’s Manual, v6.2g 49
February 2007

Simulator Windows
Dataflow Window

signals, nets, and registers

The window has built-in mappings for all Verilog primitive gates (i.e., AND, OR, PMOS,
NMOS, etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. See Symbol Mapping for details.

Dataflow Window Toolbar

The buttons on the Dataflow window toolbar are described below.

Table 2-8. Dataflow Window Toolbar

Button Menu equivalent
Print — print the current view of the Dataflow File > Print (Windows)
&h | window File > Print Postscript (UNIX)
Select mode — set |eft mouse button to select View > Select
k | mode and middle mouse button to zoom mode
Zoom mode — set left mouse button to zoom View > Zoom
', | mode and middle mouse button to pan mode
Pan mode — set left mouse button to pan mode | View > Pan
Qv and middle mouse button to zoom mode
Cut — cut the selected object(s) Edit > Cut
&
Copy — copy the selected object(s) Edit > Copy
Paste — paste the previously cut or copied Edit > Paste
B2 | object(s)
Undo — undo the last action Edit > Undo
L)
Redo — redo the last undone action Edit > Redo
m Find — search for an instance or signal Edit > Find

50

ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Dataflow Window

Table 2-8. Dataflow Window Toolbar

Button Menu equivalent
Traceinput net to event — move the next event | Trace > Trace next event
% | cursor to the next input event driving the selected
output
Trace Set — jump to the source of the selected Trace > Trace event set
4 | input event
Trace Reset — return the next event cursor to the | Trace > Trace event reset
= | selected output
Tracenet todriver of X — step back tothelast | Trace > TraceX
¥4 | driver of an unknown value
Expand net to all drivers— display driver(s) of | Navigate > Expand net to drivers
¢ | the selected signal, net, or register
Expand net to all driversand readers— display | Navigate > Expand net
=} | driver(s) and reader(s) of the selected signal, net, or
register
Expand net to all readers— display reader(s) of | Navigate > Expand net to readers
=+ | the selected signal, net, or register
Erase highlight — clear the green highlighting Edit > Erase highlight
A | which identifies the path you' ve traversed through
the design
Erase all — clear the window Edit > Erase all
o
Regenerate — clear and redraw the display using | Edit > Regenerate
45 | anoptimal layout
Zoom In — zoom in by afactor of two from none
Cﬂ current view
Zoom Out — zoom out by afactor of two from none
=} | current view
Zoom Full — zoom out to show all componentsin | none
@ | thewindow

ModelSim User's Manual, v6.2g
February 2007

51

Simulator Windows
Dataflow Window

Table 2-8. Dataflow Window Toolbar

Button

Menu equivalent

Stop Drawing — halt any drawing currently
happening in the window

none

Show Wave — display the embedded wave viewer
pane

View > Show Wave

52

ModelSim User’s Manual, v6.2g

February 2007

Simulator Windows
List Window

List Window

The List window displays the results of your simulation run in tabular format. The window is
divided into two adjustable columns, which allow you to scroll horizontally through the listing
on the right, while keeping time and delta visible on the | eft.

The List window opens by default in the MDI frame of the Main window as shown in

Figure 2-10.

Figure 2-10. List Window Docked in Main Window MDI Frame

nsz—, fropfolk—, m fropSpdata—, ftopf=a *
delta—s fLopSpru—, ftopfsru—,
ftopfpstrb—, ftopfsstrb—,
ftopfprdy—. ftopfsrdy—.
0 +0 0K HKE 4 HDCOCOOOoOooOo0o K K X X0
5 40 ooll | ZZZZZZZZZZZZZEZZZ 0 1 1 000
z0 40 1011 ZZZZZZZZZZZZZEZZ 0 1 1 000
Z5 t0 1001l ZZZZZZZZZZZZZEZZ 0 1 1 000
oonl ZEZZZZZZZZZZZZZZ 0 1 1 000
&0 +0 1o01l ZZZZZZZZZZZZZEZZ 0 1 1 000
£5 40 1011 0000000000000000 @ 0 1 000
20 +0 ooll 0000000000000000 @ 0 1 000
100 40 1011 0000000000000000 @ 0 1 000
105 40 1011 0000000000000000 @ 1 1 000
1zo 40 ooll 0000000000000000 @ 1 1 DDD_:J
0 lines 4 | j
I compile l | wave l] list] HE

The window can be undocked from the Main window by clicking the Undock button in the
window header or by using the view -undock list command.

ModelSim User's Manual, v6.2g

February 2007

53

Simulator Windows
List Window

st ~lofx|

Figure 2-11. List Window Undocked

File Edit “iew Add Tools ‘Window

| zEEe r2eaox AT

ftest_smfinto—,
ftest_smfoutof—,
ftest_smirst—,

ftest_smfclk—

oooooo:s0 171 0
oooooo:s0 171 0
oooooooo 171 0
oooooooo 171 0
oooooooo 171 0
oooooooo 171 0
oooooooo 171 0
40000000 187 0
40000000 187 0
40000000 187 0

bPE—%
delta—,
430000 +0
431000 +1
435000 +0
EQaoon +0
Ela0oo +0
Ellooo +1
El1la00 z
E1lE5000 +0
EEZ0000 +0
EZ2000 +1
164 lines « |

oo+~ o -

[
I

The following type of objects can be viewed in the List pane:

* VHDL — signals, aliases, process variables, and shared variables

* Verilog — nets, registers, and variables

» Virtuals— Virtual signals and functions

54

ModelSim User’'s Manual, v6.2g
February 2007

Simulator Windows
Locals Pane

Locals Pane

The Locals pane displays data objects that are immediately visible from the statement that will
be executed next (that statement is denoted by a blue arrow in the Source editor window). The
contents of the window change from one statement to the next.

The Locals pane includes two columns. The first column lists the names of the immediately
visible data objects. The second column lists the current value(s) associated with each name.

Figure 2-12. Locals Pane
| Locals : Y X

M ame Y alue |

"" e {x

— [ea Ij_ proc

ModelSim User's Manual, v6.2g 55
February 2007

Simulator Windows
Memory Panes

Memory Panes

The Main window lists all memoriesin your design in the Memories tab of the Main window
Workspace and displays the contents of a selected memory in the Main window MDI frame.

Figure 2-13. Memory Panes

Memory list

Workspace o ‘HaM i memony - Ararm_tbdspram2mem
*|Instance [Rangs [Depth [Width || | (55500004 1000700011001 07100 00010001 100101101 ﬂ
& /ram_th/spraml /mem [0:4095] 4095 g | | | 0ooonoos |00010001100101110 0D010001100101111
& /iam th/spram/mem (0:2047] 2048 2| || 00000008 {00010001100110000 00010001 100110001
= : 0000000a {0007 00071007 10070 00010001100110011
W /ram_tb/spram3/mem (0:65535] 65536 32| M gaqonane |oa10001100110100 00010001100110101
v fram_tb/spramd/mem [0:3] 4 16 0000000 | 0007 0007100110110 0001 0001 100110111
& /ram_th/doram /mem [0:15] 16 g | || 00000010 |00010001100111000 00010001100111001
- 00000012 {00010001100111070 00010001100111011
A 00000014 {0001000110g111100 00010001100111101
n (B 21~
| Il Library | K sm | = Files | B Memaries I_ilzJ 2= mem | B8 mem (1) [| h] ram_thv 42|
| l III J

Memory contents

The memory list is from the top-level of the design. In other words, it is not sensitive to the
context selected in the Structure tab.

Model Sim identifies certain kinds of arrays in various scopes as memories. Memory
identification depends on the array element kind as well as the overall array kind (i.e.

associative array, unpacked

array, etc.).

Table 2-9. Memories

VHDL

Verilog/SystemVerilog

Element kind

enum?,

std_logic_vector,
std_bit_vector, or
integer.

any integral type. (i.e. integer_type):
shortint, int, longint, byte, bit (2 state),
logic, reg, integer, time (4 state),
packed_struct / packed_union (2 state),
packed_struct / packed union (4 state),
packed_array (single-Dim, multi-D,

2 state and 4 state),

enum or string.

Scope: recognizablein

architecture, process,
or record

module, interface, package, compilation
unit, struct, or static variables

within atask / function / named block /
class

Array kind

single-dimensional or
multi-dimensional

any combination of u:zpacked, dynamic
and associative array

56

ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Memory Panes

1. These enumerated type value sets must have values that are longer than one character. The listed width
isthe number of entriesin the enumerated type definition and the depth is the size of the array itself.

2. Any combination of unpacked, dynamic, and associative arrays is considered a memory, provided the
leaf level of the data structure is a string or an integral type.

Associative Arrays in Verilog/SystemVerilog

For an associative array to be recognized as amemory, the index must be of an integral type
(see above) or wildcard type.

For associative arrays, the element kind can be any type allowed for fixed-size arrays.

Viewing Single and Multidimensional Memories

Single dimensional arrays of integers are interpreted as 2D memory arrays. In these cases, the
word width listed in the Memory List paneis equal to the integer size, and the depth isthe size
of the array itself.

Memories with three or more dimensions display with aplussign’+’ next to their namesin the
Memory List. Click the’+' to show the array indices under that level. When you finally expand
down to the 2D level, you can double-click on the index, and the data for the selected 2D dlice
of the memory will appear in amemory contents pane in the MDI frame.

Viewing Packed Arrays

By default packed dimensions are treated as single vectors in the memory contents pane. To
expand packed dimensions of packed arrays, select View > Memory Contents > Expand
Packed Memories.

To change the permanent default, edit the PrefMemory(ExpandPackedMem) variable. This
variable affects only packed arrays. If the variable is set to 1, the packed arrays are treated as
unpacked arrays and are expanded along the packed dimensions such that they appear as a
linearized bit vector. See Simulator GUI Preferences for details on setting preference variables.

Viewing Memory Contents

When you double-click an instance on the Memory tab, Model Sim automatically displays a
memory contents pane in the MDI frame (see Multiple Document Interface (MDI) Frame). You
can also enter the command add mem <instance> at the vsim command prompt.

Viewing Multiple Memory Instances

Y ou can view multiple memory instances simultaneously. A memory tab appears in the MDI
frame for each instance you double-click in the Memory list.

ModelSim User’s Manual, v6.2g 57
February 2007

Simulator Windows
Memory Panes

Figure 2-14. Viewing Multiple Memories

=2 memony - Aram_thAspram Amern

00000000 00101000 00107001 001010710 00107011 00101100 001017107 00701110 ﬂ
00000a0# 1001011171 00110000 00110001 00110070 0011007171 Q0110100 001710701
0000000e (00110170 00170711 00111000 001171001 00111010 00111011 00111100
00000015 100111101 00111170 001111171 01000000 01000007 01000010 01000011
0000007 (07000100 01000701 071000110 01000111 010071000 01001001 01001010
00000023 (0007017 01001100 01001707 10 110 070071117 07070000 0710710007
00000022 (071010010 010710071 0101000 MO10101 01070110 010111 01011000
00000031 (07011001 011070 070711011 01011700 01011107 01011110 01011111
00000033 101100000 017100001 01100010 01100011 01100100 011007107 017100110

ANOnnn2Fe A nmd 1ot Mo oant r1man 1m0t o n1nn 1101

LT 21|
1 Ememlﬁmemﬁ]lﬁmem[ﬂ] ﬂil

See Organizing Windows with Tab Groups for more information on tabs.

Saving Memory Formats in a DO File

Y ou can save al open memory instances and their formats (e.g., address radix, dataradix, etc.)
by creating a DO file. With the memory tab active, select File > Save As. The Save memory
format dialog box opens, where you can specify the name for the saved file. By default it is
named mem.do. The file will contain all open memory instances and their formats. To load it at
alater time, select File > L oad.

Direct Address Navigation

Y ou can havigate to any address location directly by editing the address in the address column.
Double-click on any address, type in the desired address, and hit Enter. The address display
scrolls to the specified location.

Splitting the Memory Contents Pane

To split amemory contents window into two screens displaying the contents of asingle
memory instance, so any one of the following:

» select Memories> Split Screen if the Memory Contents Pane is docked in the Main
window,

» select View > Split Screen if the Memory Contents Pane is undocked,
* right-click in the pane and select Split Screen from the pop-up menu.

Thisallows you to view different address locations within the same memory instance
simultaneously.

58 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows

Memory Panes

Figure 2-15. Split Screen View of Memory Contents

B rmem

oooooooon
ooooooo0e
aluluyutiulufuya)
oooooolz
ooooools
ooooo0le
ooooonz4
oooo00za

aololo0o0
aololllo
aollolon
o0ll1o0lo
0loooooo
oioo00llo
01001100
01010010

oolo01001
oo0lollll
o0l10101
00111011
oloooool
olooolll
0100110l
01010011

aolol0lo
aollo0oo0
a0llollo
o0l11100
0lo00010
olooloon
oloolllo
alololo0

o0lololl
o0llo001
00llo0lll
00111101
0lo0o0ll
oLooloonl
oloollll
olololol

oololloo
00110010
00111000
00111110
0lo0olo0
0lo0oLlolo
01010000
0l010l10

00l011l0l
00llo0ll
00ll1001
00111111
olooolol
01001011
01010001
01010111

alulu}utiulafuyul
ooooo00s
oooo000:
oooooolz
ooooools
ooooo0le
ooooo0:z4
O00000za

aololo00
oolo01llo
oo110lo0
oolllolo
Q1000000
aloo0llo
01001100
01010010

aolo01001
o0101111
00110101
0o0l11011
aloooool
olooolll
01001101
01010011

aolololo
aollo0oo0
00110110
ooll11o0
aloooolo
aloolooo0
01001110
010loloo0

o0lololl
o00llo00l
oollolll
oollllol
oLooooll
oLooloonl
0Loollll
0l0lolol

0ololloon
00110010
oollloo0
00l11ll10
0loooloo
0loololo
01010000
0l010ll0

aolo11l0l
00110011
o01l1io00l
0011111l
01000101
01001011
01010001
01010111

v

B mermn

ModelSim User's Manual, v6.2g

February 2007

59

Simulator Windows
Objects Pane

Objects Pane

The Objects pane shows the names and current values of declared data objects in the current
region (selected in the structure tabs of the Workspace). Data objects include signals, nets,
registers, constants and variables not declared in a process, generics, parameters.

Clicking an entry in the window highlights that object in the Dataflow and Wave windows.
Double-clicking an entry highlights that object in a Source editor window (opening a Source

editor window if one is not open aready). Y ou can aso right click an object name and add it to
the List or Wave window, or the current log file.

Figure 2-16. Objects Pane

Objects
Mame
E—* data_in
% da 01111010
4 da 0011011001111

4
B

. : : 010110011110
L 01111010
A7 Sto

St

SH

SH

St

SH

Filtering the Objects List
Y ou can filter the objects list by name or by object type.

Filtering by Name

To filter by name, undock the Objects pane from the Main window and start typing lettersin the
Containsfield in the toolbar.

Figure 2-17. Objects Filter

J Contains: Iig‘

Asyou type, the objects list filters to show only those signals that contain those | etters.

60 ModelSim User’'s Manual, v6.2g

February 2007

Simulator Windows
Objects Pane

Figure 2-18. Filtering the Objects List by Name

File Edit View Add Tools ‘Window

=101 x|

] Contains |da i S

data_spd
data_dp1

[7]

6]

5]

4]

3]

2

[1]

(0]

F
F
F
B
F
F
F
F

QOOR000000000C.,
01111010
001110171007 111....

01110711001111010
01111010

Std

Si1

St

St1

St

St0

St

St0

Packed &mray Internal

Met
Met
Met
MNet
MNet
MNet
Met
MNet
Met
Met
MNet
MNet
MNet

Internal
Intesnal
Internal
Intemal
Intemal
Internal
Internal
Internal
Internal
Internal
Internal
Intemal
Intemal

As you type in the Contains field . . .

L ... the objects list filters dynamically
to show only objects that match your
entry.

To display all objects again, click the Eraser icon to clear the entry.

Filters are stored relative to the region selected in the Structure window. If you re-select a
region that had afilter applied, that filter is restored. This allowsyou to apply different filtersto

different regions.

Filtering by Signal Type

The View > Filter menu selection alows you to specify which signal typesto display in the
Objects window. Multiple options can be selected.

ModelSim User's Manual, v6.2g

February 2007

61

Simulator Windows
Source Window

Source Window

Source files display by default in the MDI frame of the Main window. The window can be
undocked from the Main window by pressing the Undock button in the window header or by
using the view -undock sour ce command.

Y ou can edit source files as well as set breakpoints, step through design files, and view code

coverage statistics.

By default, the Source window displays your source code with line numbers. Y ou may also see
the following graphic elements:

* Red line numbers — denote lines on which you can set a breakpoint

» Bluearrow — denotes the currently active line or a process that you have selected in the

Active Processes Pane

* Red circles— denote file-line breakpoints; gray circles denote breakpoints that are

currently disabled

¢ Blue circles— denote line bookmarks

» Language Templates pane — displays Language Templates (Figure 2-19)

Figure 2-19. Source Window Showing Language Templates

Language Templatesz 1n # =
AR Mew Design wizard
:Bl\ Create Tegtbench 33 i
EH[7] Language Constructs 36 always @ (posedge clock)
1 Module 37 begin : Storer
1] Primitive 38 integer 1i;
Declarations S0 if (reset == 17k0] kegin
Isr::tfr:?ieart}tosns 40 bUffe].:— == 0; .
Compiler Directives 41 g end else 1f (oceenable == 17k0) kegin
Elocks 42 i = ramadrs[(counter size * 2): (count
= Syatern Tasks and Fur 43 buffer[i] <= txda;
= Stigllulu; Generators 44 and
é I:Doucnter 45 end
i Stop Simulation 46
47 endmodul e
48
‘I | B a | ol
[M wave 1 H] standard.vhd l shore. v I]

Opening Source Files

Y ou can open source files using the File > Open command. Alternatively, you can open source
files by double-clicking objects in other windows. For example, if you double-click an item in

62

ModelSim User’s Manual, v6.2g

February 2007

Simulator Windows
Source Window

the Objects window or in the structure tab of the Workspace, the underlying source file for the
object will open, and the cursor will scroll to the line where the object is defined.

By default files you open from within the design (e.g., by double-clicking an object in the
Objects pane) open in Read Only mode. To make the file editable, right-click in the Source
window and select Read Only. To change this default behavior, set the Pref Source(ReadOnly)
variable to 0. See Simulator GUI Preferences for details on setting preference variables.

Displaying Multiple Source Files

By default each file you open or create is marked by awindow tab, as shown in the graphic
below.

Figure 2-20. Displaying Multiple Source Files

| C:/miodeltechsexamn plez/systemc/ec_vhdl wlogstare.w
14 module store (clock, reset, oeenahle, rawmadrs, txda, buffer);
15
1k parsmeter counter size = 4;
17 parameter buffer =size = 16;
13
19 A Define blocks IA0's
Z0 input eclock, reset, oeenshle, txds;
£1 input [(counter size *&Z):0] ramwadrs;
22 output [buffer size-1:0] buffer;
23
24 £/ Define wires for connecting wires.
25 wire clock, reset, oeenahle, txda, outstrobhe, rxda;
2B wire [(counter size * 2):0] ramadrs; j
a (o]
I M Wave l G ringbuk.b l H] contral.vhd l |h] store.w l [h] Urtithed-1 I ﬂﬂ

See Organizing Windows with Tab Groups for more information on these tabs.

Dragging and Dropping Objects into the Wave and List
Windows

Model Sim allows you to drag and drop objects from the Source window to the Wave and List
windows. Double-click an object to highlight it, then drag the object to the Wave or List
window. To place agroup of objects into the Wave and List windows, drag and drop any
section of highlighted code.

ModelSim User’s Manual, v6.2g 63
February 2007

Simulator Windows
Source Window

Setting your Context by Navigating Source Files

When debugging your design from within the GUI, you can change your context while
analyzing your source files. Figure 2-21 shows the pop-up menu the tool displays after you
select then right-click an instance name in a sourcefile.

Figure 2-21. Setting Context from Source Files

sl Aol i

in # s
4
Open Inztance
dgeend Eny
Back r
(St
ISapy
Paste
Find...
" A
[DEgarnbe
[risees
E LA Header
]
Breakpoints. .,
1 J GoTo..
il Show Language Templates
4 Show Source Annotation -
v Fead Only —
L] |] =
| i wave | M) top vind [i ¥

Thisfunctionality allows you to easily navigate your design for debugging purposes by
remembering where you have been, similar to the functionality in most web browsers. The
navigation options in the pop-up menu function as follows:

* Open Instance — changes your context to the instance you have selected within the
sourcefile. Thisisnot availableif you have not placed your cursor in, or highlighted the
name of, an instance within your source file.

If any ambiguities exists, most likely due to generate statements, this option opens a
dialog box allowing you to choose from all available instances.

» Ascend Env — changes your context to the next level up within the design. Thisis not
availableif you are at the top-level of your design.

64 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Source Window

» Forward/Back — allows you to change to previously selected contexts. Thisis not
available if you have not changed your context.

The Open Instance option is essentially executing an environment command to change your
context, therefore any time you use this command manually at the command prompt, that
information is also saved for use with the Forward/Back options.

Language Templates

Model Sim language templates help you write code. They are a collection of wizards, menus,

and dialogs that produce code for new designs, testbenches, language constructs, logic blocks,
etc.

Note
D The language templates are not intended to replace thorough knowledge of coding. They
are intended as an interactive "reference” for creating small sections of code. If you are

unfamiliar with a particular language, you should attend a training class or consult one of
the many available books.

To use the templates, either open an existing file, or select File > New > Sour ceto create a new
file. Oncethefileisopen, select Sour ce > Show L anguage Templatesif the Source window is
docked in the Main window; select View > Show L anguage Templates of the Source window
is undocked. This displays a pane that shows the available templates.

Figure 2-22. Language Templates

m LC:/modeltech/examp temc/zc_vhd| vlog/Untitled-1

Language Templates 1n # -
Q\ MNew Design ‘Wizard
2 Create Testhench
[Language Constucts
Stimuluz Generators

[
. A I
l ﬂ Wave l C] ringbuf.h l H] contral.vhd l |h] store. l |h] Untitled-1 I ﬂil
ModelSim User’s Manual, v6.2g 65

February 2007

Simulator Windows
Source Window

The templates that appear depend on the type of file you create. For example Module and
Primitive templates are available for Verilog files, and Entity and Architecture templates are
available for VHDL files.

Double-click an object inthe list to open awizard or to begin creating code. Some of the objects
bring up wizards while others insert code into your source file. The dialog below is part of the
wizard for creating a new design. Simply follow the directions in the wizards.

Figure 2-23. Create New Design Wizard

Create New Design Wizard e o] |

The Mew Deszign ‘Wizard will step you through the tazks neceszam
to add a YHOL Dezign Unit or Yerlog Module or SpztemC

SC_MODULE to your code. Drezign Unit
First you need to enter the name vou want for the design unit, and Please enter the name pou
ther the wizard will allow pow to enter each of the ping on the wart to use for thiz design

block vou want to create.

Dezign Unit Marmne;

<F'revi|:uus| Mext > I Cancel I

Code inserted into your source contains a variety of highlighted fields. The example below
shows a modul e statement inserted from the Verilog template.

Figure 2-24. Inserting Module Statement from Verilog Language Template

m C:/modeltech/examples e zc_vhdl_vlogdUntitled-1

Language Templates -
_ﬁ\ Mew Dezigh Wizard
N Create Testhench
B[Language Constucts

]
1L1] Primnitive _
Declarations
Statements endmodnle
Instantiations
Compiler Directives
Blocks

Systemn Tasks and Fur
= Stimulus Generators

module module name 1isSE of ansi parsms L1ist of

a | Bl o | _,|d
l ﬂ Wave l C] ringbuf.h l H] contral.vhd l |h] store. l |h] Untitled-1 I ﬂﬂ

Some of the fields, such as module_name in the example above, are to be replaced with names
you type. Other fields can be expanded by double-clicking and still others offer a context menu

66 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Source Window

of options when double-clicked. The example below shows the menu that appears when you
double-click module_item then select gate instantiation.

Figure 2-25. Language Template Context Menus

m C:/modeltech/exzamples/systemesc_vhdl_vlog/Untitied-1
Language Templates 1n # -
—i'\':?*l Mew Dezigh Wizard 1
N Create Testhench
B [7] Language Constructs 2 module module name 1isSE of ansi parsms L1ist of
IR odule 3
1L1] Primnitive 4 module_item_declaration ¥
Declarations 3 module_instantiation
Statemerts B gate_instantiation k 1_input_gate
Instaqtlatluns . 7 generated_instantiafisin n_output_gate
Compiler Directives .
Blocks Blocks enable_gate
Systemn T asks and Fur pullup
B—= Stimuluz Generators pulldown
moz_switch
cmoz_gwitch
pasz_switch d
J | ﬂ] < pass_enable_switch | v
l ﬂ Wave l C] ringbuf.h l H] contral.vhd l |h] store. l |h] Untitled-1 = e

Setting File-Line Breakpoints

Y ou can easily set File-line breakpoints in a Source window using your mouse. Click on ared
line number at the left side of the Source window, and ared circle denoting a breakpoint will
appear. The breakpoints are toggles — click once to create the breakpoint; click again to disable
or enable the breakpoint.

To delete the breakpoint completely, right click the red circle, and select Remove Breakpoint.
Other options on the context menu include:

» Disable/Enable Breakpoint — Deactivate or activate the selected breakpoint.
» Edit Breakpoint — Open the File Breakpoint dialog to change breakpoint arguments.
» Edit All Breakpoints — Open the Modify Breakpoints dialog

Checking Object Values and Descriptions

There are two quick methods to determine the value and description of an object displayed in
the Source window:

» select an object, then right-click and select Examine or Describe from the context menu

e pause over an object with your mouse pointer to see an examine pop-up

ModelSim User’s Manual, v6.2g 67
February 2007

Simulator Windows
Source Window

Select Tools > Options > Examine Now or Tools > Options > Examine Current Cursor to
choose at what simulation time the object is examined or described.

Y ou can also invoke the examine and/or describe commands on the command lineor in a
macro.

Marking Lines with Bookmarks

Source window bookmarks are blue circles that mark lines in a source file. These graphical
icons may ease navigation through alarge source file by "highlighting” certain lines.

As noted above in the discussion about finding text in the Source window, you can insert
bookmarks on any line containing the text for which you are searching. The other method for
inserting bookmarks isto right-click a line number and select Add/Remove Bookmark. To
remove a bookmark, right-click the line number and select Add/Remove Bookmark again.

Customizing the Source Window

Y ou can customize a variety of settings for Source windows. For example, you can change
fonts, spacing, colors, syntax highlighting, and so forth. To customize Source window settings,
select Tools > Edit Preferences. This opens the Preferences dialog. Select Sour ce Windows
from the Window List.

68 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Source Window

Figure 2-26. Preferences Dialog for Customizing Source Window

Preferences

By Window] Ey Name]

—"Window List — Source Windows Colar Scheme
Dataflow windows | [Categary
Mk Wi Window =
temony wWindows Document Types
Active Process Window = Drefault
Objects Window = Frirting
S ource Win ll:l'.-'-.' 3 Farts
Struchure Windows
Locals Window — Spacing
W ave Windows B— =ML
B— o
B el
— Parsing
= Frinting
Farits
— Spacing
— Spntas Highlighting
'— Code Browser
B venlog
— Parzing
= Printing
Foatits
— Spacing
il - k3= Highlighting
'— Code Browser
— whdl =

werilog - Svntas Highlighting

¥ Enable Syntax Highlighting
¥ Highlight keyword when typed
¥ Highlight matching construct when typed

— Syntas
Brace 4| Keywords |
Code block Sample
Comment |Brace

Compiler Directiw
Concatenation
Function name Styles:
Gate instance nam
Keyword

Macro substitutioc
Misspelled word

Module instance n
Module name

=

. . B

< |

2

Farearaund: -
Background:

w <]

0K

Apply Cancel

Select an item from the Category list and then edit the available properties on the right. Click

OK or Apply to accept the changes.

The changes will be active for the next Source window you open. The changes are saved

automatically when you quit Model Sim.

ModelSim User's Manual, v6.2g
February 2007

69

Simulator Windows
Watch Pane

Watch Pane

The Watch pane shows values for signals and variables at the current simulation time. Unlike
the Objects or Locals pane, the Watch pane allows you to view any signal or variable in the
design regardless of the current context.

Figure 2-27. .Watch Pane

"W atch 4 e X

fram_th/we =1

Aram_tb/dpram? finaddr = 0001 [3] = 5t0
[£] =5t0
[1]1=5t0
[0] =511

fram_tb/data_sp3 = 0000000000000000011710710011110710

Displays
Aram_tbdclk =0
Jram_tb/i = 625

Y ou can view the following objects in the watch pane.

* VHDL objects— signals, aliases, generics, constants, and variables
* Verilog objects — nets, registers, variables, named events, and modul e parameters

* Virtual objects — virtual signals and virtual functions

Adding Objects to the Pane

To add objects to the Watch pane, drag-and-drop objects from the Structure tab, Objects pane,
or Locals pane. Alternatively, use the add watch command.

Expanding Objects to Show Individual Bits

If you add an array or record to the Watch pane, you can view individual bit values by double-
clicking the array or record. As shown in the graphic above, /ram_tb/dpraml/inaddr has been
expanded to show all the individual bit values. Notice the arrow that "ties’ the array to the
individual bit display.

70 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Watch Pane

Grouping and Ungrouping Objects

Y ou can group objectsin the Watch pane so they display and move together. Select the objects,
then right click one of the objects and choose Group.

In the graphic below, two different sets of objects have been grouped together.

Figure 2-28. Grouping Objects in the Watch Pane
Cwaeh Rl P

Dizplays
fram_thfclk =0

Jram_thAwe =1
fram_tb/i = B25

Dizplays

fram_th/inaddr = 0001

dram_tbdoutaddr = 00071

To ungroup them, right-click the group and select Ungroup.

Saving and Reloading Format Files

Y ou can save aformat file (aDO file, actualy) that will redraw the contents of the Watch
window. Right-click anywhere in the window and select Save For mat.

Once you have saved the file, you can reload it by right-clicking and selecting L oad For mat.

ModelSim User’s Manual, v6.2g 71
February 2007

Simulator Windows

Wave Window

Wave Window

The Wave window, like the List window, allows you to view the results of your simulation. In
the Wave window, however, you can see the results as waveforms and their values.

The Wave window opens by default in the MDI frame of the Main window as shown below.
The window can be undocked from the main window by clicking the Undock button in the
window header or by using the view -undock wave command. The preference variable
PrefMain(ViewUnDocked) wave can be used to control this default behavior. Setting this
variable will open the Wave Window undocked each time you start Model Sim.

Figure 2-29. Wave Window Undock Button

File Edt WVew Fomst Compls Smuste Add Tools Window Helo

Undock button ﬂ

[DEES| L@ (AES

] S ’-‘I” Ly 25 :i'| | B T B | o | b 0 B | R H S 1

CRCTECIECY=E Y

| #1081 wunsjj'ﬂ:;iﬂ:?}ﬁ*ﬁﬂﬂ“ T .;a|

Aue: T JoR M |

Workspace + K|
#[inatanca [Design it [Desigrior 2|
Bl test_ingbuf test_iinghul SoiModile
o ok so_ckck St odule
ang IMNET rireghut S caule
Blexck1 conbaols) Architach, =
3l block2 thore Module
blockd retieve Module
E‘ ey (el Shabemenl
o BALW. relimve Proces:
ol BASS] reliwuw Prowrdt j
JT [R— |

|,-Lhay|ﬁm|me|nmmiL'i

il il
Mest_singted King_INGT sz
Rest_singtad fing_INST Jclnck
Mest_inged fing_INST heset
g

Mesl_ingbafing_INST ozt . F

{_sngta.fing_INST /blnck.
singbu ing_INST fhlnck.
sngbuking_INST fhlock.
singbuking_INST fblock.

... | 100007 000
5 ... | 100007 000
Mesl_sngbufing INST biock. . | 580

Mesl_sngbuldang_INST fhiock.
Mesl_sngbuffang INST fhiock, ..

OO EN IO (1 7 107770 G 77

oI 1|||:|'1 i

I T T 1|||:|'1 i

o] T T = T
[461588 ns to 462962 ns [Mo 500 w5 Dalta: 2

p| wave | h] semeve v |] storey | L)

Hall

" RESTORED * ai 203500 ns: Dala sstured In sspached value j
deshoy fet

VSIM 52 j

|N|:rnr. 500 uz Deha: 2 [m_ﬂeat_ringhurf P

Hereis an example of a Wave window that is undocked from the MDI frame. All menus and
icons associated with Wave window functions now appear in the menu and toolbar areas of the
Wave window.

72

ModelSim User’'s Manual, v6.2g
February 2007

Simulator Windows
Wave Window

Figure 2-30. Wave Window Dock Button

| Dock button

[T wave - default |

File Edit ¥ew Add Format Tools ‘Window

|V @& i @0 A% || S| b X @1@;%@1| o

4 Jtest_counter/clk
4 ftest_countes/reset
B4 fest_counter/count

| 434260 ns to 434677 ns | Now: 495,852 ns Delta: 2 p

If the Wave window is docked into the Main window M DI frame, all menus and iconsthat were
in the standalone version of the Wave window move into the Main window menu bar and
toolbar.

The Wave window is divided into a number of window panes. All window panesin the Wave
window can be resized by clicking and dragging the bar between any two panes.

ModelSim User’s Manual, v6.2g 73
February 2007

Simulator Windows
Wave Window

Example 2-1. Wave Window Panes

[T wave - defz ult =0 x|

File Edit Yiew Add Format Tgols ‘Window
[Deep imap jeeai|bxeyr|aaaq|w
PEF[toons3) ELEHEY P 0 K =0 Tl

| pathnames | | values |

| A e B3| B

4 ftest_counter/clk 1
4 ftest_counter/reset 0
B test_counmter/count (11010771
4 [SH
sH
[5] S0
(4] =14
13] 11|
[2] 14
] 50
[0] 514

&
7

2Arap

Mow B95852 e
A §34551 ns

»0 L [N

| 434260 ns to 43457‘! ns \ | Now: 495,852 ns Delta: 2
] \

[cursor names and values | | cursors |

The following types of objects can be viewed in the Wave window

&

* VHDL objects (indicated by a dark blue diamond) — signals, aliases, process variables,
and shared variables

» Verilog objects (indicated by alight blue diamond) — nets, registers, variables, and
named events

» Virtual objects (indicated by an orange diamond) — virtual signals, buses, and
functions, see; Virtual Objects for more information

The data in the object values pane is very similar to the Objects window, except that the values
change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see atime line, tick marks, and the time value of
each cursor’s position. Asyou click and drag to move a cursor, the time value at the cursor
location is updated at the bottom of the cursor.

Y ou can resize the window panes by clicking on the bar between them and dragging the bar to a
new location.

74 ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Wave Window

Waveform and signal-name formatting are easily changed via the Format menu. Y ou can reuse

any formatting changes you make by saving a Wave window format file (see Saving the
Window Format).

Wave Window Panes

The sections below describe the various Wave window panes.

Pathname Pane

The pathname pane displays signal pathnames. Signals can be displayed with full pathnames, as
shown here, or with only the leaf element displayed. Y ou can increase the size of the pane by
clicking and dragging on the right border. The selected signal is highlighted.

The white bar along the left margin indicates the selected dataset (see Splitting Wave Window
Panes).

Value Pane
The value pane displays the values of the displayed signals.

The radix for each signal can be symbolic, binary, octal, decimal, unsigned, hexadecimal,
ASCII, or default. The default radix can be set by selecting Simulate > Runtime Options.

Note

D When the symbolic radix is chosen for SystemVerilog reg and integer types, the values
aretreated as binary. When the symbolic radix is chosen for SystemVerilog bit and int
types, the values are considered to be decimal.

The datain this paneis similar to that shown in the Objects Pane, except that the values change
dynamically whenever a cursor in the waveform pane is moved.

Waveform Pane

The waveform pane displays the waveforms that correspond to the displayed signal pathnames.
It also displays up to 20 cursors. Signal values can be displayed in analog step, analog
interpolated, analog backstep, literal, logic, and event formats. The radix of each signal can be
set individually by selecting the signal and then choosing . The default radix islogic.

If you rest your mouse pointer on asignal in the waveform pane, a popup displays with
information about the signal. Y ou can toggle this popup on and off in the Wave Window
Properties dialog.

ModelSim User’s Manual, v6.2g 75
February 2007

Simulator Windows
Wave Window

Cursor Panes

There are three cursor panes-the left pane shows the cursor names; the middle pane shows the
current simulation time and the value for each cursor; and the right pane shows the absolute
time value for each cursor and rel ative time between cursors. Up to 20 cursors can be displayed.
See Measuring Time with Cursors in the Wave Window for more information.

Wave

Window Toolbar

The Wave window toolbar (in the undocked Wave window) gives you quick access to these
Model Sim commands and functions.

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

find aname or value in the
Wave window

Button Menu equivalent Other options
Open Dataset File> Open File> Open from Main
= | openapreviously saved window when Transcript
dataset window sim tab is active
Save Format File> Save none
) | savethe current Wave window
display and signal preferences
to aDO (macro) file
Print File > Print none
&8 | print auser-selected range of | File > Print Postscript
the current Wave window
display to aprinter or afile
Export Waveform File > Export > none
‘35 | export acreated waveform Waveform
Cut Edit > Cut right mouse in pathname pane
& | cuttheselected signal fromthe > Cut
Wave window
Copy Edit > Copy right mouse in pathname pane
copy the signal selected in the > Copy
pathname pane
Paste Edit > Paste right mouse in pathname pane
2 | pastethe copied signal above > Paste
another selected signal
Find Edit > Find <control-f> Windows

<control-s> UNIX

76

ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Wave Window

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button

Menu equivalent

Other options

zoom in by afactor of two
from the current view

In

Insert Cursor Add >Wave > Cursor | right click in cursor pane and
L':q add a cursor to the waveform | (Main window) select New Cursor
pane Add > Cursor
(undocked Wave
window)
Delete Cursor Edit > Delete Cursor | right mouse in cursor pane >
,ﬁ delete the selected cursor from Delete Cursor n
the window
Find Previous Transition Edit > Search keyboard: Shift + Tab
|+ | locate the previous signal (Search Reverse)
value change for the selected
signal
Find Next Transition Edit > Search keyboard: Tab
= | locate the next signal value (Search Forward)
change for the selected signal
Select Mode View > Zoom > none
k | set mouseto Select Mode - Mouse Mode > Select
click left mouse button to Mode
select, drag middle mouse
button to zoom
Zoom Mode View > Zoom > none
'O, | set mouseto Zoom Mode— | Mouse Mode > Zoom
drag left mouse button to Mode
zoom, click middle mouse
button to select
Zoom In 2x View >Zoom>Zoom | keyboard: i | or +

right mouse in wave pane >
ZoomIn

Zoom Out 2x
zoom out by afactor of two
from current view

View >Zoom > Zoom
Out

keyboard: 0 O or -
right mouse in wave pane >
Zoom Out

Zoom in on Active Cur sor
center active cursor in the
display and zoom in

View >Zoom > Zoom
Cursor

keyboard: cor C

slllalllalle

Zoom Full

zoom out to view the full
range of the ssmulation from
time O to the current time

View >Zoom > Zoom
Full

keyboard: f or F
right mouse in wave pane >
Zoom Full

ModelSim User's Manual, v6.2g
February 2007

77

Simulator Windows
Wave Window

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button

Menu equivalent

Other options

B

Stop Wave Drawing
halts any waves currently
being drawn in the Wave
window

none

Show Drivers
display driver(s) of the

[Dataflow window]
Navigate > Expand

[Dataflow window] Expand
net to all drivers

selected signal, net, or register | net to drivers right mouse in wave pane >
in the Dataflow window Show Drivers
Restart Main menu: restart <arguments>

rel oads the design elements
and resets the simulation time
to zero, with the option of
keeping the current
formatting, breakpoints, and
WLFfile

Simulate > Run >
Restart

Run
run the current simulation for
the default time length

Main menu:
Simulate > Run > Run
<default_length>

use the run command at the
VSIM prompt

run the current ssimulation
forever, or until it hitsa
breakpoint or specified break
event

Simulate > Run > Run
-All

Continue Run Main menu: use the run -continue

[l | continuethe current Simulate > Run > command at the VSIM prompt
simulation run Continue
Run -All Main menu: use the run -all command at

the VSIM prompt

Break
stop the current simulation run

none

none

Find First Difference
find the first differencein a
waveform comparison

none

none

Find Previous Annotated
Difference

find the previous annotated
differencein awaveform
comparison

none

none

Find Previous Difference
find the previous difference in
awaveform comparison

none

none

78

ModelSim User’s Manual, v6.2g
February 2007

Simulator Windows
Wave Window

Table 2-10. Wave Window Toolbar Buttons and Menu Selections

Button Menu equivalent Other options

Find Next Difference none none
i% find the next differencein a
waveform comparison

Find Next Annotated none none
=i | Difference

find the next annotated
difference in awaveform
comparison

Find Last Difference none none
i_)% find the last differencein a
waveform comparison

ModelSim User’s Manual, v6.2g 79
February 2007

Simulator Windows
Wave Window

80 ModelSim User’'s Manual, v6.2g
February 2007

Chapter 3
Projects

Projects simplify the process of compiling and simulating a design and are a great tool for
getting started with Model Sim.

What are Projects?

Projects are collection entities for designs under specification or test. At a minimum, projects
have aroot directory, awork library, and "metadata” which are stored in a.mpf file located in a
project's root directory. The metadata include compiler switch settings, compile order, and file
mappings. Projects may also include:

e Sourcefilesor referencesto source files

» other files such as READMEs or other project documentation

* locd libraries

» referencesto global libraries

» Simulation Configurations (see Creating a Simulation Configuration)

» Folders (see Organizing Projects with Folders)

Note

D Project metadata are updated and stored only for actions taken within the project itself.
For example, if you have afilein aproject, and you compile that file from the command
line rather than using the project menu commands, the project will not update to reflect
any new compile settings.

What are the Benefits of Projects?

Projects offer benefits to both new and advanced users. Projects

» simplify interaction with Model Sim; you don’t need to understand the intricacies of
compiler switches and library mappings

» diminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project. Compile order is maintained for HDL-only designs.

* removethe necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to source files

ModelSim User’s Manual, v6.2g 81
February 2007

Projects
Getting Started with Projects

» alow usersto sharelibraries without copying filesto alocal directory; you can establish
references to source files that are stored remotely or locally

» adlow you to change individual parameters across multiple files; in previous versions
you could only set parameters onefile at atime

» enable"what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

» reload theinitia settings from the project .mpf file every time the project is opened

Project Conversion Between Versions

Projects are generally not backwards compatible for either number or letter releases. When you
open aproject created in an earlier version, you will see a message warning that the project will
be converted to the newer version. Y ou have the option of continuing with the conversion or
cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named < project name>.mpf.bak and is created in the
same directory in which the original project is located.

Getting Started with Projects

This section describes the four basic steps to working with a project.

* Step 1 — Creating a New Project
This creates a.mpf file and aworking library.
» Step 2— Adding Items to the Project

Projects can reference or include source files, folders for organization, simulations, and
any other files you want to associate with the project. Y ou can copy filesinto the project
directory or simply create mappings to files in other locations.

» Step 3— Compiling the Files

This checks syntax and semantics and creates the pseudo machine code Model Sim uses
for simulation.

* Step4— Simulating aDesign

This specifies the design unit you want to simulate and opens a structure tab in the
Workspace pane.

82 ModelSim User’s Manual, v6.2g
February 2007

Projects
Getting Started with Projects

Step 1 — Creating a New Project

Select File> New > Project to create a new project. This opens the Create Project dialog
where you can specify a project name, location, and default library name. Y ou can generally
leave the Default Library Name set to "work." The name you specify will be used to create a
working library subdirectory within the Project Location. Thisdialog also allows you to
reference library settings from a selected .ini file or copy them directly into the project.

Figure 3-1. Create Project Dialog

Create Project El

— Project Mame
||:ur-:|i1

— Project Location

|E: #Tutarial’examples Browse...
— Default Libram Mame
[tk

— Copy Settings From

|a"m|:u:|elsim.ini Browse...

¥ Copy Library Mappingz Reference Library Mappings

OF. | I:ance||

After selecting OK, you will see ablank Project tab in the Workspace pane of the Main window
(Figure 3-2)
Figure 3-2. Project Tab in Workspace Pane

‘workspace H A X
¥ Name Statui Type | Orde Modihiec

£y M

and the Add Itemsto the Project dialog (Figure 3-3).

ModelSim User’s Manual, v6.2g 83
February 2007

Projects
Getting Started with Projects

Figure 3-3. Add items to the Project Dialog
|

— Click on the icon to add items of that type:——

]]

Create Hew File Add E wisting File
Create Simulation Create Mew Folder

Cloze |

The name of the current project is shown at the bottom left corner of the Main window.

Step 2 — Adding Items to the Project

The Add Itemsto the Project dialog includes these options:

* Create New File— Createanew VHDL, Verilog, Tcl, or text file using the Source
editor. See below for details.

* Add Existing File— Add an existing file. See below for details.

* Create Simulation — Create a Simulation Configuration that specifies source files and
simulator options. See Creating a Simulation Configuration for details.

* Create New Folder — Create an organization folder. See Organizing Projects with
Foldersfor details.

Create New File

The File > New > Sour ce menu selections allow you to create anew VHDL, Verilog, Tcl, or
text file using the Source editor.

Y ou can also create anew project file by selecting Project > Add to Project > New File (the
Project tab in the Workspace must be active) or right-clicking in the Project tab and selecting
Add to Project > New File. Thiswill open the Create Project File dialog (Figure 3-4).

84 ModelSim User’s Manual, v6.2g
February 2007

Projects
Getting Started with Projects

Figure 3-4. Create Project File Dialog

Create Project File k|
— File Mame

Ifu:u:u.v Browsze. .. |

—Add file az tupe

Folder
I‘v"erilug ZI FITDp Lewvel 1'

k. Cancel

Specify aname, file type, and folder location for the new file.

When you select OK, thefileislisted in the Project tab. Double-click the name of the new file
and a Source editor window will open, allowing you to create source code.

Add Existing File

Y ou can add an existing file to the project by selecting Project > Add to Project > Existing
File or by right-clicking in the Project tab and selecting Add to Project > Existing File.

Figure 3-5. Add file to Project Dialog

Add file to Project x|
— File Mame
||:|:|unter.v tCounter. v Browse. ..
—Addfile ag type———— Falder
|defaul] ‘ |Top Level]
¥ Reference from curent location € Copy to project directary
0K | Cancel |

When you select OK, the file(s) is added to the Project tab.

Step 3 — Compiling the Files

The question marks in the Status column in the Project tab denote either the files haven’t been
compiled into the project or the source has changed since the last compile. To compile thefiles,
select Compile> Compile All or right click in the Project tab and select Compile > Compile
All (Figure 3-6).

ModelSim User’s Manual, v6.2g 85
February 2007

Projects
Getting Started with Projects

Figure 3-6. Right-click Compile Menu in Project Tab of Workspace

"-.-'-.-" ar l::_ space

|T| M ame: | Status | Tupe | Order | Modified

02/04/05 07:55: 38 P

Werilog 1 UasUdsa Uy oo

o toounl Edit n 03/04/05 070540 P

Cornpile g Compile Selected

Add to Project L4

Remove from Project Compild=gut-of-D ate

Cloze Project Compile Order...

|Ipdate Compile Repart...

) Compile Summary...

Properties...

Froject Settings... Compile Properties...
] | | j
1 [£¥] Project J;Il Library | il

Once compilation isfinished, click the Library tab, expand library work by clicking the"+", and
you will see the compiled design units.

Figure 3-7. Click Plus Sign to Show Design Hierarchy

workzpace

"IName |T_I,I|:ue _"|-|F'ath j
id]l miadelzim_lib Library $WODEL_TECH/.. /modelzim_il
1,{'1 std Library $MODEL_TECH/ .. std
id]l zhd_developerskit Library $MODEL_TECH/.. /std_dewelor
id]l FYNOPEYE Library $MODEL_TECH/,.. fsynopsys
id]l werilog Library $MODEL_TECH/. . Averlog
- ik, Library C:#6.1 Tutarial/esamplesdwork,

|/] counter bModule C:/8.7 Tutonal/examples/count

[/ test_caounter Module C:/E.1 Tutorial/examplestooun
o | o

J:Il Library | ﬂil

Step 4 — Simulating a Design
To simulate adesign, do one of the following:

» double-click the Name of an appropriate design object (such as a testbench module or
entity) in the Library tab of the Workspace

» right-click the Name of an appropriate design object and select Simulate from the
popup menu

86 ModelSim User’s Manual, v6.2g
February 2007

Projects
Getting Started with Projects

» select Smulate > Start Simulation from the menus to open the Start Simulation dialog
(Figure 3-8). Select adesign unit in the Design tab. Set other optionsin the VHDL,
Verilog, Libraries, SDF, and Otherstabs. Then click OK to start the simulation.

Figure 3-8. Start Simulation Dialog

x
Design | VHDL | Verlog | Libraries | SDF | Others | s
1'1Name |T_|,||:lE _|F'ath =
-Hll work Library C:/Tutarial/examplestutanialzvenlogpr

1] wounter kodule C: /T utonal /examplestutanals Avenlogpr

best_counter Module Ci/Tutorial/examplestutonialsMvenlogdpn

] sv_std Library $MODEL_TECH/.. /ev_std

1,{'1 wital2000 Library FMODEL_TECH/.. Avital2000

1,{‘1 === Librarny $MODEL_TECH/.. fieee

i’{ll rnodelzim_lib Library FMODEL_TECH/.. /modelzim_lib i

+ std Library FMODEL_TECH/.. /std

o M A Acvalanacclit Libezn ERACNE]L TECH ! fetd Adavalanarslit ;I

1| | i
Design Unit(s] R ezalution

’Eﬂrk.test_cnunter ’;ault vl
O ptimization

’T- Enable optimization O ptimization Dptiu:uns...|

0k, | Cancel |

A new tab named sim appears that shows the structure of the active simulation (Figure 3-9).

Figure 3-9. Structure Tab of the Workspace
Warkspace — Lk

7| Instarice A\ Designunt (Designunit type [Visibilly
B test counter test counter Module sacc=fulls
-hg counter Module +acc=<full
M ncrement counter Funchion +acc=Chull

At this point you are ready to run the simulation and analyze your results. Y ou often do this by
adding signals to the Wave window and running the simulation for a given period of time. See
the Model Sm Tutorial for examples.

ModelSim User’s Manual, v6.2g 87

February 2007

Projects
The Project Tab

Other Basic Project Operations

Open an Existing Project

If you previously exited Model Sim with a project open, Model Sim automatically will open that
same project upon startup. Y ou can open a different project by selecting File > Open and
choosing Project Files from the Files of type drop-down.

Close a Project

Right-click in the Project tab and select Close Project. This closes the Project tab but |eaves the
Library tab open in the workspace. Note that you cannot close a project whileasimulationisin
progress.

The Project Tab

The Project tab contains information about the objectsin your project. By default thetab is
divided into five columns.

Figure 3-10. Project Displayed in Workspace

B R R e T
"l"IName |Status |T_I,I|:ue |Elr|:|er |M|:n:|ifieu:| |
=-] YHOL files Folder
adder vhd ? WHDL 3 0BA07 /06 07:35: 45 P
testadder vhd ? WHOL 2 0BA07 /06 07 36: 26 Phd
=H_] Yerlog files Folder
tcounter.y v Yerilog 1] 0BA07 /06 07:36:21 P
Courter. v Yerlog 0B/07 /06 073556 Ph
werlog_sim Simulation

Project | Library

* Name-The name of afile or object.

» Status-—ldentifieswhether asourcefile has been successfully compiled. Appliesonly to
VHDL or Verilog files. A question mark means the file hasn’'t been compiled or the
source file has changed since the last successful compile; an X means the compile
failed; a check mark means the compile succeeded; a checkmark with ayellow triangle
behind it means the file compiled but there were warnings generated.

» Type-Thefiletype as determined by registered file types on Windows or the type you
specify when you add the file to the project.

* Order — The order in which the file will be compiled when you execute a Compile All
command.

88 ModelSim User’s Manual, v6.2g
February 2007

Projects
Changing Compile Order

« Modified — The date and time of the last modification to thefile.

Y ou can hide or show columns by right-clicking on a column title and selecting or deselecting
entries.

Sorting the List

Y ou can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down arrow)

or ascending (up arrow).

Changing Compile Order

The Compile Order dialog box is functional for HDL-only designs. When you compile all files
inaproject, Model Sim by default compilesthefilesin the order in which they were added to the
project. Y ou have two alternatives for changing the default compile order: 1) select and compile
each fileindividually; 2) specify a custom compile order.

To specify a custom compile order, follow these steps.
1. Select Compile> Compile Order or select it from the context menu in the Project tab.

Figure 3-11. Setting Compile Order
x

— Current Order

il =
cache.

FREMIN. Y

proc.y

gat.vhd

top. vhid

Ao Genelate| Ok | Cancell

2. Dragthefilesinto the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

ModelSim User’s Manual, v6.2g 89
February 2007

Projects
Changing Compile Order

Auto-Generating Compile Order

Auto Generate is supported for HDL-only designs. The Auto Gener ate button in the Compile
Order dialog (see above) "determines’ the correct compile order by making multiple passes
over thefiles. It starts compiling from the top; if afile failsto compile due to dependencies, it
moves that file to the bottom and then recompiles it after compiling the rest of the files. It

continues in this manner until all files compile successfully or until afile(s) can’'t be compiled
for reasons other than dependency.

Files can be displayed in the Project tab in alphabetical or compile order (by clicking the

column headings). Keep in mind that the order you see in the Project tab is not necessarily the
order in which the files will be compiled.

Grouping Files

Y ou can group two or more filesin the Compile Order dialog so they are sent to the compiler at
the same time. For example, you might have one file with a bunch of Verilog define statements
and a second file that is a Verilog module. Y ou would want to compile these two files together.

To group files, follow these steps:

1. Select thefiles you want to group.

Figure 3-12. Grouping Files

x
— Current Order
=
& |:|r|:||::.'-.-'-
Litil whid
setvhd
tap. vhd
4]
v
o
o 2 ¥
faxie] Generate| oK | Cancel |

2. Click the Group button. | ar

90 ModelSim User’s Manual, v6.2g
February 2007

Projects
Creating a Simulation Configuration

To ungroup files, select the group and click the Ungroup button. |

Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its ssmulation options. For example,
say you routinely load a particular design and you have to specify the ssmulator resolution,
generics, and SDF timing files. Ordinarily you would have to specify those options each time
you load the design. With a Simulation Configuration, you would specify the design and those
options and then save the configuration with a name (e.g., top_config). The nameisthen listed
in the Project tab and you can double-click it to load the design along with its options.

To create a Simulation Configuration, follow these steps:

1. Select Project > Add to Project > Simulation Configuration from the main menu, or
right-click the Project tab and select Add to Project > Simulation Configuration from
the popup context menu in the Project tab.

Figure 3-13. Simulation Configuration Dialog

Add Simulation Configuration =
— Simulation Configuration Name Place in Folder

|5imulatin:nn 1 ’Fﬂp Lewel ﬂ Add Falder...
Design | VHDL | Verlog | Libraries | SDF | Others |]
*|Name [Twpe ©|Path =
i’{ll vk, Library C:/Tutarialfexarnplestutonals miked/comparefwork
=l sv_std Library $MODEL_TECH/../sv_std

1,{'1 wital2000 Library $MODEL_TECH/.. Avital2000

=] ie=e Library $MODEL_TECH/.fiees

1,{'1 miodelzim_lib Library FMODEL_TECH/.. /miodelzim_lib

=] st Library $MODEL_TECH/./std

o] stddeveloperskit Library $MODEL_TECH/../std_developerskit

i'{ll EYNOPEYE Library FMODEL_TECHZ. Asunopsys BB

A - . e — ———ra - -
< i B
Dezign Unit[z) R ezalution
’r ’;ault !I
O ptimization
’TF Enable optimization [ptirnization Dptiu:uns...l

oo | cancel |

2. Specify anameinthe Simulation Configuration Namefield.

ModelSim User’s Manual, v6.2g 91
February 2007

Projects
Organizing Projects with Folders

3. Specify thefolder in which you want to place the configuration (see Organizing Projects
with Folders).

4. Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select
them.

5. Usethe other tabsin the dialog to specify any required simulation options.
Click OK and the simulation configuration is added to the Project tab.

Figure 3-14. Simulation Configuration in the Project Tab

Workspace LX)
*|Name Status |Type Order |Modified
E-_] YHDL files Folder
adder.vhd ? WHDL 3 06/07 /04 07.35.46 PM
testadder.vhd i d WHDL 2 06/07/04 07:36:26 PM
E-_] Verilog files Folder
tcounter.y v Veriog 0 0E/07/04 07.36:21 PM

counter. v Verlog
venlog_sim Simnulation

This is the new simulation configuration.

] Project | Library |

Double-click the Simulation Configuration verilog_simto load the design.

Organizing Projects with Folders

The more files you add to a project, the harder it can be to locate the item you need. Y ou can
add "folders' to the project to organize your files. These folders are akin to directories in that
you can have multiple levels of folders and sub-folders. However, no actual directories are
created viathe file system—the folders are present only within the project file.

Adding a Folder

To add afolder to your project, select Project > Add to Project > Folder or right-click in the
Project tab and select Add to Project > Folder (Figure 3-15).

92 ModelSim User’s Manual, v6.2g
February 2007

Projects

Organizing Projects with Folders

Figure 3-15. Add Folder Dialog

Add Folder x|
— Folder Mame
IDesign Files
— Folder Location
|T|:||:| Lewvel ZI
OF. I Cancel I

Specify the Folder Name, the location for the folder, and click OK. The folder will be displayed

in the Project tab.

Y ou use the folders when you add new objects to the project. For example, when you add afile,

you can select which folder to placeit in.

Figure 3-16. Specifying a Project Folder

X

Add file to Project

— File Name

| caunter,w tcounter.y

—Add file a2 type Folder

Idefault II IH-“eruln:lg file s

>

H Specify a folder here.

' Reference from current location ¢ Copy to project directory
ok | Cancel |

If you want to move afileinto afolder later on, you can do so using the Properties dialog for the
file. Simply right-click on the filename in the Project tab and select Properties from the context
menu that appears. Thiswill open the Project Compiler Settings Dialog (Figure 3-17). Use the

Place in Folder field to specify afolder.

ModelSim User's Manual, v6.2g
February 2007

93

Projects
Specifying File Properties and Project Settings

Figure 3-17. Project Compiler Settings Dialog

Project Compiler Settings A

General] "-.J'HDL] Enverage]

— General Settings

[~ DoMot Compile Compile to library: |wu:urk
Place in Folder: [VHDL

KRCH

— File Froperties

File: ztimuluz. vhd
Location: C: /examples/ztimulus. vhd
MS-D0S name: C:hexampleshatimulus. vhd

Type: WYHOL Change Type |

Size: 3145 [3KEB]

Modification Time: 13:47:28 Pacific Standard Time
Last Compile: Source haz not been compiled.
File Attributes: Archive

] | Eancell

On Windows platforms, you can aso just drag-and-drop afileinto afolder.

Specifying File Properties and Project Settings

Y ou can set two types of propertiesin a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File Compilation Properties

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options that
affect how adesign is compiled and subsequently simulated. Y ou can customize the settings on
individual files or agroup of files.

Note

D Any changes you make to the compile properties outside of the project, whether from the
command line, the GUI, or the modelsim.ini file, will not affect the properties of files
already in the project.

94 ModelSim User’s Manual, v6.2g
February 2007

Projects
Specifying File Properties and Project Settings

To customize specific files, select the file(s) in the Project tab, right click on the file names, and
select Properties. The resulting Project Compiler Settings dialog (Figure 3-18) varies
depending on the number and type of files you have selected. If you select asingle VHDL or
Verilog file, you will see the General tab, Coverage tab, and the VHDL or Verilog tab,
respectively. On the General tab, you will see file properties such as Type, Location, and Size.
If you select multiple files, the file properties on the General tab are not listed. Finally, if you
select both aVHDL fileand a Verilog file, you will see al tabs but no file information on the
General tab.

Figure 3-18. Specifying File Properties

Project Compiler Settings El
General] Werilog] Coverage] ﬂ_ﬂ
— General Seftings
[Do Mot Compile Compile to lbrany: |wu:urk ZI
Place in Folder: |T|:||:| Lewvel ZI
— File Properties
File: .Y
Locatioh: . /examples/coveragedvenlogdzm. v
k5-005 name; C:hexamplesicoveragewenlogham. v
Type: Werilog Chanhge Typel
Size: 2459 [2KR)
Modification Time: Thu Mowv 04 7:35:06 PM Pacific Standard Time
Last Compile: Source haz not been compiled.
File Attribuites: Archive
Ok I Cancel

When setting options on a group of files, keep in mind the following:

» If two or more files have different settings for the same option, the checkbox in the
dialog will be "grayed out." If you change the option, you cannot change it back to a
"multi- state setting” without cancelling out of the dialog. Once you click OK,
Model Sim will set the option the same for all selected files.

» If you select acombination of VHDL and Verilog files, the options you set on the
VHDL and Verilog tabs apply only to those file types.

ModelSim User’s Manual, v6.2g 95
February 2007

Projects
Specifying File Properties and Project Settings

Project Settings
To modify project settings, right-click anywhere within the Project tab and select Pr oj ect
Settings.

Figure 3-19. Project Settings Dialog

Project Settings ﬂ

— Compile Output

[Dizplay compiler autput
v Save compile report

— Location map

[~ Convert pathnames to softhames

—Additional Properties

V¥ Automatically reopen all source files when opening a project

— Double-click Behaviar

File Type [VHDL hd
Action |Edit hd
Cuztanm |
Ok | Eancell

Converting Pathnames to Softnames for Location Mapping

If you are using location mapping, you can convert arelative pathname, full pathname, or
pathname with an environment variable to a softname. A softname isaterm for a pathname that
uses the location mapping (MGC_LOCATION_MAP). It looks like a pathname containing an
environment variable, however it is resolved using the location map rather than the
environment.

To convert the pathname to a softname for projects using location mapping, follow these steps:

1. Right-click anywhere within the Project tab and select Project Settings
2. Enablethe Convert pathnames to softnames within the Location map area of the
dialog (Figure 3-19).

Once enabled, all pathnames currently in the project and any that are added later are then
converted to softnames.

During conversion, if there is no softname in the mgc location map matching the entry, the
pathname is converted in to afull (hardened) pathname. A pathname is hardened by removing
the environment variable or the relative portion of the path. If this happens, any existing

96 ModelSim User’s Manual, v6.2g
February 2007

Projects
Accessing Projects from the Command Line

pathnames that are either relative or use environment variables are also changed: either to
softnames if possible, or to hardened pathnamesiif not.

For more information on location mapping and pathnames, see L ocation Mapping.

Accessing Projects from the Command Line

Generally, projects are used from within the Model Sim GUI. However, standal one tools will
use the project file if they are invoked in the project's root directory. If you want to invoke
outside the project directory, set the MODEL SIM environment variable with the path to the
project file (<Project_Root_Dir>/<Project_Name>.mpf).

Y ou can also use the project command from the command line to perform common operations
on projects.

ModelSim User’s Manual, v6.2g 97
February 2007

Projects
Accessing Projects from the Command Line

98 ModelSim User’'s Manual, v6.2g
February 2007

Chapter 4
Design Libraries

VHDL designs are associated with libraries, which are objects that contain compiled design
units. Verilog and SystemV erilog designs simulated within Model Sim are compiled into

libraries as well.

Design Library Overview

A design library isadirectory or archive that serves as arepository for compiled design units.
The design units contained in adesign library consist of VHDL entities, packages, architectures,
and configurations; Verilog modules and UDPs (user-defined primitives). The design units are

classified as follows:

* Primary design units— Consist of entities, package declarations, configuration
declarations, modulesUDPs. Primary design units within agiven library must have

unique names.

» Secondary design units— Consist of architecture bodiespackage bodies. Secondary
design units are associated with a primary design unit. Architectures by the same name
can exist if they are associated with different entities or modules.

Design Unit Information

The information stored for each design unit in adesign library is:
» retargetable, executable code
» debugging information

* dependency information

Working Library Versus Resource Libraries
Design libraries can be used in two ways:
1. asaloca working library that contains the compiled version of your design;

2. asaresourcelibrary.

The contents of your working library will change as you update your design and recompile. A
resource library istypically static and serves as a parts source for your design. Y ou can create

ModelSim User’s Manual, v6.2g 99

February 2007

Design Libraries
Working with Design Libraries

your own resource libraries or they may be supplied by another design team or athird party
(e.g., asilicon vendor).

Only one library can be the working library.

Any number of libraries can be resource libraries during a compilation. Y ou specify which
resource libraries will be used when the design is compiled, and there are rules to specify in
which order they are searched (refer to Specifying the Resource Libraries).

A common example of using both aworking library and aresource library is onein which your
gate-level design and testbench are compiled into the working library and the design references
gate-level modelsin a separate resource library.

The Library Named "work"

The library named "work" has specia attributes within ModelSim — it is predefined in the
compiler and need not be declared explicitly (i.e. library work). It isalso the library name used
by the compiler as the default destination of compiled design units (i.e., it does not need to be
mapped). In other words, the work library isthe default working library.

Archives

By default, design libraries are stored in a directory structure with a sub-directory for each
design unit in the library. Alternatively, you can configure adesign library to use archives. In
this case, each design unit is stored in itsown archivefile. To create an archive, usethe -ar chive
argument to the vlib command.

Generally you would do thisonly in the rare case that you hit the reference count limit on |-
nodes due to the".." entriesin the lower-level directories (the maximum number of sub-
directories on UNIX and Linux is 65533). An example of an error message that is produced

when thislimitishitis:
nkdir: cannot create directory "65534': Too many |inks

Archives may also have limited value to customers seeking disk space savings.

Note
D GMAKE won't work with these archives on the IBM platform.

Working with Design Libraries

Theimplementation of adesign library isnot defined within standard VHDL or Verilog. Within
Model Sim, design libraries areimplemented as directories and can have any legal name allowed
by the operating system, with one exception: extended identifiers are not supported for library
names.

100 ModelSim User's Manual, v6.2g
February 2007

Design Libraries
Working with Design Libraries

Creating a Library

When you create a project (refer to Getting Started with Projects), Model Sim automatically
creates aworking design library. If you don't create a project, you need to create aworking

design library before you run the compiler. This can be done from either the command line or
from the Model Sim graphic interface.

From the Model Sim prompt or a UNIX/DOS prompt, use this vlib command:

vlib <directory_pathname>

To create anew library with the graphic interface, select File > New > Library.

Figure 4-1. Creating a New Library

Create a New Library k|

— LCreate

%' {4 new libram and a logical mapping to it

" amap to an existing library

— Library Mame:
Iwark

— Libramy Physical Mame:
Iwcurk

k. | Cancel |

When you click OK, Model Sim creates the specified library directory and writes a specially-
formatted file named _info into that directory. The _info file must remain in the directory to
distinguish it asaModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. Refer to Library
Path Variables for more information.

Note

D Remember that adesign library isaspecial kind of directory. The only way to create a
library isto use the Model Sim GUI or the vlib command. Do not try to create libraries
using UNIX, DOS, or Windows commands.

Managing Library Contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the graphic
interface or command line.

ModelSim User’s Manual, v6.2g 101
February 2007

Design Libraries
Working with Design Libraries

The Library tab in the Workspace pane provides access to design units (configurations,
modules, packages, entitiesarchitectures) in alibrary. Various information about the design
unitsis displayed in columns to the right of the design unit name.

Figure 4-2. Design Unit Information in the Workspace

*|Mame | Tupe |Path el
=M ok Library C:/modelech/eramplesmixedH DL Awork
1) cache Module C:modeltechexamples‘miedHD L cach...
E] cache_set E ritity C:Amodeltechexamples'mizedH DL zet..
1] memory todule C:“modeltechexamples‘mizedH DL mem. .
1] proc Module C:modeltechexamples‘mizedHD L proc.
P ehd_logic_util Fackage C:modeltech'examplezimizedHDLAGbL. .
EHE] top E nitity C:hmodeltechherampleshmisedHDL top. .
18] arly Architecture i
[, -it=l2000 Library $MODEL_TECH/. Avital2000
| IREES Library $MODEL_TECH/../ieee
[l rmodelsim_lib Library $MODEL_TECH/.. /modelzim_lib J
LiI:urar_l,ll

The Library tab has a context menu with various commands that you access by clicking your
right mouse button (Windows—2nd button, UNIX—3rd button) in the Library tab.

The context menu includes the following commands:

* Simulate — Loads the selected design unit and opens structure and Filestabs in the
workspace. Related command line command is vsim.

» Edit — Opensthe selected design unit in the Source window; or, if alibrary is selected,
opens the Edit Library Mapping dialog (refer to Library Mappings with the GUI).

* Refresh — Rebuildsthe library image of the selected library without using source code.
Related command line command is vcom or viog with the -r efr esh argument.

* Recompile — Recompiles the selected design unit. Related command line command is
vcom or vlog.

* Update — Updates the display of available libraries and design units.

Assigning a Logical Name to a Design Library

VHDL useslogical library names that can be mapped to Model Sim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map alogical library name to
the pathname of the library.

Y ou can use the GUI, acommand, or a project to assign alogical nameto adesign library.

102 ModelSim User's Manual, v6.2g
February 2007

Design Libraries
Working with Design Libraries

Library Mappings with the GUI

To associate alogical name with alibrary, select the library in the workspace, right-click you
mouse, and select Edit from the context menu that appears. This brings up a dialog box that
allows you to edit the mapping.

Figure 4-3. Edit Library Mapping Dialog

Edit Library Mapping E £
— Library b apping Hame

Isimprim

— Library Pathname
| C: /M odeltech 5. 7b/simprin

Browse. .. |

k. | Cancel

The dialog box includes these options:

* Library Mapping Name — The logical name of the library.
e Library Pathname — The pathname to the library.

Library Mapping from the Command Line

Y ou can set the mapping between alogical library name and a directory with the vmap
command using the following syntax:

vmap <logical_name> <directory_pathname>
Y ou may invoke this command from either a UNIX/DOS prompt or from the command line
within ModelSim.

The vmap command adds the mapping to the library section of the modelsim.ini file. Y ou can
also modify modelssim.ini manually by adding a mapping line. To do this, use atext editor and
add aline under the [Library] section heading using the syntax:

<l ogi cal _nane> = <directory_pat hname>

More than one logical name can be mapped to a single directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Li brary]
wor k = /usr/rick/design
nmy_asic = /usr/rick/design

ModelSim User’s Manual, v6.2g 103
February 2007

Design Libraries
Working with Design Libraries

Thiswould allow you to use either thelogical namework or my_asicinalibrary or use clause
to refer to the same design library.

Unix Symbolic Links

Y ou can also create a UNIX symbolic link to the library using the host platform command:

In -s <directory_pathname> <logical_name>

The vmap command can also be used to display the mapping of alogical library nameto a
directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Library Search Rules

The system searches for the mapping of alogical name in the following order:

* First the system looks for amodelsim.ini file.

» If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error is generated by the compiler if you specify alogical name that does not resolve to an
existing directory.

Moving a Library

Individual design unitsin adesign library cannot be moved. An entire design library can be
moved, however, by using standard operating system commands for moving a directory or an
archive.

Setting Up Libraries for Group Use

By adding an “others’ clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the tool does not find a mapping in the modelsim.ini file, then it will search the
[library] section of theinitialization file specified by the “others’ clause. For example:

[library]

asic lib = /caelasic_ lib

work = mmy_wor k

others = /usr/nodel t ech/ nodel si mini

Y ou can specify only one "others' clause in the library section of agiven modelsim.ini file.

The others clause only instructs the tool to look in the specified modelsim.ini filefor alibrary, it
does not load any other part of the specified file.

104 ModelSim User's Manual, v6.2g
February 2007

Design Libraries
Specifying the Resource Libraries

Specifying the Resource Libraries

Verilog Resource Libraries

Model Sim supports separate compilation of distinct portions of a Verilog design. The viog
compiler is used to compile one or more source files into a specified library. The library thus
contains pre-compiled modules and UDPs that are referenced by the simulator asit loads the
design.

Note
Resource libraries are specified differently for Verilog and VHDL. For Verilog you use
either the-L or -Lf argument to vlog. Refer to Library Usage for more information.

VHDL Resource Libraries

Within aVHDL sourcefile, you use the VHDL library clause to specify logical names of one

or more resource libraries to be referenced in the subsequent design unit. The scope of alibrary
clauseincludesthe text region that startsimmediately after thelibrary clause and extendsto the
end of the declarative region of the associated design unit. It does not extend to the next design

unit in thefile.

Note that the library clauseis not used to specify the working library into which the design unit
is placed after compilation. The vcom command adds compiled design units to the current
working library. By default, thisisthe library named wor k. To change the current working
library, you can use vcom -wor k and specify the name of the desired target library.

Predefined Libraries

Certain resource libraries are predefined in standard VHDL. The library named std contains the
packages standard and textio, which should not be modified. The contents of these packages
and other aspects of the predefined language environment are documented in the |EEE Standard
VHDL Language Reference Manual, Std 1076. Refer also to, Using the Textl O Package.

A VHDL use clause can be specified to select particular declarationsin alibrary or package that
areto be visible within adesign unit during compilation. A use clause references the compiled
version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LI BRARY std, work;
USE std. st andard. al |

To specify that all declarationsin alibrary or package can be referenced, add the suffix .all to
the library/package name. For example, the use clause above specifies that all declarationsin
the package standard, in the design library named std, are to be visible to the VHDL design unit

ModelSim User’s Manual, v6.2g 105
February 2007

Design Libraries
Specifying the Resource Libraries

immediately following the use clause. Other libraries or packages are not visible unlessthey are
explicitly specified using alibrary or use clause.

Another predefined library iswork, the library where adesign unit is stored after it is compiled
as described earlier. Thereisno limit to the number of libraries that can be referenced, but only
one library is modified during compilation.

Alternate IEEE Libraries Supplied

The installation directory may contain two or more versions of the |IEEE library:

* ieegpure — Contains only |EEE approved packages (accelerated for Model Sim).

» ieee— Contains precompiled Synopsys and | EEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std logic_unsigned, vital_primitives, and vital_timing.

Y ou can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini filein the installation directory defaultsto the ieee library.

Regenerating Your Design Libraries

Depending on your current Model Sim version, you may need to regenerate your design libraries
before running asimulation. Check the installation README file to seeif your libraries require
an update. Y ou can regenerate your design libraries using the Refr esh command from the
Library tab context menu (refer to Managing Library Contents), or by using the -r efresh
argument to vcom and vlog.

From the command line, you would use vcom with the -r efr esh argument to update VHDL
design unitsin alibrary, and vlog with the -r efr esh argument to update V erilog design units. By
default, the work library is updated. Use either vcom or vliog with the -work <library>
argument to update a different library. For example, if you have alibrary named mylib that
contains both VHDL and Verilog design units:

vcom -work mylib -refresh
vlog -work mylib -refresh

Animportant feature of -refresh isthat it rebuilds the library image without using source code.
This means that models delivered as compiled libraries without source code can be rebuilt for a
specific release of ModelSim. In general, this works for moving forwards or backwards on a
release. Moving backwards on arelease may not work if the models used compiler switches,
directives, language constructs, or features that do not exist in the older release.

106 ModelSim User's Manual, v6.2g
February 2007

Design Libraries
Importing FPGA Libraries

Note
Y ou don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you

cannot use the -r efr esh option to update libraries that were built before the 4.6 release.

Maintaining 32- and 64-bit Versions in the Same Library

Model Sim allows you to maintain 32-bit and 64-bit versions of adesign in the same library.

To do this, you must compile the design with the 32-bit version and then "refresh” the design
with the 64-bit version. For example:

Using the 32-hit version of Model Sim:

vlog filel.v file2.v -forcecode -work asic_lib

Next, using the 64-bit version of Model Sim:
vlog -work asic_lib -refresh
This allows you to use either version without having to do arefresh.

Do not compile the design with one version, and then recompile it with the other. If you do this,
Model Sim will remove the first module, because it could be "stale.”

Importing FPGA Libraries

Model Sim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependenciesin the libraries and determines the correct mappings
and target directories.

Note
The FPGA libraries you import must be pre-compiled. Most FPGA vendors supply pre-

compiled libraries configured for use with Model Sim.

To import an FPGA library, select File> Import > Library.

ModelSim User’s Manual, v6.2g 107
February 2007

Design Libraries
Importing FPGA Libraries

Figure 4-4. Import Library Wizard

Import Library Wizard [_ (O]

The Impart Library ‘wizard will ztep wou through the tasks necessam
to reference and use a libran.

& library can be either an exizting Model Technology librane or an
FPGA libramy that pou received from an FRGA vendor. [the libram
waz received from an FPGA vendor, it must be a precompiled
library.

Fleaze enter the location of the libran to be imported below.

|mpart Library Fathname

Browsze... |

M et = | Cancel |

< Previous

Follow the instructions in the wizard to complete the import.

108 ModelSim User's Manual, v6.2g
February 2007

Chapter 5
VHDL Simulation

This chapter describes how to compile, optimize, and ssmulate VHDL designsin Model Sim. It
also discusses using the Textl O package with Model Sim; Model Sim’ s implementation of the
VITAL (VHDL Initiative Towards ASIC Libraries) specification for ASIC modeling; and
Model Sim’s specia built-in utilities package.

The Textl O package is defined within the VHDL Language Reference Manual, IEEE Sd 1076;
it allows human-readabl e text input from a declared source within aVVHDL file during
simulation.

Basic VHDL Flow
Simulating VHDL designs with Model Sim includes four general steps:

1. Compile your VHDL code into one or more libraries using the vcom command. See
Compiling VHDL Filesfor details.

2. Load your design with the vsim command. See Simulating VHDL Designs for details.
3. Run and debug your design.

Compiling VHDL Files

Creating a Design Library for VHDL

Before you can compile your source files, you must create alibrary in which to store the
compilation results. Use vlib to create anew library. For example:

vlib work
This creates alibrary named work. By default, compilation results are stored in the wor k
library.

Thework library is actually a subdirectory named work. This subdirectory contains a special
file named _info. Do not create libraries using UNIX, MS Windows, or DOS commands —
always use the vlib command.

See Design Libraries for additional information on working with libraries.

ModelSim User’s Manual, v6.2g 109
February 2007

VHDL Simulation
Compiling VHDL Files

Invoking the VHDL Compiler

Model Sim compiles one or more VHDL design units with a single invocation of vcom, the
VHDL compiler. The design units are compiled in the order that they appear on the command
line. For VHDL, the order of compilation isimportant —you must compile any entities or
configurations before an architecture that references them.

Y ou can simulate a design containing units written with 1076 -1987, 1076 -1993, and
1076-2002 versions of VHDL. To do so you will need to compile units from each VHDL
version separately. The vcom command compiles using 1076 -2002 rules by default; use the -87
or -93 argument to vcom to compile units written with version 1076-1987 or 1076 -1993,
respectively. You can also change the default by modifying the VHDL 93 variable in the
modelsim.ini file (see Simulator Control Variables for more information).

Dependency Checking

Dependent design units must be reanalyzed when the design units they depend on are changed
in the library. vcom determines whether or not the compilation results have changed. For
example, if you keep an entity and its architectures in the same source file and you modify only
an architecture and recompile the source file, the entity compilation results will remain
unchanged and you will not have to recompile design units that depend on the entity.

Range and Index Checking

A range check verifies that a scalar value defined with a range subtype is always assigned a
value within itsrange. An index check verifies that whenever an array subscript expressionis
evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. Y ou can
disable range checks (potentially offering a performance advantage) and index checks using
arguments to the vcom command. Or, you can use the NoRangeCheck and Nol ndexCheck
variables in the modelsim.ini file to specify whether or not they are performed. See Simulator
Control Variables.

Range checksin Model Sim are slightly more restrictive than those specified by the VHDL
LRM. Model Sim requires any assignment to asignal to also be in range whereas the LRM
requires only that range checks be done whenever asignal is updated. Most assignments to
signals update the signal anyway, and the more restrictive requirement allows ModelSim to
generate better error messages.

Subprogram Inlining

Model Sim attempts to inline subprograms at compile time to improve simulation performance.
This happens automatically and should be largely transparent. However, you can disable
automatic inlining two ways:

110 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Compiling VHDL Files

* Invoke vcom with the -O0 or -O1 argument
* Usethemti_inhibit_inline attribute as described below

Single-stepping through a simulation varies slightly depending on whether inlining occurred.
When single-stepping to a subprogram call that has not been inlined, the simulator stops first at
the line of the call, and then proceeds to the line of the first executable statement in the called
subprogram. If the called subprogram has been inlined, the ssmulator does not first stop at the
subprogram call, but stops immediately at the line of the first executable statement.

mti_inhibit_inline Attribute

Y ou can disable inlining for individual design units (a package, architecture, or entity) or
subprograms with the mti_inhibit_inline attribute. Follow these rulesto use the attribute:

» Declare the attribute within the design unit's scope as follows:

attribute ni _inhibit _inline : bool ean;

» Assign the value true to the attribute for the appropriate scope. For example, to inhibit
inlining for a particular function (e.g., "foo"), add the following attribute assignment:

attribute nti _inhibit_inline of foo : procedure is true;

To inhibit inlining for a particular package (e.g., "pack"), add the following attribute
assignment:

attribute nti_inhibit_inline of pack : package is true;

Do similarly for entities and architectures.

Differences Between Language Versions

There are three versions of the IEEE VHDL 1076 standard: VHDL-1987, VHDL-1993, and
VHDL-2002. The default language version for ModelSim is VHDL-2002. If your code was
written according to the’ 87 or ' 93 version, you may need to update your code or instruct
Model Sim to use the earlier versions' rules.

To select a specific language version, do one of the following:

» Select the appropriate version from the compiler options menu in the GUI
* Invoke vcom using the argument -87, -93, or -2002

» Setthe VHDL93 variable in the [vcom] section of the modelsim.ini file. Appropriate
valuesfor VHDL93 are:

-0, 87, or 1987 for VHDL-1987
-1, 93, or 1993 for VHDL-1993

ModelSim User’s Manual, v6.2g 111
February 2007

VHDL Simulation
Compiling VHDL Files

- 2,02, or 2002 for VHDL-2002

Thefollowingisalist of language incompatibilities that may cause problems when compiling a
design.

e VHDL-93 and VHDL-2002 — The only major problem between VHDL-93 and VHDL -
2002 is the addition of the keyword "PROTECTED". VHDL-93 programs which use
this as an identifier should choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

e VITAL and SDF — It isimportant to use the correct language version for VITAL.
VITAL2000 must be compiled with VHDL-93 or VHDL-2002. VITAL95 must be
compiled with VHDL-87. A typical error message that indicates the need to compile
under language version VHDL-87 is:

"VI TALPat hDel ay Def aul t Del ay parameter nust be locally static”

* Purity of NOW — In VHDL-93 the function "now" isimpure. Consequently, any
function that invokes "now" must also be declared to be impure. Such callsto "now"
occur in VITAL. A typica error message:

"Cannot call inpure function 'now frominside pure function
' <names' "

* Files— File syntax and usage changed between VHDL-87 and VHDL-93. In many
cases vcom issues a warning and continues:

"Using 1076-1987 syntax for file declaration.”

In addition, when files are passed as parameters, the following warning message is
produced:

" Subpr ogram paranmeter nane is declared using VHDL 1987 syntax."
This message often involves calls to endfile(<name>) where <name> is afile parameter.

» Filesand packages — Each package header and body should be compiled with the same
language version. Common problemsin thisareainvolvefiles as parameters and the size
of type CHARACTER. For example, consider a package header and body with a
procedure that has afile parameter:

procedure procl (out file : out std.textio.text) ...

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as.

"** Error: mxed_package b.vhd(4): Paraneter kinds do not conform
bet ween decl arati ons in package header and body: 'out file'."

» Direction of concatenation — To solve some technical problems, the rules for direction
and bounds of concatenation were changed from VHDL-87 to VHDL-93. Y ou won't see
any difference in ssimple variable/signal assignments such as:

112 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Compiling VHDL Files

vl := a & b;

But if you (1) have afunction that takes an unconstrained array as a parameter, (2) pass
a concatenation expression as aformal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all
arrays have "downto" direction.

* xnor — "xnor" isareserved word in VHDL-93. If you declare an xnor function in
VHDL-87 (without quotes) and compile it under VHDL-2002, you will get an error
message like the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRI NG | DENTI FI ER

* 'FOREIGN attribute — In VHDL-93 package STANDARD declares an attribute
'FOREIGN. If you declare your own attribute with that name in another package, then
Model Sim issues a warning such as the following:

-- Conpi l i ng package foopack

** Warning: foreign.vhd(9): (vcom 1140) VHDL- 1993 added a definition
of the attribute foreign to package std.standard. The attribute is
al so defined in package 'standard'. Using the definition from
package 'standard' .

» Sizeof CHARACTER type— In VHDL-87 type CHARACTER has 128 values; in
VHDL-93 it has 256 values. Code which depends on this size will behave incorrectly.
This situation occurs most commonly in test suites that check VHDL functionality. It's
unlikely to occur in practical designs. A typical instance is the replacement of warning
message:

"range nul downto del is null"

by

"range nul downto 'y' is null" -- range is nul downto y(um aut)

» bit string literals— In VHDL-87 bit string literals are of type bit_vector. In VHDL-93
they can also be of type STRING or STD_LOGIC_VECTOR. Thisimplies that some
expressions that are unambiguousin VHDL-87 now become ambiguousisVHDL-93. A
typical error messageis:

** Error: bit_string_literal.vhd(5): Subprogram'=' is anbi guous.
Suitabl e definitions exist in packages 'std_logic_1164' and
"standard' .

» Sub-element association — In VHDL-87 when using individual sub-element association
in an association list, associating individual sub-elementswith NULL isdiscouraged. In
VHDL-93 such association is forbidden. A typical messageis.

"Formal '<nanme>' nust not be associated with OPEN when subel enents
are associated individually."

ModelSim User’s Manual, v6.2g 113
February 2007

VHDL Simulation
Simulating VHDL Designs

Simulating VHDL Designs

A VHDL design isready for simulation after it has been compiled with vcom . The simulator
may then be invoked with the name of the configuration or entity/architecture pair.

Note

D This section discusses simulation from the UNIX or Windows/DOS command line. Y ou
can also use a project to simulate (see Getting Started with Projects) or the Simulate
dialog box.

This example invokes vsim on the entity my_asic and the architecture structure:

vsim my_asic structure

vsimis capable of annotating adesign using VITAL compliant modelswith timing datafrom an
SDF file. Y ou can specify the min:typ:max delay by invoking vsim with the -sdfmin, -sdftyp,
or -sdfmax option. Using the SDF file f1.sdf in the current work directory, the following
invocation of vsim annotates maximum timing values for the design unit my_asic:

vsim -sdfmax /my_asic=fl.sdf my_asic

By default, the timing checks within VITAL models are enabled. They can be disabled with the
+notimingchecks option. For example:

vsim +notimingchecks topmod

Simulator Resolution Limit (VHDL)

The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit. The default resolution

limit is set to the value specified by the Resolution variable in the modelsim.ini file. Y ou can
view the current resolution by invoking the report command with the simulator state option.

Overriding the Resolution

Y ou can override Model Sim’ s default resolution by specifying the -t option on the command
line or by selecting a different Simulator Resolution in the Simulate dialog box. Available
resolutions are: 1x, 10x, or 100x of fs, ps, ns, us, ms, or sec.

For example this command chooses 10 ps resol ution:

vsim -t 10ps topmod

Clearly you need to be careful when doing this type of operation. If the resolution set by -t is
larger than adelay value in your design, the delay valuesin that design unit are rounded to the
closest multiple of the resolution. In the example above, adelay of 4 pswould be rounded to 0

ps.

114 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Simulating VHDL Designs

Choosing the Resolution for VHDL

Y ou should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it will
[imit the maximum simulation time limit, and it will degrade performance in some cases.

Default Binding

By default Model Sim performs default binding when you load the design with vsim. The
advantage of performing default binding at load timeisthat it provides more flexibility for
compile order. Namely, entities don't necessarily have to be compiled before other
entities/architectures which instantiate them.

However, you can force Model Sim to perform default binding at compile time. This may allow
you to catch design errors (e.g., entities with incorrect port lists) earlier in the flow. Use one of
these two methods to change when default binding occurs:

* Specify the -bindAtCompile argument to vcom

* Set the BindAtCompile variable in the modelsim.ini to 1 (true)

Default Binding Rules

When looking for an entity to bind with, Model Sim searches the currently visible libraries for
an entity with the same name as the component. Model Sim does this because | EEE 1076-1987
contained a flaw that made it almost impossible for an entity to be directly visibleif it had the
same hame as the component. In short, if acomponent was declared in an architecture, any like-
named entity above that declaration would be hidden because component/entity names cannot
be overloaded. As aresult we implemented the following rules for determining default binding:

» If performing default binding at load time, search the libraries specified with the -L f
argument to vsim.

* If adirectly visible entity has the same name as the component, useit.
« If an entity would be directly visible in the absence of the component declaration, useit.

» If the component is declared in a package, search the library that contained the package
for an entity with the same name.

If none of these methods is successful, Model Sim will also do the following:

» Searchthework library.
» Search all other libraries that are currently visible by means of the library clause.

» If performing default binding at load time, search the libraries specified with the -L
argument to vsim.

ModelSim User’s Manual, v6.2g 115
February 2007

VHDL Simulation

Simulating VHDL Designs

Note that these last three searches are an extension to the 1076 standard.

Disabling Default Binding

If you want default binding to occur only via configurations, you can disable ModelSim’s
normal default binding methods by setting the RequireConfigForAllDefaultBinding variable in
the modelsim.ini to 1 (true).

Delta Delays

Event-based simulators such as Model Sim may process many events at agiven simulation time.
Multiple signals may need updating, statements that are sensitive to these signals must be
executed, and any new events that result from these statements must then be queued and
executed as well. The steps taken to evaluate the design without advancing simulation time are
referred to as "deltatimes” or just "deltas.”

The diagram below represents the process for VHDL designs. This process continues until the
end of ssimulation time.

Figure 5-1. VHDL Delta Delay Process

Execute concurrent
statements at
current time

Advance simulation
time

ﬂdvance delta time ‘47

No

i

Any transactions to

process?

#Yes

Any events to No

process?

we;

Execute concurrent
statements that are

sensitive

to events

This mechanism in event-based simulators may cause unexpected results. Consider the
following code snippet:

116

ModelSim User’s Manual, v6.2g

February 2007

VHDL Simulation
Simulating VHDL Designs

cl k2 <= cl k;

process (rst, clk)
begin
if(rst = '0")then
s0 <= "'0'";
el sif(clk'event and clk="1") then
sO <= inp;
end if;
end process;

process (rst, clk?2)

begi n
if(rst = '0")then
sl <="'0";
el sif(cl k2" event and clk2="1") then
sl <= sO0;
end if;

end process;

In this example you have two synchronous processes, one triggered with clk and the other with
clk2. To your surprise, the signals change in the clk2 process on the same edge asthey are set in
the clk process. As aresult, the value of inp appears at sl rather than sO.

During simulation an event on clk occurs (from the testbench). From this event ModelSim
performs the "clk2 <= clk" assignment and the process which is sensitive to clk. Before
advancing the simulation time, Model Sim finds that the process sensitive to clk2 can also be
run. Since there are no delays present, the effect is that the value of inp appears at sl in the same
simulation cycle.

In order to get the expected results, you must do one of the following:

* Insert adelay at every output
» Make certain to use the same clock
* Insert adeltadelay
To insert adelta delay, you would modify the code like this:

ModelSim User’s Manual, v6.2g 117
February 2007

VHDL Simulation
Using the TextlO Package

process (rst, clk)

begin
if(rst ='0")then
sO <="'0";
el sif(clk'event and clk="1") then
s0 <= inp;
s0_del ayed <= sO0;
end if;

end process;

process (rst, clk?2)
begin
if(rst ='0")then
sl <="'0";
el sif(clk2' event and clk2="1") then
sl <= s0_del ayed;
end if;
end process;

The best way to debug delta delay problemsis observe your signalsin the List window. There
you can see how values change at each deltatime.

Detecting Infinite Zero-Delay Loops

If alarge number of deltas occur without advancing time, it is usually a symptom of an infinite
zero-delay loop in the design. In order to detect the presence of these loops, Model Sim defines a
limit, the “iteration limit", on the number of successive deltas that can occur. When Model Sim
reaches the iteration limit, it issues a warning message.

Theiteration limit default valueis 1000. If you receive an iteration limit warning, first increase
theiteration limit and try to continue ssmulation. Y ou can set the iteration limit from the
Simulate > Runtime Options menu or by modifying the IterationLimit variable in the
modelsim.ini. See Simulator Control Variables for more information on modifying the
modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which signals
or variables are continuously oscillating. Two common causes are aloop that has no exit, or a
series of gates with zero delay where the outputs are connected back to the inputs.

Using the TextlO Package
To access the routines in Textl O, include the following statement in your VHDL source code:

USE std.textio.all;

118 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Using the TextlO Package

A simple example using the package TextlO is:

USE std.textio.all;
ENTITY sinple_textio IS
END;

ARCHI TECTURE si npl e_behavior OF sinple_textio IS
BEA N
PROCESS
VARI ABLE i: | NTECER = 42;
VARI ABLE LLL: LI NE;
BEG N
WRI TE (LLL, i);
WRI TELI NE (OUTPUT, LLL);
VWAI T;
END PROCESS;
END si npl e_behavi or;

Syntax for File Declaration
The VHDL' 87 syntax for afile declaration is:
fileidentifier : subtype indicationis [node] file_logical_nane ;
where "file_logical_name" must be a string expression.
In newer versions of the 1076 spec, syntax for afile declaration is:
fileidentifier_list : subtype_indication [file_open_information]
where "file_open_information" is:
[open fil e_open_kind_expression] is file_logical_nane
Y ou can specify afull or relative path asthe file logical_name; for example (VHDL'’ 87):

Normally if afileisdeclared within an architecture, process, or package, thefileis opened when
you start the simulator and is closed when you exit fromit. If afileis declared in a subprogram,
the file is opened when the subprogram is called and closed when execution RETURNS from
the subprogram. Alternatively, the opening of files can be delayed until the first read or write by
setting the DelayFileOpen variable in the modelsim.ini file. Also, the number of concurrently
open files can be controlled by the ConcurrentFileL imit variable. These variables help you
manage alarge number of files during simulation. See Simulator Variables for more details.

Using STD _INPUT and STD_OUTPUT Within the Tool
The standard VHDL' 87 TextlO package contains the following file declarations:

file input: TEXT is in "STD_ | NPUT";
file output: TEXT is out "STD OQUTPUT";

ModelSim User’s Manual, v6.2g 119
February 2007

VHDL Simulation
TextlO Implementation Issues

Updated versions of the TextlO package contain these file declarations:

file input: TEXT open read_node is "STD | NPUT";
file output: TEXT open wite_node is "STD OQUTPUT";

STD_INPUT isafile logical_name that refers to characters that are entered interactively from
the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current buffer
from a prompt in the Transcript pane. The lines written to the STD_OUTPUT file appear in the
Transcript.

TextlO Implementation Issues

Writing Strings and Aggregates

A common error in VHDL source code occurs when acall to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the VHDL
procedure:

WRI TE (L, "hello");
will cause the following error:
ERROR: Subprogram "WRI TE" is anbi guous.

In the Textl O package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. Theselines are reproduced here:

procedure WRI TE(L: inout LINE, VALUE: in BIT_VECTOR,
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WDTH : = 0);

procedure WRI TE(L: inout LINE, VALUE: in STRI NG
JUSTIFIED: in SIDE = RICHT; FIELD: in WDTH : = 0);

The error occurs because the argument "hello” could be interpreted as a string or a bit vector,
but the compiler is not allowed to determine the argument type until it knows which function is
being called.

The following procedure call also generates an error:
WR TE (L, "010101");

Thiscall iseven more ambiguous, because the compiler could not determine, evenif allowed to,
whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

* Useaaqualified expression to specify the type, asin:

120 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
TextlO Implementation Issues

WRI TE (L, string ("hello"));

o Call aprocedure that is not overloaded, asin:
WRI TE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedureintheio_utils
package, which islocated in the file <install_dir>/modeltech/examples/misc/io_utils.vhd.

Reading and Writing Hexadecimal Numbers

The reading and writing of hexadecimal numbersis not specified in standard VHDL. The I ssues
Screening and Analysis Committee of the VHDL Analysis and Standardization Group (ISAC-
VASG) has specified that the Textl O package reads and writes only decimal numbers.

To expand this functionality, Model Sim supplies hexadecimal routines in the packageio_utils,
whichislocated in thefile <install_dir>/modeltech/examples/misc/io_utils.vhd. To use these
routines, compiletheio_utils package and then include the following use clausesin your VHDL
source code:

use std.textio.all;
use work.io_utils.all;

Dangling Pointers

Dangling pointers are easily created when using the TextlO package, because WRITELINE de-
allocates the access type (pointer) that is passed to it. Following are examples of good and bad
VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLI NE (infile, L1); -- Read and all ocate buffer
L2 := L1; -- Copy pointers
WRI TELI NE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLI NE (infile, L1); -- Read and al |l ocate buffer
L2 := new string’ (L1l.all); -- Copy contents
WRI TELI NE (outfile, L1); -- Deall ocate buffer

The ENDLINE Function

The ENDLINE function described in the IEEE Sandard VHDL Language Reference Manual,
IEEE Sd 1076-1987 containsinvalid VHDL syntax and cannot beimplemented in VHDL. This

ModelSim User’s Manual, v6.2g 121
February 2007

VHDL Simulation
TextlO Implementation Issues

is because access values must be passed as variables, but functions do not allow variable
parameters.

Based on an | SAC-V ASG recommendation the ENDLINE function has been removed from the
TextlO package. The following test may be substituted for this function:

(L = NULL) OR (L’ LENGTH = 0)

The ENDFILE Function
In the VHDL Language Reference Manuals, the ENDFILE function islisted as:
-- function ENDFILE (L: in TEXT) return BOOLEAN

Asyou can see, thisfunction is commented out of the standard Textl O package. Thisis because
the ENDFILE function isimplicitly declared, so it can be used with files of any type, not just
filesof type TEXT.

Using Alternative Input/Output Files

Y ou can use the Textl O package to read and write to your own files. To do this, just declare an
input or output file of type TEXT. For example, for an input file:

The VHDL' 87 declaration is:
file nmyinput : TEXT is in "pathname.dat";
The VHDL’ 93 declaration is:
file nmyinput : TEXT open read_node is "pathnane. dat";

Then include the identifier for thisfile ("myinput” in this example) in the READLINE or
WRITELINE procedure call.

Flushing the TEXTIO Buffer

Flushing of the TEXTIO buffer is controlled by the UnbufferedOutput variable in the
modelsim.ini file.

Providing Stimulus

Y ou can stimulate and test a design by reading vectors from afile, using them to drive values
onto signals, and testing the results. A VHDL test bench has been included with the ModelSim
install files as an example. Check for thisfile:

<install _dir>/nodel tech/ exanpl es/ m sc/sti nmul us. vhd

122 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
VITAL Specification and Source Code

VITAL Specification and Source Code

VITAL ASIC Modeling Specification

The IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

|EEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721
home page: http://www.ieee.org

VITAL sourcecode

The source code for VITAL packagesis provided in the directories:

/<install _dir>/vhdl _src/vital 22b
/vital 95
/vital 2000

VITAL Packages

VITAL 1995 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 2000 accel erated packages are pre-compiled into the vital 2000 library. If you
need to use the newer library, you either need to change the ieee library mapping or add a use
clause to your VHDL code to access the VITAL 2000 packages.

To change the ieee library mapping, issue the following command:
vmap i eee <nodel tech>/vital 2000
Or, alternatively, add use clauses to your code:

LI BRARY vi t al 2000;

USE vital 2000.vital _primtives.all;
USE vital 2000.vital timing.all;

USE vital 2000.vital _nenory. all;

Notethat if your design uses two libraries -one that depends on vital 95 and one that depends on
vital2000 - then you will have to change the references in the source code to vital 2000.
Changing the library mapping will not work.

ModelSim User’s Manual, v6.2g 123
February 2007

http://www.ieee.org

VHDL Simulation
VITAL Compliance

VITAL Compliance

A smulator isVITAL compliant if it implements the SDF mapping and if it correctly ssmulates
designs using the VITAL packages, as outlined in the VITAL Model Development
Specification. Model Sim is compliant with the IEEE 1076.4 VITAL ASIC Modeling
Specification. In addition, Model Sim acceleratesthe VITAL_Timing, VITAL_Primitives, and
VITAL_memory packages. The optimized procedures are functionally equivalent to the IEEE
1076.4 VITAL ASIC Modeling Specification (VITAL 1995 and 2000).

VITAL Compliance Checking

If you areusing VITAL 2.2b, you must turn off the compliance checking either by not setting
the attributes, or by invoking vcom with the option -novitalcheck.

Compiling and Simulating with Accelerated
VITAL Packages

vcom automatically recognizesthat aVITAL function is being referenced from the ieee library
and generates code to call the optimized built-in routines.

Invoke with the -novital option if you do not want to use the built-in VITAL routines (when
debugging for instance). To exclude al VITAL functions, use -novital all:

vcom -novital all design.vhd

To exclude selected VITAL functions, use one or more -novital <fname> options:

vcom -novital VitalTimingCheck -novital VitalAND design.vhd

The-novital switch only affects callsto VITAL functions from the design units currently being
compiled. Pre-compiled design units referenced from the current design units will still call the
built-in functions unless they too are compiled with the -novital option.

ModelSim VITAL built-inswill be updated in step with new releases of the VITAL packages.

Util Package

The util package serves as a container for various VHDL utilities. The package is part of the
modelsim_lib library which is located in the modeltech tree and is mapped in the default
modelsim.ini file.

To access the utilities in the package, you would add lines like the following to your VHDL
code:

I'ibrary nodel simli b;
use nodelsimlib.util.all;

124 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Util Package

get_resolution

get_resolution returns the current ssmulator resolution as areal number. For example, 1
femtosecond corresponds to 1le-15.

Syntax
resval := get_resolution;
Returns
Name Type Description
resval real The simulator resolution represented as a
real
Arguments
None

Related functions

o to_red()
o to time()
Example

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

init_signal_driver()

Theinit_signal_driver() procedure drives the value of aVHDL signal or Verilog net onto an
existing VHDL signal or Verilog net. Thisallowsyou to drive signals or nets at any level of the
design hierarchy from within aVVHDL architecture (e.g., atestbench).

Seeinit_signal_driver for complete details.

init_signal_spy()

Theinit_signal_spy() utility mirrorsthe value of aVHDL signal or Verilog register/net onto an
existing VHDL signal or Verilog register. Thisallowsyou to reference signals, registers, or nets
at any level of hierarchy from within aVHDL architecture (e.g., a testbench).

Seeinit_signa_spy for complete details.

ModelSim User’s Manual, v6.2g 125
February 2007

VHDL Simulation
Util Package

signal_force()

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net. This allows you to force signals, registers, or nets at any level of the
design hierarchy from within aVHDL architecture (e.g., atestbench). A signal_force worksthe
same as the force command with the exception that you cannot issue a repeating force.

See signal_force for complete details.

signal_release()

The signal_release() procedure releases any force that was applied to an existing VHDL signa
or Verilog register or net. Thisalowsyou to release signals, registers, or nets at any level of the
design hierarchy from within aVVHDL architecture (e.g., atestbench). A signal_release works
the same as the noforce command.

See signal_release for complete details.

to_real()

to_real() converts the physical type time value into areal value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fsto areal and the simulator resolution
was ps, then the real value would be 2.0 (i.e., 2 ps).

Syntax
realval :=to_real(timeval);

Returns

Name Type Description

realval real The time value represented as area with

respect to the ssmulator resolution

Arguments

Name Type Description

timeval time The value of the physical type time

Related functions
e (Qet resolution
* to_time()
Example

If the simulator resolution is set to ps, and you enter the following function:

126 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Util Package

realval :=to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to bein
units of nanoseconds (ns) instead, you would use the get_resolution function to recal culate the

value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the

function this way:

realval := 1le+15 * (to_real(12.99 ns)) * get_resolution();

to_time()

to_time() convertsareal value into atime value with respect to the current simulator resolution.
The precision of the converted value is determined by the simulator resolution. For example, if
you were converting 5.9 to atime and the simulator resolution was ps, then the time value

would be 6 ps.

Syntax
timeval :=to_time(realval);

Returns

Name Type

timeval time
Arguments

Name Type

realval real

Related functions
* (Qet_resolution
* to red()

Example

Description

The real value represented as a physical
type time with respect to the simulator
resolution

Description
The value of the type real

If the simulator resolution is set to ps, and you enter the following function:

timeval :=to_time(72.49);

then the value returned to timeval would be 72 ps.

ModelSim User's Manual, v6.2g
February 2007

127

VHDL Simulation
Modeling Memory

Modeling Memory

AsaVHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

* Youmay get a"memory alocation error" message, which typically means the ssmulator
ran out of memory and failed to allocate enough storage.

* Or, you may get very long load, elaboration, or run times.

These problems are usually explained by the fact that signals consume a substantial amount of
memory (many dozens of bytes per bit), al of which needs to be loaded or initialized before
your simulation starts.

Modeling memory with variables or protected types instead provides some excellent
performance benefits:

» storage required to model the memory can be reduced by 1-2 orders of magnitude
e startup and run times are reduced
» associated memory alocation errors are eliminated

In the VHDL example below, we illustrate three alternative architectures for entity memory:

» Architecture bad_style 87 usesavhdl signal to store the ram data.
» Architecture style 87 uses variablesin the memory process
» Architecture style 93 uses variables in the architecture.

For large memories, architecture bad_style 87 runs many times longer than the other two, and
uses much more memory. This style should be avoided.

Architectures style 87 and style 93 work with equal efficiently. However, VHDL 1993 offers
additional flexibility because the ram storage can be shared between multiple processes. For
example, a second process is shown that initializes the memory; you could add other processes
to create a multi-ported memory.

To implement this model, you will need functions that convert vectorsto integers. To useit you
will probably need to convert integers to vectors.

Example functions are provided below in package "conversions'.

For completeness sake we also show an example using VHDL 2002 protected types, though in
this example, protected types offer no advantage over shared variables.

128 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Modeling Memory

VHDL87 and VHDL93 Example

library ieee;
use ieee.std_logic_1164.all;
use wor k. conversions. all;

entity nmenory is

generic(add_bits : integer := 12;
data_bits : integer := 32);

port(add_in : in std_ul ogic_vector(add_bits-1 downto 0);
data_in : in std_ulogic_vector(data bits-1 downto 0);
data_out : out std ulogic vector(data bits-1 downto 0);
cs, mmite : in std_ul ogic;
do_init : in std_ulogic);

subtype word is std_ul ogic_vector(data_bits-1 downto 0);

constant nwords : integer := 2 ** add_bits;

type ramtype is array(0 to nwords-1) of word

end;

architecture style 93 of nenory is

shared variable ram: ramtype
begin
menory:
process (cs)
vari abl e address : natural
begin
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mrite ="'1") then
ran(address) := data_in;
end if;
dat a_out <= ran{address);
end if;
end process nenory;
-- illustrates a second process using the shared variable
initialize:
process (do_init)
vari abl e address : natural
begi n
if rising edge(do_init) then
for address in 0 to nwords-1 | oop
ran(address) := data_in;
end | oop;
end if;
end process initialize;
end architecture style 93;

architecture style 87 of nenory is
begin

nmenory:

process (cs)

variable ram: ramtype

vari abl e address : natural

ModelSim User’s Manual, v6.2g 129
February 2007

VHDL Simulation
Modeling Memory

begi n
if rising_edge(cs) then
address := sulv_to _natural (add_in);
if (mrite ="1") then
ran(address) := data_in;
end if;
data_out <= ran{address);
end if;
end process;
end styl e _87;

architecture bad_style 87 of menory is

begin
nenory:
process (cs)
vari abl e address : natural := 0;
begin
if rising_edge(cs) then
address := sulv_to_natural (add_in);

if (mrite = "1") then
ram(address) <= data_in;
data_out <= data_in;
el se
data_out <= ran{address);
end if;
end if;
end process;
end bad_styl e 87;

library ieee;
use ieee.std_logic_1164.all;

package conversions is
function sulv_to natural (x : std_ulogic_vector) return
nat ur al
function natural _to_sulv(n, bits : natural) return
std_ul ogi c_vector;
end conver si ons;

package body conversions is

function sulv_to_natural (x : std_ulogic_vector) return
natural is

variable n : natural := O;
variable failure : boolean := fal se
begin

assert (x'high - x'low + 1) <= 31
report "Range of sulv_to_natural argunent exceeds
natural range"
severity error;
for i in x'range | oop
n:=n#* 2
case x(i) is

130

ModelSim User’s Manual, v6.2g
February 2007

VHDL Simulation
Modeling Memory

when "1 | 'H =>n:=n + 1;

when '0" | 'L'" => null

when ot hers => failure := true;
end case;

end | oop;
assert not failure
report "sulv_to_natural
std_ul ogi c_vector"
severity error;

if failure then
return O;
el se
return n;
end if;
end sulv_to_natural;

function natural _to_sulv(n, bits :
std_ul ogic_vector is

variable x :

(others =>"'0");

variable tenpn : natural := n;
begin

for i in x'reverse_range | oop

if (tempn nod 2) = 1 then
x(i) :="1";

end if;
tenpn := tenpn / 2;

end | oop;

return x;

end natural to_sulv;

end conversi ons;

cannot convert

indefinite

natural) return

std _ul ogic _vector(bits-1 downto Q) :=

ModelSim User's Manual, v6.2g
February 2007

131

VHDL Simulation
Modeling Memory

VHDLO02 example

-- Source: sp_syn_ram protected. vhd
-- Component: VHDL synchronous, single-port RAM
-- Renmar ks: Various VHDL exanpl es: random access nenory (RAM

LI BRARY i eee€;
USE i eee.std_| ogic_1164. ALL;
USE i eee. nuneric_std. ALL;

ENTITY sp_syn_ramprotected IS
GENERI C (

data_width : positive := 8;
addr_width : positive := 3
)
PORT (
i nclk IN std_|ogic;
outcl k IN std_ | ogic;
we . IN std_logic;
addr I N unsigned(addr_wi dth-1 DOANTO 0);
data in IN std_logic_vector(data w dth-1 DOANTO 0);
data_out : OUT std_logic_vector(data w dth-1 DOANTO 0)
)

END sp_syn_ram prot ect ed;

ARCHI TECTURE intarch OF sp_syn_ramprotected IS

TYPE nem type |'S PROTECTED
PROCEDURE wite (data : IN std_|ogic vector(data width-1 downto 0);
addr : I N unsigned(addr_wi dth-1 DOANTO 0));
| MPURE FUNCTION read (addr : I N unsigned(addr_wi dth-1 DOANTO 0))
RETURN
std_| ogi c_vector;
END PROTECTED nem t ype;

TYPE mem type |'S PROTECTED BODY
TYPE mem array IS ARRAY (0 TO 2**addr_w dth-1) OF
std_l ogi c_vector(data w dth-1 DOANTO 0);
VARl ABLE nem : nem array;

PROCEDURE wite (data : IN std_|ogic vector(data width-1 downto 0);
addr : I N unsigned(addr_wi dth-1 DOANTO 0)) IS

BEG N
mem(to_i nteger(addr)) := data;
END;
| MPURE FUNCTION read (addr : I N unsigned(addr_w dth-1 DOANTO 0))
RETURN
std_l ogic_vector IS
BEG N
return nen(to_integer(addr));
END;

END PROTECTED BCDY nmem t ype;

132 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Modeling Memory

SHARED VARI ABLE nenory : nmemtype;
BEGA N

ASSERT data width <= 32
REPORT "### 111 egal data w dth detected”
SEVERI TY fail ure;

control _proc : PROCESS (inclk, outclk)

BEG N
IF (inclk'event AND inclk = '1'") THEN
IF (we ="1") THEN
menory. wite(data in, addr);
END | F;
END | F;

IF (outclk'event AND outclk = '1'") THEN
data_out <= nenory.read(addr);

END | F;
END PROCCESS;
END i nt arch;
-- Source: ramtb. vhd
-- Conponent: VHDL testbench for RAM nenory exanpl e
-- Remar ks: Si npl e VHDL exanpl e: random access nenory (RAM

LI BRARY i eee;
USE i eee.std | ogic_1164. ALL;
USE i eee. nuneric_std. ALL;

ENTITY ramtb IS
END ram t b;

ARCHI TECTURE testbench OF ramthb IS

COVPONENT sp_syn_ram protected
GENERI C (

data_ width : positive := 8;
addr_width : positive := 3
)
PORT (
i ncl k IN std_ | ogic;
outcl k IN std_|ogic;
we . IN std_|ogic;
addr I N unsigned(addr_wi dth-1 DOANTO 0);
data in IN std_logic_vector(data w dth-1 DOANTO 0);

data_out : OUT std_| ogic_vector(data_w dth-1 DOANTO 0)
)
END COVPONENT;

ModelSim User’s Manual, v6.2g 133
February 2007

VHDL Simulation
Modeling Memory

Internmedi ate signals and constants

S| GNAL addr unsi gned(19 DOANTO 0);
S| GNAL i naddr unsi gned(3 DOMNTO 0) ;
S| GNAL out addr unsi gned(3 DOMNTO 0) ;
SI GNAL data_in unsi gned(31 DOANTO 0);
SI GNAL data_inl : std_logic_vector(7 DOANTO 0);
SI GNAL data_spl : std_|ogic_vector(7 DOANTO 0);
S| GNAL we . std_l ogic;
S| GNAL clk std_I ogi c;
CONSTANT cl k_pd time := 100 ns;
BEG N

i nstantiations of single-port RAM architectures.
Al'l architectures behave equival ently, but they
have different inplenentations. The signal-based
architecture (rtl) is not a recomended style.
spranl : entity work.sp_syn_ram protected
GENERI C MAP (

data width => 8,

addr _wi dth => 12)

PORT MAP (
i nclk = cl Kk,
outcl k => cl k,
we => we,
addr => addr (11 downto 0),
data_in => data_inil,
data_out => data_spl);
-- clock generator
cl ock_driver PROCESS
BEG N
clk <= '0'";
VWAIT FOR cl k_pd / 2;
LOOP
clk <= "1', '0" AFTER clk_pd / 2;
VWAI T FOR cl k_pd;
END LOOP;
END PROCESS;

datain_drivers : PROCESS(data in)
BEG N

data_inl <= std_logic_vector(data_in(7 downto 0));
END PRCCESS;

simul ati on control process

134 ModelSim User's Manual, v6.2g

February 2007

VHDL Simulation
Modeling Memory

BEG N
FOR i
we
data_in
addr

IN O TO 1023 LOOP
<= '1":

<=
<= to_unsi gned(i

i naddr <= to_unsi gned(i

outaddr <= to_unsigned(i

VWAI' T UNTIL cl k" EVENT AND cl k
VWAI' T UNTIL cl k" EVENT AND cl k
data_in <= to_unsigned(7 + i
addr <= to_unsigned(1l + i
i naddr <= to_unsigned(1l + i
VWAI' T UNTIL cl k" EVENT AND cl k
VWAI' T UNTIL cl k" EVENT AND cl k
data_in <=
addr <= to_unsigned(2 + i
i naddr <= to_unsigned(2 + i
VWAI' T UNTIL cl k" EVENT AND cl k
VWAI' T UNTIL cl k" EVENT AND cl k
data_in <= to_unsigned(30330
addr <= to_unsigned(3 + i
i naddr <= to_unsigned(3 + i
VWAI' T UNTIL cl k" EVENT AND cl k

VWAI' T UNTIL cl k" EVENT AND cl k

<="'0";
addr <= to_unsi gned(i
outaddr <= to_unsigned(i
VWAI' T UNTIL cl k" EVENT AND cl k
VWAI' T UNTIL cl k" EVENT AND cl k

we

addr <= to_unsigned(1l + i
outaddr <= to_unsigned(1l +

VWAI'T UNTIL cl k' EVENT AND cl k
VWAI'T UNTIL cl k' EVENT AND cl k

addr <= to_unsigned(2 + i
outaddr <= to_unsigned(2 +

VWAI T UNTIL cl k' EVENT AND cl k
VWAI T UNTIL cl k' EVENT AND cl k

+

+
I k
| k

addr <= to_unsi gned(3
outaddr <= to_unsigned(3
VWAI T UNTIL cl k' EVENT AND c
VWAI T UNTIL cl k' EVENT AND c

END LOOP
ASSERT f al se

REPORT "### End of Sinulation!"

SEVERI TY failure
END PRCCESS;

END t est bench

to_unsi gned(9000 + i,
addr' | engt h) ;

i naddr' | engt h) ;
out addr' | engt h) ;

data_in'length);

|0’
|0|;

data_in'length);
addr' | engt h);

i naddr' | engt h);
IOI;

IOI;

to_unsigned(3, data_in'length);

addr' | engt h);

i naddr' | engt h);
IOI;

IOI;

data_in'length);
addr' | engt h);

i naddr' | engt h);
IOI;

IOI;

addr' | engt h);
out addr' | engt h) ;

|0|;

addr' | engt h) ;
out addr' | engt h);
0

IOI;

addr' | engt h);
out addr' | engt h);
o

‘0

addr' | engt h);
out addr' | engt h);
IOI;

o

ModelSim User's Manual, v6.2g
February 2007

135

VHDL Simulation
Affecting Performance by Cancelling Scheduled Events

Affecting Performance by Cancelling Scheduled
Events

Performance will suffer if events are scheduled far into the future but then cancelled before they
take effect. This situation will act like amemory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected waveforms in signal assignments.

The following code shows await with atime-out:
signals synch : bit :="'0
b;.process
begin
wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goesto 1 at 10 ns, the event at
10 msis marked as cancelled but not deleted, and anew event is scheduled at 10ms + 10ns. The
cancelled events are not reclaimed until time 10msis reached and the cancelled event is
processed. As aresult there will be 500000 (10ms/20ns) cancelled but un-deleted events. Once
10msis reached, memory will no longer increase because the simulator will be reclaiming
events as fast as they are added.

For projected waveforms the following would behave the same way:
signals synch : bit :="'0
b;.process(synch)
begi n
output <='0", "1 after 10ns;

end process;

synch <= not synch after 10 ns;

Converting an Integer Into a bit_vector

The following code demonstrates how to convert an integer into abit_vector.

136 ModelSim User's Manual, v6.2g
February 2007

VHDL Simulation
Converting an Integer Into a bit_vector

library ieee;
use ieee.nuneric_bit.ALL

entity test is
end test;

architecture only of test is
signal sl1 : bit_vector(7 downto 0);

signal int : integer := 45;
begin

p: process

begin

wait for 10 ns;
sl <= bit_vector(to_signed(int,8));
end process p;
end only;

ModelSim User’s Manual, v6.2g 137
February 2007

VHDL Simulation
Converting an Integer Into a bit_vector

138 ModelSim User’'s Manual, v6.2g
February 2007

Chapter 6
Verilog and SystemVerilog Simulation

This chapter describes how to compile and simulate Verilog and SystemVerilog designs with
Model Sim. Model Sim implements the Verilog language as defined by the |EEE Standards
1364-1995 and 1364-2005. We recommend that you obtain these specifications for reference.

The following functionality is partially implemented in Model Sim:

» Verilog Procedural Interface (VPI) (see
/<install_dir>/modeltech/docs/technotes/Verilog_VPI.note for details)

» |EEE Std P1800-2005 SystemVerilog (see
/<install_dir>/modeltech/docs/technotes/sysviog.note for implementation detail s)
Terminology

This chapter uses the term “Verilog” to represent both Verilog and SystemVerilog, unless
otherwise noted.

Basic Verilog Flow

Simulating Verilog designs with Model Sim includes four general steps:

1. Compileyour Verilog code into one or more libraries using the viog command. See
Compiling Verilog Files for details.

2. Load your design with the vsim command. See Simulating Verilog Designs for details.
3. Run and debug your design.

Compiling Verilog Files
The first time you compile a design there is a two-step process:

1. Create aworking library with vlib or select File> New > Library.

2. Compile the design using vlog or select Compile > Compile.

ModelSim User’s Manual, v6.2g 139
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

Creating a Working Library

Before you can compile your design, you must create alibrary in which to store the compilation
results. Use the vlib command or select File > New > Library to create anew library. For
example:

vlib work

This creates alibrary named wor k. By default compilation results are stored in the wor k
library.

Thework library is actually a subdirectory named work. This subdirectory contains a special
file named _info. Do not create libraries using UNIX commands — always use the vlib.

See Design Libraries for additional information on working with libraries.

Invoking the Verilog Compiler

The Verilog compiler, vlog, compiles Verilog source code into retargetable, executable code.
The library format is compatible across al supported platforms, and you can simulate your
design on any platform without having to recompile your design.

As the design compiles, the resulting object code for modules and UDPs is generated into a
library. As noted above, the compiler places results into the work library by default. Y ou can
specify an alternate library with the -work argument.

Example 6-1. Invocation of the Verilog Compiler
Here is a sample invocation of vlog:

vlog top.v +libext+.v+.u -y viog_lib

After compiling top.v, vlog will scan the viog_lib library for files with modules with the same
name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u implies
filenames with a.v or .u suffix (any combination of suffixes may be used). Only referenced
definitions will be compiled.

Parsing SystemVerilog Keywords

With standard Verilog files (<filename>.v), viog will not automatically parse SystemVerilog
keywords. SystemVerilog keywords are parsed when any of the following situations exists:

» any filewithin the design contains the .sv file extension,

» the-sv argument is used with the vlog command,

140 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

» the Use System Verilog option is selected in the Verilog tab of the Compiler Options
dialog. Access this dialog by selecting Compile > Compile Options from the Main
window menu bar.

Figure 6-1. Selecting ‘Use System Verilog’ Compile Option

YHDL ‘ Yernlog] Coverage] EystamE]

— Language Syntax

" Default
" Use Verilog 1995
" Use Verilog 2001
[% Use SystemVerilog]

Here are two examples of the viog command that will enable SystemV erilog features and
keywordsin Model Sim:

vlog testbench.sv top.v memory.v cache.v
vlog -sv testbench.v proc.v

In the first example, the .sv extension for testbench automatically instructs Model Sim to parse
SystemV erilog keywords. The -sv option used in the second example enables SystemVerilog
features and keywords.

Though a primary goal of the SystemV erilog standardization efforts has been to ensure full
backward compatibility with the Verilog standard, there is an issue with keywords.
SystemVerilog adds several new keywords to the Verilog language (see Table B-1 in Appendix
B of the P1800 SystemV erilog standard). If your design uses one of these keywords as aregular
identifier for avariable, module, task, function, etc., your design will not compile in Model Sim.

Incremental Compilation

Model Sim Verilog supports incremental compilation of designs. Unlike other Verilog
simulators, there is no requirement that you compile the entire design in one invocation of the
compiler.

Y ou are not required to compile your design in any particular order (unless you are using
SystemVerilog packages; see note below) because all module and UDP instantiations and
external hierarchical references are resolved when the design is loaded by the simulator.

ModelSim User’s Manual, v6.2g 141
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

Note

[

Compilation order may matter when using SystemV erilog packages. As stated in the
|EEE std p1800-2005 LRM, section entitled Referencing data in packages, which states:
"Packages must exist in order for the items they define to be recognized by the scopesin
which they are imported.”

Incremental compilation is made possible by deferring these bindings, and as a result some
errors cannot be detected during compilation. Commonly, these errors include: modules that
were referenced but not compiled, incorrect port connections, and incorrect hierarchical
references.

Example 6-2. Incremental Compilation Example

Contents of testbench.sv

nodul e t estbench;

timeunit 1ns;
ti mepreci sion 10ps;
bit d=1, clk = 0;
wire q;
initial
for (int cycles=0; cycles < 100; cycl es++)
#100 cl k = !clk;

design dut(q, d, clk);

endnodul e

Contents of design.v:

nmodul e design(output bit g, input bit d, clk);

ti meunit 1ns;

ti meprecision 10ps;

al ways @ posedge cl k)
q=d;

endnodul e

Compile the design incrementally as follows:

Model Si m» vl og testbench. sv

Top | evel nodul es:

t est bench

Model Sime vliog -sv testl.v

Top | evel nodul es:
dut

Note that the compiler lists each module as atop-level module, although, ultimately, only
testbench is atop-level module. If a module is not referenced by another module compiled in
the same invocation of the compiler, then it islisted as atop-level module. Thisisjust an
informative message and can be ignored during incremental compilation.

142

ModelSim User’s Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

The message is more useful when you compile an entire design in one invocation of the
compiler and need to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Conpiling nodule top
-- Conpiling nodul e and2
-- Conpiling nodul e or2
Top | evel nodul es:

top

Automatic Incremental Compilation with -incr

The most efficient method of incremental compilation isto manually compile only the modules
that have changed. However, thisis not always convenient, especialy if your source files have
compiler directive interdependencies (such as macros). In this case, you may prefer to compile
your entire design along with the -incr argument. This causes the compiler to automatically
determine which modules have changed and generate code only for those modules.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Conpiling nodule top
-- Conpi ling nodul e and2
-- Conpiling nodul e or2
Top | evel nodul es:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Ski ppi ng nodul e top
-- Ski ppi ng nodul e and2
-- Conpiling nodul e or2
Top | evel nodul es:
t op

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation isintelligent about when to compile a module. For
example, changing a comment in your source code does not result in arecompile; however,
changing the compiler command line arguments results in arecompile of al modules.

Note
D Changes to your source code that do not change functionality but that do affect source

code line numbers (such as adding a comment line) will cause all affected modules to be

recompiled. This happens because debug information must be kept current so that

Model Sim can trace back to the correct areas of the source code.

ModelSim User’s Manual, v6.2g 143
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

Library Usage

All modules and UDPsin a Verilog design must be compiled into one or more libraries. One
library isusually sufficient for asimple design, but you may want to organize your modulesinto
various libraries for acomplex design. If your design uses different modules having the same
name, then you are required to put those modules in different libraries because design unit
names must be unique within alibrary.

The following is an example of how you may organize your ASIC cellsinto one library and the
rest of your design into another:

% vlib work

%vlib asiclib

%vliog -work asiclib and2.v or2.v
-- Conpi ling nodul e and2

-- Conpiling nodul e or2

Top | evel nodul es:
and2
or2
% vlog top.v
-- Conpiling nodule top
Top | evel nodul es:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
theresultsin the asiclib library rather than the default work library.

Library Search Rules for viog

Since instantiation bindings are not determined at compile time, you must instruct the simulator
to search your libraries when loading the design. The top-level modules are |oaded from the
library named wor k unless you prefix the modules with the <library>. option. All other
Verilog instantiations are resolved in the following order:

» Search libraries specified with -Lf arguments in the order they appear on the command
line.

» Searchthelibrary specified in the Verilog-XL uselib Compiler Directive section.

» Search libraries specified with -L arguments in the order they appear on the command
line.

* Searchthework library.
» Search thelibrary explicitly named in the special escaped identifier instance name.

Handling Sub-Modules with Common Names

Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and

144 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Example 6-3. Sub-Modules with Common Names

top
modA| |modB

4

libl: lib2:
modA modB

The normal library search rules will fail in this situation. For example, if you load the design as
follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolveto thelibl version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, Model Sim implements a special interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the example above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top
SystemVerilog Multi-File Compilation Issues

Declarations in Compilation Unit Scope

SystemVerilog allows the declaration of types, variables, functions, tasks, and other constructs
in compilation unit scope ($unit). The visibility of declarationsin $unit scope does not extend
outside the current compilation unit. Thus, it is important to understand how compilation units
are defined by the tool during compilation.

By default, vliog operatesin Single File Compilation Unit mode (SFCU). This means the
visibility of declarationsin $unit scope terminates at the end of each source file. Visibility does
not carry forward from one file to another, except when a module, interface, or package

ModelSim User’s Manual, v6.2g 145
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

declaration begins in one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the declaration to the file containing the end of the
declaration.

vlog also supports anon-default behavior called Multi File Compilation Unit mode (MFCU). In
MFCU mode, vlog compiles all files given on the command line into one compilation unit. You
can invoke vlog in MFCU mode as follows:

» For aspecific compilation -- with the -mfcu argument to vlog.

» For al compilations -- by setting the variable M ultiFileCompilationUnit = 1 in the
modelsim.ini file.

By using either of these methods, you allow declarations in $unit scope to remain in effect
throughout the compilation of all files.

In case you have made MFCU the default behavior by setting M ultiFileCompilationUnit = 1
in your modelsim.ini file, it is possible to override the default behavior on specific compilations
by using the -sfcu argument to vlog.

Macro Definitions and Compiler Directives in Compilation Unit
Scope

According to the SystemVerilog | EEE Std p1800-2005 LRM, the visibility of macro definitions
and compiler directives span the lifetime of a single compilation unit. By default, this meansthe
definitions of macros and settings of compiler directivesterminate at the end of each sourcefile.
They do not carry forward from onefile to another, except when amodule, interface, or package
declaration begins in one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the definition to the file containing the end of the
definition.

See Declarations in Compilation Unit Scope for instructions on how to control vliog's handling
of compilation units.

Note
D Compiler directives revert to their default values at the end of a compilation unit.

If acompiler directive is specified as an option to the compiler, this setting is used for all
compilation units present in the current compilation.

Verilog-XL Compatible Compiler Arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to Model Sim. See the viog command for a description of each argument.

146 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

+def i ne+<macr o_nane>[=<macr o_t ext >]
+del ay_node_di stri but ed
+del ay_node_path

+del ay_node_uni t

+del ay_node_zero

-f <fil ename>

+i ncdi r+<di rect ory>

+m ndel ays

+maxdel ays

+nowar n<rmenoni c¢>

+t ypdel ays

-u

Arguments Supporting Source Libraries

The compiler arguments listed below support source libraries in the same manner as Verilog-
XL. See the vlog command for a description of each argument.

Note that these source libraries are very different from the libraries that the M odel Sim compiler
uses to store compilation results. Y ou may find it convenient to use these argumentsif you are
porting adesign to ModelSim or if you are familiar with these arguments and prefer to use
them.

Source libraries are searched after the source files on the command line are compiled. If there
are any unresolved references to modules or UDPs, then the compiler searches the source
libraries to satisfy them. The modules compiled from source libraries may in turn have
additional unresolved references that cause the source libraries to be searched again. This
process is repeated until all references are resolved or until no new unresolved references are
found. Source libraries are searched in the order they appear on the command line.

-v <fil enane>

-y <directory>
+l i bext +<suffi x>
+l i brescan
+nol i bcel

-R [<si mar gs>]

Verilog-XL uselib Compiler Directive

The "uselib compiler directive is an alternative source library management scheme to the -v, -y,
and +libext compiler arguments. It has the advantage that a design may reference different
modules having the same name. Y ou compile designs that contain “uselib directive statements
using the -compile_uselibs argument (described below) to viog.

The syntax for the "uselib directiveis:

“uselib <library_reference>...

where <library_reference> can be one or more of the following:

ModelSim User’s Manual, v6.2g 147
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

o dir=<library_directory>, which isequivalent to the command line argument:
-y <library_directory>

» file=<library_file>, which is equivalent to the command line argument:
-v <library_file>

* libext=<file_extension>, which is equivalent to the command line argument:
+libext+<file_extension>

* lib=<library_name>, which references alibrary for instantiated objects. This behaves
similarly to aLIBRARY/USE clausein VHDL. Y ou must ensure the correct mappings
are set up if the library does not exist in the current working directory. The
-compile_uselibs argument does not affect this usage of "uselib.

For example, the following directive

‘uselib dir=/h/vendorA libext=.v

Is equivalent to the following command line arguments:

-y /h/ivendorA +libext+.v

Sincethe "usdlib directives are embedded in the Verilog source code, thereis more flexibility in
defining the source libraries for the instantiations in the design. The appearance of a "uselib
directive in the source code explicitly defines how instantiations that follow it are resolved,
completely overriding any previous "uselib directives.

-compile_uselibs Argument

Use the -compile_uselibs argument to vlog to reference "uselib directives. The argument finds
the source files referenced in the directive, compiles them into automatically created object
libraries, and updates the modelsim.ini file with the logical mappings to the libraries.

When using -compile_uselibs, Model Sim determinesinto which directory to compile the object
libraries by choosing, in order, from the following three values:

» Thedirectory name specified by the -compile_uselibs argument. For example,
-compile_uselibs=./mydir

» Thedirectory specified by the MTI_USELIB_DIR environment variable (see
Environment Variables)

» A directory named mti_uselibs that is created in the current working directory

The following code fragment and compiler invocation show how two different modules that
have the same name can be instantiated within the same design:

148 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

nmodul e top;
“uselib dir=/h/vendorA |ibext=.v
NAND2 ul(nl, n2, n3);
“uselib dir=/h/vendorB |ibext=.v
NAND2 u2(n4, n5, n6);

endnodul e

vlog -compile_uselibs top

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

uselib is Persistent

As mentioned above, the appearance of a "uselib directive in the source code explicitly defines
how instantiations that follow it are resolved. This may result in unexpected consequences. For
example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a "usdlib directive. Since srtr.v is compiled after dut.v, the "uselib
directiveisstill in effect. When srtr isloaded it is using the "uselib directive from dut.v to
decide where to locate modules. If thisis not what you intend, then you need to put an empty
“uselib at the end of dut.v to "close" the previous "uselib statement.

Verilog Configurations

The Verilog 2001 specification added configurations. Configurations specify how adesignis
"assembled" during the elaboration phase of simulation. Configurations actually consist of two
pieces. the library mapping and the configuration itself. The library mapping is used at compile
time to determine into which libraries the source files are to be compiled. Here is an example of
asimple library map file:

I'ibrary work ../top.v;
library rtlLib Irmex_top.v;
library gateLib |Irmex_adder. vg;
library aLib I rm ex_adder. v;

Hereis an example of alibrary map file that uses -incdir:
library libl src_dir/*.v -incdir ../include dir2, ../, ny_incdir;

The name of the library map fileisarbitrary. Y ou specify the library map file using the -libmap
argument to the viog command. Alternatively, you can specify the file name asthe first item on
the vlog command line, and the compiler will read it asalibrary map file.

The library map file must be compiled along with the Verilog source files. Multiple map files
are allowed but each must be preceded by the -libmap argument.

ModelSim User’s Manual, v6.2g 149
February 2007

Verilog and SystemVerilog Simulation
Compiling Verilog Files

The library map file and the configuration can exist in the same or different files. If they are
separate, only the map file needs the -libmap argument. The configuration is treated as any
other Verilog sourcefile.

Configurations and the Library Named work

Thelibrary named “work” istreated specially by Model Sim (see The Library Named "work" for
details) for Verilog configurations. Consider the following code example:

config cfg;

design top;

i nstance top.ul use work.ul
endconfig

In this case, work.ul indicates to load ul from the current library.

Verilog Generate Statements

The Verilog 2001 rules for generate statements had numerous inconsistencies and ambiguities.
Asaresult, Model Sim implements the rules that have been adopted for Verilog 2005. Most of
the rules are backwards compatible, but there is one key difference related to name visibility.

Name Visibility in Generate Statements

Consider the following code example:

nodul e m
paranmeter p = 1,

generate
if (p)

integer x = 1;
el se

real x = 2.0;
endgener ate

initial $display(x);
endnodul e

This code sampleislega under 2001 rules. However, it isillegal under the 2005 rules and will
cause an error in Model Sim. Under the new rules, you cannot hierarchically referenceanamein
an anonymous scope from outside that scope. In the example above, x does not propagate its
visibility upwards, and each condition aternative is considered to be an anonymous scope.

To fix the code such that it will simulate properly in ModelSim, write it like this instead:

150 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

modul e m
parameter p = 1,

if (p) begin:s

i nteger x = 1,
end
el se begin:s

real x = 2.0;
end

initial $display(s.x);
endnodul e

Since the scope is named in this example, normal hierarchical resolution rules apply and the
codeisfine.

Note too that the keywords gener ate - endgener ate are optional under the 2005 rules and are
excluded in the second example.

Simulating Verilog Designs

A Verilog design is ready for ssmulation after it has been compiled with vliog. The simulator
may then be invoked with the names of the top-level modules (many designs contain only one
top-level module). For example, if your top-level modules are "testbench” and "globals’, then
invoke the simulator as follows:

vsim testbench globals

After the smulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPsin the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references. By default all modules and UDPs are |oaded from the library named
wor k. Modules and UDPs from other libraries can be specified using the -L or -Lf argumentsto
vsim (see Library Usage for details).

On successful loading of the design, the simulation timeis set to zero, and you must enter arun
command to begin ssimulation. Commonly, you enter run -all to run until there are no more
simulation events or until $finish is executed in the Verilog code. Y ou can aso run for specific
time periods (e.g., run 100 ns). Enter the quit command to exit the simulator.

Simulator Resolution Limit (Verilog)

The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit. The resolution limit
defaults to the smallest time precision found among all of the “timescale compiler directivesin
the design. Here is an example of a "timescale directive:

‘timescale 1 ns /100 ps

ModelSim User’s Manual, v6.2g 151
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

The first number is the time units and the second number is the time precision. The directive
above causes time values to be read as ns and to be rounded to the nearest 100 ps.

Time units and precision can also be specified with SystemV erilog keywords as follows:

timeunit 1 ns
timeprecision 100 ps

Modules Without Timescale Directives

Y ou may encounter unexpected behavior if your design contains some modules with timescale
directives and others without. The time units for modules without a timescale directive default
to the ssmulator resolution. For example, say you have the two modules shown in the table
below:

Table 6-1. Sample Modules With and Without Timescale Directive

Module 1 Module 2
“‘timescale 1 ns/ 10 ps module mod2 (set);
module mod1 (set); output set;
reg set;
output set; parameter d = 1.55;
reg set;
parameter d = 1.55; initial
begin
initia set = 1'bz;
begin #d set = 1'b0;
set = 1'bz; #d set = 1'bl;
#d set = 1'b0; end
#d set = 1'bl;
end endmodule
endmodule

If you invoke vsim as vsim mod2 mod1 then Module 1 sets the simulator resolution to 10 ps.
Module 2 has no timescale directive, so the time units default to the simulator resolution, in this
case 10 ps. If you watched /modl/set and /mod2/set in the Wave window, you' d see that in
Module 1 it transitions every 1.55 ns as expected (because of the 1 nstime unit in the timescale
directive). However, in Module 2, set transitions every 20 ps. That’s because the delay of 1.55
in Module 2 isread as 15.5 psand is rounded up to 20 ps.

In such cases Model Sim will issue the following warning message during elaboration:

152 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

** Warning: (vsim3010) [TSCALE] - Mdule 'nodl' has a “timescal e
directive in effect, but previous nodules do not.

If you invoke vsim as vsim mod1 mod2, the simulation results would be the same but
Model Sim would produce a different warning message:

** WArni ng: (vsim 3009) [TSCALE] - Modul e 'nod2' does not have a
“tinescale directive in effect, but previous nodul es do.

These warnings should ALWAY S be investigated.

If the design contains no “timescal e directives, then the resolution limit and time units default to
the value specified by the Resolution variable in the modelsim.ini file. (The variableisset to 1
ps by default.)

-timescale Option

The -timescal e option can be used with the vlog and vopt to specifies the default timescale for
modules not having an explicit “timescale directive in effect during compilation. The format of
the -timescale argument is the same as that of the “timescale directive

-timescale <time_units>/<time_precision>

Theformat for <time_units> and <time_precision> is<n><units>. The value of <n> must be
1, 10, or 100. The value of <units> must befs, ps, ns, us, ms, or s. In addition, the <time_units>
must be greater than or equal to the <time_precision>. For example:

-timescale "1ns / 1ps”

The argument above needs quotes because it contains white space.

Multiple Timescale Directives

Asalluded to above, your design can have multiple timescale directives. Thetimescale directive
takes effect where it appears in a source file and appliesto all source files which follow in the
same vlog command. Separately compiled modules can aso have different timescales. The
simulator determines the smallest timescale of all the modulesin adesign and uses that as the
simulator resolution.

timescale, -t, and Rounding

The optional vsim argument -t sets the simulator resolution limit for the overall simulation. If
the resolution set by -t islarger than the precision set in a module, the time values in that
module are rounded up. If the resolution set by -t issmaller than the precision of the module, the
precision of that module remains whatever is specified by the “timescale directive. Consider the
following code:

ModelSim User’s Manual, v6.2g 153
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

“tinescale 1 ns / 100 ps
nodul e f oo;

initial
#12.536 $di spl ay

The list below shows three possibilities for -t and how the delays in the module would be
handled in each case:

* -t not set
The delay will be rounded to 12.5 as directed by the modul€’s ‘timescale directive.
e -tissettolfs

The delay will be rounded to 12.5. Again, the modul€' s precision is determined by the
‘timescal e directive. Model Sim does not override the modul€' s precision.

e -tissattolns

The delay will be rounded to 12. The modul€ s precision is determined by the -t setting.
Model Sim has no choice but to round the modul €' s time val ues because the entire
simulation isoperating at 1 ns.

Choosing the Resolution for Verilog

Y ou should choose the coarsest resolution limit possible that does not result in undesired
rounding of your delays. The time precision should not be unnecessarily small because it will
[imit the maximum simulation time limit, and it will degrade performance in some cases.

Event Ordering in Verilog Designs

Event-based simulators such as Model Sim may process multiple events at a given simulation
time. The Verilog language is defined such that you cannot explicitly control the order in which
simultaneous events are processed. Unfortunately, some designs rely on a particular event
order, and these designs may behave differently than you expect.

Event Queues

Section 5 of the IEEE Std 1364-1995 LRM defines several event queues that determine the
order in which events are evaluated. At the current simulation time, the simulator has the
following pending events:

e active events
* inactive events

* non-blocking assignment update events

154 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

* monitor events
» future events
o inactive events
o non-blocking assignment update events

The LRM dictates that events are processed as follows — 1) all active events are processed; 2)
the inactive events are moved to the active event queue and then processed; 3) the non-blocking
events are moved to the active event queue and then processed; 4) the monitor events are moved
to the active queue and then processed; 5) simulation advances to the next time where thereis
an inactive event or a non-blocking assignment update event.

Within the active event queue, the events can be processed in any order, and new active events
can be added to the queue in any order. In other words, you cannot control event order within
the active queue. The example below illustrates potential ramifications of this situation.

Say you have these four statements:

1. aways@(q) p=q;

2. aways @(q) p2=not q;

3. aways @(p or p2) clk = p and p2;
4. always @(posedge clk)

and current values asfollows: =0, p=0, p2=1

Thetables below show two of the many valid evaluations of these statements. Evaluation events
are denoted by a number where the number is the statement to be evaluated. Update events are
denoted <name>(old->new) where <name> indicates the reg being updated and new is the
updated value.\

Table 6-2. Evaluation 1 of always Statements

Event being processed Active event queue
g(0->1)
q(0->1) 1,2
1 p(0->1),2
p(0->1) 3,2
3 clk(0->1),2
clk(0->1) 4,2
4 2
2 p2(1->0)
ModelSim User’s Manual, v6.2g 155

February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

Table 6-2. Evaluation 1 of always Statements (cont.)

Event being processed Active event queue
p2(1->0) 3

3 clk(1->0)
clk(1->0) <empty>

Table 6-3. Evaluation 2 of always Statement

Event being processed Active event queue
q(0->1)

g(0->1) 1,2

1 p(0->1),2

2 p2(1->0), p(0->1)

p(0->1) 3, p2(1->0)

p2(1—>0) 3

3 <empty> (clk doesn’t change)

Again, both evaluations are valid. However, in Evaluation 1, clk hasaglitch onit; in Evaluation
2, clk doesn’t. Thisindicates that the design has a zero-delay race condition on clk.

Controlling Event Queues with Blocking or Non-Blocking
Assignments

The only control you have over event order isto assign an event to a particular queue. Y ou do
this via blocking or non-blocking assignments.
Blocking Assignments

Blocking assignments place an event in the active, inactive, or future queues depending on what
type of delay they have:

» ablocking assignment without a delay goesin the active queue
» ablocking assignment with an explicit delay of 0 goesin the inactive queue

» ablocking assignment with anon-zero delay goesin the future queue

156 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

Non-Blocking Assignments

A non-blocking assignment goes into either the non-blocking assignment update event queue or
the future non-blocking assignment update event queue. (Non-blocking assignments with no
delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. Thisinsures that all
outputs of flip-flops do not change until after all flip-flops have been evaluated. Attempting to
use non-blocking assignments in combinational logic paths to remove race conditions may only
cause more problems. (In the preceding example, changing all statements to non-blocking
assignments would not remove the race condition.) This includes using non-blocking
assignments in the generation of gated clocks.

Thefollowing is an example of how to properly use non-blocking assignments.

genl: always @ naster)
cl kl = master;

gen2: always @cl k1)
cl k2 = cl ki1;

f1: always @ posedge clkl)
begin
ql <= di;
end

f2: al ways @ posedge cl k2)
begi n
q2 <= ql;
end

If written thisway, avalue on d1 always takes two clock cyclesto get from d1 to g2.
If you change clkl = master and clk2 = clkl1 to non-blocking assignments or g2 <= g1 and ql1
<= d1 to blocking assignments, then d1 may get to g2 isless than two clock cycles.

Debugging Event Order Issues

Since many models have been developed on Verilog-XL, Model Sim tries to duplicate Verilog-
XL event ordering to ease the porting of those modelsto Model Sim. However, Model Sim does
not match Verilog-XL event ordering in al cases, and if amodel ported to Model Sim does not

behave as expected, then you should suspect that there are event order dependencies.

Model Sim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the viog command for descriptions of -compat and -hazar ds.

ModelSim User’s Manual, v6.2g 157
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

Hazard Detection

The -hazar d argument to vsim detects event order hazards involving simultaneous reading and
writing of the same register in concurrently executing processes. vsim detects the following
kinds of hazards:

*» WRITE/WRITE — Two processes writing to the same variable at the same time.

* READ/WRITE — One process reading a variable at the same time it is being written to
by another process. Model Sim calls thisa READ/WRITE hazard if it executed the read
first.

* WRITE/READ — Same asaREAD/WRITE hazard except that Model Sim executed the
write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable and
the two processes involved. Y ou can have the ssimulator break on the statement where the
hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog with the -hazar ds argument when you
compile your source code and you must also invoke vsim with the -hazar ds argument when
you simulate.

Note
D Enabling -hazardsimplicitly enables the -compat argument. As aresult, using this

argument may affect your ssmulation results.

Hazard Detection and Optimization Levels

In certain cases hazard detection results are affected by the optimization level used in the
simulation. Some optimizations change the read/write operations performed on avariable if the
transformation is determined to yield equivalent results. Since the hazard detection algorithm
doesn’t know whether or not the read/write operations can affect the simulation results, the
optimizations can result in different hazard detection results. Generally, the optimizations
reduce the number of false hazards by eliminating unnecessary reads and writes, but there are
also optimizations that can produce additional false hazards.

Limitations of Hazard Detection

* Readsand writesinvolving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selectsistoo
high.

* A WRITE/WRITE hazard isflagged even if the same value is written by both processes.

* A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

158 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

* Glitches on nets caused by non-guaranteed event ordering are not detected.

* A non-blocking assignment is not treated as a WRITE for hazard detection purposes.
Thisis because non-blocking assignments are not normally involved in hazards. (In fact,
they should be used to avoid hazards.)

» Hazards caused by simultaneous forces are not detected.

Negative Timing Check Limits

Verilog supports negative limit valuesin the $setuphold and $recrem system tasks. These tasks
have optional delayed versions of input signals to insure proper evaluation of models with
negative timing check limits. Delay values for these delayed nets are determined by the
simulator so that valid datais available for evaluation before a clocking signal.

Example 6-4. Negative Timing Check

$setuphold(posedge clk, negedge d, 5, -3, Notifier,,, clk_dly, d_dly);

d violation 5 3
regi on /77

0
cl k -1

Model Sim calculates the delay for signal d_dly as 4 time unitsinstead of 3. It does thisto
prevent d_dly and clk_dly from occurring simultaneously when aviolation isn’t reported.

M odel Sim accepts negative limit checks by default, unlike current versions of Verilog-XL. To
match Verilog-XL default behavior (i.e., zeroing all negative timing check limits), use the
+n0_neg_tcheck argument to vsim.

Negative Timing Constraint Algorithm

The algorithm Model Sim uses to calculate delays for delayed netsisn’t described in IEEE Std
1364. Rather, Model Sim matches Verilog-XL behavior. The algorithm attempts to find a set of
delays so the data net is valid when the clock net transitions and the timing checks are satisfied.
The algorithm isiterative because a set of delays can be selected that satisfies al timing checks
for apair of inputs but then causes mis-ordering of another pair (where both pairs of inputs
share acommon input). When a set of delaysthat satisfies all timing checksisfound, the delays
are said to converge.

Using Delayed Inputs for Timing Checks

By default Model Sim performs timing checks on inputs specified in the timing check. If you
want timing checks performed on the delayed inputs, use the +delayed_timing_checks
argument with the veim command.

ModelSim User’s Manual, v6.2g 159
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

Consider an example. This timing check:

$setuphold(posedge clk, posedge t, 20, -12, NOTIFIER,,, clk_dly, t_dly);

reports a timing violation when posedge t occurs in the violation region:

20 -12
t Y ays

cl k ‘

With the +delayed _timing_checks argument, the violation region between the delayed inputs
Is:

7 1
t_dly Y ays
0

clk_dly |

Although the check is performed on the delayed inputs, the timing check violation message is
adjusted to reference the undelayed inputs. Only the report time of the violation messageis
noticeably different between the delayed and undelayed timing checks.

By far the greatest difference between these modes is evident when there are conditions on a
delayed check event because the condition is not implicitly delayed. Also, timing checks
specified without explicit delayed signals are delayed, if necessary, when they reference an
input that is delayed for a negative timing check limit.

Other simulators perform timing checks on the delayed inputs. To be compatible, ModelSim
supports both methods.

Verilog-XL Compatible Simulator Arguments

The simulator arguments listed below are equivalent to Verilog-X L arguments and may ease the
porting of adesign to Model Sim. See the vsim command for a description of each argument.

+al t _pat h_del ays

-1 <fil enane>

+maxdel ays

+m ndel ays

+nul tisource_int_del ays
+no_cancel | ed_e_nsg
+no_neg_t chk
+no_notifier

+no_pat h_edge

+no_pul se_nsg
-no_risefall _del aynets
+no_show cancel | ed_e
+nosdf war n

+nowar n<nrmenoni ¢>

160 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Simulating Verilog Designs

+ntc_warn

+pul se_e/ <percent >
+pul se_e_styl e _ondet ect
+pul se_e_styl e_onevent
+pul se_i nt _e/ <per cent >
+pul se_int _r/<percent >
+pul se_r/ <percent >
+sdf _nocheck_cel | type
+sdf _verbose
+show_cancel | ed_e
+transport _i nt _del ays
+transport _pat h_del ays
+t ypdel ays

Using Escaped Identifiers
Model Sim always converts Verilog escaped identifiersto VHDL syntax.

In Verilog, escaped identifiers start with the backslash character and end with a white space.
Neither the backslash at the beginning or the white space at the end are considered to be a part
of theidentifier. When a Model Sim displays Verilog escaped identifiers, however, a backslash
isadded at the end in order to match the VHDL syntax for escaped identifiers. Thisis because
all Verilog escaped identifiers can be easily converted to VHDL but the converse is not true.

So, for example, aVerilog escaped identifier like the following:

Vitop/dut/03
will be displayed as follows:

Vtop/dut/03\

When entering Verilog identifiers with the Model Sim command line interface, you should use
the VHDL syntax, with a backslash at the beginning and end of the identifier.

In Tcl, the backslash is one of a number of characters that have a special meaning. For example,
\n
createsanew line.

When a Tcl command is used in the command line interface, the TCL backsash should be
escaped by adding another backslash. For example:

force -freeze /top/ix/iyN\yw\[1\]\\ 10 O, 01 {50 ns} -r 100

The Verilog identifier, in this example, is\yw[1]. Here, double backslashes are used because it
IS necessary to escape the square brackets ([]), which have a special meaning in Tcl.

For amore detailed description of special charactersin Tcl and how backslashes should be used
with those characters, click Help > Tcl Syntax in the menu bar of the graphic interface, or
simply open the docs/tcl_help_html/TclCmd directory in your Model Sim installation.

ModelSim User’s Manual, v6.2g 161
February 2007

Verilog and SystemVerilog Simulation
Cell Libraries

Cell Libraries

Model Technology passed the ASIC Council’s Verilog test suite and achieved the "Library
Tested and Approved" designation from Si2 Labs. Thistest suite is designed to ensure Verilog
timing accuracy and functionality and is the first significant hurdle to complete on the way to
achieving full ASIC vendor support. As a consequence, many ASIC and FPGA vendors
Verilog cell libraries are compatible with Model Sim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays and
timing constraints for the cells. See section 13 in the IEEE Std 1364-1995 for details on specify
blocks, and section 14.5 for details on timing constraints. Model Sim Verilog fully implements
specify blocks and timing constraints as defined in IEEE Std 1364 along with some Verilog-XL
compatible extensions.

SDF Timing Annotation

Model Sim Verilog supports timing annotation from Standard Delay Format (SDF) files. See
Standard Delay Format (SDF) Timing Annotation for details.

Delay Modes

Verilog models may contain both distributed delays and path delays. The delays on primitives,
UDPs, and continuous assignments are the distributed delays, whereas the port-to-port delays
specified in specify blocks are the path delays. These delays interact to determine the actual
delay observed. Most Verilog cells use path delays exclusively, with the distributed delays set
to zero. For example,

nmodul e and2(y, a, b);
i nput a, b;
out put vy;
and(y, a, b);
speci fy
(a =>y)
(b =>1y)
endspeci fy
endnodul e

no

In the above two-input "and" gate cell, the distributed delay for the "and" primitive is zero, and
the actual delays observed on the module ports are taken from the path delays. Thisistypical for
most cells, but a complex cell may require non-zero distributed delays to work properly. Even
s0, these delays are usually small enough that the path delays take priority over the distributed
delays. Theruleisthat if amodule contains both path delays and distributed delays, then the
larger of the two delays for each path shall be used (as defined by the IEEE Std 1364). Thisis
the default behavior, but you can specify alternate delay modes with compiler directives and

162 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
System Tasks and Functions

arguments. These arguments and directives are compatible with Verilog-XL. Compiler delay
mode arguments take precedence over delay mode directives in the source code.

Distributed Delay Mode

In distributed delay mode the specify path delays are ignored in favor of the distributed delays.
Select this delay mode with the +delay_mode_distributed compiler argument or the
"delay_mode_distributed compiler directive.

Path Delay Mode

In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler argument or the
“delay_mode path compiler directive.

Unit Delay Mode

In unit delay mode the non-zero distributed delays are set to one unit of simulation resolution
(determined by the minimum time_precision argument in all ‘timescale directives in your
design or the value specified with the -t argument to vsim), and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_unit compiler
argument or the "delay_mode_unit compiler directive.

Zero Delay Mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and timing
constraints areignored. Select this delay mode with the +delay_mode_zer o compiler argument
or the "'delay_mode_zero compiler directive.

System Tasks and Functions

Model Sim supports system tasks and functions as follows:

* All system tasks and functions defined in |EEE Std 1364

* Some system tasks and functions defined in SystemVerilog |EEE std p1800-2005 LRM
» Several system tasks and functions that are specific to ModelSim

» Several non-standard, Verilog-XL system tasks

The system tasks and functions listed in this section are built into the simulator, although some
designs depend on user-defined system tasks implemented with the Programming Language
Interface (PLI), Verilog Procedural Interface (VPI), or the SystemVerilog DPI (Direct
Programming Interface). If the simulator issues warnings regarding undefined system tasks or
functions, then it islikely that these tasks or functions are defined by a PL1/VPI application that
must be loaded by the simulator.

ModelSim User’s Manual, v6.2g 163
February 2007

Verilog and SystemVerilog Simulation
System Tasks and Functions

IEEE Std 1364 System Tasks and Functions
The following system tasks and functions are described in detail in the IEEE Std 1364.
Table 6-4. IEEE Std 1364 System Tasks and Functions - 1

Timescaletasks Simulator control Simulation time Command lineinput
tasks functions
$printtimescale $finish Prealtime $testSplusargs
$timeformat $stop $stime $value$plusargs
$time

Table 6-5. IEEE Std 1364 System Tasks and Functions - 2

Probabilistic Conversion Stochastic analysis ~ Timing check tasks
distribution functions tasks
functions
$dist_chi_square $hitstoreal $q_add $hold
$dist_erlang Sitor $g_exam $nochange
$dist_exponential Sreatobits $a_full Pperiod
$dist_normal $rtoi $q_initiaize $recovery
$dist_poisson $signed $q_remove $setup
$dist_t $unsigned $setuphold
$dist_uniform $skew
$random $width?
$removal
$recrem

1. Verilog-XL ignores the threshold argument even though it is part of the Verilog spec. Model Sim does not
ignore this argument. Be careful that you don’t set the threshold argument greater-than-or-equal to the limit
argument as that essentially disables the $width check. Note too that you cannot override the threshold
argument via SDF annotation.

Table 6-6. IEEE Std 1364 System Tasks

Display tasks PLA modeling tasks Value change dump
(VCD) filetasks
$display $asynchandSarray $dumpall
164 ModelSim User's Manual, v6.2g

February 2007

Verilog and SystemVerilog Simulation

System Tasks and Functions

Table 6-6. IEEE Std 1364 System Tasks (cont.)

Display tasks

$displayb
$displayh
$displayo
$monitor
$monitorb
$monitorh
$monitoro
$monitoroff
$monitoron
$strobe
$strobeb
$strobeh
$strobeo
Pwrite
Pwriteb
Pwriteh
Pwriteo

Filel/O tasks
$fclose
$fdisplay
$fdisplayb
$fdisplayh
$fdisplayo
$feof

$ferror
$fflush

$fgetc

PLA modeling tasks

$asyncnand$array
$asyncorSarray
$asyncsnorParray
$async$and$plane
$async$nand$plane
$async$or$plane
$asyncsnor$plane
$sync$andsarray
$sync$nandsarray
$sync$or$array
$syncsnor$array
$syncand$plane
$sync$nand$plane
$syncorplane
$sync$nordplane

Value change dump
(VCD) filetasks

$dumpfile
$dumpflush
$dumplimit
$dumpoff
$dumpon
$dumpvars

Table 6-7. IEEE Std 1364 File I/0O Tasks

$fmonitoro
$fopen
$fread
$fscanf
Pfseek
$fstrobe
$fstrobeb
$fstrobeh
$fstrobeo

$fwriteh
$fwriteo
$readmemb
$readmemh
$rewind

$sdf _annotate
$sformat
$sscanf
$swrite

ModelSim User's Manual, v6.2g
February 2007

165

Verilog and SystemVerilog Simulation
System Tasks and Functions

Table 6-7. IEEE Std 1364 File I/O Tasks (cont.)

Filel/O tasks

$fgets $ftell $swriteb
$fmonitor $fwrite Pswriteh
$fmonitorb Sfwriteb $swriteo
$fmonitorh $ungetc

SystemVerilog System Tasks and Functions

The following Model Sim-supported system tasks and functions are described in detail in the
SystemVerilog |IEEE Std p1800-2005 LRM.

Table 6-8. SystemVerilog System Tasks and Functions - 1
Expression sizefunction Range function
$hits $isunbounded

Table 6-9. SystemVerilog System Tasks and Functions - 2

Shortreal Array querying
conversions functions

$shortrealbits $dimensions
$hitstoshortreal Pleft
Pright
$low
$high
Sincrement
$size

Table 6-10. SystemVerilog System Tasks and Functions - 4
Reading packed data Writing packed data Other functions

functions functions
$readmemb $writememb $root
$readmemh $writememh $unit
166 ModelSim User's Manual, v6.2g

February 2007

Verilog and SystemVerilog Simulation
System Tasks and Functions

System Tasks and Functions Specific to the Tool

The following system tasks and functions are specific to ModelSim. They are not included in
the |IEEE Std 1364, nor are they likely supported in other simulators. Their use may limit the
portability of your code.

$init_signal_driver

The $init_signal_driver() system task drives the value of a VHDL signal or Verilog net
onto an existing VHDL signal or Verilog net. This allows you to drive signals or nets at
any level of the design hierarchy from within aVerilog module (e.g., atestbench). See

$init_signal_driver for complete details.

$init_signal_spy

The $init_signal_spy() system task mirrors the value of aVHDL signal or Verilog
register/net onto an existing Verilog register or VHDL signal. This system task allows
you to reference signals, registers, or netsat any level of hierarchy from withinaVerilog
module (e.g., atestbench). See $init_signa_spy for complete details.

$psprintf()

The $psprintf() system function behaves like the $sformat() file I/O task except that the
string result is passed back to the user as the function return value for $psprintf(), not
placed in the first argument as for $sformat(). Thus $psprintf() can be used where a
string isvalid. Note that at thistime, unlike other system tasks and functions, $psprintf()
cannot be overridden by a user-defined system function in the PLI.

$signal_force

The $signal_force() system task forcesthe val ue specified onto an existing VHDL signa
or Verilog register or net. Thisallowsyou to force signals, registers, or nets at any level
of the design hierarchy from within aVerilog module (e.g., atestbench). A
$signal_force works the same as the force command with the exception that you cannot
issue arepeating force. See $signal_force for complete details.

$signal_release

The $signal_release() system task releases a value that had previously been forced onto
an existing VHDL signal or Verilog register or net. A $signal_release works the same as
the noforce command. See $signal_release for complete details.

$sdf_done

Thistask isa"cleanup" function that removes internal buffers, called MIPDs, that have
adelay value of zero. These MIPDs are inserted in response to the -v2k _int_delay
argument to the vsim command. In general the simulator will automatically remove all
zero delay MIPDs. However, if you have $sdf _annotate() callsin your design that are
not getting executed, the zero-delay MIPDs are not removed. Adding the $sdf _done task
after your last $sdf _annotate() will remove any zero-delay MIPDs that have been
created.

ModelSim User’s Manual, v6.2g 167
February 2007

Verilog and SystemVerilog Simulation
System Tasks and Functions

Verilog-XL Compatible System Tasks and Functions
Model Sim supports a number of Verilog-XL specific system tasks and functions.

Supported Tasks and Functions Mentioned in IEEE Std 1364

The following supported system tasks and functions, though not part of the |EEE standard, are
described in an annex of the |IEEE Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

Supported Tasks not Described in the IEEE Std 1364

The following system tasks are al'so provided for compatibility with Verilog-XL, though they
are not described in the IEEE Std 1364.

$deposit(variable, value);

This system task sets a Verilog register or net to the specified value. variable isthe
register or net to be changed; valueisthe new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
same register or net. This system task operates identically to the ModelSim

force -deposit command.

$disable_warnings("<keyword>"[,<module_instance>...]);

This system task instructs Model Sim to disable warnings about timing check violations
or triregs that acquire avalue of ‘X’ due to charge decay. <keyword> may be decay or
timing. Y ou can specify one or more module instance names. If you don’t specify a
module instance, Model Sim disables warnings for the entire simulation.

$enable_warnings("<keyword>"[,<module_instance>...]);

This system task enableswarnings about timing check violations or triregsthat acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. Y ou can specify
one or more module instance names. If you don’t specify amodule_instance, ModelSim
enables warnings for the entire simulation.

$system("command");

This system function takes alitera string argument, executes the specified operating
system command, and displays the status of the underlying OS process. Double quotes
arerequired for the OS command. For example, to list the contents of the working
directory on Unix:

$system("lIs -1");

168 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
System Tasks and Functions

Return value of the $system function is a 32-bit integer that is set to the exit status code
of the underlying OS process.

Note

D Thereisaknown issuein the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin the gcc command line.

$systemf(list_of_args)

This system function can take any number of arguments. The list_of argsistreated
exactly the same as with the $display() function. The OS command that will berunisthe
final output from $display() given the samelist_of_args. Return value of the $systemf
function is a 32-bit integer that is set to the exit status code of the underlying OS
process.

Note

D There is aknown issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin the gcc command line.

Supported Tasks that Have Been Extended

The following system tasks are extended to provide additional functionality for negative timing
constraints and an alternate method of conditioning, asin Verilog-XL.

$recovery(reference event, data_event, removal_limit, recovery_limit, [notifier],
[tstamp_cond], [tcheck_cond], [delayed_reference], [delayed_data])

The $recovery system task normally takes arecovery_limit asthe third argument and an
optional notifier as the fourth argument. By specifying alimit for both the third and
fourth arguments, the $recovery timing check is transformed into a combination
removal and recovery timing check similar to the $recrem timing check. The only
difference isthat the removal _limit and recovery limit are swapped.

$setuphold(clk_event, data_event, setup_limit, hold_limit, [notifier], [tstamp_cond],
[tcheck_cond], [delayed clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This alternate method of conditioning precludes specifying
conditionsin the clk_event and data_event arguments.

ModelSim User’s Manual, v6.2g 169
February 2007

Verilog and SystemVerilog Simulation
System Tasks and Functions

The tcheck _cond argument conditions the data_event for the hold check and the
clk_event for the setup check. This alternate method of conditioning precludes
specifying conditionsin the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuously assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model's logic should reference
the delayed clk and delayed_data nets in place of the normal clk and data nets. This
ensures that the correct dataislatched in the presence of negative constraints. The
simulator automatically calculatesthe delaysfor delayed clk and delayed data such that
the correct datais latched as long as atiming constraint has not been violated. See
Negative Timing Check Limits for more details.

Unsupported Verilog-XL System Tasks

Thefollowing system tasks are Verilog-XL system tasksthat are not implemented in ModelSim
Verilog, but have equivalent ssmulator commands.

$Sinput("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the structure pane of the Workspace.
The corresponding source code is displayed in a Source window.

$reset

This system task resets the simulation back to its time O state. The equivalent simulator
command isrestart.

$restart("filename")

This system task sets the ssmulation to the state specified by filename, saved in a
previous call to $save. The equivalent smulator command isrestor e <filename>.

$save('filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

170

ModelSim User’s Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Compiler Directives

This system task sets the interactive scope to the scope specified by hierarchical _name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays alist of scopes defined in the current interactive scope. The
equivalent ssimulator command is show.

$showvars

This system task displays alist of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.

Compiler Directives

ModelSim Verilog supports al of the compiler directives defined in the |IEEE Std 1364, some
Verilog-XL compiler directives, and some that are proprietary. The SystemVerilog |EEE Std
P1800-2005 version of the ‘define and ‘include compiler directives are not currently supported.

Many of the compiler directives (such as "timescale) take effect at the point they are defined in
the source code and stay in effect until the directive is redefined or until it isreset to its default
by a ‘resetall directive. The effect of compiler directives spans source files, so the order of
source files on the compilation command line could be significant. For example, if you have a
file that defines some common macros for the entire design, then you might need to placeit first
in thelist of filesto be compiled.

The “resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

“celldefine
‘default_decay_time
“default_nettype
‘delay_mode_distributed
‘delay_mode_path
‘delay_mode_unit
‘delay_mode_zero
‘protected
‘timescale
‘unconnected_drive
“uselib

ModelSim Verilog implicitly defines the following macro:

"define MODEL_TECH

IEEE Std 1364 Compiler Directives
The following compiler directives are described in detail in the IEEE Std 1364.

ModelSim User’s Manual, v6.2g 171
February 2007

Verilog and SystemVerilog Simulation
Compiler Directives

“celldefine
“default_nettype
“define

“else

“elsif

‘endcelldefine
“endif

‘ifdef

‘ifndef

‘include

‘line
‘nounconnected_drive
‘resetall

‘timescale
‘unconnected_drive
‘undef

Verilog-XL Compatible Compiler Directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that
do not explicitly declare a decay time. The decay time can be expressed as areal or
integer number, or as "infinite" to specify that the charge never decays.

‘delay_mode_distributed

This directive disables path delays in favor of distributed delays. See Delay Modes for
details.

‘delay_mode_path

This directive sets distributed delays to zero in favor of path delays. See Delay Modes
for details.

‘delay_mode_unit

This directive sets path delays to zero and non-zero distributed delays to one time unit.
See Delay Modes for details.

“delay_mode_zero

This directive sets path delays and distributed delays to zero. See Delay Modes for
details.

‘uselib

Thisdirective is an aternative to the -v, -y, and +libext source library compiler
arguments. See Verilog-XL uselib Compiler Directive for details.

Thefollowing Verilog-XL compiler directives are silently ignored by ModelSim Verilog. Many
of these directives are irrelevant to Model Sim Verilog, but may appear in code being ported
from Verilog-XL.

172 ModelSim User's Manual, v6.2g
February 2007

Verilog and SystemVerilog Simulation
Verilog PLI/VPI and SystemVerilog DPI

‘accelerate
‘autoexpand_vectornets
“disable_portfaults
“enable_portfaults
‘expand_vectornets
‘noaccelerate
‘noexpand_vectornets
‘noremove_gatenames
‘noremove_netnames
‘nosuppress_faults
‘remove_gatenames
‘remove_netnames
‘suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in Model Sim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

“default_trireg_strength
‘signed
‘unsigned

Verilog PLI/VPI and SystemVerilog DPI

Model Sim supports the use of the Verilog PL1 (Programming Language Interface) and VPI
(Verilog Procedural Interface) and the SystemVerilog DPI (Direct Programming Interface).
These three interfaces provide a mechanism for defining tasks and functions that communicate
with the simulator through a C procedural interface. For more information on the Model Sim
implementation, see Verilog PLI/VPI/DPI.

ModelSim User’s Manual, v6.2g 173
February 2007

Verilog and SystemVerilog Simulation
Verilog PLI/VPI and SystemVerilog DPI

174 ModelSim User's Manual, v6.2g
February 2007

Chapter 7
WLF Files (Datasets) and Virtuals

This chapter describes the Wave Log Format (WLF) file and how you should and can useitin
your simulation flow.

A ModelSim simulation can be saved to awave log format (WLF) file for future viewing or
comparison to a current simulation. We use the term "dataset” to refer to a WLF file that has
been reopened for viewing.

Y ou can open more than one WLF file for simultaneous viewing. Y ou can also create virtual
signals that are simple logical combinations of, or logical functions of, signals from different
datasets.

WLF files arerecordings of ssmulation runs. The WLF fileiswritten asan archivefilein binary
format and is used to drive the debug windows at a later time. The files contain data from
logged objects (e.g., signals and variables) and the design hierarchy in which the logged objects
are found. Y ou can record the entire design or choose specific objects.

The WLF file provides you with precise in-simulation and post-simulation debugging
capability. Any number of WLF files can be reloaded for viewing or comparing to the active
simulation.

A dataset is apreviously recorded simulation that has been loaded into Model Sim. Each dataset
has alogical nameto let you indicate the dataset to which any command applies. Thislogical
nameis displayed as a prefix. The current, active simulation is prefixed by "sim:", while any
other datasets are prefixed by the name of the WLF file by default.

Two datasets are displayed in the Wave window in Figure 7-1. The current simulation is shown
in the top pane and isindicated by the "sim" prefix. A dataset from a previous simulation is
shown in the bottom pane and is indicated by the "gold" prefix.

ModelSim User’s Manual, v6.2g 175
February 2007

WLF Files (Datasets) and Virtuals
Saving a Simulation to a WLF File

Figure 7-1. Displaying Two Datasets in the Wave Window
mwa\re default _I- _ID EI

File Edit Miew Add Formatb Tools Window

I2HE Y EBRRD
QQ%QJJEF B3 @
4+ & 5 1DDpsE|li_l}'{_lﬁﬂm

- ClCc Mo alo
o001 000 19000 1101600)00 100

yy
{
<]
1

| D OO0 O [} [:
OOBGHIORT o000 000,10, 0. 000 Y00 100

L I= |_

750000 ps
Curgor 1 0 ps
al Hr B I -
| 50400 ps to 565800 ps | Now: 750 ns Delta: 2

N

The simulator resolution (see Simulator Resolution Limit (Verilog) or Simulator Resolution
Limit (VHDL)) must be the same for all datasets you are comparing, including the current
simulation. If you have aWLF file that isin a different resolution, you can use the wifman
command to changeit.

Saving a Simulation to a WLF File

If you add objects to the Dataflow, List, or Wave windows, or log objects with the log
command, the results of each simulation run are automatically saved to aWLF file called
vsimwif in the current directory. If you then run a new simulation in the same directory, the
vsimwif file is overwritten with the new results.

If you want to save the WLF file and not have it be overwritten, select the dataset tab in the
Workspace and then select File > Save. Or, you can use the -wlf <filename> argument to the
vsim command or the dataset save command.

176 ModelSim User's Manual, v6.2g
February 2007

WLF Files (Datasets) and Virtuals
Saving a Simulation to a WLF File

Note

If you do not use dataset save or dataset snapshot, you must end a simulation session
with aquit or quit -ssm command in order to produce avalid WLF file. If you don’t end
the simulation in this manner, the WLF file will not close properly, and Model Sim may
issue the error message "bad magic number" when you try to open an incomplete dataset
in subsequent sessions. If you end up with a"damaged" WLF file, you can try to "repair”
it using the wifrecover command.

WLF File Parameter Overview

There are anumber of WLF file parameters that you can control viathe modelsim.ini file or a
simulator argument. This section summarizes the various parameters.

Table 7-1. WLF File Parameters

Feature vsim argument modelsim.ini Default

WLF Filename -wlf <filename> WL FFilename=<filename> | vam.wif

WLF Size Limit -wlfdim <n> WLFSizeLimit = <n> no limit

WLF Time Limit -wiftlim <t> WLFTimeLimit = <t> no limit

WLF Compression -wlfcompress WLFCompress = 0|1 1 (-wlfcompress)
-wlfnocompress

WLF Optimization® | -wifopt WL FOptimize = 0O[1 1 (-wlifopt)
-wlfnoopt

WLF Delete on Quit? | -wlfdeleteonquit WLFDeleteOnQuit = 0|1 0
-wlfnodel eteonquit

WLF Cache Size? -wlfcachesize<n> | WLFCacheSize = <n> 256

WLF Collapse Mode | -wlIfnocollapse WLFCollapseModel = 01|12 | 1
-wlfcollapsedelta
-wlfcollapsetime

1. These parameters can a so be set using the dataset config command.

* WLF Filename — Specify the name of the WLF file.

* WLF Size Limit — Limit the size of a WLF file to <n> megabytes by truncating from
the front of the file as necessary.

* WLF TimeLimit — Limit the size of aWLF file to <t> time by truncating from the
front of the file as necessary.

* WLF Compression — Compress the data in the WLF file.

e WLF Optimization — Write additional datato the WLF file to improve draw
performance at large zoom ranges. Optimization results in approximately 15% larger

ModelSim User's Manual, v6.2g

February 2007

177

WLF Files (Datasets) and Virtuals
Opening Datasets

WLF files. Disabling WLF optimization also prevents Model Sim from reading a
previously generated WLF file that contains optimized data.

WLF Delete on Quit — Delete the WLF file automatically when the simulation exits.
Valid for current ssmulation dataset (vsim.wif) only.

WLF Cache Size — Specify the size in megabytes of the WLF reader cache. WLF
reader cache is enabled by default. The default value is 256. This feature caches blocks
of the WLF file to reduce redundant file I/O. If the cache is made smaller or disabled,
least recently used datawill be freed to reduce the cache to the specified size.

WLF Collapse Mode —WLF event collapsing has three settings: disabled, delta, time:
o Whendisabled, al events and event order are preserved.

o Deltamode records an object's value at the end of asimulation delta (iteration) only.
Defauilt.

o Time mode records an object's value at the end of a simulation time step only.

Opening Datasets
To open a dataset, do one of the following:

Select File > Open and choose Log Files or use the dataset open command.

Figure 7-2. Open Dataset Dialog Box

Open Dataset il
— Datazet Pathname
| w Browse...
— Logical Mame for Dataset
] 4 Cancel

The Open Dataset dialog includes the following options:

Dataset Pathname — Identifies the path and filename of the WLF file you want to
open.

L ogical Name for Dataset — Thisisthe name by which the dataset will be referred. By
default thisis the name of the WLF file.

178

ModelSim User’s Manual, v6.2g
February 2007

WLF Files (Datasets) and Virtuals
Viewing Dataset Structure

Viewing Dataset Structure

Each dataset you open creates a structure tab in the Main window workspace. Thetab islabeled
with the name of the dataset and displays a hierarchy of the design unitsin that dataset.

The graphic below shows three structure tabs: one for the active simulation (sim) and one each
for two datasets (test and gold).

Figure 7-3. Structure Tabs in Workspace Pane

Workspace
workspace B2
"l"| Instance |Design unit |Design uhit type |"-.-"i3i|:li|it_'.-' |
E-ml test_nngbuf test_nngbuf Schodule acc=<fullx
‘ clock sc_clock ScModule acc=<full:
=l ring_[MST ringbuf Schodule acc=<fullx
BHE blockl controllit] Architecture +3CC=<N0Nes
Bl-g block2 ghore M odule +acc=<full:
gl block3 retrieve b odule +acc=<fullx
— [l standard standard Package +ACLEY
— Il std_logic_ 1164 ztd_logic_1... Package +acc=y
— [l =td_logic_arith ztd_lagic_arith Package +ACC=Y
— [l std logic_unsigned std_logic_un... Package +acc=y
| reset_generatar test_ringbuf SchMethod
o generate_data tezt_ringbuf Schethod
) compare_data test_ringbuf Schethod Click here
| print_srrar test_ringbuf SchMethod to scroll
L print_restore tezt_ringbuf Schethod tabs
‘| \gﬂ
: = Files| @test|@gn® RiE
—

If you have too many tabsto display in the available space, you can scroll the tabs |eft or right
by clicking the arrow icons at the bottom right-hand corner of the window.

Structure Tab Columns
Each structure tab displays three columns by default:

Table 7-2. Structure Tab Columns

Column name Description
Instance the name of the instance
Design unit the name of the design unit
ModelSim User’s Manual, v6.2g 179

February 2007

WLF Files (Datasets) and Virtuals
Managing Multiple Datasets

Table 7-2. Structure Tab Columns (cont.)

Column name Description
Design unit type the type (e.g., Module, Entity, etc.) of the design
unit

Y ou can hide or show columns by right-clicking a column name and sel ecting the name on the
list.

Managing Multiple Datasets

GUI

When you have one or more datasets open, you can manage them using the Dataset Browser .
To open the browser, select File > Datasets.

Figure 7-4. The Dataset Browser

Dataset Browser El
I"‘I D atazet | Context | tode | Pathhame |
| compare
] qold Aest_sm Wi gold.wif
] zim Stest_sm Simulation i wlf
4 | |
Open... | Save Az Cloze M ake Active Rename... Dane |

Command Line

Y ou can open multiple datasets when the simulator isinvoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the WLF
file. You can specify a different dataset name as an optional qualifier to the vsim -view switch
on the command line using the following syntax:

-view <dataset>=<filename>

For example:

vsim -view foo=vsim.wlf

180 ModelSim User's Manual, v6.2g
February 2007

WLF Files (Datasets) and Virtuals
Managing Multiple Datasets

Model Sim designates one of the datasets to be the "active" dataset, and refers all names without
dataset prefixesto that dataset. The active dataset is displayed in the context path at the bottom
of the Main window. When you select adesign unit in a dataset’ s structure tab, that dataset
becomes active automatically. Alternatively, you can use the Dataset Browser or the
environment command to change the active dataset.

Design regions and signal names can be fully specified over multiple WLF files by using the
dataset name as a prefix in the path. For example:

sim:/top/alu/out
view:/top/alu/out
golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to refer to
something outside the active dataset. When more than one dataset is open, Model Sim will
automatically prefix namesin the Wave and List windows with the dataset name. Y ou can
change this default by selecting Tools > Window Preferences (Wave and List windows).

Model Sim also remembers a " current context” within each open dataset. Y ou can toggle
between the current context of each dataset using the environment command, specifying the
dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo. The
context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context™) is used
for finding objects specified without a path.

The Objects pane can be locked to a specific context of a dataset. Being locked to a dataset

means that the pane will update only when the content of that dataset changes. If locked to both
adataset and a context (e.g., test: /top/foo), the pane will update only when that specific context
changes. Y ou specify the dataset to which the paneislocked by selecting File > Environment.

Restricting the Dataset Prefix Display

The default for dataset prefix viewing is set with avariable in pref.tcl,

PrefM ain(DisplayDatasetPr efix). Setting the variable to 1 will display the prefix, setting it to
Owill not. It isset to 1 by default. Either edit the pref.tcl file directly or use the Tools > Edit
Preferences command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment command
with the -dataset option (you won't need to specify this option if the variable noted aboveis set
to 1). The environment command line switches override the pref.tcl variable.

ModelSim User’s Manual, v6.2g 181
February 2007

WLF Files (Datasets) and Virtuals
Saving at Intervals with Dataset Snapshot

Saving at Intervals with Dataset Snapshot

Dataset Snapshot lets you periodically copy datafrom the current simulation WLF file to
another file. Thisisuseful for taking periodic "snapshots’ of your simulation or for clearing the
current simulation WLF file based on size or elapsed time.

Once you have logged the appropriate objects, select Tools > Dataset Snapshot (Wave
window).

Figure 7-5. Dataset Snapshot Dialog

Dataset Snapshot |

— Dataset Snapshot State

% Enabled " Dizabled

— Snapzhot Type
f* Simulation Time | 'IEIEIEIEIEIEII hz ZI

" WLF File Size I 100 kegabytes

— Snapzhot Contents

" Snapshot containg only data zince previous snapshat,

¥ Snapshot containg all previous data.

— Snapshat Directary and File

— Diirectary File Prefis
|I::.-’|:|ataf||:|w Browse... | ’rvsim_snapshnt

— Owennritedlncrement

f* Always replace snapzhot file.

£ Use incrementing suffix on snapzhot files.

— Selected Snapzhot Filename

C: /dataflawvzim_znapzhot wif

(1] 4 | Cancel

Collapsing Time and Delta Steps

By default Model Sim collapses delta steps. This means each logged signal that has events
during asimulation deltahasitsfinal value recorded to the WLF file when the delta has expired.
The event order in the WLF file matches the order of the first events of each signal.

182 ModelSim User's Manual, v6.2g
February 2007

WLF Files (Datasets) and Virtuals
Virtual Objects

Y ou can configure how Model Sim collapses time and delta steps using arguments to the vsim
command or by setting the WL FCollapseM ode variable in the modelsim.ini file. The table
below summarizes the arguments and how they affect event recording.

Table 7-3. vsim Arguments for Collapsing Time and Delta Steps

vsim argument effect modelsim.ini setting

-wlfnocollapse All events for each logged signal are WLFCollapseMode=0
recorded to the WLF file in the exact order
they occur in the ssmulation.

-wlfdeltacollapse | Eachlogged signal which haseventsduring a | WLFCollapseMode = 1
simulation delta has its final value recorded
to the WLF file when the delta has expired.
Default.

-wliftimecollapse | Same as delta collapsing but at the timestep | WLFCollapseMode = 2
granularity.

When a run completes that includes single stepping or hitting a breakpoint, all events are

flushed to the WLF file regardless of the time collapse mode. It's possible that single stepping
through part of asimulation may yield a slightly different WLF file than just running over that
piece of code. If particular detail isrequired in debugging, you should disable time collapsing.

Virtual Objects

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in the
Model Sim simulation kernel. Model Sim supports the following kinds of virtual objects:

e Virtual Signals
* Virtual Functions
* Virtual Regions
e Virtual Types
Virtual objects are indicated by an orange diamond as illustrated by busin Figure 7-6:

ModelSim User’s Manual, v6.2g 183
February 2007

WLF Files (Datasets) and Virtuals
Virtual Objects

Figure 7-6. Virtual Objects Indicated by Orange Diamond

m wave - default =10 x|

File Edit “iew Add Format Tools Window
ISHS 2 RBL AT | SHKR|| KX |¢

|@Q@®|| x| ;i Bk &
_f{.%; 0ps 3 ELEEEE B O & q0l

750000 ps
Curzor 1 0 pz

_’I A | _’I|‘x|_| -
| 18800 ps to 23200 ps | Now: 750 ns Delta: 2

S

Virtual Signals

Virtual signals are aliases for combinations or subelements of signalswritten to the WLF file by
the simulation kernel. They can be displayed in the Objects, List, and Wave windows, accessed
by the examine command, and set using the for ce command. Y ou can create virtual signals
using the Tools > Combine Signals (Wave and List windows) menu selections or by using the
virtual signal command. Once created, virtual signals can be dragged and dropped from the
Objects pane to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that corresponds
to the nearest common ancestor of all the elements of the virtual signal. The virtual signal
command has an -install <region> option to specify where the virtual signal should be
installed. This can be used to install the virtual signal in a user-defined region in order to

reconstruct the original RTL hierarchy when simulating and driving a post-synthesis, gate-level
implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command can be used to hide the display of the broken-down
bitsif you don't want them cluttering up the Objects pane.

If the virtual signal has elements from more than one WLF file, it will be automatically installed
in the virtual region virtuals./Sgnals.

184 ModelSim User's Manual, v6.2g
February 2007

WLF Files (Datasets) and Virtuals
Virtual Objects

Virtual signals are not hierarchical — if two virtual signals are concatenated to become a third
virtual signal, the resulting virtual signal will be a concatenation of all the scalar elements of the
first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command. By
default, when quitting, Model Sim will append any newly-created virtuals (that have not been
saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave or
List format, you will need to execute the virtuals.do file (or some other equivalent) to restore
the virtual signal definitions before you re-load the Wave or List format during alater run.
There is one exception: "implicit virtuals* are automatically saved with the Wave or List
format.

Implicit and Explicit Virtuals

Animplicit virtual isavirtua signal that was automatically created by Model Sim without your
knowledge and without you providing a name for it. An example would be if you expand a bus
in the Wave window, then drag one bit out of the busto display it separately. That action creates
aone-bit virtual signal whose definition is stored in a special location, and is not visible in the
Objects pane or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals'.

Virtual Functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or elements
of signalslogged by the kernel. They consist of logical operations on logged signals and can be
dependent on simulation time. They can be displayed in the Objects, Wave, and List windows
and accessed by the examine command, but cannot be set by the force command.

Examples of virtual functions include the following:

» afunction defined as the inverse of agiven signal

» afunction defined as the exclusive-OR of two signals

» afunction defined as a repetitive clock

» afunction defined as "the rising edge of CLK delayed by 1.34 ns’

Virtual functions can also be used to convert signal types and map signal values.

The result type of avirtual function can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these types.
Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net strengths
are ignored.

ModelSim User’s Manual, v6.2g 185
February 2007

WLF Files (Datasets) and Virtuals
Virtual Objects

Virtual functions can be created using the virtual function command.

Virtual functions are also implicitly created by Model Sim when referencing bit-sel ects or part-
selects of Verilog registersin the GUI, or when expanding Verilog registers in the Objects,
Wave, or List window. Thisis necessary because referencing Verilog register elementsrequires
an intermediate step of shifting and masking of the Verilog "vreg" data structure.

Virtual Regions

User-defined design hierarchy regions can be defined and attached to any existing design region
or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in agate-level
design and to locate virtual signals. Thus, virtual signals and virtual regions can beused in a
gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command.

Virtual Types

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful a phanumeric names. The virtual type isthen used in atype conversion expression
to convert asignal to values of the new type. When the converted signal is displayed in any of
the windows, the value will be displayed as the enumeration string corresponding to the value of
the original signal.

Virtual types are created using the virtual type command.

186 ModelSim User's Manual, v6.2g
February 2007

Chapter 8
Waveform Analysis

When your simulation finishes, you will often want to analyze waveforms to assess and debug
your design. Designers typically use the Wave window for waveform analysis. However, you
can also look at waveform datain atextual format in the List window.

To analyze waveforms in Model Sim, follow these steps:

1
2.
3.

4.

Compileyour files.
Load your design.
Add objects to the Wave or List window.

add wave <object_name>
add list <object_name>

Run the design.

Objects You Can View

The list below identifies the types of objects can be viewed in the Wave or List window.

VHDL objects— (indicated by dark blue diamond in the Wave window)
signals, aliases, process variables, and shared variables

Verilog objects— (indicated by light blue diamond in the Wave window)
nets, registers, variables, and named events

Virtual objects — (indicated by an orange diamond in the Wave window)

virtual signals, buses, and functions, see; Virtual Objects for more information

Wave Window Overview

The Wave window opens by default in the MDI frame of the Main window as shown below.
The window can be undocked from the main window by pressing the Undock button in the
window header or by using the view -undock wave command. The preference variable
PrefMain(ViewUnDocked) wave can be used to control this default behavior. Setting this
variable will open the Wave Window undocked each time you start Model Sim.

ModelSim User’s Manual, v6.2g 187
February 2007

Waveform Analysis
Wave Window Overview

Figure 8-1. Undocking the Wave Window

Undock button ﬂ
File Edt Wew Fomst Compls Smolste Add Tooks Window Help

(D@ @@ s B0 WS || SE@M|| bH e || 0% 8 & e | 0l e e |

RN R A AT 'ﬂ:;iﬂ:?iﬁiﬁﬂ_wll Cota [.;|
Auw: T HoWM |
Warhapace # K| | —— e
"l Inatance |Design ure_[Dwsignor =} Hesl_ingbufhing INGT M N
=3 T test_trnghu! - ScModule Mest_singtading_INST Jcdock
Al clock woclock SeModue Mesl_singtefing INST hess! '
ing INST - irghul SoModuke Mest_gingbx.hing INST Mucka
blockl conkcil Sechitech 55 est_singbiing_INST Aouste. [
&l bleck2 st Moduie Mesl_mngoufiing_INST Sbiock
Blockd efiem Modde ‘Aes|_singta.fhing_INST fblock...
i refriever el Stabermend Mesl_singtaf/ring INST block. . o0 T B T
o BALW.. relimve Proces: Aest_gingbfing INST ok .
B BASSl mhwwm Prvmex T =

#esl_sngbuffing INST Mok

fesi_sngbuf/ring INST.block.. |0

* Mesl_sngbufiing |NSTblock. .. Ll 1 NG 00 1011
Mes|_angbufirng INS .. |40
Mesl_sngbufring INST Minck._ i i IO 0 101
Mesl_sngbufang INST bock. .
Mesl_sngbuliang INST . block....
Mesl_sngbuliang INST Mbiock. .

¥
o T T =] e
| 451958 n= to 462962 nz [Mowr: 500 vz Dalta: 2
|im|ﬂmv|ﬂmu| il
Ha
B RESTORED ™ af 202000 ns: [ala ssbumed 1o sspeched walue j
desteny fist
VS 5 -
|N|:fnr. 500 uz Delta: 2 [m.ﬂaat_linghrf P

Hereis an example of a Wave window that is undocked from the MDI frame. All menus and
icons associated with Wave window functions now appear in the menu and toolbar areas of the
Wave window.

188 ModelSim User’'s Manual, v6.2g
February 2007

Waveform Analysis
Wave Window Overview

Figure 8-2. Docking the Wave Window

| Dock button

[T wave - default |

File Edit Yew Add Format Tools ‘Window

JJH"EI%! smean ars/leugi|nxesaaas |y

4 ftest_counter/clk
4 ftest_counter/reset
B4 ftest_counter/count

: ﬂ _""'-J LI _.-'.
| 434260 ns to 434677 ns | Now: 495,852 ns Delta: 2 p

If the Wave window is docked into the Main window M DI frame, all menus and iconsthat were
in the standal one version of the Wave window move into the Main window menu bar and

toolbar.

The Wave window is divided into a number of window panes. All window panesin the Wave
window can be resized by clicking and dragging the bar between any two panes.

ModelSim User’s Manual, v6.2g 189
February 2007

Waveform Analysis
List Window Overview

Figure 8-3. Panes in the Wave Window

[T wave - def: ult (=] 3|

File Edit WieW Add Format Tdols SWindow
[eep rnalp EECEIE LT ERE N
K[To0m s ELEIEL B T R A Ty

| pathnames | | values |

J LMY ::

4 ftest_counter/clk 1
4 ftest_countern'resst 0
= e e de R T O O O O O O O O
4 [st [
S0
[5] S0
[4] =14
3] 11|
2] 14
] 514
[0] 511

&
7

>Arar

MNow B35852 ne
A 134551 ns

o0 B L [N

| 434260 ns to 4345'9? ns \ | Now: 495,852 ns Delta: 2
] \

| cursor names and values | | Cursors |

o~

List Window Overview

The List window displays simulation results in tabular format. Common tasks that people use
the window for include:

» Using gating expressions and trigger settings to focus in on particular signals or events.
See Configuring New Line Triggering in the List Window.

» Debugging deltadelay issues. See Delta Delays for more information.

The window is divided into two adjustable panes, which allows you to scroll horizontally
through the listing on the right, while keeping time and delta visible on the left.

190 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Adding Objects to the Wave or List Window

O i

Figure 8-4. Tabular Format of the List Window

File Edit Wiew &dd Tools ‘Window

|zEE sda> AFS

oo~~~ o - -

PE—% ftest_smiinto—,
delta— ftest smfoutof—

ftest swm/frst—

ftest_sm/clk—
490000 40 ooooooz0 171 0
491000 +1 o0ooooz0 171 0
495000 40 oooooooo 171 0
EQQoood 40 o0gaoooog 171 0
Eloooo 40 oooooooo 171 0
Elloo0 +1 oooooooo 171 0
Ell000 z oooooooo 171 0
E1E5000 40 40000000 127 0
EZ0ooo 40 40000000 187 0
EZ2000 +l‘ 40000000 187 0

164 lines _+ | |

QO0000000000010111011
QO0000000000010111011
QoOoo00O0o000l10111all
QO0000000000010111011 .

QO0000000000010111011
QO0000000000010111011
QO0000000000010111011
QoOoo00O0o000l10111all

=
i

Adding Objects to the Wave or List Window

Y ou can add objects to the Wave or List window in several ways.

Adding Objects with Drag and Drop

Y ou can drag and drop objects into the Wave or List window from the Workspace, Active
Processes, Memory, Objects, Source, or Locals panes. Y ou can also drag objects from the Wave

window to the List window and vice versa.

Select the objectsin the first window, then drop them into the Wave window. Depending on
what you select, all objects or any portion of the design can be added.

Adding Objects with a Menu Command

The Add menu in the Main windows let you add objects to the Wave window, List window, or

Logfile.

Adding Objects with a Command

Use the add list or add wave commands to add objects from the command line. For example:

VSIM> add wave /proc/a

Adds signal /proc/a to the Wave window.

ModelSim User's Manual, v6.2g

February 2007

191

Waveform Analysis
Measuring Time with Cursors in the Wave Window

VSIM> add list *

Adds all the objectsin the current region to the List window.
VSIM> add wave -r /*

Adds all objects in the design to the Wave window.

Adding Objects with a Window Format File

Select File> Open > Format and specify a previously saved format file. See Saving the
Window Format for details on how to create aformat file.

Measuring Time with Cursors in the Wave
Window

Model Sim uses cursors to measure time in the Wave window. Cursors extend a vertical line
over the waveform display and identify a specific simulation time. Multiple cursors can be used
to measure time intervals, as shown in the graphic below.

When the Wave window isfirst drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. The selected cursor
Isdrawn as abold solid line; all other cursors are drawn with thin lines.

As shown in the graphic below, three window panes relate to cursors: the cursor name pane on
the bottom left, the cursor value pane in the bottom middle, and the cursor pane with horizontal
"tracks' on the bottom right.

192 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Measuring Time with Cursors in the Wave Window

Figure 8-5. Cursor Names, Values and Time Measurements

[T wave - default g =10/ %]
File Edit View Add Format Tools Window

| R iR A% | SLER|| AT || QAR Q¢
| N e] |4 = (B o EIEIE B O R g

4 fest_counter/clk | |
4 ftest_counter/reset

&4 Jtest_counter/count LN 190 {0 O B 19 AP 0 0 O 9 P O O 1 L0 (OO DO

34551 ns

24391 ns
| 434260 nsyyﬁaarsn ns | Mow: 495851 ns Detta: 2 \ p
Z
right-click here |c:urs-:-r 'uraluesl locked cursor is red | interval measurement |

to name cursor

Working with Cursors
The table below summarizes common cursor actions.

Table 8-1. Actions for Cursors

Action Menu command M enu command Toolbar button
(Wave window docked) | (Wave window undocked)
Add cursor Add >Wave> Cursor | Add > Cursor

Delete cursor Wave > Delete Cursor | Edit > Delete Cur sor

Zoomlnon Wave > Zoom > Zoom | View > Zoom > Zoom
Active Cursor Cursor Cursor .&
ModelSim User's Manual, v6.2g 193

February 2007

Waveform Analysis
Measuring Time with Cursors in the Wave Window

Table 8-1. Actions for Cursors (cont.)

Action Menu command Menu command Toolbar button
(Wave window docked) | (Wave window undocked)

Lock cursor Wave > Edit Cursor Edit > Edit Cursor NA

Name cursor Wave > Edit Cursor Edit > Edit Cursor NA

Select cursor Wave > Cursors View > Cursors NA

Shortcuts for Working with Cursors

There are a number of useful keyboard and mouse shortcuts related to the actions listed above:

» Select acursor by clicking the cursor name.
* Jumptoa"hidden" cursor (onethat is out of view) by double-clicking the cursor name.

* Nameacursor by right-clicking the cursor name and entering a new value. Press
<Enter> on your keyboard after you have typed the new name.

* Movealocked cursor by holding down the <shift> key and then clicking-and-dragging
the cursor.

* Moveacursor to aparticular time by right-clicking the cursor value and typing the value
to which you want to scroll. Press <Enter> on your keyboard after you have typed the
new value.

Understanding Cursor Behavior

Thefollowing list describes how cursors "behave" when you click in various panes of the Wave
window:

» If you click in the waveform pane, the cursor closest to the mouse position is selected
and then moved to the mouse position.

» Clicking in ahorizontal "track" in the cursor pane selects that cursor and movesit to the
mouse position.

» Cursors"snap" to awaveform edge if you click or drag a cursor along the selected
waveform to within ten pixels of awaveform edge. Y ou can set the snap distance in the
Window Preferences dialog. Select Tools > Options > Wave Pr efer ences when the
Wave window is docked in the Main window MDI frame. Select Tools > Window
Pr efer ences when the Wave window is a stand-alone, undocked window.

* You can position a cursor without snapping by dragging in the cursor pane below the
waveforms.

194 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Setting Time Markers in the List Window

Jumping to a Signal Transition

Y ou can move the active cursor to the next or previous transition on the selected signal using
these two buttons on the toolbar:

Find Previous Find Next Transition
Transition locate the next signal
+ -+
* locate the previous 3 value change for the
signal value change selected signal

for the selected signa

Setting Time Markers in the List Window

Time markersin the List window are similar to cursors in the Wave window. Time markers tag
linesin the data table so you can quickly jump back to that time. Markers are indicated by athin
box surrounding the marked line.

Figure 8-6. Time Markers in the List Window
=101 x|
File Edit | wieww Add Tools '-.-'-.-'inu:_h:uw

J D = Signal Froperties. .. |:; w}i
sim:ftest_smeuQ:J

N oo K
s

delta— Bzt smSrst—,
test_smfclk—.

495000 +0) [misjajujujujuiajuajaiajajujajajuin 0 1 0ooooooooooooooooooooonl

| cooo0o +0 0 0 000o00o0o0ooo000o0000000lL

Slooo0o +0 0 1 000o0oo0o0ooo0o0oo000000lL

£1lo00 +1 0 1 000o0oo0o0ooo0o0oo000000lL

Ello0o0 0 1 0000000000000000000000001

Eooo 010111011 0 1 0000000000000000000000001
fzoooo +0 010111011yl DDDDDDDDDDDDDDDDDDDDDDDDl_J

Sz3000 +1 IRRERREREREE 0 0O 0000000000000000000000001

Ez0000 +0 0 1 000o0oo0o0ooo0o0oo000000lL

£2lo00 +1 0 1 0oooooooooooooo0oooo0oo0l

| Ezlo00 += 0 1 0000000000000000000000001
SEc LR I U i WO 0000 0000000000000000000 ol DDDDDDDDDDDDDDDDDDDDDDDD{:J

o | r

Working with Markers
The table below summarizes actions you can take with markers.

Table 8-2. Actions for Time Markers

Action Method
Add marker Sdlect aline and then select Edit > Add Marker
ModelSim User’s Manual, v6.2g 195

February 2007

Waveform Analysis

Zooming the Wave Window Display

Table 8-2. Actions for Time Markers (cont.)

Action Method

Delete marker Select atagged line and then select Edit > Delete
Marker

Goto marker Select View > Goto > <time>

Zooming the Wave Window Display

Zooming lets you change the simulation range in the waveform pane. Y ou can zoom using the
context menu, toolbar buttons, mouse, keyboard, or commands.

Zooming with the Menu, Toolbar and Mouse

Y ou can access Zoom commands from the View menu in the Wave window when it is
undocked, from the Wave > Zoom menu selections in the Main window when the Wave
window is docked, or by clicking the right mouse button in the waveform pane of the Wave

window.

These zoom buttons are available on the toolbar:

&

&

o

Zoom In 2x
zoom in by afactor of two
from the current view

Zoom In on Active Cursor
centers the active cursor in
the waveform display and
zoomsin

Zoom Mode
change mouse pointer to
zoom mode; see below

Zoom Out 2x
zoom out by a factor of two
from current view

Zoom Full

zoom out to view the full
range of the simulation from
time O to the current time

To zoom with the mousg, first enter zoom mode by selecting View > Zoom > M ouse M ode >
Zoom Mode. The left mouse button then offers 3 zoom options by clicking and dragging in
different directions:

. Down-Right or Down-Left: Zoom Area (In)

. Up-Right: Zoom Out
. Up-Left: Zoom Fit

Also note the following about zooming with the mouse:

196

ModelSim User’s Manual, v6.2g
February 2007

Waveform Analysis

Zooming the Wave Window Display

* Thezoom amount is displayed at the mouse cursor. A zoom operation must be more
than 10 pixelsto activate.

* You can enter zoom mode temporarily by holding the <Ctrl> key down while in select

mode.

* With the mouse in the Select Mode, the middle mouse button will perform the above
Zoom operations.

Saving Zoom Range and Scroll Position with Bookmarks

Bookmarks save a particular zoom range and scroll position. Thisletsyou return easily to a
specific view later. Y ou save the bookmark with a name and then access the named bookmark
from the Bookmark menu. Bookmarks are saved in the Wave format file (see Adding Objects
with aWindow Format File) and are restored when the format file is read.

Managing Bookmarks

The table below summarizes actions you can take with bookmarks.

Table 8-3. Actions for Bookmarks

Action M enu commands Menu commands Command
(Wave window (Wave window
docked) undocked)

Add bookmark | Add > Wave> Add > Bookmark bookmark add wave
Bookmark

View bookmark

Wave > Bookmarks >
<bookmark_name>

View > Bookmarks >
<bookmark _name>

bookmark goto wave

Delete bookmark

Wave > Bookmarks >
Bookmarks > <select
bookmark then Delete>

View > Bookmarks >
Bookmarks > <select
bookmark then Delete>

bookmark delete wave

Adding Bookmarks

To add a bookmark, follow these steps:

1. Zoom the wave window asyou see fit using one of the techniques discussed in Zooming
the Wave Window Display.

2. If the Wave window is docked, select Add > Wave > Bookmark. If the Wave window
is undocked, select Add > Bookmark.

ModelSim User's Manual, v6.2g

February 2007

197

Waveform Analysis
Searching in the Wave and List Windows

Figure 8-7. Bookmark Properties Dialog

Bookmark Properties (.wave) k|

——Baookmark Mame

|I:u:u:ukmark[l

— Zoom Hange

Top Index—
|EI hz to| 315 nz ’70

¥ Save zoom range with bookmark:

¥ i5ave seroll location with boalkmarld

0k, | Cancel

3. Givethe bookmark a name and click OK.

Editing Bookmarks

Once a bookmark exists, you can change its properties by selecting Wave > Bookmarks >
Bookmarksif the Wave window is docked; or by selecting Tools > Bookmarksif the Wave

window is undocked.

Searching in the Wave and List Windows

The Wave and List windows provide two methods for locating objects:
* Finding signal names — Select Edit > Find or use the find command to search for the
name of asignal.

» Search for values or transitions — Select Edit > Signal Sear ch to locate transitions or
signal values. The search featureis not available in all versions of Model Sim.

Finding Signal Names

The Find command is used to locate a signal name or value in the Wave or List window. When
you select Edit > Find, the Find dialog appears.

ModelSim User’s Manual, v6.2g

198
February 2007

Waveform Analysis
Searching in the Wave and List Windows

Figure 8-8. Find Signals by Name or Value

| FindinWave x|
Find: | Find Mest |
Field— Direchion Cloze |
% Mame % Down ™ Ewact
 Yalue = Up
¥ fwko Wiap

One option of noteisthe "Exact" checkbox. Check Exact if you only want to find objects that
match your search exactly. For example, searching for "clk" without Exact will find /top/clk
and clkl.

There are two differences between the Wave and List windows as it relates to the Find feature:

* Inthe Wave window you can specify avalue to search for in the values pane.

» Thefind operation works only within the active pane in the Wave window.

Searching for Values or Transitions

Available in some versions of Model Sim, the Search command lets you search for transitions or
values on selected signals. When you select Edit > Search Signals, the Signal Search dialog

appears.

ModelSim User’s Manual, v6.2g 199
February 2007

Waveform Analysis
Searching in the Wave and List Windows

Figure 8-9. Wave Signal Search Dialog
Wave Signal Search [window wave] [_ (O] x|

—Signal Mamelz]
Mo Sighalz Selected

—Search Type
% Any Transition

' Rizing Edge

™ Falling Edge

£~ Search for Signal Yalue "v"alue:l

™ Search for Expression E:-cpressicun:l Builder

—Search Options Search Fonward

|1 M atch Count

—Search Rezults
Status:
Time: Daone

Search Reverse

One option of note is Sear ch for Expression. The expression can involve more than one signal
but is limited to signals currently in the window. Expressions can include constants, variables,
and DO files. See Expression Syntax for more information.

Using the Expression Builder for Expression Searches

The Expression Builder is afeature of the Wave and List Signal Search dialog boxes, and the
List trigger properties dialog box. It aidsin building a search expression that follows the
GUI_expression_format.

To locate the Builder:

» select Edit > Search Signals (List or Wave window)
» select the Search for Expression option in the resulting dialog box
» select the Builder button

200 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Searching in the Wave and List Windows

Figure 8-10. Expression Builder Dialog

Expression Builder =]

FE:-:pressinn

— Exprezsion Builder
Inzert Selected Signal | [] ==
'event 'rising 'Fallirig et I I=
AMD | OR 1] 1 b x= <
=0R| SLL b £ {= +
SHEL| SR H L * ¢ A
Clear Save Test Ok | Cancel

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in asignal name, you can select the signal in the
associated Wave or List window and press Insert Selected Signal. All Expression Builder
buttons correspond to the Expression Syntax.

Saving an Expression to a Tcl Variable

Clicking the Save button will save the expression to aTcl variable. Once saved this variable can
be used in place of the expression. For example, say you save an expression to the variable
"foo". Here are some operations you could do with the saved variable:

* Read the value of foo with the set commana:

set foo
» Put $foo in the Expression: entry box for the Search for Expression selection.
* Issue a searchlog command using foo:

searchlog -expr $foo 0

Searching for when a Signal Reaches a Particular Value

Select the signal in the Wave window and click Insert Selected Signal and ==. Then, click the
value buttons or type avalue.

ModelSim User’s Manual, v6.2g 201
February 2007

Waveform Analysis
Formatting the Wave Window

Evaluating Only on Clock Edges

Click the & & button to AND this condition with the rest of the expression. Then select the
clock in the Wave window and click Insert Selected Signal and ‘rising. Y ou can also select the
falling edge or both edges.

Operators
Other buttonswill add operators of various kinds (see Expression Syntax), or you can type them
in.

Formatting the Wave Window

Setting Wave Window Display Preferences

Y ou can set Wave Window display preferences by selecting Tools > Options > Wave

Pr efer ences (when the window is docked in the MDI frame) or Tools > Window Preferences
(when the window is undocked). These commands open the Wave Window Preferences dialog
(Figure 8-11).

202 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Formatting the Wave Window

Figure 8-11. Display Tab of the Wave Window Preferences Dialog

Wave Window Preferences x|

Display | Grid & Timele | e
—Dizplay Signal Path——————— —Snap Diztance
0 [# elementz] 10 e
Uze 0O for full path —Fow Margin
4 [pixelz]
Juztify Walue —Child Row Margine——
& Left " Right 2 [pizelz]
—Enable/Dizable

Iv i avetorm Popup Enabled

[“wWaveform Selection Highlighting Enabled

v Diouble-Click ta Show Drivers [Dataflow Window]
™ On Cloge \Warn for Save Format

[Ahways undock wave window

¥ On Close Wan for zaving editable wave Commands

D ataset Prefix Display
" Always Show Dataset Prefises
% Show Datazet Prefies if 2 or more

" Mever Show Dataset Prefixes

ok LCancel

Hiding/Showing Path Hierarchy

Y ou can set how many elements of the object path display by changing the Display Signal Path
value in the Wave Window Preferences dialog (Figure 8-11). Zero indicates the full path while
anon-zero number indicates the number of path elements to be displayed.

Setting the Timeline to Count Clock Cycles

Y ou can set the timeline of the Wave window to count clock cycles rather than elapsed time. If
the Wave window is docked in the MDI frame, open the Wave Window Preferences dialog by
selecting Tools > Options > Wave Prefer ences from the Main window menus. If the Wave
window isundocked, select Tools > Window Pr efer ences from the Wave window menus. This
opens the Wave Window Preferences dialog. In the dialog, select the Grid & Timeline tab
(Figure 8-12).

ModelSim User’s Manual, v6.2g 203
February 2007

Waveform Analysis
Formatting the Wave Window

Figure 8-12. Grid & Timeline Tab of Wave Window Preferences Dialog

zl
Display Girid & Timeiine | 3]
—Gnd Configuration
—Gnd Offget—————— kinimurm Grid Spacing
0 n=z ’V a0 [pi:-:els]—‘
—Gnd Period
N e Reszet to Default

— Timeline Configuration

" Display simulation time in imeline area

' Display grid period count [cycle count]

ak | Cancel |

Enter the period of your clock in the Grid Period field and select “Display grid period count

(cycle count).” The timeline will now show the number of clock cycles, as shown in
Figure 8-13.

Figure 8-13. Clock Cycles in Timeline of Wave Window

m wave - default

j
+ Mest_counter/count | 00000101 J
L4

Curzor 1 100 ns 100 ns I

L] 3 g 3 |-_,_‘_|_| - .

| £ wave 43

Formatting Objects in the Wave Window

Y ou can adjust various object properties to create the view you find most useful. Select one or
more objects and then select View > Properties or use the selectionsin the For mat menu.

204 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Formatting the Wave Window

Changing Radix (base) for the Wave Window

One common adjustment is changing the radix (base) of an object. When you select View >
Properties, the Wave Signal Properties dialog appears.

Figure 8-14. Changing Signal Radix

YW ave Signal Properties

Signal: waim: Aopspaddr
— Dizplay Name

— Radix — wawve Color

" Symbolic ¢ Unsigned I I::::I::urs...l

" Einary £ Hexadecimal

£ Octal = ASCH —Mame Colo————————

" Decimal & Default I D:ulu:urs...l

Ok | Cancel Apply |

The default radix is symbolic, which means that for an enumerated type, the value panelists the
actual values of the enumerated type of that object. For the other radixes - binary, octal,
decimal, unsigned, hexadecimal, or ASCII - the object value is converted to an appropriate
representation in that radix.

Note

D When the symbolic radix is chosen for SystemVerilog reg and integer types, the values
are treated as binary. When the symbolic radix is chosen for SystemVerilog bit and int
types, the values are considered to be decimal.

Aside from the Wave Signal Properties dialog, there are three other ways to change the radix:

» Change the default radix for the current simulation using Simulate > Runtime Options
(Main window)

» Change the default radix for the current simulation using the radix command.

» Change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

ModelSim User’s Manual, v6.2g 205
February 2007

Waveform Analysis
Formatting the Wave Window

Dividing the Wave Window

Dividers serve asavisual aid for debugging, allowing you to separate signals and waveforms
for easier viewing. In the graphic below, abusis separated from the two signals above it with a

divider called "Bus."
Figure 8-15. Separate Signals with Wave Window Dividers

T wave - default e =10] x|
File Edt ‘iew Add Format Tools Window

D@8 s BB (A% || SHEAA| XL (| QQAQ ¥
NEE -k AR R I T T

4 Mest_counter/elk |
4 Mest counterfiesat

B4 ftest_counter/count 00 0 W O 000 W 0 0 OO 000 00 1O 00 OGO 00 10 000 O P
[7] |

[E]

[5]

[4]

[3]

[2]

[l
[0

F O U N

B 434391 ne

| 434260 ns to 434677 ns | Now: 495852 ns Delta: 2

To insert adivider, follow these steps:

1. Select the signal above which you want to place the divider.

2. If the Wave pane is docked in MDI frame of the Main window, select Add > Wave >
Divider from the Main window menu bar. If the Wave window stands alone, undocked
from the Main window, select Add > Divider from the Wave window menu bar.

3. Specify the divider name in the Wave Divider Properties dialog. The default nameis
New Divider. Unnamed dividers are permitted. Simply delete "New Divider" in the
Divider Name field to create an unnamed divider.

4. Specify the divider height (default height is 17 pixels) and then click OK.

Y ou can also insert dividers with the -divider argument to the add wave command.

206 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Formatting the Wave Window

Working with Dividers
The table below summarizes several actions you can take with dividers:

Table 8-4. Actions for Dividers
Action Method
Move adivider Click-and-drag the divider to the desired location

Change adivider's | Right-click the divider and select Divider Properties
name or size

Delete adivider Right-click the divider and select Delete

Splitting Wave Window Panes

The pathnames, values, and waveforms panes of the Wave window display can be split to
accommodate signals from one or more datasets. For more information on viewing multiple
simulations, see WLF Files (Datasets) and Virtuals.

To split the window, select Add > Window Pane.

In theillustration below, the top split shows the current active simulation with the prefix "sim,”
and the bottom split shows a second dataset with the prefix "gold".

ModelSim User’s Manual, v6.2g 207
February 2007

Waveform Analysis
Wave Groups

Figure 8-16. Splitting Wave Window Panes
[T wave - default =10 x|

File Edit Wew Add Faormat Tools Window

|[izEa sea
_@Q%@JJEE B3« &
_iﬁﬁ%é 100ps 5] [EL G L O & Rl My

z222; OO e O g
EE:ED:IEEW

| & X1 |

-

<
f
Iy
R

00 Mmoo aa
mm:m:mm&

7EO000 ps
Curzar 1 0 pz
< e i
| 50400 ps to 565800 ps | Now: 750 ns Delta: 2

.

.- [= I_

The Active Split

The active split is denoted with a solid white bar to the left of the signal names. The active split

becomes the target for objects added to the Wave window.

Wave Groups

Wave groups are awave window specific container object for creating arbitrary groups of

items. A wave group may contain 0, 1 or many items. The command line as well as drag and

drop may be used to add or remove items from a group. Groups themselves may be dragged
around the wave window or to another wave window.

Currently, groups may not be nested.

Creating a Wave Group

There are two ways to create a wave group.

1. Usethe Tools> Group menu selection.

208 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Wave Groups

a. Select aset of signalsin the wave window.

b. Select the Tools> Group menu item. The Wave Group Create dialog will appear.

Figure 8-17. Fill in the name of the group in the Group Name field.
x|

— Group Mame

|mygru:uup

— Group Height
[17

1]8 | Eanu:e||

c. Click Ok. The new wave group will be denoted by ared diamond in the Wave
window pathnames.

Figure 8-18. Wave groups denoted by red diamond

+

= mygroup

: k|

f]a] | r

| 746 ns to 750200 ps

| Now: 750 ns Delta: 2

2. Usethe -group argument to the add wave command.
Example 1 — The following command will create a group named mygroup containing
three items:

add wave -group mygroup sigl sig2 sig3

Example 2 — The following command will create an empty group named mygroup:
add wave -group mygroup

ModelSim User's Manual, v6.2g
February 2007

209

Waveform Analysis
Wave Groups

Deleting or Ungrouping a Wave Group

If awave group is selected and cut or deleted the entire group and all its contents will be
removed from the wave window. Likewise, the delete wave command will remove the entire
group if the group name is specified.

If awave group is selected and the Tools > Ungroup menu item is selected the group will be
removed and all of its contents will remain in the Wave window in existing order.

Adding Items to an Existing Wave Group

There are three ways to add items to an existing wave group.

1. Using the drag and drop capability to move items outside of the group or from other
windows within Model Sim into the group. The insertion indicator will show the position
theitem will be dropped into the group. If the cursor is moved over the lower portion of
the group item name a box will be drawn around the group name indicating the item will
be dropped into the last position in the group.

2. The cut/copy/paste functions may be used to paste itemsinto a group.
3. Usethe add wave -group command.
The following example adds two more signals to an existing group called mygroup.

add wave -group nmygroup sig4 sigb

Removing Items from an Existing Wave Group

Y ou can use any of the following methods to remove an item from a wave group.

1. Usethedrag and drop capability to move an item outside of the group.
2. Usemenu or icon selections to cut or delete an item or items from the group.

3. Usethe delete wave command to specify asignal to be removed from the group.

Note
The delete wave command removes all occurrences of a specified name from the wave

window, not just an occurrence within a group.

Miscellaneous Wave Group Features

Dragging awave group from the Wave window to the List window will result in all of the items
within the group being added to the List window.

210 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Formatting the List Window

Dragging a group from the Wave window to the Transcript window will result in alist of all of
the items within the group being added to the existing command line, if any.

Formatting the List Window

Setting List Window Display Properties

Before you add objects to the List window, you can set the window’ s display properties. To
change when and how a signal isdisplayed in the List window, select Tools> List Preferences
from the List window menu bar (when the window is undocked).

Figure 8-19. Modifying List Window Display Properties

Modify Display Properties (list) 5[
Window Properties] Triggers] ﬁﬂ
Signal Mames; |EI Path Elementz [for Full Path]

b ax Title Fawes: |5

[atazet Prefix

" Always Show D ataset Prefises

% Show Datazet Prefizes if 2 or maore

= Mewver Show Dataset Prefises

[T Always undock list windowes

ok | LCancel | Apply

Formatting Objects in the List Window

Y ou can adjust various properties of objects to create the view you find most useful. Select one
or more objects and then select View > Signal Properties from the List window menu bar
(when the window is undocked).

Changing Radix (base) for the List Window

One common adjustment is changing the radix (base) of an object. When you select View >
Signal Properties, the List Signal Properties dialog appears (Figure 8-20).

ModelSim User’s Manual, v6.2g 211
February 2007

Waveform Analysis
Formatting the List Window

Figure 8-20. List Signal Properties Dialog

o
~

‘¥ F 1 %)Y}

List Signal Properties

Signal:

0 =100

Dizplay Mame: I

— Radix:

Symbolic
Binary

Oictal
Decimal
IIhzigned
Hexadecimal
ASCI

Defal

wdidth: I Characters

Trigger:
" Triggers line

¥ Does not tigger line

ok Cancel Apply

The default radix is symbolic, which means that for an enumerated type, the window lists the
actual values of the enumerated type of that object. For the other radixes - binary, octal,
decimal, unsigned, hexadecimal, or ASCII - the object value is converted to an appropriate
representation in that radix.

Changing the radix can make it easier to view information in the List window. Compare the
image below (with decimal values) with the image in the section List Window Overview (with

symbolic values).

212

ModelSim User’s Manual, v6.2g

February 2007

Waveform Analysis
Saving the Window Format

Figure 8-21. Changing the Radix in the List Window

M=

File Edit Wiew &dd Tools Window

|hsEE s B AT %

P — Lest_smirst— ftest _sm/dat—
delta— lest_smfoutofi—, ftest_smiaddr— !
ftest_smiclk—,
Jtest smfout wire—

&20000 +0) 0 EOE 0 0O Z0E = EO
&30000 +0) 0 Z05 0 1 Z06 Z =31
&31000 +1) 0 Z05 0 1 Z06 Z 51
e31000 +Z | 0 Z0E 0 1 Z0e Z0& £l
ESE000 +0)20 E0e 0 1 Z0E Z0E £l
FOoooo 40 =0 Z0e 0 0 Z0& Z0& £l
702000 +1 =0 Z06 0 0 Z06 Z07 51
710000 +0)s0 Z06 0 1 Z06 Z07 51
711000 +1 =0 Z0e 0 1 Z0E Z07 £l
711000 +Z |20 E0e 0 1 Z0E = £l
T1E000 +0) 0O Z0e 0 1 Z0& z £l

164 lines «| |

Aside from the List Signal Properties dialog, there are three other ways to change the radix:

» Changethe default radix for the current simulation using Simulate > Runtime Options
(Main window)

» Change the default radix for the current simulation using the radix command.

* Change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

Saving the Window Format

By default all Wave and List window information is forgotten once you close the windows. If
you want to restore the windows to a previously configured layout, you must save a window
format file. Follow these steps.

1. Add the objects you want to the Wave or List window.
2. Edit and format the objects to create the view you want.
3. Savetheformat to afile by selecting File > Save > Format.

To usetheformat file, start with ablank Wave or List window and run the DO file in one of two
ways.

* |nvoke the do command from the command line:

VSIM> do <my_format_file>

ModelSim User’s Manual, v6.2g 213
February 2007

Waveform Analysis
Printing and Saving Waveforms in the Wave window

e Sdlect File> L oad.

Note
Window format files are design-specific. Use them only with the design you were

simulating when they were created.

Printing and Saving Waveforms in the Wave
window

Y ou can print the waveform display or save it as an encapsul ated postscript (EPS) file.

Saving a .eps Waveform File and Printing in UNIX

Select File> Print Postscript (Wave window) to print all or part of the waveform in the current
Wave window in UNIX, or save the waveform as a .eps file on any platform (see also the write
wave command).

Printing from the Wave Window on Windows Platforms

Select File> Print (Wave window) to print all or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).

Printer Page Setup

Select File > Page setup or click the Setup button in the Write Postscript or Print dialog box to
define how the printed page will appear.

Saving List Window Data to a File

Select File> Write List in the List window to save the datain one of these formats:

e Tabular — writes atext file that looks like the window listing

ns delta /a /b /cin / sum / cout
0 +0 X X U X U
0 +1 0 1 0 X U
2 +0 0 1 0 X U

» Events— writes atext file containing transitions during simulation

214 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Combining Objects into Buses

@ +0
[a X
/b X
/cin U
/ sum X
/[cout U

@ +1
/a0
/b 1
/cin O

e TSSI — writesafilein standard TSSI format; see also, the write tss command.

4 00000000000000010000000010
100 00000001000000010000000010

Y ou can also save List window output using the write list command.

Combining Objects into Buses

Y ou can combine signalsin the Wave or List window into buses. A busisacollection of signals
concatenated in a specific order to create a new virtual signal with a specific value. A virtual
compare signal (the result of a comparison simulation) is not supported for combination with
any other signal.

To combine signalsinto a bus, use one of the following methods:

» Select two or more signalsin the Wave or List window and then choose T ools >
Combine Signals from the menu bar. A virtual signal that is the result of a comparison
simulation is not supported for combining with any other signal.

* Usethevirtual signal command at the Main window command prompt.

In the illustration below, three signals have been combined to form anew bus called "Busl".
Note that the component signals are listed in the order in which they were selected in the Wave
window. Also note that the value of the busis made up of the values of its component signals,
arranged in a specific order.

ModelSim User’s Manual, v6.2g 215
February 2007

Waveform Analysis
Combining Objects into Buses

Figure 8-22. Signals Combined to Create Virtual Bus

[T wave - default |
File Edit Wiew Add Format Tools SWindow

|DeE& s BB AL %;;,J E@j N X% 1€ (o

|@a@q| i xR
4« R oopss ELELEE B O R Rl W

=10 %]

750000 ps
Curzar 1 0 ps

i I I HETT

18800 ps to 23200 ps | Mow: 730 ns Delts: 2

L/
||
.

216

ModelSim User’s Manual, v6.2g
February 2007

Waveform Analysis
Configuring New Line Triggering in the List Window

Configuring New Line Triggering in the List
Window

New line triggering refers to what events cause a new line of datato be added to the List
window. By default Model Sim adds a new line for any signal change including deltas within a
single unit of time resolution.

Y ou can set new line triggering on a signal-by-signal basis or for the whole simulation. To set
for asingle signal, select View > Signal Properties from the List window menu bar (when the
window is undocked) and select the Trigger sline setting. Individual signal settings override
global settings.

Figure 8-23. Line Triggering in the List Window

SIETES

Signat Atest_counter/count

Dizplay Name:|u:u:u1ter

— Radix:
" Symbokc afidthc |21 Characters
" Binarny
I~ Octal
" Decimal
" Unsigned Tingger:
oo
i~ ASCI ™ [ioes not trioger lins
v DafaLit

QK | _ Cancel | Apob |

To modify new line triggering for the whole simulation, select Tools> List Preferencesfrom
the List window menu bar (when the window is undocked), or use the configure command.
When you select Tools > List Preferences, the Modify Display Properties dialog appears:

ModelSim User’s Manual, v6.2g 217
February 2007

Waveform Analysis
Configuring New Line Triggering in the List Window

Figure 8-24. Setting Trigger Properties

Modify Display Properties (list) " o |EI|5|
—Deltas:
{* Expand Deltas " Collapse Deltaz " MoDelas
—Tngger On:
v SionalChanc Strobe Penod: |0ns
™ Shobe Firgt Strobe at: |0 ns
— Trigger G ating:
[Usze Gating E <pression Ilze Exprezsion Builder
E xpression: |
On Duration: IEI s
ok LCancel Apply
The following table summaries the triggering options:
Table 8-5. Triggering Options
Option Description
Deltas Choose between displaying all deltas (Expand

Deltas), displaying the value at the final delta
(Collapse Delta). Y ou can also hide the delta
column all together (No Delta), however this will
display the value at the final delta.

more details

Strobe trigger Specify an interval at which you want to trigger
datadisplay
Trigger gating Use a gating expression to control triggering; see

Using Gating Expressionsto Control Triggering for

218

ModelSim User’s Manual, v6.2g
February 2007

Waveform Analysis
Configuring New Line Triggering in the List Window

Using Gating Expressions to Control Triggering

Trigger gating controls the display of data based on an expression. Triggering is enabled once
the gating expression evaluatesto true. This setup behaves much like a hardware signal analyzer
that starts recording data on a specified setup of address bits and clock edges.

Here are some points about gating expressions:

» Gating expressions affect the display of data but not acquisition of the data.

» Theexpression is evaluated when the List window would normally have displayed a
row of data (given the other trigger settings).

e Theduration determines for how long triggering stays enabled after the gating
expression returns to false (0). The default of O duration will enable triggering only
while the expression istrue (1). The duration is expressed in x number of default
timescale units.

» Gatingislevel-sensitive rather than edge-triggered.

Trigger Gating Example Using the Expression Builder

This example shows how to create a gating expression with the Model Sim Expression Builder.
Hereisthe procedure:

1. Select Tools> Window Preferences from the List window menu bar (when the
window is undocked) and select the Triggers tab.

2. Click the Use Expression Builder button.

ModelSim User’s Manual, v6.2g 219
February 2007

Waveform Analysis
Configuring New Line Triggering in the List Window

Figure 8-25. Trigger Gating Using Expression Builder

E xpression Builder [_ [

FEHpressinn

— Exprezsion Builder
Inzert Selected Signal | [| ==
'event 'rising 'Falling b I I=
AMD | OR 1] 1 b »= <
=0R| SLL b £ 4= +
SEL| SR H L * ¢ 4
Clear Save Test | Ok | Cancel

3. Sdlect thesignal in the List window that you want to be the enable signal by clicking on
its name in the header area of the List window.

4. Click Insert Selected Signal and then 'rising in the Expression Builder.
5. Click OK to close the Expression Builder.

Y ou should see the name of the signal plus"'rising" added to the Expression entry box
of the Modify Display Properties dialog box.

6. Click OK to close the dialog.

If you already have ssimulation datain the List window, the display should immediately switch
to showing only those cycles for which the gating signal isrising. If that isn't quite what you
want, you can go back to the expression builder and play with it until you get it the way you
want it.

If you want the enable signal to work like a"One-Shot" that would display all valuesfor the
next, say 10 ns, after the rising edge of enable, then set the On Duration valueto 10 ns.

Trigger Gating Example Using Commands

The following commands show the gating portion of atrigger configuration statement:

configure list -usegating 1
configure list -gateduration 100
configure list -gateexpr {/test_delta/iom_dd'rising}

See the configure command for more details.

220 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Miscellaneous Tasks

Sampling Signals at a Clock Change

Y ou easily can sample signals at a clock change using the add list command with the
-notrigger argument. The -notrigger argument disables triggering the display on the specified
signals. For example:

add list clk -notriggerab c

When you run the simulation, List window entriesfor clk, a, b, and c appear only when clk
changes.

If you want to display on rising edges only, you have two options:

1. Turn off the List window triggering on the clock signal, and then define a repeating
strobe for the List window.

2. Definea"gating expression” for the List window that requires the clock to bein a
specified state. See above.

Miscellaneous Tasks

Examining Waveform Values

Y ou can use your mouse to display a dialog that shows the value of awaveform at a particular
time. Y ou can do this two ways.

* Rest your mouse pointer on awaveform. After a short delay, adialog will pop-up that
displaysthe value for the time at which your mouse pointer is positioned. If you'd prefer
that this popup not display, it can be toggled off in the display properties. See Setting
Wave Window Display Preferences.

* Right-click awaveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse. This method worksin the List window as well.

Displaying Drivers of the Selected Waveform

Y ou can automatically display in the Dataflow window the drivers of asignal selected in the
Wave window. Y ou can do this three ways:

 Select awaveform and click the Show Drivers button on the toolbar. | 24

* Sdect awaveform and select Show Drivers from the shortcut menu

» Double-click awaveform edge (you can enable/disable this option in the display
properties dialog; see Setting Wave Window Display Preferences)

This operation opens the Dataflow window and displays the drivers of the signal selected in the
Wave window. The Wave pane in the Dataflow window also opens to show the selected signal

ModelSim User’s Manual, v6.2g 221
February 2007

Waveform Analysis
Creating and managing breakpoints

with acursor at the selected time. The Dataflow window shows the signal(s) values at the
current cursor position.

Sorting a Group of Objects in the Wave Window

Select View > Sort to sort the objects in the pathname and val ues panes.

Creating and managing breakpoints

Model Sim supports both signal (i.e., when conditions) and file-line breakpoints. Breakpoints
can be set from multiple locations in the GUI or from the command line.

Signal breakpoints

Signal breakpoints (when conditions) instruct Model Sim to perform actions when the specified
conditions are met. For example, you can break on asignal value or at a specific simulator time
(see the when command for additional details). When abreakpoint is hit, amessagein the Main
window transcript identifies the signal that caused the breakpoint.

Setting signal breakpoints from the command line

Y ou use the when command to set asignal breakpoint from the VSIM> prompt.

Setting signal breakpoints from the GUI

Signal breakpoints are most easily set in the Objects Pane and the Wave Window Overview.
Right-click asignal and select Insert Breakpoint from the context menu. A breakpoint is set on
that signal and will be listed in the Breakpoints dialog.

File-line breakpoints

File-line breakpoints are set on executable lines in your source files. When the lineis hit, the
simulator stops and the Source window opens to show the line with the breakpoint. Y ou can
change this behavior by editing the Pref Source(OpenOnBreak) variable. See Simulator GUI
Preferences for details on setting preference variables.

Setting file-line breakpoints from the command line
Y ou use the bp command to set afile-line breakpoint from the VSIM> prompt.

Setting file-line breakpoints from the GUI

File-line breakpoints are most easily set using your mouse in the Source Window. Click on a
blue line number at the left side of the Source window, and ared diamond denoting a breakpoint

222 ModelSim User's Manual, v6.2g
February 2007

Waveform Analysis
Creating and managing breakpoints

will appear. The breakpoints are toggles — click once to create the colored diamond; click again
to disable or enable the breakpoint. To delete the breakpoint completely, click the red diamond
with your right mouse button, and select Remove Breakpoint.

ModelSim User’s Manual, v6.2g 223
February 2007

Waveform Analysis
Creating and managing breakpoints

224 ModelSim User’'s Manual, v6.2g
February 2007

Chapter 9
Tracing Signals with the Dataflow Window

This chapter discusses how to use the Dataflow window for tracing signal values and browsing
the physical connectivity of your design.

Dataflow Window Overview

The Dataflow window allows you to explore the "physical” connectivity of your design.

Note
D OEM versions of Model Sim have limited Dataflow functionality. Many of the features

described below will operate differently. The window will show only one process and its
attached signals or one signal and its attached processes, as displayed in Figure 9-1.

Figure 9-1. The Dataflow Window (undocked)

=72 dataflow =10 x|
File Edit Wiew Mawvigake Trace Tools Window

SN IBBOIM e »RIHEIDP22H]
CROR S :

#IMITIALAFSE

Extended mode disabled I |If<ieep| 1 | fprocidclk -

Objects You Can View in the Dataflow Window
The Dataflow window displays:

* processes

ModelSim User's Manual, v6.2g 225
February 2007

Tracing Signals with the Dataflow Window
Adding Objects to the Window

» gignals, nets, and registers

The window has built-in mappings for all Verilog primitive gates (i.e., AND, OR, etc.). For
components other than Verilog primitives, you can define a mapping between processes and
built-in symbols. See Symbol Mapping for details.

Adding Objects to the Window

Y ou can use any of the following methods to add objects to the Dataflow window:

» drag and drop objects from other windows

* usethe Navigate menu options in the Dataflow window
» usethe add dataflow command

» double-click any waveform in the Wave window display

The Navigate menu offers four commands that will add objects to the window. The commands
include:

* View region — clear the window and display all signals from the current region

* Add region — display all signals from the current region without first clearing window
* View all nets— clear the window and display all signals from the entire design

* Add ports— add port symbols to the port signals in the current region

When you view regions or entire nets, the window initially displays only the drivers of the
added objects in order to reduce clutter. Y ou can easily view readers by selecting an object and
invoking Navigate > Expand net to readers.

A small circle above an input signal on ablock denotes atrigger signal that is on the process
sensitivity list.

Links to Other Windows

The Dataflow window has links to other windows as described bel ow:

Table 9-1. Dataflow Window Links to Other Windows and Panes
Window Link

Main Window select asignal or process in the Dataflow
window, and the structure tab updates if that
object isin adifferent design unit

Active Processes Pane select a processin either window, and that
process is highlighted in the other

226 ModelSim User's Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Exploring the Connectivity of the Design

Table 9-1. Dataflow Window Links to Other Windows and Panes (cont.)

Window

Link

Objects Pane

select adesign object in either window, and
that object is highlighted in the other

Wave Window

* trace through the design in the Dataflow
window, and the associated signals are
added to the Wave window

* move acursor in the Wave window, and
the values update in the Dataflow window

Source Window

select an object in the Dataflow window, and
the Source window updates if that object isin
adifferent sourcefile

Exploring the Connectivity of the Design

A primary use of the Dataflow window is exploring the "physical” connectivity of your design.
Oneway of doing thisis by expanding the view from processto process. This alowsyou to see

the drivers/receivers of a particular signal,

net, or register.

Y ou can expand the view of your design using menu commands or your mouse. To expand with
the mouse, simply double click asignal, register, or process. Depending on the specific object
you click, the view will expand to show the driving process and interconnect, the reading

process and interconnect, or both.

Alternatively, you can select asignal, register, or net, and use one of the toolbar buttons or

menu commands described in Table 9-2:

Table 9-2. Icon and Menu Selections for Exploring Design Connectivity

Expand net to all drivers

or register

=% display driver(s) of the selected signal, net,

Navigate > Expand net to drivers

Expand net to all driversand readers Navigate > Expand net
e display driver(s) and reader(s) of the
selected signal, net, or register

Expand net to all readers

net, or register

+C display reader(s) of the selected signdl,

Navigate > Expand net to readers

Asyou expand the view, note that the "layout” of the design may adjust to best show the
connectivity. For example, the location of an input signal may shift from the bottom to the top

of aprocess.

ModelSim User's Manual, v6.2g
February 2007

227

Tracing Signals with the Dataflow Window
The Embedded Wave Viewer

Tracking Your Path Through the Design

Y ou can quickly traverse through many componentsin your design. To help mark your path, the

objects that you have expanded are highlighted in green.

Figure 9-2. Green Highlighting Shows Your Path Through the Design

Y ou can clear this highlighting using the Edit > Erase highlight command or by
clicking the Erase highlight icon in the toolbar.

The Embedded Wave Viewer

o

Another way of exploring your design isto use the Dataflow window’ s embedded wave viewer.
Thisviewer closely resembles, in appearance and operation, the stand-alone Wave window (see

Waveform Analysis for more information).

The wave viewer is opened using the View > Show Wave command or by clicking the
Show Wave icon.

ig|

One common scenario isto place signalsin the wave viewer and the Dataflow panes, run the
design for some amount of time, and then use time cursors to investigate value changes. In other

words, as you place and move cursors in the wave viewer pane (see Measuring Time with
Cursorsin the Wave Window for details), the signal values update in the Dataflow pane.

228 ModelSim User's Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Zooming and Panning

Figure 9-3. Wave Viewer Displays Inputs and Outputs of Selected Process

dataflow - default - default
File Edit iew &dd Trace Tools Window

| U=

A
Aopdodpstib 51
+ 000 [o000 [0000 |
+
+
+
+ -
L/
Curzor 1 BES s I
i 3 K 3 |5 | e .
| |xeep| 1] IHOpICHALWAY S#155

Another scenario isto select a process in the Dataflow pane, which automatically adds to the

wave viewer pane all signals attached to the process.
See Tracing Events (Causality) for another example of using the embedded wave viewer

Zooming and Panning

The Dataflow window offers several tools for zooming and panning the display
229

ModelSim User's Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Tracing Events (Causality)

These zoom buttons are available on the toolbar:

Zoom In Zoom Out Zoom Full
(ﬂ zoom in by afactor a zoom out by a % zoom out to view
of two from the factor of two from the entire schematic

current view current view

To zoom with the mouse, you can either use the middle mouse button or enter Zoom Mode by
selecting View > Zoom and then use the left mouse button.

Four zoom options are possible by clicking and dragging in different directions:

* Down-Right: Zoom Area (In)

* Up-Right: Zoom Out (zoom amount is displayed at the mouse cursor)
* Down-Left: Zoom Selected

e Up-Left: Zoom Full

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than 10
pixelsto activate.

Panning with the Mouse

Y ou can pan with the mouse in two ways: 1) enter Pan Mode by selecting View > Pan and then
drag with the left mouse button to move the design; 2) hold down the <Ctrl> key and drag with
the middle mouse button to move the design.

Tracing Events (Causality)

One of the most useful features of the Dataflow window is tracing an event to see the cause of
an unexpected output. This feature uses the Dataflow window’ s embedded wave viewer (see
The Embedded Wave Viewer for more details).

In short you identify an output of interest in the Dataflow pane and then use time cursorsin the
wave viewer pane to identify events that contribute to the output.

The process for tracing eventsis as follows:

1. Log all signas before starting the smulation (add log -r /*).

2. After running asimulation for some period of time, open the Dataflow window and the
wave viewer pane.

3. Add aprocess or signal of interest into the Dataflow window (if adding asignal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

230 ModelSim User's Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Tracing the Source of an Unknown State (StX)

4. Place atime cursor on an edge of interest; the edge should be on asignal that is an
output of the process.

5. Select Trace > Trace input net to event. J-+

A second cursor is added at the most recent input event.

6. Keep selecting Trace > Trace next event until you've reached an input event of
interest. Note that the signals with the events are selected in the wave pane.

7. Now select Trace> Trace Set. | 4

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. Y ou can change which signals are
followed by changing the selection.

8. To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, select Trace > Trace event reset.

Tracing the Source of an Unknown State (StX)

Another useful Dataflow window debugging tool isthe ability to trace an unknown state (StX)
back to its source. Unknown values are indicated by red linesin the Wave window (Figure 9-4)
and in the wave viewer of the Dataflow window.

Figure 9-4. Unknown States Shown as Red Lines in Wave Window

m warve - default
Atopdpdt_out St
L4
Curzar 1 2305 ns 2305 nz I
4 o r |.h_ﬁ_| = .
1 M WIEVE l |h] proc.v l ﬁ dataflow I ﬁil

The procedure for tracing to the source of an unknown state in the Dataflow window is as
follows:

1. Load your design.

ModelSim User’s Manual, v6.2g 231
February 2007

Tracing Signals with the Dataflow Window
Finding Objects by Name in the Dataflow Window

2.

Log al signalsin the design or any signals that may possibly contribute to the unknown
value (log -r /* will log all signalsin the design).

Add signalsto the Wave window or wave viewer pane, and run your design the desired
length of time.

Put a Wave window cursor on the time at which the signal value is unknown (StX). In
Figure 9-4, Cursor 1 at time 2305 shows an unknown state on signal t_out.

Add the signal of interest to the Dataflow window by doing one of the following:
o double-clicking on the signal’s waveform in the Wave window,

o right-clicking the signal in the Objects window and selecting Add to Dataflow >
Selected Signals from the popup menu,

o selecting the signal in the Objects window and selecting Add > Dataflow > Selected
Signals from the menu bar.

In the Dataflow window, make sure the signal of interest is selected.
Trace to the source of the unknown by doing one of the following:

o If the Dataflow window is docked, select Tools> Trace> TraceX, Tools> Trace>
TraceX Delay, Tools > Trace > ChaseX, or Tools> Trace > ChaseX Delay.

o If the Dataflow window isundocked, select Trace > TraceX, Trace > TraceX
Delay, Trace > ChaseX, or Trace > ChaseX Delay.

These commands behave as follows:

e TraceX / TraceX Delay— Steps back to the last driver of an X value. TraceX
Delay works similarly but it steps back in time to the last driver of an X value.
TraceX should be used for RTL designs; TraceX Delay should be used for gate-
level netlists with back annotated delays.

* ChaseX / ChaseX Delay — "Jumps' through a design from output to input,
following X values. ChaseX Delay acts the same as ChaseX but also moves
backwards in time to the point where the output value transitions to X. ChaseX
should be used for RTL designs;, ChaseX Delay should be used for gate-level
netlists with back annotated delays.

Finding Objects by Name in the Dataflow
Window

Select Edit > Find from the menu bar, or click the Find icon in the toolbar, to search
for signal, net, or register names or an instance of a component. This opensthe Find in i
Dataflow dialog (Figure 9-5).

232

ModelSim User’s Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Printing and Saving the Display

Figure 9-5. Find in Dataflow Dialog

zl
Find: | Find
Type Fid Net
o~ Ary [T Exact _—
W rdemee [T Match case Fird A&l
O Signal ™ Zoomto
Cloze

With the Find in Dataflow dialog you can limit the search by type to instances or signals. Y ou
select Exact to find an item that exactly matches the entry you' ve typed in the Find field. The
Match case selection will enforce case-sensitive matching of your entry. And the Zoom to
selection will zoom in to theitem in Find field.

The Find All button allows you to find and highlight all occurrences of theitem in the Find
field. If Zoom to is checked, the view will change such that all selected items are viewable. If
Zoom to is not selected, then no change is made to zoom or scroll state.

Printing and Saving the Display

Saving a .eps File and Printing the Dataflow Display from
UNIX

Select File> Print Postscript to setup and print the Dataflow display in UNIX, or save the
waveform as a .epsfile on any platform.

ModelSim User’s Manual, v6.2g 233
February 2007

Tracing Signals with the Dataflow Window
Printing and Saving the Display

Figure 9-6. The Print Postscript Dialog

Prinkt Postscript |

—Printer

& Print command: |lp -d Ip1
- Ip 2 ZI Setup... |
£ File name: Idatafluw.ps Browse... |

—FPaper
Faper zize: ILetter ZI
Border Width: 0.4 =
Font: IHeretica ZI
ok | Cancel |

Printing from the Dataflow Display on Windows Platforms
Select File > Print to print the Dataflow display or to save the display to afile.

Figure 9-7. The Print Dialog

x|

Properties. .. |

— Printer

M ame;

Status: Ready
Type: HF Lazernlet 5L

Where: LPTT:
Comment; [Prirt ta file
— Frint range — Copies
Lo | Murmber of copies: 1 -
€ Fages from: j0 bar |0

€ Selechion @I

| k. I Cancel

234 ModelSim User’'s Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Configuring Page Setup

Configuring Page Setup

Clicking the Setup button in the Print Postscript or Print dialog box allows you to configure
page view, highlight, color mode, orientation, and paper options (thisis the same dialog that
opens via File > Page setup).

Figure 9-8. The Dataflow Page Setup Dialog

Dataflow Page Setup A
(= S —— —Highlight

© Full

3w
[R [
= =

£ Cument Yiew

— Color Mode ~Orientation

= Color
0 £~ Portrait

" |rwert Color

| andscape
' Mono

—Paper

Font: |Helwetica ZI

ok | LCancel

Symbol Mapping

The Dataflow window has built-in mappings for all Verilog primitive gates (i.e., AND, OR,
etc.). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. Thisis done through afile containing name pairs, one per line,
where the first name is the concatenation of the design unit and process names,
(DUname.Processname), and the second name is the name of a built-in symbol. For example:

xorg(only).pl XOR
org(only).pl OR
andg(only).pl AND

Entities and modul es are mapped the same way:

ModelSim User’s Manual, v6.2g 235
February 2007

Tracing Signals with the Dataflow Window
Symbol Mapping

AND1 AND

AND2 AND # A 2-input and gate
AND3 AND

AND4 AND

AND5 AND

AND6 AND

xnor (test) XNOR

Note that for primitive gate symbols, pin mapping is automatic.

The Dataflow window looksin the current working directory and inside each library referenced
by the design for the file dataflow.bsm (.bsm stands for "Built-in Symbol Map"). It will read all
files found.

User-defined symbols

Y ou can aso define your own symbols using an ASCII symbol library file format for defining
symbol shapes. This capability is delivered via Concept Engineering’s Nlview™ widget
Symlib format.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to the
Nlview widget to use for symbol lookups. Again, aswith the built-in symbols, the DU name and
optional process name is used for the symbol lookup. Here's an example of a symbol for afull
adder:

synbol adder(structural) * DEF \
port ain -loc -12 -15 0 -15\
pinattrdsp @ane -cl 2 -15 8 \
port bin -loc -12 15 0 15\
pi nattrdsp @ane -cl 2 15 8 \
port cinin -loc 20 -40 20 -28 \
pinattrdsp @ane -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \
pinattrdsp @ane -lc 19 26 8 \
port sumout -loc 63 0 51 0\
pi nattrdsp @ane -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35\
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35\
path 0 -35 0 -7\
path 0 -7 10 0O

Port mapping is done by name for these symbols, so the port namesin the symbol definition
must match the port names of the Entity|Module|Process (in the case of the process, it’sthe
signal names that the process reads/writes).

236 ModelSim User's Manual, v6.2g
February 2007

Tracing Signals with the Dataflow Window
Configuring Window Options

Note
D When you create or modify asymlib file, you must generate afileindex. Thisindex is

how the Nlview widget finds and extracts symbols from the file. To generate the index,
select Tools> Create symlib index (Dataflow window) and specify the symlib file. The
file will be rewritten with a correct, up-to-date index.

Configuring Window Options

Y ou can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select Tools > Options to open the Dataflow Options dialog box.

Figure 9-9. Configuring Dataflow Options

Dataflow Dptions |
eneral optiohz] W arning Dptinns]

¥ Hide cells

¥ FKeep Dataflow

K.eep previous contents
when adding new nets or
inztanizes o the
Drataflow window.

[Show Hierarchy
¥ Bottom inout ping
[~ Disable Sprout

[T Select equivalent nets

[T Lognets

v Select Environment

v Automatic Add to 'Wave

ok LCancel

ModelSim User’s Manual, v6.2g 237
February 2007

Tracing Signals with the Dataflow Window
Configuring Window Options

238 ModelSim User's Manual, v6.2g
February 2007

Chapter 10
Signal Spy

The Verilog language allows access to any signal from any other hierarchical block without
having to routeit viathe interface. This means you can use hierarchical notation to either assign
or determine the value of asignal in the design hierarchy from atestbench. This capability fails
when a Verilog testbench attempts to reference asignal in a VHDL block or reference asignal
in aVerilog block through aVHDL level of hierarchy.

This limitation exists because VHDL does not allow hierarchical notation. In order to reference
internal hierarchical signals, you have to resort to defining signalsin a global package and then
utilize those signals in the hierarchical blocks in question. But, this requires that you keep
making changes depending on the signals that you want to reference.

The Signal Spy procedures and system tasks overcome the aforementioned limitations. They
allow you to monitor (spy), drive, force, or release hierarchical objectsina VHDL or mixed
design.

The VHDL procedures are provided viathe Util Package within the modelsim lib library. To
access the procedures you would add lines like the following to your VHDL code:

library nodel simlib;
use nodelsimlib.util.all;

The Verilog tasks are available as built-in System Tasks and Functions. The table below shows
the VHDL procedures and their corresponding Verilog system tasks.

Table 10-1. Signal Spy: Mapping VHDL Procedures to Verilog System Tasks

VHDL procedures Verilog system tasks
disable signal_spy $disable_signal_spy
enable signal_spy $enable_signal_spy
init_signal_driver $init_signal_driver
init_signal_spy $init_signal_spy
signal_force $signal_force
signa_release $signal_release

Designed for Testbenches

Signal Spy limits the portability of your code. HDL code with Signal Spy procedures or tasks
works only in Model Sim, not other simulators. We therefore recommend using Signal Spy only

ModelSim User’s Manual, v6.2g 239
February 2007

Signal Spy

in testbenches, where portability isless of a concern, and the need for such atool is more
applicable.

240 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
disable_signal_spy

disable signal spy

The disable_signal_spy() procedure disables the associated init_signal_spy. The association
between the disable_signal_spy call and theinit_signal_spy call is based on specifying the same
src_object and dest_object arguments to both functions. The disable_signal_spy call can only
affect init_signal_spy callsthat had their control _state argument set to "0" or "1".

Syntax

disable signal_spy(<src_object>, <dest_object>, <verbose>)

Returns
Nothing

Arguments

src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signa_spy call that you wish to disable.

dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signa_spy call that you wish to disable.

verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that a disable occurred and the simulation time that it occurred.
Default is 0, no message

Related procedures

init_signal_spy, enable signal_spy

Example

Seeinit_signa_spy Example

ModelSim User’s Manual, v6.2g 241
February 2007

Signal Spy
enable_signal_spy

enable_signal _spy

The enable_signal_spy() procedure enables the associated init_signal_spy. The association
between the enable_signal_spy call and theinit_signal_spy call is based on specifying the same
src_object and dest_object arguments to both functions. The enable_signal_spy call can only
affect init_signal_spy callsthat had their control _state argument set to "0" or "1".

Syntax

enable _signal_spy(<src_object>, <dest_object>, <verbose>)
Returns

Nothing

Arguments
e Src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signal_spy call that you wish to enable.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signal_spy call that you wish to enable.

e verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that an enable occurred and the simulation time that it occurred.
Default is 0, no message

Related procedures

init_signal_spy, disable signal_spy

Example

Seeinit_signa_spy Example

242 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
init_signal_driver

init_signal _driver

Theinit_signal_driver() procedure drives the value of aVHDL signal or Verilog net (called the
src_object) onto an existing VHDL signal or Verilog net (called the dest_object). Thisallows
you to drive signals or nets at any level of the design hierarchy from within aVHDL
architecture (e.g., atestbench).

Theinit_signal_driver procedure drives the value onto the destination signal just asif the
signals were directly connected in the HDL code. Any existing or subsequent drive or force of
the destination signal, by some other means, will be considered with the init_signal_driver
value in the resolution of the signal.

Call only once

Theinit_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular pair of
signals. Onceinit_signal_driver is called, any change on the source signal will be driven on the
destination signal until the end of the simulation.

Thus, we recommend that you place all init_signal_driver callsinaVHDL process. Y ou need to
code the VHDL process correctly so that it is executed only once. The VHDL process should
not be sensitive to any signals and should contain only init_signal_driver calsand asimple wait
statement. The process will execute once and then wait forever. See the example below.

Syntax

init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)
Returns

Nothing

Arguments
e Src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to aVHDL signal or Verilog net. Use the path separator to which your
simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or ".". The
path must be contained within double quotes.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog net. Use the path separator to which
your simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or ".".
The path must be contained within double quotes.

e deay

Optional time value. Specifies adelay relative to the time at which the src_object changes.
The delay can be an inertial or transport delay. If no delay is specified, then adelay of zero
is assumed.

ModelSim User’s Manual, v6.2g 243
February 2007

Signal Spy
init_signal_driver

* delay type
Optional del_mode. Specifiesthe type of delay that will be applied. The value must be
either mti_inertial or mti_transport. The default ismti_inertial.

e verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object is driving the dest_object. Default is 0, no

message.
Related procedures
init_signal_spy, signal_force, signal_release

Limitations

* Whendriving aVerilog net, the only delay _type allowed isinertial. If you set the delay
typeto mti_transport, the setting will be ignored and the delay type will be mti_inertial.

* Any delaysthat are set to avalue less than the simulator resolution will be rounded to
the nearest resolution unit; no special warning will be issued.

init_signal_driver Example

This example creates alocal clock (clkO) and connectsit to two clocks within the design
hierarchy. The .../blk1/clk will match local clkO and a message will be displayed. The open
entries allow the default delay and delay _type while setting the verbose parameter to a 1. The
.../blk2/clk will match the local clkO but be delayed by 100 ps.

library | EEE, nodelsimlib;
use | EEE. std_|logic_1164. all;
use nodelsimlib.util.all;

entity testbench is
end;

architecture only of testbench is
signal clkO : std_| ogic;
begin
gen_cl kO : process
begin
clkO <= '1'" after 0 ps, '0" after 20 ps;
wait for 40 ps;
end process gen_cl kO;

drive_sig_process : process
begin
init_signal _driver("clk0", "/testbench/uut/blkl/clk", open, open, 1);
init_signal _driver("clkQ0", "/testbench/uut/blk2/clk", 100 ps,
nmi_transport);
wai t ;
end process drive_sig _process;

end;

244 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
init_signal_spy

init_signal_spy

Theinit_signal_spy() procedure mirrors the value of aVVHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register (called the
dest_object). Thisallows you to reference signals, registers, or nets at any level of hierarchy
from within aVHDL architecture (e.g., atestbench).

Theinit_signal_spy procedure only sets the value onto the destination signal and does not drive
or force the value. Any existing or subsequent drive or force of the destination signal, by some
other means, will override the value that was set by init_signal_spy.

Call only once

Theinit_signal_spy procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_spy once for a particular pair of signals.
Onceinit_signal_spy is called, any change on the source signal will mirror on the destination
signal until the end of the simulation unless the control_state is set.

The control _state determines whether the mirroring of values can be enabled/disabled and what
theinitial state is. Subsequent control of whether the mirroring of valuesis enabled/disabled is
handled by the enable _signal_spy and disable _signal_spy calls.

We recommend that you place all init_signal_spy callsin a VHDL process. Y ou need to code
the VHDL process correctly so that it is executed only once. The VHDL process should not be
sensitive to any signals and should contain only init_signal_spy calls and a simple wait
statement. The process will execute once and then wait forever, which is the desired behavior.
See the example below.

Syntax
init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

Returns
Nothing

Arguments
e Src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to aVHDL signal or Verilog register/net. Use the path separator to which

your simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or ".".
The path must be contained within double quotes.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register. Use the path separator to
which your simulationisset (i.e., "/" or "."). A full hierarchical path must beginwitha"/" or
".". The path must be contained within double quotes.

ModelSim User’s Manual, v6.2g 245
February 2007

Signal Spy
init_signal_spy

verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object’ s value is mirrored onto the dest_object. Default
is 0, no message.

control_state

Optional integer. Possible values are -1, 0, or 1. Specifies whether or not you want the
ability to enable/disable mirroring of values and, if so, specifiestheinitial state. The default
is-1, no ability to enable/disable and mirroring is enabled. "0" turns on the ability to
enable/disable and initially disables mirroring. "1" turns on the ability to enable/disable and
initially enables mirroring.

Related procedures

init_signal_driver, signal_force, signal_release, enable signal_spy, disable signal_spy

Limitations

* When mirroring the value of aVerilog register/net onto a VHDL signal, the VHDL
signal must be of type bit, bit_vector, std_logic, or std_logic_vector.

» Verilog memories (arrays of registers) are not supported.

init_signal_spy Example

In this example, the value of /top/uut/instl/sigl is mirrored onto /top/top_sigl. A messageis
issued to the transcript. The ability to control the mirroring of valuesisturned on and the
init_signal_spy isinitially enabled.

The mirroring of values will be disabled when enable sig transitionsto a’0’ and enable when
enable sigtransitionstoa’l’.

library ieee;

l'ibrary nmodel simlib;

use ieee.std logic_1164.all;

use nodelsimlib.util.all;

entity top is

end;

architecture only of top is
signal top_sigl : std_logic;

begi n
éby_process . process
begin
init_signal _spy("/top/uut/instl/sigl","/top/top_sigl",1,1);
wai t ;

end process spy_process;

spy_enabl e_di sable : process(enabl e_si Q)
begin
if (enable_sig = "'1") then
enabl e_signal _spy("/top/uut/instl/sigl","/top/top_sigl", 0);
elseif (enable_sig ="'0")

246

ModelSim User’s Manual, v6.2g
February 2007

Signal Spy
init_signal_spy

di sabl e_si gnal _spy("/top/uut/instl/sigl","/top/top_sigl", 0);
end if;
end process spy_enabl e_di sabl g;

end;

ModelSim User’s Manual, v6.2g 247
February 2007

Signal Spy
signal_force

signal_force

The signal_force() procedure forces the value specified onto an existing VHDL signal or
Verilog register or net (called the dest_object). This allows you to force signals, registers, or
nets at any level of the design hierarchy from within aVVHDL architecture (e.g., atestbench).

A signal_force works the same as the force command with the exception that you cannot issue a
repeating force. The force will remain on the signal until asignal_release, aforce or release
command, or a subsequent signal_force isissued. Signal_force can be called concurrently or

sequentially in a process.

This command acquires displays any signals using your radix setting (either the default, or as
you specify) unless you specify the radix in the value you set.

Syntax

signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>, <verbose>)

Returns

Nothing

Arguments

dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your smulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or
".". The path must be contained within double quotes.

value

Required string. Specifies the value to which the dest_object isto be forced. The specified
value must be appropriate for the type.

rel_time
Optional time. Specifies atime relative to the current simulation time for the force to occur.
The default isO.

force type

Optional forcetype. Specifiesthetype of forcethat will be applied. The value must be one of
the following; default, deposit, drive, or freeze. The default is "default” (which is "freeze"
for unresolved objects or "drive" for resolved objects). See the force command for further
details on force type.

cancel_period

Optional time. Cancels the signal_force command after the specified period of time units.
Cancellation occurs at the last ssimulation delta cycle of atime unit. A value of zero cancels
theforce at the end of the current time period. Default is-1 ms. A negative value means that
the force will not be cancelled.

248

ModelSim User’s Manual, v6.2g
February 2007

Signal Spy
signal_force

e verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the value is being forced on the dest_object at the specified
time. Default is 0, no message.

Related procedures
init_signal_driver, init_signal_spy, signal_release
Limitations

Y ou cannot force bits or slices of aregister; you can force only the entire register.

signal_force Example

This example forcesreset toa"1" from time 0 nsto 40 ns. At 40 ns, reset isforced to a"0", 2
ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to use
the keyword "open" as a placeholder for the skipped parameter(s). Thefirst signal_force
procedure illustrates this, where an "open" for the cancel_period parameter means that the
default value of -1 msis used.

library | EEE, nodelsimlib;

use | EEE. std_|ogic_1164. all;
use nodelsimlib.util.all;

entity testbench is
end;

architecture only of testbench is

begi n
force_process : process
begin
signal _force("/testbench/uut/blkl/reset", "1", 0 ns, freeze, open, 1);
signal _force("/testbench/uut/bl kl/reset”, "0", 40 ns, freeze, 2 ns,
1);
wai t ;

end process force_process;

end;

ModelSim User’s Manual, v6.2g 249
February 2007

Signal Spy
signal_release

signal_release

The signal_release() procedure releases any force that was applied to an existing VHDL signal
or Verilog register/net (called the dest_object). This allows you to release signals, registers or
nets at any level of the design hierarchy from within aVVHDL architecture (e.g., atestbench).

A signal_release works the same as the noforce command. Signal_release can be called
concurrently or sequentially in a process.

Syntax
signal_release(<dest_object>, <verbose>)
Returns

Nothing

Arguments
e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your simulationisset (i.e., "/" or "."). A full hierarchical path must beginwitha"/" or
".". The path must be contained within double quotes.

e verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the signal is being released and the time of the release. Default
is 0, no message.

Related procedures
init_signal_driver, init_signal_spy, signal_force
Limitations

* You cannot release a bit or dice of aregister; you can release only the entire register.

signal_release Example

This example releases any forces on the signals data and clk when the signal release flagisa
"1". Both callswill send a message to the transcript stating which signal was released and when.

library | EEE, nodelsimlib;
use | EEE. std_| ogic_1164. al | ;
use nodelsimlib.util.all;

entity testbench is
end;

architecture only of testbench is

signal release flag : std_logic;

250 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
signal_release

begi n
stimdesign : process
begin
ﬁéit until release flag = "'1";

signal _rel ease("/testbench/dut/blkl/data", 1);
signal _rel ease("/testbench/dut/bl kl/clk", 1);

end process stimdesign;

end;

ModelSim User’s Manual, v6.2g 251
February 2007

Signal Spy
$disable_signal_spy

$disable_signal spy

The $disable _signal_spy() system task disables the associated $init_signal_spy task. The
association between the $disable _signal_spy task and the $init_signal_spy task is based on
specifying the same src_object and dest_object arguments to both tasks. The

$disable signal_spy task can only affect $init_signal_spy tasks that had their control_state
argument set to "0" or "1".

Syntax
$disable signal_spy(<src_object>, <dest_object>, <verbose>)
Returns

Nothing

Arguments
e Src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signa_spy call that you wish to disable.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signa_spy call that you wish to disable.

¢ verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that a disable occurred and the simulation time that it occurred.
Default is 0, no message

Related tasks
$init_signal_spy, $enable_signal_spy
Example

See $init_signal_spy Example

252 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
$enable_signal_spy

$enable_signal _spy

The $enable_signal_spy() system task enables the associated $init_signal_spy task. The
association between the $enable _signal_spy task and the $init_signal_spy task is based on
specifying the same src_object and dest_object arguments to both tasks. The
$enable_signal_spy task can only affect $init_signal_spys tasks that had their control_state
argument set to "0" or "1".

Syntax
$enable signal_spy(<src_object>, <dest_object>, <verbose>)
Returns

Nothing

Arguments
e Src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signal_spy call that you wish to enable.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) toaVHDL signal or Verilog register/net. This path should match the path that
was specified in theinit_signal_spy call that you wish to enable.

¢ verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that an enable occurred and the simulation time that it occurred.
Default is 0, no message

Related tasks
$init_signa_spy, $disable signal_spy
Example

See $init_signal_spy Example

ModelSim User’s Manual, v6.2g 253
February 2007

Signal Spy
$init_signal_driver

$init_signal_driver

The $init_signal_driver() system task drives the value of aVHDL signal or Verilog net (called
the src_object) onto an existing VHDL signal or Verilog register/net (called the dest_object).
This allows you to drive signals or nets at any level of the design hierarchy from within a
Verilog module (e.g., atestbench).

The $init_signal_driver system task drives the value onto the destination signa just asif the
signals were directly connected in the HDL code. Any existing or subsequent drive or force of
the destination signal, by some other means, will be considered with the $init_signal_driver
value in the resolution of the signal.

Call only once

The $init_signal_driver system task creates a persistent rel ationship between the source and
destination signals. Hence, you need to call $init_signal_driver only once for a particular pair of
signals. Once $init_signal_driver iscalled, any change on the source signal will be driven on the
destination signal until the end of the simulation.

Thus, we recommend that you place all $init_signal_driver callsin aVerilog initial block. See
the example below.

Syntax

$init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)
Returns

Nothing

Arguments
e src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or Verilog net. Use the path separator to which your
simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or".". The
path must be contained within double quotes.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog net. Use the path separator to which
your simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or ".".
The path must be contained within double quotes.

e deay

Optional integer, real, or time. Specifies adelay relative to the time at which the src_object
changes. The delay can be aninertial or transport delay. If no delay is specified, then adelay
of zero is assumed.

254 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
$init_signal_driver

* delay type
Optional integer. Specifiesthe type of delay that will be applied. The value must be either O
(inertial) or 1 (transport). The default isO.

* verbose
Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object is driving the dest_object. Default is 0, no
message.

Related tasks
$init_signal_spy, $signal_force, $signal_release

Limitations

* Whendriving a Verilog net, the only delay _type allowed isinertial. If you set the delay
typeto 1 (transport), the setting will be ignored, and the delay type will be inertial.

* Any delaysthat are set to a value less than the simulator resolution will be rounded to
the nearest resolution unit; no special warning will be issued.

» Verilog memories (arrays of registers) are not supported.
$init_signal_driver Example

This example creates alocal clock (clkO) and connects it to two clocks within the design
hierarchy. The.../blkl/clk will match local clkO and amessage will be displayed. The.../blk2/clk
will match the local clkO but be delayed by 100 ps. For the second call to work, the .../blk2/clk
must be aVHDL based signal, becauseiif it were aVerilog net a 100 psinertial delay would
consume the 40 ps clock period. Verilog nets are limited to only inertial delays and thus the
setting of 1 (transport delay) would be ignored.

“tinmescale 1 ps / 1 ps
nodul e testbench;
reg clko;

initial begin
cl k0o = 1;
forever begin
#20 cl kO = ~cl kO;
end
end

initial begin
$init_signal _driver("cl k0", "/testbench/uut/blkl/clk", , , 1);
$init_signal _driver("cl k0", "/testbench/uut/blk2/clk", 100, 1);
end

endnodul e

ModelSim User’s Manual, v6.2g 255
February 2007

Signal Spy
$init_signal_spy

$init_signal_spy

The $init_signal_spy() system task mirrors the value of aVHDL signal or Verilog register/net
(called the src_object) onto an existing VHDL signal or Verilog register (called the
dest_object). Thisallows you to reference signals, registers, or nets at any level of hierarchy
from within aVerilog module (e.g., atestbench).

The $init_signal_spy system task only sets the value onto the destination signal and does not
drive or force the value. Any existing or subsequent drive or force of the destination signal, by
some other means, will override the value set by $init_signal_spy.

Call only once

The $init_signal_spy system task creates a persistent relationship between the source and the
destination signal. Hence, you need to call $init_signal_spy only once for a particular pair of
signals. Once $init_signal_spy is caled, any change on the source signal will mirror on the
destination signal until the end of the simulation unless the control_state is set.

The control _state determines whether the mirroring of values can be enabled/disabled and what
theinitial state is. Subsequent control of whether the mirroring of valuesis enabled/disabled is
handled by the $enable signal_spy and $disable signal_spy tasks.

We recommend that you place all $init_signal_spy tasksin aVerilog initial block. See the
example below.

Syntax
$init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

Returns
Nothing

Arguments
e Src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to aVHDL signal or Verilog register/net. Use the path separator to which

your simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/* or ".".
The path must be contained within double quotes.

e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a Verilog register or VHDL signal. Use the path separator to which your
simulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or ".". The
path must be contained within double quotes.

e verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object’ s value is mirrored onto the dest_object. Default
is 0, no message.

256 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
$init_signal_spy

e control_state

Optional integer. Possible values are -1, 0, or 1. Specifies whether or not you want the
ability to enable/disable mirroring of values and, if so, specifiestheinitia state. The default
is-1, no ability to enable/disable and mirroring is enabled. "0" turns on the ability to
enable/disable and initially disables mirroring. "1" turns on the ability to enable/disable and
initially enables mirroring.

Related tasks
$init_signal_driver, $signal_force, $signal_release, $disable _signal_spy
Limitations

* When mirroring the value of aVHDL signal onto a Verilog register, the VHDL signal
must be of type bit, bit_vector, std logic, or std_logic_vector.

» Verilog memories (arrays of registers) are not supported.
$init_signal_spy Example

In this example, the value of .top.uut.instl.sigl is mirrored onto .top.top_sigl. A messageis
issued to the transcript. The ability to control the mirroring of valuesisturned on and the
init_signal_spy isinitialy enabled.

The mirroring of values will be disabled when enable reg transitionsto a’0’ and enabled when
enable regtransitionstoa’l’.

nmodul e top;

reg top_sigl;
reg enabl e_reg;

initial
begin
$init_signal _spy(".top.uut.instl.sigl",".top.top_sigl",1,1);
end
al ways @ (posedge enabl e_reg)
begi n
$enabl e_si gnal _spy(".top.uut.instl.sigl",".top.top_sigl", 0);
end
al ways @ (negedge enabl e_reg)
begin
$di sabl e_si gnal _spy(".top.uut.instl.sigl",".top.top_sigl", 0);
end

éﬁdnvdule

ModelSim User’s Manual, v6.2g 257
February 2007

Signal Spy
$signal_force

$signal_force

The $signal_force() system task forces the value specified onto an existing VHDL signal or
Verilog register/net (called the dest_object). This alows you to force signals, registers, or nets
at any level of the design hierarchy from within aVerilog module (e.g., atestbench).

A $signal_force works the same as the force command with the exception that you cannot issue
arepeating force. The force will remain on the signal until a$signal_release, aforce or release
command, or a subsequent $signal_forceisissued. $signal_force can be called concurrently or
sequentially in a process.

Syntax

$signal_force(<dest_object>, <value>, <rel_time>, <force type>, <cancel_period>,

<verbose>)

Returns

Nothing

Arguments

dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your simulationisset (i.e., "/" or "."). A full hierarchical path must beginwitha"/" or
".". The path must be contained within double quotes.

vaue

Required string. Specifies the value to which the dest_object isto be forced. The specified
value must be appropriate for the type.

rel_time

Optional integer, real, or time. Specifiesatime relative to the current simulation time for the
force to occur. The default isO.

force_type

Optional integer. Specifies the type of force that will be applied. The value must be one of
the following; O (default), 1 (deposit), 2 (drive), or 3 (freeze). The default is "default”
(which is"freeze" for unresolved objects or "drive" for resolved objects). See the force
command for further details on force type.

cancel_period

Optional integer, real, time. Cancels the $signal_force command after the specified period
of time units. Cancellation occurs at the last simulation delta cycle of atime unit. A value of
zero cancels the force at the end of the current time period. Default is-1. A negative value
means that the force will not be cancelled.

258

ModelSim User’s Manual, v6.2g
February 2007

Signal Spy
$signal_force

e verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported

in the Transcript stating that the value is being forced on the dest_object at the specified
time. Default is 0, no message.

Related tasks
$init_signal_driver, $init_signa_spy, $signal_release

Limitations

Y ou cannot force bits or slices of aregister; you can force only the entire register.
Verilog memories (arrays of registers) are not supported.

$signal_force Example

This example forcesreset to a"1" from time 0 nsto 40 ns. At 40 ns, reset isforced to a"0",
200000 ns after the second $signal_force call was executed.

“timescale 1 ns / 1 ns
nodul e t estbench;

initial
begin
$signal _force("/testbench/uut/blkl/reset", "1", 0, 3, 1);

$signal _force("/testbench/uut/blkl/reset”, "0", 40, 3,,200600, 1);
end

endnodul e

ModelSim User’s Manual, v6.2g 259
February 2007

Signal Spy
$signal_release

$signal_release

The $signal_release() system task releases any force that was applied to an existing VHDL
signal or Verilog register/net (called the dest_object). This allows you to release signals,
registers, or nets at any level of the design hierarchy from within a Verilog module (e.g., a
testbench).

A $signa_release works the same as the noforce command. $signal_release can be called
concurrently or sequentially in a process.

Syntax

$signal_release(<dest_object>, <verbose>)
Returns

Nothing

Arguments
e dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register/net. Use the path separator to
which your smulationisset (i.e., "/" or "."). A full hierarchical path must begin witha"/" or
".". The path must be contained within double quotes.

¢ verbose

Optional integer. Possible values are O or 1. Specifies whether you want a message reported
in the Transcript stating that the signal is being released and the time of the release. Default
is 0, no message.

Related tasks
$init_signal_driver, $init_signal_spy, $signal_force
Limitations
* You cannot release a bit or slice of aregister; you can release only the entire register.
$signal_release Example

This example releases any forces on the signals data and clk when the register release flag
transitionsto a"1". Both calls will send a message to the transcript stating which signal was
released and when.

260 ModelSim User's Manual, v6.2g
February 2007

Signal Spy
$signal_release

nmodul e testbench;
reg rel ease _fl ag;
al ways @ posedge rel ease _flag) begin
$si gnal _rel ease("/testbench/dut/bl kl/data", 1);

$signal _rel ease("/testbench/dut/bl k1/cl k", 1);
end

endnodul e

ModelSim User’s Manual, v6.2g 261
February 2007

Signal Spy
$signal_release

262 ModelSim User’'s Manual, v6.2g
February 2007

Chapter 11
Standard Delay Format (SDF) Timing
Annotation

This chapter discusses Model Sim’s implementation of SDF (Standard Delay Format) timing
annotation. Included are sectionson VITAL SDF and Verilog SDF, plus troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’ s built-in SDF annotator.

Note
D SDF timing annotations can be applied only to your FPGA vendor’s libraries; all other

libraries will simulate without annotation.

Specifying SDF Files for Simulation

Model Sim supports SDF versions 1.0 through 4.0 (except the NETDELAY statement). The
simulator’ s built-in SDF annotator automatically adjusts to the version of the file. Use the
following vsim command-line options to specify the SDF files, the desired timing values, and
their associated design instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of the
above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical, and
-sdfmax to select maximum timing values from the SDF file.

Instance Specification

The instance pathsin the SDF file are relative to the instance to which the SDF is applied.
Usually, thisinstance isan ASIC or FPGA model instantiated under a testbench. For example,
to annotate maximum timing values from the SDF file myasic.sdf to an instance ul under atop-
level named testbench, invoke the smulator as follows:

vsim -sdfmax /testbench/ul=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. Thisis usually
incorrect because in most cases the model is instantiated under a testbench or within alarger
system level simulation. In fact, the design can have several models, each having its own SDF
file. In this case, specify an SDF file for each instance. For example,

ModelSim User’s Manual, v6.2g 263
February 2007

Standard Delay Format (SDF) Timing Annotation
Specifying SDF Files for Simulation

vsim -sdfmax /system/ul=asicl.sdf -sdfmax /system/u2=asic2.sdf system

SDF Specification with the GUI

As an aternative to the command-line options, you can specify SDF filesin the Start
Simulation dialog box under the SDF tab.

Figure 11-1. SDF Tab in Start Simulation Dialog

x
Design | VHDL | Verlog | Libiaies SDF] Dthers | HE
—SDF Files
Add...
b odifu...
Delete
—SOF Optione Multi-5ource delay
[Dizable 5DF warningz l—
™ Feduce SDF emors to warnings !|
[0F | Cancel |

Y ou can access this dialog by invoking the simulator without any arguments or by selecting
Simulate > Start Simulation. See the GUI chapter for a description of this dialog.

For Verilog designs, you can a so specify SDF files by using the $sdf annotate system task.
See $sdf _annotate for more details.

Errors and Warnings

Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim to change SDF
errors to warnings so that the simulation can continue. Warning messages can be suppressed by
using vsim with either the -sdfnowar n or +nosdfwar n options.

264 ModelSim User's Manual, v6.2g
February 2007

Standard Delay Format (SDF) Timing Annotation
VHDL VITAL SDF

Another option isto use the SDF tab from the Start Simulation dialog box (shown above).
Select Disable SDF war nings (-sdfnowarn +nosdfwarn) to disable warnings, or select Reduce
SDF errorsto warnings (-sdfnoerror) to change errors to warnings.

See Troubleshooting for more information on errors and warnings and how to avoid them.

VHDL VITAL SDF

VHDL SDF annotation works on VITAL cellsonly. The IEEE 1076.4 VITAL ASIC Modeling
Specification describes how cells must be written to support SDF annotation. Once again, the
designer does not need to know the details of this specification because the library provider has
already written the VITAL cells and tools that create compatible SDF files. However, the
following summary may help you understand simulator error messages. For additional VITAL
specification information, see VITAL Specification and Source Code.

SDF to VHDL Generic Matching

An SDF file contains delay and timing constraint datafor cell instancesin the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the timing
data. Each type of SDF timing construct is mapped to the name of a generic as specified by the
VITAL modeling specification. The annotator locates the generic and updatesit with the timing
value from the SDFfile. It isan error if the annotator fails to find the cell instance or the named
generic. The following are examples of SDF constructs and their associated generic names:

Table 11-1. Matching SDF to VHDL Generics

SDF construct Matching VHDL generic name
(IOPATH ay (3)) tpd ay

(IOPATH (posedge clk) g (1) (2)) tpd_clk_q posedge
(INTERCONNECT ully u2/a(5)) tipd a

(SETUP d (posedge clk) (5)) tsetup_d clk_noedge posedge
(HOLD (negedge d) (posedge clk) (5)) thold_d clk _negedge posedge
(SETUPHOLD d clk (5) (5)) tsetup_d clk & thold_d_clk
(WIDTH (COND (reset==1'b0) clk) (5)) | tpw_clk_reset_eq O

The SDF statement CONDEL SE, when targeted for Vital cells, is annotated to atpd generic of
the form tpd_<inputPort>_<outputPort>.

Resolving Errors

If the simulator finds the cell instance but not the generic then an error message is issued. For
example,

ModelSim User’s Manual, v6.2g 265
February 2007

Standard Delay Format (SDF) Timing Annotation
Verilog SDF

** Error (vsim SDF-3240) nyasic. sdf (18):
I nstance '/testbench/dut/ul’ does not have a generic naned 'tpd_a y’

In this case, make sure that the design is using the appropriate VITAL library cells. If itis, then
there is probably a mismatch between the SDF and the VITAL cells. Y ou need to find the cell
instance and compare its generic names to those expected by the annotator. Look in the VHDL
source files provided by the cell library vendor.

If none of the generic nameslook like VITAL timing generic names, then perhapsthe VITAL
library cells are not being used. If the generic names do look like VITAL timing generic names
but don’t match the names expected by the annotator, then there are several possibilities:

» Thevendor’stools are not conforming to the VITAL specification.

» The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

» Thevendor’slibrary and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim with the
-vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/ul=myasic.sdf testbench

For more information on resolving errors see Troubleshooting.

Verilog SDF

Verilog designs can be annotated using either the ssimulator command-line options or the

$sdf _annotate system task (also commonly used in other Verilog simulators). The command-
line options annotate the design immediately after it isloaded, but before any simulation events
take place. The $sdf _annotate task annotates the design at thetimeit is called in the Verilog
source code. This provides more flexibility than the command-line options.

266 ModelSim User's Manual, v6.2g
February 2007

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

$sdf annotate

Syntax
$sdf _annotate

(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"], ["<mtm_spec>"],
["<scale factor>"], ["<scale type>"]);

Arguments

"<sdffile>"
String that specifies the SDF file. Required.
<instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance where
the $sdf _annotate call is made.

"<config_file>"

String that specifiesthe configuration file. Optional. Currently not supported, this argument
isignored.

"<log_file>"
String that specifies the logfile. Optional. Currently not supported, this argument isignored.
"<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum”,
"typica", "maximum", and "tool_control". Caseisignored and the default is"tool _control".
The "tool_control™ argument means to use the delay specified on the command line by
+mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scale factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier isarea number that is used to
scal e the corresponding delay in the SDF file.

"<scae type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is always used to select the delay scaling factor, but if a<scale type> is specified,
then it will determine the min/typ/max selection from the SDF file. The allowed strings are
"from_min", "from_minimum”, "from_typ", "from_typica", "from_max",
"from_maximum", and "from_mtm". Caseisignored, and the default is"from_mtm", which

means to use the <mtm_spec> value.

Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at the
end of the argument list. For example, to specify only the SDF file and the instance to which it

applies:

ModelSim User’s Manual, v6.2g 267
February 2007

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

$sdf _annot at e(" nyasi c. sdf ",

To aso specify maximum delay values.

$sdf _annot at e(" nyasi c. sdf ",

t est bench. ul,

t est bench. ul);

SDF to Verilog Construct Matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each SDF
construct, the annotator locates the cell instance and updates each specify path delay or timing
check that matches. An SDF construct can have multiple matches, in which case each matching
specify statement is updated with the SDF timing value. SDF constructs are matched to Verilog
constructs as follows.

IOPATH is matched to specify path delays or primitives:

. "maxi munt') ;

Table 11-2. Matching SDF IOPATH to Verilog

SDF

Verilog

(IOPATH (posedge clk) g (3) (4))

(posedge clk =>q) = 0;

(IOPATH ay (3) (4)

buf ul (y, a);

The IOPATH construct usually annotates path delays. If ModelSim can’t locate a
corresponding specify path delay, it returns an error unless you use the
+sdf_iopath_to_prim_ok argument to vsim. If you specify that argument and the
module contains no path delays, then all primitives that drive the specified output port

are annotated.

INTERCONNECT and PORT are matched to input ports:

Table 11-3. Matching SDF INTERCONNECT and PORT to Verilog

SDF Verilog
(INTERCONNECT ul.y u2.a(5)) |inputa;
(PORT u2.a(5)) inout a;

Both of these constructs identify a module input or inout port and create an internal net
that is a delayed version of the port. Thisis called a Module Input Port Delay (MIPD).
All primitives, specify path delays, and specify timing checks connected to the original
port are reconnected to the new MIPD net.

268

ModelSim User’s Manual, v6.2g
February 2007

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

* PATHPUL SE and GLOBALPATHPUL SE are matched to specify path delays:

Table 11-4. Matching SDF PATHPULSE and GLOBALPATHPULSE to Verilog
SDF Verilog

(PATHPULSE ay (5) (10)) (a=>y)=0;
(GLOBALPATHPULSE ay (30) (60)) | (a=>y)=0;

If the input and output ports are omitted in the SDF, then al path delays are matched in
the cell.

» DEVICE is matched to primitives or specify path delays:
Table 11-5. Matching SDF DEVICE to Verilog

SDF Verilog
(DEVICEY (5)) and ul(y, a, b);
(DEVICEY (5)) (@a=>y)=0;(b=>y)=0;

If the SDF cdll instance is a primitive instance, then that primitive' s delay is annotated.
If it isamodule instance, then al specify path delays are annotated that drive the output
port specified in the DEVICE construct (all path delays are annotated if the output port
is omitted). If the module contains no path delays, then all primitives that drive the
specified output port are annotated (or all primitives that drive any output port if the
output port is omitted).

SETUP is matched to $setup and $setuphold:

Table 11-6. Matching SDF SETUP to Verilog
SDF Verilog
(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);
(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

» HOLD ismatched to $hold and $setuphold:
Table 11-7. Matching SDF HOLD to Verilog

SDF Verilog
(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);
(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);
ModelSim User’s Manual, v6.2g 269

February 2007

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

SETUPHOLD is matched to $setup, $hold, and $setuphold:

Table 11-8. Matching SDF SETUPHOLD to Verilog

SDF

Verilog

(SETUPHOLD d (posedge clk) (5) (5))

$setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5))

$hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5))

$setuphold(posedge clk, d, 0, 0);

RECOVERY is matched to $recovery:

Table 11-9. Matching SDF RECOVERY to Verilog

SDF

Verilog

(RECOVERY (negedgereset) (posedgeclk)
(5)

$recovery(negedge reset, posedge clk, 0);

REMOVAL is matched to $removal:

Table 11-10. Matching SDF REMOVAL to Verilog

SDF

Verilog

(REMOVAL (negedge reset) (posedge clk)
(5)

$removal (negedge reset, posedge clk, 0);

RECREM is matched to $recovery, $removal, and $recrem:

Table 11-11. Matching SDF RECREM to Verilog

SDF

Verilog

(RECREM (negedge reset) (posedge clk)
®) (5))

$recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk)
() (9)

$removal (negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk)
5 (5))

$recrem(negedge reset, posedge clk, 0);

SKEW is matched to $skew:

Table 11-12. Matching SDF SKEW to Verilog

SDF

Verilog

(SKEW (posedge clkl) (posedge clk2) (5))

$skew(posedge clk1, posedge clk2, 0);

ModelSim User’s Manual, v6.2g
February 2007

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

e WIDTH ismatched to $width:

Table 11-13. Matching SDF WIDTH to Verilog
SDF Verilog
(WIDTH (posedge clk) (5)) | $width(posedge clk, 0);

e PERIOD ismatched to $period:

Table 11-14. Matching SDF PERIOD to Verilog
SDF Verilog
(PERIOD (posedge clk) (5)) | $period(posedge clk, 0);

* NOCHANGE is matched to $nochange:

Table 11-15. Matching SDF NOCHANGE to Verilog
SDF Verilog
(NOCHANGE (negedge write) addr (5) (5)) | $nochange(negedge write, addr, O, 0);

Optional Edge Specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

* A match occursif the SDF port does not have an edge.
» A match occurs if the specify port does not have an edge.
» A match occursif the SDF port edge isidentical to the specify port edge.

* A match occursif explicit edge transitionsin the specify port edge overlap with the SDF
port edge.

Theserules allow SDF annotation to take place even if there is a difference between the number
of edge-specific constructsin the SDF file and the Verilog specify block. For example, the
Verilog specify block may contain separate setup timing checks for afalling and rising edge on
data with respect to clock, while the SDF file may contain only a single setup check for both
edges:

Table 11-16. Matching Verilog Timing Checks to SDF SETUP
SDF Verilog
(SETUP data (posedge clock) (5)) | $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) | $setup(negedge data, posedge clk, 0);

ModelSim User’s Manual, v6.2g 271
February 2007

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value.

Likewise, the SDF file may contain more accurate data than the model can accommodate.

Table 11-17. SDF Data May Be More Accurate Than Model
SDF Verilog
(SETUP (posedge data) (posedge clock) (4)) | $setup(data, posedge clk, 0);
(SETUP (negedge data) (posedge clock) (6)) | $setup(data, posedge clk, 0);

In this case, both SDF constructs are matched and the timing check receives the value from the
last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF fileislimited to posedge and negedge. For example,

Table 11-18. Matching Explicit Verilog Edge Transitions to Verilog
SDF Verilog
(SETUP data (posedge clock) (5)) | $setup(data, edge[01, 0x] clk, 0);

The explicit edge specifiersare 01, 0x, 10, 1x, x0, and x1. The set of [01, Ox, x1] isequivalent to
posedge, while the set of [10, 1x, X0Q] is equivalent to negedge. A match occursif any of the
explicit edgesin the specify port match any of the explicit edgesimplied by the SDF port.

Optional Conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

* A match occursif the SDF does not have a condition.

* A match occursfor atiming check if the SDF port condition is semantically equivalent
to the specify port condition.

* A match occursfor apath delay if the SDF condition islexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

Table 11-19. SDF Timing Check Conditions

SDF Verilog
(SETUP data (COND (reset!=1) $setup(data, posedge clk & & &
(posedge clock)) (5)) (reset==0),0);
272 ModelSim User's Manual, v6.2g

February 2007

Standard Delay Format (SDF) Timing Annotation
SDF for Mixed VHDL and Verilog Designs

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

Table 11-20. SDF Path Delay Conditions

SDF Verilog
(COND (r1 || r2) (IOPATH clk q (5))) if (r1]|r2) (clk => q) = 5; // matches
(COND (r1||r2) (IOPATH clk q (5))) if (r2]|rl) (clk =>q) =5; // does not match

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded Timing Values

The SDF TIMESCAL E construct specifies time units of valuesin the SDF file. The annotator
rounds timing values from the SDF fil e to the time precision of the module that is annotated. For
example, if the SDF TIMESCALE is 1ns and avalue of .016 is annotated to a path delay in a
module having atime precision of 10ps (from the timescale directive), then the path delay
receives avalue of 20ps. The SDF value of 16psisrounded to 20ps. Interconnect delays are
rounded to the time precision of the module that contains the annotated MIPD.

SDF for Mixed VHDL and Verilog Designs

Annotation of amixed VHDL and Verilog design is very flexible. VHDL VITAL cellsand
Verilog cells can be annotated from the same SDF file. Thisflexibility is available only by
using the simulator’ s SDF command-line options. The Verilog $sdf annotate system task can
annotate Verilog cells only. See the vsim command for more information on SDF command-
line options.

Interconnect Delays

An interconnect delay represents the delay from the output of one device to the input of another.
Model Sim can model single interconnect delays or multisource interconnect delaysfor Verilog,
VHDL/VITAL, or mixed designs. See the vsm command for more information on the relevant
command-line arguments.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the constraint
while the delayed versions may not. If the simulator seemsto report incorrect violations, be sure
to account for the effect of interconnect delays.

ModelSim User’s Manual, v6.2g 273
February 2007

Standard Delay Format (SDF) Timing Annotation
Disabling Timing Checks

Disabling Timing Checks

Model Sim offers a number of options for disabling timing checks on a"global” or individual
basis. The table below provides a summary of those options. See the command and argument
descriptions in the Reference Manual for more details.

Table 11-21. Disabling Timing Checks
Command and argument | Effect

vlog +notimingchecks disables timing check system tasks for all instancesin the
specified Verilog design

vlog +nospecify disables specify path delays and timing checks for al
instances in the specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to
zero for all instances in the specified design

vsim +no_notifier disables the toggling of the notifier register argument of
the timing check system tasks for all instancesin the
specified design

vsim +no_tchk_msg disables error messages issued by timing check system
tasks when timing check violations occur for all instances
in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checksfor all

instances in the specified design

vsim +nospecify disables specify path delays and timing checks for all
instances in the specified design

Troubleshooting

Specifying the Wrong Instance

By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common caseisto leave off the instance altogether, whichis
the same as selecting the top-level design unit. Thisis generally wrong because the instance
paths in the SDF are relative to the ASIC or FPGA model, which isusually instantiated under a
top-level testbench. See Instance Specification for an example.

A common example for both VHDL and Verilog testbenches is provided below. For smplicity,
the test benches do nothing more than instantiate a model that has no ports.

VHDL Testbench

entity testbench is end;

274 ModelSim User's Manual, v6.2g
February 2007

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

architecture only of testbench is
conponent mnyasic
end conponent;

begin

dut : nyasic;

end;

Verilog Testbench
nodul e t estbench;

myasi ¢ dut();
endnodul e

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate ssmulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF isintended. If the model is deep
within the design hierarchy, an easy way to find the instance name is to first invoke the
simulator without SDF options, view the structure pane, navigate to the model instance, select
it, and enter the environment command. This command displays the instance name that should
be used in the SDF command-line option.

Mistaking a Component or Module Name for an Instance
Label

Another common error is to specify the component or module name rather than the instance
label. For example, the following invocation iswrong for the above testbenches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

Thisresultsin the following error message:

** Error (vsim SDF-3250) nyasic. sdf (0):
Failed to find I NSTANCE ' /testbench/ nyasic’.

Forgetting to Specify the Instance

If you leave off the instance altogether, then the simulator issues a message for each instance
path in the SDF that is not found in the design. For example,

vsim -sdfmax myasic.sdf testbench

Resultsin:

ModelSim User’s Manual, v6.2g 275
February 2007

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

** Error (vsim SDF-3250) nyasic. sdf (0):

Failed to find | NSTANCE '/t estbench/ul’

** Error (vsim SDF-3250) nyasic. sdf (0):

Failed to find I NSTANCE ' /testbench/ u2’

** Error (vsim SDF-3250) nyasic.sdf(0):

Failed to find I NSTANCE ' /testbench/u3’

** Error (vsim SDF-3250) nyasic. sdf (0):

Failed to find | NSTANCE '/t est bench/ u4’

** Error (vsim SDF-3250) nyasic. sdf (0):

Failed to find | NSTANCE '/t est bench/ u5’

** Warning (vsi m SDF-3432) nyasic. sdf:

This file is probably applied to the wong instance.
** WArning (vsi m SDF-3432) nyasi c. sdf:

I gnoring subsequent missing instances fromthis file.

After annotation is done, the simulator issues asummary of how many instances were not found
and possibly a suggestion for a qualifying instance:

** WArni ng (vsi m SDF-3440) nyasic. sdf:

Failed to find any of the 358 instances fromthis file.

** WArni ng (vsi m SDF-3442) nyasic. sdf:

Try instance '/testbench/dut’. It contains all instance paths fromthis
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see Resolving Errors for specific VHDL VITAL SDF troubleshooting.

276 ModelSim User's Manual, v6.2g
February 2007

Chapter 12
Value Change Dump (VCD) Files

This chapter describes how to use VCD filesin ModelSim. The VCD file format is specified in
the IEEE 1364 standard. It isan ASCII file containing header information, variable definitions,
and variable value changes.

VCD isin common use for Verilog designs, and is controlled by VCD system task callsin the
Verilog source code. Model Sim provides command equivalents for these system tasks and
extends VCD support to VHDL designs. The Model Sim commands can be used on VHDL,
Verilog, or mixed designs.

If you need vendor-specific ASIC design-flow documentation that incorporates VCD, please
contact your ASIC vendor.

Creating a VCD File

There are two flowsin ModelSim for creating aVCD file. One flow produces afour-state VCD
file with variable changesin O, 1, x, and z with no strength information; the other produces an
extended VCD file with variable changesin al states and strength information and port driver
data.

Both flows will also capture port driver changes unless filtered out with optional command-line
arguments.

Flow for Four-State VCD File
First, compile and load the design:

% cd ~/modeltech/examples/misc
% vlib work

% vlog counter.v tcounter.v

% vsim test_counter

Next, with the design loaded, specify the VCD file name with the vcd file command and add
objects to the file with the ved add command:

VSIM 1> vced file myvcdfile.ved
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run

VSIM 4> quit -f

There will now be aVVCD filein the working directory.

ModelSim User’s Manual, v6.2g 277
February 2007

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

Flow for Extended VCD File
First, compile and load the design:

% cd ~/modeltech/examples/misc
% vlib work

% vlog counter.v tcounter.v

% vsim test_counter

Next, with the design loaded, specify the VCD file name and objects to add with the
ved dumpports command:

VSIM 1> vcd dumpports -file myvcdfile.ved /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

There will now be an extended VCD file called myvcdfile.ved in the working directory.

Note

D Thereisaninternal limit to the number of port driver changes that can be created with the
ved dumpports command. If that limit is reached, use the ved add command with the
-dumpports option to create additional port driver changes.

By default Model Sim uses strength ranges for resolving conflicts as specified by IEEE
1364-2005. Y ou can ignore strength ranges using the -no_strength_range argument to the
vcd dumpports command. See Resolving Values for more details.

Case Sensitivity

VHDL is not case sensitive so Model Sim converts all signal names to lower case when it
produces aVCD file. Conversely, Verilog designs are case sensitive so Model Sim maintains
case when it produces aVCD file.

Using Extended VCD as Stimulus

Y ou can use an extended VCD file as stimulus to re-simulate your design. There are two ways
todothis: 1) ssimulate the top level of adesign unit with the input values from an extended VCD
file; and 2) specify one or more instances in a design to be replaced with the output values from
the associated VCD file.

Simulating with Input Values from a VCD File

When simulating with inputs from an extended V CD file, you can simulate only one design unit
at atime. In other words, you can apply the VCD file inputs only to the top level of the design
unit for which you captured port data.

The general procedure includes two steps:

278 ModelSim User's Manual, v6.2g
February 2007

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

1. CreateaVCD filefor asingle design unit using the vcd dumpports command.

2. Resimulate the single design unit using the -vcdstim argument to vsim. Note that
-vedstim works only with VCD files that were created by a Model Sim simulation.

Example 12-1. Verilog Counter
First, create the VCD file for the single instance using ved dumpports:

% cd ~/modeltech/examples/misc

% vlib work

% vlog counter.v tcounter.v

% vsim test_counter

VSIM 1> ved dumpports -file counter.ved /test_counter/dut/*
VSIM 2> run

VSIM 3> quit -f

Next, rerun the counter without the testbench, using the -vcdstim argument:

% vsim -vcdstim counter.vcd counter
VSIM 1> add wave /*
VSIM 2> run 200

Example 12-2. VHDL Adder

First, create the VCD file using ved dumpports:

% cd ~/modeltech/examples/misc

% vlib work

% vcom gates.vhd adder.vhd stimulus.vhd

% vsim testbench?2

VSIM 1> vcd dumpports -file addern.vcd /testbench2/uut/*
VSIM 2> run 1000

VSIM 3> quit -f

Next, rerun the adder without the testbench, using the -vcdstim argument:
% vsim -vcdstim addern.ved addern -gn=8 -do "add wave /*; run 1000"

Example 12-3. Mixed-HDL Design
First, create three VCD files, one for each module;

% cd ~/modeltech/examples/tutorials/mixed/projects
% vlib work

% vlog cache.v memory.v proc.v

% vcom util.vhd set.vhd top.vhd

% vsim top

VSIM 1> vcd dumpports -file proc.ved /top/p/*

VSIM 2> vcd dumpports -file cache.vcd /top/c/*
VSIM 3> vcd dumpports -file memory.ved /top/m/*
VSIM 4> run 1000

VSIM 5> quit -f

ModelSim User’s Manual, v6.2g 279
February 2007

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.ved proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.ved cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.ved memory -do "add wave /*; run 1000"
VSIM 1> quit -f

Replacing Instances with Output Values from a VCD File

Replacing instances with output values from aV CD filelets you simulate without the instance’'s
source or even the compiled object. The general procedure includes two steps:

1. Create VCD filesfor one or more instancesin your design using the ved dumpports
command. If necessary, use the -vcdstim switch to handle port order problems (see
below).

2. Re-simulate your design using the -vcdstim <instance>=<filename> argument to vsim.
Note that this works only with VCD files that were created by a Model Sim simulation.

Example 12-4. Replacing Instances

In the following example, the three instances /top/p, /top/c, and /top/m are replaced in
simulation by the output values found in the corresponding VCD files.

First, create VCD filesfor al instances you want to replace:

vcd dumpports -vcdstim -file proc.ved /top/p/*
ved dumpports -vedstim -file cache.ved /top/c/*
vcd dumpports -vedstim -file memory.ved /top/m/*
run 1000

Next, simulate your design and map the instances to the VCD files you created:

vsim top -vcdstim /top/p=proc.vcd -vedstim /top/c=cache.vcd
-vcdstim /top/m=memory.vcd

Port Order Issues

The -vcdstim argument to the ved dumpports command ensures the order that port names
appear in the VCD file matches the order that they are declared in the instance’ s module or
entity declaration. Consider the following module declaration:

nmodul e proc(cl k, addr, data, rw, strb, rdy);
i nput clk, rdy;
out put addr, rw, strhb;
i nout data;

280 ModelSim User's Manual, v6.2g
February 2007

Value Change Dump (VCD) Files
VCD Commands and VCD Tasks

The order of the portsin the module line (clk, addr, data, ...) does not match the order of those
ports in the input, output, and inout lines (clk, rdy, addr, ...). In this case the -vcdstim argument
to the ved dumpports command needs to be used.

In cases where the order is the same, you do not need to use the -vcdstim argument to ved
dumpports. Also, module declarations of the form:

nmodul e proc(input clk, output addr, inout data, ...)

do not require use of the argument.

VCD Commands and VCD Tasks

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the VCD
file dong with the results of those commands. The table below maps the VCD commands to
their associated tasks.

Table 12-1. VCD Commands and SystemTasks

VCD commands VCD system tasks
ved add $dumpvars

ved checkpoint $dumpall

ved file $dumpfile

ved flush $dumpflush

ved limit $dumplimit

ved off $dumpoff

ved on $dumpon

Model Sim also supports extended VCD (dumpports system tasks). The table below maps the
VCD dumpports commands to their associated tasks.

Table 12-2. VCD Dumpport Commands and System Tasks

VCD dumpports commands VCD system tasks
vcd dumpports $dumpports
ved dumpportsall $dumpportsall
ved dumpportsflush $dumpportsflush
ved dumpportslimit $dumpportslimit
vcd dumpportsoff $dumpportsoff
vcd dumpportson $dumpportson
ModelSim User’s Manual, v6.2g 281

February 2007

Value Change Dump (VCD) Files
VCD File from Source To Output

Model Sim supports multiple VCD files. Thisfunctionality is an extension of the IEEE Std 1364
specification. The tasks behave the same as the | EEE equivalent tasks such as $dumpfile,
$dumpvar, etc. The difference is that $fdumpfile can be called multiple times to create more
than one VCD file, and the remaining tasks require a filename argument to associate their
actions with a specific file.

Table 12-3. VCD Commands and System Tasks for Multiple VCD Files

VCD commands VCD system tasks
ved add -file <filename> $fdumpvars

ved checkpoint <filename> $fdumpall

ved files <filename> $fdumpfile

ved flush <filename> $fdumpflush

ved limit <filename> $fdumplimit

ved off <filename> $fdumpoff

vcd on <filename> $fdumpon

Compressing Files with VCD Tasks

Model Sim can produce compressed V CD files using the gzip compression algorithm. Since we
cannot change the syntax of the system tasks, we act on the extension of the output file name. If
you specify a.gz extension on the filename, Model Sim will compress the output.

VCD File from Source To Output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD outpui.

VHDL Source Code

The design is asimple shifter device represented by the following VHDL source code:

282 ModelSim User's Manual, v6.2g
February 2007

Value Change Dump (VCD) Files
VCD File from Source To Output

library | EEE;
use | EEE. STD LOd C_1164. al | ;

entity SH FTER_ MOD i s
port (CLK, RESET, data_in : IN STD_LOG G
: INOUT STD LOG C_VECTOR(8 downto 0));
END SH FTER_MOD ;

architecture RTL of SH FTER MDD is
begin
process (CLK, RESET)
begin
if (RESET = '"1') then
Q <= (others =>'0") ;
elsif (CLK event and CLK = '1') then
Q<= QQleft - 1 downto 0) & data_in ;
end if ;
end process ;
end ;

VCD Simulator Commands

At simulator time zero, the designer executes the following commands:

vcd file output.ved
vcd add -r *
forcereset 10
force data in00
forceclk 00

run 100

force clk 1 0, 0 50 -repeat 100
run 100

vcd off
forcereset 00
forcedata in 10
run 100

vcd on

run 850
forcereset 10

run 50

vcd checkpoint
quit -sim

VCD Output

The VCD file created as aresult of the preceding scenario would be called output.vcd. The
following pages show how it would look.

ModelSim User’s Manual, v6.2g 283
February 2007

Value Change Dump (VCD) Files
VCD File from Source To Output

$dat e
Thu Sep 18 11:07:43 2003
$end

$versi on

Model Sim Version 6.1
$end
$tinescal e

1ns
$end
$scope nodul e shifter _nod $end
$var wire 1 ! clk $end
$var wire 1 " reset $end
$var wire 1 # data_in $end
$var wire 1 $ g [8] $end
$var wire 1 %q [7] $end
$var wire 1 & q [6] $end
$var wire 1 ' g [5] $end
$var wire 1 (q [4] $end
$var wire 1) q [3] $end
$var wire 1 * g [2] $end
$var wire 1 + g [1] $end
$var wire 1, g [0] $end

$upscope $end
$enddefiniti ons $end
#0

$dunpvars

0!

1"
0#
0%
0%
0&

0,
$end
#100
1!
#150
0!
#200
1!
$dunpof f
X!

<"
X#
x$
X%
X&
"

X(

X)

X*
X+
X,

284

ModelSim User’s Manual, v6.2g
February 2007

Value Change Dump (VCD) Files
VCD File from Source To Output

$end
#300
$dunpon

OI.I

0!
#400
1!
1+
#450
0!
#500
1!

1*
#550
0!
#600
1!

1)
#650
0!
#700
1!

1(
#750
0!
#800
1!

1I
#850
0!
#900
1!
1&
#950
0!
#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
0!

ModelSim User’s Manual, v6.2g 285
February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

1
0,
0+
0*
0)
0(
o'
0&

0%

0%

#1200

1!
$dunpal |
1!
1
1#
0%
0%
0&

0,
$end
Capturing Port Driver Data

Some ASIC vendors' toolkits read aVCD file format that provides details on port drivers. This
information can be used, for example, to drive atester. See the ASIC vendor’ s documentation
for toolkit specific information.

In Model Sim use the ved dumpports command to create a V CD file that captures port driver
data. Each time an external or internal port driver changes values, a new value changeis
recorded in the VCD file with the following format:

p<state> <0 strength> <1 strength> <identifier_code>

Driver States
The driver states are recorded as TSS| statesif the direction is known, as detailed in thistable;

Table 12-4. Driver States

Input (testfixture) | Output (dut)
D low L low
U high H high
N unknown X unknown
Z tri-state T tri-state
286 ModelSim User's Manual, v6.2g

February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

Table 12-4. Driver States (cont.)
Input (testfixture) | Output (dut)

d low (twoor more || low (two or more
drivers active) drivers active)

u high (twoormore | h high (two or
drivers active) more drivers active)

If the direction is unknown, the state will be recorded as one of the following:

Table 12-5. State When Direction is Unknown

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving
unknown)

F three-state (input and output unconnected)

A unknown (input driving low and output driving
high)

a unknown (input driving low and output driving
unknown)

B unknown (input driving high and output driving
low)

b unknown (input driving high and output driving
unknown)

C unknown (input driving unknown and output
driving low)

¢ unknown (input driving unknown and output
driving high)

f unknown (input and output three-stated)

Driver Strength
The recorded 0 and 1 strength values are based on Verilog strengths:
Table 12-6. Driver Strength

Strength VHDL std_logic mappings
0 highz 'z
1 smal
ModelSim User’s Manual, v6.2g 287

February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

Table 12-6. Driver Strength (cont.)
Strength VHDL std_logic mappings

2 medium
3 weak
4 large
5 pull "W HL

6 strong uyxo))
7 supply

Identifier Code

The <identifier_code> is an integer preceded by < that starts at zero and isincremented for each
port in the order the ports are specified. Also, the variable type recorded in the VCD header is
"port”.

Resolving Values

Theresolved values written to the VCD file depend on which options you specify when creating
thefile.

Default Behavior

By default Model Sim generates output according to |EEE 1364-2005. The standard states that
the values O (both input and output are active with value 0) and 1 (both input and output are
active with value 1) are conflict states. The standard then defines two strength ranges:

e Strong: strengths 7, 6, and 5
* Weak: strengths 4, 3,2, 1

The rulesfor resolving values are as follows:

» If theinput and output are driving the same value with the same range of strength, the
resolved value is 0 or 1, and the strength is the stronger of the two.

» If theinput isdriving a strong strength and the output is driving a weak strength, the
resolved valueis D, d, U or u, and the strength is the strength of the input.

» If theinput isdriving aweak strength and the output is driving a strong strength, the
resolved valueisL, I, H or h, and the strength is the strength of the output.

288 ModelSim User's Manual, v6.2g
February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

Ignoring Strength Ranges

Y ou may wish to ignore strength ranges and have Model Sim handle each strength separately.
Any of the following options will produce this behavior:

* Usethe-no_strength_range argument to the ved dumpports command
* Usean optiona argument to $dumpports (see Extended $dumpports Syntax below)
* Usethe+dumpportstno_strength_range argument to vsim command

In this situation, Model Sim reports strengths for both the zero and one components of the value
if the strengths are the same. If the strengths are different, Model Sim reports only the “winning”
strength. In other words, the two strength values either match (e.g., pA 55!) or the winning
strength is shown and the other iszero (e.g., pH 051!).

Extended $dumpports Syntax

Model Sim extends the $dumpports system task in order to support exclusion of strength ranges.
The extended syntax is as follows:

$dunpports (scope_list, file pathnanme, ncsimfile_index, file format)

Thenc_sim_index argument is required yet ignored by ModelSim. It isrequired only to be
compatible with NCSim’s argument list.

Thefile_format argument accepts the following values or an ORed combination thereof (see
examples below):

Table 12-7. Values for file_format Argument

File format value | Meaning

0 Ignore strength range
2 Use strength ranges; produces | EEE 1364-compliant
behavior

Compress the EVCD output

Include port direction information in the EVCD file
header; same as using -dir ection argument to vcd
dumpports

Here are some examples:

/'l ignore strength range

$dunpports(top, "filenane", 0, 0)

/1 conpress and ignore strength range
$dunpports(top, "filename", 0, 4)

/1 print direction and ignore strength range
$dunpports(top, "filenane", 0, 8)

ModelSim User’s Manual, v6.2g 289
February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

/'l conpress,
$dunpport s(top,

print direction,
“fil ename",

Example 12-5. VCD Output from vcd dumpports

and ignore strength range
0, 12)

This example demonstrates how ved dumpports resolves values based on certain combinations
of driver values and strengths and whether or not you use strength ranges. Table 12-8 is sample

driver data.
Table 12-8. Sample Driver Data
time invalue | out value | instrength value | out strength value
(range) (range)

0 0 0 7 (strong) 7 (strong)
100 0 0 6 (strong) 7 (strong)
200 0 0 5 (strong) 7 (strong)
300 0 0 4 (weak) 7 (strong)
900 1 0 6 (strong) 7 (strong)
27400 |1 1 5 (strong) 4 (weak)
27500 |1 1 4 (weak) 4 (weak)
27600 |1 1 3 (weak) 4 (weak)

Given the driver data above and use of 1364 strength ranges, here is what the VCD file output

would look like:

#0

pO0 7 0 <0
#100

po 7 0 <0
#200

pO0 7 0 <0
#300

pL 7 0 <0
#900

pB 7 0 <0
#27400

pu 0 5 <0
#27500

pl 0 4 <0
#27600

pl 0 4 <0

Here is what the output would look like if you ignore strength ranges:

290

ModelSim User’s Manual, v6.2g

February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

#0

pO0 7 0 <0
#100

pL 7 0 <0
#200

pL 7 0 <0
#300

pL 7 0 <0
#900

pL 7 0 <0
#27400

pu 0 5 <0
#27500

pl 0 4 <0
#27600

pH 0 4 <0

ModelSim User’s Manual, v6.2g 291
February 2007

Value Change Dump (VCD) Files
Capturing Port Driver Data

292 ModelSim User’'s Manual, v6.2g
February 2007

Chapter 13
Tcl and Macros (DO Files)

Tcl isascripting language for controlling and extending Model Sim. Within Model Sim you can
develop implementations from Tcl scripts without the use of C code. Because Tcl isinterpreted,
development is rapid; you can generate and execute Tcl scripts on the fly without stopping to
recompile or restart Model Sim. In addition, if Model Sim does not provide the command you
need, you can use Tcl to create your own commands.

Tcl Features

Using Tcl with Model Sim gives you these features:

o command history (like that in C shells)

» full expression evaluation and support for all C-language operators
» afull range of math and trig functions

» support of listsand arrays

» regular expression pattern matching

e procedures

» the ability to define your own commands

» command substitution (that is, commands may be nested)

» robust scripting language for macros

Tcl References

Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by Addison-
Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by Brent Welch
published by Prentice Hall. Y ou can aso consult the following online references:

e Sedect Help > Tcl Man Pages.

Tcl Commands

For complete information on Tcl commands, select Help > Tcl Man Pages. Also see Simulator
GUI Preferences for information on Tcl preference variables.

ModelSim User’s Manual, v6.2g 293
February 2007

Tcl and Macros (DO Files)
Tcl Command Syntax

M odel Sim command names that conflict with Tcl commands have been renamed or have been
replaced by Tcl commands. See the list below:

Table 13-1.
PreviousModelSim | Command changed to (or replaced by)
command
continue run with the -continue option

format list | wave write format with either list or wave specified

if replaced by the Tcl if command, see If Command
Syntax for more information

list add list

nolist | nowave delete with either list or wave specified

set replaced by the Tcl set command

source vsource

wave add wave

Tcl Command Syntax

The following eleven rules define the syntax and semantics of the Tcl language. Additional
details on If Command Syntax.

1

A Tcl script isastring containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command
procedure to carry out the command, then all of the words of the command are passed to
the command procedure. The command procedure is free to interpret each of its words
inany way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

Words of acommand are separated by white space (except for newlines, which are
command separators).

If the first character of aword is a double-quote (') then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

294

ModelSim User’s Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Tcl Command Syntax

5. If thefirst character of aword is an open brace ({) then the word is terminated by the
matching close brace (}). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themsel ves.

6. If aword contains an open bracket ([) then Tcl performs command substitution. To do
thisit invokes the Tcl interpreter recursively to process the characters following the
open bracket asa Tcl script. The script may contain any number of commands and must
be terminated by a close bracket (]). The result of the script (i.e. the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

7. If aword contains adollar-sign ($) then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of avariable.
Variable substitution may take any of the following forms:

o $name

Name is the name of a scalar variable; the name is terminated by any character that
isn't aletter, digit, or underscore.

o $name(index)

Name gives the name of an array variable and index gives the name of an element
within that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on
the characters of index.

o ${name}

Name is the name of a scalar variable. It may contain any characters whatsoever
except for close braces.

There may be any number of variable substitutions in asingle word. Variable
substitution is not performed on words enclosed in braces.

8. If abackslash (\) appears within a word then backslash substitution occurs. In al cases
but those described below the backslash is dropped and the following character is
treated as an ordinary character and included in the word. This allows characters such as
double quotes, close brackets, and dollar signsto be included in words without

ModelSim User’s Manual, v6.2g 295
February 2007

Tcl and Macros (DO Files)
Tcl Command Syntax

triggering specia processing. The following table lists the backslash sequences that are
handled specially, along with the value that replaces each sequence.

Table 13-2. Tcl Backslash Sequences

Sequence Value

\a Audible aert (bell) (0x7)
\b Backspace (0x8)

\f Form feed (Oxc).

\n Newline (Oxa)

\r Carriage-return (Oxd)

\t Tab (0x9)

\v Vertical tab (Oxb)

\<newline>whiteSpace A single space character replaces the backslash, newline,
and all spaces and tabs after the newline. This backslash
sequenceisuniquein that it is replaced in a separate pre-
pass before the command is actually parsed. This means
that it will be replaced even when it occurs between
braces, and the resulting space will be treated as aword
separator if it isn't in braces or quotes.

\\ Backslash ("\")

\ooo The digits ooo (one, two, or three of them) give the octal
value of the character.

\xhh The hexadecimal digits hh give the hexadecimal value of

the character. Any number of digits may be present.

10.

Backslash substitution is not performed on words enclosed in braces, except for
backsl ash-newline as described above.

If ahash character (#) appears at a point where Tcl is expecting the first character of the
first word of acommand, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

Each character is processed exactly once by the Tcl interpreter as part of creating the
words of acommand. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by therecursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

296

ModelSim User’s Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Tcl Command Syntax

11. Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of asingle word, even
if the variable's value contains spaces.

If Command Syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the question
mark (?) indicates an optional argument.

Syntax

if exprl ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?
Description

The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else istrue, or a string value such as
true or yesfor true and false or no for false); if it is true then bodyl is executed by passing it to
the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is true then body2 is
executed, and so on. If none of the expressions evaluates to true then bodyN is executed. The
then and else arguments are optional "noise words' to make the command easier to read. There
may be any number of elsaif clauses, including zero. BodyN may also be omitted aslong as else
isomitted too. The return value from the command is the result of the body script that was
executed, or an empty string if none of the expressions was non-zero and there was no bodyN.

Command Substitution

Placing acommand in square brackets ([]) will cause that command to be evaluated first and its
results returned in place of the command. An exampleis:

seta 25

setb 11

setc3

echo "the result is [expr ($a + $b)/$c]"

will output:

"the result is 12"
Thisfeature allows VHDL variables and signals, and Verilog nets and registers to be accessed
using:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you now
can use [examine -value -<radix> name] which allows the flexibility of specifying command
options. The radix specification is optional.

ModelSim User’s Manual, v6.2g 297
February 2007

Tcl and Macros (DO Files)
Tcl Command Syntax

Command Separator

A semicolon character (;) works as a separator for multiple commands on the sameline. It is not
required at the end of alinein acommand sequence.

Multiple-Line Commands

With Tcl, multiple-line commands can be used within macros and on the command line. The
command line prompt will change (asin a C shell) until the multiple-line command is compl ete.

In the example below, note the way the opening brace’{’ is at the end of the if and else lines.
Thisisimportant because otherwise the Tcl scanner won't know that thereis more coming in the
command and will try to execute what it has up to that point, which won't be what you intend.

if { [exa sig_a] == "0011zz"} {
echo "Signal val ue matches”
do macro_1.do

} else {
echo "Signal value fails"
do macro_2.do

}

Evaluation Order

An important thing to remember when using Tcl is that anything put in braces ({}) is not
evaluated immediately. Thisisimportant for if-then-else statements, procedures, loops, and so
forth.

Tcl Relational Expression Evaluation

When you are comparing values, the following hints may be useful:

» Tcl storesall values as strings, and will convert certain strings to numeric values when
appropriate. If you want aliteral to be treated as a numeric value, don't quoteit.
if {[exa var_1] == 345}..
The following will also work:
if {[exa var_1] == "345"}...

» However, if aliteral cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Zz}..
will give an error.

if {[exa var_2] == "001Z"}..

298 ModelSim User's Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Tcl Command Syntax

will work okay.
» Don' quote single characters in single quotes:
if {[exa var_3] == "X }...
will give an error
if {[exa var_3] == "X"}...
will work okay.

» For the equal operator, you must use the C operator (==). For not-equal, you must use
the C operator (!=).

Variable Substitution

When a$<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by Model Sim or by you, and substitute the value of the variable.

Note
D Tcl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh
See Simulator State Variables for more information about M odel Sim-defined variabl es.

System Commands
To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

ModelSim User’s Manual, v6.2g 299
February 2007

Tcl and Macros (DO Files)
List Processing

List Processing

InTcl a"list" isaset of stringsin curly braces separated by spaces. Several Tcl commands are
available for creating lists, indexing into lists, appending to lists, getting the length of lists and
shifting lists. These commands are:

Table 13-3. Tcl List Commands

Command syntax Description

lappend var_namevallva?2 ... appendsvall, val2, etc. to list var_name

lindex list_name index returns the index-th element of list_name; the first
elementisO

linsert list_ nameindex vallva?2 ... | insertsvall, val2, etc. just before the index-th element
of list_name

list vall, val2 ... returnsaTcl list consisting of vall, val2, etc.

llength list_name returns the number of elementsin list_name

Irange list_namefirst last returns a sublist of list_name, from index first to index
last; first or last may be "end", which refers to the last
element in thelist

Ireplace list_namefirst last vall, replaces elements first through last with val1, val2, etc.

vaz, ...

Two other commands, Isear ch and Isort, are also available for list manipulation. See the Tcl
man pages (Help > Tcl Man Pages) for more information on these commands.

Simulator Tcl Commands

These additional commands enhance the interface between Tcl and Model Sim. Only brief
descriptions are provided here; for more information and command syntax see the Reference
Manual.

Table 13-4. Simulator-Specific Tcl Commands

Command Description

aias creates anew Tcl procedure that evaluates the specified
commands; used to create a user-defined alias

find locates incrTcl classes and objects

Ishift takesaTcl list asargument and shiftsit in-place one place
to the left, eliminating the Oth element

Isublist returns a sublist of the specified Tcl list that matches the

specified Tcl glob pattern

300 ModelSim User's Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Simulator Tcl Time Commands

Table 13-4. Simulator-Specific Tcl Commands

Command Description

printenv echoesto the Transcript pane the current names and values
of al environment variables

Simulator Tcl Time Commands

Model Sim Tcl time commands make simulator-time-based val ues available for use within other
Tcl procedures.

Time values may optionally contain a units specifier where the intervening spaceis aso
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to be in the UserTimeScale. Return values are always in the current
Time Scale Units. All time values are converted to a 64-bit integer value in the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to 0.

ModelSim User’s Manual, v6.2g 301
February 2007

Tcl and Macros (DO Files)
Simulator Tcl Time Commands

Conversions

Table 13-5. Tcl Time Conversion Commands

Command Description

intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Timein
ModelSim is a 64-bit integer)

Rea ToTime <real> converts a <real> number to a 64-bit
integer in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by
the <scaleFactor> integer

Relations
Table 13-6. Tcl Time Relation Commands
Command Description
eqTime <time> <time> evaluates for equal
neqTime <time> <time> evaluates for not equal
gtTime <time> <time> evaluates for greater than
gteTime <time> <time> evaluates for greater than or equal
[tTime <time> <time> evaluates for less than
[teTime <time> <time> evaluates for less than or equal

All relation operations return 1 or O for true or false respectively and are suitable return values
for TCL conditional expressions. For example,

if {[eqTine $Now 1750ns]} {

}

302 ModelSim User's Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Tcl Examples

Arithmetic
Table 13-7. Tcl Time Arithmetic Commands
Command Description
addTime <time> <time> add time
divTime <time> <time> 64-bit integer divide
mul Time <time> <time> 64-bit integer multiply
subTime <time> <time> subtract time

Tcl Examples

Thisis an example of using the Tcl while loop to copy alist from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
set i [expr {[llength $a] - 1}]
while {$i >= 0} {
| append b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy alist from variable a to variable b, reversing
the order of the elements along the way:

set b [list]
for {set i [expr {[llength $a] - 1}]} {$i >= 0} {incr i -1} {
| append b [lindex $a $i]

This example uses the Tcl foreach command to copy alist from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all of the
elements of alist):

set b [list]
foreach i $a { set b [linsert $b 0 $i] }

This example shows alist reversal as above, thistime aborting on a particular element using the
Tcl break command:

set b [list]
foreach i $a {
if {$i = "Zzz"} break

set b [linsert $b 0 $i]
}

Thisexampleisalist reversal that skips a particular element by using the Tcl continue
command:

ModelSim User’s Manual, v6.2g 303
February 2007

Tcl and Macros (DO Files)
Tcl Examples

set b [list]
foreach i $a {
if {$i = "ZZZ"} continue

set b [linsert $b 0 $i]
}

The next example worksin UNIX only. In aWindows environment, the Tcl exec command will
execute compiled files only, not system commands.) The example shows how you can access
system information and transfer it into VHDL variables or signals and Verilog nets or registers.
When a particular HDL source breakpoint occurs, a Tcl function is called that gets the date and
time and depositsit into aVHDL signal of type STRING. If a particular environment variable
(DO_ECHO) is set, the function also echoes the new date and time to the transcript file by
examining the VHDL variable.

(in VHDL source):

signal datinme : string(l to 28) :=" ";# 28 spaces

(on VSIM command line or in macro):

proc set _date {} {
gl obal env
set do_the_echo [set env(DO _ECHO)]
set s [clock format [clock seconds]]
force -deposit datinme $s
if {do_the_echo} {
echo "New tine is [exam ne -value datine]"
}

}

bp src/waveadd. vhd 133 {set_date; continue}
--sets the breakpoint to call set _date

This next example shows a complete Tcl script that restores multiple Wave windows to their
state in a previous simulation, including signals listed, geometry, and screen position. It also
adds buttons to the Main window toolbar to ease management of the wave files.

This file contains procedures to nanage multiple wave files.
Source this file fromthe command Iine or as a startup script.
source <path>/wave_ngr.tc

add_wave_buttons

Add wave managenent buttons to the main tool bar (new, save and

| oad)

new_wave

##t Di al og box creates a new wave wi ndow with the user provi ded nane

nanmed_wave <nanme>

#t Creates a new wave wi ndow with the specified title

save_wave <file-root>

Saves nanme, wi ndow |l ocation and contents for all open w ndows

wave w ndows

Creates <file-root><n>.do file for each wi ndow where <n> is 1

#t to the nunmber of wi ndows. Default file-root is "wave". Al so

#it creates wi ndowSet.do file that contains title and geonetry info.
304 ModelSim User's Manual, v6.2g

February 2007

Tcl and Macros (DO Files)
Tcl Examples

| oad_wave <file-root>

Opens and | oads wave wi ndows for all files matching <file-

r oot ><n>. do

##t where <n> are the nunbers from1-9. Default <file-root> is "wave".
H#Hit Al so runs wi ndowSet.do file if it exists.

Add wave managenent buttons to the main tool bar

proc add_wave_buttons {} {

_add_nenu nmain controls right Systenvenu Syst em\W ndowFr ane {Load Waves} \
| oad_wave

_add_nenu nmain controls right Systenvenu Syst em\W ndowFr ane {Save Waves} \
save_wave

_add_nenu main controls right Systemvenu SystemA ndowFrane {New Wave} \
new_wave

}

Sinple Dial og requests nane of new wave wi ndow. Defaults to Wave<n>

proc new wave {} {
gl obal vsinPriv
set defaul t Name "Wave[ll ength $vsinPriv(WaveW ndows)]"
set wi ndowNane [GetValue . "Create Named Wave W ndow: " $def aul t Nanme]
if {$wi ndowNane == ""} {
Di al og cancel ed
abort operation

return
}
Debug
puts "W ndow nane: $w ndowNane\ n"
if {$w ndowmNarme == "{}"} {
set wi ndowNane ""
}
i f {$wi ndowNane != ""} {
named_wave $w ndowName
} else {

named_wave $def aul t Narme

}
}

Creates a new wave wi ndow with the provided nane (defaults to "Wave")

proc naned_wave {{nane "Wave"}} {
set newMave [view -new wave]
if {[string length $nane] > 0} {
wntitle $newave $nane
}

}

Wites out format of all wave wi ndows, stores geonetry and title info
in

w ndowSet.do file. Renoves any extra files with the sane fil eroot.

Default file name is wave<n> starting from 1.

ModelSim User’s Manual, v6.2g 305
February 2007

Tcl and Macros (DO Files)
Tcl Examples

proc save_wave {{fileroot "wave"}} {
gl obal vsinPriv
set n1
if {[catch {open wi ndowSet $fileroot.do w 755} fileld]} {
error "Open failure for $fileroot ($fileld)"
}

foreach w $vsi nPri v(WaveW ndows) {
echo "Saving: [wntitle $w"
set filename $fileroot$n. do
if {[file exists $filenane]} {
Use different file

set n2 0
while {[file exists ${fileroot}${n}${n2}.do]} {
incr n2

}
set filenane ${fileroot}${n}${n2}.do

}

wite format wave -wi ndow $w $fil enane

puts $fileld "wntitle $w\"[wmtitle $wj\""

puts $fileld "wm geonetry $w [wm geonetry $w"

puts $fileld "miGid_colconfig $w.grid name -width \
[miGid colcget $w. grid name -width]"

puts $fileld "miGid_colconfig $w. grid value -width \
[miGid_colcget $w.grid value -width]"

flush $fileld

incr n

}

foreach f [Isort [glob -noconplain $fileroot\[$n-9\].do]] {
echo "Renoving: $f"
exec rm $f
}
}
}

Provide file root argument and | oad_wave restores all saved w ndows.
Default file root is "wave".

proc | oad _wave {{fileroot "wave"}} {
foreach f [Isort [glob -noconplain $fileroot\[1-9\].do]] {
echo "Loadi ng: $f"
Vi ew - new wave
do $f

}
if {[file exists windowSet_$fileroot.do]} {
do wi ndowSet $fil eroot. do

This next example specifies the compiler arguments and lets you compile any number of files.

306 ModelSim User's Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Macros (DO Files)

set Files [list]

set nbrArgs $argc

for {set x 1} {$x <= $nbrArgs} {incr x} {
set | append Files $1
shift

}

eval vcom-93 -explicit -noaccel $Files

This example is an enhanced version of the last one. The additional code determines whether
thefilesare VHDL or Verilog and uses the appropriate compiler and arguments depending on
the file type. Note that the macro assumes your VHDL files have a .vhd file extension.

set vhdFiles [list]
set vFiles [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {
if {[string match *.vhd $1]} {
| append vhdFiles $1
} else {
| append vFiles $1

shift

}
if {[Ilength $vhdFiles] > 0} {
eval vcom-93 -explicit -noaccel $vhdFiles

}

if {[Ilength $vFiles] > 0} {
eval vlog $vFiles

}

Macros (DO Files)

Model Sim macros (also called DO files) are simply scripts that contain Model Sim and,
optionally, Tcl commands. Y ou invoke these scripts with the Tools > TCL > Execute Macro
menu selection or the do command.

Creating DO Files

Y ou can create DO files, like any other Tcl script, by typing the required commands in any
editor and saving thefile. Alternatively, you can save the transcript asa DO file (see Saving the
Transcript File).

All "event watching" commands (e.g. onbreak, onerror, etc.) must be placed before run
commands within the macros in order to take effect.

Thefollowing isasimple DO file that was saved from the transcript. It is used in the dataset
exercise in the ModelSim Tutorial. This DO file adds several signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

ModelSim User’s Manual, v6.2g 307
February 2007

Tcl and Macros (DO Files)
Macros (DO Files)

add wave |Id
add wave rst
add wave cl k
add wave d

add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force Ild O
force d 1010
onerror {cont}
run 1700

force Id 1

run 100

force Id O

run 400

force rst 1
run 200

force rst 0 10
run 1500

Using Parameters with DO Files

Y ou can increase the flexibility of DO files by using parameters. Parameters specify values that
are passed to the corresponding parameters $1 through $9 in the macro file. For example say the
macro "testfile" contains the line bp $1 $2. The command below would place a breakpoint in
the source file named design.vhd at line 127:

do testfile design.vhd 127

Thereisno limit on the number of parameters that can be passed to macros, but only nine values
arevisible at onetime. Y ou can use the shift command to see the other parameters.

Deleting a File from a .do Script

To delete afile from a.do script, use the Tcl file command as follows:

file delete myfile.log

Thiswill delete the file "myfile.log."
Y ou can also use the transcript file command to perform a deletion:

transcript file ()
transcript file my file.log

Thefirst line will close the current log file. The second will open anew log file. If it hasthe
same name as an existing file, it will replace the previous one.

308 ModelSim User's Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Macros (DO Files)

Making Macro Parameters Optional

If you want to make macro parameters optional (i.e., be able to specify fewer parameter values
with the do command than the number of parametersreferenced in the macro), you must use the
argc simulator state variable. The argc simulator state variable returns the number of
parameters passed. The examples below show several ways of using ar gc.

Example 1

This macro specifies the files to compile and handles 0-2 compiler arguments as parameters. If
you supply more arguments, Model Sim generates a message.

switch $argc {
0 {vcomfilel.vhd file2.vhd file3.vhd }
1 {vcom $1 filel.vhd file2.vhd file3.vhd }
2 {vcom$1 $2 filel.vhd file2.vhd file3.vhd }
default {echo Too many argunents. The macro accepts 0-2 args. }

}

Example 2

This macro specifies the compiler arguments and lets you compile any number of files.

variable Files ""

set nbrArgs $argc

for {set x 1} {$x <= $nbrArgs} {incr x} {
set Files [concat $Files $1]
shift

}

eval vcom-93 -explicit -noaccel $Files

Example 3

This macro is an enhanced version of the one shown in example 2. The additional code
determines whether the filesare VHDL or Verilog and uses the appropriate compiler and
arguments depending on the file type. Note that the macro assumes your VHDL files have a
.vhd file extension.

ModelSim User’s Manual, v6.2g 309
February 2007

Tcl and Macros (DO Files)
Macros (DO Files)

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFil esExist 0O
set VFil esExi st 0
for {set x 1} {$x <= $nbrArgs} {incr x} {
if {[string match *.vhd $1]} {
set vhdFiles [concat $vhdFiles $1]
set vhdFilesExist 1
} else {
set vFiles [concat $vFiles $1]
set vFilesExist 1

I
shift

}
if {$vhdFilesExist == 1} {
eval vcom -93 -explicit -noaccel $vhdFiles

}
if {$vFilesExist == 1} {
eval vlog $vFiles

}

Useful Commands for Handling Breakpoints and Errors

If you are executing a macro when your simulation hits a breakpoint or causes a run-time error,
Model Sim interrupts the macro and returns control to the command line. The following
commands may be useful for handling such events. (Any other legal command may be executed
aswell.)

Table 13-8. Commands for Handling Breakpoints and Errors in Macros

command result

run -continue continue as if the breakpoint had not been executed,
completes the run that was interrupted

onbreak specify acommand to run when you hit a breakpoint
within amacro

onElabError specify a command to run when an error is
encountered during elaboration

onerror specify a command to run when an error is
encountered within a macro

status get atraceback of nested macro callswhenamacrois
interrupted

abort terminate a macro once the macro has been
interrupted or paused

pause cause the macro to be interrupted; the macro can be

resumed by entering a resume command viathe
command line

310 ModelSim User's Manual, v6.2g
February 2007

Tcl and Macros (DO Files)
Macros (DO Files)

Y ou can also set the OnErrorDefaultAction Tcl variable to determine what action Model Sim
takes when an error occurs. To set the variable on a permanent basis, you must define the
variable in amodelsim.tcl file (see The modelsim.tcl File for details).

Error Action in DO Files

If acommand in a macro returns an error, Model Sim does the following:

1. If anonerror command has been set in the macro script, Model Sim executes that
command. The onerror command must be placed prior to the run command in the DO
file to take effect.

2. 1f no onerror command has been specified in the script, Model Sim checks the
OnErrorDefaultAction variable. If the variable is defined, its action will be invoked.

3. If neither 1 or 2 istrue, the macro aborts.

Using the Tcl Source Command with DO Files

Either the do command or Tcl sour ce command can execute a DO file, but they behave
differently.

With the sour ce command, the DO file is executed exactly asif the commandsin it were typed
in by hand at the prompt. Each time a breakpoint is hit, the Source window is updated to show
the breakpoint. This behavior could be inconvenient with alarge DO file containing many
breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any windows,
and keeps the DO file "locked". This keeps the Source window from flashing, scrolling, and
moving the arrow when acomplex DO file is executed. Typically an onbreak resume
command is used to keep the macro running as it hits breakpoints. Add an onbreak abort
command to the DO file if you want to exit the macro and update the Source window.

ModelSim User’s Manual, v6.2g 311
February 2007

Tcl and Macros (DO Files)
Macros (DO Files)

312 ModelSim User’'s Manual, v6.2g
February 2007

Appendix A
Simulator Variables

This appendix documents the following types of variables:

» Environment Variables — Variables referenced and set according to operating system
conventions. Environment variables prepare the Model Sim environment prior to
simulation.

» Simulator Control Variables— Variables used to control compiler, simulator, and
various other functions.

* Simulator State Variables— Variables that provide feedback on the state of the current
simulation.

Variable Settings Report

The report command returns alist of current settings for either the ssimulator state or simulator
control variables. Use the following commands at either the ModelSim or VSIM prompt:

report simulator state
report simulator control

Environment Variables

Environment Variable Expansion

The shell commands vcom, vlog, vsim, and vmap, no longer expand environment variablesin
filename arguments and options. Instead, variables should be expanded by the shell beforehand,
in the usual manner. The -f option that most of these commands support, now performs
environment variable expansion throughout thefile.

Environment variable expansion is still performed in the following places:

» Pathname and other values in the modelsim.ini file
e Strings used asfile pathnamesin VHDL and Verilog
* VHDL Foreign attributes

* ThePLIOBJS environment variable may contain a path that has an environment
variable.

» Verilog "usdib file and dir directives

ModelSim User’s Manual, v6.2g 313
February 2007

Simulator Variables
Environment Variables

* Anywherein the contents of a-f file

The recommended method for using flexible pathnames is to make use of the MGC Location
Map system (see Using Location Mapping). When thisis used, then pathnames stored in
libraries and project files (.mpf) will be converted to logical pathnames.

If afile or path name containsthe dollar sign character ($), and must be used in one of the places
listed above that accepts environment variables, then the explicit dollar sign must be escaped by
using a double dollar sign ($$).

Setting Environment Variables

Before compiling or ssmulating, several environment variables may be set to provide the
functions described below. The variables are set through the System control panel on Windows
2000 and XP machines. For UNIX, the variables are typically found in the .login script. The
LM_LICENSE _FILE variableisrequired; all others are optional.

DOPATH

The toolset uses the DOPATH environment variable to search for DO files (macros). DOPATH
consists of a colon-separated (semi-colon for Windows) list of paths to directories. Y ou can
override this environment variable with the DOPATH Tcl preference variable.

The DOPATH environment variable isn’t accessible when you invoke vsim from a UNIX shell
or from a Windows command prompt. It is accessible once Model Sim or vsim isinvoked. If
you need to invoke from a shell or command line and use the DOPATH environment variable,
use the following syntax:

vsim -do "do <dofil e_nanme>" <design_unit>

EDITOR

The EDITOR environment variable specifies the editor to invoke with the edit command

HOME

The toolset uses the HOME environment variable to look for an optional graphical preference
file and optional location map file. Refer to Simulator Control Variables for additional
information.

HOME_OIN

The HOME_OIN environment variable identifies the location of the O-1n executables directory.
Refer to the 0-1n documentation for more information.

314 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Environment Variables

LD_LIBRARY_PATH

A UNIX shell environment variable setting the search directories for shared libraries. It
instructs the OS where to search for the shared libraries for FLI/PLI/VPI/DPI. Thisvariableis
used for both 32-bit and 64-bit shared libraries on Solaris/Linux systems.

LD LIBRARY_PATH 32

A UNIX shell environment variable setting the search directories for shared libraries. It
instructs the OS where to search for the shared libraries for FLI/PLI/VPI/DPI. Thisvariableis
used only for 32-bit shared libraries on Solaris/Linux systems.

LD LIBRARY_PATH 64

A UNIX shell environment variable setting the search directories for shared libraries. It
instructs the OS where to search for the shared libraries for FLI/PLI/VPI/DPI. Thisvariableis
used only for 64-bit shared libraries on Solaris/Linux systems.

LM_LICENSE_FILE

Thetoolset’ s file manager usesthe LM_LICENSE_FILE environment variable to find the
location of the license file. The argument may be a colon-separated (semi-colon for Windows)
set of paths, including paths to other vendor license files. The environment variable is required.

MODEL_TECH
The toolset automatically setsthe MODEL_TECH environment variable to the directory in
which the binary executable resides; DO NOT SET THISVARIABLE!

MODEL _TECH_TCL
Thetoolset usesthe MODEL _TECH_TCL environment variableto find Tcl librariesfor Tcl/Tk
8.3 and vsim, and may also be used to specify a startup DO file. This variable defaultsto
/modeltech/../tcl, however you may set it to an aternate path

MGC _LOCATION_MAP
The toolset usesthe MGC_LOCATION_MAP environment variable to find source files based
on easily reallocated "soft" paths.

MODELSIM

The toolset uses the MODEL SIM environment variable to find the modelsim.ini file. The
argument consists of a path including the file name.

An alternative use of thisvariableisto set it to the path of a project file
(<Project_Root_Dir>/<Project Name>.mpf). This allows you to use project settings with

ModelSim User’s Manual, v6.2g 315
February 2007

Simulator Variables
Environment Variables

command line tools. However, if you do this, the . mpf file will replace modelsim.ini as the
initialization file for al tools.

MODELSIM_PREFERENCES

The MODEL SIM_PREFERENCES environment variable specifies the location to store user
interface preferences. Setting this variable with the path of afile instructs the toolset to use this
fileinstead of the default location (your HOME directory in UNIX or in theregistry in
Windows). The file does not need to exist beforehand, the toolset will initialize it. Also, if this
fileisread-only, the toolset will not update or otherwise modify the file. This variable may
contain arelative pathname — in which case the file will be relative to the working directory at
the time the tool is started.

MODELSIM_TCL

The toolset usesthe MODEL SIM_TCL environment variable to look for an optional graphical
preference file. The argument can be a colon-separated (UNIX) or semi-colon separated
(Windows) list of file paths.

MTI_COSIM_TRACE

The MTI_COSIM_TRACE environment variable creates an mti_trace _cosim file containing
debugging information about FLI/PL1/VPI function calls. Y ou should set this variable to any
value before invoking the smulator.

MTI_TF_LIMIT

The MTI_TF_LIMIT environment variable limits the size of the VSOUT temp file (generated
by the toolset’ s kernel). Set the argument of this variable to the size of k-bytes

The environment variable TMPDIR controls the location of thisfile, while STDOUT controls
the name. The default setting is 10, and avalue of 0 specifiesthat thereisno limit. Thisvariable
does not control the size of the transcript file.

MT|_RELEASE_ON_SUSPEND

The MTI_RELEASE ON_SUSPEND environment variable allows you to turn off or modify
the delay for the functionality of releasing al licenses when the tool is suspended. The default
setting is 10 (in seconds), which meansthat if you do not set this variable your licenses will be
released 10 seconds after your run is suspended. If you set this environment variable with an
argument of O (zero) the tool will not release the licenses after being suspended. Y ou can
change the default length of time (number of seconds) by setting this environment variable to an
integer greater than O (zero).

316 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Environment Variables

MTI_USELIB_DIR

TheMTI_USELIB_DIR environment variable specifies the directory into which object libraries
are compiled when using the -compile_uselibs argument to the viog command

NOMMAP

When set to 1, the NOMMAP environment variable disables memory mapping in the tool set.
Y ou should only use this variable when running on Linux 7.1 because it will decrease the speed
with which the tool readsfiles.

PLIOBJS

The toolset uses the PLIOBJS environment variable to search for PLI object files for loading.
The argument consists of a space-separated list of file or path names

STDOUT

The argument to the STDOUT environment variable specifies afilename to which the simulator
savesthe VSOUT temp file information. Typically thisinformation is deleted when the
simulator exits. The location for thisfile is set with the TMPDIR variable, which allows you to
find and delete the file in the event of a crash, because an unnamed VSOUT fileis not deleted
after a crash.

TMP
(Windows environments) The TMP environment variable specifies the path to atempnam()
generated file (VSOUT) containing all stdout from the simulation kernel.

TMPDIR

(UNIX environments) The TMPDIR environment variable specifies the path to a tempnam()
generated file (VSOUT) containing all stdout from the simulation kernel.

Creating Environment Variables in Windows

In addition to the predefined variables shown above, you can define your own environment
variables. This example shows auser-defined library path variable that can be referenced by the
vmap command to add library mapping to the modelsim.ini file.

1. From your desktop, right-click your My Computer icon and select Properties
2. Inthe System Properties dialog box, select the Advanced tab

3. Click Environment Variables
4

. Inthe Environment Variables dialog box and User variables for <user> pane, select
New:

ModelSim User’s Manual, v6.2g 317
February 2007

Simulator Variables
Environment Variables

5. Inthe New User Variable dialog box, add the new variable with this data

Vari abl e ame: MY_PATH
Vari abl e val ue: \t enp\ wor k

6. OK (New User Variable, Environment Variable, and System Properties dialog boxes)

Library Mapping with Environment Variables

Oncethe MY _PATH variable is set, you can use it with the vmap command to add library
mappings to the current modelsim.ini file.

Table A-1. Add Library Mappings to modelsim.ini File
Prompt Type Command Result added to modelsim.ini

DOS prompt vmap MY _VITAL %MY_PATH% MY _VITAL = c:\temp\work

ModelSimor ~ vmap MY_VITAL \$MY_PATH? MY_VITAL =$MY_PATH
vsim prompt

1. Thedollar sign ($) character is Tcl syntax that indicates avariable. The backslash (\) character isan escape
character that prevents the variable from being evaluated during the execution of vmap.

Y ou can easily add additional hierarchy to the path. For example,

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path
vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

Referencing Environment Variables

There are two ways to reference environment variables within Model Sim. Environment
variables are allowed in aFIL E variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begi n
process
FILE in_file : text is in "$ENV_VAR_NAME";
begin
wai t ;
end process;
end;

Environment variables may also be referenced from the Model Sim command line or in macros
using the Tcl env array mechanism:

echo "$env(ENV_VAR_NAME)"

318 ModelSim User's Manual, v6.2g

February 2007

Simulator Variables
Simulator Control Variables

Note
D Environment variable expansion does not occur in files that are referenced viathe -f

argument to vcom, vlog, or vsim.

Removing Temp Files (VSOUT)

The VSOUT temp file is the communi cation mechanism between the simulator kernel and the
Graphical User Interface. In normal circumstancesthefile is deleted when the smulator exits. If
thetool crashes, however, the temp file must be deleted manually. Specifying the location of the
temp filewith TMPDIR (above) will help you locate and remove thefile.

Simulator Control Variables

Initialization (INI) files contain control variables that specify reference library paths and
compiler and simulator settings. The default initialization fileis modelsim.ini and islocated in
your install directory.

To set these variables, edit theinitialization file directly with any text editor. The syntax for
variablesinthefileis:

<variable> = <value>

Comments within the file are preceded with a semicolon (;).
The following sections contain information about the variables:
» Library Path Variables
» Verilog Compiler Control Variables

e VHDL Compiler Control Variables

* Simulation Control Variables

Library Path Variables

Y ou can find these variables under the heading [Library] in the modelsim.ini file.
ieee
This variable sets the path to the library containing |EEE and Synopsys arithmetic packages.

» Value Range: any valid path; may include environment variables

» Default: SMODEL_TECH/../ieee

ModelSim User’s Manual, v6.2g 319
February 2007

Simulator Variables
Simulator Control Variables

modelsim_lib

This variable sets the path to the library containing Model Technology VHDL utilities such as
Signal Spy.

* Value Range: any valid path; may include environment variables

e Default: SMODEL_TECH/../modelsim_lib
std
This variable sets the path to the VHDL STD library.
» Value Range: any valid path; may include environment variables
» Default: SMODEL_TECH/../std
std_developerskit
This variable sets the path to the libraries for MGC standard devel oper’ s kit.
* Value Range: any valid path; may include environment variables
o Default: SMODEL_TECH/../std_developerskit
synopsys
This variable sets the path to the accelerated arithmetic packages.
* Value Range: any valid path; may include environment variables
o Default: SMODEL_TECH/../synopsys
sv_std
This variable sets the path to the SystemVerilog STD library.
» Value Range: any valid path; may include environment variables
« Default: SMODEL_TECH/../sv_std
verilog
This variable sets the path to the library containing VHDL/Verilog type mappings.

* Value Range: any valid path; may include environment variables
» Default: SMODEL_TECH/../verilog

320 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

vital2000
This variable sets the path to the VITAL 2000 library

» Value Range: any valid path; may include environment variables
» Default: SMODEL_TECH)/../vital 2000

others

This variable points to another modelsim.ini file whose library path variables will also be read,;
the pathname must include "modelsim.ini”; only one others variable can be specified in any
modelsim.ini file.

* Value Range: any valid path; may include environment variables

o Default: none

Verilog Compiler Control Variables

Y ou can find these variables under the heading [vlog] in the modelsim.ini file.

DisableOpt

This variable, when on, disables all optimizations enacted by the compiler; same as the -O0
argument to vlog.

* ValueRange 0,1
» Default: off (0)

GenerateLooplterationMax

This variable specifies the maximum number of iterations permitted for a generate loop;
restricting this permits the implementation to recognize infinite generate loops.

» Value Range: natural integer (>=0)
» Default: 100000

GenerateRecursionDepthMax

This variable specifies the maximum depth permitted for arecursive generate instantiation;
restricting this permits the implementation to recognize infinite recursions.

» Value Range: natural integer (>=0)
» Default: 200

ModelSim User’s Manual, v6.2g 321
February 2007

Simulator Variables
Simulator Control Variables

Hazard

This variable turns on Verilog hazard checking (order-dependent accessing of global variables).

* ValueRange 0,1
» Default: off (0)

Incremental

This variable activates the incremental compilation of modules.

 ValueRange 0,1
» Default: off (0)

MultiFileCompilationUnit

Controls how Verilog files are compiled into compilation units. Valid arguments:

e 1--(0n) Compilesall fileson command line into a single compilation unit. This
behavior is called Multi File Compilation Unit (MFCU) mode; same as -mfcu argument
to

e 0-- (Off) Default value. Compiles each file in the compilation command line into
separate compilation units. This behavior is called Single File Compilation Unit (SFCU)
mode.

Refer to SystemVerilog Multi-File Compilation Issues for details on the implications of these
settings.

Note
D The default behavior in versions prior to 6.1 was opposite of the current default behavior.

NoDebug

This variable, when on, disables the inclusion of debugging info within design units.
* ValueRange 0,1
» Default: off (0)
Quiet
Thisvariable turns off "loading..." messages.

 ValueRange 0,1
» Default: off (0)

322 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

Show_BadOptionWarning

This variable instructs the tool to generate a warning whenever an unknown plus argument is
encountered.

 ValueRange 0,1
» Default: off (0)

Show_Lint
This variable instructs the tool to display lint warning messages.

* ValueRange 0,1
» Default: off (0)

Show_WarnCantDoCoverage

This variable instructs the tool to display warning messages when the simulator encounters
constructs which code coverage cannot handle.

* ValueRange 0,1
» Default: on (1)

Show_WarnMatchCadence

This variable instructs the tool to display warning messages about non-LRM compliancein
order to match Cadence behavior.

* ValueRange 0,1
» Default: on (1)
Show_source
This variable instructs the tool to show any source line containing an error.
 ValueRange 0,1

» Default: off (0)

viog95compat

This variable instructs the tool to disable SystemVerilog and Verilog 2001 support, making the
compiler compatible with IEEE Std 1364-1995.

 ValueRange 0,1

ModelSim User’s Manual, v6.2g 323
February 2007

Simulator Variables
Simulator Control Variables

. Default: off (0)

VHDL Compiler Control Variables

Y ou can find these variables under the heading [vcom].

BindAtCompile

This variable instructs the tool to perform VHDL default binding at compile time rather than
load time. Refer to Default Binding for more information.

 ValueRange 0,1
» Default: off (0)

CheckSynthesis

This variable turns on limited synthesis rule compliance checking, which includes checking
only signals used (read) by a process and understanding only combinational logic, not clocked
logic.

 ValueRange 0, 1
» Default: off (0)

DisableOpt

This variable disables all optimizations enacted by the compiler, similar to using the -O0
argument to vcom.

« ValueRange 0, 1
» Default: off (0)

Explicit

This variable enables the resolving of ambiguous function overloading in favor of the "explicit"
function declaration (not the one automatically created by the compiler for each type
declaration).

* ValueRange 0,1
* Default: on (1)
IgnoreVitalErrors
This variable instructs the tool to ignore VITAL compliance checking errors.

« ValueRange 0, 1

324 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

. Default: off (0)

NoCaseStaticError
This variable changes case statement static errors to warnings.
* ValueRange: 0,1
e Default: off (0)

NoDebug
This variable disables turns off inclusion of debugging info within design units.
 ValueRange 0, 1
o Default: off (0)

NolndexCheck
This variable disables run time index checks.
 ValueRange 0,1
o Default: off (0)

NoOthersStaticError
This variable disables errors caused by aggregates that are not locally static.
* ValueRange 0,1
e Default: off (0)

NoRangeCheck

This variable disables run time range checking.
 ValueRange 0, 1
o Default: off (0)

NoVital
This variable disables acceleration of the VITAL packages.

 ValueRange 0,1
» Default: off (0)

ModelSim User’s Manual, v6.2g 325
February 2007

Simulator Variables
Simulator Control Variables

NoVitalCheck
Thisvariable disables VITAL compliance checking.
* ValueRange: 0,1
» Default: off (0)

Optimize_1164
This variable disables optimization for the IEEE std_|logic_1164 package.
 ValueRange 0, 1
» Default: on (1)

PedanticErrors
This variable overrides NoCaseStaticError and NoOthersStati cError
 ValueRange 0,1
» Default: off(0)

Quiet
This variable disables the “loading...” messages.

* ValueRange: 0,1
o Default: off (0)

RequireConfigForAllDefaultBinding
This variable instructs the compiler not to generate a default binding during compilation.
 ValueRange 0, 1
» Default: off (0)

Show_Lint
This variable enables lint-style checking.
 ValueRange 0,1
» Default: off (0)

Show_source

This variable shows source line containing error.

326 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

* ValueRange: 0,1
o Default: off (0)

Show_VitalChecksOpt
This variable enables VITAL optimization warnings.
 ValueRange 0,1
» Default: on (1)

Show_VitalChecksWarnings
This variable enables VITAL compliance-check warnings.
 ValueRange 0,1
» Default: on (1)

Show_WarnCantDoCoverage

This variable enables warnings when the ssmulator encounters constructs which code coverage
cannot handle.

 ValueRange 0,1
» Default: on (1)

Show_Warningl

This variable enables unbound-component warnings.

* ValueRange 0,1
» Default: on (1)

Show_Warning?2

This variable enables process-without-a-wait-statement warnings.
 ValueRange 0, 1
» Default: on (1)
Show_Warning3
This variable enables null-range warnings.

 ValueRange 0,1

ModelSim User’s Manual, v6.2g 327
February 2007

Simulator Variables
Simulator Control Variables

» Default: on (1)

Show_Warning4

This variable enables no-space-in-time-literal warnings.

* ValueRange: 0,1
» Default: on (1)

Show_Warning5

This variable enables multiple-drivers-on-unresolved-signal warnings.

 ValueRange 0, 1
» Default: on (1)

Show_Warning9
This variable enables warnings about signal value dependency at elaboration.

 ValueRange 0,1
» Default: on (1)

Show_Warning10
This variable enables warnings about VHDL-1993 constructsin VHDL-1987 code.

* ValueRange 0,1
» Default: on (1)

Show_WarnLocallyStaticError

This variable enables warnings about locally static errors deferred until run time.

 ValueRange 0, 1
» Default: on (1)

VHDL93

This variable enables support for VHDL-1987, where “1” enables support for VHDL-1993 and
“2" enables support for VHDL-2002.

* ValueRange 0,1, 2
e Default: 2

328 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

Simulation Control Variables

Y ou can find these variables under the heading [vsim] in the modelsim.ini file.
AssertFile
This variable specifies an alternative file for storing VHDL assertion messages.
* Value Range: any valid filename
» Default: transcript
AssertionDebug
This variable specifies that SVA assertion passes are reported.
* ValueRange 0,1
o Default: off (0)
AssertionFormat
This variable defines the format of VHDL assertion messages.

* ValueRange

Table A-2. AssertionFormat Variable: Accepted Values

Variable Description

which call is made

%S severity level

%R report message

%T time of assertion

%D delta

%l instance or region pathname (if available)

%i instance pathname with process

%0 process name

%K kind of object path points to; returns Instance, Signal,
Process, or Unknown

%P instance or region path without leaf process

%F file

%L line number of assertion, or if from subprogram, line from

%% print’ %' character

ModelSim User's Manual, v6.2g
February 2007

329

Simulator Variables
Simulator Control Variables

o Default: "** %S: %R\n Time: %T lteration: %D%I\n"

AssertionFormatBreak
This variable defines the format of messages for VHDL assertions that trigger a breakpoint.

* Value Range: Refer to Table A-2
o Default: "** %S: %R\n Time: %T lteration: %D %K : %i File: %F\n"

AssertionFormatError
This variable defines the format of messages for VHDL Error assertions.

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used.

* Value Range: Refer to Table A-2
» Default: "** %S:; %R\n Time: %T Iteration: %D %K: %i File: %F\n"
AssertionFormatFail
This variable defines the format of messages for VHDL Fail assertions.

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used

* ValueRange: Refer to Table A-2
o Default: "** %S: %R\n Time: %T lteration: %D %K: %i File: %F\n"
AssertionFormatFatal
This variable defines the format of messages for VHDL Fatal assertions

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used.

* Value Range: Refer to Table A-2
» Default: "** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n"
AssertionFormatNote
This variable defines the format of messages for VHDL Note assertions

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used

330 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

* Value Range: Refer to Table A-2
o Default: "** %S: %R\n Time: %T Iteration: %D%l\n"

AssertionFormatWarning

This variable defines the format of messages for VHDL Warning assertions

If undefined, AssertionFormat is used unless assertion causes a breakpoint in which case
AssertionFormatBreak is used

* Value Range: Refer to Table A-2
o Default: "** %S: %R\n Time: %T Iteration: %D%I\n"

BreakOnAssertion

This variable defines the severity of VHDL assertions that cause a simulation break. It also
controls any messages in the source code that use assertion _failure *. For example, since most
runtime messages use some form of assertion_failure *, any runtime error will cause the
simulation to break if the user sets BreakOnAssertion to 2.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

* ValueRange: 0 (note), 1 (warning), 2 (error), 3 (failure), 4 (fatal)
» Default: 3 (failure)

CheckPlusargs

This variable defines the ssmulator’ s behavior when encountering unrecognized plusargs.

* Value Range: 0 (ignores), 1 (issues warning, simulates whileignoring), 2 (issues error,
exits)

» Default: O (ignores)
CheckpointCompressMode
This variable specifies that checkpoint files are written in compressed format
 ValueRange 0,1

» Default: on (1)

CommandHistory

This variable specifies the name of afilein which to store the Main window command history.

ModelSim User’s Manual, v6.2g 331
February 2007

Simulator Variables
Simulator Control Variables

* Value Range: any valid filename

» Default: commented out (;)

ConcurrentFileLimit

Thisvariable controls the number of VHDL files open concurrently. This number should be less
than the current limit setting for max file descriptors.

* Value Range: any positive integer or O (unlimited)
» Default: 40

DatasetSeparator
This variable specifies the dataset separator for fully-rooted contexts, for example:
sim/top
The argument to DatasetSeparator must not be the same character as PathSeparator

* Value Range: any character except those with special meaning, such as\, {, }, etc.
e Default: :

DefaultForceKind

This variable defines the kind of force used when not otherwise specified.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

» Value Range: freeze, drive, or deposit

» Default: drive, for resolved signals; freeze, for unresolved signals

DefaultRadix

This variable specifies a numeric radix may be specified as a name or number. For example,
you can specify binary as “binary” or “2” or octal as“octal” or “8”.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

» Value Range: symbalic, binary, octal, decimal, unsigned, hexadecimal, ascii

» Default: symbolic

332 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

DefaultRestartOptions
This variable sets the default behavior for the restart command

» Value Range: one or more of: -force, -noassertions, -nobreakpoint, -nofcovers, -nolist,
-nolog, -nowave

o Default: commented out (;)

DelayFileOpen

Thisvariableinstructs the tool to open VHDL87 fileson first read or write, else open fileswhen
elaborated.

 ValueRange 0,1
» Default: off (0)

DumpportsCollapse
This variable collapses vectors (VCD id entries) in dumpports output.

* VaueRange 0, 1
o Default: off (0)

GenerateFormat

This variable controls the format of a generate statement label. Do not enclose the argument in
guotation marks.

» Value Range: Any non-quoted string containing at a minimum a %s followed by a %d
» Default: %s_ %d

GlobalSharedObjectsList
This variable instruct the tool to load the specified PLI/FLI shared objects with global symbol
visibility.
* Value Range: comma separated list of filenames

» Default: commented out (;)
IgnoreError
This variable instructs the tool to ignore VHDL assertion errors.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

ModelSim User’s Manual, v6.2g 333
February 2007

Simulator Variables
Simulator Control Variables

* ValueRange: 0,1
o Default: off (0)

IgnoreFailure
This variable instructs the tool to ignore VHDL assertion failures.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

* ValueRange: 0,1
» Default: off (0)

IgnoreNote
This variable instructs the tool to ignore VHDL assertion notes.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

 ValueRange: 0,1
» Default: off (0)

IgnoreWarning
This variable instructs the tool to ignore VHDL assertion warnings.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

* ValueRange: 0,1
o Default: off (0)
IterationLimit
This variable specifies alimit on simulation kernel iterations allowed without advancing time.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

» Value Range: positive integer

« Default: 5000

334 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

License

This variable controls the license file search.

* Value Range: one ore more of the following <license_option>, separated by spaces if
using multiple entries. Refer also to the vsim <license_option>.

Table A-3. License Variable: License Options

license_option | Description

Inlonly only use msimhdlsim and hdlsim
mixedonly exclude single language licenses
nomgc exclude MGC licenses

nolnl exclude language neutral licenses
nomix exclude msimhdimix and hdimix
nomti exclude MTI licenses

noqueue do not wait in license queue if no licenses are available
noslvhdl exclude ghsimvh and vsim
noslviog exclude ghssmvl and vsimvlog
plus only use PLUS license

viog only use VLOG license

vhdl only use VHDL license

e Default: search all licenses

LockedMemory

For HP-UX 10.2 use only. This variable enables memory locking to speed up large designs (>
500mb memory footprint)

» Value Range: positive integer in units of MB.
» Default: disabled

MaxReportRhsCrossProducts

This variable specifies alimit on number of Cross (bin) products which are listed against a
Crosswhen a XML or UCDB report is generated. The warning reports when any instance of
unusually high number of Cross (bin) product and truncation of Cross (bin) product list for a
Cross.

» Value Range: positive integer

ModelSim User’s Manual, v6.2g 335
February 2007

Simulator Variables
Simulator Control Variables

e Default: 1000

NumericStdNoWarnings

This variable disables warnings generated within the accelerated numeric_std and numeric_bit
packages.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

* ValueRange 0,1
o Default: off (0)

OnFinish

This variable controls the behavior of the tool when it encounters $finish in the design code.

* ValueRange:
. ask S
o Inbatch mode, the ssimulation exits.

o InGUI mode, adialog box pops up and asksfor user confirmation on whether to
quit the simulation.

» stop — Causesthe ssimulation to stay loaded in memory. This can make some post-
simulation tasks easier.

* exit — The simulation exits without asking for any confirmation.

o Default: ask — Exits in batch mode; prompts user in GUI mode.

PathSeparator

This variable specifies the character used for hierarchical boundaries of HDL modules. This
variable does not affect file system paths. The argument to PathSeparator must not be the same
character as DatasetSeparator.

* Value Range: any character except those with special meaning, such as\, {, }, etc.

o Default: /

PrintSimStats

This variable instructs the simulator to print the output of the simstats command upon exit. Y ou
can set this variable interactively with the -printsimstats argument to the vsim command.

* ValueRange: 0,1

336 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

e Default: O

Resolution

This variable specifies the simulator resolution. The argument must be less than or equal to the
UserTimeUnit and must not contain a space between value and units, for example:

Resoul tion = 10fs

Y ou can override this value with the -t argument to vsim. Y ou should set a smaller resolution if
your delays get truncated.

* ValueRange: fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or 100

o Default: ps

RunLength

This variable specifies the default simulation length in units specified by the UserTimeUnit
variable

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

» Value Range: positive integer

o Default: 100

ShowFunctions

Thisvariable setsthe format for Breakpoint and Fatal error messages. When set to 1 (the default
value), messages will display the name of the function, task, subprogram, module, or
architecture where the condition occurred, in addition to the file and line number. Set to 0 to
revert messages to previous format.

* ValueRange: 0,1
» Default: 1

SignalSpyPathSeparator

This variable specifies a unique path separator for the Signal Spy functions. The argument to
Signal SpyPathSeparator must not be the same character as DatasetSeparator.

* Value Range: any character except those with special meaning, such as\, {, }, etc.

o Default: /

ModelSim User’s Manual, v6.2g 337
February 2007

Simulator Variables
Simulator Control Variables

Startup

This variable specifies a simulation startup macro. Refer to the do command

* Value Range: = do <DO filename>; any valid macro (do) file

» Default: commented out (;)

StdArithNoWarnings

This variable suppresses warnings generated within the accelerated Synopsys std_arith
packages.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

 ValueRange 0, 1
o Default: off (0)

ToggleMaxIntValues

This variable sets the maximum number of VHDL integer values to record with toggle
coverage.

* Value Range: positive integer
» Default: 100

TranscriptFile

This variable specifies afile for saving command transcript. Y ou can specify environment
variables in the pathname.

* Value Range: any valid filename

o Default: transcript

UnbufferedOutput

Thisvariable controls VHDL and Verilog files open for write.

* Value Range: 0 (buffered), 1 (unbuffered)
* Default: 0

UseCsupV2

Applies only to HP-UX 11.00 and when you compiled FLI/PLI/VPI C++ code with the -AA
option for aCC.

338 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

Thisvariable instructs vsim to use /usr/lib/libCsup_v2.dl for shared object loading.

 ValueRange 0,1
» Default: off (0)

UserTimeUnit

This variable specifies scaling for the Wave window and the default time units to use for
commands such as force and run. Y ou should generally set this variable to default, in which
case it takes the value of the Resolution variable.

* ValueRange: fs, ps, ns, us, ms, sec, or default
e Default: default

Veriuser
Thisvariable specifiesalist of dynamically loadable objects for Verilog PLI/VPI applications.

* Value Range: one or more valid shared object names

o Default: commented out (;)

WarnConstantChange

This variable controls whether awarning isissued when the change command changes the
value of aVHDL constant or generic.

 ValueRange 0,1
» Default: on (1)

WaveSignalNameWidth

This variable controls the number of visible hierarchical regions of asignal name shown in the
Wave Window.

» Value Range: 0 (display full name), positive integer (display corresponding level of
hierarchy)

o Default: 0

WLFCacheSize

This variable sets the number of megabytes for the WLF reader cache; WLF reader caching
caches blocks of the WLF file to reduce redundant file |/O

» Value Range: positive integer

ModelSim User’s Manual, v6.2g 339
February 2007

Simulator Variables
Simulator Control Variables

e Default: O

WLFCollapseMode

This variable controls when the WLF file records values.

* Value Range: 0 (every change of logged object), 1 (end of each deltastep), 2 (end of
simulator time step)

* Default: 1
WLFCompress
This variable enables WLF file compression.
* ValueRange: 0,1
» Default: 1 (on)
WLFDeleteOnQuit
This variable specifies whether a WLF file should be deleted when the simulation ends.
 ValueRange 0, 1
» Default: 0 (do not delete)
WLFFilename
This variable specifies the default WLF file name.
 ValueRange 0,1
* Default: vaim.wif
WLFOptimize
This variable specifies whether the viewing of waveformsis optimized.
* ValueRange: 0,1
» Default: 1 (on)
WLFSaveAllRegions
This variable specifies the regions to save in the WLF file.

* ValueRange: 0 (only regions containing logged signals), 1 (all design hierarchy)
e Default: 0

340 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

WLFSizeLimit

Thisvariable limits the WLF file by size (as closely as possible) to the specified number of
megabytes; if both size and time limits are specified the most restrictive is used.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

* Value Range: any positive integer in units of MB or O (unlimited)

» Default: O (unlimited)

WLFTimeLimit

Thisvariable limits the WLF file by time (as closely as possible) to the specified amount of
time. If both time and size limits are specified the most restrictive is used.

Y ou can set this variable interactively in the GUI; refer to Setting Simulator Control Variables
With The GUI.

* Value Range: any positive integer or O (unlimited)

o Default: O (unlimited)

ModelSim User’s Manual, v6.2g 341
February 2007

Simulator Variables
Simulator Control Variables

Setting Simulator Control Variables With The GUI

Changes made in the Runtime Options dialog are written to the active modelsim.ini file, if it is
writable, and affect the current session as well as all future sessions. If the fileis read-only, the
changes affect only the current session. The Runtime Options dialog is accessible by selecting
Simulate > Runtime Optionsin the Main window. The dialog contains three tabs - Defaults,
Assertions, and WLF Files.

The Defaults tab includes these options:

Figure A-1. Runtime Options Dialog: Defaults Tab

Runtime Options g =10 x|
Defaulk:] Azzertions] WLF Files I ﬂﬂ
Default Fadix i~ Suppress Wamings:
& Sumbo ™ From Synopsys Packages
- mbohc
j." I I~ From IEEE Mumeric Std Packages
" Binary
~
o gctall | Default Run Deafault Force Type
ECIma
. | ns " Freaze
™ Unzigried . I ~ Di
" Hexadecimal Iteration Limt ~ D"W -
ation Bposi
" ASCI
|5DDD i+ Default (based on type)
Ok | LCancel | Apply |

» Default Radix — Setsthe default radix for the current simulation run. Y ou can also use
the radix command to set the same temporary default. The chosen radix is used for all
commands (force, examine, change are examples) and for displayed valuesin the
Objects, Locals, Dataflow, List, and Wave windows. The corresponding modelsim.ini
variable is DefaultRadix.

* SuppressWarnings

o Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. The corresponding modelsim.ini variable
Is StdArithNoWarnings.

o Selecting From IEEE Numeric Std Packages suppresses warnings generated
within the accelerated numeric_std and numeric_bit packages. The corresponding
modelsim.ini variable is NumericStdNoWarnings.

» Default Run — Sets the default run length for the current simulation. The
corresponding modelsim.ini variable is RunLength.

342 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

* Iteration Limit — Setsalimit on the number of deltas within the same simulation time
unit to prevent infinite looping. The corresponding modelsim.ini variableis
IterationLimit.

» Default Force Type — Selects the default force type for the current simulation. The
corresponding modelsim.ini variable is DefaultForceKind.

The Assertions tab includes these options:

Figure A-2. Runtime Options Dialog Box: Assertions Tab

(5]
Defaults ‘ Azzertions I WLF Files I 43
Immediate Assertion Break Seventy 1 ~Mo Meszage Display For
¢ Fatal YHDL 1 Verilag
& Failure [Failure [Fatal
 Enor ™ Emor I Enmor
 Warming [~ ‘Waming ¥ ‘wWaming
- Nl:lt&."llliﬂ r_ an& p |P'If|:|
OK | Camcel | sppl |

* No Message Display For -VHDL — Selectsthe VHDL assertion severity for which
messages will not be displayed (even if break on assertion is set for that severity).
Multiple selections are possible. The corresponding modelsim.ini variables are
IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote.

The WLF Files tab includes these options:

ModelSim User’s Manual, v6.2g 343
February 2007

Simulator Variables
Simulator Control Variables

Figure A-3. Runtime Options Dialog Box, WLF Files Tab

i
Defaults] Azzertions ‘ WLF Files I ﬂﬂ
WLF File Size Limit —WLF File Time Limit
* Mo Size Limit * Mo Time Limit
" Size Limit " Time Limit | e]
WLF Attributes Design Hierarchy
¥ Compress WLF data, {* Save regions containing logged signals,
[Delete WLF file on exit. " Save all regions in design.
0K | Cancel | spply |

* WLF FileSize Limit — Limitsthe WLF file by size (as closely as possible) to the
specified number of megabytes. If both size and time limits are specified, the most
restrictive is used. Setting it to O resultsin no limit. The corresponding modelsim.ini
variable is WLFSizeLimit.

e WLF FileTimeLimit — Limitsthe WLF file by size (as closely as possible) to the
specified amount of time. If both time and size limits are specified, the most restrictive
isused. Setting it to O resultsin no limit. The corresponding modelsim.ini variableis
WLFTimeLimit.

* WLF Attributes— Specifies whether to compress WLF files and whether to delete the
WLF file when the simulation ends. Y ou would typically only disable compression for
troubleshooting purposes. The corresponding modelsim.ini variables are WL FCompress
for compression and WL FDeleteOnQuit for WLF file deletion.

» Design Hierarchy — Specifies whether to save all design hierarchy in the WLF file or
only regions containing logged signals. The corresponding modelsim.ini variable is
WLFSaveAllRegions.

Message System Variables

The message system variables (located under the [msg_system] heading) help you identify and
troubleshoot problems while using the application. See also Message System.

344 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

error

This variable changes the severity of the listed message numbersto "error”. Refer to Changing
Message Severity Level for more information.

» Value Range: list of message numbers

o Default: none

fatal

This variable changes the severity of the listed message numbersto "fatal”. Refer to Changing
Message Severity Level for more information.

» Value Range: list of message numbers

o Default: none

note

This variable changes the severity of the listed message numbersto "note". Refer to Changing
Message Severity Level for more information

» Value Range: list of message numbers

o Default: none

suppress

This variable suppresses the listed message numbers. Refer to Changing M essage Severity
Level for more information

» Value Range: list of message numbers

o Default: none

warning

This variable changes the severity of the listed message numbers to "warning". Refer to
Changing Message Severity Level for more information

» Value Range: list of message numbers

o Default: none

msgmode

This variable controls where the simulator outputs elaboration and runtime messages. Refer to
the section “Message Viewer” for more information.

ModelSim User’s Manual, v6.2g 345
February 2007

Simulator Variables
Simulator Control Variables

+ Value Range: tran (transcript only), wif (wif file only), both
» Default: both

Commonly Used INI Variables

Severa of the more commonly used modelsim.ini variables are further explained below.

Common Environment Variables

Y ou can use environment variables in your initialization files. Use adollar sign ($) before the
environment variable name. For example:

[Li brary]
work = $HOVE/ work _|ib
test Iib = ./$TESTNUM wor k

[vsin

I gnoreNot e = $| GNORE_ASSERTS

| gnor eVar ni ng = $I GNORE_ASSERTS
I gnoreError = 0

I gnoreFailure =0

There is one environment variable, MODEL_TECH, that you cannot — and should not — set.
MODEL_TECH isaspecial variable set by Model Technology software. Its value is the name
of the directory from which the VCOM or VLOG compilers or VSIM simulator was invoked.
MODEL_TECH is used by the other Model Technology tools to find the libraries.

Hierarchical Library Mapping

By adding an "others’ clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the Model Sim tools don’t find a mapping in the modelsim.ini file, then they will
search only the library section of the initialization file specified by the "others' clause. For
example:

[Li brary]

asic lib = /caelasic_ lib

work = mmy_wor k

others = /install _dir/nodeltech/ nodel si mi ni

Since thefile referred to by the "others' clause may itself contain an "others" clause, you can
use this feature to chain a set of hierarchical INI filesfor library mappings.
Creating a Transcript File

A feature in the system initialization file allows you to keep arecord of everything that occurs
in the transcript: error messages, assertions, commands, command outputs, etc. To do this, set

346 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator Control Variables

the value for the TranscriptFile line in the modelsim.ini file to the name of the file in which you
would like to record the Model Sim history.

Save the command wi ndow contents to this file
TranscriptFile = trnscrpt

Y ou can disable the creation of the transcript file by using the following Model Sim command
immediately after Model Sim starts:

transcript file ""

Using a Startup File

The system initialization file allows you to specify acommand or ado file that isto be executed
after the design is loaded. For example:

VSI M Startup command
Startup = do nystartup.do

The line shown above instructs Model Sim to execute the commands in the macro file named
mystartup.do.

VSI M Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events schedul ed.

See the do command for additional information on creating do files.

Turning Off Assertion Messages

Y ou can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge number of
warnings.

[vsinm

I gnoreNote = 1

Il gnoreVarning = 1
IgnoreError =1

I gnoreFailure =1

Turning off Warnings from Arithmetic Packages

Y ou can disable warnings from the Synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsini
Nuner i ¢St dNoWar ni ngs

=1
St dAri t hNoWarnings = 1

ModelSim User’s Manual, v6.2g 347
February 2007

Simulator Variables
Simulator Control Variables

Force Command Defaults

The for ce command has -fr eeze, -drive, and -deposit options. When none of these is specified,
then -freeze is assumed for unresolved signals and -driveis assumed for resolved signals. But if
you prefer -fr eeze as the default for both resolved and unresolved signals, you can change the
defaults in the modelsim.ini file.

[vsim]

; Default Force Kind

; The choices are freeze, drive, or deposit
DefaultForceKind = freeze

Restart Command Defaults

The restart command has -for ce, -nobreakpoint, -nofcovers, -nolist, -nolog, and -nowave
options. Y ou can set any of these as defaults by entering the following line in the modelsim.ini
file:

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nofcovers, -nolist, -nolog, and -
nowave.

Example:

DefaultRestartOptions = -nolog -force

VHDL Standard

Y ou can specify which version of the 1076 Std Model Sim follows by default using the
VHDLO93 variable:

[vcom

; VHDL93 variabl e sel ects | anguage version as the default.
Default is VHDL-2002.
Val ue of 0 or 1987 for VHDL-1987.
Val ue of 1 or 1993 for VHDL-1993.

; Default or value of 2 or 2002 for VHDL-2002.

VHDL93 = 2002

Opening VHDL Files

Y ou can delay the opening of VHDL files with an entry in the INI file if you wish. Normally
VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen optionis
enabled, then the file is not opened until the first read or write to that file.

[vsim
Del ayFil eOpen = 1

348 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Variable Precedence

Variable Precedence

Note that some variables can be set in a.modelsimfile (Registry in Windows) or a.ini file. A
variable set in the .modelsim file takes precedence over the same variable set in a.ini file. For
example, assume you have the following line in your modelsim.ini file:

TranscriptFile = transcript

And assume you have the following line in your .modelsim file:

set PrefMain(file) {}

In this case the setting in the .modelsim file overrides that in the modelsim.ini file, and a
transcript file will not be produced.

Simulator State Variables

Unlike other variables that must be explicitly set, simulator state variables return avalue
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO files (macros). The variables are referenced in
commands by prefixing the name with adollar sign ($).

argc

This variable returns the total number of parameters passed to the current macro.

architecture

This variable returns the name of the top-level architecture currently being ssimulated; for a
configuration or Verilog module, this variable returns an empty string.

configuration
This variable returns the name of the top-level configuration currently being simulated; returns
an empty string if no configuration.

delta

This variable returns the number of the current simulator iteration.

entity

This variable returns the name of the top-level VHDL entity or Verilog module currently being
simulated.

library

This variable returns the library name for the current region.

ModelSim User’s Manual, v6.2g 349
February 2007

Simulator Variables
Simulator State Variables

MacroNestingLevel

This variable returns the current depth of macro call nesting.

n

This variable represents a macro parameter, where n can be an integer in the range 1-9.

Now
This variable aways returns the current simulation time with time units (e.g., 110,000 ns) Note:
will return a comma between thousands.

now

This variable when time resolution isa unary unit (i.e., 1ns, 1ps, 1fs): returns the current
simulation time without time units (e.g., 100000) when time resolution isamultiple of the unary
unit (i.e., 10ns, 100ps, 10fs): returnsthe current simulation time with time units (e.g. 110000 ns)
Note: will not return comma between thousands.

resolution

This variable returns the current simulation time resolution.

Referencing Simulator State Variables

Variable values may be referenced in simulator commands by preceding the variable name with
adollar sign ($). For example, to use the now and resolution variables in an echo command
type:

echo "The time is $now $resolution.”

Depending on the current ssmulator state, this command could result in:

The time is 12390 ps 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a"\". For
example, \$now will not be interpreted as the current simulator time.

Special Considerations for the now Variable

For the when command, special processing is performed on comparisons involving the now
variable. If you specify "when { $now=100} ...", the simulator will stop at time 100 regardless of
the multiplier applied to the time resolution.

Y ou must use 64-bit time operatorsif the time value of now will exceed 2147483647 (the limit
of 32-bit numbers). For example:

350 ModelSim User's Manual, v6.2g
February 2007

Simulator Variables
Simulator State Variables

if { [gtTime $now 2us] } {

See Simulator Tcl Time Commands for details on 64-bit time operators.

ModelSim User’s Manual, v6.2g 351
February 2007

Simulator Variables
Simulator State Variables

352 ModelSim User’'s Manual, v6.2g
February 2007

Appendix B
Location Mapping

Pathnames to source files are recorded in libraries by storing the working directory from which
the compile isinvoked and the pathname to the file as specified in the invocation of the
compiler. The pathname may be either a complete pathname or arelative pathname.

Referencing Source Files with Location Maps

Model Sim tools that reference source files from the library locate a source file as follows:

» |f the pathname stored in the library is complete, then thisis the path used to reference
thefile.

» |If the pathnameisrelative, then the tool looks for the file relative to the current working
directory. If thisfile does not exist, then the path relative to the working directory stored
inthelibrary is used.

Thismethod of referencing source files generally worksfineif thelibraries are created and used
on asingle system. However, when multiple systems access alibrary across a network, the
physical pathnames are not always the same and the source file reference rules do not always
work.

Using Location Mapping

L ocation maps are used to replace prefixes of physical pathnamesin the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

Model Sim tools open the location map file on invocation if the MGC_LOCATION_MAP
environment variableis set. If MGC_LOCATION_MAP is not set, Model Sim will look for a
file named "mgc_location_map" in the following locations, in order:

» thecurrent directory

* your home directory

» thedirectory containing the Model Sim binaries
* the ModelSim installation directory

Use these two steps to map your files:

ModelSim User’s Manual, v6.2g 353
February 2007

Location Mapping
Referencing Source Files with Location Maps

1. Settheenvironment variable MGC_LOCATION_MAP to the path to your location map
file.

2. Specify the mappings from physical pathnamesto logical pathnames:

$SRC
/ horre/ vhdl / src
/usr/vhdl/src

$1 EEE
[usr/ nodel tech/i eee

Pathname Syntax

The logical pathnames must begin with $ and the physical pathnames must begin with /. The
logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have different
pathnames on different systems).

How Location Mapping Works

When a pathname is stored, an attempt is made to map the physical pathname to a path relative
to alogical pathname. Thisis done by searching the location map file for the first physical
pathname that is a prefix to the pathname in question. The logical pathname is then substituted
for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/test.vhd". If amapping
can be made to alogica pathname, then thisisthe pathname that is saved. The path to a source
fileentry for adesign unit in alibrary is a good example of atypical mapping.

For mapping from alogica pathname back to the physical pathname, Model Sim expects an
environment variable to be set for each logical pathname (with the same name). Model Sim
reads the location map file when atool isinvoked. If the environment variables corresponding
to logical pathnames have not been set in your shell, Model Sim sets the variables to the first
physical pathname following the logical pathname in the location map. For example, if you
don't set the SRC environment variable, Model Sim will automatically set it to "/home/vhdl/src".

Mapping with TCL Variables
Two Tcl variables may also be used to specify alternative source-file paths; SourceDir and

SourceMap. Y ou would define these variables in amodelsim.tcl file. See the The modelsim.tcl
Filefor details.

354 ModelSim User's Manual, v6.2g
February 2007

Appendix C
Error and Warning Messages

Message System

The Model Sim message system helps you identify and troubleshoot problems while using the
application. The messages display in astandard format in the Transcript pane. Accordingly, you
can also access them from a saved transcript file (see Saving the Transcript File for more
details).
Message Format
The format for the messagesis:
** <SEVERITY LEVEL>: ([<Tool >[-<G oup>]]-<MsgNunr) <Message>

» SEVERITY LEVEL — may be one of the following:

Table C-1. Severity Level Types

severity level meaning

Note Thisisan informational message.

Warning There may be a problem that will affect the accuracy of
your results.

Error Thetool cannot compl ete the operation.

Fatal The tool cannot complete execution.

* Tool — indicates which Model Sim tool was being executed when the message was
generated. For example tool could be vcom, vdel, vsim, etc.

» Group — indicates the topic to which the problem is related. For example group could
be FLI, PLI, VCD, etc.

Example

** Error: (vsimPLI-3071) ./src/19/testfile(77): $fdunplinmit : Too few
argunent s.

Getting More Information

Each message isidentified by a unique MsgNum id. Y ou can access additional information
about a message using the unique id and the verror command. For example:

ModelSim User’s Manual, v6.2g 355
February 2007

Error and Warning Messages
Suppressing Warning Messages

% verror 3071

Message # 3071:

Not enough argunents are being passed to the specified systemtask or
function.

Changing Message Severity Level

Y ou can suppress or change the severity of notes, warnings, and errors that come from vcom,
vlog, and vsim. Y ou cannot change the severity of or suppress Fatal or Internal messages.

There are two ways to modify the severity of or suppress notes, warnings, and errors:

» Usethe-error, -fatal, -note, -suppress, and -warning arguments to vcom, vlog, or vsim.
See the command descriptions in the Reference Manual for details on those arguments.

* Set apermanent default in the [msg_system] section of the modelsim.ini file. See
Simulator Control Variables for more information.

Suppressing Warning Messages

Y ou can suppress some warning messages. For example, you may receive warning messages
about unbound components about which you are not concerned.

Suppressing VCOM Warning Messages

Use the -nowar n <number > argument to vcom to suppress a specific warning message. For
example:

vcom -nowarn 1

suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles viathe modelsim.ini file (see Verilog
Compiler Control Variables).

The warning message numbers are:

unbound conponent

process without a wait statenent

nul | range

no space intine litera

multiple drivers on unresol ved signa
compl i ance checks

optinizati on nessages

lint checks

si gnal val ue dependency at el aboration
VHDL93 constructs in VHDL87 code
|l ocally static error deferred until sinulation run

PPRPOO~NOUTRAWNPE

356 ModelSim User's Manual, v6.2g
February 2007

Error and Warning Messages
Exit Codes

These numbers are category-of-warning message numbers. They are unrelated to vcom
arguments that are specified by numbers, such as vcom -87 —which disables support for
VHDL-1993 and 2002.

Suppressing VLOG Warning Messages

Use the +nowar n<CODE> argument to vlog to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vl og +nowar nDECAY

suppresses decay warning messages.

Suppressing VSIM Warning Messages

Use the +nowarn<CODE> argument to vsim to suppress a specific warning message.
Warnings that can be disabled include the <CODE> name in square brackets in the warning
message. For example:

vsi m +nowar nTFMPC

suppresses warning messages about too few port connections.

Exit Codes

The table below describes exit codes used by Model Sim tools.
Table C-2. Exit Codes

Exit code Description

Normal (non-error) return

Incorrect invocation of tool

Previous errors prevent continuing

Cannot create a system process (execv, fork, spawn, etc.)

Licensing problem
Cannot create/open/find/read/write a design library
Cannot create/open/find/read/write a design unit

Cannot open/read/write/dup afile (open, Iseek, write, mmap,
munmap, fopen, fdopen, fread, dup2, etc.)

N/l o|jo|hr~|lW|N|FL|O

Fileis corrupted or incorrect type, version, or format of file

Memory allocation error

ModelSim User’s Manual, v6.2g 357
February 2007

Error and Warning Messages

Exit Codes
Table C-2. Exit Codes
Exit code Description
10 General language semantics error
11 General language syntax error
12 Problem during load or elaboration
13 Problem during restore
14 Problem during refresh
15 Communication problem (Cannot create/read/write/close
pipe/socket)
16 Version incompatibility
19 License manager not found/unreadabl e/unexecutable
(vIm/mgvim)
42 Lost license
43 License read/write failure
44 Modeltech daemon license checkout failure #44
45 Modeltech daemon license checkout failure #45
90 Assertion failure (SEVERITY_QUIT)
99 Unexpected error in tool
100 GUI Tdl initialization failure
101 GUI Tk initialization failure
102 GUI IncrTk initidization failure
111 X11 display error
202 Interrupt (SIGINT)
204 Illegal instruction (SIGILL)
205 Tracetrap (SIGTRAP)
206 Abort (SIGABRT)
208 Floating point exception (SIGFPE)
210 Bus error (SIGBUYS)
211 Segmentation violation (SIGSEGV)
213 Write on a pipe with no reader (SIGPIPE)
214 Alarm clock (SIGALRM)
215 Software termination signa from kill (SIGTERM)
358 ModelSim User's Manual, v6.2g

February 2007

Error and Warning Messages
Miscellaneous Messages

Table C-2. Exit Codes

Exit code Description

216 User-defined signal 1 (SIGUSR1)
217 User-defined signal 2 (SIGUSR2)
218 Child status change (SIGCHLD)
230 Exceeded CPU limit (SIGXCPU)
231 Exceeded file size limit (SIGXFSZ)

Miscellaneous Messages

This section describes miscellaneous messages which may be associated with Model Sim.

Compilation of DPI Export TFs Error

** Fatal: (vsim3740) Can't locate a C compiler for conpilation of
DPl export tasks/functions.

» Description — Model Sim was unable to locate a C compiler to compile the DPI
exported tasks or functions in your design.

* Suggested Action —Make sure that a C compiler is visible from where you are running
the ssimulation.

Empty port name warning
** WARNING. [8] <path/file_name>. enpty port nane in port |ist.

» Description — Model Sim reports these warningsif you use the -lint argument to vlog. It
reports the warning for any NULL module ports.

» Suggested action — If you wish to ignore this warning, do not use the -lint argument.

Lock message

wai ting for |ock by user@ser. Lockfile is <library_path>/_|ock

» Description — The _lock fileis created in alibrary when you begin a compilation into
that library, and it is removed when the compilation completes. This prevents
simultaneous updates to the library. If a previous compile did not terminate properly,
Model Sim may fail to remove the _lock file.

» Suggested action — Manually removethe _lock file after making surethat no oneelseis
actually using that library.

ModelSim User’s Manual, v6.2g 359
February 2007

Error and Warning Messages
Miscellaneous Messages

Metavalue detected warning
Warni ng: NUMERI C_STD. ">": netaval ue detected, returning FALSE

» Description — Thiswarning is an assertion being issued by the IEEE numeric_std
package. It indicates that thereisan 'X' in the comparison.

* Suggested action — The message does not indicate which comparison is reporting the
problem since the assertion is coming from a standard package. To track the problem,
note the time the warning occurs, restart the simulation, and run to one time unit before
the noted time. At this point, start stepping the simulator until the warning appears. The
location of the blue arrow in a Source window will be pointing at the line following the
line with the comparison.

These messages can be turned off by setting the NumericStdNoWar nings variableto 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

signal is read by the process but is not in the sensitivity list

» Description — Model Sim outputs this message when you use the -check_synthesis
argument to vcom. It reports the warning for any signal that isread by the processbut is
not in the sensitivity list.

» Suggested action — There are cases where you may purposely omit signals from the
sensitivity list even though they are read by the process. For example, in astrictly
sequential process, you may prefer to include only the clock and reset in the sensitivity
list because it would be a design error if any other signal triggered the process. In such
cases, your only option isto not use the -check_synthesis argument.

Tcl Initialization error 2

Tcl Init Error 2 : Can't find a usable Init.tcl in the follow ng
directories
.. tel/tcl 8.3

» Description — This message typically occurs when the base file was not included in a
Unix installation. When you install Model Sim, you need to download and install 3 files
from the ftp site. Thesefiles are:

nodel t ech- base. tar. gz

nmodel t ech-docs. tar. gz
nodel t ech- <pl at f or n>. exe. gz

If you install only the <platform> file, you will not get the Tcl files that are located in
the base file.

This message could aso occur if the file or directory was deleted or corrupted.
* Suggested action — Reinstall Model Sim with all threefiles.

360 ModelSim User's Manual, v6.2g
February 2007

Error and Warning Messages
Miscellaneous Messages

Too few port connections

** Warning (vsim3017): foo.v(1422): [TFMPC] - Too few port
connections. Expected 2, found 1.
Region: /fool/tb

» Description — This warning occurs when an instantiation has fewer port connections
than the corresponding module definition. The warning doesn’t necessarily mean
anything iswrong; it islegal in Verilog to have an instantiation that doesn’t connect all
of the pins. However, someone that expects all pins to be connected would like to see
such awarning.

Here are some examples of legal instantiations that will and will not cause the warning
message.
Module definition:
modul e foo (a, b, c, d);
Instantiation that does not connect all pins but will not produce the warning:

foo instl(e, f, g,); // positional association
foo instl(.a(e), .b(f), .c(g), .d()); // named association

Instantiation that does not connect all pins but will produce the warning:

foo instl(e, f, g); // positional association
foo instl(.a(e), .b(f), .c(g)); // named association

Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Here' s another example:

foo insti(e, , g, h);
foo instl(.a(e), .b(), .c(g), .d(h));

» Suggested actions —

o Check that there is not an extracomma at the end of the port list. (e.g., model(a,b,)).
The extracommaislega Verilog and implies that there isathird port connection
that is unnamed.

o If you are purposefully leaving pins unconnected, you can disable these messages
using the +nowarnTFM PC argument to vsaim.

ModelSim User’s Manual, v6.2g 361
February 2007

Error and Warning Messages
Enforcing Strict 1076 Compliance

VSIM license lost

Consol e out put:

Signal 0 caught... dosing vsimvlmchild.
vsimis exiting with code 4

FATAL ERROR in |icense nmanager

transcri pt/vsi m out put:
** Error: VSIMIlicense lost; attenpting to re-establish.

Tinme: 5027 ns Iteration: 2
** Fatal: Unable to kill and restart |icense process.
Time: 5027 ns Iteration: 2

Description — Model Sim queries the license server for alicense at regular intervals.
Usually these "License Lost" error messages indicate that network traffic is high, and
communication with the license server times out.

Suggested action — Anything you can do to improve network communication with the
license server will probably solve or decrease the frequency of this problem.

Enforcing Strict 1076 Compliance

The optional -pedanticerrorsargument to vcom enforces strict compliance to the |IEEE 1076
LRM inthe caseslisted below. The default behavior for these casesisto issue an insuppressible
warning message. |If you compile with -pedanticerror s, the warnings change to an error, unless
otherwise noted. Descriptionsin quotes are actual warning/error messages emitted by vcom. As
noted, in some cases you can suppress the warning using -nowar n [level].

Type conversion between array types, where the element subtypes of the arrays do not
have identical constraints.

"Extended identifier terminates at newline character (Oxa)."

"Extended identifier contains non-graphic character Ox%x."

"Extended identifier \"%s\" contains no graphic characters.”

"Extended identifier \"%s\" did not terminate with backslash character."
"An abstract literal and an identifier must have a separator between them."

Thisisfor forming physical literals, which comprise an optional numeric literal,
followed by a separator, followed by an identifier (the unit name). Warning islevel 4,
which means "-nowarn 4" will suppressit.

In VHDL 1993 or 2002, a subprogram parameter was declared using VHDL 1987
syntax (which meansthat it was a class VARIABLE parameter of afiletype, whichis
theonly way todoitin VHDL 1987 and isillegal in later VHDLS). Warning is level 10.

"Shared variables must be of a protected type." Appliesto VHDL 2002 only.

362

ModelSim User’s Manual, v6.2g
February 2007

Error and Warning Messages
Enforcing Strict 1076 Compliance

Expressions evaluated during elaboration cannot depend on signal values. Warning is
level 9.

» "Non-standard use of output port '%s in PSL expression.” Warning islevel 11.
* "Non-standard use of linkage port '%s in PSL expression.” Warning islevel 11.

» Typemark of type conversion expression must be a named type or subtype, it can't have
aconstraint on it.

* When the actual in aPORT MAP association is an expression, it must be a (globally)
static expression. The port must also be of mode IN.

» Theexpression in the CASE and selected signal assignment statements must follow the
rules givenin 8.8 of the LRM. In certain cases we can relax these rules, but
-pedanticerrorsforces strict compliance.

* A CASE choice expression must be alocally static expression. We alow it to be only
globally static, but -pedanticerrorswill check that it islocally static. Same rule for
selected signal assignment statement choices. Warning level is 8.

» When making adefault binding for acomponent instantiation, Model Sim's non-standard
search rules found a matching entity. VHDL 2002 LRM Section 5.2.2 spells out the
standard search rules. Warning level is 1.

* Both FOR GENERATE and IF GENERATE expressions must be globally static. We
allow non-static expressions unless -pedanticerrorsis present.

* When the actual part of an association element isin the form of a conversion function
call [or atype conversion], and the formal is of an unconstrained array type, the return
type of the conversion function [type mark of the type conversion] must be of a
constrained array subtype. We relax this (with a warning) unless -pedanticerrorsis
present when it becomes an error.

* OTHERS choicein arecord aggregate must refer to at least one record element.

* Inanarray aggregate of an array type whose element subtype isitself an array, all
expressionsin the array aggregate must have the same index constraint, which isthe
element's index constraint. No warning is issued; the presence of -pedanticerrorswill
produce an error.

* Non-static choice in an array aggregate must be the only choice in the only element
association of the aggregate.

» Therange constraint of ascalar subtype indication must have bounds both of the same
type as the type mark of the subtype indication.

» Theindex constraint of an array subtype indication must have index ranges each of
whose both bounds must be of the same type as the corresponding index subtype.

* When compiling VHDL 1987, various VHDL 1993 and 2002 syntax is alowed. Use
-pedanticerrorsto force strict compliance. Warnings are al level 10.

ModelSim User’s Manual, v6.2g 363
February 2007

Error and Warning Messages
Enforcing Strict 1076 Compliance

364 ModelSim User’'s Manual, v6.2g
February 2007

Appendix D
Verilog PLI/VPI/DPI

This appendix describes the Model Sim implementation of the Verilog PL1 (Programming
Language Interface), VPI (Verilog Procedural Interface) and SystemVerilog DPI (Direct
Programming Interface). These three interfaces provide a mechanism for defining tasks and
functions that communicate with the ssmulator through a C procedural interface. There are
many third party applications available that interface to Verilog simulators through the PL1 (see
Third Party PLI Applications). In addition, you may write your own PL1/VPI/DPI applications.

Implementation Information

Model Sim Verilog implements the PLI as defined in the IEEE Std 1364-2001, with the
exception of the acc_handle_datapath() routine. We did not implement the
acc_handle_datapath() routine because the information it returns is more appropriate for a
static timing analysis tool.

The VPI is partialy implemented as defined in the IEEE Std 1364-2005. The list of currently
supported functionality can be found in the following file:

<install_dir>/modeltech/docs/technotes/Verilog_VPl.note
Model Sim SystemV erilog implements DPI as defined in IEEE Std P1800-2005.
The |EEE Std 1364 isthe reference that defines the usage of the PLI/VPI routines, and the IEEE
Std P1800-2005 Language Reference Manual (LRM) defines the usage of DPI routines. This

manual describes only the details of using the PL1/VPI/DPI with ModelSim Verilog and
SystemVerilog.

g++ Compiler Support for use with PLI/VPI/DPI

We strongly encourage that unless you have a reason to do otherwise, you should use the built-
in g++ compiler that is shipped with the Model Sim compiler to compile your C++ code. Thisis
the version that has been tested and is supported for any given release.

Specifying Your Own g++ Compiler

If you must use a different g++ compiler, other than that shipped with Model Sim, you need to
set avariablein your modelsim.ini file, asfollows:

CppPath = /usr/bin/g++

to point to the desired g++ version.

ModelSim User’s Manual, v6.2g 365
February 2007

Verilog PLI/VPI/DPI
Registering PLI Applications

Registering PLI Applications

Each PLI application must register its system tasks and functions with the simulator, providing
the name of each system task and function and the associated callback routines. Since many PLI
applications already interface to Verilog-XL, ModelSim Verilog PLI applications make use of

the same mechanism to register information about each system task and function in an array of
s tfcell structures. This structure is declared in the veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTI ON, or USERREALFUNCTI ON */
short data;/* passed as data argunment of callback function */
p_tffn checktf; [/* argunent checking call back function */

p_tffn sizetf; /[* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn msctf; /* mscel | aneous reason cal |l back function */

char *tfname;/* name of systemtask or function */
/* The following fields are ignored by Mddel Sim Veril og */
int forwef;
char *tfveritool;
char *tferrnmessage;
i nt hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *nanecel | _p;
i nt warning_printed;
} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in the
|EEE Std 1364. The simulator calls these functions for various reasons. All callback functions
are optional, but most applications contain at |east the calltf function, which is called when the
system task or function is executed in the Verilog code. The first argument to the callback
functionsisthe value supplied in the datafield (many PLI applications don't usethisfield). The
type field defines the entry as either a system task (USERTASK) or a system function that
returns either aregister (USERFUNCTION) or areal (USERREALFUNCTION). The tfname
field is the system task or function name (it must begin with $). The remaining fields are not
used by ModelSim Verilog.

On loading of aPLI application, the simulator first looks for an init_usertfs function, and then a
veriusertfs array. If init_usertfsisfound, the smulator calls that function so that it can call
mti_RegisterUserTF() for each system task or function defined. The mti_RegisterUserTF()
function is declared in veriuser.h as follows:

void nti_RegisterUser TF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the simulation
because the simulator de-references the usertf pointer to call the callback functions. We
recommend that you define your entriesin an array, with the last entry set to O. If the array is
named veriusertfs (asis the case for linking to Verilog-XL), then you don't have to provide an

366 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Registering VPI Applications

init_usertfs function, and the simulator will automatically register the entries directly from the
array (the last entry must be 0). For example,

s tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry nust be 0 */

}

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:
void init_usertfs()

p_tfcell usertf = veriusertfs;
whil e (usertf->type)
mi _Regi sterUser TF(usertf++);
}

Itisan error if aPLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be adynamically loadable library, see Compiling
and Linking C Applications for PLI/VPI/DPI). The PLI applications are specified as follows
(note that on a Windows platform the file extension would be .dll):

* Asalistinthe Veriuser entry in the modelsim.ini file:
Veriuser = pliappl.so pliapp2.so pliappn.so
* Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"
* Asa-pli argument to the ssmulator (multiple arguments are allowed):

-pli pliappl.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The libraries
are loaded in the order listed above. Environment variable references can be used in the paths to
thelibrariesin all cases.

Registering VPI Applications

Each VPI application must register its system tasks and functions and its callbacks with the
simulator. To accomplish this, one or more user-created registration routines must be called at
simulation startup. Each registration routine should make one or more callsto
vpi_register_systf() to register user-defined system tasks and functions and vpi_register_ch() to
register callbacks. The registration routines must be placed in atable named

ModelSim User’s Manual, v6.2g 367
February 2007

Verilog PLI/VPI/DPI
Registering VPI Applications

vlog_startup_routines so that the ssmulator can find them. The table must be terminated with a0
entry.

Example D-1. VPI Application Registration

PLI I NT32 MyFuncCal I tf(PLI_BYTE8 *user_data)

{ ...}
PLI I NT32 MyFuncConpiletf(PLI _BYTE8 *user_data)

{ }
PLI _I NT32 MyFuncSi zetf(PLI_BYTES *user_data)
{ }

PLI INT32 MYEndOF ConpCB(p_cbh_data cb_data_p)

PLI INT32 MyStart OF Si nCB(p_cb_data chb_data p)

{ }
voi d Regi ster MySystfs(void)
{
vpi Handl e t npH,
s_cb_data cal | back;
s_vpi _systf_data systf _data;
systf_data.type = vpi SysFunc;
systf _data. sysfunctype = vpi Si zedFunc;
systf _data.tfnane = "$nyfunc";
systf _data.calltf = MyFuncCal | tf;
systf _data. conpiletf = MyFuncConpi |l et f;
systf_data. si zetf = M/FuncS| zetf;
systf_data.user_data =
tmpH = vpi _register systf(&systf _data);
vpi _free_object(tnpH);
cal | back. reason = cbEndOf Compi | e;
cal l back.cb_rtn = M/EndO‘ ConpCB;
cal | back. user_data =
tmpH = vpi _register cb(&cal | back);
vpi _free_object(tnpH);
cal | back. reason = cbStart O Si mul ati on;
cal I back.cb_rtn = MyStart O Si nCB;
cal | back. user_data = 0;
tmpH = vpi _register_cb(&call back);
vpi _free_object(tnpH);
}

void (*vlog_startup_routines[1) () ={
Regi st er MySyst f s,
0 /[* last entry nmust be 0 */
};
Loading VPI applicationsinto the simulator is the same as described in Registering PLI
Applications.

368 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Registering DPI Applications

Using PLI and VPI Together

PLI and VPI applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

» If aninit_usertfs() function exists, then it is executed and only those system tasks and
functions registered by callsto mti_RegisterUserTF() will be defined.

» If aninit_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

* If aninit_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functions in the vlog_startup_routines table will be defined.

Asaresult, when PLI and VPI applications exist in the same application object file, they must
be registered in the same manner. VPI registration functions that would normally belisted in a
vlog_startup_routines table can be called from an init_usertfs() function instead.

Registering DPI Applications

DPI applications do not need to be registered. However, each DPI imported or exported task or
function must be identified using SystemVerilog ‘import “DPI-C”’ or ‘export “DPI-C"’ syntax.
Examples of the syntax follow:

export "DPI-C' task t1;

task t1(input int i, output int 0);
éndtask
import "DPI-C' function void f1(input int i, output int 0);

Y our code must provide imported functions or tasks, compiled with an external compiler. An
imported task must return anint value, "1" indicating that it is returning due to adisable, or "0"
indicating otherwise.

These imported functions or objects may then be loaded as a shared library into the simulator
with either the command line option -sv_lib <lib> or -sv_liblist <bootstrap_file>. For
example,

vlog dut.v

gcc -shared -Bsymbolic -0 imports.so imports.c

vsim -sv_lib imports top -do <do_file>
The -sv_lib option specifies the shared library name, without an extension. A file extension is
added by the tool, as appropriate to your platform. For alist of file extensions accepted by
platform, see DPI File Loading.

ModelSim User’s Manual, v6.2g 369
February 2007

Verilog PLI/VPI/DPI
DPI Use Flow

Y ou can also use the command line options -sv_root and -sv_liblist to control the process for
loading imported functions and tasks. These options are defined in the IEEE Std P1800-2005
LRM.

DPI Use Flow

Correct use of ModelSim DPI depends on the flow presented in this section.

Figure D-1. DPI Use Flow Diagram

vsim

v

Step 1 Create header

vl og - dpi header dpi header.h

dpiheader.h

Step 1.5 Required for

Step 2 Include header
#i ncl ude "dpi header. h"

Windows only

vsi m - dpi export obj <export obj >

" <exportobj

>

mitipli.lib

gcc
C compiler

A 4

.0

compiled
user code

[d/link
loader/linker

<test>.s0

A 4

vsim

Step4 Simu

shared object

late
vsim-sv_|lib <test>

Step 3

Compile
and load/link
C code

1. Runvlog to generate a dpiheader.hfile.

Thisfile defines the interface between C and Model Sim for exported and imported tasks
and functions. Though the dpiheader.h is a user convenience file rather than
requirement, including dpiheader.h in your C code can immediately solve problems

370

ModelSim User’s Manual, v6.2g

February 2007

Verilog PLI/VPI/DPI
DPI Use Flow

caused by an improperly defined interface. An example command for creating the
header file would be:

vlog -dpiheader <dpiheader>.h files.v

2. Required for Windows only; Run a preliminary invocation of vsim with the
-dpiexportobj argument.

Because of limitations with the linker/loader provided on Windows, this additional step
isrequired. Y ou must create the exported task/function compiled object file (exportobj)
by running a preliminary vsim command, such as:

vsim -dpiexportobj exportobj top
3. Include the dpiheader.h file in your C code.

Model Sim recommends that any user DPI C code that accesses exported tasks/functions,
or defines imported tasks/functions, will include the dpiheader.h file. Thisallows the C
compiler to verify the interface between C and Model Sim.

4. Compilethe C code into a shared object.
Compile your code, providing any .a or other .o files required.

For Windows users— In this step, the object file needs to be bound together with the
.0bj that you created using the -dpiexportobj argument, into asingle .dll file.

5. Simulate the design.

When simulating, specify the name of the imported DPI C shared object (according to
the SystemVerilog LRM). For example:

vsim -sv_lib <test> top

When Your DPI Export Function is Not Getting Called

Thisissue can arise in your C code due to the way the C linker resolves symbols. It happensif a
name you choose for a SystemVerilog export function happens to match afunction namein a
custom, or even standard C library. In this case, your C compiler will bind calls to the function
inthat C library, rather than to the export function in the SystemV erilog simulator.

The symptoms of such amisbinding can be difficult to detect. Generally, the misbound function
silently returns an unexpected or incorrect value.

To determine if you have this type of name aliasing problem, consult the C library
documentation (either the online help or man pages).

Simplified Import of FLI/ PLI/ C Library Functions

In addition to the traditional method of importing FLI / PL1 / C library functions, asimplified
method can be used: you can declare VPI and FLI functions as DPI-C imports. When you

ModelSim User’s Manual, v6.2g 371
February 2007

Verilog PLI/VPI/DPI
DPI Use Flow

declare VPI and FLI functions as DPI-C imports, the DPI shared object is |oaded at runtime
automatically. Neither the C implementation of the import tf, nor the -sv_lib argument is
required.

Also, on most platforms (see Platform Specific Information), you can declare most standard C
library functions as DPI-C imports.

The following example is processed directly, without DPI C code:

package cmat h;
import "DPI-C' function real sin(input real x);
import "DPI-C' function real sqrt(input real x);
endpackage

package fli;
import "DPI-C" function nti_Cmrd(input string cnd);
endpackage

nmodul e top;
i mport cmath::*;
import fli::¥*;
int status, A
initial begin
$di splay("sin(0.98) = %", sin(0.98));
$di splay("sqrt(0.98) = %", sqrt(0.98));
status = nti_Cnd("change A 123");
$di splay("A = %4d, status = %dd", A, status);
end
endnodul e

To simulate, you would simply enter acommand such as: vsim top.

Platform Specific Information

Thisfeature is not supported on AlX.

On Windows, only FLI and PLI commands may be imported in thisfashion. C library functions
are not automatically importable. They must be wrapped in user DPI C functions, which are
brought into the simulator using the -sv_lib argument.

Use Model for Read-Only Work Libraries

Y ou may want to create the work library as aread-only entity, which enables multiple usersto
simultaneously share the design library at runtime. The steps are as follows:

* Windows and RS6000/RS64

On these platforms, simply change the permissions on the design library to read only by
issuing a command such as"chmod -R aw <libname>". Do this after you have finished
compiling with vliog/vcom and vopt.

372 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

e All Other Platforms

If adesign contains no DPI export tasks or functions, the work library can be changed by
simply changing the permissions, as shown for win32 and rs6000/rs64 above.

For designs that contain DPI export tasks and functions, and are not run on Windows or
RS6000/RS64, by default vsim creates a shared object in directory <libname>/_dpi.
This shared object is called exportwrapper.so (Linux and Solaris) or exportwrapper.s
(hp700, hppat4, and hpux_iab4). If you are using aread-only library, vsSim must not
create any objectsin the library.

To prevent vsim from creating objectsin the library at runtime, the vsim -dpiexportobj flow is
available on al platforms. Use thisflow after compilation, but before you start ssmulation using
the design library.

An example command sequence on Linux would be:

vlib work

vlog -dpiheader dpiheader.h test.sv

gcc -shared -Bsymbolic -o test.so test.c

vsim -c -dpiexportobj work/_dpi/exportwrapper top
chmod -R a-w work

Thelibrary is now ready for simulation by multiple simultaneous users, as follows:

vsim top -sv_lib test

The work/_dpi/exportwrapper argument provides a basename for the shared object.

At runtime, vsim automatically checks to see if the file work/_dpi/exportwrapper.so is up-to-
date with respect to its C source code. If it isout of date, an error message isissued and
elaboration stops.

Compiling and Linking C Applications for
PLI/VPI/DPI

The following platform-specific instructions show you how to compile and link your
PLI/VPI/DPI C applications so that they can be loaded by Model Sim. Various native C/C++
compilers are supported on different platforms. The gcc compiler is supported on all platforms.

The following PLI/VPI/DPI routines are declared in the include files located in the Model Sim
<install_dir>/modeltech/include directory:

» acc_user.h — declaresthe ACC routines
» veriuser.h — declares the TF routines
* vpi_user.n — declaresthe VPI routines

* svdpi.h — declares DPI routines

ModelSim User’s Manual, v6.2g 373
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

The following instructions assume that the PLI, VPI, or DPI application isin asingle source
file. For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared librariesis
the same for all platforms. For information on loading libraries for PLI/VPI see PLI/VPI file
loading. For DPI loading instructions, see DPI File Loading.

For all UNIX Platforms
The information in this section appliesto al UNIX platforms.

app.so

If app.so isnot in your current directory, you must tell the OS where to search for the shared
object. Y ou can do this one of two ways:

* Add apath before app.so in the command line option or control variable (The path may
include environment variables.)

e Put the pathin aUNIX shell environment variable:
LD LIBRARY_PATH_32=<library path without filename> (for Solarig/Linux 32-bit)
or
LD LIBRARY_PATH_64= <library path without filename> (for Solaris 64-bit)
or

SHLIB_PATH= <library path without filename> (for HP-UX)

Correct Linking of Shared Libraries with -Bsymbolic

In the examples shown throughout this appendix, the -Bsymbolic linker option is used with the
compilation (gcc or g++) or link (Id) commands to correctly resolve symbols. This option
instructs the linker to search for the symbol within the local shared library and bind to that
symbol if it exists. If the symbol is not found within the library, the linker searches for the
symbol within the vsimk executable and binds to that symboal, if it exists.

When using the -Bsymbolic option, the linker may warn about symbol references that are not
resolved within the local shared library. It is safe to ignore these warnings, provided the
symbols are present in other shared libraries or the vsimk executable. (An example of such a
warning would be areference to acommon API call suchasvpi _printf()).

Windows Platforms
 Microsoft Visual C 4.1 or Later

374 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj <install_dir>\win32\mtipli.lib -out:app.dll

For the Verilog PLI, the <init_function> should be "init_usertfs'. Alternatively, if there
isnoinit_usertfs function, the <init_function> specified on the command line should be
"veriusertfs'. For the Verilog VP, the <init_function> should be
"vlog_startup_routines’. These requirements ensure that the appropriate symbol is
exported, and thus Model Sim can find the symbol when it dynamically loadsthe DLL.

When executing cl commandsin aDO file, use the/NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

* MinGW gcc 3.2.3

gcc -c -I<install_dir>\include app.c
gcc -shared -Bsymbolic -0 app.dll app.o -L<install_dir>\win32 -Imtipli

The Model Sim tool requiresthe use of MinGW gcc compiler rather than the Cygwin gcc

compiler. MinGW gcc is available on the Model Sim FTP site. Remember to add the
path to your gcc executable in the Windows environment variables.

DPI Imports on Windows Platforms

When linking the shared objects, be sure to specify one export option for each DPI imported
task or function in your linking command line. Y ou can use the -isymfile argument from the
vlog command to obtain a complete list of all imported tasks/functions expected by ModelSim.

As an aternative to specifying one -export option for each imported task or function, you can
make use of the __declspec (dllexport) macro supported by Visual C. Y ou can place this macro
before every DPI import task or function declaration in your C source. All the marked functions
will be available for use by vsim as DPI import tasks and functions.

DPI Flow for Exported Tasks and Functions on Windows Platforms

Since the Windows platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemV erilog tasks or functions. Y ou need to invoke a specia run of vsim. The command isas
follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generates an object file <objname>.obj that contains "glue" code for
exported tasks and functions. Y ou must add that object file to the link line for your .dll, listed
after the other object files. For example, alink line for MinGW would be:

gcc -shared -Bsymbolic -0 app.dll app.obj <objname>.obj
-L<install_dir>\modeltech\win32 -Imtipli

and alink linefor Visual C would be;

ModelSim User’s Manual, v6.2g 375
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

link -dll -export:<init_function> app.obj <objname>.obj\
<install_dir>\modeltech\win32\mtipli.lib -out:app.dll

32-bit Linux Platform

If your PLI/VPI/DPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VPI/DPI application. For example, to use the standard C

library, specify ‘-Ic’ to the ‘ld’ command.

e gcc compiler

gcc -c -l/<install_dir>/modeltech/include app.c
Id -shared -Bsymbolic -E -0 app.so app.o -lc

If you are using Model Sim with RedHat version 7.1 or below, you aso need to add the
-noinhibit-exec switch when you specify -Bsymbolic.

The compiler switch -freg-struct-return must be used when compiling any FLI
application code that contains foreign functions that return real or time values.

64-bit Linux for 1A64 Platform
64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

» gcc compiler (gcc 3.2 or later)

gcc -c -fPIC -l/<install_dir>/modeltech/include app.c
Id -shared -Bsymbolic -E --allow-shlib-undefined -0 app.so app.o

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PL1/VPI/DPI application. For example, to use the system math library libm, specify -Im

to the ld command:

gcc -c -fPIC -l/<install_dir>/modeltech/include math_app.c
Id -shared -Bsymbolic -E --allow-shlib-undefined -0 math_app.so math_app.o -Im

64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
64-bit Linux is supported on RedHat Linux EWS 3.0 for Opteron/Athlon 64 and EM64T.

» gcc compiler (gcc 3.2 or later)

gcc -c -fPIC -l/<install_dir>/modeltech/include app.c
Id -shared -Bsymbolic -E --allow-shlib-undefined -0 app.so app.o

To compile for 32-bit operation, specify the -m32 argument on the gcc command line.

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your

376 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

PL1/VPI/DPI application. For example, to use the system math library libm, specify -Im
to the |d command:

gcc -c -fPIC -l/<install_dir>/modeltech/include math_app.c
Id -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -Im

32-bit Solaris Platform

If your PLI/VPI/DPI application uses anything from a system library, you will need to specify
that library when you link your PLI/VVPI/DPI application. For example, to use the standard C
library, specify ‘-Ic’ to the ‘ld’ command.

e gcc compiler

gcc -c -l/<install_dir>/modeltech/include app.c
Id -G -Bsymbolic -0 app.so app.o -lc

» cccompiler
cc -c -l/<install_dir>/modeltech/include app.c

Id -G -Bsymbolic -0 app.so app.o -lc

64-bit Solaris Platform
e gcc compiler

gcc -c -I<install_dir>/modeltech/include -m64 -fPIC app.c
gcc -shared -Bsymbolic -0 app.so -m64 app.o

Thiswastested with gcc 3.2.2. Y ou may need to add the location of libgcc_s.so.1 to the
LD _LIBRARY_PATH_64 environment variable.

e cccompiler

cc -v -xarch=v9 -0 -I<install_dir>/modeltech/include -c app.c
Id -G -Bsymbolic app.o -0 app.so

32-bit HP700 Platform

A shared library is created by creating object files that contain position-independent code (use

the +z or -fPI1C compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PL1/VPI/DPI application uses anything from asystem library, you' Il need to specify that

library when you link your PLI/VPI/DPI application. For example, to use the standard C library,
specify ‘-Ic’ to the ‘Id’ command.

* gcc compiler

gcc -c -fPIC -l/<install_dir>/modeltech/include app.c
Id -b -0 app.sl app.o -Ic

ModelSim User’s Manual, v6.2g 377
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

Note that -fPI C may not work with all versions of gcc.

e cccompiler

cc -c +z +DD32 -l/<install_dir>/modeltech/include app.c
Id -b -0 app.sl app.o -Ic

64-bit HP Platform

e cccompiler

cc -v +DD64 -0 -I<install_dir>/modeltech/include -c app.c
Id -b -0 app.sl app.o -Ic

64-bit HP for I1A64 Platform
e cc compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -l/<install_dir>/modeltech/include app.c

Id -b -0 app.sl app.o
If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PL1/VPI/DPI application. For example, to use the system math library, specify '-Im' to
the'ld' command:

cc -c +DD64 -l/<install_dir>/modeltech/include math_app.c
Id -b -0 math_app.sl math_app.o -Im

32-bit IBM RS/6000 Platform

Model Sim loads shared libraries on the IBM RS/6000 workstation. The shared library must
import Model Sim's PLI/VPI/DPI symbols, and it must export the PLI or VPI application’s
initialization function or table. The Model Sim tool’ s export fileislocated in the Model Sim
installation directory in rs6000/mti_exports.

If your PL1/VPI/DPI application uses anything from asystem library, you' Il need to specify that
library when you link your PLI/VPI/DPI application. For example, to use the standard C library,
specify ‘-Ic’ tothe‘ld” command. The resulting object must be marked as shared reentrant using
these gcc or cc compiler commands for AlX 4.x:

* gcc compiler
gcc -c -l/<install_dir>/modeltech/include app.c
Id -0 app.sl app.o -bE:app.exp \
-bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -Ic
» cc compiler
cc -c -l/<install_dir>/modeltech/include app.c

Id -0 app.sl app.o -bE:app.exp \
-bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -Ic

378 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C Applications for PLI/VPI/DPI

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs'. Alternatively, if thereis no init_usertfs function, then
the exported symbol should be "veriusertfs'. For the VPI, the exported symbol should be
"vlog_startup_routines’. These requirements ensure that the appropriate symbol is exported,
and thus Model Sim can find the symbol when it dynamically |oads the shared object.

DPI Imports on 32-bit IBM RS/6000 Platform

When linking the shared objects, be sureto specify -bE: <isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the viog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by Model Sim.

DPI Flow for Exported Tasks and Functions on 32-bit IBM RS/6000 Platform

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. Y ou need to invoke a special run of vsim.
The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generatesthe object file <objname>.o that contains "glue" code for exported
tasks and functions. Y ou must add that object file to the link line, listed after the other object
files. For example, alink line would be:

Id -0 app.so app.o <objname>.o
-bE:<isymfile> -bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -Ic

64-bit IBM RS/6000 Platform

Only versions 5.1 and later of AlIX support the 64-bit platform. A gcc 64-bit compiler is not
available at thistime.

* VisualAge cc compiler

cc -c -g64 -l/<install_dir>/modeltech/include app.c
Id -0 app.s1 app.o -b64 -bE:app.exports \
-bl:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -lc

DPI Imports on 64-bit IBM RS/6000 Platform

When linking the shared objects, be sureto specify -bE: <isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the viog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by Model Sim.

ModelSim User’s Manual, v6.2g 379
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

DPI Flow for Exported Tasks and Functions on 64-bit IBM RS/6000 Platform

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. Y ou need to invoke a special run of vsim.
The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generatesthe object file <objname>.o that contains "glue” code for exported
tasks and functions. Y ou must add that object file to the link line, listed after the other object
files. For example, alink line would be:

Id -0 app.dll app.o <objname>.o
-bE:<isymfile> -bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

Compiling and Linking C++ Applications for
PLI/VPI/DPI

Model Sim does not have direct support for any language other than standard C; however, C++
code can be loaded and executed under certain conditions.

Since ModelSim's PLI/VPI/DPI functions have a standard C prototype, you must prevent the
C++ compiler from mangling the PLI/VPI/DPI function names. This can be accomplished by
using the following type of extern:

extern "C'

<PLI/VPI/DPlI application function prototypes>
}

The header files veriuser.h, acc_user.h, and vpi_user.h, svdpi.h, and dpiheader.h already
include this type of extern. Y ou must also put the PLI/VPI/DPI shared library entry point
(veriusertfs, init_usertfs, or vlog_startup_routines) inside of this type of extern.

The following platform-specific instructions show you how to compile and link your
PLI/VPI/DPI C++ applications so that they can be loaded by Model Sim.

Although compilation and simulation switches are platform-specific, loading shared librariesis
the same for all platforms. For information on loading libraries, see DPI File Loading.

For PLI/VPI only

If app.so isnot in your current directory you must tell Solaris where to search for the shared
object. Y ou can do this one of two ways:

380 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

* Add apath before app.so in the foreign attribute specification. (The path may include
environment variables.)

* Put the pathin aUNIX shell environment variable:
LD LIBRARY_PATH_32= <library path without filename> (32-bit)
or
LD _LIBRARY_PATH_64= <library path without filename> (64-bit)

Windows Platforms
e Microsoft Visual C++ 4.1 or Later

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj
<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the<init_function> should be "init_usertfs'. Alternatively, if there
isnoinit_usertfsfunction, the <init_function> specified on the command line should be
"veriusertfs'. For the Verilog VP, the <init_function> should be
"vlog_startup_routines’. These requirements ensure that the appropriate symbol is
exported, and thus Model Sim can find the symbol when it dynamically loadsthe DLL.

When executing cl commandsin aDO file, use the/NOLOGO switch to prevent the
Microsoft C compiler from writing the logo banner to stderr. Writing the logo causes Tcl
to think an error occurred.

e MinGW C++ Version 3.2.3

g++ -c -I<install_dir>\modeltech\include app.cpp
g++ -shared -Bsymbolic -0 app.dll app.o -L<install_dir>\modeltech\win32 -Imtipli

Model Sim requires the use of MinGW gcc compiler rather than the Cygwin gcc
compiler.
DPI Imports on Windows Platforms

When linking the shared objects, be sure to specify one -export option for each DPI imported
task or function in your linking command line. Y ou can use Verilog's -isymfile option to obtain
acomplete list of all imported tasks and functions expected by Model Sim.

DPI Special Flow for Exported Tasks and Functions

Since the Windows platform lacks the necessary runtime linking complexity, you must perform
an additional manual step in order to compile the HDL source files into the shared object file.
Y ou need to invoke a specia run of vsim. The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

ModelSim User’s Manual, v6.2g 381
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

The -dpiexportobj generates the object file <objname>.obj that contains "glue" code for
exported tasks and functions. Y ou must add that object fileto the link line, listed after the other
object files. For example, if the object name was dpil, the link line for MinGW would be:

g++ -shared -Bsymbolic -0 app.dll app.obj <objname>.obj
-L<install_dir>\modeltech\win32 -Imtipli

32-bit Linux Platform
e GNU C++ Version 2.95.3 or Later

g++ -c -fPIC -I<install_dir>/modeltech/include app.cpp
g++ -shared -Bsymbolic -fPIC -0 app.so app.o

64-bit Linux for 1A64 Platform
64-bit Linux is supported on RedHat Linux Advanced Workstation 2.1 for Itanium 2.

e GNU C++ compiler version gcc 3.2 or later

g++ -c -fPIC -l/<install_dir>/modeltech/include app.cpp
Id -shared -Bsymbolic -E --allow-shlib-undefined -0 app.so app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI application. For example, to use the system math library libm, specify -Im' to
the'ld' command:

g++ -c -fPIC -l/<install_dir>/modeltech/include math_app.cpp
Id -shared -Bsymbolic -E --allow-shlib-undefined -0 math_app.so math_app.o -Im

64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
64-bit Linux is supported on RedHat Linux EWS 3.0 for Opteron/Athlon 64 and EM64T.

* GNU C++ compiler version gcc 3.2 or later

g++ -c -fPIC -l/<install_dir>/modeltech/include app.cpp
Id -shared -Bsymbolic -E --allow-shlib-undefined -0 app.so app.o

To compile for 32-bit operation, specify the -m32 argument on the gcc command line.

If your PLI/VPI/DPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PL1/VPI/DPI application. For example, to use the system math library libm, specify -Im
to the |d command:

g++ -c -fPIC -l/<install_dir>/modeltech/include math_app.cpp
Id -shared -Bsymbolic -E --allow-shlib-undefined -o math_app.so math_app.o -Im

382 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

32-bit Solaris Platform

If your PLI/VPI application uses anything from a system library, you will need to specify that

library when you link your PL1/VPI application. For example, to use the standard C library,
specify ‘-Ic’ to the ‘Id’ command.

* GNU C++ compiler version gcc 3.2 or later

g++ -c -l/<install_dir>/modeltech/include app.cpp
Id -G -Bsymbolic -0 app.so app.o -lc

* Sun Forte C++ Compiler
cc -c -l/i<install_dir>/modeltech/include app.cpp

Id -G -Bsymbolic -0 app.so app.o -lc

64-bit Solaris Platform

* GNU C++ compiler version gcc 3.2 or later

g++ -c -I<install_dir>/modeltech/include -m64 -fPIC app.cpp
g++ -shared -Bsymbolic -0 app.so -m64 app.o

Thiswas tested with gcc 3.2.2. Y ou may need to add the location of libgcc_s.so.1 to the
LD _LIBRARY_PATH_64 environment variable.

e cccompiler
cc -v -xarch=v9 -0 -I<install_dir>/modeltech/include -c app.cpp

Id -G -Bsymbolic app.o -0 app.so

32-bit HP700 Platform

A shared library is created by creating object files that contain position-independent code (use

the +z or -fP1C compiler argument) and by linking as a shared library (use the -b linker
argument).

If your PLI/VPI application uses anything from a system library, you'll need to specify that

library when you link your PL1/VPI application. For example, to use the standard C library,
specify *-Ic’ to the ‘Id’ command.

e GNU C++ compiler

g++ -c -fPIC -l/<install_dir>/modeltech/include app.cpp
Id -b -0 app.sl app.o -Ic

» cc compiler

cc -c +z +DD32 -l/<install_dir>/modeltech/include app.cpp
Id -b -0 app.sl app.o -Ic

Note that -fPIC may not work with al versions of gcc.

ModelSim User’s Manual, v6.2g 383
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

64-bit HP Platform

e cc Compiler

cc -v +DD64 -O -I<install_dir>/modeltech/include -c app.cpp
Id -b -0 app.sl app.o -Ic

64-bit HP for IA64 Platform
* HPANSI C++ Compiler (/opt/ansic/bin/cc, /usr/ccs/bin/ld)

cc -c +DD64 -l/<install_dir>/modeltech/include app.cpp
Id -b -0 app.sl app.o

If your PLI/VPI application requires a user or vendor-supplied C library, or an
additional system library, you will need to specify that library when you link your
PLI/VPI application. For example, to use the system math library, specify '-Im' to the'ld'
command:

cc -c +DD64 -l/<install_dir>/modeltech/include math_app.c
Id -b -0 math_app.sl math_app.o -Im

32-bit IBM RS/6000 Platform

Model Sim loads shared libraries on the IBM RS6000 workstation. The shared library must
import ModelSim's PLI/VPI symbols, and it must export the PLI or VPI application’s
initialization function or table. The Model Sim tool's export fileis located in the Model Sim
installation directory in rs6000/mti_exports.

If your PLI/VPI application uses anything from a system library, you'll need to specify that
library when you link your PL1/VPI application. For example, to use the standard C library,
specify ‘-Ic’ tothe‘ld” command. The resulting object must be marked as shared reentrant using
these gcc or cc compiler commands for AIX 4.x:

e GNU C++ compiler version gcc 3.2 or later

g++ -c -l/<install_dir>/modeltech/include app.cpp
Id -0 app.sl app.o -bE:app.exp \
-bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -Ic

* VisualAge C++ Compiler

cc -c -l/i<install_dir>/modeltech/include app.cpp
Id -0 app.sl app.o -bE:app.exp \
-bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE -bnoentry -Ic

The app.exp file must export the PLI/VPI initialization function or table. For the PLI, the
exported symbol should be "init_usertfs'. Alternatively, if thereisno init_usertfs function, then
the exported symbol should be "veriusertfs'. For the VPI, the exported symbol should be
"vlog_startup_routines'. These requirements ensure that the appropriate symbol is exported,
and thus Model Sim can find the symbol when it dynamically |oads the shared object.

384 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Compiling and Linking C++ Applications for PLI/VPI/DPI

For DPI Imports

When linking the shared objects, be sure to specify -bE: <isymfile> option on the link command
line. <isymfile> is the name of the file generated by the-isymfile argument to the viog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by Model Sim.

DPI Special Flow for Exported Tasks and Functions

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. Y ou need to invoke a special run of vsim.
The command is as follows:

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generatesthe object file <objname>.o that contains "glue" code for exported
tasks and functions. Y ou must add that object file to the link line, listed after the other object
files. For example, alink line would be:

Id -0 app.dll app.o <objname>.o
-bE:<isymfile> -bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

64-bit IBM RS/6000 Platform

Only version 5.1 and later of AIX supports the 64-bit platform. A gcc 64-bit compiler is not
available at thistime.

* VisuaAge C++ Compiler

cc -c -g64 -l/<install_dir>/modeltech/include app.cpp
Id -0 app.s1 app.o -b64 -bE:app.exports \
-bl:/<install_dir>/modeltech/rs64/mti_exports -bM:SRE -bnoentry -Ic

For DPI Imports

When linking the shared objects, be sure to specify -bE:<isymfile> option on the link command
line. <isymfile> isthe name of the file generated by the-isymfile argument to the viog
command. Once you have created the <isymfile>, it contains a complete list of all imported
tasks and functions expected by Model Sim.

DPI Special Flow for Exported Tasks and Functions

Since the RS6000 platform lacks the necessary runtime linking capabilities, you must perform
an additional manual step in order to prepare shared objects containing calls to exported
SystemVerilog tasks or functions shared object file. Y ou need to invoke a special run of vsim.
The command is as follows:

ModelSim User’s Manual, v6.2g 385
February 2007

Verilog PLI/VPI/DPI
Specifying Application Files to Load

vsim <top du list> -dpiexportobj <objname> <other args>

The -dpiexportobj generatesthe object file <objname>.o that contains "glue” code for exported
tasks and functions. Y ou must add that object file to the link line, listed after the other object
files. For example, alink line would be:

Id -0 app.so app.o <objname>.o

-bE:<isymfile> -bl:/<install_dir>/modeltech/rs6000/mti_exports -bM:SRE
-bnoentry -lc

Specifying Application Files to Load

PLI and VPI fileloading isidentical. DPI file loading uses switches to the vsim command.

PLI/VPI file loading
The PLI/VPI applications are specified as follows:

* Asalistinthe Veriuser entry in the modelsim.ini file:
Veriuser = pliappl.so pliapp2.so pliappn.so

* Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

* Asa-pli argument to the ssmulator (multiple arguments are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so

Note
D On Windows platforms, the file names shown above should end with .dll rather than .so.

The various methods of specifying PL1/VPI applications can be used simultaneously. The
libraries areloaded in the order listed above. Environment variable references can be used in the
paths to the librariesin all cases.

See also Simulator Variables for more information on the modelsim.ini file.

386 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
PLI Example

DPI File Loading
DPI applications are specified to vsim using the following SystemV erilog arguments:

Table D-1. vsim Arguments for DPI Application

Argument Description

-sv_lib <name> specifies alibrary name to be searched and used. No filename
extensions must be specified. (The extensions Model Sim expects
are: .d for HP, .dIl for Win32, .so for all other platforms.)

-Sv_root <name> specifies anew prefix for shared objects as specified by -sv_lib

-sv_liblist specifies a“bootstrap file” to use

When the simulator finds an imported task or function, it searches for the symbol in the
collection of shared objects specified using these arguments.

For example, you can specify the DPI application as follows:

vsim -sv_lib dpiapp1 -sv_lib dpiapp2 -sv_lib dpiappn top

It isamistake to specify DPI import tasks and functions (tf) inside PLI/VPI shared objects.
However, a DPI import tf can make callsto PLI/VPI C code, providing that vsim -gblso was
used to mark the PL1/VPI shared object with global symbol visibility. See Loading Shared
Objects with Global Symbol Visibility.

Loading Shared Objects with Global Symbol Visibility

On Unix platforms you can load shared objects such that all symbolsin the object have global
visibility. To do this, use the -gblso argument to vsim when you load your PL1/VPI application.
For example:

vsim -pli objl.so -pli obj2.so -gblso objl.so top

The -gblso argument works in conjunction with the Global SharedObjectList variable in the
modelsim.ini file. Thisvariable allows user C code in other shared objects to refer to symbolsin
a shared object that has been marked as global. All shared objects marked as global are |loaded
by the simulator earlier than any non-global shared objects.

PLI Example
The following exampleisatrivial, but complete PLI application.

hel |l 0. c:

ModelSim User’s Manual, v6.2g 387
February 2007

Verilog PLI/VPI/DPI
VPI Example

#i ncl ude "veriuser. h"
static PLI _INT32 hello()
{
io_printf("H there\n");
return O;

s_tfcell veriusertfs[] = {
{usertask, 0, 0, O, hello, 0, "$hello"},
{0} /* last entry nust be 0 */
i
hell 0. v:
nmodul e hel | o;
initial $hello;
endnodul e
Conpile the PLI code for the Solaris operating system
%cc -c -I<install _dir>/nodeltech/include hello.c
%ld -G -Bsynbolic -o hello.sl hello.o
Conpil e the Veril og code:
% vlib work
% vlog hello.v
Sinul ate the design
%vsim-c -pli hello.sl hello
Loadi ng work. hello
Loading ./hello.sl
VSIM 1> run -al
H there
VSIM 2> qui t

VPI Example

Thefollowing exampleisatrivial, but complete VPI application. A general VPl example can be
found in <install_dir>/modeltech/examples/verilog/vpi.

hello.c:

#i ncl ude "vpi _user. h"
static PLI _INT32 hell o(PLI _BYTE8 * param

{
vpi _printf("Hello world!\n");
return O;

}

void RegisterMTfs(void)

{
s_vpi _systf_data systf_data;
vpi Handl e systf _handl e;
systf_data.type = vpi SysTask
systf _data. sysfunctype = vpi SysTask
systf_data.tfnanme = "$hel | 0";
systf_data.calltf = hello
systf_data. conpiletf = 0;
systf _data. sizetf = 0;
systf _data.user _data = O;
systf _handl e = vpi _register_systf(&systf _data);
vpi _free_object(systf_handle);

}

388

ModelSim User’s Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
DPI Example

void (*vlog_startup_routines[])() = {
Regi ster WTf s,
0
i
hell 0. v:
nmodul e hel | o;
initial $hello;
endnodul e
Conpile the VPI code for the Solaris operating system
%gcc -c -I<install _dir>/include hello.c
%ld -G -Bsynbolic -0 hello.sl hello.o
Conpil e the Veril og code:
% vlib work
% vlog hello.v
Si nul ate the design:
%vsim-c -pli hello.sl hello
Loadi ng work. hello
Loading ./hello.sl
VSIM 1> run -al
Hello worl d!
VSIM 2> qui t

DPI Example

The following exampleisatrivial but complete DPI application. For win32 and RS6000
platforms, an additional step isrequired. For additional examples, see the
<install_dir>/modeltech/examples/systemverilog/dpi directory.

hello_c.c:
#i ncl ude "svdpi . h"
#i ncl ude "dpi header. h"
int c_task(int i, int *o)
{
printf("Hello fromc_task()\n");
verilog_task(i, o); /* Call back into Verilog */
*o = i;
return(0); /* Return success (required by tasks) */

hel | 0. v:
nmodul e hel | o_t op;
int ret;
export "DPI-C' task verilog_task
task verilog task(input int i, output int 0);
#10;
$di splay("Hello fromverilog_task()");
endt ask
import "DPl-C' context task c_task(input int i, output int 0);
initial
begi n
c_task(1l, ret); // Call the c task named 'c_task()
end
endnodul e

Conpi l e the Veril og code:
% vlib work
% vl og -sv -dpi header dpi header.h hello.v

ModelSim User’s Manual, v6.2g 389
February 2007

Verilog PLI/VPI/DPI
The PLI Callback reason Argument

Conpile the DPI code for the Solaris operating system
%gcc -c -g -l<install _dir>/nodeltech/include hello_c.c
%ld -G -Bsynbolic -o hello_c.so hello_c.o

Simul ate the design:

%vsim-c -sv_lib hello_c hello_top
Loadi ng work. hello_c

Loading ./hello_c.so

VSIM 1> run -all

Hello fromc_task()

Hello fromverilog_task()

VSI M 2> quit

The PLI Callback reason Argument

The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See IEEE Std 1364 for a
description of the reason constants. The following details relate to Model Sim Verilog, and may
not be obviousin the IEEE Std 1364. Specifically, the simulator passes the reason valuesto the
misctf callback functions under the following circumstances:

r eason_endof conpi | e
For the completion of loading the design.

reason_finish
For the execution of the $finish system task or the quit command.

reason_start of save
For the start of execution of the checkpoint command, but before any of the simulation

state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its datawith callsto tf_write save() until it is called with reason_save.

reason_save
For the execution of the checkpoint command. Thisiswhen the PLI application must

save its state with callsto tf_write_save().

reason_start ofrestart
For the start of execution of the restor e command, but before any of the simulation state

has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restore its state with callsto tf_read_restart() until it is called with
reason_restart. The reason_startofrestart value is passed only for arestore command,
and not in the case that the simulator is invoked with -restore.

reason_restart
For the execution of the restore command. Thisiswhen the PLI application must

restore its state with callsto tf_read restart().

reason_reset
For the execution of the restart command. Thisiswhen the PLI application should free

its memory and reset its state. We recommend that all PLI applications reset their
internal state during arestart as the shared library containing the PLI code might not be

390

ModelSim User’s Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
The sizetf Callback Function

reloaded. (See the -keeploaded and -keeploadedrestart arguments to vsim for related
information.)

reason_endof reset
For the completion of the restart command, after the simulation state has been reset but

before the design has been rel oaded.

reason_interactive
For the execution of the $stop system task or any other time the simulation is interrupted

and waiting for user inpuit.

reason_scope
For the execution of the environment command or selecting a scope in the structure

window. Also for thecall to acc_set_interactive_scope() if the callback flag argument is
non-zero.

reason_paranvc
For the change of value on the system task or function argument.

reason_synch
For the end of time step event scheduled by tf_synchronize().

reason_rosynch
For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate

For the ssimulation event scheduled by tf_setdelay().

reason_par andrc
Not supported in ModelSim Verilog.

reason_force

Not supported in Model Sim Verilog.

reason_rel ease
Not supported in ModelSim Verilog.

reason_di sabl e
Not supported in Model Sim Verilog.

The sizetf Callback Function

A user-defined system function specifies the width of its return value with the sizetf callback
function, and the simulator calls this function while loading the design. The following details on
the sizetf callback function are not found in the IEEE Std 1364:

* If you omit the sizetf function, then areturn width of 32 is assumed.

» Thesizetf function should return O if the system function return valueis of Verilog type

Ilrealll .
» Thesizetf function should return -32 if the system function return valueis of Verilog
type "integer".
ModelSim User’s Manual, v6.2g 391

February 2007

Verilog PLI/VPI/DPI
PLI Object Handles

PLI Object Handles

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routineis called. However, some of the
objects are created on demand, and the handles to these objects become invalid after acc_close()
is called. The following object types are created on demand in Model Sim Verilog:

accOperator (acc_handle_condition)

accWirePath (acc_handle_path)

accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and
acc_next_load)

accPathTerminal (acc_next_input and acc_next_output)

accTchkTerminal (acc_handle_tchkargl and acc_handle_tchkarg?2)

accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)

If your PLI application uses these types of objects, then it isimportant to call acc_close() to free
the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects, do
not call acc_close() while these callbacks are in effect.

Third Party PLI Applications

Many third party PLI applications come with instructions on using them with ModelSim
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSim Verilog as long as the application uses standard PLI routines. The following
guidelines are for preparing a Verilog-XL PLI application to work with ModelSim Verilog.

Generaly, aVerilog-XL PLI application comeswith a collection of object filesand averiuser.c
file. The veriuser.c file contains the registration information as described above in Registering
PLI Applications. To prepare the application for Model Sim Verilog, you must compile the
veriuser.c file and link it to the object files to create a dynamically loadable object (see
Compiling and Linking C Applicationsfor PLI/VPI/DPI). For example, if you have averiuser.c
fileand alibrary archive libapp.a file that contains the application's object files, then the
following commands should be used to create a dynamically loadable object for the Solaris
operating system:

% cc -c -I<install_dir>/modeltech/include veriuser.c
% Id -G -0 app.sl veriuser.o libapp.a

The PLI application is now ready to be run with ModelSim Verilog. All that's |eft is to specify
the resulting object file to the simulator for loading using the Veriuser entry in the modesim.ini
file, the -pli simulator argument, or the PLIOBJS environment variable (see Registering PLI
Applications).

392 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Support for VHDL Objects

Note

D On the HP700 platform, the object files must be compiled as position-independent code
by using the +z compiler argument. Since, the object files supplied for Verilog-XL may

be compiled for static linking, you may not be able to use the object filesto create a
dynamically loadable object for Model Sim Verilog. In this case, you must get the third

party application vendor to supply the object files compiled as position-independent

code.

Support for VHDL Objects

The PLI ACC routines also provide limited support for VHDL objectsin either an all VHDL
design or amixed VHDL/Verilog design. The following table lists the VHDL objects for which
handles may be obtained and their type and fulltype constants:

Table D-2. Supported VHDL Objects

Type

Fulltype

Description

accArchitecture

accArchitecture

instantiation of an architecture

accArchitecture

accEntityVitalLevelO

instantiation of an architecture whose entity is
marked with the attribute VITAL LevelO

accArchitecture

accArchVitalLevelO

instantiation of an architecture whichis
marked with the attribute VITAL LevelO

accArchitecture

accArchVitalLevell

instantiation of an architecture whichis
marked with the attribute VITAL Levell

accArchitecture

accForeignArch

instantiation of an architecture whichis
marked with the attribute FOREIGN and
which does not contain any VHDL statements
or objects other than ports and generics

accArchitecture

accForeignArchMixed

instantiation of an architecture whichis
marked with the attribute FOREIGN and
which contains some VHDL statements or
objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()
accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration

ModelSim User's Manual, v6.2g

February 2007

393

Verilog PLI/VPI/DPI
Support for VHDL Objects

Thetype and fulltype constants for VHDL objects are defined in the acc_vhdl.h includefile. All
of these objects (except signals) are scope objects that define levels of hierarchy in the structure
window. Currently, the PL1 ACC interface has no provision for obtaining handles to generics,
types, constants, variables, attributes, subprograms, and processes.

394 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
IEEE Std 1364 ACC Routines

|IEEE Std 1364 ACC Routines

Model Sim Verilog supports the following ACC routines:

Table D-3. Supported ACC Routines

Routines

acc_append_delays
acc_append pulsere
acc_close

acc_collect
acc_compare_handles
acc_configure
acc_count
acc_fetch_argc
acc_fetch_argv
acc_fetch_attribute
acc_fetch_attribute int
acc_fetch_attribute str
acc_fetch _defname
acc_fetch delay_mode
acc_fetch_delays
acc_fetch_direction
acc_fetch_edge
acc_fetch_fullname
acc_fetch fulltype
acc_fetch_index
acc_fetch_location
acc_fetch_name
acc_fetch_paramtype
acc_fetch_paramval
acc_fetch polarity
acc_fetch_precision
acc_fetch_pulsere
acc_fetch_range
acc_fetch size

acc _fetch_tfarg

acc _fetch_itfarg
acc_fetch_tfarg_int
acc_fetch_itfarg_int
acc _fetch_tfarg_str
acc_fetch_itfarg_str
acc_fetch_timescale info
acc _fetch_type
acc_fetch type str
acc_fetch _value

acc_free

acc_handle by name
acc_handle _calling_mod m
acc_handle_condition
acc_handle _conn
acc_handle_hiconn
acc_handle interactive_scope
acc_handle loconn
acc_handle_modpath
acc_handle notifier
acc_handle_object
acc_handle_parent
acc_handle path
acc_handle pathin
acc_handle_pathout
acc_handle_port
acc_handle_scope
acc_handle_simulated net
acc_handle _tchk
acc_handle _tchkargl
acc_handle _tchkarg2
acc_handle termina
acc_handle tfarg
acc_handle itfarg
acc_handle _tfinst
acc_initialize

acc_next
acc_next_bit
acc_next_cell
acc_next_cell_load
acc_next_child
acc_next_driver
acc_next_hiconn
acc_next_input
acc_next_load
acc_next_loconn
acc_next_modpath
acc_next_net
acc_next_output
acc_next_parameter
acc_next_port
acc_next_portout
acc_next_primitive
acc_next_scope
acc_next_specparam
acc_next_tchk
acc_next_termina
acc_next_topmod
acc_object_in_typelist
acc_object_of type
acc_product_type
acc_product_version
acc_release _object
acc_replace delays
acc_replace pulsere
acc_reset buffer
acc_set_interactive_scope
acc_set_pulsere
acc_set_scope
acc_set value
acc_vcl_add
acc_vcl_delete
acc_version

ModelSim User's Manual, v6.2g
February 2007

395

Verilog PLI/VPI/DPI
IEEE Std 1364 ACC Routines

acc_fetch_paramval() cannot be used on 64-bit platformsto fetch a string value of a parameter.
Because of this, the function acc_fetch paramval_str() has been added to the PLI for this use.
acc_fetch paramval_str() isdeclared in acc_user.h. It functionsin a manner similar to
acc_fetch_paramval() except that it returnsachar *. acc_fetch_paramval_str() can be used on
all platforms.

396 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
IEEE Std 1364 TF Routines

IEEE Std 1364 TF Routines

Model Sim Verilog supports the following TF (task and function) routines,

Table D-4. Supported TF Routines

Routines

io_mcdprintf tf_getrealtime tf_scale longdelay
i0_printf tf_igetrealtime tf_scale realdelay
mc_scan_plusargs tf_gettime tf_setdelay
tf_add long tf_igettime tf_isetdelay
tf_asynchoff tf_gettimeprecision tf_setlongdelay
tf_iasynchoff tf_igettimeprecision tf_isetlongdelay
tf_asynchon tf_gettimeunit tf_setrealdelay
tf_iasynchon tf_igettimeunit tf_isetrealdelay
tf_clearaldelays tf_getworkarea tf_setworkarea
tf_iclearalldelays tf_igetworkarea tf_isetworkarea
tf_compare_long tf_long_to _red tf_sizep
tf_copypvc flag tf_longtime_tostr tf_isizep
tf_icopypvc_flag tf_message tf_spname
tf_divide long tf_mipname tf_ispname
tf_dofinish tf_imipname tf_strdelputp
tf_dostop tf_movepvc flag tf_istrdelputp
tf_error tf_imovepvc _flag tf_strgetp
tf_evaluatep tf_multiply_long tf_istrgetp
tf_ievaluatep tf_nodeinfo tf_strgettime
tf_exprinfo tf_inodeinfo tf_strlongdel putp
tf_iexprinfo tf_nump tf_istrlongdel putp
tf_getcstringp tf_inump tf_strrealdel putp
tf_igetcstringp tf_propagatep tf_istrrealdel putp
tf_getinstance tf_ipropagatep tf_subtract_long
tf_getlongp tf_putlongp tf_synchronize
tf_igetlongp tf_iputlongp tf_isynchronize
tf_getlongtime tf_putp tf_testpvc_flag
tf_igetlongtime tf_iputp tf_itestpvc _flag
tf_getnextlongtime tf_putrealp tf_text

tf_getp tf_iputrealp tf_typep

tf_igetp tf_read restart tf_itypep
tf_getpchange tf_real _to long tf_unscale longdelay
tf_igetpchange tf_rosynchronize tf_unscale realdelay
tf_getrealp tf_irosynchronize tf_warning
tf_igetrealp tf_write_save

SystemVerilog DPI Access Routines
ModelSim SystemVerilog supports all routines defined in the "svdpi.h" file defined in P1800-

2005.

ModelSim User's Manual, v6.2g
February 2007

397

Verilog PLI/VPI/DPI
Verilog-XL Compatible Routines

Verilog-XL Compatible Routines

The following PLI routines are not defined in |EEE Std 1364, but Model Sim Verilog provides
them for compatibility with Verilog-XL.

char *acc_deconpi |l e_exp(handl e condition)

Thisroutine provides similar functionality to the Verilog-XL acc_decompile_expr routine. The
condition argument must be a handle obtained from the acc_handle_condition routine. The
value returned by acc_decompile_exp is the string representation of the condition expression.

char *tf_dunpfil enane(voi d)
This routine returns the name of the VCD file.
void tf_dunpfl ush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsintinme(int *aof hightine)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are returned
by the routine, while the high-order bits are stored in the aof _hightime argument.

64-bit Support for PLI

The PLI function acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string
value of a parameter. Because of this, the function acc_fetch paramval_str() has been added to
the PLI for thisuse. acc_fetch_paramval_str() isdeclared in acc_user.h. It functionsin amanner
similar to acc_fetch_paramval() except that it returnsachar *. acc_fetch_paramval_str() can be
used on all platforms.

Using 64-bit ModelSim with 32-bit Applications

If you have 32-bit PL1/VPI/DPI applications and wish to use 64-bit Model Sim, you will need to
port your code to 64 bits by moving from the ILP32 data model to the L P64 data model. We
strongly recommend that you consult the 64-bit porting guides for Sun and HP.

PLI/VPI Tracing

Theforeign interface tracing feature isavailable for tracing PLI and VPI function calls. Foreign
interface tracing creates two kinds of traces: a human-readable log of what functions were
called, the value of the arguments, and the results returned; and a set of C-language files that
can be used to replay what the foreign interface code did.

398 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
PLI/VPI Tracing

The Purpose of Tracing Files

The purpose of the logfile isto aid you in debugging PLI or VPI code. The primary purpose of
thereplay facility isto send the replay files to support for debugging co-simulation problems, or
debugging PL1/VPI problemsfor which it isimpractical to send the PLI/VPI code. We still need
you to send the VHDL/Verilog part of the design to actually execute areplay, but many
problems can be resolved with the trace only.

Invoking a Trace

To invoke the trace, call vsim with the -trace _foreign argument:

Syntax

vsim
-trace_foreign <action> [-tag <name>]

Arguments

<action>
Can be either the value 1, 2, or 3. Specifies one of the following actions:

Table D-5. Values for <action> Argument

Value Operation Result

1 create log only writes alocal file called
"mti_trace <tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and writes all abovefiles
replay

-tag <nane>
Used to give distinct file names for multiple traces. Optional.

Examples

vsim-trace_foreign 1 nmydesign
Creates alodfile.

vsim -trace_foreign 3 mydesign
Creates both alogfile and a set of replay files.

vsim-trace_foreign 1 -tag 2 nydesign
Creates alogfile with atag of "2".

ModelSim User’s Manual, v6.2g 399
February 2007

Verilog PLI/VPI/DPI
Debugging PLI/VPI/DPI Application Code

Thetracing operationswill provide tracing during all user foreign code-calls, including PL1/VPI
user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog VCL callbacks.

Debugging PLI/VPI/DPI Application Code

In order to debug your PLI/VPI/DPI application code in a debugger, you must first:

1. Compile the application code with debugging information (using the -g option) and
without optimizations (for example, don’'t use the -O option).

2. Load vsim into a debugger.

Even though vsim is stripped, most debuggers will still execute it. Y ou can invoke the
debugger directly on vsimk, the simulation kernel where your application codeis|oaded
(for example, "ddd "which vsimk™), or you can attach the debugger to an already
running vsim process. In the second case, you must attach to the PID for vsimk, and you
must specify the full path to the vsimk executable (for example, "gdb
$MTI_HOME/sunosb/vsimk 1234").

On Solaris, AlX, and Linux systems you can use either gdb or ddd. On HP-UX systems
you can use the wdb debugger from HP. Y ou will need version 1.2 or later.

3. Set an entry point using breakpoint.

Sinceinitially the debugger recognizes only vsim's PLI/VPI/DPI function symbols,
when invoking the debugger directly on vsim you need to place a breakpoint in the first
PLI/VPI/DPI function that is called by your application code. An easy way to set an
entry point isto put acall to acc_product_version() asthe first executable statement in
your application code. Then, after vaim has been loaded into the debugger, set a
breakpoint in this function. Once you have set the breakpoint, run vsim with the usual
arguments.

When the breakpoint is reached, the shared library containing your application code has
been |oaded.

4. 1n some debuggers, you must use the share command to load the application's symbols.

At this point al of the application's symbols should be visible. Y ou can now set breakpoints in
and single step through your application code.

Troubleshooting a Missing DPI Import Function

DPI uses C function linkage. If your DPI application iswritten in C++, it isimportant to
remember to use extern "C" declaration syntax appropriately. Otherwise the C++ compiler will
produce a mangled C++ name for the function, and the simulator is not able to locate and bind
the DPI call to that function.

400 ModelSim User's Manual, v6.2g
February 2007

Verilog PLI/VPI/DPI
Debugging PLI/VPI/DPI Application Code

Also, if you do not use the -Bsymbolic argument on the command line for specifying alink, the
system may bind to an incorrect function, resulting in unexpected behavior. For more
information, see Correct Linking of Shared Libraries with -Bsymbolic.

HP-UX Specific Warnings

On HP-UX you might see some warning messages that vsim does not have debugging
information available. Thisis normal. If you are using Exceed to access an HP machine from
Windows NT, it is recommended that you run vsim in command line or batch mode because
your NT machine may hang if you run vsim in GUI mode. Click on the "go" button, or use F5
or the go command to execute vsim in wdb.

Y ou might also see awarning about not finding"__dld_flags" in the object file. Thiswarning
can beignored. Y ou should see alist of libraries |loaded into the debugger. It should include the
library for your PL1/VPI/DPI application. Alternatively, you can use shareto load only asingle
library.

ModelSim User’s Manual, v6.2g 401
February 2007

Verilog PLI/VPI/DPI
Debugging PLI/VPI/DPI Application Code

402 ModelSim User’'s Manual, v6.2g
February 2007

Appendix E
Command and Keyboard Shortcuts

This appendix is a collection of the keyboard and command shortcuts available in the
ModelSim GUI.

Command Shortcuts

* You may abbreviate command syntax, but there' s a catch — the minimum number of
characters required to execute a command are those that make it unique. Remember, as
we add new commands some of the old shortcuts may not work. For this reason
Model Sim does not allow command name abbreviations in macro files. This minimizes
your need to update macro files as new commands are added.

* Multiple commands may be entered on onelineif they are separated by semi-colons (;).
For example:

vlog -nodebug=ports level3.v level2.v ; vlog -nodebug top.v

The return value of the last function executed is the only one printed to the transcript.
This may cause some unexpected behavior in certain circumstances. Consider this
example:

vsim -c -do "run 20 ; simstats ; quit -f" top

Y ou probably expect the simstats results to display in the Transcript window, but they
will not, because the last command is quit -f. To see the return values of intermediate
commands, you must explicitly print the results. For example:

vsim -do "run 20 ; echo [simstats]; quit -f" -c top

Command History Shortcuts

Y ou can review the simulator command history, or reuse previously entered commands with the
following shortcuts at the Model Sim/V SIM prompt:

Table E-1. Command History Shortcuts

Shortcut Description

n repeats the last command

In repeats command number n; nisthe VSIM prompt
number (e.g., for this prompt: VSIM 12>, n =12)
labc repeats the most recent command starting with "abc”
ModelSim User’s Manual, v6.2g 403

February 2007

Command and Keyboard Shortcuts

Main and Source Window Mouse and Keyboard Shortcuts

Table E-1. Command History Shortcuts (cont.)

Shortcut Description

Axyzhab replaces "xyz" in the last command with "ab"
up arrow and down | scrolls through the command history

arrow keys

click on prompt

left-click once on aprevious ModelSim or VSIM
prompt in the transcript to copy the command typed at
that prompt to the active cursor

his or history

shows the last few commands (up to 50 are kept)

Main and Source Window Mouse and Keyboard

Shortcuts

The following mouse actions and special keystrokes can be used to edit commands in the entry
region of the Main window. They can also be used in editing the file displayed in the Source
window and all Notepad windows (enter the notepad command within Model Sim to open the

Notepad editor).
Table E-2. Mouse Shortcuts
Mouse - UNI X and Windows Result
Click the left mouse button rel ocate the cursor
Click and drag the left mouse button select an area

Shift-click the left mouse button

extend selection

Double-click the left mouse button

select aword

Double-click and drag the left mouse button

select agroup of words

Ctrl-click the left mouse button

move insertion cursor without changing the
selection

Click the left mouse button on a previous
ModelSim or VSIM prompt

copy and paste previous command string to
current prompt

Click the middle mouse button

paste selection to the clipboard

Click and drag the middle mouse button

scroll the window

Table E-3. Keyboard Shortcuts

Keystrokes- UNIX and Windows | Result

Left Arrow
Right Arrow

move cursor |eft or right one character

404

ModelSim User’s Manual, v6.2g
February 2007

Command and Keyboard Shortcuts
Main and Source Window Mouse and Keyboard Shortcuts

Table E-3. Keyboard Shortcuts (cont.)

Keystrokes - UNIX and Windows

Result

Ctrl + Left Arrow
Ctrl + Right Arrow

move cursor left or right one word

Shift + Any Arrow

extend text selection

Ctrl + Shift + Left Arrow
Ctrl + Shift + Right Arrow

extend text selection by one word

Up Arrow
Down Arrow

Transcript Pane: scroll through command history
Source Window: move cursor one line up or down

Ctrl + Up Arrow
Ctrl + Down Arrow

Transcript Pane: moves cursor to first or last line
Source Window: moves cursor up or down one

paragraph

Ctrl + d (UNIX only)

Ctrl + Home move cursor to the beginning of the text
Ctrl + End move cursor to the end of the text
Backspace delete character to the left

Ctrl + h (UNIX only)

Delete delete character to the right

Esc (Windows only)

cancel

Alt activate or inactivate menu bar mode
Alt-F4 close active window

Home move cursor to the beginning of theline
Ctrl + a(UNIX only)

Ctrl +b move cursor left

Ctrl +d delete character to the right

End move cursor to the end of theline

Ctrl + e

Ctrl +f (UNIX)
Right Arrow (Windows)

move cursor right one character

Ctrl + k

delete to the end of line

Ctrl +n

move cursor one line down (Source window only
under Windows)

Ctrl + o (UNIX only)

insert a new line character at the cursor

Ctrl +p

move cursor one line up (Source window only under
Windows)

ModelSim User's Manual, v6.2g
February 2007

405

Command and Keyboard Shortcuts

Main and Source Window Mouse and Keyboard Shortcuts

Table E-3. Keyboard Shortcuts (cont.)

Keystrokes - UNIX and Windows

Result

Ctrl + s (UNIX)
Ctrl + f (Windows)

find

Ctrl + v (UNIX only)

Ctrl +1t reverse the order of the two characters on either side of
the cursor

Ctrl +u deleteline

Page Down move cursor down one screen

Ctrl + w (UNIX)
Ctrl + x (Windows)

cut the selection

Ctrl +s
Ctrl + x (UNIX Only)

save

Ctrl +y (UNIX)
Ctrl + v (Windows)

paste the selection

Ctrl + a(Windows Only)

select the entire contents of the widget

Ctrl +\

clear any selection in the widget

Ctrl + - (UNIX)
Ctrl +/ (UNIX)
Ctrl + z (Windows)

undoes previous edits in the Source window

Meta+ < (UNIX only)

move cursor to the beginning of thefile

Meta+ > (UNIX only)

move cursor to the end of thefile

Page Up
Meta+ v (UNIX only)

move Cursor up one screen

Meta+ w (UNIX)
Ctrl + ¢ (Windows)

copy selection

F3 Peforms a Find Next action in the Source Window.

F4 Change focus to next pane in main window

Shift+F4 Change focus to previous pane in main window

F5 Toggle between expanding and restoring size of pane
to fit the entire main window

Shift+F5 Toggle on/off the pane headers.

F8 search for the most recent command that matches the
characters typed (Main window only)

F9 run simulation

F10 continue simulation

F11 (Windows only)

single-step

406

ModelSim User’s Manual, v6.2g
February 2007

Command and Keyboard Shortcuts
List Window Keyboard Shortcuts

Table E-3. Keyboard Shortcuts (cont.)

Keystrokes - UNIX and Windows | Result

F12 (Windows only)

step-over

The Main window allowsinsertions or pastes only after the prompt; therefore, you don’t need to
set the cursor when copying strings to the command line.

List Window Keyboard Shortcuts

Using the following keys when the mouse cursor is within the List window will cause the

indicated actions:

Table E-4. List Window Keyboard Shortcuts

Key - UNIX and Windows

Action

Ctrl + Up Arrow

Left Arrow scroll listing left (selects and highlights the item to the
left of the currently selected item)

Right Arrow scroll listing right (selects and highlights the item to
the right of the currently selected item)

Up Arrow scroll listing up

Down Arrow scroll listing down

Page Up scroll listing up by page

Page Down scroll listing down by page

Ctrl + Down Arrow

Tab searches forward (down) to the next transition on the
selected signal

Shift + Tab searches backward (up) to the previous transition on

the selected signal (does not function on HP
workstations)

Shift + Left Arrow
Shift + Right Arrow

extends selection left/right

Ctrl + f (Windows)
Ctrl + s (UNIX)

opens the Find dialog box to find the specified item
label within the list display

ModelSim User's Manual, v6.2g
February 2007

407

Command and Keyboard Shortcuts
Wave Window Mouse and Keyboard Shortcuts

Wave Window Mouse and Keyboard Shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Table E-5. Wave Window Mouse Shortcuts

scroll bar arrow

Mouse action Result

Ctrl + Click left mouse button zoom area (in)

and drag! \

Ctrl + Click left mouse button zoom out

and drag /

Ctrl + Click left mouse button zoom fit

and drag \

Click left mouse button and drag moves closest cursor

Ctrl + Click left mouse button on a scrolls window to very top or

bottom (vertical scroll) or far
left or right (horizontal scroll)

(UNIX only)

Click middle mouse button in scroll bar | scrolls window to position of

click

1. If you enter zoom mode by selecting View > Zoom > M ouse Mode > Zoom
Maode, you do not need to hold down the <Ctrl> key.

Table E-6. Wave Window Keyboard Shortcuts

Keystroke Action

S bring into view and center the currently active cursor

[zoomin

Shift +i (mouse pointer must be over the cursor or waveform panes)
+

o zoom out

Shift+o (mouse pointer must be over the cursor or waveform panes)
f zoom full

Shift +f (mouse pointer must be over the cursor or waveform panes)
I zoom last

Shift + | (mouse pointer must be over the cursor or waveform panes)
r zoom range

Shift +r (mouse pointer must be over the cursor or waveform panes)

408

ModelSim User’s Manual, v6.2g
February 2007

Command and Keyboard Shortcuts
Wave Window Mouse and Keyboard Shortcuts

Table E-6. Wave Window Keyboard Shortcuts

Keystroke Action

Up Arrow scrolls entire window up or down one line, when mouse

Down Arrow pointer is over waveform pane
scrolls highlight up or down one line, when mouse pointer is
over pathname or values pane

Left Arrow scroll pathname, values, or waveform pane | eft

Right Arrow scroll pathname, values, or waveform pane right

Page Up scroll waveform pane up by a page

Page Down scroll waveform pane down by a page

Tab search forward (right) to the next transition on the selected
signal - finds the next edge

Shift + Tab search backward (l€eft) to the previous transition on the

selected signal - finds the previous edge

Ctrl + f (Windows)
Ctrl + s(UNIX)

open the find dial og box; searcheswithin the specified field in
the pathname pane for text strings

Ctrl + Left Arrow
Ctrl + Right Arrow

scroll pathname, values, or waveform pane left or right by a
page

ModelSim User's Manual, v6.2g
February 2007

409

Command and Keyboard Shortcuts
Wave Window Mouse and Keyboard Shortcuts

410 ModelSim User's Manual, v6.2g
February 2007

Appendix F
Setting GUI Preferences

The ModelSim GUI is programmed using Tcl/Tk. It is highly customizable. Y ou can control
everything from window size, position, and color to the text of window prompts, default output
filenames, and so forth.

Most user GUI preferences are stored as Tcl variables in the .modelsim file on Unix/Linux
platforms or the Registry on Windows platforms. The variable values save automatically when
you exit Model Sim. Some of the variables are modified by actions you take with menus or
windows (e.g., resizing awindow changesits geometry variable). Or, you can edit the variables
directly either from the Model Sim > prompt or the Edit Preferences dialog.

Customizing the Simulator GUI Layout

Y ou can customize the layout of panes, windows, toolbars, etc. This section discusses layouts
and how they are used in ModelSim.

Layouts and Modes of Operation
Model Sim ships with three default layouts that correspond to three modes of operation.

Table F-1. Predefined GUI Layouts
L ayout Mode

NoDesign adesignisnot yet loaded

Simulate adesign isloaded

Coverage adesign isloaded with code coverage enabled

Asyou load and unload designs, Model Sim switches between the layouts.

Custom Layouts

Y ou can create custom layouts or modify the three default layouts.

Creating Custom Layouts

To create a custom layout or modify one of the default layouts, follow these steps:

1. Rearrange the GUI asyou seefit (see Navigating the Graphic User Interface for details).

ModelSim User’s Manual, v6.2g 411
February 2007

Setting GUI Preferences
Customizing the Simulator GUI Layout

2. Select Layout > Save.

Figure F-1. Save Current Window Layout Dialog Box

Save Current Window -0 =|

Save Lapout Az |Nn:-Design !I

¥ Use thiz layout when no design iz loaded

[T dlso zave main window geometry

aK | Cancel |

3. Specify anew name or use an existing name to overwrite that layout.
4. Click OK.
The layout is saved to the .modelsim file (or Registry on Windows).

Assigning Layouts to Modes

Y ou can assign which layout appears in each mode (no design loaded, design loaded, design
loaded with coverage). Follow these steps:

1. Create your custom layouts as described above.
2. Select Layout > Configure.

Example F-1. Configure Window Layouts Dialog Box

Configure Window Layouts - |EI|E|

— Specify a Layout to Uze

Ywhen no design lnaded: |MoD esign wl

When a design is loaded: |Simulate zl

YWhen a design i loaded with coverage enabled: |Coverage !l

¥ Save'wWindow Layout &utomatically

ok LCancel

3. Select alayout for each mode.
4. Click OK.
The layout assignment is saved to the .modelsim file (Registry on Windows).

412 ModelSim User's Manual, v6.2g
February 2007

Setting GUI Preferences
Navigating the Graphic User Interface

Automatic Saving of Layouts

By default any changes you make to alayout are saved automatically when you exit the tool or
when you change modes. For example, if you load a design with code coverage, rearrange some
windows, and then quit the simulation, the changes are saved to whatever layout was assigned
to the "load with coverage' mode.

To disable automatic saving of layouts, select L ayout > Configur e and uncheck Save Window
Layout Automatically.

Resetting Layouts to Their Defaults

Y ou can reset the layouts for the three modes to their original defaults. Select L ayout > Reset.
This command does not delete custom layouts.

Navigating the Graphic User Interface

This section discusses how to rearrange various el ements of the GUI.

Manipulating Panes

Window panes (e.g., Workspace) can be positioned at various places within the parent window
or they can be dragged out ("undocked") of the parent window altogether.

Figure F-2. GUI: Window Pane

ﬂName |Ty|:ue |F'ath j
ol sv_sd Litrary $MODE
1’m wital2000 Librany F0DE
wl ieee Library $MODE
1,m raadelzim_lib Library F0DE
) =t Library $MODE
i’m ztd_developerskit Library F0DE
1’m EYNOPEYE Library FMODE
] veriog Library $MODE
e _*IJ
M Library ﬂil

ModelSim User’s Manual, v6.2g 413
February 2007

Setting GUI Preferences
Navigating the Graphic User Interface

Moving Panes

When you see adouble bar at the top edge of a pane, it means you can modify the pane position.

Figure F-3. GUI: Double Bar
Workspace i H A X

Click-and drag the pane handle in the middle of adouble bar (your mouse pointer will change to
afour-headed arrow when it isin the correct location) to reposition the pane inside the parent
window. Asyou move the mouse to various parts of the main window, agray outline will show
you valid locations to drop the pane.

Or, drag the pane outside of the parent window, and when you let go of the mouse button, the
pane becomes a free-floating window.

Docking and Undocking Panes

Y ou can undock a pane by clicking the undock button in the heading of a pane.

Figure F-4. GUI: Undock Button

4

To redock afloating pane, click on the pane handle at the top of the window and drag it back
into the parent window, or click the dock icon.

Figure F-5. GUI: Dock Button

I

Y ou can expand panes to fill the entire Main window by clicking the zoom icon in the heading
of the pane.

Zooming Panes

Figure F-6. GUIl: Zoom Button

+

Torestore the panetoitsoriginal size and position click the unzoom button in the heading of the
pane.

414 ModelSim User's Manual, v6.2g
February 2007

Setting GUI Preferences
Simulator GUI Preferences

Figure F-7. GUI: Zoom Button

=

Columnar Information Display

Many panes (e.g., Objects, Workspace, etc.) display information in a columnar format. Y ou can
perform anumber of operations on columnar formats:

» Click and drag on a column heading to rearrange columns
» Click and drag on a border between column names to increase/decrease column size

» Sort columns by clicking once on the column heading to sort in ascending order;
clicking twice to sort in descending order; and clicking three times to sort in default
order.

* Hide or show columns by either right-clicking a column heading and selecting an object
from the context menu or by clicking the column-list drop down arrow and selecting an
object.

Quick Access Toolbars

Toolbar buttons provide access to commonly used commands and functions. Toolbars can be
docked and undocked (moved to or from the main toolbar area) by clicking and dragging on the
toolbar handle at the |eft-edge of atoolbar.

Figure F-8. Toolbar Manipulation

D& s a0l AL || ong™
Containg | e J Hepw i E Jl'I ayout | Simulate i ‘

Toolbar Handle

Y ou can also hide/show the various toolbars. To hide or show atoolbar, right-click on ablank
spot of the main toolbar area and select atoolbar from the list.

To reset toolbars to their original state, right-click on a blank spot of the main toolbar area and
select Reset.

Simulator GUI Preferences

Simulator GUI preferences are stored by default either in the .modelsim file in your HOME
directory on UNIX/Linux platforms or the Registry on Windows platforms.

ModelSim User’s Manual, v6.2g 415
February 2007

Setting GUI Preferences
Simulator GUI Preferences

Setting Preference Variables from the GUI
To edit avariable value from the GUI, select Tools > Edit Preferences.

The dialog organizes preferences by window and by name. The By Window tab primarily
allows you to change colors and fonts for various GUI objects. For example, if you want to
change the color of assertion messages in the Main window, you would select "Main window"
in the first column, select "assertColor" in the second column, and click a color on the palette.
Clicking OK or Apply changes the variable, and the change is saved when you exit Model Sim.

Figure F-9. Preferences Dialog Box: By Window Tab

x|
By 'wWindow] By Mame] ﬁﬂ
— Window List——————— 7 Main Window Color Scheme
[at aflow wWindows azzertColor - —Palgtte———————
Lizt Wwindowes background
b ain window errorCalar
b ermomy YWindows ermorProjectConmpile
Active Process Window foreground d
Objects WWindow Zas st sstele
Source Windows Ll Luoris
Structure Windows # ** Note: test message
Locals Window Time: O ns Iteration: 0O Ir
Wave Windows rrun Indian Fed
dinwvalid command name "rrumn"
WEIM 44= |
Fant
I{MS Sans Senf} 8 Chaooze...
Sample Test 07234567330
OF. | Apply | Cancel |

The By Nametab lists every Tcl variable in atree structure. Expand the tree, highlight a
variable, and click Change Vaue to edit the current value.

416 ModelSim User's Manual, v6.2g

February 2007

Setting GUI Preferences
Simulator GUI Preferences

Figure F-10. Preferences Dialog Box: By Name Tab

x|
By window ‘ By Mame] ﬂﬂ
— Preferences:
'l"| Preference [tem |"v"alue Deszcription .
4 Assertions
= Campatre
— defaultaddToWave 1 if setto 1, comparison items are automatically adde:
— defaultClockMame default_clock the default clock name used in the add sionalfregior
— defaultDiffsFile compare. dif specifies the default file name for saving compare di
— defaultDiffsReporF .. compare tad the default file name for a compare diferences repol
— defaultFast n
— defaultGaoldDataset..gold default name far the reference datasetin a waveforr
— defaultHidelM™oDiffs 0
— defaultlgnaraverila... 1 setting to 1 specifies that Verilog net strendths shou
— defaultLeadTolera... 0 specifies a time value to use for asynchronous comg
— defaultLeadlUnits ns specifies the default units furleadtnlerances--ranged
< I -l

Change Yalue...

k. Apply Cancel

Saving GUI Preferences

GUI preferences are saved automatically when you exit the tool.

If you prefer to store GUI preferences el sewhere, set the MODELSIM_PREFERENCES
environment variable to designate where these preferences are stored. Setting this variable
causes Model Sim to use a specified path and file instead of the default location. Here are some
additional pointsto keep in mind about this variable setting:

» Thefile does not need to exist before setting the variable as Model Sim will initialize it.

» If thefileisread-only, ModelSim will not update or otherwise modify the file.

» Thisvariable may contain arelative pathname, in which case thefileisrelative to the
working directory at the time the tool is started.

The modelsim.tcl File

Previous versions saved user GUI preferencesinto amodelsim.tcl file. Current versionswill still
read in amodelsim.tcl fileif it exists. ModelSim searches for thefile as follows;

ModelSim User’s Manual, v6.2g 417
February 2007

Setting GUI Preferences
Simulator GUI Preferences

* use MODELSIM_TCL environment variableif it exists (if MODELSIM_TCL isalist
of files, each fileisloaded in the order that it appearsin thelist); else

e use./modelsim.tcl; else
e use $(HOME)/modelsim.tcl if it exists

Note that in versions 6.1 and later, Model Sim will save to the .modelsim file any variables it
reads in from amodelsim.tcl file. The values from the modelsim.tcl file will override like
variablesin the .modelsimfile.

418 ModelSim User's Manual, v6.2g
February 2007

Appendix G
System Initialization

Model Sim goes through numerous steps as it initializes the system during startup. It accesses

various files and environment variables to determine library mappings, configure the GUI,

check licensing, and so forth.

Files Accessed During Startup
The table below describes the files that are read during startup. They are listed in the order in

which they are accessed.
Table G-1. Files Accessed During Startup
File Purpose
modelsim.ini containsinitial tool settings; see Simulator Control

Variables for specific details on the modelsim.ini file

location map file

used by Model Sim tools to find source files based on
easily reallocated "soft" paths; default file nameis
mgc_location_map

pref.tcl

contains defaults for fonts, colors, prompts, window
positions, and other simulator window characteristics

.modelsim (UNIX) or
Windows registry

contains last working directory, project file, printer
defaults, and other user-customized GUI
characteristics

modelsim.tcl

contains user-customized settings for fonts, colors,
prompts, other GUI characteristics; maintained for
backwards compatibility with older versions (see The
modelsim.tcl File)

<project_name>.mpf

if available, loads|last project filewhichis specifiedin
the registry (Windows) or $(HOME)/.modelsim
(UNIX); see What are Projects? for details on project
settings

ModelSim User's Manual, v6.2g
February 2007

419

System Initialization

Environment Variables Accessed During Startup

Environment Variables Accessed During Startup

The table bel ow describes the environment variables that are read during startup. They arelisted
in the order in which they are accessed. For more information on environment variables, see

Environment Variables.

Table G-2. Environment Variables Accessed During Startup

Environment variable

Purpose

MODEL_TECH

set by Model Sim to the directory in which the binary
executables reside (e.g., ../modeltech/< platform>/)

MODEL_TECH_OVERRIDE

provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM

identifies the pathname of the modelsim.ini file

MGC_WD

identifies the Mentor Graphics working directory

MGC_LOCATION_MAP

identifies the pathname of the location map file; set by
ModelSim if not defined

MODEL_TECH_TCL

identifies the pathname of all Tcl libraries installed with
ModelSim

HOME identifies your login directory (UNIX only)

MGC _HOME identifies the pathname of the MGC tool suite

TCL_LIBRARY identifies the pathname of the Tcl library; set by ModelSim to
the same pathname as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

TK_LIBRARY identifies the pathname of the Tk library; set by ModelSim to
the same pathname as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

ITCL_LIBRARY identifies the pathname of the [incr]Tcl library; set by
Model Sim to the same path as MODEL_TECH_TCL ; must
point to libraries supplied by Model Technology

ITK_LIBRARY identifies the pathname of the [incr] Tk library; set by

Model Sim to the same pathname as MODEL_TECH_TCL,;
must point to libraries supplied by Model Technology

VSIM_LIBRARY

identifies the pathname of the Tcl files that are used by
Model Sim; set by Model Sim to the same pathname as
MODEL_TECH_TCL; must point to libraries supplied by
Model Technology

MTI_COSIM_TRACE

creates an mti_trace_cosimfile containing debugging
information about FLI/PL1/VPI function calls; set to any
value before invoking the simulator

MTI_LIB DIR

identifies the path to al Tcl librariesinstalled with ModelSim

420

ModelSim User’s Manual, v6.2g
February 2007

System Initialization
Initialization Sequence

Table G-2. Environment Variables Accessed During Startup

Environment variable

Purpose

MTI_VCO_MODE

determines which version of Model Sim to use on platforms
that support both 32- and 64-bit versions when ModelSim
executables are invoked from the modeltech/bin directory by
aUnix shell command (using full path specification or PATH
search)

MODELSIM_TCL

identifies the pathname to a user preferencefile (e.g.,
C:\modeltech\modelsim.tcl); can be alist of file pathnames,
separated by semicolons (Windows) or colons (UNIX); note
that user preferences are now stored in the .modelsimfile
(Unix) or registry (Windows); Model Sim will still read this
environment variable but it will then save all the settings to
the .modelsim file when you exit the tool

Initialization Sequence

The following list describes in detail Model Sim’ s initialization sequence. The sequence
includes anumber of conditional structures, the results of which are determined by the existence
of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except MTI_LIB_DIR
which isaTcl variable). Instances of $(NAME) denote paths that are determined by an
environment variable (except $(MTI_LIB_DIR) which is determined by a Tcl variable).

1. Determines the path to the executable directory (../modeltech/<platform>). Sets
MODEL_TECH to this path, unlessMODEL_TECH_ OVERRIDE exists, in which case
MODEL_TECH is set to the same valueas MODEL_TECH_OVERRIDE.

2. Findsthe modelsim.ini file by evaluating the following conditions:
e use $(MODELSM)/modelsim.ini if it exists; else
¢ use$(MGC_PWD)/modelsim.ini; else

* use./modelsim.ini; else

e use $(MODEL_TECH)/modelsim.ini; else

o use $(MODEL_TECH)/../modelsim.ini; else
* use 3(MGC_HOME)/lib/modelsim.ini; else

* set path to ./modelsim.ini even though the file doesn’t exist

3. Finds the location map file by evaluating the following conditions:

* useMGC _LOCATION_MAPIf it exists(if thisvariableis set to "no_map",
Model Sim skips initialization of the location map); else

ModelSim User's Manual, v6.2g

February 2007

421

System Initialization
Initialization Sequence

10.
11.
12.

13.

* usemgc_location_map if it exists; else

e use $(HOME)/mgc/mgc_location _map; else

* use $(HOME)/mgc_location_map; else

¢ use$(MGC_HOME)/etc/mgc_location_map; else

e use $(MGC_HOME)/shared/etc/mgc_location _map; else
e use $(MODEL_TECH)/mgc_location_map; else

e use $(MODEL_TECH)/../mgc_location_map; else

e usenomap

Reads various variables from the [vsim] section of the modelsim.ini file. See Simulation
Control Variables for more details.

Parses any command line arguments that were included when you started Model Sim and
reports any problems.

Defines the following environment variables:

e use MODEL_TECH_TCL if it exists; else

« set MODEL_TECH_TCL=$(MODEL_TECH)/../tc|
 set TCL_LIBRARY=$(MODEL_TECH_TCL)/tc8.3

+ set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.3

« setITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0
 setITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

+ setVSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim
Initializes the ssimulator’s Tcl interpreter.

Checksfor avalid license (alicenseis not checked out unless specified by a
modelsim.ini setting or command line option).

The next four stepsrelate to initializing the graphical user interface.
Sets Tcl variable MTI_LIB_DIR=$(MODEL_TECH_TCL)
Loads $(MTI_LIB_DIR)/vsim/pref.tcl.

Loads GUI preferences, project file, etc. from the registry (Windows) or
$(HOME)/.modelsim (UNIX).

Searches for the modelsim.tcl file by evaluating the following conditions:

* use MODELSIM_TCL environment variableif it exists (if MODELSIM_TCL isa
list of files, each fileisloaded in the order that it appearsin thelist); else

422

ModelSim User’s Manual, v6.2g
February 2007

System Initialization
Initialization Sequence

e use./modelsim.tcl; else
e use $(HOME)/modelsim.tcl if it exists

That completes the initialization sequence. Also note the following about the modelsim.ini file:

* When you change the working directory within Model Sim, the tool reads the [library],
[vcom], and [vlog] sections of the local modelsim.ini file. When you make changesin
the compiler or simulator options dialog or use the vmap command, the tool updates the
appropriate sections of thefile.

o Thepref.tcl file references the default .ini file viathe [GetPrivateProfileString] Tcl
command. The..ini file that is read will be the default file defined at the time pref.tcl is
loaded.

ModelSim User’s Manual, v6.2g 423
February 2007

System Initialization
Initialization Sequence

424 ModelSim User’'s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXYZ

Index

— Symbols —
#, comment character, 296
$disable_signal_spy, 252
$enable signal_spy, 253
$finish

behavior, customizing, 336

$unit scope, visibility in SV declarations, 145

.ni control variables
AssertFile, 329
AssertionDebug, 329
AssertionFormat, 329
AssertionFormatBreak, 330
AssertionFormatError, 330
AssertionFormatFail, 330
AssertionFormatFatal, 330
AssertionFormatNote, 330

AssertionFormatWarning, 331

BreakOnAssertion, 331
CheckPlusargs, 331

CheckpointCompressM ode, 331

CommandHistory, 331
ConcurrentFileLimit, 332
DatasetSeparator, 332
DefaultForceKind, 332
DefaultRadix, 332
DefaultRestartOptions, 333
DelayFileOpen, 333
DumpportsCollapse, 333
GenerateFormat, 333

Global SharedObjectList, 333
IgnorekError, 333
IgnoreFailure, 334
IgnoreNote, 334
IgnoreWarning, 334
IterationLimit, 334

License, 335

L ockedMemory, 335
NumericStdNoWarnings, 336
PathSeparator, 336
Resolution, 337

RunLength, 337
Startup, 338
StdArithNoWarnings, 338
ToggleMaxIntValues, 338
TranscriptFile, 338
UnbufferedOutput, 338
UseCsupV2, 338
UserTimeUnit, 339
Veriuser, 339
WarnConstantChange, 339
WaveSignalNameWidth, 339
WLFCacheSize, 339
WL FCollapseMode, 340
WLFCompress, 340
WLFDel eteOnQuit, 340
WLFFilename, 340
WLFOptimize, 340
WLFSaveAllRegions, 340
WLFSizeLimit, 341
WLFTimeLimit, 341

ani variables

set simulator control with GUI, 342

.modelsim file
in initialization sequence, 422
purpose, 419

.50, shared object file

loading PL1/VPI/DPI C applications, 373
loading PL1/VPI/DPI C++ applications,

380

— Numerics —
0-In tools

setting environment variable, 314

1076, IEEE Std, 28

differences between versions, 111

1364, |EEE Std, 28, 139
64-bit libraries, 107
64-bit time

now variable, 350

Tcl time commands, 301

ModelSim User's Manual, v6.2g
February 2007

425

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

64-bit vsim, using with 32-bit FLI apps, 398

— A —
ACC routines, 395
accelerated packages, 106
access

hierarchical objects, 239
Active Processes pane, 47

see also windows, Active Processes pane
architecture simulator state variable, 349
archives

described, 100
argc simulator state variable, 349
arguments

passing to aDO file, 308
arithmetic package warnings, disabling, 347
AssertFile .ini file variable, 329
AssertionDebug .ini variable, 329
AssertionFormat .ini file variable, 329
AssertionFormatBreak .ini file variable, 330
AssertionFormatError .ini file variable, 330
AssertionFormatFail .ini file variable, 330
AssertionFormatFatal .ini file variable, 330
AssertionFormatNote .ini file variable, 330
AssertionFormatWarning .ini file variable, 331
assertions

file and line number, 329

message display, 343

messages

turning off, 347
setting format of messages, 329
warnings, locating, 329

— B —
bad magic number error message, 177
base (radix)

List window, 211

Wave window, 205
batch-mode simulations, 28
BindAtCompile .ini file variable, 324
binding, VHDL, default, 115
blocking assignments, 156
bookmarks

Source window, 68

Wave window, 197
break

stop simulation run, 46
BreakOnAssertion .ini file variable, 331

breakpoints
deleting, 67, 223
setting, 67
Source window, viewing in, 62
Jbsmfile, 235
buffered/unbuffered output, 338
busses
RTL-level, reconstructing, 184
user-defined, 215
—C —
C applications

compiling and linking, 373
C++ applications

compiling and linking, 380
Call Stack pane, 48
cancelling scheduled events, performance, 136
causality, tracing in Dataflow window, 230
cell libraries, 162
chasing X, 231
-check _synthesis argument

warning message, 360
CheckPlusargs .ini file variable (VLOG), 331
CheckpointCompressMode .ini file variable,

331

CheckSynthesis .ini file variable, 324
clock change, sampling signals at, 221
clock cycles

display in timeline, 203
collapsing time and delta steps, 182
colorization, in Source window, 68
columns

hide/showing in GUI, 415

moving, 415

sorting by, 415
combining signals, busses, 215
CommandHistory .ini file variable, 331
command-line mode, 27
commands

event watching in DO file, 307

system, 299

VSIM Tcl commands, 300
comment character

Tcl and DO files, 296

426

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI JKLMNOPQRSTUVWXY Z

compare signal, virtual
restrictions, 215
compare simulations, 175
compilation
multi-file issues (SystemVerilog), 145
compilation unit scope, 145
compile order
auto generate, 90
changing, 89
SystemVerilog packages, 142
compiler directives, 171
|EEE Std 1364-2000, 171
XL compatible compiler directives, 172
compiling
overview, 25
changing order in the GUI, 89
grouping files, 90
order, changing in projects, 89
properties, in projects, 94
range checking in VHDL, 110
Verilog, 140
incremental compilation, 141
XL "uselib compiler directive, 147
XL compatible options, 146
VHDL, 109, 110
VITAL packages, 124
compiling C code, gcc, 375
component, default binding rules, 115
Compressing files
VCD tasks, 282
ConcurrentFileLimit .ini file variable, 332
configuration simulator state variable, 349
configurations
Verilog, 149
connectivity, exploring, 227
context menus
Library tab, 102
convert real to time, 127
convert timeto real, 126
Cursors
adding, deleting, locking, naming, 193
link to Dataflow window, 227
measuring time with, 192
trace events with, 230
Wave window, 192

customizing
via preference variables, 415

—D—
deltas

explained, 116
Dataflow window, 49, 225

extended mode, 225

pan, 229

zoom, 229

see also windows, Dataflow window
dataflow.bsm file, 235
Dataset Browser, 180
Dataset Snapshot, 182
datasets, 175

managing, 180

opening, 178

restrict dataset prefix display, 181

view structure, 179
DatasetSeparator .ini file variable, 332
debugging the design, overview, 26
default binding

BindAtCompile .ini file variable, 324

disabling, 116
default binding rules, 115
Default editor, changing, 314
DefaultForceKind .ini file variable, 332
DefaultRadix .ini file variable, 332
DefaultRestartOptions .ini variable, 333
DefaultRestartOptions variable, 348
delay

deltadelays, 116

modes for Verilog models, 162
DelayFileOpen .ini file variable, 333
deleting library contents, 101
delta collapsing, 182
delta simulator state variable, 349
deltas

in List window, 218

referencing simulator iteration

asasimulator state variable, 349

dependent design units, 110
descriptions of HDL items, 67
design library

creating, 101

logical name, assigning, 102

ModelSim User's Manual, v6.2g
February 2007

427

ABCDEFGHI JKLMNOPQRSTUVWXY Z

mapping search rules, 104
resource type, 99
VHDL design units, 109
working type, 99
design object icons, described, 35
design units, 99
DEVICE

matching to specify path delays, 269

dialogs
Runtime Options, 342
Direct Programming Interface, 365
directories
moving libraries, 104
disable signa_spy, 241
DisableOpt .ini file variable, 321
display preferences
Wave window, 202
distributed delay mode, 163
dividers
Wave window, 206
DLL files, loading, 373, 380
DO files (macros)
error handling, 311
executing at startup, 315, 338
parameters, passing to, 308
Tcl source command, 311
docking
window panes, 413
DOPATH environment variable, 314
DPI
export TFs, 359
missing DPI import function, 400
registering applications, 369
use flow, 370
DPI access routines, 397
DPI export TFs, 359
DPI/VPI/PLI, 365
drivers
Dataflow Window, 227
show in Dataflow window, 221
Wave window, 221
dumpports tasks, VCD files, 281

DumpportsCollapse .ini file variable, 333

— FE—
Editing

in notepad windows, 404
in the Main window, 404
in the Source window, 404
EDITOR environment variable, 314
editor, default, changing, 314
embedded wave viewer, 228
empty port name warning, 359
enable signal_spy, 242
ENDFILE function, 122
ENDLINE function, 121
entities
default binding rules, 115
entity simulator state variable, 349
environment variables, 313
accessed during startup, 420
expansion, 313
referencing from command line, 318
referencing with VHDL FILE variable, 318
setting, 314
setting in Windows, 317
TranscriptFile, specifying location of, 338
used in Solaris linking for FLI, 374, 381
used in Solaris linking for
PLI/VPI/DPI/FLI, 315
using with location mapping, 353
variable substitution using Tcl, 299
error
can’'t locate C compiler, 359
Error .ini file variable, 345
errors
bad magic number, 177
DPI missing import function, 400
getting more information, 355
severity level, changing, 356
SystemVerilog, missing declaration, 322
Tcl_init error, 360
VSIM license lost, 362
escaped identifiers, 161
event order
in Verilog simulation, 154
event queues, 154
event watching commands, placement of, 307
events, tracing, 230
exit codes, 357
expand

428

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI JKLMNOPQRSTUVWXY Z

environment variables, 313 GLOBALPATHPULSE
expand net, 227 matching to specify path delays, 269
Explicit .ini file variable, 324 Global SharedObjectsList .ini file variable, 333
export TFs, in DPI, 359 graphic interface, 187, 225
Expression Builder, 200 grouping files for compile, 90

configuring aList trigger with, 219 grouping objects, Monitor window, 71

saving expressions to Tcl variable, 201 groups

in wave window, 208
GUI_expression_format
GUI expression builder, 200

— F—
F8 function key, 406
Fatal .ini file variable, 345

File compression —H—

VCD tasks, 282 Hazard .ini file variable (VLOG), 322
filel/O hazards

TextlO package, 118 limitations on detection, 158
file-line breakpoints, 67 hierarchy
files driving signalsin, 243, 254

.modelsim, 419 forcing signalsin, 126, 248, 258
files, grouping for compile, 90 referencing signalsin, 125, 245, 256
filter releasing signalsin, 126, 250, 260

processes, 47 highlighting, in Source window, 68
filtering history

signalsin Objects window, 60 of commands
folders, in projects, 92 shortcuts for reuse, 403
fonts HOLD

controlling in X-sessions, 36 matching to Verilog, 269

scaling, 35 HOME environment variable, 314
force command HOME_OIN environment variable, 314

defaults, 348
format file, 213 — | —

Wave window, 213 /0
FPGA libraries, importing, 107 - TextlO packege, 118
Function call, debugging, 48 Icons ,
functions shapes and meanings, 35

Virtual, 185 identifiers

escaped, 161
— G — ieee .ini filevariable, 319
generate statements, Veilog, 150 |EEE libraries, 106
GenerateFormat .ini file variable, 333 |IEEE Std 1076, 28
GeneratelooplterationMax .ini file variable, differences between versions, 111
321 |EEE Std 1364, 28, 139
GenerateRecursionDepthMax .ini variable, IgnoreError .ini file variable, 333
321 IgnoreFailure .ini file variable, 334

get_resolution() VHDL function, 125 IgnoreNote .ini file variable, 334
global visibility IgnoreVitalErrors .ini file variable, 324

PLI/FLI shared objects, 387 IgnoreWarning .ini file variable, 334
ModelSim User’s Manual, v6.2g 429

February 2007

ABCDEFGHI JKLMNOPQRSTUVWXY Z

importing FPGA libraries, 107
Incremental .ini file variable, 322
incremental compilation

automatic, 143

manual, 143

with Verilog, 141
index checking, 110
$init_signal_driver, 254
init_signal_driver, 243
$init_signa_spy, 256
init_signal_spy, 125, 245
init_usertfs function, 366
initialization sequence, 421
inlining

VHDL subprograms, 110
input ports

matching to INTERCONNECT, 268

matching to PORT, 268
INTERCONNECT

matching to input ports, 268
interconnect delays, 273
IOPATH

matching to specify path delays, 268

iteration_limit, infinite zero-delay loops, 118

[terationLimit .ini file variable, 334

— K —
keyboard shortcuts
List window, 407
Main window, 404
Source window, 404
Wave window, 408
keywords
SystemVerilog, 140

— L —
-L work, 144
language templ ates, 65
language versions, VHDL, 111
libraries
64-bit and 32-bit in same library, 107
creating, 101
design libraries, creating, 101
design library types, 99
design units, 99
group use, setting up, 104

|EEE, 106
importing FPGA libraries, 107
mapping
from the command line, 103
from the GUI, 103
hierarchically, 346
search rules, 104
modelsim_lib, 124
moving, 104
multiple libraries with common modules,
144
naming, 102
predefined, 105
refreshing library images, 106
resource libraries, 99
std library, 105
Synopsys, 106
Verilog, 144
VHDL library clause, 105
working libraries, 99
working vs resource, 24
working with contents of, 101
library map file, Verilog configurations, 149
library mapping, overview, 25
library maps, Verilog 2001, 149
library ssimulator state variable, 349
library, definition, 24
License .ini file variable, 335
licensing
Licensevariablein .ini file, 335
List pane
see also pane, List pane
List window, 53, 190
setting triggers, 219
see also windows, List window
LM_LICENSE_FILE environment variable,
315
loading the design, overview, 26
Locals window, 55
see also windows, Locals window
location maps, referencing source files, 353
locations maps
specifying source files with, 353
lock message, 359
LockedMemory .ini file variable, 335

430

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

locking cursors, 193
log file

overview, 175

see also WLFfiles
long simulations

saving at intervals, 182

— M —
MacroNestingLevel smulator state variable,
350
macros (DO files), 307
creating from a saved transcript, 39
depth of nesting, simulator state variable,
350
error handling, 311
parameters
asasimulator state variable (n), 350
passing, 308
total number passed, 349
startup macros, 347
Main window, 36
see also windows, Main window
mapping
libraries
from the command line, 103
hierarchically, 346
symbols
Dataflow window, 235
mapping libraries, library mapping, 103
math_complex package, 106
math_real package, 106
MDI frame, 41
MDI pane
tab groups, 42
memories
displaying the contents of, 56
navigation, 58
saving formats, 58
selecting memory instances, 57
viewing contents, 57
viewing multiple instances, 57
memory
modeling in VHDL, 128
memory leak, cancelling scheduled events, 136
Memory pane, 56
pane

Memory pane
see also Memory pane
memory tab
memories you can view, 56
Memory window, 56
see also windows, Memory window
message system, 355
Message Viewer tab, 40
Messages, 40
messages, 355
bad magic number, 177
empty port name warning, 359
exit codes, 357
getting more information, 355
lock message, 359
long description, 355
message system variables, 344
metaval ue detected, 360
redirecting, 338
sensitivity list warning, 360
suppressing warnings from arithmetic
packages, 347
Tcl _init error, 360
too few port connections, 361
turning off assertion messages, 347
VSIM license lost, 362
warning, suppressing, 356
metaval ue detected warning, 360
MGC_LOCATION_MAP env variable, 353
MGC_LOCATION_MAP variable, 315
MinGW gcc, 375, 381
missing DPI import function, 400
MODEL_TECH environment variable, 315
MODEL_TECH_TCL environment variable,
315
modeling memory in VHDL, 128
MODELSIM environment variable, 315
modelsim.ini
found by the tool, 421
default to VHDL93, 348
delay file opening with, 348
environment variablesin, 346
force command default, setting, 348
hierarchical library mapping, 346
opening VHDL files, 348

ModelSim User's Manual, v6.2g
February 2007

431

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

restart command defaults, setting, 348
startup file, specifying with, 347
transcript file created from, 346
turning off arithmetic package warnings,
347
turning off assertion messages, 347
modelsim.tcl, 417
modelsim_lib, 124
path to, 320
MODELSIM_PREFERENCES variable, 316,
417
MODELSIM_TCL environment variable, 316
modes of operation, 27
Modified field, Project tab, 89
modules
handling multiple, common names, 144
Monitor window
grouping/ungrouping objects, 71
monitor window, 70
mouse shortcuts
Main window, 404
Source window, 404
Wave window, 408
.mpf file, 81
loading from the command line, 97
order of access during startup, 419
msgmode .ini file variable, 345
msgmode variable, 40
mti_cosim_trace environment variable, 316
mti_inhibit_inline attribute, 111
MTI_TF_LIMIT environment variable, 316
multi-file compilation issues, SystemV erilog,
145
MultiFileCompilationUnit .ini file variable,
322
multiple document interface, 41
Multiple simulations, 175

— N—
n simulator state variable, 350
Name field

Project tab, 88
name visibility in Verilog generates, 150
names, modules with the same, 144
negative timing

$setuphol d/$recovery, 169

algorithm for calculating delays, 159

check limits, 159
nets

Dataflow window, displaying in, 49, 225

values of

displaying in Objects window, 60
saving as binary log file, 175

waveforms, viewing, 72
Nlview widget Symlib format, 236
NoCaseStaticError .ini file variable, 325
NOCHANGE

matching to Verilog, 271
NoDebug .ini file variable (VCOM), 325
NoDebug .ini file variable (VLOG), 322
NolndexCheck .ini file variable, 325
NOMMAP environment variable, 317
non-blocking assignments, 156
NoOthersStaticError .ini file variable, 325
NoRangeCheck .ini file variable, 325
Note .ini file variable, 345
Notepad windows, text editing, 404
-notrigger argument, 221
NoVita .ini file variable, 325
NoVitaCheck .ini file variable, 326
Now simulator state variable, 350
now simulator state variable, 350
numeric_bit package, 106
numeric_std package, 106

disabling warning messages, 347
NumericStdNoWarnings .ini file variable, 336

— 00—
object

defined, 30
objects

virtual, 183
Objects window, 60

see also windows, Objects window
operating systems supported, See Installation

Guide

optimizations

VHDL subprogram inlining, 110
Optimize_1164 .ini file variable, 326
ordering files for compile, 89
organizing projects with folders, 92
organizing windows, MDI pane, 42

432

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

others.ini file variable, 321
overview, simulation tasks, 22

—P—
packages
standard, 105
textio, 105
util, 124
VITAL 1995, 123
VITAL 2000, 123
page setup
Dataflow window, 235
Wave window, 214
pan, Dataflow window, 229
panes
docking and undocking, 413
Memory panes, 56
parameters
making optional, 309
using with macros, 308
path delay mode, 163
path delays,matching to DEVICE statements,
269
path delays,matching to
GLOBALPATHPUL SE statements,
269
path delays,matching to IOPATH statements,
268
path delays,matching to PATHPUL SE
statements, 269
pathnames
hiding in Wave window, 203
PATHPULSE
matching to specify path delays, 269
PathSeparator .ini file variable, 336
PedanticErrors.ini file variable, 326
performance
cancelling scheduled events, 136
PERIOD
matching to Verilog, 271
platforms supported, See Installation Guide
PLI
loading shared objects with global symbol
visibility, 387
specifying which apps to load, 367
Veriuser entry, 367

PLI/VPI, 173

tracing, 398
PLI/VPI/DPI, 365

registering DPlapplications, 369

specifying the DPI fileto load, 387
PLIOBJS environment variable, 317, 367
PORT

matching to input ports, 268
Port driver data, capturing, 286
Postscript

saving awaveformin, 214

saving the Dataflow display in, 233
precedence of variables, 349
precision, simulator resolution, 151
preference variables

Jini files, located in, 319

editing, 415

saving, 415
preferences

saving, 415

Wave window display, 202
PrefMain(EnableCommandHelp), 40
PrefMain(ShowFilePane) preference variable,

38

PrefMemory(ExpandPackedMem) variable, 57
primitives, symbolsin Dataflow window, 235
printing

Dataflow window display, 233

waveformsin the Wave window, 214
Programming Language Interface, 173, 365
project tab

information in, 88

sorting, 89
projects, 81

accessing from the command line, 97

adding filesto, 84

benefits, 81

close, 88

compile order, 89

changing, 89

compiler propertiesin, 94

compiling files, 85

creating, 83

creating simulation configurations, 91

foldersin, 92

ModelSim User's Manual, v6.2g
February 2007

433

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

grouping filesin, 90
loading a design, 86
MODELSIM environment variable, 315
open and existing, 838
overview, 81
protected types, 128

—Q—
quick reference

table of simulation tasks, 22
Quiet .ini file variable

VCOM, 326
Quiet .ini file variable (VLOG), 322

— R —
race condition, problems with event order, 154
radix
List window, 211
SystemVerilog types, 75, 205
Wave window, 205
range checking, 110
readers and drivers, 227
real type, converting to time, 127
reconstruct RTL-level design busses, 184
RECOVERY
matching to Verilog, 270
$recovery, 169
RECREM
matching to Verilog, 270
redirecting messages, TranscriptFile, 338
refreshing library images, 106
regions
virtual, 186
registers
values of
displaying in Objects window, 60
saving as binary log file, 175
waveforms, viewing, 72
REMOVAL
matching to Verilog, 270
report
simulator control, 313
simulator state, 313
RequireConfigForAllDefaultBinding variable,
326
resolution

returning asareal, 125

verilog simulation, 151

VHDL simulation, 114
Resolution .ini file variable, 337
resolution simulator state variable, 350
resource libraries, 105
restart command

defaults, 348

toolbar button, 46, 78
results, saving simulations, 175
RTL-level design busses

reconstructing, 184
RunLength .ini file variable, 337
Runtime Options dialog, 342

—S—
savel ines preference variable, 39
saving
simulation options in a project, 91
waveforms, 175
scaling fonts, 35
SDF
disabling timing checks, 274
errors and warnings, 264
instance specification, 263
interconnect delays, 273
mixed VHDL and Verilog designs, 273
specification with the GUI, 264
troubleshooting, 274
Verilog
$sdf _annotate system task, 267
optional conditions, 272
optional edge specifications, 271
rounded timing values, 273
SDF to Verilog construct matching, 268
VHDL
resolving errors, 265
SDF to VHDL generic matching, 265
SDF DEVICE
matching to Verilog constructs, 269
SDF GLOBALPATHPULSE
matching to Verilog constructs, 269
SDF HOLD
matching to Verilog constructs, 269
SDF INTERCONNECT
matching to Verilog constructs, 268

434

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

SDF IOPATH

matching to Verilog constructs, 268
SDF NOCHANGE

matching to Verilog constructs, 271
SDF PATHPULSE

matching to Verilog constructs, 269
SDF PERIOD

matching to Verilog constructs, 271
SDF PORT

matching to Verilog constructs, 268
SDF RECOVERY

matching to Verilog constructs, 270
SDF RECREM

matching to Verilog constructs, 270
SDF REMOVAL

matching to Verilog constructs, 270
SDF SETUPHOLD

matching to Verilog constructs, 270
SDF SKEW

matching to Verilog constructs, 270
SDFWIDTH

matching to Verilog constructs, 271
$sdf_done, 167
searching

Expression Builder, 200

Verilog libraries, 144
sengitivity list warning, 360
set simulator control with GUI, 342
SETUP

matching to Verilog, 269
SETUPHOLD

matching to Verilog, 270
$setuphold, 169
severity, changing level for errors, 356
shared objects

loading FLI applications

see FLI Reference manual
loading PL1/VPI/DPI C applications, 373
loading PL1/VPI/DPI C++ applications,
380

loading with global symbol visibility, 387
Shortcuts

text editing, 404
shortcuts

command history, 403

command line caveat, 403
List window, 407
Main window, 404
Source window, 404
Wave window, 408
show drivers
Dataflow window, 227
Wave window, 221
Show_ WarnMatchCadence .ini file variable,
323
Show_BadOptionWarning .ini file variable,
323
Show_Lint .ini file variable
VCOM, 326
Show_Lint .ini filevariable (VLOG), 323
Show_source .ini file variable
VCOM, 326
Show_source .ini file variable (VLOG), 323
Show_VitalChecksOpt .ini file variable, 327
Show_VitalChecksWarning .ini file variable,
327
Show_WarnCantDoCoverage.ini filevariable,
323
Show_WarnCantDoCoverage variable, 327
Show_Warningl .ini file variable, 327
Show_Warningl0 .ini file variable, 328
Show_Warning?2 .ini file variable, 327
Show_Warning3 .ini file variable, 327
Show_Warning4 .ini file variable, 328
Show_Warning5 .ini file variable, 328
Show_Warning9 .ini file variable, 328
Show_WarnL ocallyStaticError variable, 328
signal groups
in wave window, 208
Signal Spy, 125, 245
disable, 241, 252
enable, 242, 253
$signal_force, 258
signal_force, 126, 248
$signal_release, 260
signa_release, 126, 250
signals
combining into a user-defined bus, 215
Dataflow window, displaying in, 49, 225
driving in the hierarchy, 243

ModelSim User's Manual, v6.2g
February 2007

435

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

filtering in the Objects window, 60
hierarchy
driving in, 243, 254
referencing in, 125, 245, 256
releasing anywhere in, 250
releasing in, 126, 260
sampling at a clock change, 221
transitions, searching for, 196
types, selecting which to view, 60
values of
displaying in Objects window, 60
forcing anywherein the hierarchy, 126,
248, 258
saving as binary log file, 175
virtual, 184
waveforms, viewing, 72
simulating
batch mode, 27
command-line mode, 27
comparing simulations, 175
default run length, 342
iteration limit, 343
saving dataflow display as aPostscript file,
233
saving optionsin a project, 91
saving simulations, 175
saving waveform as a Postscript file, 214
Verilog, 151
delay modes, 162
hazard detection, 158
resolution limit, 151
XL compatible ssimulator options, 160
VHDL, 114
viewing resultsin List pane, 53
viewing resultsin List window, 190
VITAL packages, 124
simulating the design, overview, 26
simulation
basic steps for, 23
Simulation Configuration
creating, 91
simulation task overview, 22
simulations
event order in, 154
saving results, 175

saving results at intervals, 182
simulator control
with .ini variables, 342
simulator resolution
returning asareal, 125
Verilog, 151
VHDL, 114
simulator state variables, 349
sizetf callback function, 391
SKEW
matching to Verilog, 270
S0, shared object file
loading PLI1/VPI/DPI C applications, 373
loading PLI/VPI/DPI C++ applications,
380
source files, referencing with location maps,
353
sourcefiles, specifying with location maps, 353
source highlighting, customizing, 68
source libraries
arguments supporting, 147
Source window, 62
colorization, 638
tab stopsin, 68
see also windows, Source window
specify path delays
matching to DEVICE construct, 269
matching to GLOBALPATHPUL SE
construct, 269
matching to IOPATH statements, 268
matching to PATHPUL SE construct, 269
standards supported, 28
startup
environment variables access during, 420
files accessed during, 419
macro in the modelsim.ini file, 338
macros, 347
startup macro in command-line mode, 27
using a startup file, 347
Startup .ini file variable, 338
state variables, 349
status bar
Main window, 44
Status field
Project tab, 88

436

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

std .ini file variable, 320
std_arith package

disabling warning messages, 347
std_developerskit .ini file variable, 320
std_logic_arith package, 106
std logic_signed package, 106
std_logic_textio, 106
std_logic_unsigned package, 106
StdArithNoWarnings .ini file variable, 338
STDOUT environment variable, 317
steps for simulation, overview, 23
subprogram inlining, 110
subprogram write is ambiguous error, fixing,

120

Suppress .ini file variable, 345
sv_std .ini file variable, 320
symbol mapping

Dataflow window, 235
symboalic link to design libraries (UNIX), 104
synopsys .ini file variable, 320
Synopsys libraries, 106
syntax highlighting, 638
synthesis

rule compliance checking, 324
system calls

VCD, 282

Verilog, 163
system commands, 299
system tasks

proprietary, 167

VCD, 282

Verilog, 163

Verilog-XL compatible, 168
SystemVerilog

keyword considerations, 140

multi-file compilation, 145

suppported implementation details, 28
SystemVerilog DPI

specifying the DPI fileto load, 387
SystemVerilog types

radix, 75, 205

— T —
tab groups, 42
tab stops

Source window, 68

Tcl, 7?t0 303
command separator, 298
command substitution, 297
command syntax, 294
evaluation order, 298
history shortcuts, 403
preference variables, 415
relational expression evaluation, 298
time commands, 301
variable
substitution, 299
VSIM Tcl commands, 300
Tcl_init error message, 360
temp files, VSOUT, 319
testbench, accessing internal objectsfrom, 239
text and command syntax, 31
Text editing, 404
TEXTIO
buffer, flushing, 122
TextlO package
aternative I/O files, 122
containing hexadecimal numbers, 121
dangling pointers, 121
ENDFILE function, 122
ENDLINE function, 121
file declaration, 119
implementation issues, 120
providing stimulus, 122
standard input, 120
standard output, 120
WRITE procedure, 120
WRITE_STRING procedure, 121
TF routines, 397
TFMPC
explanation, 361
time
measuring in Wave window, 192
time resolution as a simulator state
variable, 350
time collapsing, 182
time resolution
inVerilog, 151
inVHDL, 114
time type
converting to real, 126

ModelSim User's Manual, v6.2g
February 2007

437

ABCDEFGHI JKLMNOPQRSTUVWXY Z

timeline

display clock cycles, 203
timescale directive warning

investigating, 152
timing

$setuphol d/$recovery, 169

disabling checks, 274

negative check limits

described, 159

TMPDIR environment variable, 317
to_real VHDL function, 126
to_time VHDL function, 127
toggle coverage

max VHDL integer values, 338
too few port connections, explanation, 361
tool structure, 21
toolbar

Dataflow window, 50

Main window, 45
tracing

events, 230

source of unknown, 231
transcript

disablefile creation, 39, 347

file name, specifed in modelsim.ini, 346

saving, 39

using asaDOfile, 39
Transcript window

changing buffer size, 39

changing line count, 39
TranscriptFile .ini file variable, 338
triggers, in the List window, 219
triggers, in the List window, setting, 217
troubleshooting

DPI, missing import funtion, 400
TSSI

in VCD files, 286
type

converting real to time, 127

converting timeto real, 126
Typefield, Project tab, 88
types

virtual, 186

—U—
UnbufferedOutput .ini file variable, 338

ungrouping

in wave window, 210
ungrouping objects, Monitor window, 71
unit delay mode, 163
unknowns, tracing, 231
use clause, specifying alibrary, 105
use flow

DPI, 370
UseCsupV2 .ini file variable, 338
user-defined bus, 183, 215
UserTimeUnit .ini file variable, 339
util package, 124

—V —
values
of HDL items, 67
variables, 342
environment, 313
expanding environment variables, 313
LM_LICENSE_FILE, 315
precedence between .ini and .tcl, 349
setting environment variables, 314
simulator state variables
current settings report, 313
iteration number, 349
name of entity or module asavariable,
349
resolution, 349
simulation time, 349
values of
displaying in Objects window, 60
saving as binary log file, 175
VCD files
capturing port driver data, 286
case sengitivity, 278
creating, 277
dumpports tasks, 281
from VHDL source to VCD output, 282
stimulus, using as, 278
supported TSSI states, 286
VCD system tasks, 282
Verilog
ACC routines, 395
capturing port driver datawith -dumpports,
286
cell libraries, 162

438

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

compiler directives, 171

compiling and linking PLI C applications,

373
compiling and linking PL1 C++
applications, 380
compiling design units, 140
compiling with XL "uselib compiler
directive, 147
configurations, 149
DPI access routines, 397
event order in simulation, 154
generate statements, 150
language templ ates, 65
library usage, 144
SDF annotation, 266
sdf _annotate system task, 266
simulating, 151
delay modes, 162
XL compatible options, 160
simulation hazard detection, 158
simulation resolution limit, 151
source code viewing, 62
standards, 28
system tasks, 163
TF routines, 397
XL compatible compiler options, 146
XL compatible routines, 398
XL compatible system tasks, 168
verilog .ini file variable, 320
Verilog 2001
disabling support, 323
Verilog PLI/VP/DPII
registering VPl applications, 367
Verilog PLI/VPI
64-bit support in the PLI, 398
debugging PLI/VPI code, 399
Verilog PLI/VPI/DPI
compiling and linking PLI/VPI C++
applications, 380
compiling and linking PLI/VPI/CPI C
applications, 373
PLI callback reason argument, 390
PLI support for VHDL objects, 393
registering PL1 applications, 366
specifying the PLI/VPI file to load, 386

Verilog-XL

compatibility with, 139, 365
Veriuser .ini file variable, 339, 367
Veriuser, specifying PLI applications, 367
veriuser.c file, 392
VHDL

compiling design units, 109

creating adesign library, 109

delay file opening, 348

dependency checking, 110

file opening delay, 348

language templ ates, 65

language versions, 111

library clause, 105

object support in PLI, 393

optimizations

inlining, 110

simulating, 114

source code viewing, 62

standards, 28

timing check disabling, 114

VITAL package, 106
VHDL utilities, 124, 125, 245, 256

get_resolution(), 125

to_real(), 126

to_time(), 127
VHDL-1987, compilation problems, 111
VHDL-1993, enabling support for, 328
VHDL-2002, enabling support for, 328
VHDL93 .ini file variable, 328
viewing, 40

library contents, 101

waveforms, 175
virtual compare signal, restrictions, 215
virtual hide command, 184
virtual objects, 183

virtual functions, 185

virtual regions, 186

virtual signals, 184

virtual types, 186
virtual region command, 186
virtual regions

reconstruct RTL hierarchy, 186
virtual save command, 185
virtual signal command, 184

ModelSim User's Manual, v6.2g
February 2007

439

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

virtual signals
reconstruct RTL-level design busses, 184
reconstruct the original RTL hierarchy, 184
virtual hide command, 184

visibility
of declarationsin $unit, 145

VITAL
compiling and simulating with accelerated

VITAL packages, 124

disabling optimizations for debugging, 124
specification and source code, 123
VITAL packages, 124

vital95 .ini file variable, 321

vlog95compat .ini file variable, 323

VP, registering applications, 367

VPI/PLI, 173

VPI/PLI/DPI, 365
compiling and linking C applications, 373
compiling and linking C++ applications,

380
VSIM license lost, 362
VSOUT temp file, 319

— W —
WarnConstantChange .ini file variable, 339
Warning .ini file variable, 345
warnings
empty port name, 359
exit codes, 357
getting more information, 355
messages, long description, 355
metaval ue detected, 360
severity level, changing, 356
suppressing VCOM warning messages,
356
suppressing VLOG warning messages, 357
suppressing VSIM warning messages, 357
Tcl initialization error 2, 360
too few port connections, 361
turning off warnings from arithmetic
packages, 347
waiting for lock, 359
watching asignal value, 70
wave groups, 208
add items to existing, 210
creating, 208

deleting, 210
drag from Waveto List, 210
drag from Wave to Transcript, 210
removing items from existing, 210
ungrouping, 210
Wave Log Format (WLF) file, 175
wave log format (WLF) file
see also WLFfiles
wave viewer, Dataflow window, 228
Wave window, 72, 187
docking and undocking, 72, 188
in the Dataflow window, 228
saving layout, 213
timeline
display clock cycles, 203
see also windows, Wave window
waveform logfile
overview, 175
seealso WLFfiles
waveforms, 175
optimize viewing of, 340
viewing, 72
WaveSignalNameWidth .ini file variable, 339
WIDTH
matching to Verilog, 271
windows
Active Processes pane, 47
Dataflow window, 49, 225
toolbar, 50
zooming, 229
List window, 53, 190
display properties of, 211
formatting HDL items, 211
saving datato afile, 214
setting triggers, 217, 219
Locals window, 55
Main window, 36
status bar, 44
text editing, 404
time and deltadisplay, 44
toolbar, 45
Memory window, 56
monitor, 70
Objects window, 60
Signals window

440

ModelSim User’s Manual, v6.2g
February 2007

ABCDEFGHI

JKLMNOPQRSTUVWXY Z

VHDL and Verilog items viewed in, 60
Source window, 62
text editing, 404
viewing HDL source code, 62
V ariables window
VHDL and Verilog itemsviewed in, 55
Wave window, 72, 187
adding HDL itemsto, 191
cursor measurements, 192
display preferences, 202
display range (zoom), changing, 196
format file, saving, 213
path elements, changing, 339
time cursors, 192
zooming, 196
WLF file parameters
cachesize, 178
collapse mode, 178
compression, 177
delete on quit, 178
filename, 177
optimization, 177
overview, 177
sizelimit, 177
time limit, 177
WLFfiles
collapsing events, 182
optimizing waveform viewing, 340
saving, 176
saving at intervals, 182
WLFCacheSize .ini file variable, 339
WLFCollapseMode .ini file variable, 340
WLFCompress .ini variable, 340
WLFDeleteOnQuit .ini variable, 340
WLFFilename .ini file variable, 340
WLFSaveAllRegions .ini variable, 340
WLFSizeLimit .ini variable, 341
WLFTimeLimit .ini variable, 341
work library, 100
creating, 101
workspace, 37
WRITE procedure, problems with, 120

— X —
X
tracing unknowns, 231

Xdefaultsfile, controlling fonts, 36
X-session
controlling fonts, 36

— 7
zero delay elements, 116
zero delay mode, 163
zero-delay loop, infinite, 118
zero-delay oscillation, 118
zero-delay race condition, 154
zoom

Dataflow window, 229

saving range with bookmarks, 197
zooming window panes, 414

ModelSim User's Manual, v6.2g
February 2007

441

ABCDEFGHI JKLMNOPQRSTUVWXY Z

442 ModelSim User’'s Manual, v6.2g
February 2007

Third-Party Information

This section provides information on third-party software that may be included in the Model Sim product, including any
additional license terms.

This product may include Valgrind third-party software.
©Julian Seward. All rights reserved.

THIS SOFTWARE ISPROVIDED BY THE AUTHOR "ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

This product may use MinGW GCC third-party software.
©Red Hat, Inc. All rights reserved.
©Pipeline Associates, Inc. All rights reserved.
©Matthew Self. All rights reserved.
©National Research Council of Canada. All rights reserved.
©The Regents of the University of California.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
©Free Software Foundation, Inc. All rights reserved.
Refer to the license file in your install directory:

<install_directory>/docs/legal/mingw_gcc.pdf
This software application may include GNU GCC third-party software.
© AT&T. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided that
thisentire noticeisincluded in all copies of any software which is or includes a copy or modification of this software and
in all copies of the supporting documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS, WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, NEITHER THE AUTHOR NOR AT& T MAKES ANY REPRESENTATION OR WARRANTY OF
ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

Refer to the license file in your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf
This software application may include GNU GCC third-party software.
© Doug Bell. All Rights Reserved.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “ASIS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Refer to the license filein your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf
This software application may include GNU third-party software distributed by The Free Software Foundation.
© Free Software Foundation.
To view acopy of the GNU GPL, LGPL, Library, and Documentation licenses, refer to:
http://www.fsf.org/licensing/li censes.
Refer to the license filein your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf
This software application may include GNU GCC third-party software.
©The Regents of the University of California. All rights reserved.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “ASIS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Refer to the license filein your install directory:

<install_directory>/docs/legal/gnu_gcc.pdf
This product may include freeWrap open source software
© Dennis R. LaBelle All Rights Reserved.
Disclaimer of warranty: Licensor provides the software on an ““asis" basis. Licensor does not warrant, guarantee, or make
any representations regarding the use or results of the software with respect to it correctness, accuracy, reliability or
performance. The entire risk of the use and performance of the software is assumed by licensee. ALL WARANTIES
INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
MERCHANTABILITY ARE HEREBY EXCLUDED.

This software application may include MinGW GNU diffutils version 2.7 third-party software.

© 1991, 1993 The Regents of the University of California. All rights reserved.
© UNIX System Laboratories, Inc.

All or some portions of thisfile are derived from material licensed to the University of Californiaby American Telephone
and Telegraph Co. or Unix System Laboratories, Inc. and are reproduced herein with the permission of UNIX System
Laboratories, Inc.

* This code is derived from software contributed to Berkeley by
* Hugh Smith at The University of Guelph.
*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, thislist of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, thislist of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* This product includes software devel oped by the University of

* Cdlifornia, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors

* may be used to endorse or promote products derived from this software
* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “"ASIS' AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORSBE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

This software application may include MinGW GNU diffutils version 2.7 third-party software. You can view the
complete license at: http://www.fsf.org/licensing/licenses/Igpl .html

Refer to the license file in your install directory:

<install_directory>/docs/legal/lgpl.pdf

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/terms_conditions/enduser.cfm

IMPORTANT INFORMATION

USE OF THIS SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS
LICENSE AGREEMENT BEFORE USING THE SOFTWARE. USE OF SOFTWARE INDICATES YOUR
COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH

IN THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND
CONDITIONS SHALL NOT APPLY.

END-USER LICENSE AGREEMENT (*Agreement”)

Thisis a legal agreement concerning the use of Software between you, the end user, as an authorized
representative of the company acquiring the license, and Mentor Graphics Corporation and Mentor Graphics
(Ireland) Limited acting directly or through their subsidiaries (collectively “Mentor Graphics’). Except for license
agreements related to the subject matter of this license agreement which are physically signed by you and an
authorized representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties
entire under standing relating to the subject matter and supersedeall prior or contemporaneous agreements. | f you
do not agree to these terms and conditions, promptly return or, if received electronically, certify destruction of
Softwar e and all accompanying items within five days after receipt of Software and receive a full refund of any
license fee paid.

GRANT OF LICENSE. The software programs, including any updates, modifications, revisions, copies, documentation
and design data (“ Software”), are copyrighted, trade secret and confidential information of Mentor Graphics or its
licensors who maintain exclusive title to all Software and retain all rights not expressly granted by this Agreement.
Mentor Graphics grants to you, subject to payment of appropriate license fees, a nontransferable, nonexclusive license to
use Software solely: (a) in machine-readable, object-code form; (b) for your internal business purposes; (c) for the license
term; and (d) on the computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half
mile (800 meter) radius. Mentor Graphics' standard policies and programs, which vary depending on Software, license
fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of Software, which may be
limited, for example, to execution of asingle session by a single user on the authorized hardware or for arestricted period
of time (such limitations may be technically implemented through the use of authorization codes or similar devices); and
(c) support services provided, including eligibility to receive telephone support, updates, modifications, and revisions.

EMBEDDED SOFTWARE. If you purchased a license to use embedded software development (“ESD”) Software, if
applicable, Mentor Graphics grants to you a nontransferable, nonexclusive license to reproduce and distribute executable
files created using ESD compilers, including the ESD run-time libraries distributed with ESD C and C++ compiler
Software that are linked into a composite program as an integral part of your compiled computer program, provided that
you distribute these files only in conjunction with your compiled computer program. Mentor Graphics does NOT grant
you any right to duplicate, incorporate or embed copies of Mentor Graphics' real-time operating systems or other
embedded software products into your products or applications without first signing or otherwise agreeing to a separate
agreement with Mentor Graphics for such purpose.

BETA CODE. Software may contain code for experimental testing and evaluation (“Beta Code"), which may not be used
without Mentor Graphics' explicit authorization. Upon Mentor Graphics authorization, Mentor Graphics grants to you a
temporary, nontransferable, nonexclusive license for experimental use to test and evaluate the Beta Code without charge
for alimited period of time specified by Mentor Graphics. This grant and your use of the Beta Code shall not be construed
as marketing or offering to sell alicense to the Beta Code, which Mentor Graphics may choose not to release
commercialy in any form. If Mentor Graphics authorizes you to use the Beta Code, you agree to evaluate and test the
Beta Code under normal conditions as directed by Mentor Graphics. Y ou will contact Mentor Graphics periodically
during your use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of your
evaluation and testing, you will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements. Y ou agree that any written evaluations and all inventions, product
improvements, modifications or developments that Mentor Graphics conceived or made during or subsequent to this
Agreement, including those based partly or wholly on your feedback, will be the exclusive property of Mentor Graphics.
Mentor Graphics will have exclusive rights, title and interest in all such property. The provisions of this section 3 shall
survive the termination or expiration of this Agreement.

http://www.mentor.com/terms_conditions/enduser.cfm

4. RESTRICTIONS ON USE. You may copy Software only as reasonably necessary to support the authorized use. Each
copy must include all notices and legends embedded in Software and affixed to its medium and container as received from
Mentor Graphics. All copies shall remain the property of Mentor Graphics or its licensors. Y ou shall maintain arecord of
the number and primary location of all copies of Software, including copies merged with other software, and shall make
those records available to Mentor Graphics upon request. Y ou shall not make Software available in any form to any
person other than employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Y ou shall take appropriate action to protect the
confidentiality of Software and ensure that any person permitted access to Software does not disclose it or useit except as
permitted by this Agreement. Except as otherwise permitted for purposes of interoperability as specified by applicable
and mandatory local law, you shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive from
Software any source code. Y ou may not sublicense, assign or otherwise transfer Software, this Agreement or the rights
under it, whether by operation of law or otherwise (“attempted transfer”), without Mentor Graphics' prior written consent
and payment of Mentor Graphics' then-current applicable transfer charges. Any attempted transfer without Mentor
Graphics prior written consent shall be amaterial breach of this Agreement and may, at Mentor Graphics option, result in
the immediate termination of the Agreement and licenses granted under this Agreement. The terms of this Agreement,
including without limitation, the licensing and assignment provisions shall be binding upon your successors in interest
and assigns. The provisions of this section 4 shall survive the termination or expiration of this Agreement.

5. LIMITED WARRANTY.

5.1. Mentor Graphics warrants that during the warranty period Software, when properly installed, will substantially
conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not warrant
that Software will meet your requirements or that operation of Software will be uninterrupted or error free. The
warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Y ou
must notify Mentor Graphics in writing of any nonconformity within the warranty period. This warranty shall not be
valid if Software has been subject to misuse, unauthorized modification or improper installation. MENTOR
GRAPHICS ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MENTOR GRAPHICS
OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF SOFTWARE TO MENTOR
GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF SOFTWARE THAT DOES NOT MEET THIS
LIMITED WARRANTY, PROVIDED YOU HAVE OTHERWISE COMPLIED WITH THIS AGREEMENT.
MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO: (A) SERVICES; (B) SOFTWARE
WHICH IS LICENSED TO YOU FOR A LIMITED TERM OR LICENSED AT NO COST; OR
(C) EXPERIMENTAL BETA CODE; ALL OF WHICH ARE PROVIDED “ASIS.

5.2. THE WARRANTIES SET FORTH IN THIS SECTION 5 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS
NOR ITS LICENSORS MAKE ANY OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, WITH
RESPECT TO SOFTWARE OR OTHER MATERIAL PROVIDED UNDER THIS AGREEMENT. MENTOR
GRAPHICS AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY.

6. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY
WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS
OR ITSLICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
(INCLUDING LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER
LEGAL THEORY, EVEN IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS
LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT PAID BY YOU FOR THE SOFTWARE OR
SERVICE GIVING RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR
GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE
PROVISIONS OF THIS SECTION 6 SHALL SURVIVE THE EXPIRATION OR TERMINATION OF THIS
AGREEMENT.

7. LIFE ENDANGERING ACTIVITIES. NEITHER MENTOR GRAPHICS NOR ITS LICENSORS SHALL BE
LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION WITH THE USE OF SOFTWARE IN
ANY APPLICATION WHERE THE FAILURE OR INACCURACY OF THE SOFTWARE MIGHT RESULT IN
DEATH OR PERSONAL INJURY. THE PROVISIONS OF THIS SECTION 7 SHALL SURVIVE THE
EXPIRATION OR TERMINATION OF THISAGREEMENT.

8. INDEMNIFICATION. YOU AGREE TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE, OR LIABILITY, INCLUDING
ATTORNEYS' FEES, ARISING OUT OF OR IN CONNECTION WITH YOUR USE OF SOFTWARE AS

10.

11.

12.

13.

14.

DESCRIBED IN SECTION 7. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE EXPIRATION OR
TERMINATION OF THIS AGREEMENT.

INFRINGEMENT.

9.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against you alleging that
Software infringes a patent or copyright or misappropriates a trade secret in the United States, Canada, Japan, or
member state of the European Patent Office. Mentor Graphics will pay any costs and damages finally awarded
against you that are attributable to the infringement action. Y ou understand and agree that as conditions to Mentor
Graphics' obligations under this section you must: (a) notify Mentor Graphics promptly in writing of the action;
(b) provide Mentor Graphics all reasonable information and assistance to defend or settle the action; and (c) grant
Mentor Graphics sole authority and control of the defense or settlement of the action.

9.2. If an infringement claim is made, Mentor Graphics may, at its option and expense: (a) replace or modify Software so
that it becomes noninfringing; (b) procure for you the right to continue using Software; or (c) require the return of
Software and refund to you any license fee paid, |ess a reasonable allowance for use.

9.3. Mentor Graphics has no liability to you if infringement is based upon: (&) the combination of Software with any
product not furnished by Mentor Graphics; (b) the modification of Software other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of Software as part of an infringing process, (€) a
product that you make, use or sell; (f) any Beta Code contained in Software; (g) any Software provided by Mentor
Graphics' licensors who do not provide such indemnification to Mentor Graphics' customers; or (h) infringement by
you that is deemed willful. In the case of (h) you shall reimburse Mentor Graphicsfor its attorney fees and other costs
related to the action upon afina judgment.

9.4. THIS SECTION IS SUBJECT TO SECTION 6 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS AND YOUR SOLE AND EXCLUSIVE REMEDY WITH RESPECT TO
ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION
BY ANY SOFTWARE LICENSED UNDER THIS AGREEMENT.

TERM. This Agreement remains effective until expiration or termination. This Agreement will immediately terminate
upon notice if you exceed the scope of license granted or otherwise fail to comply with the provisions of Sections 1, 2, or
4. For any other material breach under this Agreement, Mentor Graphics may terminate this Agreement upon 30 days
written notice if you are in material breach and fail to cure such breach within the 30 day notice period. If Software was
provided for limited term use, this Agreement will automatically expire at the end of the authorized term. Upon any
termination or expiration, you agree to cease all use of Software and return it to Mentor Graphics or certify deletion and
destruction of Software, including all copies, to Mentor Graphics' reasonable satisfaction.

EXPORT. Software is subject to regulation by local laws and United States government agencies, which prohibit export
or diversion of certain products, information about the products, and direct products of the products to certain countries
and certain persons. Y ou agree that you will not export any Software or direct product of Software in any manner without
first obtaining all necessary approval from appropriate local and United States government agencies.

RESTRICTED RIGHTS NOTICE. Software was developed entirely at private expense and is commercial computer
software provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the U.S. Government or a U.S.
Government subcontractor is subject to the restrictions set forth in the license agreement under which Software was
obtained pursuant to DFARS 227.7202-3(a) or as set forth in subparagraphs (¢)(1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19, as applicable. Contractor/manufacturer is Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070-7777 USA.

THIRD PARTY BENEFICIARY. For any Software under this Agreement licensed by Mentor Graphics from Microsoft
or other licensors, Microsoft or the applicable licensor is athird party beneficiary of this Agreement with the right to
enforce the obligations set forth herein.

AUDIT RIGHTS. You will monitor access to, location and use of Software. With reasonable prior notice and during
your normal business hours, Mentor Graphics shall have the right to review your software monitoring system and
reasonably relevant records to confirm your compliance with the terms of this Agreement, an addendum to this
Agreement or U.S. or other local export laws. Such review may include FLEXIm or FLEXnet report log files that you
shall capture and provide at Mentor Graphics' request. Mentor Graphics shall treat as confidential information all of your
information gained as aresult of any request or review and shall only use or disclose such information as required by law
or to enforce its rights under this Agreement or addendum to this Agreement. The provisions of this section 14 shall
survive the expiration or termination of this Agreement.

15.

16.

17.

CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. THIS AGREEMENT SHALL BE
GOVERNED BY AND CONSTRUED UNDER THE LAWS OF THE STATE OF OREGON, USA, IF YOU ARE
LOCATED IN NORTH OR SOUTH AMERICA, AND THE LAWS OF IRELAND IF YOU ARE LOCATED
OUTSIDE OF NORTH OR SOUTH AMERICA. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the
laws of Ireland apply. Notwithstanding the foregoing, all disputesin Asia (except for Japan) arising out of or in relation to
this Agreement shall be resolved by arbitration in Singapore before a single arbitrator to be appointed by the Chairman of
the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the
Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by reference
in this section 15. This section shall not restrict Mentor Graphics' right to bring an action against you in the jurisdiction
where your place of businessis located. The United Nations Convention on Contracts for the International Sale of Goods
does not apply to this Agreement.

SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisionswill remainin
full force and effect.

PAYMENT TERMS AND MISCELLANEOUS. You will pay amounts invoiced, in the currency specified on the
applicable invoice, within 30 days from the date of such invoice. Any past due invoices will be subject to the imposition
of interest charges in the amount of one and one-half percent per month or the applicable legal rate currently in effect,
whichever is lower. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to you. Please see the applicable Software documentation for details. This Agreement may only be
modified in writing by authorized representatives of the parties. Waiver of terms or excuse of breach must be in writing
and shall not constitute subsequent consent, waiver or excuse.

Rev. 060210, Part No. 227900

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Tool Structure and Flow
	Simulation Task Overview
	Basic Steps for Simulation
	Step 1 - Collecting Files and Mapping Libraries
	Providing Stimulus to the Design
	What is a Library?
	Working and Resource Libraries
	Creating the Logical Library (vlib)
	Mapping the Logical Work to the Physical Work Directory (vmap)

	Step 2 - Compiling the Design (vlog, vcom, sccom)
	Compiling Verilog (vlog)
	Compiling VHDL (vcom)

	Step 3 - Loading the Design for Simulation
	vsim topLevelModule
	Using SDF

	Step 4 - Simulating the Design
	Step 5 - Debugging the Design

	Modes of Operation
	Command Line Mode
	Batch Mode

	Standards Supported
	Assumptions
	Sections In This Document
	What is an "Object"
	Text Conventions
	Installation Directory Pathnames

	Chapter 2 Simulator Windows
	Design Object Icons and Their Meaning
	Setting Fonts
	Font Scaling
	Controlling Fonts in an X-session

	Main Window
	Workspace
	Transcript
	Saving the Transcript File
	Using the Saved Transcript as a Macro (DO file)
	Changing the Number of Lines Saved in the Transcript Window
	Disabling Creation of the Transcript File
	Automatic Command Help

	Message Viewer
	Controlling the Message Viewer Data
	Message Viewer Interface and Tasks

	Multiple Document Interface (MDI) Frame

	Organizing Windows with Tab Groups
	Navigating in the Main Window
	Main Window Status Bar
	Main Window Toolbar

	Active Processes Pane
	Process Status

	Call Stack Pane
	Dataflow Window
	Dataflow Window Toolbar

	List Window
	Locals Pane
	Memory Panes
	Associative Arrays in Verilog/SystemVerilog
	Viewing Single and Multidimensional Memories
	Viewing Packed Arrays
	Viewing Memory Contents
	Viewing Multiple Memory Instances

	Saving Memory Formats in a DO File
	Direct Address Navigation
	Splitting the Memory Contents Pane

	Objects Pane
	Filtering the Objects List
	Filtering by Name
	Filtering by Signal Type

	Source Window
	Opening Source Files
	Displaying Multiple Source Files
	Dragging and Dropping Objects into the Wave and List Windows
	Setting your Context by Navigating Source Files
	Language Templates
	Setting File-Line Breakpoints
	Checking Object Values and Descriptions
	Marking Lines with Bookmarks
	Customizing the Source Window

	Watch Pane
	Adding Objects to the Pane
	Expanding Objects to Show Individual Bits
	Grouping and Ungrouping Objects
	Saving and Reloading Format Files

	Wave Window
	Wave Window Panes
	Pathname Pane
	Value Pane
	Waveform Pane
	Cursor Panes

	Wave Window Toolbar

	Chapter 3 Projects
	What are Projects?
	What are the Benefits of Projects?
	Project Conversion Between Versions

	Getting Started with Projects
	Step 1 - Creating a New Project
	Step 2 - Adding Items to the Project
	Create New File
	Add Existing File

	Step 3 - Compiling the Files
	Step 4 - Simulating a Design
	Other Basic Project Operations
	Open an Existing Project
	Close a Project

	The Project Tab
	Sorting the List

	Changing Compile Order
	Auto-Generating Compile Order
	Grouping Files

	Creating a Simulation Configuration
	Organizing Projects with Folders
	Adding a Folder

	Specifying File Properties and Project Settings
	File Compilation Properties
	Project Settings
	Converting Pathnames to Softnames for Location Mapping

	Accessing Projects from the Command Line

	Chapter 4 Design Libraries
	Design Library Overview
	Design Unit Information
	Working Library Versus Resource Libraries
	The Library Named "work"

	Archives

	Working with Design Libraries
	Creating a Library
	Managing Library Contents
	Assigning a Logical Name to a Design Library
	Library Mappings with the GUI
	Library Mapping from the Command Line
	Unix Symbolic Links
	Library Search Rules

	Moving a Library
	Setting Up Libraries for Group Use

	Specifying the Resource Libraries
	Verilog Resource Libraries
	VHDL Resource Libraries
	Predefined Libraries
	Alternate IEEE Libraries Supplied
	Regenerating Your Design Libraries
	Maintaining 32- and 64-bit Versions in the Same Library

	Importing FPGA Libraries

	Chapter 5 VHDL Simulation
	Basic VHDL Flow
	Compiling VHDL Files
	Creating a Design Library for VHDL
	Invoking the VHDL Compiler
	Dependency Checking
	Range and Index Checking
	Subprogram Inlining
	mti_inhibit_inline Attribute

	Differences Between Language Versions

	Simulating VHDL Designs
	Simulator Resolution Limit (VHDL)
	Overriding the Resolution
	Choosing the Resolution for VHDL

	Default Binding
	Default Binding Rules
	Disabling Default Binding

	Delta Delays
	Detecting Infinite Zero-Delay Loops

	Using the TextIO Package
	Syntax for File Declaration
	Using STD_INPUT and STD_OUTPUT Within the Tool

	TextIO Implementation Issues
	Writing Strings and Aggregates
	Reading and Writing Hexadecimal Numbers
	Dangling Pointers
	The ENDLINE Function
	The ENDFILE Function
	Using Alternative Input/Output Files
	Flushing the TEXTIO Buffer
	Providing Stimulus

	VITAL Specification and Source Code
	VITAL Packages
	VITAL Compliance
	VITAL Compliance Checking

	Compiling and Simulating with Accelerated VITAL Packages
	Util Package
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	Modeling Memory
	VHDL87 and VHDL93 Example
	VHDL02 example

	Affecting Performance by Cancelling Scheduled Events
	Converting an Integer Into a bit_vector

	Chapter 6 Verilog and SystemVerilog Simulation
	Terminology
	Basic Verilog Flow
	Compiling Verilog Files
	Creating a Working Library
	Invoking the Verilog Compiler
	Parsing SystemVerilog Keywords

	Incremental Compilation
	Automatic Incremental Compilation with -incr

	Library Usage
	Library Search Rules for vlog
	Handling Sub-Modules with Common Names

	SystemVerilog Multi-File Compilation Issues
	Declarations in Compilation Unit Scope
	Macro Definitions and Compiler Directives in Compilation Unit Scope

	Verilog-XL Compatible Compiler Arguments
	Arguments Supporting Source Libraries

	Verilog-XL uselib Compiler Directive
	-compile_uselibs Argument
	uselib is Persistent

	Verilog Configurations
	Configurations and the Library Named work

	Verilog Generate Statements
	Name Visibility in Generate Statements

	Simulating Verilog Designs
	Simulator Resolution Limit (Verilog)
	Modules Without Timescale Directives
	-timescale Option
	Multiple Timescale Directives
	timescale, -t, and Rounding
	Choosing the Resolution for Verilog

	Event Ordering in Verilog Designs
	Event Queues
	Controlling Event Queues with Blocking or Non-Blocking Assignments
	Blocking Assignments
	Non-Blocking Assignments

	Debugging Event Order Issues
	Hazard Detection
	Hazard Detection and Optimization Levels
	Limitations of Hazard Detection

	Negative Timing Check Limits
	Negative Timing Constraint Algorithm
	Using Delayed Inputs for Timing Checks

	Verilog-XL Compatible Simulator Arguments
	Using Escaped Identifiers

	Cell Libraries
	SDF Timing Annotation
	Delay Modes
	Distributed Delay Mode
	Path Delay Mode
	Unit Delay Mode
	Zero Delay Mode

	System Tasks and Functions
	IEEE Std 1364 System Tasks and Functions
	SystemVerilog System Tasks and Functions
	System Tasks and Functions Specific to the Tool
	Verilog-XL Compatible System Tasks and Functions
	Supported Tasks and Functions Mentioned in IEEE Std 1364
	Supported Tasks not Described in the IEEE Std 1364
	Supported Tasks that Have Been Extended
	Unsupported Verilog-XL System Tasks

	Compiler Directives
	IEEE Std 1364 Compiler Directives
	Verilog-XL Compatible Compiler Directives

	Verilog PLI/VPI and SystemVerilog DPI

	Chapter 7 WLF Files (Datasets) and Virtuals
	Saving a Simulation to a WLF File
	WLF File Parameter Overview

	Opening Datasets
	Viewing Dataset Structure
	Structure Tab Columns

	Managing Multiple Datasets
	GUI
	Command Line
	Restricting the Dataset Prefix Display

	Saving at Intervals with Dataset Snapshot
	Collapsing Time and Delta Steps
	Virtual Objects
	Virtual Signals
	Implicit and Explicit Virtuals

	Virtual Functions
	Virtual Regions
	Virtual Types

	Chapter 8 Waveform Analysis
	Objects You Can View
	Wave Window Overview
	List Window Overview
	Adding Objects to the Wave or List Window
	Adding Objects with Drag and Drop
	Adding Objects with a Menu Command
	Adding Objects with a Command
	Adding Objects with a Window Format File

	Measuring Time with Cursors in the Wave Window
	Working with Cursors
	Shortcuts for Working with Cursors

	Understanding Cursor Behavior
	Jumping to a Signal Transition

	Setting Time Markers in the List Window
	Working with Markers

	Zooming the Wave Window Display
	Zooming with the Menu, Toolbar and Mouse
	Saving Zoom Range and Scroll Position with Bookmarks
	Managing Bookmarks
	Adding Bookmarks
	Editing Bookmarks

	Searching in the Wave and List Windows
	Finding Signal Names
	Searching for Values or Transitions
	Using the Expression Builder for Expression Searches
	Saving an Expression to a Tcl Variable
	Searching for when a Signal Reaches a Particular Value
	Evaluating Only on Clock Edges
	Operators

	Formatting the Wave Window
	Setting Wave Window Display Preferences
	Hiding/Showing Path Hierarchy
	Setting the Timeline to Count Clock Cycles

	Formatting Objects in the Wave Window
	Changing Radix (base) for the Wave Window

	Dividing the Wave Window
	Working with Dividers

	Splitting Wave Window Panes
	The Active Split

	Wave Groups
	Creating a Wave Group
	Deleting or Ungrouping a Wave Group
	Adding Items to an Existing Wave Group
	Removing Items from an Existing Wave Group
	Miscellaneous Wave Group Features

	Formatting the List Window
	Setting List Window Display Properties
	Formatting Objects in the List Window
	Changing Radix (base) for the List Window

	Saving the Window Format
	Printing and Saving Waveforms in the Wave window
	Saving a .eps Waveform File and Printing in UNIX
	Printing from the Wave Window on Windows Platforms
	Printer Page Setup

	Saving List Window Data to a File
	Combining Objects into Buses
	Configuring New Line Triggering in the List Window
	Using Gating Expressions to Control Triggering
	Trigger Gating Example Using the Expression Builder
	Trigger Gating Example Using Commands

	Sampling Signals at a Clock Change

	Miscellaneous Tasks
	Examining Waveform Values
	Displaying Drivers of the Selected Waveform
	Sorting a Group of Objects in the Wave Window

	Creating and managing breakpoints
	Signal breakpoints
	Setting signal breakpoints from the command line
	Setting signal breakpoints from the GUI

	File-line breakpoints
	Setting file-line breakpoints from the command line
	Setting file-line breakpoints from the GUI

	Chapter 9 Tracing Signals with the Dataflow Window
	Dataflow Window Overview
	Objects You Can View in the Dataflow Window

	Adding Objects to the Window
	Links to Other Windows
	Exploring the Connectivity of the Design
	Tracking Your Path Through the Design

	The Embedded Wave Viewer
	Zooming and Panning
	Panning with the Mouse

	Tracing Events (Causality)
	Tracing the Source of an Unknown State (StX)
	Finding Objects by Name in the Dataflow Window
	Printing and Saving the Display
	Saving a .eps File and Printing the Dataflow Display from UNIX
	Printing from the Dataflow Display on Windows Platforms

	Configuring Page Setup
	Symbol Mapping
	User-defined symbols

	Configuring Window Options

	Chapter 10 Signal Spy
	Designed for Testbenches
	disable_signal_spy
	enable_signal_spy
	init_signal_driver
	init_signal_spy
	signal_force
	signal_release
	$disable_signal_spy
	$enable_signal_spy
	$init_signal_driver
	$init_signal_spy
	$signal_force
	$signal_release

	Chapter 11 Standard Delay Format (SDF) Timing Annotation
	Specifying SDF Files for Simulation
	Instance Specification
	SDF Specification with the GUI
	Errors and Warnings

	VHDL VITAL SDF
	SDF to VHDL Generic Matching
	Resolving Errors

	Verilog SDF
	$sdf_annotate
	SDF to Verilog Construct Matching
	Optional Edge Specifications
	Optional Conditions
	Rounded Timing Values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect Delays
	Disabling Timing Checks
	Troubleshooting
	Specifying the Wrong Instance
	VHDL Testbench
	Verilog Testbench

	Mistaking a Component or Module Name for an Instance Label
	Forgetting to Specify the Instance

	Chapter 12 Value Change Dump (VCD) Files
	Creating a VCD File
	Flow for Four-State VCD File
	Flow for Extended VCD File
	Case Sensitivity

	Using Extended VCD as Stimulus
	Simulating with Input Values from a VCD File
	Replacing Instances with Output Values from a VCD File
	Port Order Issues

	VCD Commands and VCD Tasks
	Compressing Files with VCD Tasks

	VCD File from Source To Output
	VHDL Source Code
	VCD Simulator Commands
	VCD Output

	Capturing Port Driver Data
	Driver States
	Driver Strength
	Identifier Code
	Resolving Values
	Default Behavior
	Ignoring Strength Ranges
	Extended $dumpports Syntax

	Chapter 13 Tcl and Macros (DO Files)
	Tcl Features
	Tcl References

	Tcl Commands
	Tcl Command Syntax
	If Command Syntax
	Command Substitution
	Command Separator
	Multiple-Line Commands
	Evaluation Order
	Tcl Relational Expression Evaluation
	Variable Substitution
	System Commands

	List Processing
	Simulator Tcl Commands
	Simulator Tcl Time Commands
	Conversions
	Relations
	Arithmetic

	Tcl Examples
	Macros (DO Files)
	Creating DO Files
	Using Parameters with DO Files
	Deleting a File from a .do Script
	Making Macro Parameters Optional
	Example 1
	Example 2
	Example 3

	Useful Commands for Handling Breakpoints and Errors
	Error Action in DO Files
	Using the Tcl Source Command with DO Files

	Appendix A Simulator Variables
	Variable Settings Report
	Environment Variables
	Environment Variable Expansion
	Setting Environment Variables
	DOPATH
	EDITOR
	HOME
	HOME_0IN
	LD_LIBRARY_PATH
	LD_LIBRARY_PATH_32
	LD_LIBRARY_PATH_64
	LM_LICENSE_FILE
	MODEL_TECH
	MODEL_TECH_TCL
	MGC_LOCATION_MAP
	MODELSIM
	MODELSIM_PREFERENCES
	MODELSIM_TCL
	MTI_COSIM_TRACE
	MTI_TF_LIMIT
	MTI_RELEASE_ON_SUSPEND
	MTI_USELIB_DIR
	NOMMAP
	PLIOBJS
	STDOUT
	TMP
	TMPDIR

	Creating Environment Variables in Windows
	Library Mapping with Environment Variables

	Referencing Environment Variables
	Removing Temp Files (VSOUT)

	Simulator Control Variables
	Library Path Variables
	ieee
	modelsim_lib
	std
	std_developerskit
	synopsys
	sv_std
	verilog
	vital2000
	others

	Verilog Compiler Control Variables
	DisableOpt
	GenerateLoopIterationMax
	GenerateRecursionDepthMax
	Hazard
	Incremental
	MultiFileCompilationUnit
	NoDebug
	Quiet
	Show_BadOptionWarning
	Show_Lint
	Show_WarnCantDoCoverage
	Show_WarnMatchCadence
	Show_source
	vlog95compat

	VHDL Compiler Control Variables
	BindAtCompile
	CheckSynthesis
	DisableOpt
	Explicit
	IgnoreVitalErrors
	NoCaseStaticError
	NoDebug
	NoIndexCheck
	NoOthersStaticError
	NoRangeCheck
	NoVital
	NoVitalCheck
	Optimize_1164
	PedanticErrors
	Quiet
	RequireConfigForAllDefaultBinding
	Show_Lint
	Show_source
	Show_VitalChecksOpt
	Show_VitalChecksWarnings
	Show_WarnCantDoCoverage
	Show_Warning1
	Show_Warning2
	Show_Warning3
	Show_Warning4
	Show_Warning5
	Show_Warning9
	Show_Warning10
	Show_WarnLocallyStaticError
	VHDL93

	Simulation Control Variables
	AssertFile
	AssertionDebug
	AssertionFormat
	AssertionFormatBreak
	AssertionFormatError
	AssertionFormatFail
	AssertionFormatFatal
	AssertionFormatNote
	AssertionFormatWarning
	BreakOnAssertion
	CheckPlusargs
	CheckpointCompressMode
	CommandHistory
	ConcurrentFileLimit
	DatasetSeparator
	DefaultForceKind
	DefaultRadix
	DefaultRestartOptions
	DelayFileOpen
	DumpportsCollapse
	GenerateFormat
	GlobalSharedObjectsList
	IgnoreError
	IgnoreFailure
	IgnoreNote
	IgnoreWarning
	IterationLimit
	License
	LockedMemory
	MaxReportRhsCrossProducts
	NumericStdNoWarnings
	OnFinish
	PathSeparator
	PrintSimStats
	Resolution
	RunLength
	ShowFunctions
	SignalSpyPathSeparator
	Startup
	StdArithNoWarnings
	ToggleMaxIntValues
	TranscriptFile
	UnbufferedOutput
	UseCsupV2
	UserTimeUnit
	Veriuser
	WarnConstantChange
	WaveSignalNameWidth
	WLFCacheSize
	WLFCollapseMode
	WLFCompress
	WLFDeleteOnQuit
	WLFFilename
	WLFOptimize
	WLFSaveAllRegions
	WLFSizeLimit
	WLFTimeLimit

	Setting Simulator Control Variables With The GUI
	Message System Variables
	error
	fatal
	note
	suppress
	warning
	msgmode

	Commonly Used INI Variables
	Common Environment Variables
	Hierarchical Library Mapping
	Creating a Transcript File
	Using a Startup File
	Turning Off Assertion Messages
	Turning off Warnings from Arithmetic Packages
	Force Command Defaults
	Restart Command Defaults
	VHDL Standard
	Opening VHDL Files

	Variable Precedence
	Simulator State Variables
	argc
	architecture
	configuration
	delta
	entity
	library
	MacroNestingLevel
	n
	Now
	now
	resolution
	Referencing Simulator State Variables
	Special Considerations for the now Variable

	Appendix B Location Mapping
	Referencing Source Files with Location Maps
	Using Location Mapping
	Pathname Syntax
	How Location Mapping Works
	Mapping with TCL Variables

	Appendix C Error and Warning Messages
	Message System
	Message Format
	Getting More Information
	Changing Message Severity Level

	Suppressing Warning Messages
	Suppressing VCOM Warning Messages
	Suppressing VLOG Warning Messages
	Suppressing VSIM Warning Messages

	Exit Codes
	Miscellaneous Messages
	Enforcing Strict 1076 Compliance

	Appendix D Verilog PLI/VPI/DPI
	Implementation Information
	g++ Compiler Support for use with PLI/VPI/DPI
	Specifying Your Own g++ Compiler

	Registering PLI Applications
	Registering VPI Applications
	Using PLI and VPI Together

	Registering DPI Applications
	DPI Use Flow
	When Your DPI Export Function is Not Getting Called
	Simplified Import of FLI / PLI / C Library Functions
	Use Model for Read-Only Work Libraries

	Compiling and Linking C Applications for PLI/VPI/DPI
	For all UNIX Platforms
	app.so
	Correct Linking of Shared Libraries with -Bsymbolic

	Windows Platforms
	DPI Imports on Windows Platforms
	DPI Flow for Exported Tasks and Functions on Windows Platforms

	32-bit Linux Platform
	64-bit Linux for IA64 Platform
	64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
	32-bit Solaris Platform
	64-bit Solaris Platform
	32-bit HP700 Platform
	64-bit HP Platform
	64-bit HP for IA64 Platform
	32-bit IBM RS/6000 Platform
	DPI Imports on 32-bit IBM RS/6000 Platform
	DPI Flow for Exported Tasks and Functions on 32-bit IBM RS/6000 Platform

	64-bit IBM RS/6000 Platform
	DPI Imports on 64-bit IBM RS/6000 Platform
	DPI Flow for Exported Tasks and Functions on 64-bit IBM RS/6000 Platform

	Compiling and Linking C++ Applications for PLI/VPI/DPI
	For PLI/VPI only
	Windows Platforms
	DPI Imports on Windows Platforms
	DPI Special Flow for Exported Tasks and Functions

	32-bit Linux Platform
	64-bit Linux for IA64 Platform
	64-bit Linux for Opteron/Athlon 64 and EM64T Platforms
	32-bit Solaris Platform
	64-bit Solaris Platform
	32-bit HP700 Platform
	64-bit HP Platform
	64-bit HP for IA64 Platform
	32-bit IBM RS/6000 Platform
	For DPI Imports
	DPI Special Flow for Exported Tasks and Functions

	64-bit IBM RS/6000 Platform
	For DPI Imports
	DPI Special Flow for Exported Tasks and Functions

	Specifying Application Files to Load
	PLI/VPI file loading
	DPI File Loading
	Loading Shared Objects with Global Symbol Visibility

	PLI Example
	VPI Example
	DPI Example
	The PLI Callback reason Argument
	The sizetf Callback Function
	PLI Object Handles
	Third Party PLI Applications
	Support for VHDL Objects
	IEEE Std 1364 ACC Routines
	IEEE Std 1364 TF Routines
	SystemVerilog DPI Access Routines
	Verilog-XL Compatible Routines
	64-bit Support for PLI
	Using 64-bit ModelSim with 32-bit Applications

	PLI/VPI Tracing
	The Purpose of Tracing Files
	Invoking a Trace
	Syntax
	Arguments
	Examples

	Debugging PLI/VPI/DPI Application Code
	Troubleshooting a Missing DPI Import Function
	HP-UX Specific Warnings

	Appendix E Command and Keyboard Shortcuts
	Command Shortcuts
	Command History Shortcuts

	Main and Source Window Mouse and Keyboard Shortcuts
	List Window Keyboard Shortcuts
	Wave Window Mouse and Keyboard Shortcuts

	Appendix F Setting GUI Preferences
	Customizing the Simulator GUI Layout
	Layouts and Modes of Operation
	Custom Layouts
	Creating Custom Layouts
	Assigning Layouts to Modes

	Automatic Saving of Layouts
	Resetting Layouts to Their Defaults

	Navigating the Graphic User Interface
	Manipulating Panes
	Moving Panes
	Docking and Undocking Panes
	Zooming Panes

	Columnar Information Display
	Quick Access Toolbars

	Simulator GUI Preferences
	Setting Preference Variables from the GUI
	Saving GUI Preferences
	The modelsim.tcl File

	Appendix G System Initialization
	Files Accessed During Startup
	Environment Variables Accessed During Startup
	Initialization Sequence

	Index
	Third-Party Information
	End-User License Agreement

