My First Nios Il Software Tutorial

ALTERAW

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

TU-01003-1.4

Document Date:

July 2008

http://www.altera.com

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera mu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

¥
Printed on recycled paper
‘J y pap LS. EN ISO 9001

Altera Corporation

A |:|-|= N Contents

-
®
HOW t0 CONtACt AIEETA ... s v
Typographic CONVENIONScovuriimeiiiiiiiiiiic et v
INEPOAUCHION ..ot
Software and Hardware Requirements

Download Hardware Design to Target FPGAcccccooiiiiiiiiiiiiccccc s 1-4
Nios II IDE Build Flow

Create the hello_world Example Project
Build and Run the Program ...t
Edit and Re-Run the Program
Why the LED Blinks
Debugging the ApplICationcccviiiiiiiiiiiiic e
Configure System Library
Next Steps

Altera Corporation iii

Contents

iv Altera Corporation
My First Nios Il Software Tutorial

A\ [

-
o nYA

About this Tutorial

®

How to Contact
Altera

Typographic
Conventions

This tutorial provides comprehensive information that will help you
understand how to create an Altera® FPGA design and run it on your
development board.

For the most up-to-date information about Altera products, refer to the
following table.

Information Type Contact (7)

Technical support www.altera.com/mysupport/

www.altera.com/training/
custrain@altera.com

Technical training

Product literature www.altera.com/literature/

Altera literature services literature @altera.com

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

This document uses the typographic conventions shown below.

Visual Cue

Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Documenttitles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type

Internal timing parameters and variables are shown in italic type.
Examples: tpjq, N+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Altera Corporation

http://www.altera.com/mysupport/
http://www.altera.com/training
http://www.altera.com/literature
mailto:literature@altera.com
ftp://ftp.altera.com

Typographic Conventions

My First Nios Il Software Tutorial

Visual Cue

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\gdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDES IGN), as well as logic function names (e.g., TR1) are shown in
Courier.

1,2.,3.,, and Numbered steps are used in a list of items when the sequence of the items is
a., b, c.,etc. important, such as the steps listed in a procedure.
H e ° Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.
= The hand points to information that requires special attention.
The caution indicates required information that needs special consideration and
CAUAON understanding and should be read prior to starting or continuing with the
procedure or process.
a The warning indicates information that should be read prior to starting or
\WARNING continuing the procedure or processes
« The angled arrow indicates you should press the Enter key.
e The feet direct you to more information on a particular topic.
\ Altera Corporation

1. My First Nios Il Software
AIERA yre s

® Design

July 2008

Introduction

Altera Corporation

The Nios® II processor core is a soft-core central processing unit (CPU)
that you program (along with other hardware components that comprise
the Nios II system) onto an Altera® field programmable gate array
(FPGA). This tutorial introduces you to the basic software development
flow for the Nios II processor. You will use a simple pre-generated Nios II
standard hardware system and create a software program to run on it.

The example Nios II standard hardware system provides the following
necessary components:

= Nios II processor core

m Off-chip memory interface to store and run the software

m JTAG link for communication between the host computer and target
hardware (typically using a USB-Blaster cable)

m LED peripheral I/O (PIO)

Software and Hardware Requirements

This section assumes you have already installed the Quartus® II design
software, the Nios II Embedded Design Suite and your development kit
CD-ROM software. Figure 1-1 shows an example of the default
installation directories.

Introduction

Figure 1-1. Default Nios Il Embedded Evaluation Kit Installation Directory

=) altera
=) [Version #]
= () kits

= £ cydonelll_3c25_niosII
I25) board_design_files

I25) demos
I25) documents
= 23 examples

I25) application_selector
|25) mandelbrot_c2h

I23) my_first_fpaa
= 3 standard ——— Contains Quartus Il Project Files
D altera_avalon_sd_mme_spi for the Nios Il Standard System:
= |23 software_examples SOF
=) app °
I25) board_diag e PTF
I23) count_binary e SOPC
123 hello_alt_main
125 hello_led

3 hello_ucosii You Use the hello_world
&) hello_worid / Application in this Tutorial.
I3 hello_world_small

la memtest

I25) ucosi_mbox

= 53 bsp

I23) hal_default

I25) hal_dhrystone

I23) hal_hostfs

I25) hal_reduced_footprint
I25) hal_zipfs

23 ucosii_default

la ucosii_net

I23) ucosii_net_zipfs

I23) testbench
|3 factory_recovery

1-2
My First Nios Il Software Tutorial

As you go through the tutorial, <installation directory> represents
\altera\<version number>\kits\<kit name>. For example, using
the example in Figure 1-1, <installation directory> is

\altera\ <version number>\Kkits\cyclonelll_3¢25_niosII.

Altera Corporation

My First Nios Il Software Design

This document describes how to use the Nios II tools with different
development kits. Table 1-1 describes the kit-specific information, which
is referenced throughout the text.

Table 1-1. Project Directories and Filenames

Kit

Description

Arria GX
Development
Kit

Nios Il Standard Design

<installation directory>\examples\ArriaGX_PCle_Nios_Standard

FPGA Programming File

<Nios Il standard design>\Nios_Standard_time_limited.sof

PTF File

<Nios Il standard design>\Arria_GX_Standard.ptf

Development
Kit

Cyclone I Nios Il Standard Design | <installation
Starter Kit directory>\examples\cyclonelll_3c25_start_niosll_standard
FPGA Programming File |<Nios Il standard
design>\cyclonelll_3c25_start_niosll_standard.sof
PTF File <Nios Il standard
design>\cyclonelll_3c25_start_niosll_standard.sof
Nios Il Nios Il Standard Design | <installation directory>\examples\standard
Emtl)edQed FPGA Programming File | <Nios Il standard
K?{a uation design>\cyclonelll_embedded_evaluation_kit_standard.sof
PTF File <Nios Il standard
design>\cyclonelll_embedded_evaluation_kit_standard.ptf
Cyclone Il Nios Il Standard Design | <installation

directory>\examples\cyclonelll_3c120_dev_niosll_standard

Project Filename

<Nios Il standard
design>\cyclonelll_3c120_dev_niosll_standard.sof

PTF File

<Nios Il standard
design>\cyclonelll_3c120_dev_niosll_standard.ptf

Stratix Il
Development
Kit

Nios Il Standard Design

<installation
directory>\examples\stratixlll_3sl150_dev_niosll_standard

Project Filename

<Nios Il standard
design>\stratixIll_3sl150_dev_niosll_standard.sof

PTF File

<Nios Il standard
design>\stratixlll_3sl150_dev_niosll_standard.ptf

Altera Corporation

1-3
My First Nios Il Software Tutorial

Download Hardware Design to Target FPGA

Download The software that you build will be executed by a Nios II processor-based
system in an FPGA. Therefore, the first step is to configure the FPGA on
Hardware your development board with the pre-generated Nios II standard

D esig ntoTa rg et hardware system. Download the FPGA configuration file (i.e., the SRAM
Object File (.sof) that contains the Nios II standard system) to the board
FPGA by performing the following steps:

1.

10.

11.

12.

13.

1-4
My First Nios Il Software Tutorial

Connect the board to the host computer via the USB download
cable.

Apply power to the board.

Start the Nios I IDE. On Windows computers, choose All Programs
> Start > Altera Nios II EDS <version> > Nios II IDE <version> in
the Windows Start menu.

After the welcome page appears, click Workbench.

Choose Tools > Quartus II Programmer.

Click Auto Detect. The device on your board (see Table 1-1 on
page 1-3) should be detected automatically.

Click the top row to highlight it.
Click Change File.

Browse to the <Nios II standard design directory> directory shown in
Table 1-1 on page 1-3.

Select the programming file <FPGA programming file>.sof for your
board as shown in Table 1-1 on page 1-3.

Click OK.

Click Hardware Setup in the top, left corner of the Quartus II
Programmer window. The Hardware Setup dialog box appears.

Select USB-Blaster from the Currently selected hardware drop-
down list box. See Figure 1-2.

[l=" Ifthe appropriate download cable does not appear in the

list, you must first install drivers for the cable. Refer to
Quartus IT Help for information on how to install the driver.

Altera Corporation

My First Nios Il Software Design

Figure 1-2. Hardware Setup Window

Hardware Setup i‘

Herdwaro Settings | 7TAG Satings |

Setect g hardware setup T g hordware

olup spphes wandaow,

Currently selected hardware: |Mo Hardware =

—Awnilable hardware fems:

Hardware
use-glasier Local USB-0

14. Click Close.

15. Turn on the Program/Configure option for the programming file
(see Figure 1-3 for an example).

16. Click Start.

Altera Corporation 1-5
My First Nios Il Software Tutorial

Nios Il IDE Build Flow

Figure 1-3. Quartus Il Programmer

& Quartus 11 - G /altera kits /Cyclonel 1T_Starter_Kit-v7.2.0,/Examples /Cycloned_Sc25_str_brd_Niosestandard /Cyclones_Se05_str_brad_Miossstands —|olx|
[e]ele Edt wew Eromct assgnments Processng Tock Window bep == x|
DEE &L mR|o o |[Croned s sutrat =][2SS (T (> wr (0D 8|82 @

Pralec Mgl - = 8] Cycloned_3c25_str_brd_Nios2Standard. cdf |

Eni

| T
&y Cyclone I EPICESF3240H & Herdwens Setup USE-Blastin [USE-0) Mada: |JTAG = | Prageoss: “

[Ennble renkime ISP to allow background programming (far Ma Il devices)

i Dyelaned_3e25_str_bid_Niosg

I | || Aeasopama |
A/ ¥ Delate
Tohus T
[Modue [Progr.. %[& @ Add File |

B Change File

3 ;

G Addd Dindcer

| ¥l

i]
gmccagutlols ll ﬂ| == =
For Help, press F1 = o - —I y

The Progress meter sweeps to 100% as the Quartus II software configures
the FPGA. When configuration is complete, the FPGA is configured with
the Nios II system, but it does not yet have a C program in memory to
execute.

Nios Il IDE Build The Nios IT IDE build flow is an easy-to-use graphical user interface
(GUI) that automates build and makefile management. The Nios II IDE

Flow integrates a text editor, debugger, the Nios II flash programmer, the
Quartus II Programmer, and the Nios II C-to-Hardware (C2H) compiler
GUL The included example software application templates make it easy
for new software programmers to get started quickly.

In this section you will use the Nios I IDE to compile a simple C language
example software program to run on the Nios II standard system
configured onto the FPGA on your development board. You will create a
new software project, build it, and run it on the target hardware. You will
also edit the project, re-build it, and set up a debug session.

«® Foracomplete tutorial on using the Nios II IDE to develop programs, go
to the software development tutorial, which is available in the IDE help.

1-6 Altera Corporation
My First Nios Il Software Tutorial

My First Nios Il Software Design

Altera Corporation

Create the hello_world Example Project

In this section you will create a new Nios II C/C++ application project
from an installed example. To begin, perform the following steps in the
Nios II IDE:

1.

Return to the Nios II IDE.

& You can close the Quartus Il Programmer or leave it open in
the background if you want to reload the processor system
onto your development board quickly.

Choose File > New > Nios II C/C++ Application to open the New
Project wizard.

In the New Project wizard, make sure you have:

e Selected the Hello World project template.

e Given the project a name (the default is Hello_World_0).

e Selected the target hardware system PTF file (you can browse to
the location for the PTF file for your development board as
shown in Table 1-1 on page 1-3).

[~ EveryNios Il software project needs a system description of

the corresponding Nios Il hardware system. For the Nios II

IDE, this system description is contained in a PTF file. See
Figure 1-4 on page 1-8 for an example.

1-7
My First Nios Il Software Tutorial

Nios Il IDE Build Flow

Figure 1-4. Nios Il IDE New Project Wizard

. New Project
| nios 11 c/C+ + Application

Click Firish to create application with a default system lbrary as E] iz} ‘-N‘OS_H _C/--
Cihdltera\7 2\kits\cyclonel [1_3c25_riosl_eval\examples\standarchsoftware\hello_worl "

| =5
MNarme: ‘ hello_warld_0 | Dl |
Pl Loeion not. avalable,
Select Target Hardware,
SOPC Builder Systern PTF File: ‘ Chalterah72\kits\cyclonel 11_3c25_niosI1_avall V| IBrowse..‘]
el ‘cpu "‘ ———
@M = O
Select Project Termplate Y ol
d Description @
Hello World Smal Prinits 'Hello from MNios: 11"
Host File System
Mermory Test Detals
MicroCf0S-11 Message Hello Werld prints 'Helo from Nios 11" to STDOUT, &
MicroC/OS-11 Tutorial
Simple Socket Server || This example runs with or without the MieroC/0S-11 RTOS
Tightly CoLpled Memor and requires an STDOUT device in your systerm's
Web Server hardware.
Zip File System @ o]
@ Back Mext = J [Firish J [Cancel J

‘4 start

4. Click Finish. The Nios II IDE creates the hello_world_0 project and
returns to the Nios II C/C++ project perspective. See Figure 1-5.

1-8

Altera Corporation
My First Nios Il Software Tutorial

My First Nios Il Software Design

Figure 1-5. Nios Il IDE C++ Project Perspective for hello_world_0

.2 Nios Il €/C++ - hello_world.c - Nios Il IDE
File Edit Refactor MNavigate

(i = o ¢ o - e - e -
BB Mios 11 C/C++ Projects 2

=5 hello_world_0

74 start @ >

&2 altera.components

=% helo_world_0_syslib [cyclonelll_smbedde

Search Project Tools Run Window Help
5 L. pe - B 1T o~y | P
G- iB-0- Q- @3 = B | Nios 11 ¢/ |
=B hello_world.c &2 = 0|8 Outline =2 =B
SIE L & R e e 7
* "Hello World" example. =
. = stdioh
* This exawple prints 'Hello from Mios II' to the STD ® main
* the Nios II 'standard', 'full_featured', 'fast', =
* desigms. It runs with or without the MicroC/OS-II R
* device in your System's hardware.
* The memory footprint of this hosted application is
* using the standard reference design.
* For a redused fooLprint version of this tewplate, =
% to reduce the memory footprint for a given applicac
* "amall _hello_world” template. @ Make Tar... =2 =0
-
= B =
= hello_world_0
#include <stdio.h> =5 hello_world_0_syslib
int maini)
[
printf("Hello from Nies II!in");
return 0; N
3 ~
£ | 3
Problerms] Properties Debug @ G| - =08
C-Build [helo_world_0]
Post-processing to create SsCam.sSym R
Post-processing to create ext_flash.sym
Post-processing to create ddr_sdram.sym
Post-processing to create descriptor_memory.sym
Post-processing to create descriptor_memory.hex
Euild completed in 23.227 seconds

= | 3 Micr...

Altera Corporation

When you create a new project, the Nios II IDE creates two new projects
in the Nios IT C/C++ Projects tab:

= hello_world_0 is your C/C++ application project. This project
contains the source and header files for your application.

m hello_world_0_syslib is a system library that encapsulates the
details of the Nios II system hardware.

When you build the system library for the first time the Nios II
IDE automatically generates files useful for software
development, including:

e IPdevicedrivers, including SOPC component device drivers for
the Nios IT hardware system

e NewlLib C library, which is a richly featured C library for the
Nios II processor

e Nios II software packages
* Nios I hardware abstraction layer (HAL)
e NicheStack TCP/IP Network Stack, Nios II Edition
* Nios II host file system

1-9
My First Nios Il Software Tutorial

Nios Il IDE Build Flow

* Nios II read-only zip file system
* Micrium’s puC/OS-II realtime operating system (RTOS)

e system.h, which is a header file that encapsulates your
hardware system

e alt_sys_init.c, which is an initialization file that initializes the
devices in the system

o Hello_world_0.elf, which is an executable and linked format
file for the application located in hello_world_0 folder under
Debug.

Build and Run the Program

In this section you will build and run the program to execute the
compiled code.

To build the program, right-click the hello_world_0 project in the Nios II
C/C++ Projects tab and choose Build Project. The Build Project dialog
box appears and the IDE begins compiling the project. When compilation
completes, the message “Build completed” appears in the Console tab.
The completion time varies depending on your system. See Figure 1-6 for
an example.

1-10 Altera Corporation
My First Nios Il Software Tutorial

My First Nios Il Software Design

Figure 1-6. Nios Il IDE hello_world_0 Build Completed

. Nios Il €/C++ - hello_world.c - Nios Il IDE

Fle Edit Refactor Mavigate Search FProject Tools Run Window Help
(Bt = v - v - - . g . = - =
ri - R TR RIS SR R N I v R X o BNos 11 T/ |
=0 [hello_world.c = = O[5 Outline 22 =04
/" A BRY e
* "Hello World" example. "
= & altera.components e N = stdio h
OBinaries * This example prints 'Hello from Nios II' to the 5T ® main
g [P Device Drivers * the Nios II 'standard', 'full_featured', 'fast', am
BNSWMJ CL\brary * designs. It runs with or without the Microl/0S-II R
* devige in your system's hardware. @ =0
(g Mios 11 Software Packages ¥ v ® Make Tar...
* The memory footprint of this hosted application is .
* using the standard reference design. @ E
& Binaries * % hello_world_0
é Includes * For a reduced footprint version of this template, = bchel\o world 0 SYSMJ
B BDebug * to reduce the memory footprint for a given applicat v - -
b | b
= obj = =
S | - . =
45 hello_world_0 of - [alteranios2le] | |Problemns | B Conscle 22 Properties | Debug ERE N) oq g
= ext_flagh flash C-Build [helo_world_0]
= generated_app sh &)
B makeafle make -5 all includes
Compiling hello world.c...
L& subdr.rrk Linking hello world O.elf...
@ hello_world‘c Info: (hello_world 0.elf) &% KBytes program size (code + inicialized data) .
= application.stf Info: 32698 KBytes free for stack + heap.
readme. et Creating generated app.sh...
' Post-processing to create ssram.dat
< =
= bhe"O_W(.)Hd_O_SyShb [cyc\onel[l_embed Post-processing to create ext_flash.flash
& Archives Post-processing to create ext_flash.dat
& Indudes Post-processing to create ddr_sdram.dat
B Debug Post-processing to create descriptor memory.dat
PoSt-processing to create SsSram.sym
= obj
Post-processing to create ext_flash.syw
& Bsystem_descrlptlon Post-processing to create ddr_sdram. syw
m System.h Post-processing to create descriptor_memory.sym
@ At SYE init.c Post-processing to create descriptor _memory.hex
S e cstend] ool |v|/Build completed in 23,227 seconds o
< ¥ hd
o° fhello_world_0

oG-I 100% &)=

Right-click the hello_world_0 project, choose Run As, and choose Nios II
Hardware. The IDE downloads the program to the FPGA on the target
board and begins execution. When the target hardware begins executing
the program, the message “Hello from Nios II!” displays in the Nios II
IDE Console tab. See Figure 1-7 for an example.

Altera Corporation 1-11
My First Nios Il Software Tutorial

Nios Il IDE Build Flow

Figure 1-7. Hello_World_0 Program Output

. Nios Il €/C++ - hello_world.c - Nios Il IDE

File Edit Refactor

Mavigate Search Project Tools

Run Window Help

] = | R o - @ ° ° o o g i - - I3 .o o »
w =N R T] F-0-Q &4 & - el = BMos 11 /.. |
BB Nios 11 C/C++ Projects &2 = B8 Outiine =2 =8
@ = ~ B W e T
* "Hello World" example.
£ altera.components N . = stdio.h
-)
== hello_world O * This exawple prints 'Helle from Niocs II' to the STD ® main
22 hello_world_0_syslb [cydonelll_embedde # the Nios I ‘'standard', 'full_featured', 'fast', an
* designs. It runs with or vithout the MieroC/0S-II R
* device in your system's hardware.
% The memory footprint of this hosted aspplication is
* using the standard reference design.
»
* For a reduced footprint version of this template, =
* to reduce the memory footprint for a given applicat = =
@ 52 (m}
* "small hello_world” template. & Meke Tar...
* PO
B
/ &5 hello_world_0
< ’
include <stdio.h> == helo_world_0_syslib
int main)
{ L
printf("Hello from Nios II!in"):
return 0; A
| >
Problerns | B Console 2 Properties | Debug *® EepE||AE~-C5- =0

hello_world_0 Mios IT HW configuration [MNios 1T Hardware] Mios 11 Terminal Window (9/24/07 1:45 PM)

niosz-terminal: connected to hardware target using JTAG UART on cable ~|
niosZ-terminal: "USE-Blaster [USB-0]1", deviee 1, instance O
niosZ-terminal: (Use the IDE stop button or Cerl-¢ to terminate)
Hello from Mios II!
~
<]
e

Writable 1:

"B M.

Smart [nsert

Bz v Tm.

A N RS 100%

Now that you have created, compiled, and run your first software
program, you can perform additional operations, such as configuring the
system properties, editing and re-building the application, and
debugging the source code.

Edit and Re-Run the Program

You can modify the hello_world_0.c program file in the IDE, build it, and
re-run the program to observe your changes executing on the target
board. In this section you will add code that makes LED1 blink.

For more information on how LED1 blinks refer to “Why the LED
Blinks” on page 1-13.

1-12
My First Nios Il Software Tutorial

Altera Corporation

My First Nios Il Software Design

Perform the following steps to modify and re-run the program:

1. Inthe hello_world_0.c file, add the text shown in blue in the
example below :

#include <stdio.h>

#include "system.h"

#include "altera_avalon_pio_regs.h"
int mainQ)

printf(""Hello from Nios 111\n");
int count = O;

int delay;
while(l)
{
I0WR_ALTERA_AVALON_P10_DATA(LED_P10_BASE, count & 0x01);
delay = 0;
while(delay < 2000000)
{
delay++;
H
count++;
T
return O;
s
2. Save the project.
3. Recompile the file by right-clicking hello_world_0 in the Nios II
C/C++ Projects tab and choosing Run > Run As > Nios II
Hardware.
= You do not need to build the project manually; the Nios II
IDE automatically re-builds the program before
downloading it to the FPGA.
4. Orient your development board so that you can observe LED 1
blinking.
Why the LED Blinks
The Nios II system description header file, system.h, contains the
software definitions, name, locations, base addresses, and settings for all
of the components in the Nios I hardware system. The system.h file is
located in the in the hello_world_0_syslib\Debug\system_description
directory as shown in Figure 1-8.
Altera Corporation 1-13

My First Nios Il Software Tutorial

Nios Il IDE Build Flow

Figure 1-8. system.h Location

.2 Nios Il C/C++ - system. h - Nios Il IDE
Fil= Edit Refactor MNavigate Ssarch Project Tools Run Window Help

(] 2 & @ - & - @ -0 i@y @ e e = | Nios 11 /... |

BB ios 11 C/C++ Proj 2~ = O *hello_world.c v hox = 58 outine 52 =8
B 5 7 = L W W e 7
#-1=5 altera.components 4 # __SYSTEM_H_ =~
% led_pis configuration
&2 hello_world_0 . # ALT_SYSTEM_PNY
=S hello_world_O_syslb [cyclonelll - # ALT_CPU_NAME
< Archives . " # ALT_CPU_ARCHI
= #define LED_PIO NAME "/dev/led pio”
_PIo] =
=-& Inchides #define LED_PIO_TYPE "altera_avalon pio' # ALT_DEVICE Fal
== Debug #define LED_PIO_BASE Ox0S005000 # ALT_STDIN
&= obj #idefine LED_PIO_SPAN 18 # ALT_STDIN_TYF
= 2= systern_description #define LED_FIO_DOG_TEST_BENGH WIRING O T]
@ systermn.h #define LED_PIO_DRIVEN_SIM_VALUE O
' #define LED_PTO_HAS_TRI 0O @ Make Tar... 5% =9
= alt_sys_init.c fdefine LED_PIO_HAS OUT 1 > o
51 generated.gdb #define LED_rIo_mif_IN O 2
21 generated.sh #idefine LED_PIO CAPTURE O =5 hello_waorld_0
Bl generated .x #define LED_FIO_DATA_WIDTH Z &2 hello_warkd_0_syslib
o Al ik #define LED_PIO_EDGE TYPE "NCNE"
Lo generated_al.mi #define LED_PIO_IRQ TYPE "HMCNE"
L& generated_app.mik #define LED_PIO_BIT CLEARING EDGE_REGISTER O
crd.o - [alteranios2le] #define LED_PIO_FRECQ 60000000
B, lbhell_world_0_syslb.a #define ALT MODULE_CLASS_led pio altera avalon pio
= erto.d s =3
L& makefile < >
readme.t<t = — —
B Problems | & Conscle 2 - Properties & G| =2 LT =l
=) systermn.stf
C-Build [helo_world_0_syslib]
Creating libhello_world O_syslib.a... e
Creating generated app.mk. ..
Creating generated.sh. ..
Creating generated.gdb. . .
Creating generated.x...
Build completed in 290.154 seconds
< > ~

o® WWritable Smart Insert 494 : 19

@@ e~ 7 @Ber v~z v 6w ~ [Emi... [T§m..

If you look at the system.h file for the Nios II project example used in this
tutorial, you will notice the led_pio function. This function controls the
LED. The Nios II processor controls the PIO ports (and thereby the LED)
by reading and writing to the register map. For the PIO, there are four
registers: data, direction, interruptmask, and edgecapture. To
turn the LED on and off, the application writes to the PIO data register.

The PIO core has an associated software file altera_avalon_pio_regs.h.
This file defines the core’s register map, providing symbolic constants to
access the low-level hardware. The altera_avalon_pio_regs.h file is
located in altera\<version number>\ip\sopc_builder_ip\
altera_avalon_pio.

When you include the altera_avalon_pio_regs.h file, several useful
functions that manipulate the PIO core registers are available to your
program. In particular, the function
I0WR_ALTERA_AVALON_PI10_DATA(base, data) canwrite to the PIO
data register, turning the LED on and off.

The PIO is just one of many SOPC peripherals that you can use in a
system. To learn about the PIO core and other embedded peripheral
cores, refer to Quartus II Version <version> Handbook Volume 5: Embedded
Peripherals.

1-14 Altera Corporation
My First Nios Il Software Tutorial

My First Nios Il Software Design

Configure
System Library

Altera Corporation

When developing your own designs, you can use the software functions
and resources that are provided with the Nios Il HAL. Refer to the Nios II
Software Developer’s Handbook for extensive documentation on developing
your own Nios II processor-based software applications.

Debugging the Application

Before you can debug a project in the Nios II IDE, you must create a
debug configuration that specifies how to run the software. To set up a
debug configuration, perform the following steps:

1. To debug your application, right-click the application
(hello_world_0 by default) and choose Debug as Nios II Hardware.

2. Click Apply.
3. Click Debug.
4. If the Confirm Perspective Switch message box appears, click Yes.

After a moment, the main() function appears in the editor. A blue
arrow next to the first line of code indicates that execution stopped at
that line.

5. Choose Run > Resume to resume execution.

When debugging a project in the Nios I IDE, you can pause, stop, or
single step the program, set breakpoints, examine variables, and perform
many other common debugging tasks.

'~ Toreturn to the Nios Il C/C++ project perspective from the
debug perspective, click the two arrows >> in the top right
corner of the GUL

For more information about debugging software projects in the Nios II
IDE, refer to the “Nios II Integrated Development Environment” section
in the Nios II Software Developer’s Handbook or the Nios II IDE help.

A commonly asked question is how to change the target memory in
which to run application code. In this section you will explore your
software program settings using the System Properties dialog box.

Perform the following steps:

1. In the Nios Il IDE, right-click hello_world_0 and choose System
Library Properties. The Properties for hello_world_0_syslib dialog
box opens.

1-15
My First Nios Il Software Tutorial

Configure System Library

2. Click System Library. The System Library page contains settings
related to how the program interacts with the underlying hardware.
The settings have names that correspond to the targeted Nios II

hardware.

3. Inthe Linker Script box, observe which memory has been assigned
for Program memory (.text), Read-only data memory (.rodata),
Read/write data memory (.rwdata), Heap memory, and Stack
memory, see Figure 1-9. These settings determine which memory is
used to store the compiled executable program when the example
hello_world_0 program runs. You can also specify which interface
you want to use for stdio, stdin, and stderr. You can also add and
configure an RTOS for your application and configure build options
to support C++, reduced device drivers, etc.

4. Choose ext_ssram for all of the memory options in the Linker Script

box. See Figure 1-9 for an example.

Figure 1-9. Configuring System Library Properties

?Properties for memtest_0_syslib ;IEIEI
2 System Library e
Info ~
ELiiders Target Hardware
C/C++ Buid SOPC Bulder System: | Cialtera\kits\Cyclonelll_Starter_Kit-v7.2.0\ExamplesiCyclone3_3c25_str_brd_Mios2Standard\Cyclone3_3c25 Browse, .
C/C++ Documenta cPU: I U
CfC++ File Types
CfC++ Include Patt| ~System Library Contents rLinker Script
CHC++ Indexer RTOS: |n0ne (single-thraaded) ;I ™ Custom linker script
CfC++ Make Projec
€/C++ Project Patt RICS Cpfions ... | norie Seleck,..
Project References | g [eag_iart ~ ||| & use auto-generated linker seript
Refactoring History
System Library stderr: Ijtagfuart LI Program memory (text): ext_ssram =
stdin: Ijtagfuart LI Read-only data memory (rodata): ext_ssram =
System clock timer: |SYS,C\kJJmef’ ;I Read/write data memory (rwdata): ext_ssram ¥
Timestamp dmer: |n0ne =] Heap memory: ext_ssram
MMax file descriptors: | 32 Stack memary: ext_ssram -
[~ Program never exits [v" Clean exit (flush buffers) [~ Use a separate exception stack
[v' Support C++ [~ Reduced device drivers I Sl (TS l—LI
[~ Lightweight device driver APT [~ Smal C lbrary
MMzl i tack si tes):
[Link with profiing lbrary [~ ModelSim only, no hardware support dmum excepton stack size (bytes)
[~ Emulate multply and divide instructions | Run time stack checking
Software Components...
4 | | ﬂ Help | Restore Qefauhxl Apply |

5. Click OK to close the Properties for memtest_0_syslib dialog box

and return to the IDE workbench.

1-16
My First Nios Il Software Tutorial

Altera Corporation

My First Nios Il Software Design

=" If you make changes to the system properties you must rebuild
your project. To rebuild, right-click the hello_world_0 project in
the Nios II C/C++ Projects tab and choose Build Project.

Next Ste ps The following documents provide next steps to further your
understanding of the Nios II processor:

m Developing Software for Nios I—These short, online software tutorials
walk you through the basics of developing software for the Nios II
processor. You can access these tutorials from the Training link on the
Embedded Processing web page at www.altera.com/embedded.

m Nios II Software Developer’s Handbook—This handbook provides a
complete reference on developing software for the Nios II processor.

m Software Development Tutorial—This tutorial teaches how to use the
Nios II IDE to develop, run, and debug new Nios II C/C++
application projects. This tutorial is available in the Nios II IDE help.

m Nios I IDE Help—The Nios II IDE help provides complete reference
on features of the IDE. To open the help, click Help > Help Contents
and click the Nios IT IDE Help book in the Contents pane.

m Nios II Processor Reference Handbook—This handbook provides a
complete reference for the Nios II processor hardware.

m Quartus II <version> Handbook Volume 5: Embedded Peripherals—This
volume contains details on the peripherals provided with the Nios II
Embedded Design Suite.

m Quartus II <version> Handbook Volume 4: SOPC Builder—This volume
provides a complete reference on using SOPC Builder, including
building memory subsystems and creating custom components.

For a complete list of all documents available for the Nios II processor,
visit the Nios II literature page at www.altera.com/nios2.

Altera Corporation 1-17
My First Nios Il Software Tutorial

http://www.altera.com/embedded
http://www.altera.com/nios2

Next Steps

1-18 Altera Corporation
My First Nios Il Software Tutorial

	Contents
	About this Tutorial
	How to Contact Altera
	Typographic Conventions

	1. My First Nios II Software Design
	Introduction
	Software and Hardware Requirements

	Download Hardware Design to Target FPGA
	Nios II IDE Build Flow
	Create the hello_world Example Project
	Build and Run the Program
	Edit and Re-Run the Program
	Why the LED Blinks
	Debugging the Application

	Configure System Library
	Next Steps

