

3 OPTICKÉ VLÁKNOVÉ PASÍVNE PRVKY

Dr.h.c. Prof. Ing. RNDr. Ján Turán, DrSc.

3. kap. FO KEMT FEI TU Košice

3.1 PASÍVNE PRVKY A ICH APLIKÁCIE

- Klasifikácia
- 1. Štruktúry
 - A) Objemové prvky
 - B) Vláknové prvky
 - C) Vlnovodové prvky
- 2. Funkcie
- 3. Počtu brán
- Pasívne optické prvky sa opisujú použitím rozptylovej matice [s]

$$\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} s_{11} & \cdots & s_{1n} \\ \vdots & \ddots & \vdots \\ s_{n1} & \cdots & s_{nn} \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
$$\mathbf{B} = [\mathbf{s}]\mathbf{a}$$

Reciproké optické prvky

Vektorový tvar

S_{ij}=S_{ji}
Výkon vstupujúci do prvku

$$P_0 = \sum_{j=1}^n b_j b_j^* = \sum_{j=1}^n |b_j|^2$$

Tab. 3.1: Prehľad pasívnych prvkov

Funkcia	Vysvetlenie	Komponent		
Jednoduché spojenie	Stále, ťažko rozoberateľné Ľahko rozoberateľné	Spojka Optický konektor		
Ukončenie	Bez odrazu	Optické ukončenie		
Útlm	Tlmenie optického výkonu Optický útlm			
Oneskorenie	Oneskorenie signálu	Optická oneskorovacia linka		
Smerový spoj	Naviazanie optického výkonu v závislosti od smeru šírenia a väzby	Optický smerový spoj		
Rozdelenie a zjednotenie	Rozdelenie a zjednotenie optického výkonu	Hviezdicový spoj		
Izolácia	Šírenie výkonu len jedným smerom	Optický izolátor		
Cirkulácia	Väzobný prvok s väzbou závislou od smeru šírenia	Optický cirkulátor		
Filtrácia	Výber optických vĺn	WDM filter, OFDM filter, pásmová zádrž, atď.		
Prepínanie	Prepúšťanie, blokovanie, alebo zmena smeru šírenia šíriaceho sa optického žiarenia	Optický prepínač		
3 3. kap. FO KEMT FEI TU Košice				

• Bezstratové prvky $P_i = P_o$

$$\sum_{j=1}^n s_{ji} s_{jk}^* = \delta_{jk}$$

δ_{jk} je kroneckerovo delta, t.j. rozptylová matica je unitárna

- Použitie: optický atenuátor, optický izolátor, optické väzobné prvky, hviezdicové spoje, optické filtre, optické prepínače
- Charakteristiky
 - a) Vložené straty
 - b) Odraz
 - c) Presluchy
 - d) Cena
 - e) Spoľahlivosť a stabilita

Obr. 3.1 Pasívne optické prvky : (a) delič optického výkonu ; (b) spájač optického výkonu ; (c) väzobný prvok ; (d) vlnový multiplexor ; (e) vlnový demultiplexor ; (f) optický izolátor .

Obr. 3.2 Pasívny optický prvok : (a) n – brána ; (b) 4 – brána

3. kap. FO KEMT FEI TU Košice

3. kap. FO KEMT FEI TU Košice

(a)

(b)

Obr. 3.4 Optické filtre (WDM, OFDM, BRF – Band Reflection Filter) v optických komunikačných systémoch.

3. kap. FO KEMT FEI TU Košice

(d)

Obr. 3.5 Aplikácie optických prepínačov.

3.2 ZVÁRANIE ŠPECIÁLNYCH OPTICKÝCH VLÁKIEN

- OV typu PANDA
- Metódy presného nastavenia
 - a) Značková metóda vložené tlmenie 0,6 dB
 - b) Impulzná metóda vložené tlmenie 0,5 dB
 - c) Extinkčná metóda vložené tlmenie 0,08 dB a extinkčný pomer 30 dB
 - d) Reflexná metóda
 - e) Priame monitorovanie jadra OV
 - vložené tlmenie 0,04 dB a extinkčný pomer 33 dB
- Teplota tavenia pnutie vytvárajúcich oblastí (okolo 1200°C)
- Teplota tavenia ostatných materiálov (okolo 2000°C)
- Proces zvárania veľmi krátky (okolo 0,2 s)
- Možno použiť aj mechanické spojky vložené tlmenie 0,6 dB a extinkčný pomer 33 dB
 - 3. kap. FO KEMT FEI TU Košice

Fluoridové a chalkogénne sklenené optické vlákna

- Veľmi malé tlmenie 0,01 až 0,001 dB/km v oblasti vlnových dĺžok 2 až 5 μm
- Teplota tavenia 300 až 400°C - možno ich zvárať s elektrickým výbojom s malým prúdom (okolo 7 mA) a krátkym časom ohrevu (0,1 až 1 s)
- Dosahované vložné tlmenie je 0,08 dB pri zachovaní 85% pôvodnej mechanickej pevnosti OV

• EDFA - optický zosilňovač

s vysokým ziskom (30 až 45 **dB**) , malým šumom (F = 3 až 4 **dB**) a polarizačne nezávislým ziskom

- Erbiom dopované OV (EDF – Erbium Dopped Fiber)
 Priemer pol'a dominantného vidu pre EDF je 4 μm
- Metódy spájania
 - a) Zúženie priemeru jednovidového vlákna tlmenie je 0,05 dB
 - b) Rozšírenie prierezu EDF
 - c) Metóda dopovania jednovidového OV - TEC (Thermal Diffused Expanded Core) - vložné tlmenie 0,1 dB

Obr. 3.8 Uhlové nastavenie použitím metódy optického impulzu.

3. kap. FO KEMT FEI TU Košice

3. kap. FO KEMT FEI TU Košice

Obr. 3.12 Spájanie EDF: (a) zúženie priemeru jednovidového OV, (b) rozšírenie prierezu EDF, (c) príprava TEC OV.

3. kap. FO KEMT FEI TU Košice

3.3 **OPTICKÉ SMEROVÉ ODBOČNICE**

- Spojovanie a rozvetvovanie optických vĺn (signálov)
- Typické aplikácie: PON pre LAN, CATV
- Konštrukcie smerových odbočníc
 - Objemové prvky
 - Zvárané vláknové prvky
 - Vlnovodové prvky
- Rozptylová matica [s]

b=[s]a

a,**b** sú vektory komplexných amplitúd vstupných a výstupných optických vĺn

• Rozptylová matica pre štyri vstupné brány

$$[s] = \begin{bmatrix} s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{23} & s_{24} \\ s_{31} & s_{32} & s_{33} & s_{34} \\ s_{41} & s_{42} & s_{43} & s_{44} \end{bmatrix}$$

3. kap. FO KEMT FEI TU Košice

- Základné vlastnosť i smerových odbočníc
- a) Väzobný koeficient

$$C = 10\log\frac{P_i}{P_f} = 10\log\frac{1 - |S_{11}|^2}{|S_{31}|^2}$$

b) Smerovosť

$$D = 10\log\frac{P_f}{p_b} = 10\log\frac{|S_{31}|^2}{|S_{41}|^2}$$

c) Izolácia

18

$$I = 10\log\frac{P_i}{P_b} = 10\log\frac{1 - |S_{11}|^2}{|S_{41}|^2}$$

Ideálna smerová odbočnica

$$[s] = \begin{bmatrix} 0 & c_1 & jc_2 & 0 \\ c_1 & 0 & 0 & jc_2 \\ jc_2 & 0 & 0 & c_1 \\ 0 & jc_2 & c_1 & 0 \end{bmatrix}$$

c₁, c₂ sú reálne konštanty

 $c_1^2 + c_2^2 = 1$

- Ideálna smerová odbočnica $D = I = \infty$
- Ideálna 3 dB smerová odbočnica

$$c_1 = c_2 = \frac{1}{\sqrt{2}}$$

3.3 ROVNICE VÄZBY VĹN

- Väzba dvoch paralelných optických vlnovodov WG₁ a WG₂
- Zložky elektromagnetického poľa E a H
 - $E = a_1(z)e_1 + a_2(z)e_2$ h=a_1(z)h_1+a_2(z)h_2

E₁, H₁ sú príspevky od WG₁ a E₂, H₂ príspevky od WG₂

Pre funkcie a₁ a a₂ dostaneme diferenciálne rovnice

 $\frac{dA_1(z)}{dz} = jk_1A_2(z)e^{j(\beta_1 - \beta_2)z}$

$$\frac{dA_2(z)}{dz} = jk_2A_1(z)e^{j(\beta_1 - \beta_2)z}$$

 β_1 , β_2 sú fázové konštanty a k_1 , k_2 sú väzobné koeficienty

Komplexné amplitúdy vĺn

$$a_{1}(z) = A_{1}e^{-j\beta_{1}z}$$
$$a_{2}(z) = A_{2}e^{-j\beta_{2}z}$$

Obr. 3.14 Prierez smerovej odbočnice.

3. kap. FO KEMT FEI TU Košice

Rovnice väzby vĺn

$$\frac{da_1}{dz} = -j\beta_1 a_1 + jk_1 a_2$$

$$\frac{da_2}{dz} = jk_2a_1 - j\beta_2a_2$$

- Bezstratový vlnovod
- $k_1 = k_2 = k$ reálna konštanta

• Riešenie rovníc väzby vĺn pre $a_1(0) =$ A $a a_2(0) = 0$ $P_1(z) = |a_1(z)|^2 = A^2 \left[1 - \left(\frac{K}{\Delta\beta}\right)^2 \sin^2(\Delta\beta z) \right]$ $P_2(z) = |a_2(z)|^2 = A^2 \left[1 - \left(\frac{K}{\Delta\beta}\right)^2 \sin^2(\Delta\beta z) \right]$ kde

 $\Delta\beta = \left[k^2 + \left(\frac{\beta_1 - \beta_2}{2}\right)^2\right]^{\frac{1}{2}}$

P₁(z)+P₂(z)=A²= konšt. • Väzba toho istého vidu do dvoch rovnakých vlnovodov ($\beta_1 = \beta_2 = \beta$)

$$a_1(z) = Acos(\Delta\beta z) \exp(-j\beta z)$$

$$a_2(z) = jAsin(\Delta\beta z)\exp(-j\beta z)$$

$$\Delta \beta = |k|$$

Obr. 3.15 Princíp práce smerových odbočníc.

$$P_1(z) = |a_1(z)|^2 = A^2 \cos^2(\Delta \beta z)$$

$$P_2(z) = |a_2(z)|^2 = A^2 sin^2 (\Delta \beta z)$$

- Ak je splnená podmienka $\Delta\beta z = \frac{\pi}{2} => |k| \ z = \frac{\pi}{2}$
- Potom je vstupný výkon z vlnovodu WG₁ kompletne prenesený do vlnovodu WG₂
- Väzobný koeficient k závisí od štruktúry použitých vlnovodov (vzdialenosti jadier, profilu indexu lomu , tvaru jadra atď.) - možno dosiahnuť požadovanú hodnotu k

Fotonika3.3.3PRÍKLADY SMEROVÝCH ODBOČNÍC

Brúsená vláknová odbočnica tvorená dvomi kremennými blokmi s V drážkami

Zváraná vláknová odbočnica

- Najčastejšie sa vyrábajú 3 dB odbočnice
- * Možno dosiahnuť odbočný pomer až 1:10
- Metóda priameho monitorovania odbočeného optického výkonu v procese výroby
- Výroba vlnovodových odbočníc metódou depozície hydrolýzou v plameni
- Planárny vlnovod s jadrom SiO₂ TiO₂ má pri λ = 1,32 μm tlmenie 0,10 dB/cm
- Planárne vlnovody s jadrom SiO₂ GeO majú pri λ = 1,55 μm veľmi malé tlmenie 0,01 dB/cm a tlmenie pri zakrivení 0,04 dB/cm

Fotonika 3.3.3 PRÍKLADY SMEROVÝCH ODBOČNÍC Machov-Zehnderov Interferometer

- Jadro s priemerom 8 x 8 μm, Δ = 0,25 %, vzdialenosť jadier d = 7 μm, malý rozdiel optických dráh Δ L = 0,6 μm
- Medzi ramenami interferometra bola dosiahnutá malá zmena (20 % ± 1,9 %) väzobného pomeru v rozsahu vlnových dĺžok λ = 1,25 až 1,65 μm

Obr. 3.16 Zváraná vláknová odbočnica.

3. kap. FO KEMT FEI TU Košice

Hviezdicový spoj

Rozvetvovacie straty L_B

$$L_B[dB] = 10\log(1/N)$$

Príklad: N = 8, $L_B = 9 dB$

- Vložné straty L
- Druhy hviezdicových spojov
 - Vnovodový (integrované planárne obvody)
 - Zvárané optické vlákna
 - Hviezdicový spoj typu 19x19 na kremíkovom substráte
 - Vložné straty v rozmedzí L_E = 1,5 až 3,5 dB
 - Rozvetvovacie straty $L_B = 12,8 \text{ dB}$
- Aplikácie hviezdicového spoja v LAN a PON
- 3. kap. FO KEMT FEI TU Košice

Tab. 3.2: Vlastnosti odbočníc

Тур	Vložné straty (dB)	Väzobné straty jednovidové ho vlákna (dB)	Izolácia (dB)
Zváraná vláknová odbočnica	0,1 - 0,2	Zvárané naviazanie: < 0,1 Konektor: < 0,3	40 - 50
Vlnovodová odbočnica	0,3 - 0,5	0,3-1*	30 – 40

(a)

(b)

(c)

Obr. 3.17 Polarizáciu zachovávajúca odbočnica z vlákien typu PANDA.

3. kap. FO KEMT FEI TU Košice

3. kap. FO KEMT FEI TU Košice

(b)

Obr. 3.19 Vlnovodová smerová odbočnica: (a) v štruktúre Machovho-Zehnderovho interferometra, (b) asymetrická štruktúra.

3. kap. FO KEMT FEI TU Košice

Obr. 3.20 Hviezdicové spoje.

Fotonika

(a)

Obr. 3.21 Zváraný optický vláknový hviezdicový spoj: (a) proces výroby, (b) prierez väzobnej oblasti.

(a)

(b)

Obr. 3.22 Aplikácia hviezdicového spoja: (a) LAN, (b) PON.

3. kap. FO KEMT FEI TU Košice

3.4 OPTICKÉ FILTRE

- WDM a OFDM filtre podobné ako elektrické filtre vo FDM (Frequency Division Multiplex)
 - **WDM** $\Delta \lambda = 100 \text{ až } 300 \text{ nm}$
 - **OFDM** $\Delta \lambda = 0,08 \text{ nm}, \Delta f = 10 \text{ GHz}$
- Dolnopriepustný filter LPF (Low Pass Filter)
- > Pásmová priepust BPF (Band Pass Filter)
- > Pásmovú zádrž BRF (Band Rejection Filter)
- > Trasverzálny filter

Fotonika 3.4.1 OBJEMOVÝ WDM FILTER

WDM filtre
s optickou mriežkou

$$\Delta x_1 = \left(\frac{d\theta}{d\lambda}\right) \Delta \lambda_1 L$$

$$\Delta x_2 = \left(\frac{d\theta}{d\lambda}\right) \Delta \lambda_2 L$$

 $\Delta\lambda_1 = \lambda_1 - \lambda_2, \ \Delta\lambda_2 = \lambda_2 - \lambda_3, \ \theta$ je difrakčný uhol a L vzdialenosť miesta fokuzácie

• Uhlová difrakcia mriežky $\frac{d\theta}{d\lambda} = \frac{m}{A\cos\theta}$

m je celé číslo a Λ je mriežková konštanta Na dosiahnutie veľkej rozlíšiteľnosťi vlnových dĺžok, Λ musí byť čo najmenšie

 Podobný princíp platí aj pre WDM filtre na báze optického hranola

(c)

Fotonika

Obr. 3.23 Objemové WDM filtre s využitím: (a) optickej mriežky, (b) optického hranola, (c) tenkých dielektrických vrstiev.

Fotonika Optické filtre s využitím tenkých dielektrických vrstiev

- > Hrúbka dielektrického filtra je $\lambda/4$
- > Charakteristická impedancia

$$Z_0 = \sqrt{\frac{\mu}{\varepsilon}} = \frac{1}{n} \sqrt{\frac{\mu_0}{\varepsilon_0}}$$

μ, ε a **n** sú permeabilita, permitivita a index lomu použitého materiálu

> Vhodným návrhom jednotlivých charakteristických impedancií

Z_{0i}, i = 1,2, … ,N možno dosiahnuť požadovanú charakteristiku filtra

Pre oblasť vlnových dĺžok λ = 0,8 až 1,3 μm sa používa TiO₂, ZrO₂ pre materiály s vyššou hodnotou indexu lomu a SiO₂, Al₂O₃ pre materiály s nižšou hodnotou indexu lomu

$$Z_0 = \sqrt{\frac{\mu}{\varepsilon}} = \frac{1}{n} \sqrt{\frac{\mu_0}{\varepsilon_0}}$$

- > Objemové WDM filtre využívajú mikrooptickú konštrukciu
- Multiplex a demultiplex štyroch vlnových dĺžok 1,05/1,15 μm a 1,3/1,5 μm použitím dielektrických filtrov a optickej mriežky
- > Dosiahnutá separácia kanálov je 3 nm
- > Vložné straty 2 až 3 dB
- Presluch medzi kanálmi –40 dB
- 3. kap. FO KEMT FEI TU Košice

Obr. 3.24 Dielektrický tenkovrstvý WDM filter: (a) štruktúra filtra, (b) ekvivalentný elektrický obvod.

- 20 kanálový WDM filter pracujúci v oblasti 1,1 až 1,6 μm
 - Vložné straty sú od 1,9 do 3,5 dB
 - Separácia kanálov 27 až 31 nm
- WDM filter využívajúci filtračný dielektrický čip
 - Vlnové dĺžky 1,2 a 1,3 μm sú určené na prenos
 - Vlnové dĺžky 0,81 a 0,89 μm sa odrážajú od tohto čipu
 - Vložné tlmenie 3,5 až 5 dB
 - Presluch medzi kanálmi –30 až –50 dB

Obr. 3.26 Objemové WDM filtre s využitím dielektrických filtrov.

Fotonika 3.4.2 VLÁKNOVÝ WDM FILTER Vláknové WDM filtre

a) Zváraný vláknový WDM filter – využíva sa závislosť väzobného koeficienta k od vlnovej dĺžky

 $\Delta \beta = |k| \quad \text{pre } \lambda = L$ platí pre i, j celé $kL = 2\pi i + \frac{\pi}{2} \qquad \text{pre } \lambda_1$ $kL = 2\pi j + \pi \qquad \text{pre } \lambda_2$ • P₁(L) = 0 a P₂(L) = A² pre λ_1

•
$$P_1(L) = A^2 \ a \ P_2(L) = 0$$
 pre λ_2

- Izolácia medzi kanálmi 1,32/1,55 μm od 16 do 18 dB, vložné straty 05 dB
- b) Brúsený vláknový WDM filter izolácia medzi kanálmi 50 až
 10 dB závisí od separácie kanálov od 200 do 35 nm

(a)

Obr. 3.27 Vláknový WDM filter: (a) zváraný, (b) brúsený.

Fotonika

(b)

c) Vláknový WDM filter s dielektrickou vrstvou

dielektrické optické filtre nanesené na koncové plochy pripájaných OV naparením vrstiev TiO₂ a SiO₂. Dosiahnuté vložené straty sú 1 dB a izolácia medzi kanálmi 0,82/1,2 μm bola 40 dB

- d) Vláknový WDM filter s iterferometrom využíva Machov – Zehnderov interferometer
- Rozdiel v dĺžke

 $\Delta \Phi = 2\pi n_{ef} \Delta / \lambda$

n_{ef} je efektívny index lomu a λ použitá vlnová dĺžka Vložené tlmenie je 2 dB a separácia kanálov 3,5 **nm**

e) Vláknový WDM filter s využitím vlákien typu PANDA - extikčný pomer 36 dB pri separácii kanálov $\Delta\lambda = 1,38$ nm

Obr. 3.28 Vláknový WDM filter: (a) s dielektrickým filtrom, (b) s interferometrom.

Obr. 3.29 Vláknový WDM filter s využitím vlákien typu PANDA.

SectorSector3.4.3VLNOVODOVÝ WDM FILTER

- Na báze planárnych optických vlnovodov
- Pracujú v zapojení Machovho–
 Zehnderovho interferometra
- Celkový fázový posun

$$\Delta \theta = \frac{\pi}{2} + 2\pi n_{ef} \frac{\Delta L}{\lambda}$$

• Navrhnúť $\Delta \theta$ tak, aby platilo

$$\Delta \theta = 2i\pi + \frac{\pi}{2} \quad \text{pre } \lambda_1$$
$$\Delta \theta = (2j+1)\pi + \frac{\pi}{2} \quad \text{pre } \lambda_2$$

kde i, j sú celé čísla

49

• Návrh Machovho–Zehnderovho iterferometra

$$n_{ef}\Delta L = i\lambda_1$$

$$n_{ef}\Delta L = \left(j + \frac{1}{2}\right)\lambda_2$$

- Vložené straty sú okolo 2,6 dB, hodnota ΔL = 2,7 μm pre separáciu vlnových dĺžok 1,3/1,55 μm, ΔL = 15,5 μm pre separáciu vlnových dĺžok 1,5/1,55 μm
- Vložené straty naviazania OV 0,7 dB

Obr. 3.30 Konštrukcia vlnovodových WDM filtrov.

- Vlnovodové WDM filtre na princípe podobnom ako fázované anténové sústavy
- > Jednotlivé kanály sú formované zo zakrivených planárnych optických vlnovodov

> Distribúciou fázy $\Phi_i = \beta R_i \theta + \Phi_0$

 $\Phi_i a \Phi_0$ sú fázy v i-tom vlnovode na vstupe sústavy, β – konštanta šírenia , R_i – polomer zakrivenia vlnovodov a θ **j**e uhol medzi vstupnou a výstupnou rovinou systému

> Žiadaný optický obrazec

$$\beta R_i \theta = \Phi(R_i) + 2\pi n_i$$

N_i je celé číslo

- Ak Φ(r_i) = 0 sústava vlnovodov chová ako fázovaná sústava s rovnomernou distribúciou fázy
- Fázovaná sústava má disperzívne vlastnosti =>rôzna distribúcia Φ(r_i) pre rôzne vlnové dĺžky a tým je daná možnosť realizácie WDM filtra
- Štvorkanálový WDM filter: v oblasti vlnových dĺžok λ = 0,78 μm so separáciou kanálov Δλ = 1,55 nm, vložené straty od 1,9 do 2,5 dB presluch medzi kanálmi 13 až 30 dB

Obr. 3.32 Fázovaná sústava vlnovodov ako optická mriežka.

Fázovaná sústava vlnovodov ako optická mriežka

3. kap. FO KEMT FEI TU Košice

3.4.4 FABRYHO – PEROTOV OFDM FILTER

Fabryho – Perotov interferometer

- Bezstratový interferometer ($\alpha = 0$)
- Rovnaká odrazivosť zrkadiel (R = R₁ = R₂)
- Prenos interferometra

$$G_T = \frac{(1-R)^2}{(1-R)^2 + 4R\sin^2(\beta L)}$$

β Je konštanta šírenia a L je dĺžka interferometra

 Odstup medzi maximom a minimom výkonového prenosu

$$\Delta f = c / 4n_{ef}L$$

3. kap. FO KEMT FEI TU Košice

 Šírka pásma (na polovici výkonového prenosu HWHM (half width half maximum))

$$B = \frac{c}{2\pi n_{ef}L} \sin^{-1}\left(\frac{1-R}{2\sqrt{R}}\right)$$

 Pomer ∆f a B určuje kvalitu filtra

$$F = \frac{2\Delta f}{2B} = \frac{\pi}{2} \left[\sin^{-1} \left(\frac{1-R}{2\sqrt{R}} \right) \right]^{-1}$$

ak R
$$\approx$$
 1
 $F \approx \frac{\pi \sqrt{R}}{1-R}$

Napríklad pre R = 99 % je
 F = 312

Obr. 3.34 Model Fabryho – Perotovho interferometra: (a) rezonátor, (b) prenos.

- Dosiahnutie vyššej kvality
- Dvojstupňové Fabryho –Perotove interferenčné filtre
- Ladenie piezoelektrické systémy, tekuté kryštály
- Filtre s dvojitým interferometrom
 Šírka pásma < 10 GHz

pri preladiteľnosti 9 nm

Použitím tekutých kryštálov

- Filtre so šírkou pásma 0,17 až 0,35 nm
- Preladiteľné o 50 n
- V oblasti vlnových dĺžok $\lambda = 1,55 \mu m$

3.4.5 MACHOV – ZEHNDEROV OFDM FILTER

- Machove Zehnderove OFDM filtre Technológia planárnych vlnovodov
- Vlastnosti smerovej odbočnice

$$\begin{bmatrix} A_1(z) \\ A_2(z) \end{bmatrix} = \begin{bmatrix} \cos(\Delta\beta z) & j\sin(\Delta\beta z) \\ j\sin(\Delta\beta z) & \cos(\Delta\beta z) \end{bmatrix} \begin{bmatrix} A_1(0) \\ A_2(0) \end{bmatrix} = \begin{bmatrix} t_1 & jr_1 \\ jr_1 & t_1 \end{bmatrix} \begin{bmatrix} A_1(0) \\ A_2(0) \end{bmatrix}$$

kde A₁, A₂ sú amplitúdy

$$t_1 = \cos(\Delta\beta z)$$

 $r_1 = \sin(\Delta\beta z)$

- Bezstratové smerové odbočnice $\beta_1 = \beta_2 = \beta$
- Fázový rozdiel

Pre celý filter

$$\begin{bmatrix} \exp(-j\beta\Delta L/2) & 0\\ 0 & \exp(j\beta\Delta L/2) \end{bmatrix}$$

er
$$\begin{bmatrix} A_1(z)\\ A_2(z) \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} A_1(0)\\ A_2(0) \end{bmatrix}$$

$$\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} t_2 & jr_2\\ jr_2 & t_2 \end{bmatrix} \begin{bmatrix} \exp(-j\beta\Delta L/2) & 0\\ 0 & \exp(j\beta\Delta L/2) \end{bmatrix} \begin{bmatrix} t_1 & jr_1\\ jr_1 & t_1 \end{bmatrix}$$

Použitím len jedného vstupu je
 A₂(0) = 0

$$\frac{P_{1out}}{P_{1in}} = \left|\frac{A_1(z)}{A_1(0)}\right|^2 = T_1 T_2 + R_1 R_2 - 2\sqrt{T_1 T_2 R_1 R_2} \cos(\beta \Delta L) = \\ = \left(\sqrt{R_1 R_2} - \sqrt{T_1 T_2}\right)^2 + 4\sqrt{T_1 T_2 R_1 R_2} \sin^2\left(\beta \Delta L/2\right)$$

$$\frac{P_{2out}}{P_{2in}} = \left| \frac{A_2(z)}{A_2(0)} \right|^2 = T_1 R_2 + R_1 T_2 + 2\sqrt{T_1 T_2 R_1 R_2} \cos(\beta \Delta L) = \\ = \left(\sqrt{T_1 R_2} - \sqrt{R_1 T_2} \right)^2 + 4\sqrt{T_1 T_2 R_1 R_2} \cos^2\left(\beta \Delta L/2\right)$$

$$\cos(\beta \Delta L) = 1$$
 a 0

$$\beta \Delta L = 2\pi i$$
 a $2\pi i + \pi$

$$\beta = \frac{2\pi n_{ef} \Delta f}{c}$$

$$R_1 = r_1^2$$
, $R_2 = r_2^2$

$$T_1 = 1 - R_1$$
 , $T_2 = 1 - R_2$

$$\Delta f = f_2 - f_1 = \frac{c}{2\pi n_{ef}\Delta L} \left(2\pi i + \pi - 2\pi i\right) = \frac{c}{2n_{ef}\Delta L}$$

n_{ef} je efektívny index lomu

$$E_{1} = -10 \log \left[\left(\sqrt{R_{1}R_{2}} - \sqrt{T_{1}T_{2}} \right)^{2} / \left(\sqrt{R_{1}R_{2}} + \sqrt{T_{1}T_{2}} \right)^{2} \right] \quad (dB)$$
$$E_{2} = -10 \log \left[\left(\sqrt{R_{1}T_{2}} - \sqrt{R_{2}T_{1}} \right)^{2} / \left(\sqrt{R_{1}T_{2}} + \sqrt{R_{2}T_{1}} \right)^{2} \right] \quad (dB)$$

- Pre $T_1 = T_2 = R_1 = R_2 = 0,5$ (3 dB odbočnica) Extinkčný pomer $E_1 = E_2 = \infty$
- Dvojstupňový MZ filter pre multiplexovanie štyroch kanálov z oblasti 1,5 μm
- Separácia kanálov je $\Delta f = 5 \text{ GHz} (\Delta \lambda = 0,04 \text{ nm})$ a rozdiel dráh MZI je $\Delta L = 2,04 \text{ cm}$
- Možno realizovať aj preladiteľné MZ filtre, s využitím LiNbO₃ elektrooptického modulátora

3.4.6 OFDM FILTER S KRUHOVÝM REZONÁTOROM

Väzba s jedným kruhovým rezonátorom

 $\begin{bmatrix} A_3 \\ A_4 \end{bmatrix} = (1 - \Gamma)^{1/2} \begin{bmatrix} \cos(\Delta \beta Z_0) & j \sin(\Delta \beta Z_0) \\ j \sin(\Delta \beta Z_0) & \cos(\Delta \beta Z_0) \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$

kde Γ sú straty intenzity a Z₀ je väzobná dĺžka

Po jednom prechode kruhovým rezonátorom

 $A_2 = A_4 \exp(-\alpha L_r - j\beta L_r)$

kde β je konštanta šírenia, α je tlmenie a l_r = 2πr je dĺžka (r - polomer) rezonátora

Pomer výkonov

$$\frac{P_{3}}{P_{1}} = \left| \frac{A_{3}}{A_{1}} \right|^{2} = \left| (1 - \Gamma)^{1/2} \frac{\cos(\Delta\beta Z_{0}) - (1 - \Gamma)^{1/2} \exp[-(\alpha + j\beta)L_{r}]}{1 - (1 - \Gamma)^{1/2} \cos(\Delta\beta Z_{0}) \exp[-(\alpha + j\beta)L_{r}]} \right|^{2} = (1 - \Gamma) \left[1 - \frac{\left[1 - (1 - \Gamma) \exp(-2\alpha L_{r}) \right] \left[1 - \cos^{2}(\Delta\beta Z_{0}) \right]}{\left[1 - (1 - \Gamma)^{1/2} \exp(-\alpha L_{r}) \cos(\Delta\beta Z_{0}) \right]^{2} + 4(1 - \Gamma)^{1/2} \cos(\Delta\beta Z_{0}) \sin^{2}(\beta L_{r}/2)} \right]$$

Obr. 3.35 OFDM filter s kruhovým rezonátorom: (a) s jedným, (b) s dvomi kruhovými rezonátormi, (c) prenosová charakteristika.

• Konštruktívne a deštruktívne interferencie

$$\beta L_r / 2 = \pi i$$
 a $\pi i + \pi / 2$

kde i je celé číslo

- Frekvenčný odstup medzi maximálnym a minimálnym výkonovým prenosom $\Delta f = \frac{c}{2n_{ef}L_r}$
- Filtre s kruhovým rezonátorom vykazujú širšie pásmo prenosu a strmšiu charakteristiku orezania
- Pre filter s dvojitým kruhovým rezonátorom bolo dosiahnuté pásmo prenosu 37,2 GHz a kvalita 182

3.4.7 OFDM FILTER S BRAGGOVÝM REFLEKTOROM

- Možno zostrojiť optické filtre s pásmovou zádržou
- Využívajú sa v DFB , resp. DBR laserových diódach a v senzoroch SOFO
- Odvodenie koeficienta odrazu pre Braggov reflektor
- Index lomu sa v braggovom reflektore mení s periódou Λ

$$f(z) = f(z_0 + m\Lambda)$$

M je celé číslo

Vyjadrenie v tvare Fourierovho radu

$$f(z) = \sum_{S} c_{S} \exp(j2\pi S z / \Lambda)$$

C_s sú konštanty

• Koeficient väzby k₁ - pre s = 1
$$k_1 = k_B \exp(-j2\pi z/\Lambda)$$

kde k_b je konštanta

Braggov reflektor $\frac{dA_1(z)}{dz} = -jk_BA_2(z)\exp\left[j\left(\beta_1 - \beta_2 - 2\pi/\Lambda\right)z\right]$ $\frac{dA_2(z)}{dz} = -jk_BA_1(z)\exp\left[-j\left(\beta_1 - \beta_2 - 2\pi/\Lambda\right)z\right]$

Obr. 3.36 Model Braggovho reflektora.

Podmienka bezstratovosti vlnovodu

$$\frac{d}{dz} \left[\left| A_1(z) \right|^2 - \left| A_2(z) \right|^2 \right] = 0$$

z čoho vyplýva $k_1 = -k_2$

• Pre konštantu šírenia platí

$$\beta_1 = -\beta_2 = \beta = n_{ef} (2\pi / \lambda)$$

kde n_{ef} je efektívny index lomu

• Silný odraz vzniká pri $\beta = \pi / \Lambda$

$$\frac{dA_1(z)}{dz} = jk_B A_2(z)$$
$$\frac{dA_2(z)}{dz} = -jk_B A_1(z)$$

S okrajovými podmienkami A₁(0) = A a A₂(L) = 0

$$T = \left| \frac{A_{1}(L)}{A_{1}(0)} \right|^{2} = \sec h^{2}(k_{B}L)$$
$$R = \left| \frac{A_{2}(0)}{A_{1}(0)} \right|^{2} = \tanh^{2}(k_{B}L)$$

R je koeficient odrazu a T je koeficient prechodu $\beta = \pi / \Lambda$

Možno prepísať

$$n_{ef}\left(2\pi/\lambda\right) = \pi/\Lambda$$

$$\lambda_B = 2n_{ef}\Lambda$$

- Pre $k_B L = 3$ je R = 0,99 , t.j. vzniká silný odraz
- Použitie týchto filtrov bolo demonštrované v oblasti 1,5 μm, kde šírka pásma bola 1 nm
- Použili sa tiež pre zhotovenie EDF laserov
- Braggove reflektory boli realizované leštením, leptaním alebo holografickou metódou

3.5 **OPTICKÝ ATENUÁTOR**

- Znižuje intenzitu svetla
- Atenuátory využívajú absorbciu svetla vo vhodných materiáloch
- Nevýhodou je, absorbcia je závislá od vlnovej dĺžky pracovného svetla
- Antireflexné pokrytie na vstupe zmenší odraz svetla na vstupe
- Premenné atenuátory

Obr. 3.37 Optické atenuátory.

3. kap. FO KEMT FEI TU Košice

3.6 **OPTICKÝ IZOLÁTOR**

Rozptylová matica

$$\begin{bmatrix} s \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix}$$

Vložné straty

$$L = 10\log\frac{P_i}{P_t} = 10\log\frac{1 - |s_{11}|^2}{|s_{21}|^2}$$

Izolácia

$$I = 10\log\frac{|a_2|^2}{|b_1|^2} = 10\log\frac{1}{|s_{12}|^2}$$

Ideálny izolátor je L = 0 dB a I = ∞

Použitie optických izolátorov

- Pre zamedzenie návratu odrazeného svetla do rezonátora lasera na výstupe LD
- V EDFA sa na stabilizáciu vlastností optického vláknového zosilňovača

Polarizátor a analyzátor

- 1. Polarizačný hranol (Glanov – Taylorov hranol)
- 1. Kovovo dielektrickú štruktúru (tzv. Lamipol)
- 2. Polarizačné vlákna typu panda
- Polarizačnú sklenú alebo plastovú platničku

Obr. 3.39 Princíp optického izolátora.

• Polarizačný rotátor využíva Faradayov jav

 $\theta = VHL$

kde V je Verdetova konštanta, H – Intenzita magnetického poľa a L – dĺžka rotátora

- Požaduje sa otočenie o $\theta = \pi/4$ a L čo najmenšie
- SiO₂ OV vykazuje malú hodnotu Verdetovej konštanty
 - V = 0,0128 min/cm Oe pri λ = 0,633 μ m
- Pre terbium dopované sklo je

V = 0,25 **min/cm** Oe čo vyžaduje pre dosiahnutie

 $\theta = \pi/4 \text{ dlst} L = 10,8 \text{ cm} \text{ pri H} = 1000 \text{ Oe}$

Platí: [Oe] = $10^{3}/4\pi$ [A/m]

 Polarizačný rotátor využíva Faradayov jav Itrium železitý granát –

YIG (Ytrium Iron Garnet – Y_3Fe_5O_{12})

pre vlnové dĺžky nad $\lambda = 1,1 \ \mu m$ má veľkú hodnotu Verdetovej konštanty,

na dosiahnutie $\theta = \pi/4$ je L = 2 mm pre $\lambda = 1,3 \mu$ m

- Bizmutom substituovaný gadolínový granát -CdBiIG (Bismuth Substituted Gadolinium Iron Garnet – Cd_{3-x}Bi_xFe₅O₁₂)
- Bizmutom substituovaný terbiový granát TbBiIG (Bismuth Substituted Terbium Iron Garnet – Tb_{3-x}Bi_xFe₅O₁₂)

Obr. 3.40 Optický izolátor: (a) s polarizačným hranolom, (b) s OV typu PANDA.

3. kap. FO KEMT FEI TU Košice

FEI TU Košice

- Izolátor s polarizačnými hranolmi
 - L = 2 dB a I = 30 **dB** pri λ = 1,15 μ **m**
- Izolátor s využitím OV typu PANDA

L = 4,1 dB a I = 35 dB pri λ = 1,3 μ m

- Na vytvorenie potrebného magnetického poľa sa používa permanentný magnet na báze samárium – kobaltu
- Konštrukcia miniatúrneho polarizačne nezávislého optického izolátora využíva: Dvojlomné platničky Faradayov rotátor Kompenzačnú platničku
- Veľmi kompaktný a miniatúrny optický izolátor obsahuje -Izolátorový čip je umiestnený medzi TEC (Thermally Diffused Expanded Core) optické vlákna
 3. кар. FO КЕМТ

Izolátorový čip je tvorený priestorovo posúvajúcimi polarizátormi

- SWP (Spatial Walk-off Polarizer), polvlnovou platničkou ($\lambda/2$), Faradayovým rotátorom
- Ako SWP sa používajú rutilové platničky a Faradayov rotátor je na báze (YbTbBi)₃Fe₅O₁₂
- □ Rozmer čipu je 2 x 3 x 2,05 **mm³** a izolátor má tieto vlastnosti L = 2,5 dB , I ≥ 40 **dB** pri λ = 1,55 μ**m**
- Iný typ polarizačne nezávislého optického izolátora obsahuje polarizačne závislého izolátora, dve SWP platničky a dve polvlnové platničky (λ/2)
- L = 0,38 dB a I = 55 dB pri λ = 1,3 μm a L = 0,32 dB a I = 64 dB pri λ = 1,55 μm

Obr. 3.42 Miniatúrny optický izolátor.

Obr. 3.43 Polarizačne nezávislý optický izolátor.

3. kap. FO KEMT FEI TU Košice

3.7 **OPTICKÝ CIRKULÁTOR**

- Optický obvod s n bránami
- Pre n = 3 je ideálny trojbránový cirkulátor
- Rozptylová matica

$$\begin{bmatrix} S \end{bmatrix}_{ideal} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

- Použitie v EDFA
- Polarizačne nezávislý optický cirkulátor používa
 - YIG rotátor
 - Kremenný rotátor
 - Dva polarizačné rozdeľovače optického lúča PBS (Polarization Beam Splitter)
 - Dva pravouhlé hranoly

- Rozmery cirkulátora sú 26 x 40 x 15 mm³ a L = 1,3 dB , I = 16 až 19 dB pre λ = 1,32 µm
- Kompaktná štruktúra cirkulátora obsahuje tieto prvky: vláknový polarizátor (napr. OV typu PANDA) a vláknové PBS
- Polarizačne nezávislé cirkulátory s využitím YIG guličiek

 $L = 2,5 \text{ dB}, I = 18 \text{ a} \pm 20 \text{ dB} \text{ pre } \lambda = 1,3 \mu \text{m}$

Cirkulátor s dvojlomným kryštálom

L = 1,5 **dB**, I = 42 **dB** pre
$$\lambda$$
 = 1,3 μ **m**

Obr. 3.44 Model optického cirkulátora pre n = 3.

Zrkadlo

(b)

Obr. 3.45 Použitie optického cirkulátora v EDFA.

3. kap. FO KEMT FEI TU Košice

Obr. 3.46 Zapojenie optického cirkulátora.

3.8 **OPTICKÝ VLÁKNOVÝ POLARIZÁTOR**

Optické vláknové polarizátory

- a) S kovovým segmentom (pokrytím)
- b) S pokrytím dvojlomným kryštálom
- Niektoré konštrukcie vyžadujú obrúsenie OV a pokrytie
 vhodnou kovovou (AI),
 - dielektrickou (**CaF**₂) alebo
 - dvojlomnou (pentabonát draselný) vrstvou
- Pri pokrytí OV v dĺžke 22 mm kovovou vrstvou sa dosahuje extinčný pomer 45 dB pri vloženom tlmení 1 dB

3.8 **OPTICKÝ VLÁKNOVÝ POLARIZÁTOR**

- Pre polarizátory s dvojlomným materiálom
 Dosahuje extinčný pomer 60 dB
- OV s excentrickým jadrom, pri nanesení 3 až 5 cm kovovej vrstvy

Dosahuje sa extinčný pomer 41 **dB** pri vloženom tlmení 0,31 **dB/cm**

 Polarizatory používajúce úsek polarizačného OV (napr. vlákno typu PANDA)

Dosahuje sa extinčný pomer 40 dB a vložené tlmenie 0,05 **dB** pre $\lambda = 1,3 \mu m$ pri použití **OV** typu **PANDA** s dĺžkou 10 m zmotanom do cievky s priemerom 10 **cm**

Polarizačné vlastnosti takýchto polarizátorov sú závislé od vlnovej dĺžky

3.9 BUDÚCE TECHNOLÓGIE OPTICKÝCH VLÁKNOVÝCH PASÍVNYCH PRVKOV

- 2D optické konektory s malými vloženými stratami
- Prepojovanie optických (resp. opto-elektrických) integrovaných obvodov použitím OV a voľným priestorom
- V súčasných optických systémoch
 - Aktívne a pasívne optické komponenty
 - Aktívne a pasívne elektrické komponenty
 - Je potrebná integrácia týchto komponentov

Obr. 3.49 Aplikácie 2D optických vláknových konektorov.

3. kap. FO KEMT FEI TU Košice

Obr. 3.50 Prepojenie optických IO: (a) s OV, (b) voľným priestorom.

3. kap. FO KEMT FEI TU Košice

Obr. 3.51 Optické integrované obvody.