Photonics 5c Fiber optic refractometer

Prof. Dr.h.c. RNDr. Ing. Ján Turán, DrSc.

^{*}Department of Electronics and Multimedia Communications Faculty of Electrical Engineering and Informatics Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

Content

- Introduction
- Web-Controlled Fiber Optic Refractometer
- Web-Controlled Fiber Optic Connection Test Bench
- Experiments and Results
- Conclusions

1. Introduction

Virtual Laboratories

Creating a Virtual laboratory
Creating a Web-controlled laboratory equipment

Traditional solutions:

- Web-based courseware
- Virtual laboratories (CAD, CAE multimedia package)

Good learning in engineering

- Mixture of theoretical and/or simulation
- Practical experiments
- Photonics
 - Expensive instruments
 - Limited time resources

2. Applied Photonics courseware

CAD and CAE analysis tools

Multimedia GUI design

- System supervisor GUI
- Teacher (tutor, supervisor) GUI
- Student GUI
- Browser GUI

3. System architecture design

Hardware structure

- Remote Users
- Internet Server
- Laboratory Multimedia PC
- Photonics Equipment
- Software structure
 - Client (Java Applets)
 - Transitional Server (HTML Pages)
 - Controller PC (LabWindows Applets)

Web-controlled laboratory architecture

A) Hardware Structure

B) Software Structure

Present state – two equipments

- Fiber Optic Refractometer
- Optical Fiber Connection Test Bench
- Experimental set-up is controlled trough three data acquisition systems
 - Mechanical
 - Electronics
 - Measurement

Web-based multimedia laboratory module

4. Web-Controlled Fiber Optic Refractometer

Refractometers

- (liquid refractive index measurements)
 - Prismatic elements
 - Linear photodetector array
 - Fiber optic
- Fiber Optic Refractometer
 - Basic
 - Differential

Refractometer applications

- Medical
- Pharmaceutical
- Industrial fluid
- Chemical, petrocheical
- Plastic
- Food
- Etc...

Measurement

□ Concentration of aqueous solutions

□ Sugar in fruits, soft drinks, syrups

□ Salinity of aquariums, food products

□ Freezing point of coolants

Charge status of acid batteries

- Serum protein
- Urine specific gravity

Fiber optic refractometer basic parameters

- Index of refraction 1,3 1,6
- Change in refractive index of the order 5 to 10
- Catheter type probe diameter 5 1 mm, or 250 – 300 µm
- Extremely rugged transducer elements
- Small probe type
 - inserted on top of containers or in flow line
- Smart data acquisition
- Versatile sensory systems

Fiber Optic Refractometer

Basic fiber optic refractometer

Differential fiber optic refractometer

Web-Controlled Fiber Optic Refractometer

- Sensor Module
- Sensor Module Positioner
- Liquid Magazine:
 - Rotation
 - Heating
 - Cleaning
- Refractometer Equipment
- Visual Interface (Camera Feedback)
- Base Multimedia PC (Digital Interface)
- Server
- User PCs

Interactive web-controlled fiber optic refractometer instrument

Web-based multimedia laboratory system

Developed multimedia GUI

- Control the various parts of the instrument
- Support control remote measurements using standard Internet Protocol (TCP/IP) procedures through WWW browser
- Control and monitor refractive index of various liquids
- Measurement of dependence of refractive index on temperature
- Measurement of dependence of refractive index on concentration
- Liquid type determination

Basic control window of the refractometer

May, 2008

WWW control window of the refractometer

Options Settings <u>w</u>ww

Window of the camera client and VLC media player

		👃 VLC media player								
		File	View	Sett	ings	Aud	io Vic	ieo I	Navigation Help	
		=	П		144		** **	ı #	= 🍕 🔳	
									6	
🐺 Camera client										
Camera port: Camera Server IP Adress: 1234 127.0.0.1	Powered by VLC media player Con <u>n</u> ect <u>C</u> ancel	in the second								
			-					and a		
					-	x1.	00 ht	:tp://1	27.0.0.1:1234	

Main control window of the fiber optic refractometer (Measurements)

23/33

Main control window of the fiber optic refractometer (Testing)

May, 2008

Main control window of the fiber optic refractometer (Monitoring)

5. Web-Controlled Fiber Optic Connection Test Bench

Optical fiber links – requirement for jointing transmission medium - Fiber

- Fiber fiber connections
- Fiber splices
- Fiber connectors

Optical loss caused by two phenomenona

- Fresnel reflection
- Misalignment of the jointed fibers
- Equipment can measure misalignment introduced fiber joint insertion loss for
 - Various separation between the fibers (longitudinal misalignment)
 - Offset perpendicular to the fiber core axes (lateral / radial / axial misalignment)
 - Angle between the core axes (angular misalignment)

Optical losses depend upon

- Fiber type
- Core diameter
- Optical wavelength and the distribution of the optical power between the propagation modes
- Present experimental set-up: the fiber type, core diameter and used optical wavelength are fixed
- Developed instrument use simple plastic step index multimode optical fiber with large numerical aperture
- Visual feedback: using simple web-camera used for control of fiber positions in two perpendicular planes

Interactive web-controlled fiber optic connection test bench

6. Experiments and Results

Basic Laboratory Experiments

- Dependence of refractive index of propylene glycol and water on temperature
 - dn/dt for water in the range 15 to 30°C is 0.0001 per degree °C
 - dn/dt for propylene glycol is 0.0003 per degree °C
- Dependence of refractive index of water propylene glycol solution on propylene concentration
 - for glycol/water solutions one could assume a linear dependence of dn/dt, that is, for example assume dn/dt = 0.0002 for a 50% solution

Measurements of petrochemical products

Refractive index of propylene glycol vs. temperature (°C)

Refractive index of water vs. propylene glycol concentration

Result of petrochemical products measurements

Petrochemical	Refractive	Temperature
products	index	(°C)
Water	1.3333	21
Synthetic alcohol	1.3620	21
Propylen glycol	1.4268	21
Mobil VS-200	1.4399	21
Mobil motor 5W-50	1.4678	21
Oil drive	1.4757	21
Madit drive	1.4828	21

References

Turán, J.-Carome, E.F.-Ovseník, Ľ.: Fiber Optics Refractometer for Liquid Index

of Refraction Measurement. Proc. 5th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Service "TELSIKS-2001", Niš, Serbia and Montenegro, May 19-23, 2001, Vol. 2, pp. 489-492.

<u>Citované v:</u>

Sheeba,M.-Rajesh,M.-Vllabhan,C.P.G.-Nampoori,V.P.N.-adhakrishnan,P.: Fibre Optic Sensor for the Detection of Adulterant Traces in Coconut Oil. In: Measurement Science and Technology, Vol. 16, No. 11, November 2005, pp 2247-2250.

Mudhana,G.-Park,K.S.-Ryu,S.Y.-Lee,B.H.: Fiber-Optic Probe Based on a Bifunctional Lensed Photonic Crystal Fiber for Refractive Index Measurements of Liquids. In: IEEE Sensors Journal, Vol. 11, No. 5, 2011, pp. 1178-1183.

Turán, J.-Ovseník, Ľ.-Turán, J.jr.-Fazekas, K.: Design Web-Controlled Multimedia Laboratory. In: Proc. ELMAR 2004, Zadar, Croatia, 2004, pp. 154-159.

<u>Citované v:</u>

Leva, A.-Donida, F.: Multifunctional Remote Laboratory for Education in Automatic Control: The CrAutoLab Experience.

In: EEE Transactions on Industrial Electronics, Vol. 55, No. 6,

June 2008, pp. 2376-2385. May, 2008

Turán,J.-Petrík,S.: Fiber optic sensors. Alfa, Bratislava, 1990. Turán,J.-Ovseník,Ľ.-Turán,J.jr.: Multimedia Teleeducation Courseware: Adafox - Modelling Digital and Analogue Fiber Optical Networks. Journal of Electrical Engineering, Vol.58, No.5, 2007, pp. 294-300. <u>*Citované v:*</u>

AzizulHaq,N.N.-Alawi,G.A.A.A.: Various Learning Courses Based on Digital Library Conceptualization. In: International Conference on Technology for Education 2010, T4E 2010, Mumbai, India, July 1-3, 2010, pp 222-223.