PHOTONIC COMMUNICATIONS

Photonic networking (10a)

Dr.h.c. Prof.RNDr.Ing. Ján TURÁN, DrSc.

Department of Electronics and Multimedia Communications Faculty of Electrical Engineering and Informatics University of Technology Košice, Letná 9, 042 00 Košice, Slovakia

Tel. ++ 421 55 602 29 43, E-mail: jan.turan@tuke.sk

References

- Turán, J.: Fotonika. Harlequin, Košice, 2003.
- Turán, J.: Kvantová elektronika. Alfa, Bratislava, 1986.
- Saleh, B. A. Teich, M.: Fundamentals of Photonics. J. Wiley and Sons, New York, 1991.
- Culshaw, B. Dakin, J. (eds.): Optical Fiber Sensors, Vol.I,II,III. Artech House, Boston, 1988, 1989 and 1997.
- Optical Fiber communications, 3rd ed.,G.Keiser, McGrawHill, New York,2000.

- **Optics** is an old subject involving the generation, propagation & detection of light.
- Three major developments are responsible for rejuvenation of optics & its application in modern technology:
 - **1- Invention of Laser**
 - 2- Fabrication of low-loss Optical Fiber OF
 - **3- Development of Semiconductor Optical Devices**
- As a result, new disciplines have emerged & new terms describing them have come into use, such as:
- Electro-Optics: is generally reserved for optical devices in which electrical effects play a role, such as lasers, electro-optic modulators & switches.

- Optoelectronics: refers to devices & systems that are essentially electronics but involve lights, such as LED, liquid crystal displays & array photodetectors.
- Quantum Electronics: is used in connection with devices & systems that rely on the interaction of light with matter, such as lasers & nonlinear optical devices.
- Quantum Optics: Studies quantum & coherence properties of light.
- Lightwave Technology: describes systems & devices that are used in optical communication & signal processing.
- Photonics: in analogy with electronics, involves the control of photons in free space and matter.

Photonics reflects the importance of the photon nature of light.
 Photonics & electronics clearly overlap since electrons often control the flow of photons & conversely, photons control the flow of electrons.

The scope of Photonics

- **1- Generation of Light** (Coherent & Incoherent)
- 2- Transmission of Light (Through free space -FSO, Fibers -OF,

Imaging systems, Waveguides, ...)

3- Processing of Light Signals (Modulation, Switching,

Amplification, Frequency conversion, ...)

4- Detection of Light (Coherent & Incoherent)

Photonic Communications: describes the applications of photonic technology in communication devices & systems, such as transmitters, transmission media, receivers & signal processors, etc.

THE ELECTROMAGNETIC SPECTRUM

Extremely wide bandwidth- BW: high carrier frequency (a wavelength of 1552.5 nm corresponds to a center frequency of 193.1 THz!) & consequently orders of magnitude increase in available transmission bandwidth & larger information capacity.

- OF have small size & light weight.
- **OF** are **immune to electromagnetic interference** (high voltage transmission lines, radar systems, power electronic systems, airborne systems, ...)
- □ Lack of EMI cross talk between channels
- Availability of very low loss OF (0.25 to 0.3 dB/km), high performance active & passive photonic components such as tunable lasers, very sensitive PD, couplers, filters,
- **Low cost systems for high data rates** in excess of several Gbit/s.

Photonic Communications Advantages

BW demands

Type & applications	Format	Uncompressed	Compressed
Voice, digital telegraphy	4 kHz voice	64 kbps	16-32 kbps
Audio	16-24 kHz	512-748 kbps	32-384 kbps (MPEG, MP3)
Video conferencing	176 144 or 352 288 frames @ 10-30 frames/s	2-35.6 Mbps	64 kbps-1.544 Mbps (H.261 coding)
Data transfer, E- commerce,Video entertainment			1-10 Mbps
Full-motion broadcast video	720 480frames @ 30 frames/s	249 Mbps	2-6Mbps (MPEG-2)
HDTV	1920 1080 frames@ 30 frames/s	1.6 Gbps	19-38 Mbps (MPEG-2)

Popis čiąnosti: Výskum aplikácie distribuovanej databazy na báze Mojette transformácie (MT) vo videodohľadovom bezpečnostnom systéme: M

Evolution of Fiber Optic Systems

- 1950s: Imaging applications of
 OF in medicine & non destructive testing, lighting, FOS
- 1960s: Research on lowering the OF loss for telecom. applications.
- 1970s: Development of low loss OF, semiconductor light sources -LD & PD – PIN, APD
- 1980s: SM OF (OC-3 to OC-48) over repeater spacings of 40 km.
- 1990s: Optical amplifiers (e.g. EDFA), WDM (Wavelength Division Multiplexing) toward Dense-WDM -DWDM.

System Design Choices: Photodetector, Optical Source, Fibers

Photodetectors: Compared to APD, PINs are less expensive and more stable with temperature. However PINs have lower sensitivity.

Optical Sources

1- LEDs: 150 (Mb/s).km @ 800-900 nm and larger than

1.5 (Gb/s).km @ 1330 nm

2- InGaAsP lasers: 25 (Gb/s).km @ 1330 nm and ideally around 500 (Gb/s).km @ 1550 nm. 10-15 dB more power. However more costly and more complex circuitry.

G Fiber

- **1- Single-mode fibers SM OF** are often used with lasers or edge-emitting LEDs.
- **2- Multi-mode fibers MM OF** are normally used with LEDs. NA and should be optimized for any particular application.

Operating of OFs, optical sources, OFAs and PDs in

3 different optical windows

Link Power/Loss Analysis

 $P_{T}[dB] = P_{s}[dBm] - P_{R}[dBm]$ $P_{T} = 2l_{c}[dB] + \alpha_{f}[dB / km] \times L[km] + \text{System Margin}$

Receiver Sensitivities vs. Bit Rate

The Si PIN & APD and InGaAsP PIN plots for BER= 10⁻⁹. The InGaAs APD plot is for BER= 10⁻¹¹.

Link Loss Budget Example 1

Link Power Budget Table Example 2

Example 2: SONET OC-48 2.5 Gb/s link

Transmitter: 3dBm @ 1550 nm;

Receiver: InGaAs APD with -32 dBm sensitivity @ 2.5 Gb/s;

Fiber: 60 km long with o.3 dB/km attenuation; jumper cable loss 3 dB each, connector loss of 1 dB each.

Component/loss parameter	Output/sensitivity/ loss	Power margin (dB)
Laser output	3 dBm	
APD Sensitivity @ 2.5 Gb/s	-32 dBm	
Allowed loss	3-(-32) dBm	35
Source connector loss	1 dB	34
Jumper+Connector loss	3+1 dB	30
Cable attenuation	18 dB	12
Jumper+Connector loss	3+1 dB	8
Receiver Connector loss	1 dB	7(final margin)

Dispersion Analysis (Rise-Time Budget)

$$t_{sys} = \left[t_{tx}^{2} + t_{mod}^{2} + t_{GVD}^{2} + t_{rx}^{2}\right]^{1/2}$$
$$= \left[t_{tx}^{2} + \left(\frac{440L^{q}}{B_{0}}\right)^{2} + D^{2}\sigma_{\lambda}^{2}L^{2} + \left(\frac{350}{B_{rx}}\right)^{2}\right]^{1/2}$$

 $t_{tx}[ns]$: transmitter rise time $t_{rx}[ns]$: receiver rise time $t_{mod}[n]$: modal dispersion $B_{rx}[MHz]$:3dBElectrical BW L[km]:Length of the fiber $B_0[MHz]$:BW of the 1 km of the fiber; $q \approx 0.7$ $t_{GVD}[ns]$: rise-time due to group velocity dispersion

D[ns/(km.nm)]:Dispersion σ_{λ} [nm]: Spectral width of the source

Dispersion Analysis (Rise-Time Budget)

$$t_{sys} = \left[t_{tx}^{2} + t_{mod}^{2} + t_{GVD}^{2} + t_{rx}^{2}\right]^{1/2}$$
$$= \left[t_{tx}^{2} + \left(\frac{440L^{q}}{B_{0}}\right)^{2} + D^{2}\sigma_{\lambda}^{2}L^{2} + \left(\frac{350}{B_{rx}}\right)^{2}\right]^{1/2}$$

 $t_{tx}[ns]$: transmitter rise time $t_{rx}[ns]$: receiver rise time $t_{mod}[n]$: modal dispersion $B_{rx}[MHz]$:3dBElectrical BW L[km]:Length of the fiber $B_0[MHz]$:BW of the 1 km of the fiber; $q \approx 0.7$ $t_{GVD}[ns]$: rise-time due to group velocity dispersion

D[ns/(km.nm)]:Dispersion σ_{λ} [nm]: Spectral width of the source

Two-level Binary Channel Codes

In digital transmission system, the system rise-time limits the bit rate of the system according to the following criteria:

$$t_{sys}$$
 < 70% of NRZ bit period
 t_{sys} < 35% of RZ bit period

Example

- Laser Tx has a rise-time of 25 ps at 1550 nm and spectral width of 0.1 nm
- Length of fiber is 60 km with dispersion 2 ps/(nm.km)
- □ The InGaAs APD has a 2.5 GHz BW
- The rise-time budget (required) of the system for NRZ signaling is 0.28 ns whereas the total rise-time due to components is 0.14 ns
- The system is designed for 20 Mb/s
- ☐ The system is designed for 20 Mb/s

Transmission Distance for MM-OF

Example

□ NRZ signaling,

- Source/detector:
 800-900 nm LED/PIN or AlGaAs laser/APD combinations;
- LED output=-13 dBm; Fiber loss=3.5 dB/km; Fiber bandwidth 800 MHz.km; q=0.7; 1-dB connector/coupling loss at each end; 6 dB system margin, Material dispersion ins 0.07 ns/(km.nm); Spectral width for LED=50 nm.
 Laser λ=850 nm, Spectral width=1 nm; Laser ouput=0 dBm,
 - Laser system margin=8 dB;

Transmission Distance for MM-OF

Transmission Distance for a SM OF

Example

- Communication at 1550 nm; no modal dispersion;
- □ Source: Laser;
- Receiver: InGaAs-APD (11.5 log *B* -71.0 dBm); PIN (11.5log *B*-60.5 dBm);
- **Fiber loss =0.3 dB/km;**
 - D=2.5 ps/(km.nm);
- □ Laser spectral width 1 and 3.5 nm;
- □ Laser output 0 dBm;
- □ Laser system margin=8 dB;

Transmission Distance for a SM OF

Photonic Communications Early Applications –

Fiber Optic Communications

Digital link consisting of Time-Division-Multiplexing (TDM) of 64 kbps voice channels (early 1980).

SONET & SDH Standards

- SONET (Synchronous Optical NETwork) is the network standard used in north America & SDH (Synchronous Digital Hierarchy) is used in other parts of the world. These define a synchronous frame structure for sending multiplexed digital traffic over OF trunk lines.
- The basic building block of SONET is called STS-1
 (Synchronous Transport Signal) with 51.84 Mbps data rate. Higher-rate SONET signals are obtained by byte-interleaving N
 STS-1 frames, which are scramble & converted to an Optical
 Carrier Level N (OC-N) signal.
- The basic building block of SDH is called STM-1 (Synchronous Transport Module) with 155.52 Mbps data rate. Higher-rate SDH signals are achieved by synchronously multiplexing N different STM-1 to form STM-N signal.

SONET & SDH Transmission Rates

SONET level	Electrical level	Line rate (Mb/s)	SDH equivalent
OC-1	STS-1	51.84	-
OC-3	STS-3	155.52	STM-1
OC-12	STS-12	622.08	STM-4
OC-24	STS-24	1244.16	STM-8
OC-48	STS-48	2488.32	STM-16
OC-96	STS-96	4976.64	STM-32
OC-192	STS-192	9953.28	STM-64

Typical Components of a Photonic Communication Link

Photonic Communication Link Installation

SONET/SDH Network Concept

FIGURE 1-9

Conceptual SONET/SDH optical transport network connecting local, metropolitan, and wide-area communications elements.

