Grafické programovanie -LabVIEW

Ján Šaliga

Programovacie nástroje

- Slúžia na vývoj aplikácií
 - Vývojové prostredie (vytvorenie zdrojového kódu, ladenie, preklad, ...)
 - Programovací jazyk:
 - Interpretačný nevytvorí sa samostatná aplikácia spustiteľná bez prostredia/podpory, napr. Visual Basic, Matlab, Phyton, ...
 - Vytvorenie samostatnej aplikácie, bežiacej mimo vývojového prostredia (inštalačné súbory pre inštaláciu na hostiteľskom PC, .exe, ... vytorenie cez preklad a "application builder")
 - Charakter programovacieho jazyka:
 - Textovo orientovaný, napr. Rôzne verzie C
 - Grafický, napr. LabVIEW

Čo je LabVIEW

- Grafické programovacie prostredie firmy NI (National Instruments) vytvorené pre vývojárov, ktorí:
 - sú odborníkmi v oblasti merania, elektroniky, riadenia technológií, robotiky, komunikačných systémov atď.
 - Nie sú profesionálni programátori, ale potrebujú v svojej práci vytvárať aplikácie najmä pre meranie a riadenie technologických procesov.
- Hlavné výhody:
 - Jednoduché programovanie zostavením logických diagramov
 - Dá sa rýchlo naučiť
 - Široká podpora pre meracie a testovacie systémy, spracovanie signálov, komunikácie, riadenie technológií, spracovanie obrazov, ...
 - Vývoj aplikácií pre rôzne operačné systémy nie iba (Win, Linux, Real time) a HW platformy (PC, real time HW, FPGA, ...)

LabVIEW v predmete – ciele a využitie

- Zoznámiť sa so základmi a získať základné praktické skúsenosti
- Demoštrácia programovanie rôzneho meracieho HW
- Riešenie projektov
- Prístup k prostrediu:
 - Katedrová licencia inštalované na všetkých PC v laboratóriu
 - Študentská verzia každý student môže stiahnuť a nainštalovať s prideleným študentským sériovým číslom (na cvičení, aktivacia, registrácia potrebná s tuke mailom)
 - Community edition voľne dostupná verzia, ale nemá sa používať vo výučbe na univerzitách.

Praktická inštalácia

- Stiahnuť inštalačné súbory z <u>https://www.ni.com/labview</u> verzie Q1 2023 alebo Q3 2022, 32 alebo 64 bit)
 - Inštalácia prebieha cez pomocnú aplikáciu Package manager, kde sa dajú zvoliť rôzne súčasti a doplnky (aj následne).
 - Pre predmet stačí LabVIEW Professional, DAQmX a VISA
 - Následne je potrebné aktivovať nainštalovanú verziu s prideleným študentským sériovým číslom.
- Návod na inštaláciu a základný kurz programovania je dostupný na <u>Getting Started with LabVIEW (ni.com)</u> https://learn.ni.com/learn/article/labview-tutorial

Ako sa programuje

- Programy sú nazývané VI z slov Virtual Instrument a pri uložení na disk majú príponu .vi
- Viacero VI môže byť spojené v projekte (.prj) spolu s ďalšími súbormi a podporami ako grafika, DLL, doplnkové knižnice a toolkity, ...)
- Každé VI obsahuje dve okná
 - Diagram predstavuje zdrojový kód v grafickej podobe
 - Front panel obrazovka užívateľa program s ovládacími a zobrazovacími prvkami
- Na hornej lište v každom okne je skupina tlačidiel pre ladenie a úpravy zdrojového kódu a grafiky
- Programovanie sa realizuje výberom grafických prvkov ikon z palety a ich následným prepojením "vodičmi", ktorý predstavujú toky (prenos) dát medzi ikonami.
- Obdobne výberom z palety grafických prvkov sa tvorí aj Front panel.

- Praktické predstavenie:
 - Spustenie
 - Okno a ovládacie prvky
 - Vybrané časti palety pre Diagram rýchly prehľad (Structure, Array, Cluster, Numeric, Boolean, String, ...
 - Vybrané časti palety pre Front panel
 - Súvislosť medzi prkom na Front a Diagrame (terminal)

Spustenie

- Cez Create project je možné vytvoriť prázdne VI (Blank VI) alebo projet. Alternatívne je možné otvoriť už existujúce súbory.
- Cez help a Find example sa je možné dostať k obvovskému množtvu príkladov z rôznej oblasti

Browse Search	Double-click an example to open it.	Information
	Analysis, Signal Processing and Mathematics	^
Browse according to:	🔜 Building User Interfaces	
Task	Communicating with External Applications	
	Control and Simulation	
Oirectory Structure	Distributing and Documenting Applications	
	Favorites	
	🧫 Fundamentals	
	🔄 Hardware Input and Output	
	Industry Applications	
	🦲 Most Recent	
	🤜 Networking	
	Optimizing Applications	
	Printing and Publishing Data	
	Programmatically Controlling VIs	
	Carl Robotics	
	Colkits and Modules	· · · · ·
	Toolkits and Modules Not Installed	Requirements
Visit ni.com		
for more examples		
ardware		
No hardware chosen		

Nové prázdne VI

Front Panel

- Vytvorenie z grafických symbolov (prvkov) z knižníc alebo užívateľom vytvorených
- Prístup: pravé tlačidlo myši (ďalej iba PTM) alebo View»Controls Palette
- Výber a umiestnenie: ľavé tlačidlo
- Editácia umiestneného: pravé tlač.

🔛 U	Intitle	ed 2 F	ront P	anel *						
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>P</u> roject	<u>O</u> perate	<u>T</u> ools	<u>W</u> indow	<u>H</u> elp			
	ſ	\$ ֎		13pt Ap	plication	Font	▼ ₽ ₽▼ 🛱 ▼	≝ - Ø-	4	2
	Knoł						-😭 Controls		🔍 Searc	h 🔁 🔼
	KHOL	, ,					Modern			۲.
2.	4	,6	-8				123	80	abc • Path	
	N						Numeric	Boolean	String & Path	
	0	1	0 	Graph			34	:		
									Graph	
				2 1 1 0 000 110	2] 1] 0] 0	k on 0 10				
			Wav	eform Ch	Wavef	orm Gr	XY Graph	Ex XY Graph	I/O	
				1 000 110	2] 1] 0.0		2 11217 1 1111 0 000 110		84	=
			Inte	nsity Chart	Intensi	ity Graph	Digital Wavef	Mixed Signal	Decorations	
				I	Q	2		20		
			3D S	Surface G	3D Par	ametri	3D Curve Graph	3D Picture Co		•
))
									1	
							Select a Control.			
<							Vicion			1.1

Block diagram

- Vytvorenie VI z iných VI (SubVI) z knižníc alebo užívateľom vytvorených
- Postup výberu obdobný ako v Front Paneli alebo View»Function Palette
- Interaktívny pomocník: Help»Show Context Help, skrátene (Ctrl-H)

Lišta nástrojov v okne diagramu a front panelu

o) 🕹 🥘 🛙	15pt Application Font	• •	• •• •	🦚 -	Search	0	?
----------	-----------------------	------------	---------------	----------------	--------	---	---

Projekt - *.lvprj =

- Zoznam +
- Konfiguračné informácie +
- Podmienky pre Build +

 Podmienky pre tvorbu šírenie aplikácie (generovanie inštalačných súborov) +

•

Controls a Indicators

- Každý prvok na Paneli je buď ovládacím prvkom (Control) alebo indikátorom
- Vlastnosti prvku sú nastaviteľné cez menu pod pravým tlačidlom myši

Vlastnosti - Properties

 Väčšina vlastností je nastaviteľná cez položku Properties

Numeric Properties: N	umeric Indicator			×
Appearance Data Range Value	Format and Precision	Documentation	Data Binding	
Floating point Scientific Automatic formatting SI notation Hexadecimal Octal Binary Absolute time Relative time	Digits F 6 1 Hide trailing Exponent in Use minimun 0 1 Pad with sp	Precision Type Significant digits zeros multiples of 3 in field width paces on left	▼	
 Default editing mode Advanced editing mode 		ок с	ancel Help	

Väzba panel - diagram

 Každý prvok na paneli má terminal (obraz, zakončenie, ukotvenie) v diagrame

Blokový diagram

- Obsahuje
 - uzly:
 - Terminály
 - SubVI
 - Funkcie
 - Konštanty
 - Štruktúry, napr. slučky
 - Spoje (vodiče, Wires)

Funkcie myši

 Vyvolanie nastavovacieho panelu: Shift-PTM alebo VIEW»Tools Palette

Automatický režim = funkcia myši sa prepína podľa umiestnenia nad objektom

Nastavovanie farieb

Vstupy a výstupy uzlov

- Každá funkcia ikona má vstupy a výstupy dát
- Vysvetlenie v kontextovom pomocníkovi (Ctrl-H) a podrobne v detailnom pomocníkovi

 Vstupy uzlov sú zväčša polymorfné – akceptujú ľubovoľné "rozumné" typy dát (číselné, textové, zoskupené – štruktúra, cluster)

Spoje (Wires)

- Určujú toky dát medzi ikonami (prenos dát medzi uzlami)
- Farba a tvar udáva typ dát
- Vytvorenie spojov:
 - Myš nad vstupom/výstupom automaticky zmení funkciu na režim kreslenia spojov
 - Prepne sa funkcia myši na režim spojovania z View»Tools Palette
- Mazanie: označenie a Delete alebo Ctrl-B pre všetky chybné
- Vkladanie uzlov a rôzne nastavenia cez menu pod PTM

Hierarchická štruktúra - Sub VI

- Akákoľvek časť programu (podprogram, nová funkcia) môže byť vytvorená ako SubVI a zastúpená vo vyššej úrovni novým symbolom (ikonou) so vstupmi a výstupmi
- Vytvorenie SubVI
 - Vytvorte program, kde budúce vstupy a výstupy sú zastúpené grafickými prvkami na Front paneli (to isté ako pri samostatnom programe)

• V okne Front pane	l PTM na symbol	🔛 Untitled 1 Front Panel *	
a z menu vyberte:		Eile Edit View Project Operate Loois Win	
 Edit icon – vytv 	oríte nový zastupujúci graf. symbol	🗘 🐼 🔘 💵 13pt Application Font	
 Show connector 	r – zobrazí sa konektor		

- Snow connector zobrazi sa konektor, počet vývodov môžete zmeniť cez menu pod PTM —
- Vyberte myšou niektorý terminál a následne ťuknite na niektorý grafický prvok zastupujúci na paneli vstup alebo výstup – vznikne priradenie
- Po priradení všetkých grafických prvkov = vstupov a výstupov, uložte VI
- Toto Vi potom môžete vložiť do iného VI ako SubVI cez položku Select a VI z Palety funkcií a napojiť ho na ostatné ikony cez vytvorené terminály na jeho ikone

Chyby v programe

- Principálne chyby program sa nedá spustiť, ikona pre štart je "roztrhnutá" – v programe je chyba, ktorá bráni spusteniu, napr. Nie je ošetrený vstup ikony, kde je požadovaná hodnota, alebo sľučka FOR nemá určený počet opakovaní, nevhodné spojenie výstupu a vstupu ikon a pod.
 - Pri pokuse o spustenie objaví sa okno so zoznamom chýb. Kliknutím na chybu sa zobrazí miesto v diagrame, kde je daná chyba
- Chyby vznikajúce počas behu program, napr. vplyvom nevhodných nastavení – vzorkovacia frekvencia je nižšia ako dvojnásobok frekvencie signálu, pripojený merací prístroj neodpovedá a pod.
 - Zobrazí sa chybové hlásenie s krátkym vysvetlením kde a prečo nastala chyba

Dátové typy

- Čísla
 - Double (plávajúca desatinná čiarka)
 - Integer (signed/unsigned s rôznou presnosťou = počet bitov)
- Booleovske hodnoty = True, False nie čísla 1, 0!!!
- String textové reťazce
- Array polia (všetky prvky poľa musia byť rovnakého typu)
 - 1D jednorozmerné (vektor)
 - 2D viacrozmerné (n dimensionálna matica)
- Cluster ekvivalent record alebo struct v C = rôzne dátové typy spojené do jednej premennej/spoja (wire)
- Polymorfizmus LabVIEW umožňuje mnohé operácie vykonať tou istou ikonou bez ohľadu na to, či ide o skalár alebo pole.

Číselné, Booleovské a textové operácie

- Číselné:
 - Paleta Numeric základné jednoduché matematické operácie
 - Paleta Mathematics veľké množstvo rôznych matematických funkcií
- Booleovské:
 - Paleta Boolean logické operácie a konvezia medzi Booleovskými a číselnými dátami
- Texty:
 - Paleta String mnoštvo rônych operácií s textami včítane konverzie medzi textm a číslom, vyhľadanie v texte atď.
- Polia paleta Array
- Klastre paleta Cluster, ... (najme nastavenie a výber zložky klastra)

 \mathbf{O}

3

2

Array - Numeric

2D array – 5 riadkov a 7 stĺpcov, spolu 35 prvkov

4

1D array — jeden riadok s 10 orvkami (elementmi)

5

6

8

9

Index prvého zobrazeného prvku

Initialize Array

Insert Into Array

Delete From Array

Array Max & Min

Search 1D Array

Arithmetic Functions Are Polymorphic

Combination

2 3 4

Result

Ak polia majú rôzny rozmer, výsledné pole bude mať rozmer rovný rozmeru najmenšieho poľa ³¹

Vybrané operácie

- Paleta string a podpalety
 - Konverzia čísla na string a vice-versa
 - Spájanie čiastkových stringov do výsledného (Concatenate)
 - Vyhľadanie/nahradenie reťazca v stringu

•

Konverzia čísla na string a vice-versa

String>>Number/string conversion

 POZOR LabVIEW defaultne používa čiarku/bodku podľa nastavenia vo Windows (krajina). Je ale možné vo % formáte konverzie zmeniť a % definovať fixne čiarku alebo bodku %

;;	Comma decimal separator.
.;	Period decimal separator.
,	System default separator. If you do not specify a separator, LabVIEW uses the system default separator.

Formátovaná konverzia - príklady

world

Ē

Klástre (clusters)

- Zoskupenie rôznych dátových typov do jednej štruktúry
 - Dôvod: zníženie počtu čiar v grafe, vstup/výstupov v SubVI, zviazanie dát, ktorý spolu významovo súvisia, ...
 - Pevná dĺžka (počet a typy zložiek)
- Cluster môže byť vo forme konštanty, indikátora alebo kontrolu
- Cluster je možné vytvoriť (definovať) umiestnením vybraných dátových typov do formálnej štruktúry vo forme rámčeka
 - Poradie ako sa vkladajú zložky do clustra pri definícii určuje aj poradie ako sa z klastra vyberajú. Toto poradie je možné aj dodatočne zmeniť
 - Ak majú zložky vytvárajúce klaster názvy (label), je možné ich hodnoty meniť alebo vyberať aj podľa mena

Príklady

- Vytvorenie clustra (do "kontainera" sa vložia zložky)
- Zmena poradia zložiek clustera
- Operácie s klástrami:
 - Zmena hodnoty zložky clustra
 - Výber hodnoty zložky clustra

Ē

Špeciálne clustre

- Error:
 - Status (boolean) nastala (True)/nenastala chyba
 - Kód chyby číslo (integer) pre identifikáciu chyby v čísleníku chýb
 - Zdroj (source) text (string) udávajú miesto vzniku chyby
- Waveform používa sa najmä pre vzorky signálu:
 - Čas vzniku signálu
 - Perióda vzorkovania
 - Vzorky signálu (array)
- ... Ďaľšie, napr. pre spektrum (obdoba waveform)

Waveform

-

=

Grafy

- V palete Graph (Front panel):
 - Chart postupne sa dokresľujú ďalšie body (vzorky) vhodné pre zobrazenie pomaly sa meniacich veličín, napr. teplota
 - 3 módy viď demonštráciu
 - Graph vykresľuje sa úsek signálu obdoba osciloskopu (vsutopm je pole alebo waveform)
 - XY graph závislosť dvoch veličín (vstupom je 2D pole dvojice hodnôt XY)
- Všetky grafy majú pripravené zoomovanie, kurzory, grafiku vykresľovania (body, farby, spojnice bodov) a ďalšie funkcie – stači povoliť v nastaveniach

Funkcie Express

 "Inteligentné" funkcie – autokonfigurovateľné = pri vložení do okna diagramu alebo

po dvojkliku sa otvára konfiguračné okno, v ktorom užívateľ nastaví požadovanú aktivitu z ponúkaného sortimentu

 Nastavené aktivity je možné upravovať cez vstupy ikony počas behu programu

Najbežnejšie štruktúry v programe

- FOR a WHILE opakovanie určitej činnosti úseku program
 - FOR daný počet krát
 - WHILE do splnenia určenej podmienky
- CASE vetvenie program vykoná sa jedna alternatíva podľa riadiacej podmienky (obdoba SWITCH v C)
- SEQUENCE určenie postupnosti behu program ak nie je iný spôsob (tok dát)

While Loops

For Loops

Porovnanie FOR/WHILE

Tunnels – vstupy a výstupy dát pre WHILE a FOR

Vstup:

- Hodnota pri štarte štruktúry
- Pre FOR môže byť indexácia = pre každý nasledujúci obeh sa vezme nasledujúca hodnota z poľa

Výstup:

- Posledná hodnota z výpočtu
- Všetky hodnoty (aj medzivýsledky) vo forme poľa

Režim sa nastavuje kikpm PTM a voľbou režimu

D. Auto-Indexing

Auto-Indexing

• Auto-Indexing Enabled

• Auto-Indexing Disabled

Posuvný register

- Umožňuje preniesť výsledkov z predchádzajúceho behu slučky do nasledujúceho
 - Môže aj z niekoľkých predchádzajúcich
- Môže byť:
 - Inicializovaný (daná počiatočná hodnota pre prvý beh slučky)
 - Neinicializovaný (POZOR počiatočná hodnota je hodnota, na ktorej slučka skončila pri predchádzajúcom použití = behu v programe!!! Opakované spustenie VI pod vývojovým systémom sa považuje za opakované spustenie sľučky. Pri prvom použití slučky register začína z implicitnej hodnoty, napr. 0, prázdny string, hodnota False, ... podľa typu dát)

Case Structures

Selector Terminal Data Types

Sequence – vnútenie postupnosti aktivít

Príklad

Práca so súbormi

Paleta File

- Vysokoúrovňové jednou ikonou sa realizuje zápis alebo čítanie
- Nízkoúrovňové samostatné čiastočné kroky pri zápise a čítaní
- Cesty k adresáru alebo súboru dátový formát path (pozor, nie je to string – potrebná konverzia
- Práca so adresármi a súbory (vytvorenie, mazanie, overenie, premenovanie, ...)
- Špeciálne súbory (XML, ZIP, tdm, ...)
- Súbory:
 - Textové čitateľný obsah rôznymi bežnými aplikáciami
 - Binárne je potrebné poznať vnútornú štruktúru, formáty dát, význam jednotlivých bytov, …)

Práca so súbormi

Typická operácia so súborom

Vysokoúrovňový prístup

V jednej ikone sú obsiahnuté všetky operácie Obmedzenie: iba pre niektoré typy súborov

Súbor Príklad zápis čítanie

Low-Level File I/O

Ξ

Interakcia s užívateľom

Úloha: program má vykonať aktivitu na základe podnetu od užívateľa – tlačidlo na front paneli, zmena hodnoty na nejakom ovládacom prvku,

- Riešenia:
 - Cyklické zisťovanie (čítanie) aktuálneho stavu ovládacích prvkov, porovnanie s predchádzajúcim stavom a podľa výsledku určenej vykonanie aktivity
 - Nevýhodné z hľadiska využitia výkonu počítača procesor je vyťažený neustálym čítaním front panelu ale vzhľadom na rýchlosť užívateľa a počítača bude "kladné" čítanie extrémne zriedkavé
 - Využitie prerušenia odvodeného od aktivity na front paneli štruktúra event
 - Procesor v počítači obslúži požiadavku len keď vznikne (event)

Príklady porovnanie

Úloha: vytvorte program, ktorý pri každej zmene hodnoty na potenciometri vypíše aktuálny dátum a čas.

=

Cyklické čítanie

Prerušenie (event)

Ďaľšie vybrané palety

- Komunikácia s prístrojmi paleta Instrument I/O
- Komunikácia s meracími kartami paleta Measurement I/O
- Spracovanie signálov paleta Signal Processing aj s pomocou palety Waveform
- Mathematics
- Connectivity
- Data communication
- ...

Measurement IO

- Ikony pre prácu s meracími multifunkčnými kartami (DAQmX) a prístrojmi na karte (napr. Karta s funkciou multimetra, osciloskopu, generátora, ... do PC) a iné podľa inštalácie voliteľných toolkitov do LabVIEW
 - Podrobnejšie aj s príkladmi v priebehu semestra

Instrument IO

- Komunikácia s meracími prístrojmi na rôznych úrovniach a po rôznych komunikačných rozhraniach
 - Podrobnejšie neskôr v priebehu semestra

Signal Processing

- Generovanie, úprava a meranie parametrov signálov v čase a spektre (transformácie, filtrovanie, výpočet vzoriek, ...)
- Vhodné pre:
 - prípavu dát pre generovanie cez meracie prístroje/karty
 - Predspracovanie nameraných dát, napr. Filtrácia nežiadúcich zložiek v spektre
 - Meranie vyhodnotenie nameraných dát, napr. Spektrum, parametre impulzov, skreslenie signálu, ...

Signal Processing			
🛉 🔍 Search	Customize 🗸		
Wfm Generation	Wfm Condition	Wfm Measure	
Sig Generation	T Sig Operation	Windows	
Filters	لىلىلىل Spectral	↔ 𝑘(𝑘) Transforms	ΓΣ Point By Point
Digital Filter Design	Adaptive Filters	System	
Time Frequency Analysis	Time Series Analysis	Wavelet Analysis	

Data communication

- Komunikácia medzi:
 - Rôznymi časťami program, napr. s vyrovnávacím registrom pre vyrovnanie rôznej rýchlosti spracovania dát, synchronizácia aktivít, ...
 - Komunikácia medzi samostatnými programami
 - Komunikácia s prenosom dát s rôznymi protokolmi cez internet

Príklad klient server TCP

