

10MCF400Nd

MID FREQUENCY TRANSDUCER
Preliminary Data Sheet

KEY FEATURES

- Very high efficiency mid-range driver
- Carbon fiber cone for optimum loading behaviour and low distortion
- Extremely linear frequency response
- 4" edgewound aluminium voice coil
- 800 W Program Power
- High efficiency and sensitivity
- FEA optimized neodymium motor structure
- Sealed cast aluminium frame
- Designed for high performance mid-frequency line array and horn loading applications

TECHNICAL SPECIFICATIONS

Nominal diameter	250 mm	10 in
Rated impedance		8 Ω
Minimum impedance		7,5 Ω
Power capacity*	400) W _{AES}
Program power		800 W
Sensitivity	102 dB 1W / 1m	າ @ Z _N
Frequency range	300 - 5.0	000 Hz
Voice coil diameter	101,6 mm	4 in
BI factor	28	3,8 N/A
Moving mass	0,	038 kg
Voice coil length	11	l,5 mm
Air gap height		10 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	270 Hz
D.C. Voice coil resistance, R _e	5,9 Ω
Mechanical Quality Factor, Q _{ms}	14,5
Electrical Quality Factor, Q _{es}	0,47
Total Quality Factor, Qts	0,45
Equivalent Air Volume to C _{ms} , V _{as}	1,8 I
Mechanical Compliance, C _{ms}	9 μm / N
Mechanical Resistance, R _{ms}	4,4 kg / s
Efficiency, η ₀	7,55 %
Effective Surface Area, S _d	$0,038 \text{ m}^2$
Maximum Displacement, X _{max} ***	3,5 mm
Displacement Volume, V _d	133 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,5 mH

Notes:

MOUNTING INFORMATION

Overall diameter	270 mm	10,63 in
Bolt circle diameter	248 mm	9,76 in
Baffle cutout diameter:		
- Front mount	227 mm	8,94 in
Depth	103 mm	4,05 in
Net weight	6,2 kg	13,67 lb
Shipping weight	6,6 kg	14,55 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.