PHOTONICS

5b Optically powered sensors and sensory systems 1 part

Dr.h.c . Prof. RNDr. Ing. Ján Turán, DrSc. KEMT FEI TUKE

Summary

- * Advantages of Microelectronic Sensors
- * Advantages of Fiber Optics and partially Fiber Optic Sensors
- Optically Powered Sensors (OPS)
 Fiber optic powered sensors (FOPS)
 basic block scheme and generalized architectures
- OPS system power budget model
- * **OPS industrial applications**
- * Optically powered industrial barometric system
- *** OPS Products**

Advantages of microelectronic sensors

- Simplicity of implementation (well understood techniques)
- Simple construction
- Easy and low powering
- Low cost
- High accuracy (with possible embedded data processing, intelligence)
- Possibility of miniaturization and integration
- Output signal is easy to evaluate (frequency, digital outputs)
- Output information can be simply evaluated by microcomputer or signal processor

Disadvantages of microelectronic sensors

- Electrical transmission of information and powering, i.e. they are not tolerant to EMI
- Data transmission rate is very low

- Cannot be used in explosive, corrosive, high-voltage or high-current environment
- Cannot be used for sensing in gasoline, mining or electrical power industry
- OPS can solve the disad tages of microelectronic sensors, by hybridization of fiber optic and microelectronic technologies.
- The basic principle of this sensory systems is using optical fibers for transmission of control and measurement information, as well

as for optically powering of remote microelectronic sensory system.

Advantages fiber optic and partially Fiber Optic Sensors

- Immunity to electromagnetic interference (EMI)
- Low thermal and mechanical inertia
- More sensitive than others sensors

- Can be used in: electrically noisy, corrosive, explosive, high-voltage, high-current, or high-temperature environments
- Use of fiber optic telemetry systems exhibit some advantages of fiber optic communication systems, providing telemetry over long distances and the possibility of control, interrogate or multiplexing many sensors or sensors for different measured into a single
 system

Basic block scheme of OPS system

Possible architectures of OPS systems can be classified according to the number of OF used

- OPS systems with three OF
- OPS systems with two OF
- > OPS systems with one OF
- Multiplex of optical powering and optical transmission
- Space multiplex
- WDM
- Both

OPS system with three **OF**

OPS system with two OF

OPS system power budget model

Power transmission in OPSS can be modelled as two independent optical lines. The first one is used for the powering of the Remote Module and the second one is used for the transmission of the measuring optical signal from the Remote Module to the Local Module.

Signal transfer path of in OPSS

OPSS power budget model

Total loss C_L may be expressed in the form (1) $C_{L} = \alpha_{fc1}L_{1} + \alpha_{fc2}L_{2} + \alpha_{cr1} + \alpha_{cr2} + \alpha_{cr3} + \alpha_{cr4} + \alpha_{s}$ L_1 , L_2 is length of used optical fibres; α_s is equivalent loss due to power consumption of the sensor. The power balance for both optical lines is (2) $P_i(dB) = P_0(dB) + C_I(dB) + M_a(dB)$ where P_i is input power, P_0 is output power, C_L is total line attenuation and M_a is system safety margin. Using (1) expression (2) can be write in the form (3)

 $P_{i} = P_{0} + \alpha_{fc1}L_{1} + \alpha_{fc2}L_{2} + \alpha_{cr1} + \alpha_{cr2} + \alpha_{cr3} + \alpha_{cr4} + \alpha_{s} + M_{a}$ This equation describes general power balance for modelled
OPSS.

OPSS power budget model

Table 1

Power balance of OPSS

I _{p2}	3.47 <u>nA</u>		I_N	30 µA	
P ₀	6.3 <u>nW</u>	-52.0 dBm	P _N	45 μW	-13.4 <u>dBm</u>
α _{cr4}		0.8 dB	η	15%	
P ₅	7.6 <u>nW</u>	-51.2 dBm	P <u>p</u>	300 μW	-5.22 dBm
afc2		10 dB	α _{cr2}		0.8 dB
P4'	75.85 <u>nW</u>	-41.2 dBm	P ₂ '	360 μW	-4.42 dBm
M _{a2}		7 d B	M _{a1}		6 dB
P ₄	380 <u>nW</u>	-34.2 dBm	P2	1.43 <u>mW</u>	1.58 dBm
acr3		12.4 dB	α _{fc1}		2 dB
P ₃	6.6 □W	-21.8 dBm	P ₁	2.28 mW	3.58 dBm
P _{LED}	0.47 <u>mW</u>	-3.28 dBm	α _{cr1}		3 dB
PLEDm	43 mW	+16.3 dBm	Pi	4.5 <u>mW</u>	6.6 <u>dBm</u>
			I _{LD}	146 <u>mA</u>	

OPSS power budget model

"OptiPower" programme package for OPSS power budget modelling was developed at KEMT FEI TUKE

👯 OptiPower 📃 🗖 🔀	W OptiPower - Three Fibers Topology
File Edit Help	Power Marcin
New 3 Fibers Topology Open 2 Fibers Topology Close 1 Fiber Topology	
Save Save As Print Print Setup	
Exit	
	Effciency © 0 Power Allocation
	C Signal 1 C/CEC constbility C Accual 1 C Devend 2. F Signal 2 C Active C Accual 3 C Devend 2. F Signal 3 C R 2 combility C Accual 3 C Devend 3.
Create a new file	

CoptiPower opening screen and primary menus

Fiber powering sensory system

- Power LD at 810 nm
 - Normally used for medical applications
 - Maximum power between 2 or 3 W
- Other options Fiber Lasers at 1480 nm and 980 nm
 - Maximum output power less than 500 mW
- Optical receiver is PIN PD followed by transimpedance amplifier
- 2 MM OF with core diameter of 50 or 62.5 μm
- SM OF can be used if energy transmission is at 980 mm and 1480 nm

Simple PPC circuit Peak optical power of 2 mW Delivered to PPC Electrical power 160 µW after conversion to 2.5 V

- Light wavelength from near infrared region (800-1000 nm)
- Loss in OF low
- Permits use Si or GaAs PPC
- ***** Terminal voltage for Si PPC is 0.4-0.5 V, for GaAs PPC 0.6 V
- Voltage from a single PPC is too small to be of direct use to power an electronic circuit - necessary to use either an array of PPC in series, or some form of upconversion
- Disadvantage of D.C.-D.C. power converter requires inductance or transformer (relatively bulky) and hazard for system in flammable or explosive atmosphere

PPC array

- GaAs based PPC at 810 nm with 35% efficiency
- Cheap Si PPC at 810 nm with 15% efficiency
- For 1480 nm InP PPC
- Standard voltage outputs: 2.8, 3.3, 5, 10 V DC

Maximum distance reached by a PPSS

Example 1

- □ 2 W (33 dBm) LD source at 810 nm
- OF attenuation of 3 dB/km
- Optical power in PPC must be
 27 dBm for GaAs PPC with
 35% efficiency
 30 dBm for Si PPC with 15% efficiency
- Maximum distance will be of 2 km and 1 km, resp. Example 2
- Given Series For two 0.5 W (30 dBm) LD at 1480 nm
- One InP PPC
- □ OF attenuation of 0.27 dB/km
 - Maximum distance will be 11 km

Typical microelectronic sensors available on market

PPSS bandwidth

- Bandwidth for PPSS is measured in terms of bit rate of microcontroller
- Bit rate as low as 9600 BPS can transmit the information of 16 electronic analog sensors coupled to the microcontroller in few milliseconds
- Bit rate can be turned faster and more complex circuits
- This increase in the system power consumption

PPSS safety in explosive environment

- Sensing in explosive environments petroleum storage, natural gas production and oil and flammable gas reservoirs
- Power carried by FO can induced explosion in this applications
- Explosion depends on power level density in fiber core, explosive particle material size and ignition time
- **Optical flux of 10⁻⁷ W/m² can induce an ignition of flammable gas**
- **G** For SM OF of 9 μ m core diameter critical optical power is ~ 6 μ W
- For MM OF of 62.5 μm core diameter critical optical power is ~ 300 μW
- For typical values carried by OF in PPSS techniques the critical values are far outweighed

Induced explosion will only occur if the optical cable is broken and the fibers are exposed to the flammable material

Typical cost for a PPSS

For PPSS the main cost
 For control unit is the high power LD
 For remote unit is the PPC
 The cost for these two units is around 1.5 K U\$
 Electronic sensor for temperature or strain measurements costs around 5 U\$

OPSS indicate their usefulness for monitoring, control and metering in various industrial applications

- > Temperature Sensors
- > High-voltage and High-current Sensors
- Home Automation Sensors (temperature, humidity, pressure, illumination and obtrusive detection)
- Oil Tank Liquid Level Sensors give a accurate and safe solution in petrochemical industry for monitoring fuel tanks, fuel leakage, etc.
- Sensors of Mechanical Variables (position, angle, strange, pressure, force, vibrations, proximity, etc.)
- High Frequency Electromagnetic Field Sensors (E and H)
 Remote Gas and Coal Mines Monitoring Sensors

Optically powered industrial atmosphere quality monitoring sensory system

Industrial atmosphere quality monitoring systems (i.e. systems to monitor air (or other gas content - methane, other hydrocarbons or carbon dioxide) temperature, pressure, humidity) are used in various control and monitoring systems in mines, chemical plants, petrochemical industry, explosive production, weapon liquidation workshops, etc.

Photonic network with optically powered subscribers.

Optically powered industrial atmosphere quality monitoring sensory system (OPAQMS) developed at KEMT FEI TUKE

Architecture of OPAQMS with two OFs

Optically powered industrial barometric system

Remote module system design

OPAQMS basic parameters

- Optical power delivery fiber OF₁
 Wide core (200 μm) SI-MM low-cost OF
 Attenuation α_{fc} = 2 dB/km (at λ=850 nm)
 OF₁ is powered with AlGaAs LD P_o = 500 mW
 PCC commercial unit GaAlAs with up-to 50 % efficiency
- **Low-power optical data link at** λ = 1310 nm
- □ SI-SM fiber OF₂ (α_{fc} = 0,4 dB/km)
- Maximum distance from the Local Module to Remote Module may be up-to 500 m
- $\Box \quad \text{In experiments 300 m fiber OF}_1 \text{ and OF}_2 \text{ is used}$

OPAQMS basic parameters

1. Temperature: Range: - 40,..., + 60°C Accuracy: ± 0,2°C 2. Humidity: Range: 0,..., 100 % RH Accuracy: ±1,0 % (0,..., 90 %) RH ± 1,7 % (90,..., 100 %) RH **3. Pressure:** Range: 50,..., 1100 hPa Accuracy: ±0,2 hPa

OPAQMS basic parameters

4. Gas content monitoring sensory system: 4.1 Hydrocarbon channel Methane measuring range: 0,..., 100 % volume Hydrocarbon (Butane, Pentane, Ether, Propane, Ethylene, Hexane, Propylene, Cyclopentane) measuring range: 0,..., 100 % LEL equivalent **Resolution: 0,01 % up to 10 % nether content** 0,1 % from 10 % nether content Accuracy: ± 2 % of full scale at 20 °C 4.2 Carbondioxide channel Measuring range: 0 - 5%, 0 - 4% volume CO₂ **Resolution: 0,01 % volume CO**₂ Accuracy: ± 2 % of full scale at 20 °C

Optically powered Methane sensor

Optically powered Methane sensor

- Optical source LD at 808 nm widely used for Nd: YAG punping
- PPC AlGaAs PD at λ=0.81 μm,
 V= 1,23 V, R= 0,40- 0.45 A/W, FF=80-85 %
- DC converter output voltage 3.3 V
- □ PPC total efficiency 30 %
- Primary CH₄ transducer
 Commercial optoppair OPR1-320
- Two photoresistors R(CH₄) and R_{ref} receiving 3.3 µm radiation from LED-1
- **Two preprocessors PRP-1 and PRP-2**
- CONTROL Remote Module management
 - **MM OF 62,5/125 μm**
- **J PRP-3 power safety management**

Optically powered Methane sensor – Remote module

Spectral response of LED-1

Optically powered Methane sensor – Remote module

Spectral response of PD with two narrow band optical filters.

Optically powered Methane sensor

- □ Remote Module power consumption 3 mW
- Optical power in OF 10 12 mW
 Not exceeded the explosion safety threshold
- □ Injection current for LED-2 20-30 mA
- □ LED-2 output optical power 2 mW
- **Given Series of Series and Serie**
- Sensory system have 1 % accuracy, 0.5 minimal detection level in 0-100 % (volume parts) measurement range
Flamability and ignibility of H₂, CH₄ and CS₂

GAS	Flamable range	Stoichiomeric value	Electric spark ignition energie [mJ]	Autoignition temperature [°C]
H ₂	4 - 75 %	29.5 %	0.017	500 - 520
CH ₄	5 – 15 %	9.4 %	0.30	600 - 630
CS ₂	1.3 – 50 %	6.5 %	0.015	100

Cross section of FO powered ignition test chamber.

Data for ignition tests in 15 % H_2 in air, Laser with 200 µm OF, coal and rock particles used.

Data for ignition tests in 10 % CH_4 in air, Laser with 200 μ m OF, coal and aluminium particles used.

EC Reprot results CW Laser device radiating in visible and near visible region are not hazardous either: a) Radiated power is less than 35 mW, b) Peak radiation flux is less than 5 mW/mm²

In tests CS₂ - air as model explosive gas was used

US Reprot results a) Min. ignition power 250 mW, 15 % H₂-air, coal particle – 150-212 μm a) Min. ignition power 500 mW - 15 % H₂-air, rock dust particle a) No ignition to 500 mW - 10 % CH₄ -air, coal or aluminium particle

In tests H₂, CH₄ and CS₂ - air as model explosive gas was used

OPTICALLY POWERED HIGH TEMPERATURE PRESSURE SENSING AND TELEMETRY SYSTEM

1 atm measured at 250 °C, with an SNR of at least 10 dB over telemetry distances of 1.5 m

3 mm x 4 mm GaAs photodiode PPC measured over a temperature range from 25 °C to 290 °C with an 8 mW laser beam

- MEMS touch-mode silicon capacitive pressure sensor
- Capacitance values ranging from 15 pF at 2 psi to
 25 pF at 32 psi (absolute pressures)
- * Series resistance of 25 Ω

- The tunnel diode exhibits negative resistance characteristics up to 250 °C
- Voltage and current bias levels of approximately 120 mV and 500 μA correspond to a power consumption of 60 μW

Conclusions

Main application areas of OPSS

- **High voltage technology**
- **Medicine**
- Power electronics
- Military, avionic and aerospace systems

Fiber optically powering technology

will be spread in the wide range of commercial applications

- **EMC**
- Nanotechnology
- **Communications**
- **Robotics**
- Intelligent manufacturing systems,
- Automotive industry
 - Surveillance system

References

Turán,J.-Petrík,S.: Fiber optic sensors. Alfa, Bratislava, 1990. Turán,J.-Ovseník,Ľ.-Turán,J.jr.: Optically Powered Fiber Optic Sensors. Acta Electrotechnica et Informatica, No.3, Vol.5, 2005, pp. 29-35. <u>*Citované v:*</u>

Zadvomov, S.-Sokolovsky, A.: An Electro-Optic Hybrid Methane Sensor. In: IEEE Canadian Conference on Electrical and Computer Engineering, CCECE 2008, Niagara Falls, ON, Canada, May 4-7, 2008, pp. 969-974. Rosolem, J.B.-Floridia, C.-Juriollo, A.A.-Bezerra, E.W.: Comparative Analysis of Fiber Grating Versus Fiber Powering for Fiber Optical Sensing Applications. In: SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC 2009, Belem, Brazil, November 3-6, 2009, pp 641-645. (www.scoupus.com; ISBN 978-142445356-6) Santos, J.L.-Frazãoa, O.-Baptista, J.M.-Jorge, P.A.S.-Dias, I.-Araújo, F.M.-Ferreira, L.A.: Optical Fibre Sensing Networks. In: SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC 2009, Belem, Brazil, November 3-6, 2009, pp 290-298. Turán, J.-Ovseník, Ľ.-Vásárhelyi, J.: Optically Powered Industrial Barometric System Architecture. In: Proc. of 11th International Carpathian Control Conference ICCC2010, Eger, Hungary, May 26-28, 2010, pp. 173-176. Röger, M., – Böttger, G. – Dreschmann, M. – Klamouris, C. – Huebner, M. – Bett, A.W.

- Becker, - Freude, W. and Leuthold, J.: Optically powered fiber networks. OPTICS EXPRESS, Vol. 16, No. 26, 2008, 21821–21834.

References

Hills, P. C, - Samson, P.C. and Webster, I.: Optical Fibres are Intrinsically Safe: Reviewing The Myth. J. Electr. Electron. Eng., (Aust.), v. 10, No.3, Sept. 1990, 207-220.

