# Errors and uncertainties

Ján Šaliga 2017

#### Errors and uncertainty of measurement

- Metrology the science on accuracy and precision of measurement. .
  - Results of measurement may fluctuate and differ from true value. The fluctuation may be caused by instrumentations as well as the properties of measured signal (noise, disturbances) = stochastic error.
  - signal (noise, usual uces) succitasia error. The difference array be caused mainly but not only inaccurate properties of instrument (electronic circuits, mechanical parts, chemical sensors, ...) = systematic errors Gross errors ((Thave to be always corrected and removed) caused for example by wrong instrument, broken instrument, wrong reading, wrong calculation, etc. a.
  - We do not know the difference between the true value and results of
- measurement We can only estimate the true value and the difference with some
- probability we are not sure what is the true. That is why we are speaking about uncertainty of measurement

#### Errors and uncertainty of measurement

Uncertainty u is expressed in the form of interval around the estimation of . true value  $x_{est}$ , where the true value  $x_{TRUE}$  lays with some probability  $P_{required}$ 

 $P(x_{est} - u < x_{TRUE} < x_{est} + u) = P_{required}$ 

- $\mathbf{x}_{\mathrm{est}}$  and  $\mathbf{u}$  are needed to be estimated from measurement (measurement results, statistical behavior of results, employed instrumentations, measurement stand, etc.)
- The interval may be also unsymmetrical (given by the distribution of errors) The most common distribution – Gaussian and uniform (the interval is symmetrical)

### Uncertainty type A

- Caused by stochastic errors u<sub>a</sub> is calculated from Caused by stochastic ends  $x_{u}$  is causate  $x_{u}$  is repeated measurement by statistical approach. The true value is usually estimated as the mean value  $\frac{1}{x} = \frac{\sum_{i=1}^{N} x_i}{N}$
- . calculated from N repeated measurements
- Standard uncertainty  $u_a$  is calculated as the standard  $u_A = s_x = \sqrt{\frac{\sum_{i=1}^{N} (x_i \overline{x})^2}{N(N-1)}}$ . Gaussian distribution)

 $u_{A} = s_{x_{i}} = \sqrt{\frac{\sum_{i=1}^{N} (x_{i} - \overline{x})^{2}}{(N-1)}}$ Note: the standard uncertainty  $u_{a}$  for single measurement is:

### Uncertainty type B

- Uncertainty type B is any uncertainty calculated by a different method than statistic:
  - results from previous measurements,
  - a general or empirical knowledge of the behavior of the instruments used, specifications of the manufacturer,
  - calibration certificates.
  - the uncertainty attributed to reference quantity values mentioned in studies, textbooks or norms.

## Systematic error and uncertainty type B

• The most common and simple way is calculation from instrument accuracy (max. inaccuracy  $\Delta_{max}$ ) specified by producer (see instrument datasheet) • Analog instrumentations:  $\Delta_{max}$  is given in datasheet as a percentage  $\delta_M$  from the applied measurement range M:  $\left|\Delta_{\max} x\right| \leq \frac{\delta_M}{100} M$ 

- Digital instrumentation: sum of 2 components Percentage  $\delta_x$  from the result of measurement x .
  - The component related to the applied measurement range expressed usually as number of digits K multiplied by the weight of one on the least order of instrument display  $m_1$

$$\left|\Delta_{\max} x\right| \leq \frac{\sigma_x}{100} x + K.m$$

 $|\Delta_{\max}x| \simeq \frac{1}{100}x + \dots + \frac{1}{100}x$ Calculation of standard uncertainty  $u_{\text{B}}$ : (for the most probable uniform distribution)  $u_{B} = \sigma = \frac{|\Delta_{\max}x|}{\sqrt{3}}$ 



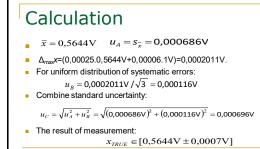
- Combined uncertainty  $u_c$  = the total uncertainty of measurement  $u_c = \sqrt{u_a^2 + u_b^2}$
- If result y is calculated as a combination (function f(..)) from N particular measurements a<sub>i</sub> of different quantities

 $y = f(a_1, a_2, \dots a_N)$ 

• Then the standard uncertainty of y is:  $u_y = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f(a_i, a_2, \dots, a_N)}{\partial a_i}\right)^2 u_{a_i}^2}$ 

Example: R=V/I,  $u_{y} = \sqrt{\left(\frac{\partial R}{\partial V}\right)^{2} u_{V}^{2} + \left(\frac{\partial R}{\partial I}\right)^{2} u_{I}^{2}} = \sqrt{\left(\frac{1}{I}\right)^{2} u_{V}^{2} + \left(\frac{V}{I^{2}}\right)^{2} u_{I}^{2}}$ 

## Expanded uncertainty U


- Expanded uncertainty U is calculated by multiplication of standard uncertainty u by the coefficient k, U=ku
- K is chosen according to required probability that the true values of measured quantity lays with the interval specified by the expanded uncertainty
  - Examples for Gaussian distribution
    k=1, p=0,68 (standard uncertainty)
    - k=3, p=0.997
    - k=2, p=0.99
    - k=2/3, p=0.5

### Calculation example

#### Multimeter Agilent 34405A,

- measurement of DC voltage, 1V range
- Condition of measurement according to requirements given by producer
  Multimeter datasheet: max error = 0.025+0.006 (in percentage from measurement
- Multimeter datasheet: max error = 0.025+0.006 (in percentage from measuremen and from range)
- Acquired values:

|        | x3     | <i>x</i> <sub>4</sub> | x <sub>5</sub>      | x <sub>5</sub>             | X7                                | ×s                                       | x <sub>9</sub>                                 | x10                                                   |
|--------|--------|-----------------------|---------------------|----------------------------|-----------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------------|
| 0,561V | 0,564V | 0,563V                | 0,567V              | 0,566V                     | 0,562V                            | 0,564V                                   | 0,568V                                         | 0,564V                                                |
| 0      | .561V  | .561V 0,564V          | .561V 0,564V 0,563V | .561V 0,564V 0,563V 0,567V | .561V 0,564V 0,563V 0,567V 0,566V | .561V 0,564V 0,563V 0,567V 0,566V 0,562V | 561V 0,564V 0,563V 0,567V 0,566V 0,562V 0,564V | 561V 0,564V 0,563V 0,567V 0,566V 0,562V 0,564V 0,568V |



# Demonstrations

- Simulated multimeter
- myDAQ multimeter with statistics