

UltraPass[™] Fiber

SF-MD

Product Information

SAMSUNG's UltraPass™ fiber is advanced Medium Dispersion Fiber* suitable for long haul and metro-core networks and high speed wideband (S + C + L band) Dense Wavelength Division Multiplexing (DWDM) transmission of today and tommorrow. Its eligibly-designed dispersion characteristics reduce various non-linear effects which are particularly deleterious in dense wavelength division multiplexing systems. It also enables network operators to use wide wavelength operating window throughout the wavelength range of 1460 ~1625 nm (S, C and L band) to cope with ever growing demand for more bandwidth. The industry leading low PMD makes the fiber suitable for use in 10 Gb/s or even higher speed DWDM networks.

UltraPass™ fiber complies with ITU-T G.656 requirements, which are more advanced standards for wideband optical transmission where Samsung has significantly involved in the standardization process

PI-1103

Issued: October 2004

UltraPass™ Fiber's Values to Customers >>

Optimized Performance

Typical dispersion values (~8.5 ps/nm²•km @ 1550 nm) are high enough to minimize non-linear effects, but low enough to minimize dispersion compensation needs and to deploy of 40 G systems to boost capacity easily

Extended Reach

UltraPass™ fiber permits current 100 GHz DWDM system to extend their reach and even for 50 GHz system, providing lower system cost, due to reduced power penalties from suppressed non-linear effects

Deferred Investment

Lower non-linear effects enable UltraPass™ fiber to defer use of more expensive L-band from the fact that it can carry more densely spaced channels in less expensive C-band than those of standard NZDSF

Wide Range of Operating Bandwidth

UltraPass™ fiber provides zero dispersion point below the S-band and positive dispersion above 1,440 nm thus, exhibits DWDM compatibility across S, C, and L-band for capacity expansion

Flexibility of Choice

Service providers are not forced to choose between DWDM efficiency and higher bit rates. The eligibly-designed dispersion characteristics support both possible migration paths

Better Non-linear Effect Management

UltraPass™ fiber shows the ideal balance of dispersion high enough for good cross channel non-linearity management, and low enough for self-phase modulation control (Self-phase modulation effects become critical in 40 G systems)

Lower Dispersion Compensating Cost

By dispersion at half the level of standard SMF, UltraPass™ fiber offers significant cost savings and easier system design from the reduced number and cost effectiveness of dispersion compensators needed when deploying 40 G networks.

Cost Effectiveness by Lower PMD

UltraPass™ fiber achieves extremely low PMD enough to fully support 40 Gbps network, reducing barriers to cost-effective system deployment and on-going operation

^{*} Medium Dispersion Fiber (MDF, ITU-T G.656) is classified as chromatic dispersion Of 2 ~ 14 ps/nm/km in 1460 ~ 1625 nm wavelength, distinguishable from former Non-Zero Dispersion Shifted Fiber (NZ-DSF, ITU-T G.655) for long-Haul networks and standard WDM transmission in C-band.

UltraPass™ Fiber

Optical Specifications >>

Parameters		Specification	
Attenuation	1310 nm	≤ 0.36 dB/km	
	1385 nm	≤ 1.0 dB/km	
	1450 nm	≤ 0.26 dB/km	
	1550 nm	≤ 0.22 dB/km	
	1625 nm	≤ 0.25 dB/km	
Point Discontinuities	1550 nm	≤ 0.05 dB	
Mode Field Diameter	1550 nm	8.7 ~ 9.7 μm	
Cable cutoff Wavelength (A _{CC})		≤ 1260 nm	
Chromatic Dispersion	1460 nm	≥ 2.0 ps/(nm•km)	
	1530 ~ 1565 nm	6.0 ~ 10.0 ps/(nm.km)	
	1565 ~ 1625 nm	8.0 ~ 13.8 ps/(nm.km)	
	Zero dispersion wavelength	≤ 1440 nm	
PMD _Q *	1550 nm	≤ 0.04 ps/km ^{1/2}	
PMD Max. Individual Value	1550 nm	$\leq 0.1 \text{ ps/km}^{1/2}$	
Macro-bending @ 1550 nm, ø60 mm, 100 turns		≤ 0.05 dB	
Macro-bending @ 1550 nm, ø32 mm, 1 turn		≤ 0.5 dB	

^{*} PMD_Q: PMD(Polarization mode dispersion) Link Design Value calculated in accordance with IEC 60794-3: 2001, section 5.5, Method 1, September 2001

Dimensional Specifications >>

Parameters		Unit	Specification
Glass	Clad Diameter	μm	$125\ \pm0.7$
	Core Non-circularity	%	≤ 0.8
	Core-Clad Concentricity Error	μm	≤ 0.5
	Fiber Curl	m	≥ 4
Coating	Coating Diameter	μm	245 \pm 5 (Uncolored)
	Coating Non-circularity	%	≤ 5.0
	Coating Non-circularity Coating-Clad Concentricity Error	% μm	≤ 5.0 ≤ 10.0

Fiber Length >>

- Standard: 25.2 km, 50.4 km per spool
- Other fiber lengths up to 50.4 km per spool are available upon request

Mechanical Specifications >>>

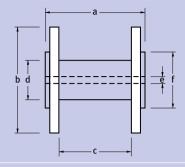
Parameters	Unit	Specifications
Proof Test Level	GPa (Kpsi)	≥ 0.69 (≥100)
Coating Strip Force	N	1.0 ~ 8.9
Dynamic Fatigue Parameter [N _d]	-	≥ 20
Dynamic Tensile Strength (Gauge Length: 0.5 m)	GPa	Mean value ≥ 4.0

Environmental Specifications >>

Parameters	Specifications
Temperature Dependence (-60 °C ~ +85 °C)	≤ 0.05 dB @ 1550 nm & 1625 nm
TempHumidity Cycling (-10 °C ~ +85 °C, 98% RH)	≤ 0.05 dB @ 1550 nm & 1625 nm
Water Immersion at 23 °C	≤ 0.05 dB @ 1550 nm & 1625 nm
Heat Aging (85°C, 85% RH, 30 days)	≤ 0.05 dB @ 1550 nm & 1625 nm

Typical Performance Charateristics >>>

Parameters		Typical Values
Attenuation	1310 nm	0.34 dB/km
	1380 nm	0.50 dB/km
	1450 nm	0.25 dB/km
	1550 nm	0.20 dB/km
	1625 nm	0.22 dB/km
Dispersion	1310 nm	- 8.9 ps/(nm•km)
	1550 nm	8.6 ps/(nm•km)
	1625 nm	13.2 ps/(nm•km)
Effective area		68 µm²
Zero dispersion wavelength		1424 nm
Dispersion slope		0.062 ps/(nm ² • km)


Packaging and Test Certification >>

PACKAGING

• Optical fiber is wound on a shipping spool for which dimensions are:

e = bore diameter 25.4 + 0.5 / -0.1 mm

f= wing diameter 160 mm

LABEL

- The label attached to each shipping spool contains at least the following information:
- Fiber I.D.
- Fiber Length
- Attenuation at 1550 nm & 1625 nm
- Mode Field Diameter at 1550 nm

TEST CERTIFICATION

- One copy of a test certification sheet is enclosed in the shipping carton.
- The sheet contains at least the following information.
- Fiber I.D.
- Fiber Length
- Attenuation at 1550 nm & 1625 nm
- MFD at 1550 nm
- Zero Dispersion Wavelength, Dispersion Slope, Dispersion at 1550 nm
- Geometry of the fiber and coating
- PMD at 1550 nm

www.samsungfiberoptics.com

1708 Yingjia Center B, No. 10A, Dong san huan Zhong Road, Chaoyang District Beijing China Tel: +86-10-6568-9988 (Ex.6110)

Fax: +86-10-6568-7625 e-mail: fiberoptics@samsung.com Samsung Telecommunications America 1301 E. Lookout Dr, Richardson, TX, USA 75082 Tel: +1-972-761-7305

Fax: +1-972-761-7349

Samsung Telecommunications Europe Am Kronberger Hang 6 65824 Schwalbach/Ts., GERMANY Tel: +49-6196-66-9100 Fax: +49-6196-66-9011

Please contact us for more information on Samsung Fiber Optic Products

© 2005 Samsung Electronics Hainan Fiberoptics Co., Ltd. All Rights Reserved.

*Samsung reserves the right to improve, enhance and modify the features and specifications of Samsung fiber optic products without prior notification.