PHOTONICS

5b Optically powered sensors and sensory systems 2 part

Dr.h.c . Prof. RNDr. Ing. Ján Turán, DrSc. KEMT FEI TUKE

Other applications

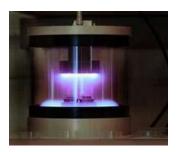
Medical

Magnetic resonance imaging

Energy

Current sensing in high-voltage installations

Wireless communications


Powering transceivers and antenna amplifiers (GPS, cellular base stations, WiMa, etc.)

Aerospace

Critical applications (fuel, tanks, cabin door interlocks)

Industrial sensors

Test & measurement and remote sensing

Defense

Actuators, gauges, sensor, communications devices, etc.

Other applications

INDUSTRY	TARGET APPLICATION	KEY BENEFITS
Medical	Magnetic Resonance Imaging (MRI)	 Enhance imagery (improve signal integrity) Eliminate patient burn risk (fiber impervious to heat from high magnetic fields)
Wireless Communications	Powering low power transceivers and antenna preamplifiers • Wireless base station deployments • GPS timing networks • HDTV remote antenna sites	 Immune to RF, EMI, and lightning Simple installation; reduced maintenance Lightweight (compared to copper cable)
Energy	Current sensing in high voltage distribution grids	 Voltage isolation Simple installation; reduced maintenance Eliminate instrument transformers

Other applications

INDUSTRY	TARGET APPLICATION	KEY BENEFITS
Industrial Sensors	Remote sensing – Oil and mining exploration EMI test measurements	 Spark-free power Operates over long distances Withstands extreme temperatures
Aerospace	Critical applications – Aircraft fuel sensors and gauges – Cabin door interlocks	 Spark-free power Immune to EMI Lightweight (compared to copper cable)
Defense	Sensing, control and interlock EMC test measurement Weapon control circuitry	 Spark-free power Immune to EMI and electromagnetic pulses Lightweight (compared to copper cable)

Medical

Electrically isolated power unaffected by magnetic fields

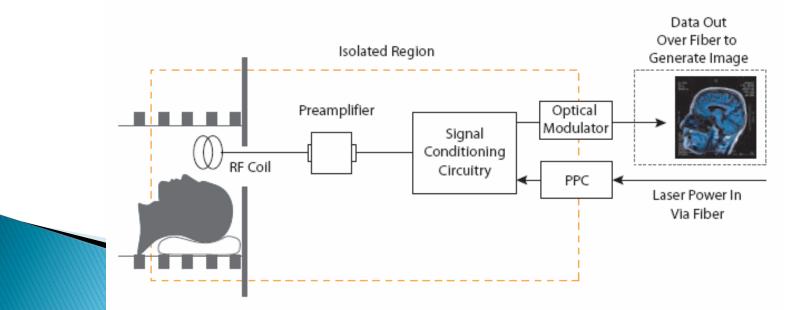
Improve imaging

• Power RF coil amplifiers without interference for enhanced imaging quality

Patient safety

• Impervious to RF heating; eliminates possibility of patient burns

Power sensors in magnetic environment


• Monitor patient condition with electrically isolated sensors

Medical

All-fiber solution for powering RF coil amplifiers and transmitting imaging data permits

- Isolation from the surrounding environment
- More closely spaced coil arrays
- Elimination of risk of cable-induced patient burns
- Lightweight, more flexible alternative to copper cables

Wireless

Cost-effective alternative to coax cabling

Lower installation cost

- Replace bulky coax with lightweight fiber
- Eliminate cost of lightning arrestors and booster amplifiers

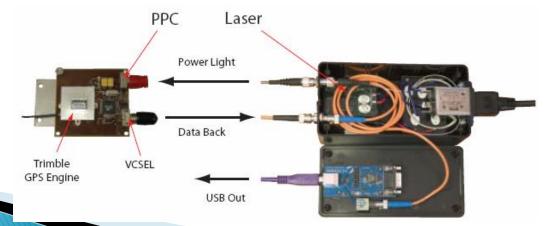
Lower total cost of ownership

- Reduce truck rolls
- No damage from lightning

Simplify transmission medium

• Data and power carried over same fiber bundle

Low power transceivers


• GPS tinsing reference for cellular base stations, low power picocell transceivers

Wireless

All-fiber solution for powering GPS Engine and transmitting data permits:

- Timing reference for mobile wireless application
- Isolation from the surrounding RF and EMI environment
- Installation distances up to 500 meters
- Flexible antenna positioning for enhanced view of GPS satellites
- Elimination of lightning arrestors and booster amplifiers
- Lightweight alternative to copper cables
- Fewer maintenance repairs

Metering

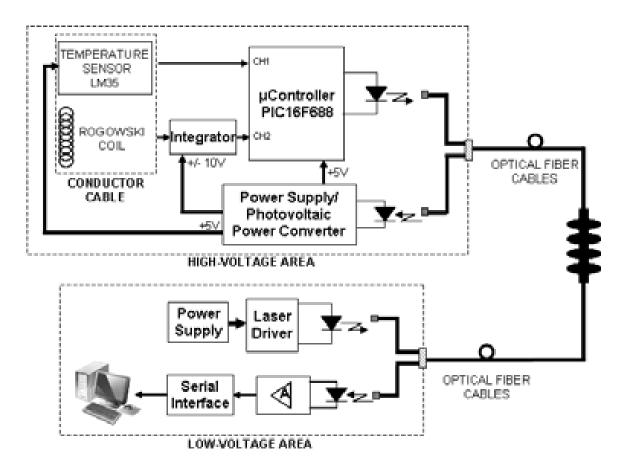
Safe, cost-effective current metering

Lower installation cost

• Replace oil-filled transformers with lightweight fiber for faster installation

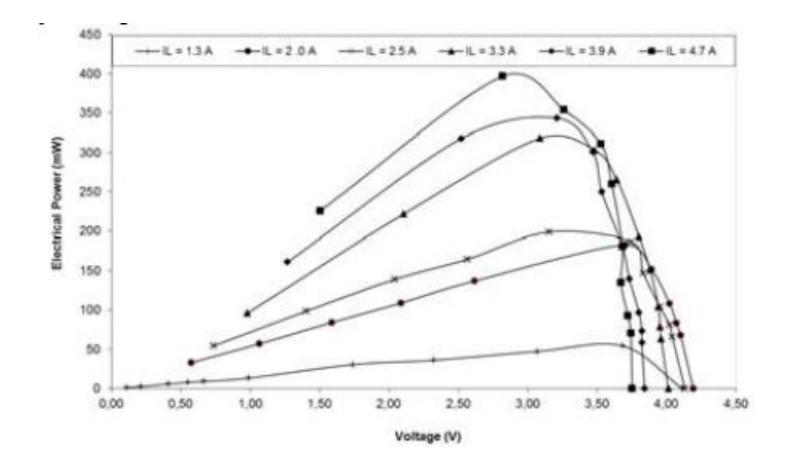
Lower Total Cost of Ownership

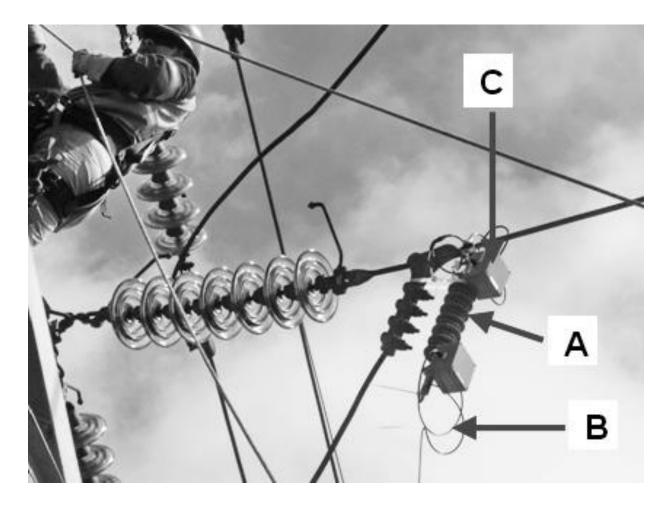
• Reduce maintenance and replacement expense


Simplify transmission medium

• Data and power carried over same fiber bundle

Rugged and safe

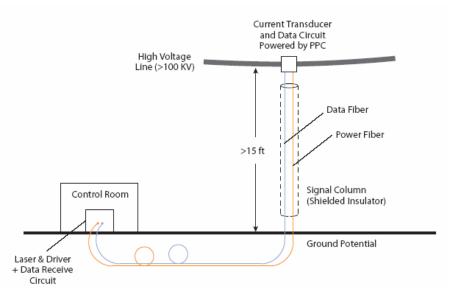

- No explosion or environmental leakage issues
- Operates in harsh environments
 - Lightning-proof



Hybrid optoelectronic current and temperature sensor probe (HOCT) for sag monitoring of conductors in 138 kV HV TL

- Rogowski current sensor, a temperature sensor, PPC, LP μC with serial output and 850 nm LED FO Tx
- PP LD 1 W @ 830 nm to MM OF
- PPC at 40% efficiency producing 300 mW@ 3.5 V
- Sensory system consumption 90 mA

Power produced by the PPC as a function of LD current (IL).



HOCT field deployment:
A) 69 kV polymeric optical fiber insulator;
B) Optical fiber cables;
C) Figh voltage circuits enclosure.

Current sensing

All-fiber solution for powering current transducers in high voltage (>100 kV) environments permits:

- High accuracy for metering applications
- Environmentally friendly, dry technology (no oil or SF-6 gas)
- Elimination of ground loops
- Rapid, low cost installation
- Immunity to lightning
- Reduced maintenance expense

Industrial sensors

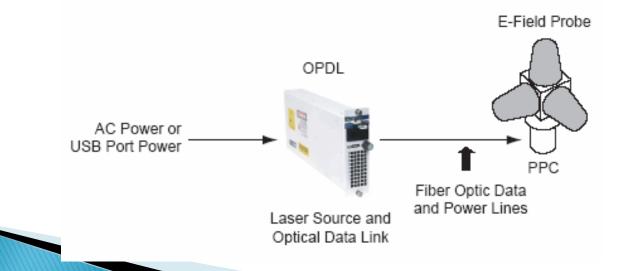
Electrically isolated, EMI-free measurement

Downhole exploration

- Replace bulky copper with lightweight fiber
- Lower power delivery and installation costs

• Provide spark-free power in harsh environments and over long distances

EMI measurements


- Reduce cost and test time by eliminating need for battery power
- Eliminate extraneous interference to EMI measurement

Industrial sensors

All-fiber solution for powering electric field probes permits:

- Electrically isolated power source that will not affect test measurements
- Elimination of batteries and charging
- Faster completion of tests
- Use of more compact probes for reduced field perturbation

Aerospace

Electrically-isolated, spark-free power

Fuel gauges and actuators

• Spark-free power eliminates risk of explosion

Communication equipment

- Lightweightalternative to copper or coax
- EMI-free

Sensors

• Lightweight, spark-free power source for aircraft sensors

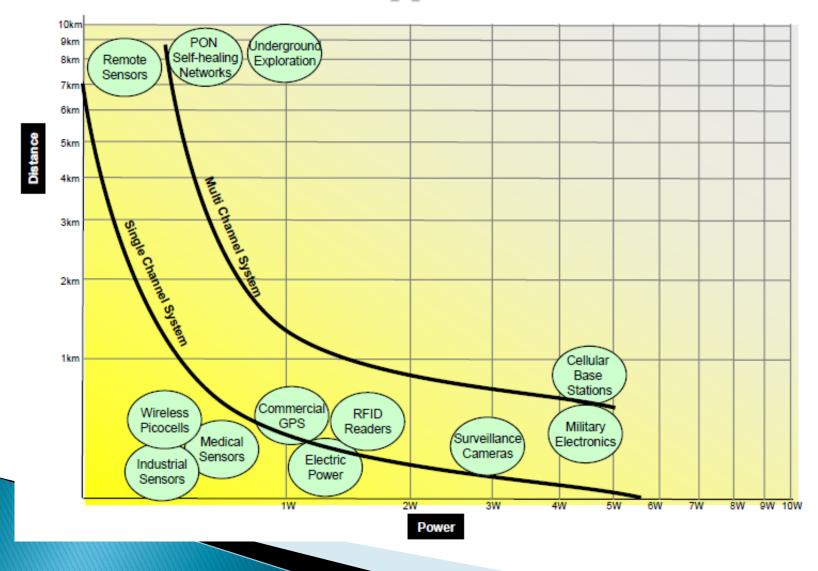
Defense

Electrically-isolated, spark-free power

Arming and fuzingactuation

• Isolated power eliminates risk of premature explosion

Communication equipment


- Lightweightalternative to copper or coax
- EMI-free

Test and Measurement

• Interference-free power source for electromagnetic compatibility testing

Greater Output Power, Longer Wavelengths Enable More Applications

Products

High Power Optical Data (HiPOD) System

- 5W Electrical Power Output
- Uplink and Downlink Data Channels

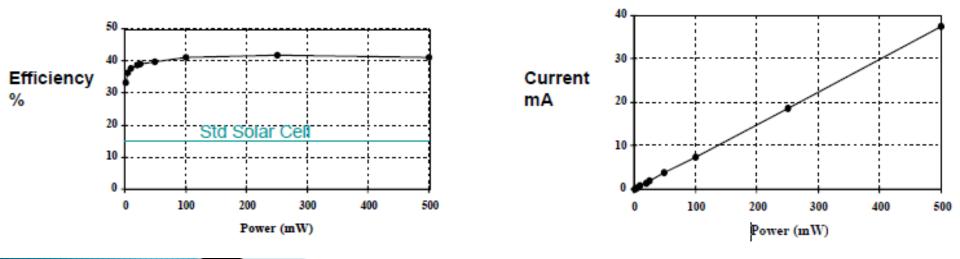
Photonic Power Modules (PPM)

- Includes PPC, laser, driver, electronics
- 'Electrical in electrical out'

Photovoltaic Power Converters (PPC)

- Conversion efficiency up to 50%
- 2-12 VDC, up to 1W electrical output
- Impervious to harsh environments

Photovoltaic Power Converter (PPC)


- Delivers fully isolated electric power through noise immune, non-conductive optical fiber
- Converts laser light to electrical power with up to 50% efficiency
- Provides voltages from 2 -12 VDC
- Operates with laser diodes in 790 to 980 nm wavelength range, 1300-1550 nm in near future
- Utilizes common 62.5 μ m or 105 μ m fiber

PPC Technology

 Semiconductor device made from AlGaAs, GaAs, InGaAs or InP – similar materials & processing techniques as power Laser Diodes

Photonic Power Module (PPM)

- Turnkey solution
 - Includes laser, driver, & PPC
 - Optimized for maximum electrical output power
- Up to 1 watt delivered power
- Common 62.5 & 100 µm fiber interconnect
- Standard voltage outputs: 2.8, 3.3, 5, 10 V DC
- Laser module easily mounts as daughter board on main PCB
- Distances of 1km (MM OF) to >10km (SM OF)

Power to drive:

- Modulators (bias Mach-Zehnder): 1mW
- Data Links (>1Gbps): 100mW
- Actuators/Sensors: 0.5W
- Transceivers/Switches:
 - 1W (single link)
 - 5W (parallel links)

High Power Optical Data (HiPOD) Link

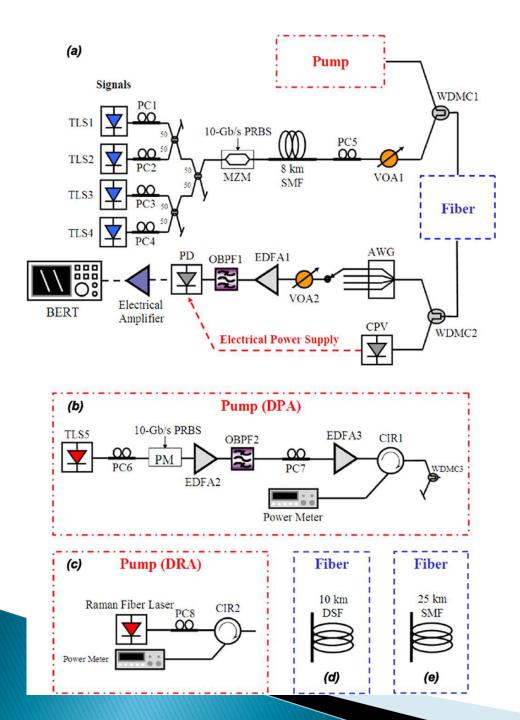
Self-Powered Data Transmission over Fiber

Isolated Power Delivery

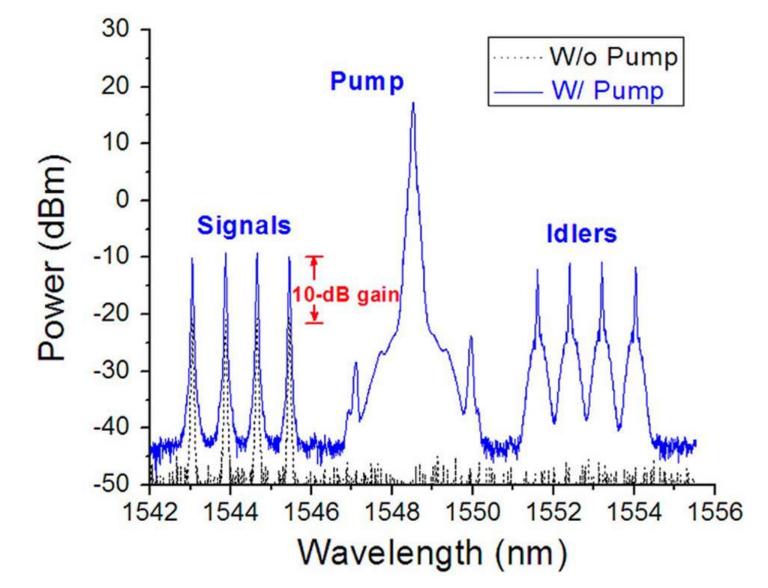
- 5 Watts
- Converts laser light to 5 W electrical output
- Drive remote electronics (e.g., sensors, receivers, transducers)
- Combines multiple laser channels for maximum power
- Distances over 500 meters (62.5 or 100 µm fiber)
- Immune to high voltage, RF, EMI, and magnetic hazards

Enhanced Safety, Reliability, and Maintainability

- Power and safety monitoring of individual channels
- Automatic channel shutdown (fiber disconnect/break)
- Operation in extreme environmental conditions
- Continued operation with up to two failed channels
- Hot swappable laser modules-Convenient rack mount laser draiwer
- Power/temperature displays & on/off control per module


Duplex data Gransmission up to 12 Mbps

Remote Module Up to 8 Power Converters


Local Module Chassis Up to 8 Laser Modules

PP communication network PP distributed Raman Amplifier in DSF

Experimental setup: (a) main setup for the optically powered WDM signal transmission system with distributed amplification; (b) Setup of the parametric pump for the DPA case; (c) Setup of the Raman pump for the DRA case; (d) 10-km DSF used for both **DPAand DRA;** (e) 25-km SMF used for DRA. PM: phase modulator, WDMC: WDM coupler, AWG: arrayedwaveguide gratin

Optical spectra at the output of DSF with (blue solid line) and without (black dotted line) pump.(OSA resolution bandwidth: 0.02 nm).

Conclusions

- **The benefits of OPSS are now evident**
- Key elements of such a systems
 High- power LD and efficient PPC are now commercially available
- Price of optimized Optical Power Links (OPL) is moderate and is expected to decrease in the near future
- The available wide range of fiber optic communication solutions
- Relatively cheap low-power microelectronic sensors of different measured

Promote elegant and sophisticated solutions for many industrial applications

Conclusions

Main application areas of OPSS

- **High voltage technology**
- **Medicine**
- **D** Power electronics
- Military, avionic and aerospace systems

Fiber optically powering technology

will be spread in the wide range of commercial applications

- **EMC**
- Nanotechnology
- **Communications**
- **Robotics**
- Intelligent manufacturing systems,
- Automotive industry
 - Surveillance system

References

Turán,J.-Petrík,S.: Fiber optic sensors. Alfa, Bratislava, 1990. Turán,J.-Ovseník,Ľ.-Turán,J.jr.: Optically Powered Fiber Optic Sensors. Acta Electrotechnica et Informatica, No.3, Vol.5, 2005, pp. 29-35. <u>*Citované v:*</u>

Zadvomov, S.-Sokolovsky, A.: An Electro-Optic Hybrid Methane Sensor. In: IEEE Canadian Conference on Electrical and Computer Engineering, CCECE 2008, Niagara Falls, ON, Canada, May 4-7, 2008, pp. 969-974. Rosolem, J.B.-Floridia, C.-Juriollo, A.A.-Bezerra, E.W.: Comparative Analysis of Fiber Grating Versus Fiber Powering for Fiber Optical Sensing Applications. In: SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC 2009, Belem, Brazil, November 3-6, 2009, pp 641-645. (www.scoupus.com; ISBN 978-142445356-6) Santos, J.L.-Frazãoa, O.-Baptista, J.M.-Jorge, P.A.S.-Dias, I.-Araújo, F.M.-Ferreira, L.A.: Optical Fibre Sensing Networks. In: SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC 2009, Belem, Brazil, November 3-6, 2009, pp 290-298. Turán, J.-Ovseník, Ľ.-Vásárhelyi, J.: Optically Powered Industrial Barometric System Architecture. In: Proc. of 11th International Carpathian Control Conference ICCC2010, Eger, Hungary, May 26-28, 2010, pp. 173-176. Röger, M., – Böttger, G. – Dreschmann, M. – Klamouris, C. – Huebner, M. – Bett, A.W.

- Becker, - Freude, W. and Leuthold, J.: Optically powered fiber networks. OPTICS EXPRESS, Vol. 16, No. 26, 2008, 21821–21834.

References

Hills, P. C, - Samson, P.C. and Webster, I.: Optical Fibres are Intrinsically Safe: Reviewing The Myth. J. Electr. Electron. Eng., (Aust.), v. 10, No.3, Sept. 1990, 207-220. Xu, X. – Yang, S. – Zhang, Ch. – Y.T.I. – Wong, K.K.Y.: Optically powered communication system with distributed amplifiers, J. Lightwave Tech., Vol.28, No.21, 2010, 3062-3069. Al-Mohanadi, M.R. – Ross, J.N. – Brignell, J.E.: Optical power and intelligent sensors. Sensors and Actuators A, Vol. 60, 1997, 142 – 146. Batista de Nazare, F.V. – Werneck, M.M.: Hybrid optoelectronic sensor for current and temperature monitoring in overhead transmission lines. IEEE, 2011.

