
M
ul

ti
m

ed
ia

 S
ys

te
m

 A
rc

hi
te

ct
ur

es

40 Published by the IEEE Computer Society 1089-7801/08/$25.00 © 2008 IEEE IEEE INTERNET COMPUTING

IMS Application Servers
Roles, Requirements,
and Implementation Technologies

Hechmi Khlifi
Dialexia

Jean-Charles Grégoire
National Institute
of Scientific Research, Canada

The IP multimedia subsystem (IMS) defines a generic architecture to support

communication services over a Session Initiation Protocol (SIP) infrastructure.

In the IMS architecture, application servers host and execute the IMS service

logic. These servers can be SIP application servers, open services architecture

(OSA) application servers, or a customized applications for mobile networks

using enhanced logic (Camel) service environment. Some technologies used in

telephony and voice-over-IP (VoIP) application servers are also applicable to

IMS application servers, but such servers have some unique requirements that

could limit the extent to which these technologies can meet them.

T he Third-Generation Partnership
Project (3GPP)-defined IP Multi-
media Subsystem1 is becoming the

de facto standard for real-time multi-
media communication services. IMS
defines a generic architecture for of-
fering communication services such as
multimedia telephony, push to talk, and
instant messaging over a Session Initi-
ation Protocol (SIP)2 infrastructure.

Among the most important compo-
nents of the IMS architecture are the
application servers, which host and
execute the logic of the IMS services
(for example, how services are invoked,
what signaling and media actions are
involved, and how services interact
with each other). IMS defines three
types of application servers: SIP ap-
plication servers, open services archi-
tecture (OSA) application servers, and

a customized applications for mobile
networks using enhanced logic (Camel)
service environment. This article dis-
cusses the first two server types.

Several technologies to build te-
lephony and voice-over-IP (VoIP) ap-
plication servers have been proposed.
Some of these technologies are rel-
evant to IMS application servers and
can meet their unique requirements.
We assume that the reader is familiar
with the SIP protocol and the roles of
its architectural elements, especially
the SIP proxy.

Overview
IMS is a set of specifications that defines
a complete framework for enabling the
convergence of voice, video, and data
communications over an IP-based
infrastructure using SIP. The 3GPP

MAY/JUNE 2008 41

IMS Application Servers

originally designed IMS for mobile networks.
Other standards bodies, including the European
Telecommunications Standards Institute,3 have
adopted it for fixed networks. It has also be-
come part of the International Telecommunica-
tion Union (ITU) Next-Generation Networking
(NGN) vision.

IMS Benefits
The IMS architecture has generated a lot of in-
terest from both wireline and wireless service
providers. This interest stems from its service
delivery framework as well as from the services
themselves.

Integrated delivery of multimedia services.
IMS, through the use of SIP, brings the Inter-
net’s power to the communication world. It pro-
vides a flexible way to build high added-value
services on top of the common signaling infra-
structure. Service providers can integrate voice,
video, and data services and provide them on a
single platform.

Modular architecture. Because IMS is highly
modular, service providers can integrate dif-
ferent components or modules from different
solution providers into the same system. This
establishes vendor independence and optimiz-
es investment.

Mobility and roaming. IMS provides access
to a user’s specific set of services, indepen-
dently of their location and network-access
serving operator.

Extra features. Finally, IMS incorporates in-
tegrated QoS, security, flexible charging, and
lawful intercept mechanisms, making it a
complete service platform for next-generation
networks.

IMS Architecture
Figure 1 shows the NGN functional architec-
ture. It has three main layers: transport, con-
trol, and service. IMS is at the architecture’s
core. It consists of several functions (such as
serving call session-control function [S-CSCF],
home subscriber server (HSS), and multimedia
resource function control [MRFC]), intercon-
nected through standardized interfaces. We give
an overview of each layer in the following sec-
tions. An in-depth tutorial appears elsewhere.4

Transport layer. The transport layer is the
network-access layer. It lets different IMS de-
vices and user equipment connect to the IMS
network. IMS devices connect to the IP net-
work in the transport layer using various tech-
nologies, including fixed access (DSL, cable
modems, Ethernet, and so on), mobile access
(wideband code-division multiple access [W-
CDMA], CDMA-2000, Global Packet Radio Ser-
vice [GPRS], and so on) and wireless access
(such as wireless local area network [WLAN]
or WiMax). The transport layer also lets IMS
devices place and receive calls to and from the
public switched telephone network (PSTN) or
other circuit-switched networks through the
media gateway as Figure 1 shows.

The transport layer establishes the user
equipment’s IP connectivity. Once the user
equipment has an IP address and can exchange
SIP messages (either directly or through a gate-
way), it will be responsible for its own IMS
interactions, independent of the underlying net-
work-access technology. For example, K. Daniel
Wong and Vijay K. Varma show how IMS can be
used in Universal Mobile Telecommunications
System (UMTS) networks.5

Control layer. All control-layer functions are
specified as part of the IMS architecture. At
the layer’s core is the CSCF. Three SIP signaling
servers handle this function: the proxy CSCF
(P-CSCF), the interrogating CSCF (I-CSCF), and
the S-CSCF mentioned previously.

The P-CSCF is a SIP proxy that is the first
point of contact for the IMS terminal. IMS ter-
minals discover their corresponding P-CSCF as
part of their network connectivity procedure
(that is, through the Dynamic Host Configura-
tion Protocol [DHCP]). The P-CSCF sits on the
path of all signaling messages of the IMS ter-
minal and passes SIP registration to the correct
home network (that is, the subscriber’s admin-
istrative IMS domain) and SIP session messages
to the correct S-CSCF after registration. The P-
CSCF can also perform message compression or
decompression and security enforcement.

The I-CSCF is a SIP proxy located at the ad-
ministrative IMS domain’s edge. Its IP address is
published in the domain’s DNS server, so remote
servers (such as a P-CSCF in a visited domain or
an S-CSCF in a foreign domain) can find it and
use it as an entry point for all SIP transactions
to this domain.

Multimedia System Architectures

42 www.computer.org/internet/ IEEE INTERNET COMPUTING

The S-CSCF is the signaling plane’s central
node. It registers users and provides services to
them. It routes SIP requests, provides billing in-
formation to mediation systems, maintains ses-
sion timers, and interrogates the HSS to retrieve
authorization, service-triggering information,
and user profiles.

The HSS is the master user database. It sup-
ports the IMS network entities that handle the
calls or sessions. It contains subscription-related
information (that is, user profiles), authenticates
and authorizes users, and can provide infor-
mation about users’ locations. An IMS domain
needs a subscriber location function (SLF) when
it uses multiple HSSs. Both the HSS and SLF

implement the Diameter6 protocol — an authen-
tication, authorization, and accounting (AAA)
protocol that the other elements of the IMS net-
work can use to upload and download to and
from the HSS/SLF.

The media resource function provides media
functions in the IMS architecture (such as play-
ing announcements or recording voicemails).
The IMS standard decomposes the function into
two elements.

The media resource function controller in-
terprets information from the S-CSCF (for ex-
ample, a session for media processing such as
playing announcements and mixing streams).
The S-CSCF uses SIP to communicate with the

Transport layer

Control layer

Service layer

MGW

MGCF

MRFP

TelephonePDA Cell IP phone Laptop

OSA SCS

OSA API
CAP

MFRC
S-CSCF

BGCF
P-CSCFI-CSCF

IP network

Radio access network IP connectivity access network

IMS
HSS

SLF

OSA
application server

SIP
application server

Camel service environment

IM-SSF

SIP

Diameter
Megaco

BGCF: Breakout gateway control function
Camel: Customized applications for mobile networks using enhanced logic
CSCF: Call session control function
HSS: Home subscriber server
I-CSCF: Interrogating CSCF
IMS: IP multimedia subsystem
IM-SSF: IP multimedia service switching function
MFRC: Multimedia resource function control
MGCF: Media gateway control function

MGW: Media gateway
MRFP: Media resource function processor
OSA: Open services architecture
P-CSCF: Proxy CSCF
SCS: Service capability server
S-CSCF: Serving CSCF
SIP: Session Initiation Protocol
SLF: Subscriber location function

Public switched
telephone network

SIP

Figure 1. Overall Next-Generation Networking (NGN) functional architecture. The NGN architecture has three
layers — transport, control, and service — with the IP multimedia subsystem (IMS) at the architecture’s core.

MAY/JUNE 2008 43

IMS Application Servers

MRFC, which uses Megaco/H.248,7 a master–
slave media-control protocol, to control the me-
dia resource function processor (MRFP).

The breakout gateway control function (BGCF)
determines the next hop for routing SIP mes-
sages that can’t be routed by the S-CSCF. It se-
lects a media gateway control function (MGCF)
that will route the call to the PSTN through a
media gateway.

Service layer. The transport and control layers
provide an integrated and standardized network
platform to let service providers offer various
multimedia services in the service layer. Ap-
plication servers host and execute the services
and provide the interface with the control layer
using the SIP protocol. As we stated previously,
IMS defines three types of application serv-
ers: the SIP application server, OSA application
server, and the Camel service environment.

The Camel service environment is a set of
mechanisms that let mobile network operators
provide subscribers with operator-specific ser-
vices, even when they’re roaming outside their
home network service environments. In the IMS
architecture, the IP multimedia service switch-
ing function interface translates requests be-
tween SIP and the Camel application part. The
implementation of the Camel service environ-
ment is outside this article’s scope.

IMS Application Servers
An IMS application provides a specific service
to the end user. IMS end-user services include
multiparty gaming, videoconferencing, mes-
saging, community services, presence, and con-
tent sharing.

Depending on its implementation, an IMS
application server can host one or many IMS
applications. In both cases, the application
server handles and interprets the SIP mes-
sages forwarded by the S-CSCF (either directly
or through the OSA service capability server
[SCS]) and translates end-user service logic into
sequences of SIP messages, which it sends to the
parties involved, again through the S-CSCF.

The IMS architecture lets an IMS service
provider deploy multiple application servers in
the same domain. Different application servers
can be deployed for different application types
(for example, telephony or presence application
servers) or different groups of users. The S-CSCF
decides whether it should forward an incoming

initial SIP request to a given application server.
The decision it makes is based on filter informa-
tion received from the HSS. The HSS stores and
conveys this filter information on a per-applica-
tion-server basis for each user.

When the HSS transfers the name and ad-
dress of more than one application server, the
S-CSCF must contact each application server in
the order provided. The S-CSCF uses the first
application server’s response as input to the
second application server.

The application server uses filter rules to
decide which of the many services deployed on
the server should handle the session. During the
service logic’s execution, the application server
can communicate with the HSS to get additional
information about a subscriber or to learn about
changes in the subscriber’s profile.

The application server (SIP application
server or the OSA SCS) uses the Diameter pro-
tocol to communicate with the HSS. Diam-
eter transports user-profile-related data, but
can also transport transparent data — that is,
data for which the exact representation of in-
formation isn’t understood by the HSS or the
protocol (for example, service-related data or
user-related information).

An Example IMS Application
To illustrate the interactions between key ele-
ments of the IMS architecture and the IMS ap-
plication servers, we implemented a small IMS
audioconference application.

To join a conference, a participant calls the
service identified by its uniform resource identi-
fier (URI) — for example, sip:ConfServiveURI@
emt.inrs.ca. When the service receives the
call, it plays a greeting and asks the caller to
enter the conference code. If the code is valid, it
asks the caller to enter his or her PIN. If the PIN
is also valid, the service lets the caller join the
conference; otherwise, it asks the caller to retry.

SIP Application Servers
SIP application servers can act as redirect serv-
ers, proxy servers, originating user agents,
terminating user agents, or back-to-back user
agents. They have SIP signaling capabilities
and are directly involved in the call’s signal-
ing flow. They receive SIP messages from the S-
CSCF and parse them. Similarly, they generate
SIP messages and send them to the S-CSCF.

The application server translates an IMS

Multimedia System Architectures

44 www.computer.org/internet/ IEEE INTERNET COMPUTING

service’s execution in the SIP application serv-
er into a sequence of SIP procedures, such as
sending invite requests and reacting to SIP
responses. For services requiring media inter-
action, the SIP application server invokes the
multimedia resource function control (MRFC)
capabilities. The IMS specifications don’t ex-
plain exactly how to perform this invocation,
but several proposals exist for letting the SIP
application server use SIP to control the MRFC
(for example, basic network media services with
SIP,8 Media Server Control Markup Language
[MSCML],9 Media Objects Markup Language,
and Media Sessions Markup Language).

Figure 2 shows the audioconference ser-
vice’s call flow when managed by a SIP applica-
tion server. We assume that the MRFC and the
MRFP are colocated in the same entity (MRF in
the figure). We also assume that media control
messages are transported in the body of the SIP
invite and info requests. (An info request is
a SIP request used to carry session-related con-
trol information generated during a session.)

For simplicity, the figure doesn’t show some
provisional SIP messages, such as 100 Trying
and 180 Ringing.

When the SIP application server receives the
first invite from the caller, it creates a new SIP
session with the MRF. The body of the invite
asks the MRF to play a greeting to the caller and
ask the caller to enter the conference code. The
MRF forwards the conference code received from
the user to the application server in an info SIP
request. If the code is valid, the SIP application
server sends an info request back to the MRF,
asking it to ask the caller to enter his or her PIN.
The SIP application server and the MRF thus
continue to exchange SIP messages until the au-
thentication process ends, and the caller’s user
agent starts receiving the media stream from
other participants’ input. As Figure 2 shows, all
SIP messages transit through the S-CSCF.

OSA Application Servers
OSA application servers can provide the same
services as the SIP application server but have
no signaling capabilities and aren’t directly in-
volved in the SIP calls’ signaling flow. They com-
municate with the S-CSCF through the OSA SCS,
which maps SIP messages into invocations of the
OSA API (also called Parlay) and back. From an
S-CSCF perspective, the SIP application server
and the OSA SCS exhibit the same behavior.

The OSA application server also has access
to the HSS data, but only through the SCS. The
SCS implements the Diameter protocol, so it can
read and update data records based on the OSA
application server’s requests.

The OSA application server mainly imple-
ments external services that could be located in
a visited network or a third-party platform. Fig-
ure 3 shows the call flow of the audioconference
service managed by an OSA application server.
The interactions between the OSA SCS and the
MRF are similar to those of the SIP application
server and MRF. However, the OSA application
server tells the OSA SCS which action to perform
(for example, using sendInfoReq()method calls),
and the OSA SCS notifies the OSA application
server of the events reported by the MRF (for ex-
ample, using sendInfoRes()method calls).

IMS Application Server
Implementation Technologies
The IMS specifications don’t define the appli-
cation servers’ internal architecture. To un-

Caller S-CSCF
SIP

application
server

MRF

INVITE

200 OK

S-CSCF

RTP Interactive
Voice Response

INFO (Code)

RTP (Mixed)

INVITE
INVITE
MSCML

INVITE
MSCML

200 OK
200 OK

200 OK

200 OK

INFO (Ask For PIN)

200 OK

INFO (PIN)

200 OK

INFO (Add to conference)

200 OK

MSCML: Media Server Control Markup Language
RTP: Real-Time Transport Protocol
SIP: Session Initiation Protocol
S-CSCF: Serving call session control function

Figure 2. The audioconference service’s call flow, managed by a
SIP application server. This server invokes the multimedia resource
function control’s capabilities using SIP.

MAY/JUNE 2008 45

IMS Application Servers

derstand how to build application servers and
deploy IMS applications and end-user services,
we must examine the technologies that we could
use to build them.

Existing technologies for building IMS ap-
plications aren’t all equivalent. Some can be
used to implement a complete application serv-
er, others can be used to implement just a layer
of the application server. Some of them are SIP-
dependent, so they can be used only to build
SIP application servers. Others are protocol in-
dependent, so they can be used to build both
SIP and OSA application servers. We classify
these application server technologies into three

families: SIP programming techniques, APIs,
and service execution environments.

SIP Programming Techniques
SIP programming techniques let application pro-
grammers access basic SIP functionalities to pro-
gram the SIP applications. The two techniques
in this category are the SIP common gateway
interface (SIP CGI)10 and the SIP servlet.11 These
techniques are SIP-dependent, so they can only
be used for SIP application servers.

SIP-CGI. SIP CGI was inspired by HTTP CGI, a
tool for creating dynamic content for the Web.

INVITE

reportNotification()

createCallLeg()

routeReq()

200 OK

200 OK

RTP

INVITE

200 OK

routeRes()

INVITE

INVITE

200 OK

200 OK

200 OK

200 OK

RTP

createUICall()

200 OK

INFO(code)

200 OK

attachMediaReq()

INFO(PIN?)

INFO(welcome, code?)

INFO(PIN)

INFO(Add)

sendINFOReq()

sendINFORes()

sendINFOReq()

sendINFORes()

OSA: Open services architecture
RTP: Real-Time Transport Protocol
S-CSCF: Serving call session control function

OSA
application serverOSA SCSCaller S-CSCF MRFS-CSCF

Figure 3. The audioconference service’s call flow, managed by an OSA application server. The OSA
service capability server (SCS) maps SIP messages into invocations of the OSA API (also called Parlay)
and back.

Multimedia System Architectures

46 www.computer.org/internet/ IEEE INTERNET COMPUTING

When a server receives a SIP request, it invokes
a SIP CGI script. The server passes the message
body to the script through its standard input
and sets environmental variables containing
information about the message headers, user in-
formation, and server configuration. The script
performs some processing and generates signal-
ing instructions for the server to execute. The
SIP CGI script can instruct the server to gener-
ate a SIP response, proxy a request, create a new
request, or change a request’s headers. Figure 4
shows the functional model of a CGI-based SIP
application server.

In a CGI-based IMS SIP application server,
IMS end-user services are written as CGI scripts.
The server calls a CGI script for each incoming
call. The script runs the service logic and re-
turns to the server a list of actions to perform
on the SIP request. Using IMS terminology, we
can consider the CGI scripts IMS applications.

SIP servlet. The SIP servlet API is a Java ex-
tension API for SIP servers, inspired by the
HTTP servlet concept. A SIP servlet is a Java-
based application component that’s managed
by a container and performs SIP signaling.
These containers, sometimes called servlet en-
gines, are server extensions that provide serv-
let functionality. Servlets interact with SIP
clients by exchanging request and response
messages through the servlet container. The
container passes objects representing SIP mes-
sages to the servlet. The servlet has access to
all the SIP messages’ headers through those
objects and, with this information, decides
how to respond to a message. Servlets can an-
swer or proxy requests, create or forward re-
sponses, and initiate new SIP transactions. The
container provides many services that the SIP
servlet can exploit, such as automatic retries,
message dispatching and queuing, forking and
merging, and state management.

The servlet itself only manages high-level
message handling and service logic. Figure 5
shows the relationship between the servlets and
the container as well as the different methods
of the servlet interface.

An IMS servlet-based SIP application server
is a SIP servlet container. IMS applications are
SIP servlets (or a group of SIP servlets). When
the server receives a new request, it applies
some preconfigured rules to select the serv-
let (the application) to process the request. The
servlet executes the service logic and invokes
the container capabilities to send and receive
SIP messages.

APIs
Several APIs for building communication ap-
plication servers can be used as part of an IMS
application server. These APIs wrap up network
and protocol functionalities into an easy-to-use
abstract software component.

The APIs provide high-level object-orient-
ed interfaces that let programmers implement
communication applications. Figure 6 shows
an API-based IMS application server. When
the API and application reside on different ma-
chines, a remote-procedure call mechanism can
allow interaction between them.

Parlay (www.parlay.org) is a set of API spec-
ifications for managing network services such
as call control, messaging, and content-based
charging. The Parlay group first proposed it for

CGI program

Server function

Session Initiation
Protocol (SIP) request

CGI

SIP response

SIP request

SIP response

Figure 4. CGI-based SIP application server. When a server receives
a SIP request, it invokes a SIP CGI script. The script performs the
required processing and generates signaling instructions for the
server to execute.

Session
Initiation
Protocol

(SIP)
client

Servlet

Servlet

Servlet

Rules

SIP
message

SIP
message

init()

service()

destry()

doRequest()

doResponse()

doInvite()

doInfo()

…..

doProvisionalResponse()

…….

doErrorResponse()

Figure 5. Servlet-based SIP application server. The container passes
objects representing SIP messages to the servlet. The servlet has
access to all the SIP messages’ headers through those objects and,
with this information, decides how to respond to a message.

MAY/JUNE 2008 47

IMS Application Servers

telephone networks, and the 3GPP later adopted
it as the OSA API to give the OSA application
server access to the IMS network functional-
ities. The Parlay API supports all call-control
functionalities that previous telephony APIs
provided and offers some new features such as
mobility, presence, and data session control.
Moreover, Parlay is the only API that includes
VoIP and SIP systems in its specifications.

Two versions of the OSA API exist:

the standard version, a simple API specifi-
cation that can be programmed using any
 object-oriented programming language; and
the Web service-based version, or Parlay X.

Although the IMS documentation implies
that the OSA API is for building OSA applica-
tion servers only, nothing prevents a SIP appli-
cation server from being Parlay-based. In this
case, the Parlay API will likely reside on the
same machine as the application server and will
be invoked locally.

In addition to Parlay, developers can use
three well-known APIs for information technol-
ogy and PSTN integration to build an IMS ap-
plication server:

Telephony API (TAPI), introduced in 1993 by
Microsoft and Intel and limited to Windows-
based systems;
Telephone services API (TSAPI), developed
by Novell and Lucent Technologies; and
Java telephony API (JTAPI), a specifica-
tion for Java-based computer-telephony
applications.

TAPI, TSAPI, and JTAPI all define methods
that let telephony applications set up and tear
down calls, monitor progress, perform iden-
tification, and activate features such as hold,
transfer, conference, call park, and call pickup.
They can redirect and forward calls, answer
and route incoming calls, and generate and de-
tect DTMF signals.

All three APIs hide network details and pro-
tocols from application programmers and pro-
vide them with an easy programming interface
with which to build sophisticated telephony
services. These APIs specify a set of packages,
classes, and methods, which network elements
should expose and applications should invoke
to let the applications access network func-

•

•

•

•

•

tionalities. The API implementation notifies the
application of events occurring in the network
and instructs the network components to ex-
ecute the application’s commands.

Even though these three APIs can theoreti-
cally be used to build IMS SIP application serv-
ers, they’ve stirred little interest because the
new features and capabilities that SIP provides
have superseded them. Of course, you can’t use
any of them to build an OSA application server
because such servers require the OSA API.

Service Logic Execution Environments
A service logic execution environment (SLEE)
is a high-throughput, low-latency event-
 processing application environment designed
for communication applications that can be
used to build IMS application servers.

Jain SLEE (http://jainslee.org) is the Java
specification of the SLEE concept. To our
knowledge, it’s the only industry standard
specification of a SLEE. It specifies the runtime
execution environment, called a container, and
communication services’ internal architecture.
A Jain SLEE service is a collection of reusable
object-oriented components — service building
blocks (SBBs) — running inside the container.
Figure 7 shows the architecture of a Jain SLEE-
based application server.

An SBB is a software component that sends
and receives events and performs computation-
al logic. An external resource, such as the com-
munications protocol stack, the SLEE container,
or another SBB event can generate events.

A Jain SLEE application server interacts with
external resources, such as network protocols
and TAPIs, through resource adapters, which
adapt resources to SLEE requirements.

An IMS SLEE-based application server is a

API

Application

Interface

Interface

Session Initiation Protocol

Figure 6. API-based IMS application server. The
API wraps network and protocol functionalities
into an easy-to-use abstract software component.

Multimedia System Architectures

48 www.computer.org/internet/ IEEE INTERNET COMPUTING

Jain SLEE container, and IMS applications are
SBBs. Jain SLEE isn’t related to any signaling
protocol. It can be used for both IMS SIP appli-
cation servers and OSA application servers. For a
SIP application server, it needs a resource adapt-
er for SIP, and for an OSA application server, it
needs a resource adapter for the OSA API.

IMS Application Server Requirements
IMS application servers should fulfill several
requirements:

Support for a wide range of end-user services.
By supporting a wide range of services, ap-
plication servers can provide a single sol-
ution platform.
Rapid service creation and deployment. Rap-
id service creation is crucial to success in
the marketplace. Service providers should be
able to rapidly specify, design, test, and in-
stall new services.
Easy service customization and tailoring.
Service providers must be able to change the
service logic rapidly and efficiently. Custom-
ers also demand control of their own servic-
es to meet their individual needs.
Independent evolution of services and net-
work infrastructure. Services should be de-
fined independently of a specific network
technology (SIP). Conversely, the service
architecture’s flexibility should facilitate the
exploitation of new technologies.
Support for multiplayer (or open) environ-
ments. The application server should support
services, software, and hardware compo-

•

•

•

•

•

nents from different vendors while main-
taining interoperability.
Universal service access. Users must be able to
access services independently of the physical
location and types of terminals being used.

These requirements are rooted in the Telecom-
munications Information Networking Architec-
ture Consortium’s work, the most in-depth work
on communication service architectures to date
(see www.tinac.com). Because of the require-
ments’ generic character, researchers have used
them beyond their original scope in intelligent
networks — for example, to discuss Internet
telephony service architectures12 — so we feel
strongly that they can also apply to IMS.

To relate the IMS application server require-
ments to the technologies presented, we studied
which of the requirements are intrinsically met
by the SIP application server and OSA applica-
tion server, which can be met using the present-
ed technologies, and which require the use of
other technologies.

Support for a Wide Range of Services
Both the SIP and OSA application servers can
provide any SIP-based communication service.
The OSA API, however, lacks some capabilities
that are available in SIP, such as call forking.
The absence of these capabilities might prevent
the OSA application server from supporting
some services. 3GPP and Parlay working groups
are addressing these issues.

Rapid Service Creation and Deployment
Using SIP CGI or SIP servlets to program the
SIP application server services requires knowl-
edge of the SIP, which makes it relatively dif-
ficult. Still, using the SIP servlet approach has
some advantages over using the CGI approach:

Containers ease application development by
handling some of the SIP complexity (au-
tomatic retrial, provisional responses, and
so on).
The API approach provides more convenient
access to various structures (such as SIP
URLs and contact addresses) by representing
them as abstractions rather than untyped
strings.
The servlets have ready access to a wide va-
riety of Java APIs, such as directories, data-
bases, and security algorithms.

•

•

•

•

Service
building
block

Service
building
block

Service
building
block

Resource adapter

Service
building
block

Jain SLEE
container

To the network

Figure 7. Jain service logic execution environment
application server. A Jain SLEE service is a
collection of reusable object-oriented components
— service building blocks (SBBs) — running inside
the container.

MAY/JUNE 2008 49

IMS Application Servers

Servlet deployment is more convenient because
it uses well-defined XML files, whereas the
deployment of CGI scripts isn’t standardized.

Programming OSA application server ser-
vices requires only general programming skills;
no protocol knowledge is needed. This facilitates
service creation in the OSA environment. Also,
in the SIP application server, adopting a layered
programming approach that hides SIP details
from service programmers could ease service
creation. You could do this using, for example,
TAPI or Parlay. Parlay would be the best choice
because it supports SIP functionalities. Using
Parlay will result in a SIP application server
that is similar to the OSA application server.

With Jain SLEE, which can be used for both
SIP and OSA application servers (but requires re-
source adopters), service creation and deployment
is easy because services are created as standalone
SBBs and deployed in a standard manner.

Easy Service Customization and Tailoring
Easy service customization is an important re-
quirement for service providers. Scripting is a
good approach to ensure a high customization
level of IMS services. Generally, solution pro-
viders offer proprietary scripting languages.
However, the Voice Browser Call Control lan-
guage,13 an XML-based language, offers an
alternative. CCXML was proposed to script the
logic of telephony applications and has poten-
tial in both SIP and OSA application servers. It
provides a standard way for controlling rout-
ing, bridging, outbound calling, and confer-
encing actions, as well as for executing Voice
Extensible Markup Language (VoiceXML)14 di-
alogs. Unfortunately, CCXML is only designed
for telephony, so you can’t use it to customize
other IMS services, such as presence and in-
stant messaging.

The application server should also provide
a mechanism for customers to set and mod-
ify their preferences. Most approaches use
Web interfaces and interactive voice response
menus to do so. However, you could also use
scripting languages such as the Call Process-
ing Language15 for this purpose. CPL is an
XML-based scripting language that lets users
control their Internet telephony services. End
users can use CPL to describe their preferenc-
es, such as call forwarding based on time of
day or call rejection based on caller identity.

• Like CCXML, CPL can be used in both SIP and
OSA application servers and is designed for
telephony services.

Finally, using CPL and CCXML requires
interactions between the application server
technology and the CCXML or CPL scripts
and, as far as we know, is usually done in an
ad hoc manner.

Independent Evolution of Services
and Network Infrastructure
The SIP application server has signaling capa-
bilities and is directly involved in the calls’ sig-
naling flow. So, it doesn’t meet the requirement
of independent evolution of services and net-
work infrastructure. This limit restricts the ser-
vices provided to the SIP technology. Changes
in SIP might imply modifications to the services
on the SIP application server, and the migration
to another network protocol (such as H.323 or
any future protocol) will imply the reimplemen-
tation of these services. The OSA application
server doesn’t have this restriction.

A layered programming approach can sat-
isfy the rapid service creation and deployment
requirement.

Support for a Multiplayer Environment
The IMS architecture is modular and lets ser-
vice providers integrate different elements from
different vendors. We can push this modularity
further if the application server software archi-
tecture is also standardized. Using Jain SLEE,
for instance, would let services providers run
different services from different vendors in the
same Jain SLEE containers.

The TAPIs and Parlay also provide a certain
multilayered environment support for the SIP
application server. They split the application
server into two software layers that different
vendors can provide. Similarly, using the SIP
servlet approach to build a SIP application server
allows for the deployment of services from dif-
ferent vendors into the same servlet container.

Universal Service Access
Both SIP and OSA application servers meet this
requirement. SIP-based terminals can access,
independently of their physical location, the
services both server types provide.

Analysis
As Table 1 shows, from a purely technical per-

Multimedia System Architectures

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

spective, the Jain SLEE architecture most
closely meets the TINA-C requirements. How-
ever, the programming community perceives
it as complex, which will certainly negatively
affect its adoption. Moreover, large-scale adop-
tion of Jain SLEE would require standardizing
a Parlay resource adapter for OSA application
servers and a SIP resource adapter for SIP
 application servers. This leads us to a second
point — that the SIP application server should
also be built over Parlay. A Parlay-based SIP
application server both closely meets the TINA-
C requirements and lets service providers de-
ploy the same applications on both SIP and
OSA application servers when necessary.

Some of the application server technologies
that we’ve presented, such as Parlay and Jain
SLEE, are complementary and can be used to-
gether. For example, Figure 8 shows how you
can build a SIP application server using Jain
SLEE and Parlay. In addition, the choice of an
IMS application server implementation tech-
nology doesn’t depend on the service to be
built over it. You can use all the technologies
we’ve presented (except TAPIs) to build any
IMS service.

Implementation Experience
As noted, we implemented an audioconference
service. Although we didn’t originally design
our media server and SIP application server for
IMS (we describe an early version of the media
server elsewhere16), their migration to IMS is
well under way.

We implemented our SIP application server
using Java servlet technology and the inter-
action with the media server (MRF in IMS

terminology) using SIP and MSCML. We de-
ployed the servlet that manages the confer-
ence service — ConfServlet — in the same
container as the other services’ servlets,
such as the BasicCallServlet, IVRServlet, and
VoiceMailServlet.

In our application, calling a specific URI
triggers the ConfServlet. For calls coming
from the PSTN, the gateways must map the
external phone number called to the specific
conference URI.

SIP servlets are powerful and easy to im-
plement for programmers with HTTP servlet
experience and SIP knowledge. However, they
introduce the risk of mixing front-end func-
tions with business logic. The SIP servlet en-
vironment lacks a rigid component model that
separates call control from the business logic
classes and persistence layer (similar to the
MVC frameworks used in Web development).
Finally, unit testing SIP servlet code (as well
as any SIP application server code) isn’t easy
because it requires simulating the communica-
tion protocol. Alleviating this inconvenience
will require frameworks similar to those used
for HTTP.

W e can deduce two important points from
this review. The first is the absence of an

abstract standard internal architecture for IMS
application servers. The different technologies
have different visions. Second, from a purely
technical perspective, we believe that the Jain
SLEE architecture can become the standard IMS
application server architecture.

These points notwithstanding, we note that

Table 1. Comparison of application server implementation technologies.

Feature
SIP programming techniques Programming interfaces

Service logic execution
environments

CGI Servlet Telephony Parlay Jain SLEE
Support for a wide range
of services

Yes Yes Limited Yes Yes

Rapid service creation
and deployment

No Medium Yes Yes
Yes
(but high learning curve)

Easy service customization
and tailoring

Possible Possible Possible Possible Possible

Independent evolution of services
and network infrastructure

No No Yes Yes Yes

Support for a multiplayer
environment

No Limited Medium Medium High

Universal service access Yes Yes Yes Yes Yes

MAY/JUNE 2008 51

IMS Application Servers

the SIP servlet approach is currently the most
popular application server technology. Both the
Web and open source communities are encour-
aging its adoption, so it will likely be the major
platform for at least the first generation of IMS
SIP application server services.

However, the technologies we presented aren’t
an end point in the evolution of SIP service en-
vironments. In future work, we plan to inves-
tigate the use of OSGi (www.osgi.org) to build
IMS application servers. OSGi is a successful
architecture with a high level of modularity
and easy service deployment that can be suc-
cessfully applied to communication systems.

References
Third Generation Partnership Project, “Technical

Specification Group Services and System Aspects; IP

Multimedia Subsystem (IMS), Stage 2 (Release 7.5.0),”

Sept. 2006.

M. Handley et al., SIP: Session Initiation Protocol, IETF

RFC 3261, June 2002; www.ietf.org/rfc/rfc3261.txt.

ETSI, “Telecoms and Internet Converged Services and

Protocols for Advanced Networks (TISPAN): NGN

Functional Architecture Release 1,” Aug. 2005; http://

portal.etsi.org.

G. Camarillo and M.A. Garcia-Martin, The 3G IP Mul-

timedia Subsystem (IMS): Merging the Internet and the

Cellular Worlds, John Wiley & Sons, 2nd ed., 2006.

K.D. Wong and V.K. Varma, “Supporting Real-Time

IP Multimedia Services in UMTS,” IEEE Comm., Nov.

2003, pp. 148–155.

P. Calhoun et al., Diameter Base Protocol, IETF RFC

3588, Sept. 2003; www.rfc-editor.org/rfc/rfc3588.txt.

F. Cuervo et al., Megaco Protocol Version 1.0, IETF RFC

3015, Nov. 2000; www.rfc-editor.org/rfc/rfc3015.txt.

E. Burger, J. Van Dyke, and A. Spitzer, Basic Network

Media Services with SIP, IETF RFC 4240, Dec. 2005;

www.rfc-editor.org/rfc/rfc4240.txt.

E. Burger, J. Van Dyke, and A. Spitzer, Media Server

Control Markup Language (MSCML) and Protocol, IETF

RFC 4722, Nov. 2006; www.rfc-editor.org/rfc/rfc4722.

txt.

J. Lennox, H. Schulzrinne, and J. Rosenberg, Common

Gateway Interface for SIP, IETF RFC 3050, Jan. 2001;

www.rfc-editor.org/rfc/rfc3050.txt.

JSR Expert Group, “SIP Servlet API Specification

Version 1.0,” Feb. 2003; http://jcp.org/aboutJava/

communityprocess/final/jsr116/.

R.H. Glitho, “Advanced Services Architectures for In-

ternet Telephony: A Critical Overview,” IEEE Network,

July 2000, pp. 38–44.

R.J. Auburn et al., “Voice Browser Call Control: CCX-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

ML Version 1.0,” World Wide Web Consortium (W3C)

recommendation, June 2005; www.w3.org/TR/ccxml.

S. McGlashan et al., Voice Extensible Markup Lan-

guage (VoiceXML) Version 2.0, World Wide Web Con-

sortium (W3C) recommendation, Feb. 2003; www.

w3.org/TR/voicexml20.

J. Lennox, X. Wu, and H. Schulzrinne, Call Process-

ing Language (CPL): A Language for User Control of In-

ternet Telephony Services, IETF RFC 3880, Oct. 2004;

www.rfc-editor.org/rfc/rfc3880.txt.

H. Khlifi and J.C. Grégoire, “Design and Performance

of a Stand-Alone Media Server,” Proc. 2005 Systems

Comm., IEEE CS Press, 2005, pp. 147–152.

Hechmi Khlifi is a consultant with Ericsson Canada. His

research interests include Internet real-time applica-

tions, voice over IP, and telecommunications service

engineering. Khlifi has a PhD in telecommunications

from the National Institute of Scientific Research, Uni-

versity of Quebec. Contact him at khlifi@emt.inrs.ca.

Jean-Charles Grégoire is a professor at the Energy, Mate-

rials, and Telecommunications Center of the National

Institute of Scientific Research, Canada. His research

interests include all aspects of telecommunication

systems engineering, including protocols, distributed

systems, network design, and performance analysis.

Grégoire has a PhD in technical sciences from the Fed-

eral Polytechnic School, Lausanne, Switzerland. Con-

tact him at jean-charles.gregoire@emt.inrs.ca.

14.

15.

16.

Service
building
block

Service
building
block

Service
building
block

Parlay resource adaptor

Parlay interface

Parlay interface

Signaling engine

Service
building
block

Jain SLEE
container

SIP application server

Session Initiation Protocol (SIP)

Parlay
(local or remote)

Figure 8. Jain SLEE/Parlay integration. Parlay and Jain SLEE
are complementary and can be used together to build a SIP
application server.

