```
Home | Skip to Content | Skip to Search | Skip to Navigation | Skip to Footer |
,||,1||,
CISCO
```

Worldwide [change] Log In $\underline{\text { Register } \mid A b o u t ~ C i s c o ~}$ Guest

Contents

Introduction
Prerequisites
Requirements
Components Used
Conventions
What is Attenuation?
Wavelength
Estimate the Attenuation on the Optical Link
NetPro Discussion Forums - Featured Conversations
Related Information

Introduction

This document describes how to calculate the maximum attenuation for an optical fiber. You can apply this methodology to all types of optical fibers in order to estimate the maximum distance that optical systems use.

Note: Always perform measurements in the field.

[^0] full name and e-mail address. This information is optional and allows us to contact you if necessary

Submit

Prerequisites

Requirements

There are no specific requirements for this document.

Components Used

This document is not restricted to specific software and hardware versions.

Conventions

Refer to Cisco Technical Tips Conventions for more information on document conventions.

What is Attenuation?

Attenuation is a measure of the loss of signal strength or light power that occurs as light pulses propagate through a run of multimode or single-mode fiber. Measurements are typically defined in terms of decibels or $\mathrm{dB} / \mathrm{km}$.

Wavelength

The most common peak wavelengths are $780 \mathrm{~nm}, 850 \mathrm{~nm}, 1310 \mathrm{~nm}, 1550 \mathrm{~nm}$, and 1625 nm . The 850 nm region, referred to as the first window, was used initially because of the support for the original LED and detector technology. Today, the 1310 nm region is popular because of the dramatically lower loss and lower dispersion.

You can also use the 1550 nm region, which can avoid the need for repeaters. Generally, performance and cost increase as wavelength increases.

Multimode and single-mode fibers use different fiber types or sizes. For example, single-mode fiber uses $9 / 125$ um and multimode uses $62.5 / 125$ or $50 / 125$. The different size fibers have different optical loss $\mathrm{dB} / \mathrm{km}$ values. Fiber loss depends heavily on the operating wavelength. Practical fibers have the lowest loss at 1550 nm and the highest loss at 780 nm with all physical fiber sizes (for example, 9/125 or $62.5 / 125$).

When you start to calculate the maximum distances for any optical link, consider tables 1 and 2 :

Table 1 - For Wavelength 1310nm

	Attenuation/ $\mathbf{K m}(\mathbf{d B} /$ $\mathbf{K m})$	Attenuation/ optical connector (dB)	Attenuation/ joint (dB)	

Min	0.3	0.4	0.02	Best Conditions
Average	0.38	0.6	0.1	Normal
Max	0.5	1	0.2	Worst situation

Table 2 - For Wavelength 1550 nm

	Attenuation/ $\mathbf{K m}(\mathbf{d B} /$ $\mathbf{K m})$	Attenuation/ optical connector $\mathbf{(d B)}$	Attenuation/ joint (dB)	
Min	0.17	0.2	0.01	Best Conditions
Average	0.22	0.35	0.05	Normal
Max	0.4	0.7	0.1	Worst situation

Here is an example of a typical situation in the field:

Oxtcal Conector

Estimate the Attenuation on the Optical Link

You can now calculate the attenuation for this link. You can arrive at the total attenuation (TA) of an elementary cable section as:
$T A=n \times C+c \times J+L \times a+M$
where:

- n -number of connectors
- C -attenuation for one optical connector (dB)
- c -number of splices in elementary cable section
- J—attenuation for one splice (dB)
- M—system margin (patch cords, cable bend, unpredictable optical attenuation events, and so on, should be considered around 3dB)
- a—attenuation for optical cable ($\mathrm{dB} / \mathrm{Km}$)
- L-total length of the optical cable

When you apply this formula to the example, and assume certain values for the optical cards, you obtain these results:

For wavelength 1310nm: Normal
$T A=n \times C+c x J+L \times a+M=2 \times 0.6 d B+4 x 0.1 d B+20.5 \mathrm{Km} \times 0.38 d B / K m+3 d B=12.39 \mathrm{~dB}$

For wavelength 1310nm: Worst Situation
$T A=n x C+c x J+L x a+M=2 \times 1 d B+4 x 0.2 d B+20.5 K m x 0.5 d B / K m+3 d B=16.05 d B$

For wavelength 1550 nm : Normal
$T A=n \times C+c x J+L \times a+M=2 \times 0.35 d B+4 x 0.05 d B+20.5 \mathrm{Km} \times 0.22 \mathrm{~dB} / \mathrm{Km}+3 \mathrm{~dB}=8.41 \mathrm{~dB}$

For wavelength 1550nm: Worst Situation
$T A=n \times C+c \times J+L \times a+M=2 \times 0.7 d B+4 \times 0.1 d B+20.5 K m \times 0.4 d B / K m+3 d B=13 d B$

Assume that the optical card has these specifications:

Tx =- $\mathbf{3} \mathbf{d B}$ to 0 dB at $\mathbf{1 3 1 0} \mathrm{nm}$
$R x=\mathbf{- 2 0} \mathbf{d B}$ to $\mathbf{- 2 7} \mathbf{d B}$ at 1310 nm

In this case, the power budget is between 27 dB and 17 dB .

If you consider the worst card, which has the power budget at 17 db at 1310 nm , and the worst situation for the optical link to be 16.05 dB at 1310 nm , you can estimate that your optical link will work without any problem. In order to be sure of this, you must measure the link.

NetPro Discussion Forums - Featured Conversations

Networking Professionals Connection is a forum for networking professionals to share questions, suggestions, and information about networking solutions, products, and technologies. The featured links are some of the most recent conversations available in this technology.

```
NetPro Discussion Forums - Featured Conversations for Optical
Service Providers: Optical Networking
DATABASE BACKUP USING TL1 through an OSI link - Nov 7, }200
Redesign Node using Metroplanner - Nov 6, }200
Fiber optic network monitoring tool - Nov 6, 2007
Issue with Gig port of 12006 GSR - Nov 5, 2007
Copper SFP and GBIC for GigE 15454E Cards - Nov 3, 2007
```

Service Providers: Metro

this is another test - Nov 7, 2007
 Cisco RPR DRPRI Newtwork Management - Nov 5, 2007
 Question on double tagging - Nov 5, 2007
 VRF-Lite and Interface VLANs - Nov 4, 2007
 ME3400 and Q-in-Q - Oct 31, 2007

Related Information

- Technical Support \& Documentation - Cisco Systems

[^0]: http://www.cisco.com/en/US/products/hw/optical/ps2006/products_tech_note09186a00800e6eeb.shtml (1 of 6)7.11.2007 21:42:43

