
Volume 1, Issue 1

In this Issue:
〉〉 Selecting the Optimal MCU for Your Embedded Application

〉〉 Maximizing Performance for Real-Time Systems

〉〉 Designing for Low Power

〉〉 Simplifying Design for Accelerated Time-to-Market

〉〉 Designing Efficient Connectivity

〉〉 Accelerating Next-Generation Design Through IP Reuse

STM32 Journal

2

STM32 Journal

A great deal has changed in the
thirty years I’ve designed and
written about embedded systems.
When I started, writing code was a
straightforward, linear process. You
told the CPU to do something, and
then you waited until it was done.

Over the years, I’ve watched
as the MCU has evolved from
a simple CPU to an efficient
network of integrated processors
working in parallel. Each
accelerator or coprocessor
operates independently of the
CPU, enabling the simultaneous
processing of an incredible
amount of data. In an MCU like
the new STM32 F4 from ST,
these integrated processors are
combined with a multi-layer bus
interconnect and multiple DMA
engines to provide tremendous
processing capacity.

Development tools have evolved as
well. Today developers can profile
application code non-intrusively
to focus their optimization efforts.
Similarly, they can accurately
measure power consumption while
an MCU is switching between
active and low power modes, even
to the point of showing developers

which line of code is responsible for
a spike in power consumption.

You can see the results of this
evolution in designs like the
Stanford Xenith solar vehicle
shown on the cover of this issue.
Stanford selected the STM32
for several of its more complex
subsystems because of the
architecture’s extensive peripheral
set and performance. In addition,
the team found that STM32 MCUs
are so energy efficient that there
is virtually no operating cost in
terms of power to using them.
The integrated development
environment also makes it
easy for new team members to
immediately begin contributing.

For example, a single
STM32107RB monitors the
voltage of the Xenith’s 35 cell
groups, measures the temperature
and current, and performs critical
operations such as controlling the
flow of power through the vehicle.
Four STM32F205RBT6s track the
maximum power point of the solar
array to optimize power density
and efficiency. This process
involves synchronous rectification
which requires accurate interrupt

handling and FET switching at very
specific times. Two STM32107RBs
manage communication between
the driver, the vehicle, the
motor controller, and the rear
wheel steering system; they
also accurately read encoders
with minimal overhead. Several
STM32F103C8T6s are used to
manage ancillary systems such
as lighting, telemetry, and tire-
pressure monitoring. You can see
the Xenith in action here.

We live in a fast-changing world,
and the only way to keep up is to
find silicon and tools that evolve
as quickly. As you can see with
the Stanford solar vehicle, a
single architecture like the STM32
is versatile enough to serve
across many diverse applications
using the same toolset. This is
no accident.

In this issue, we’ll explore the
current state-of-art in designing
embedded systems. Whether
you’re interested in optimizing
performance, minimizing power,
connecting to the network,
or designing for reuse, you’ll
find it here.

Enjoy!

Table of Contents

Editorial

Selecting the
Optimal MCU for
Your Embedded
Application

Maximizing
Performance
for Real-Time
Embedded
Systems

Designing for
Low Power
Applications

Simplifying
Embedded Design
for Accelerated
Time-to-Market

Designing
Efficient Connectivity

Accelerating
Next-Generation
Design Through
IP Reuse

2

3

12

20

27

35

42

Navigating Next-Generation Design
By Nicholas Cravotta, Technical Editor

STM32 Journal
Volume 1, Issue 1

http://www.youtube.com/watch?v=2ljf6LHicH0

3

STM32 Journal

Selecting the Optimal MCU
for Your Embedded Application

Innovation in silicon technology
has escalated over the past
decade with the availability
of MCUs which combine
a powerful processor with
architectural enhancements,
advanced acceleration engines
and specialized peripherals. As
a result, embedded applications
have become more complex
with each new generation. For
example, many MCUs now
have DSP-type instructions
to support high-performance
signal processing, USB
and Ethernet data rates are
magnitudes of order faster,
and low-power operation is no
longer just an option but rather
an essential design factor that
must be considered early in the
design process.

The only way to stay competitive
is to build upon an MCU
architecture that is not just
flexible but continues to evolve
over time by integrating new
functionality that increases
application performance while

lowering overall system cost.
Selecting an MCU that offers
only limited performance,
memory, and peripheral options
will result in a system that needs
to be completely redesigned in
only a few years. By choosing
an MCU with a broad roadmap
of software- and pin-compatible
devices with a mature tool
chain and an extensive support
ecosystem, developers can be
sure that their designs will not
only be cost-effective but be able
to carry them well into the future.

So Many Choices
When an engineer begins
looking for a new architecture,
there’s usually a strong need
driving the change. Perhaps
there isn’t enough performance
with the current architecture,
even with the highest-end family
member, or the memory and
peripheral options don’t offer
the right mix. Once the design
is opened for review, it’s worth
looking beyond just what is

needed at the moment to see
what else a new MCU family
can offer to improve the value
a product provides customers.
Introducing an advanced
communications peripheral such
as USB, for example, may open
new markets without negatively
impacting system cost. As a
consequence, the selection of
a new MCU platform directly
determines what future products
can be designed as well.

For the engineer starting a
new design or needing a new
architecture with more capacity
for an existing design, the
extraordinary variety of MCU
options can seem overwhelming.
ST, for instance, offers more
than 250 different devices in
its STM32 product line alone.
Perhaps surprisingly, selecting
the optimal processor for an
application is actually easier
today than it ever has been.

In the early days of electronics
design, developers were

limited to a short list of MCU
architectures, each offering a
variety of Flash, RAM, I/O, and
UART options. Right-sizing an
MCU to an application could
be a difficult estimation. For
example, if the estimation of the
amount of Flash required to hold
program code was too low, this
could force a developer to switch
to another processor family late
in a product’s design cycle and
require a redesign that delayed
time-to-market and increased
cost substantially.

Today’s MCU architectures
seem to provide an even more
difficult challenge to estimate
code size and performance.
Specialized DSP-specific
instructions, for example, both
accelerate signal processing
tasks and reduce the amount
of code required to complete
these tasks. Advanced DMA
controllers, for example,
can significantly impact
performance by managing the
data flow of an application in

By Alec Bath, Applications Engineer, STMicroelectronics

4

STM32 Journal

the background. Similarly,
a wide range of dedicated
accelerators implemented
in hardware are available to
speed processing of all kinds of
data, including cryptographic
security, CRC calculations, and
communications protocols, to
name just a few. The availability
of application-specific
peripherals also increases
performance through intelligent
management of peripheral data
and functions to further offload
the main CPU.

However, the ability to
accurately estimate application
performance and memory
requirements before any code
has been written is no longer
as critical an exercise as it
once was. All 250+ STM32
MCUs are not only code
compatible, more importantly
the integrated peripherals and
system functions are compatible
across the entire line. This
gives developers unparalleled
flexibility in right-sizing an MCU
to an application (see Figure 1).
If more performance is required,
there are numerous choices
available further up the product
line. Likewise, if an application
can be implemented using fewer
cycles, another MCU further
down the product line can be

Figure 1 The STM32 family offers more than 250 code-compatible MCUs, giving developers unparalleled flexibility in right-sizing
an MCU to their application.

STM32F407VG STM32F417VG STM32F407ZG STM32F417ZG STM32F407IG STM32F417IG

STM32F407VE STM32F417VE STM32F407ZE STM32F417ZE STM32F407IE STM32F417IE

STM32F207VG STM32F217VG STM32F207ZG STM32F217ZG STM32F207IG STM32F217IG

STM32F207VE STM32F217VE STM32F207ZE STM32F217ZE STM32F207IE STM32F217IE

STM32F205VF STM32F207VF STM32F205ZF STM32F207ZF STM32F207IFSTM32F205RF

STM32F205VC STM32F207VC STM32F205ZC STM32F207ZC STM32F207ICSTM32F205RC

STM32F205RG STM32F215RG STM32F205VG STM32F215VG STM32F205ZG STM32F215ZG

STM32F205RE STM32F215RE STM32F205VE STM32F215VE STM32F205ZE STM32F215ZE

STM32F101RG STM32F103RG STM32F101VG STM32F103VG STM32F101ZG STM32F103ZG

STM32F101RF STM32F103RF STM32F101VF STM32F103VF STM32F101ZF STM32F103ZF

STM32F101RE STM32F101VE STM32F101ZE

STM32F101RD STM32F101VD

STM32F105RC STM32F105VC

STM32F205RB STM32F205VB

STM32F101ZD

STM32F100RE STM32F103RE STM32F100VE STM32F103VE STM32F100ZE STM32F103ZE

STM32F100RD STM32F103RD STM32F100VD STM32F103VD STM32F100ZD

STM32F101RC STM32F103RC STM32F100VC

STM32F105RB STM32F107RB STM32F105VB

STM32F103VC STM32F100ZC

STM32F103ZD

STM32F100RC STM32F103RC STM32F100VC STM32F103VC STM32F100ZC STM32F103ZC

STM32F101CBSTM32F103TB STM32F103CB STM32F101RB STM32F103RB STM32F101VB STM32F107VB

STM32F100CBSTM32F101TB STM32F102CB STM32F100RB STM32F102RB STM32F100VB STM32F103VB

STM32L162RD1 STM32L162VD1 STM32L162ZD1

STM32F405RG STM32F415RG STM32F405VG STM32F415VG STM32F405ZG STM32F415ZG

STM32L151RD1 STM32L152RD1 STM32L151VD1 STM32L152VD1 STM32L151ZD1 STM32L152ZD1

STM32L151RC1 STM32L152RC1 STM32L151VC1 STM32L152VC1 STM32L151ZC1 STM32L152ZC1

STM32L151CB STM32L152CB STM32L151RB STM32L152RB STM32L151VB STM32L152VB

STM32F105R8 STM32F105V8

STM32F101C8STM32F103T8 STM32F103C8 STM32F101R8 STM32F103R8 STM32F101V8 STM32F103V8

STM32F100C8STM32F101T8 STM32F102C8 STM32F100R8 STM32F102R8

STM32F101C6STM32F103T6 STM32F103C6 STM32F101R6 STM32F103R6

STM32F100C6STM32F101T6 STM32F102C6 STM32F100R6 STM32F102R6

STM32F101C4STM32F103T4 STM32F103C4 STM32F101R4 STM32F103R4

STM32F100C4STM32F101T4 STM32F102C4 STM32F100R4 STM32F102R4

STM32F100V8

STM32L151C8 STM32L152C8 STM32L151R8 STM32L152R8

STM32L151C6 STM32L152C6 STM32L151R6 STM32L152R6

STM32L151V8 STM32L152V8

Flash size (bytes)

1M

768 K

512 K

384 K

256 K

128 K

64 K

32 K

16 K

36 pins
QFN

48 pins
LQFP/QFN

64 pins
LQFP/BGA/CSP

100 pins
LQFP/BGA

144 pins
LQFP

176 pins
LQFP/UFBGA

Legend: Note1: Available in Q4/2011 for all 256- and 384-Kbyte STM32L devicesSTM32 L1 STM32 F1 STM32 F2 STM32 F4

Pin count

5

STM32 Journal

used instead without any need
to recode the application. From
this perspective, the extended
variety of options within the
STM32 family actually makes it
easier to select the ideal MCU
for an application.

This variety of options also
enables manufacturers to
leverage the same architecture
and code base across an
entire product line. The
STM32 F1 Value Line, for
example, provides the right
mix of peripherals, memory,
and performance for low-end
applications where price is
tantamount. For a high-end
version of the same system,
the STM32 F4 provides the
range of peripherals needed
for a full-featured device
backed with the processing
capacity and memory to
support these features.
With complete compatibility
between devices—code,
pin, peripheral, and system
functions—manufacturers can
reuse their existing code base
and hardware designs thereby
reducing the development cost
of next-generation devices as
well as significantly accelerating
time-to-market.

The ARM Advantage
When evaluating an MCU
architecture, it is useful to look
at the entire design platform
being offered. Recently,
EETimes conducted a survey
asking engineers what they
considered the most important
factors in selecting an MCU.
The cost of the device was third.
Performance ranked second.
The most important factor:
development tools.

Given the software complexity
of today’s embedded systems,
software development represents
a significant portion of the cost
of a system. Software also
impacts time-to-market more
than any other design factor.
From this perspective, it is not
surprising that development
tools are the most important
consideration to developers.

The various ARM cores have
the broadest support and
tools ecosystem compared to
any other MCU architecture.
Tools are available from many
different suppliers, ensuring a
good range of tools that are
easy to use. With so much
competition, these tools have
to be superior to survive. In
addition, tool suppliers further
differentiate themselves by

offering tools designed for
specific market segments. As
a result, these tools provide
greater functionality than a
proprietary MCU supplier can
supply on its own.

The ARM Cortex-M has also
become the standard MCU
architecture in many application
markets. Its architecture has
been field-proven and is well-
established with an extensive
tools ecosystem and widespread
support from industry players.
Designed from the ground up to
meet the real-time performance
and memory requirements of
embedded applications, the
Cortex-M core offers:

Integrated Interrupt Controller:
The Cortex-M architecture
integrates the interrupt controller
rather than requiring silicon
manufacturers to add their own
as they have to with the ARM7
and ARM9 cores. This results
in faster interrupt handling and
more deterministic application
response.

Single Instruction Set: The
ARM7 and ARM9 cores
tried to address conflicting
performance and code density
requirements by interworking
the architecture’s original 32-bit
instruction set with the 16-bit
Thumb instruction set. This
approach required developers

Given the software complexity of today's

embedded systems, software development

represents a significant portion of the cost

of a system...from this perspective, it is not

surprising that development tools are the

most important consideration to developers.

www.st.com/stm32f4

7

STM32 Journal

to manually use a special
subroutine branch instruction
to switch between instruction
sets based on whether they
needed performance or code
density at the moment. It also
introduced design complexity
and forced developers wanting
to work in C to have to involve
themselves with lower level
implementation details.
The Cortex-M architecture
automatically blends the benefits

of performance and code density
with the Thumb2 instruction set,
freeing developers to focus on
the application.

Better computational
capabilities: The Cortex-M
introduces advanced
computational capabilities—
including a single-cycle 32-
bit multiply, hardware divide
instructions, DSP functions,
and saturated math, to name
a few—to support the various

types of complex signal
processing and computational
analysis many embedded
applications require today.

RTOS: The Cortex-M
architecture has been designed
to support real-time operating
systems. For example, privilege
modes enable kernel-level
schedulers to guarantee real-
time responsiveness.

The STM32 Architecture
The ARM Cortex-M architecture
provides an excellent foundation
for embedded design. However,
performance and reliability are
not determined by the CPU
architecture alone. For this
reason, ST has expanded its
STM32 MCUs beyond the base
Cortex-M architecture with a
variety of integrated peripherals
to create a wide range of devices
that optimize performance,
memory, and cost for nearly every
embedded application (see Figure
2). Combined together, these
peripherals provide significant
benefits to manufacturers:

Reduced BOM: Some of the
STM32’s integrated peripherals
are core components that
embedded systems require, such
as a real-time clock, internal
oscillators, and supervisor
functions. While individually
these components are relatively
inexpensive when implemented
externally, their combined
integration within the MCU results
in a substantially lower bill of
materials (BOM), smaller form
factor, and simplified board layout.

Increased Performance: Multiple
DMAs, integrated connectivity
for USB OTG and Ethernet, and
application-specific peripherals

System

Control
Crypto/hash processor2

Power supply
1.2 V regulator
POR/PDR/PVD
Xtal oscillators

32 kHz + 4 ~26 MHz
Internal RC oscillators

32 kHz + 16 MHz
PLL

Clock control
RTC/AWU

SysTick timer

51/82/114/140 I/Os
Cyclic redundancy

check (CRC)

2x watchdogs
(independent and window)

Nested vector
interrupt

controller (NVIC)

MPU

Floating point unit (FPU)

JTAG/SW debug/ETM

3DES, AES 256
SHA-1, MD5, HMAC

16-channel DMA

Multi-AHB bus matrix

ART Accelerator™

ARM Cortex-M4
168 MHz

2x 16-bit motor control
PWM

Synchronized AC timer
10x 16-bit timers
2x 32-bit timers

True random number generator (RNG)

Analog

Connectivity

2-channel 2x 12-bit DAC

SDIO
1x USB 2.0 OTG FS

1x USB 2.0 OTG FS/HS1

2x CAN 2.0B

3x SPI, 2x I2S, 3x I2C
Camera interface

Temperature sensor

3x 12-bit ADC
24 channels / 2 MSPS

Ethernet MAC 10/100
with IEEE 1588

6x USART
LIN, smartcard, lrDA,

modem control

512 OTP bytes

Up to 192-Kbyte SRAM

80-byte + 4-Kbyte backup SRAM

Up to 1-Mbyte Flash memory

FSMC/SRAM/NOR/NAND/CF/LCD
parallel interface

Figure 2 ST has expanded its STM32 MCUs beyond the base Cortex-M architecture with a variety of integrated peripherals
to create a wide range of MCUs that optimize performance, memory, and cost for nearly every embedded application.

8

STM32 Journal

like hardware-based encryption
all offload CPU processing to
increase overall system efficiency.

Complete Compatibility:
Developers can easily migrate
designs between different STM32
MCUs as all STM32 MCUs are
code-compatible. Most STM32

devices are also pin-compatible,
simplifying hardware redesign
as well. Furthermore, STM32
MCUs are also peripheral and
system function compatible,
meaning that even migrating
low-level code is a seamless and
transparent process.

Unparalleled Accuracy: By
integrating the analog signal
chain – including high-precision
12-bit ADCs and advanced
cascadable control timers that
run at full core speed – precise
sampling, control, and timing
functions are possible.

Enhanced Safety: Peripherals
such a windowed watchdog and
automatic clock switchover circuit
are essential for the design of
products that must meet high-
reliability standards, including
consumer electronics, white
goods, and industrial applications.

Simplified Design Through
Flexible Voltage: STM32 MCUs
support a range of supply
voltages, as wide as 1.65 to 3.6
V for some devices. This allows
the system to operate from a
single battery without an external
regulator. In addition, most GPIOs
are 5 V tolerate for compatibility
with industry standards.
(For a detailed exploration of how the
high-level of integration of the STM32
architecture simplifies application
design, see page 27.)

Optimized for
Your Application
ST was the first major
semiconductor company to
bring the Cortex-M architecture
to market and has the largest
portfolio of devices available
from any company with core
speeds from 24 to 168 MHz and
memory options ranging from
16 KB to 1 MB of Flash. ST has
developed four separate series
within the STM32 family that
focus on different applications

Figure 3 The STM32 family is comprised of four separate series of MCUs focusing on different applications with core speeds
from 24 to 168 MHz and Flash memory options ranging from 16 KB to 1 MB to provide the ideal mix of performance and
peripherals at the lowest cost.

Communication peripherals:
USART, SPI,I2C

Multiple DMA

Temperature sensor

Low voltage 2.0 to 3.6 V or
1.65/1.7 to 3.6 V (depending on series)

5.0 V tolerant I/Os

-40 to +85°C and up to 105°C
operating temperature range

Low-speed and high-speed
internal RC oscillators

Main oscillator and 32 kHz oscillator
Up to 3x 12-bit ADC (up to 0.41 µs)

Dual 12-bit DAC

External memory interface (FSMC)

Integrated regulator
PLL and clock circuit

2x watchdogs
Real-time clock

Integrated reset and
brown-out warning

Multiple general-purpose timers

Common core peripherals and architecture:

4 product series

120 MHz
Cortex-M3

CPU

STM32 F4 series—High performance with DSP (STM32F405/415/407/417)

STM32 F2 series—High performance (STM32F205/215/207/217)

STM32 L1 series—Ultra-low-power (STM32F151/152)

STM32 F1 series—Value line (STM32F100)

STM32 F1 series—Access line (STM32F101)

STM32 F1 series—USB Access line (STM32F102)

STM32 F1 series—Performance line (STM32F103)

STM32 F1 series—Connectivity line (STM32F105/107)
72 MHz

Cortex-M3
CPU

72 MHz
Cortex-M3

CPU

48 MHz
Cortex-M3

CPU

36 MHz
Cortex-M3

CPU

24 MHz
Cortex-M3

CPU

32 MHz
Cortex-M3

CPU

SDIO
2x I2S audio
Camera IF

SDIO
2x I2S

3-phase
MC timer

2x CAN
2.0B

2x CAN
2.0B

CAN
2.0B

2x USB
2.0 OTG
FS/HS

Up to
1-Mbyte

Flash

Up to
1-Mbyte

Flash

Up to
1-Mbyte

Flash

Up to
128-Kbyte

SRAM

Up to
64-Kbyte

SRAM

Up to
96-Kbyte

SRAM

Up to
16-Kbyte

SRAM

Up to
80-Kbyte

SRAM

Up to
32-Kbyte

SRAM

Up to
256-Kbyte

Flash

Up to
128-Kbyte

Flash

Up to
512-Kbyte

Flash

USB 2.0
OTG FS

USB FS
device

USB FS
device

USB FS
device

3-phase
MC timer

3-phase
MC timer CEC

3-phase
MC timer

Crypto/hash
processor
and RNG

Crypto/hash
processor
and RNG

Ethernet
IEEE 1588

Ethernet
IEEE 1588

Ethernet
IEEE 1588

SDIO
2x I2S audio
Camera IF

2x CAN
2.0B

3-phase
MC timer

2x USB
2.0 OTG
FS/HS

Up to
1-Mbyte

Flash

Up to
192-Kbyte

SRAM

Up to
48-Kbyte

SRAM

Up to
384-Kbyte

Flash

Data EEPROM
up to

12 Kbytes

LCD
8x40
4x44

BOR
MSI

VScal
Comparator

168 MHz
Cotex-M4
with DSP
and FPU

2x I2S audio

9

STM32 Journal

to provide the ideal mix of
performance and peripherals at
the lowest cost (see Figure 3):

High Performance: The entire
architecture of the STM32 F4
and STM32 F2 MCU series
has been tuned to provide
high-performance without
compromising flexibility (see
sidebar, Introducing the STM32
F4). Built upon a 90 nm process,
ST’s innovative Advanced Real-
Time (ART) memory accelerator
technology, and a zero-wait
execution path, STM32 F4 and
STM32 F2 series MCUs provide
outstanding performance (up
to 168 MHz/210 DMIPs for the
STM32 F4) and power efficiency
(only 22.5 mA at 120 MHz for
the STM32 F2). Its multilayer
bus matrix enables the highest

levels of multiprocessing
by supporting simultaneous
transfers to multiple peripherals
and memory while the CPU
continues to execute code.
In addition, its Flash memory
has been designed to remove
access bottlenecks typical of
other MCUs. This enables the
CPU to operate at its full speed
when executing from Flash.
(For more information on developing
real-time, high-performance
applications, see page 12.)

General-Purpose Applications:
ST offers three general-purpose
MCU series based on the
STM32 F-1 architecture with
varying performance, memory,
and peripheral capabilities.
For simple applications,
Access Line MCUs provide

36 MHz performance with
the STM32 architecture’s
extensive selection of
advanced peripherals. For
applications needing to
support USB, USB Access
Line MCUs operate at 48 MHz
and have an integrated USB
port. For higher end devices,
Performance Line MCUs offer
72 MHz performance, USB, and
application-specific peripherals
like ST’s unique 3-phase Motor
Control Timer.

Superior Connectivity: The
STM32 Connectivity Line
makes networking economical
by integrating an embedded
Ethernet MAC with its own
dedicated DMA and IEEE 1588
precision time protocol hardware
support. Turnkey consumer

device connectivity with full
USB functionality is enabled
through the USB 2.0 OTG
(On-The-Go) peripheral, and
dual CAN interfaces make
this the MCU of choice for
CAN gateways. The STM32
Connectivity Line also offers
two audio-class I2S interfaces
to meet the needs of most
consumer audio applications.
(To see how to design systems with
more efficient connectivity, see
page 35.)

Cost-Sensitive Design: STM32
Value Line microcontrollers
provide the least expensive
path to market. Ideal for cost-
sensitive consumer, appliance,
and industrial applications,
STM32 Value Line MCUs offer
the performance of a 32-bit

Introducing the STM32 F4
As the world’s highest performance Cortex-M microcontroller,
the STM32 F4 is ST’s flagship MCU operating at 168 MHz and
providing 210 DMIPS. Based on the ARM Cortex-M4 core, it
provides advanced floating point and digital signal processing
capabilities to enable compute-intensive processing across a
broad range of applications ranging from point of sale, industrial
automation, solar, transportation, medical, security, consumer,
communications, and test and measurement. The ultra-low
power STM32 F4 is built on ST’s 90 nm process which allows

the CPU core to run at only 1.2 V. In addition, with dynamic
voltage scaling capabilities and ST’s innovative Adaptive Real-
Time (ART) memory accelerator which maximizes processing
performance equivalent to 0-wait state execution, the STM32 F4
offers outstanding power efficiency of just 230 µA/MHz or 38.6mA
at 168 MHz executing Coremark benchmark from Flash memory.
The STM32 F4 also integrates a wide range of application-specific
peripherals and interfaces, providing advanced processing
capabilities and turnkey communications with a single chip.

10

STM32 Journal

core at 16-bit pricing, giving
developers the headroom to
implement enhanced features
and provide superior products
compared to the competition.
These MCUs also have a
3-Phase Motor Control Timer to
improve performance for motor
control applications, flexible
static memory controller, LCD
parallel interface, and a CEC
(Consumer Electronics Control)
interface for communicating

with other devices over HDMI.
Running at up to 24 MHz,
STM32 Value Line MCUs offer
an excellent balance of cost,
performance, and peripherals,
making it the ideal choice
for developing cost-effective
applications traditionally
addressed by 16-bit MCUs.

Ultra-Low Power and Portable
Devices: The feature-rich
STM32 L1, based on ST’s
industry-leading EnergyLite™

technology implemented
in ST’s 130 nm ultra-low
leakage process technology,
is the industry’s only MCU
offering ultra-low power
(down to 185 µA/DMIPS) with
high performance (up to 33
DMIPS) for maximum energy
efficiency. Multiple innovative
low power operating modes
enable developers to further
minimize power consumption
depending upon the current

operating requirements. For
example, a typical low-power
MCU can conserve power by
dropping the clock frequency;
however, the core still runs
at its full supply voltage.
The STM32 L1’s integrated
regulator gives developers
the option to also reduce the
core operating voltage as the
operating frequency drops,
enabling even higher power
efficiency. Stop Mode with

Figure 4 Development tools for the STM32 come from the world’s largest vendor ecosystem, providing the evaluation boards, compilers,
and development software designers need to accelerate their development.

EvoPrimer
STM32VL
DISCOVERY

13 different RTOS and stack solution providers More than 15 different development IDE solutions

4 starter kits, numerous boards STM32 promotion kits

STM32-ComStick

11

STM32 Journal

ST also offers MicroXplorer, a
graphical tool which simplifies
pinout configuration of STM32
MCUs. Since the same pin can
be used for different peripherals
and functions (GPIO, USART
Tx, ADC input channel, etc.),
MicroXplorer assists developers
by defining a pinout that maps
the pins needed for a peripheral
based on the current operating
mode. This not only speeds
initial MCU configuration
but supports reconfiguration
of a system based on new
application requirements.

Development tools for the
STM32 come from the world’s
largest vendor ecosystem,
offering the evaluation boards,
compilers, and development
software designers need to
accelerate their development
(see Figure 4). In addition,
everything needed for a quick
start to a production design
with minimal tools investment
is available in ST’s Discovery
Kits for the STM32 F2/
F4, STM32 Value Line, and
STM32 L1. Providing the ideal
development environment for
rapidly evaluating, learning, and
prototyping, each kit comes with
an in-circuit ST-LINK debugger/
programmer for non-intrusive
debugging, full development

tool chain, ready-to-run example
applications, and schematics for
reference designs (see Figure
5). Kits also have an extension
connector providing access to
all of the STM32 pins and can
be used to debug prototype
boards as well.

To keep up with changing
application requirements,
developers need a flexible MCU
architecture that offers flexible
performance. The breadth of the
STM32 family allows developers
to select devices with the
highest performance, the lowest
power, the best price, and
the right mix of peripherals.
Because STM32 MCUs are
software- and pin-compatible,
developers can use the same
tool chain and libraries to
accelerate and simplify design
across an entire product line.
And with the broadest ARM
Cortex-M family on the market,
the STM32 architecture offers
an ever-expanding line of
MCUs that meet the evolving
needs of developers both today
and tomorrow.

Figure 5 ST’s STM32 Discovery kits provide everything developers need for a quick start
to a production design with minimal tools investment.

〉〉 Evaluation board

〉〉 Embedded ST-LINK/V2

〉〉 USB interface for debugging and programming

〉〉 Numerous examples available on www.st.com

Everything you need to discover STM32 F4 32-bit
ARM Cortex™-M4 based MCUs featuring:

RTC and full RAM retention
requires only 1.3 µA, and low-
power run mode clocked at 32
kHz provides access to the full
capabilities of the CPU while
bringing power consumption
down to 10.4 µA. Supporting a
wide supply voltage range from
1.65 to 3.6 V, flexible 1.8 to 3.6
V operation for all digital and
analog functions, optional LCD
controller, integrated AES, and
a variety of enhanced security
and safety features, the STM32
L1 is ideal for a wide range of
applications, including portable
medical, alarm systems, factory
automation, mobile devices,
metering, and sensors.
(To learn more about achieving ultra-
low power consumption, see page 20.)

Unparalleled Flexibility
Software- and pin-compatibility
between the various STM32
series makes for a broad range
of devices that allow developers
to easily step up or step down
performance across a product
line. Developers have the ability
to develop first prototypes
using a high-performance
STM32 with large memory to
speed development. Once the
application code is in place, the
MCU can be scaled down to a
slower device with less memory
that also eliminates peripherals
which aren’t needed to cost
reduce the system.
(To learn more about extending a
product line by scaling the MCU and
reusing IP, see page 42.)

www.st.com/internet/evalboard/product/251717.jsp

12

STM32 Journal

Maximizing Performance
for Real-Time Embedded Systems

Many embedded applications—
including control systems, digital
audio/video devices, industrial
automation, portable medical
instruments, and diagnostic test
equipment—require deterministic
system behavior to meet real-
time deadlines and process
data within a meaningful time
frame. With increased interest
in greater operating efficiency,
network capabilities, and higher
performance, these systems also
require more advanced signal
processing capabilities.

In the past, embedded
applications that require
real-time control and signal
processing capabilities have
had to compromise by either
using an MCU or DSP but not
being able to use both. Using
a separate MCU and DSP
will introduce complex multi-
processor issues into the design
flow as well as the need to

handwrite assembly code for
critical-loop algorithms.

Rather than complicate or
compromise design, ST’s STM32
F4 MCU architecture intelligently
blends the capabilities of an
MCU with a DSP to provide a
powerful yet easy to program
platform. Based on the ARM
Cortex-M4 core, the STM32 F4
is supported by an extensive
ecosystem that enables systems
to deliver high performance and
advanced signal processing
using the CMSIS DSP Library.

The STM32 F4:
The Industry’s
Highest Performance
Cortex-M-based MCU
Maximizing performance is an
art. And given that the majority
of an embedded application’s
functionality is implemented
in software, the efficiency of a
system will depend primarily

upon how well it is coded. The
STM32 architecture offers a
powerful platform with hardware-
based accelerators and
application-specific peripherals
that simplify application design
while offloading processing
and memory management from
the CPU.

The STM32 architecture is built
upon the ARM Cortex-M3 and
Cortex-M4 cores using a Harvard
architecture with separate
instruction and data buses for

parallel instruction fetching
and data loads and stores. All
STM32 MCUs are programmed
using the rich, unified Thumb-2
instruction set that provides 32-
bit performance while supporting
16-bit Thumb instructions for
the smallest code density and
memory requirements; up to ten
lines of code can be replaced
with a single 32-bit instruction
(see Table 1). In addition, 16- and
32-bit instructions can be used
without having to switch modes.

By Reinhard Keil, Director of MCU Tools, ARM Germany GmbH
Ian Johnson, Product and Third Party Relations Manager, ARM Ltd
Shawn Prestridge, Sr. Field Applications Engineer, IAR Systems
Alec Bath, Applications Engineer, STMicroelectronics

Feature Cortex-M3 cycles Cortex-M4 cycles

High-precision MAC 3–7 1
DSP instructions 1–2 1
Saturated arithmetic 1 1
Bitwise operations 1 1
Mixed bit-width capabilities Not available 1
Packed data processing Not available 1
SIMD capabilities Not available 1

Table 1 Cycle execution times for advanced instructions

13

STM32 Journal

For deterministic, low-latency
responsiveness, a Nested
Vectored Interrupt Controller
(NVIC) provides a worst-case
interrupt response time of 12
cycles. This includes automatic
saving of corruptible registers
as well as handling of exception
prioritization and nesting. In
addition, if another interrupt
occurs before the current
one has completed, the MCU
recognizes this and can respond
to the next interrupt within just
6 cycles. Called tail-chaining,
this approach to interrupts
increases performance and
responsiveness for interrupt-
driven applications. This enables
the system to be maintained in a
low-power state, to rapidly wake
to service an interrupt, and then
re-enter sleep state on exit from
the interrupt handler.

With ST’s flagship MCU—the
STM32 F4—developers can give
designs based on the STM32
F2 a substantial increase in
performance without having to
rewrite their application. At a
raw performance level, fixed-
point DSP functions execute
on the Cortex-M4 core-based
STM32 F4 up to twice as fast
as they do on a Cortex-M3
core-based STM32 F2 while
floating-point functions execute

up to 10X faster (see Figure
1). Compared to the leading
16- and 32-bit MCUs with DSP
extensions, the Cortex-M4
core is twice as efficient when
performing the fundamental
operations—FIR, IIR, and
FFT—that make up a significant
portion of communications,
audio, and motor control
processing (see Figure 2). This
means that low-cost consumer
devices can perform real-time
digital content processing like
MP3 while leaving sufficient
bandwidth for other application
tasks (see Figure 3).

Even though the STM32 F4 is
based on the Cortex-M4 core,
STM32 F4 MCUs support all
of the features of STM32 F2
MCUs, making it straightforward
to migrate designs which
need more performance. The
tremendous performance gains
of the STM32 F4 come from its
higher clock rate and several
powerful new capabilities:

Single-cycle MAC: The ability
to perform a multiply-and-
accumulate (MAC) in a single
cycle provides substantial
performance improvements for
critical-loop algorithms.

DSP extensions: With SIMD
instructions (single instruction,

DSP Library Benchmark: Cortex-M3 vs. Cortex-M4

FIR q15
fixed point

PID q15
fixed point

IIR q31
fixed point

Matrix Mul
fixed point

Correlation
floating point

8,
81

9

2,
24

4

41 27

8,
59

6

2,
46

2

8,
31

0

2,
46

2

15
8,

87
8

13
,6

19

-7
5%

-3
5%

-6
9%

-7
0%

-9
1%

Cortex-M3 Cortex-M4 Memory Access CyclesCycles: smaller numbers are better

Figure 1 Fixed-point DSP functions execute on the STM32 F4's Cortex-M4 core up to twice
as fast as they do on an STM32 F2's Cortex-M3 core while floating-point functions
execute up to 10X faster.

16-bit MCU

32-bit MCU

32-bit Cortex-M4

1

0.8

0.6

0.4

0.2

0

IIR FFT

1

0.8

0.6

0.4

0.2

0

IIR FFTFIR

Cycles:
smaller numbers are better

Figure 2 Compared to the leading 16- and 32-bit MCUs with DSP extensions, the
STM32 F4's Cortex-M4 core is twice as efficient when performing the
fundamental operations—FIR, IIR, and FFT—that make up a significant portion of
communications, audio, and motor control processing.

MHz bandwidth requirement for MP3 decode

0 5 10 15 20 25 30

Specialized Audio DSPs

Cortex-M4

Discrete DSPs

General Purpose MCUs
MCU1

MCU2

DSP1

DSP2

DSP1
DSP2

Figure 3 The STM32 F4 is able to perform real-time digital content processing like MP3
decoding while leaving sufficient bandwidth for other application tasks.

14

STM32 Journal

multiple data operations per
cycle), saturating arithmetic
capabilities, and a packed data
format to increase processing
efficiency, the STM32 F4
is capable of accelerating
performance in a wide range
of applications.

FPU: The Floating Point Unit
is a single-precision engine
available on all STM32 F4
MCUs to provide hardware-
assisted addition, subtraction,
multiplication, division, fused
MAC, and square root. The FPU
can be individually powered
down when it is not in use.

Larger SRAM: With a large 192
KBytes of SRAM, developers
have more memory available
for optimizing application
performance.

The STM32 Advantage
The STM32 architecture builds
upon the foundation of the ARM
Cortex-M3 and Cortex-M4
cores. However, ST has
integrated numerous innovative
technologies to enable the
STM32 architecture to achieve
the highest performance of any
Cortex-M processor-based MCU
in the industry with ultra-low
power consumption:

ART Accelerator: ST’s Adaptive
Real-Time (ART) memory
accelerator technology is a key
performance differentiator for
STM32 F2 and STM32 F4 MCUs
when executing from Flash.
At high CPU speeds, Flash
access can become a
bottleneck and significantly
reduce performance by
introducing undesirable wait
states. The ART Accelerator
uses a prefetch queue and
branch queue to store first
instructions and constants
associated with branches in
code. With its deep caches,
128-bit wide memory interface,
and background operation,
wait states can be effectively
eliminated when executing
from Flash. Rather than have
performance degrade as clock
speed increases, STM32 F2
and STM32 F4 MCUs are able
to consistently provide their full
performance across all clock
speeds (see Figure 4).

Multi-layer Bus Interconnect:
With the great number of
peripherals in the STM32
architecture, performance
is highly dependent upon
the efficiency with which the
MCU can move data internally
between the CPU, peripherals,
and memory. The 7-layer bus

matrix that interconnects
STM32 MCUs (see Figure
5) enables simultaneous
transfers between multiple
masters and slaves without
requiring CPU involvement.
This provides STM32 MCUs
with a tremendous interconnect
capacity that eliminates
peripheral and memory access
bottlenecks for the highest
operating performance.

Dedicated DMA engines:
Embedded systems must be
able to support multiple real-
time data streams, including
one or more communications
links, high-frequency data
from multiple ADC channels,

and accesses to different
memory blocks. To facilitate the
greatest throughput, the STM32
F4 integrates multiple DMA
engines, including dedicated
DMA engines for its Ethernet
and USB interfaces to support
true zero-copy functionality.
This enables the system to
support various data streams
with no contention between
high-speed interfaces and
without loading the CPU.

Application-Specific
Accelerators: The STM32
architecture offers a variety of
hardware-based engines to
accelerate processing for various
applications. For example,

STM32 F4 series Competitor F Competitor R

DMIPS

50

100

150

125

75

25

175

0

200

225
STM32F4:
best mix,
acceleration
and speed

Competitor R: maximum
frequency limitation

Competitor F:
Flash access bottleneck

20 40 60 80 100 120 140 160 180

FCPU
(MHz)

Figure 4 ST’s Adaptive Real-Time (ART) accelerator technology utilize a deep branch cache,
128-bit wide memory interface, and background operation to effectively eliminate
wait states when executing from Flash, enabling STM32 F2 and STM32 F4 MCUs to
consistently provide their full performance across all clock speeds.

15

STM32 Journal

efficient security can be easily
added to communications using
the integrated cryptographic/hash
engine available on many STM32
MCUs. Packets are sent to the
engine for processing and a flag
is set or interrupt triggered when
the result is available. Likewise,
the hardware-based CRC
engine offloads communications
overhead from the CPU.

Together, these enhancements—
ART Accelerator, multi-layer
bus interconnect, dedicated
DMAs, and application-
specific accelerators—make
for an architecture that is
highly optimized for real-time
embedded processing. In
addition, the ability to support
simultaneous memory and
peripheral transactions enables
a single STM32 F4 MCU to
maintain several high-speed
interfaces, perform compute-
intensive signal processing, and
manage a GUI-based display
with advanced HMI functions.

Accelerated Development
and Optimized
Performance
To make the complexity of the
STM32 architecture transparent
during development, ST and its
partners, including IAR and Keil,

120 MHz

Bus masters

In
st

ru
ct

io
ns

D
at

a

S
ys

te
m

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

1

D
M

A
_P

2 100 Mbit/s
12.5 MByte/s

480 Mbit/s
60 MByte/s

7-
la

ye
r

32
-b

it
m

ul
ti-

A
H

B
 b

us
 m

at
rix

672 MByte/s

672 MByte/s

D D

I I

Bus Slaves

SRAM 112 Kbytes

AHB1 peripheral

AHB2 peripheral

FSMC

AR
T

Ac
ce

le
ra

to
r

Flash
1 Mbyte

General
purpose
DMA1

8 channels

General
purpose
DMA2

8 channels

Ethernet
MAC 10/100

DMA

AHB1/APB1

AHB1/APB2

64 Kbytes SRAM

SRAM 16 Kbytes

Cortex-M4
with CPU

168 MHz

USB OTG
HS

DMA

Figure 5 The 7-layer matrix that interconnects STM32 MCUs with peripherals and memory enables simultaneous transfer between multiple
masters and slaves without requiring involvement from the CPU. This provides STM32 MCUs with a tremendous interconnect
capacity that eliminates peripheral and memory access bottlenecks for the highest operating performance.

The ability to support simultaneous memory and

peripheral transactions enables a single STM32 F4

MCU to maintain several high-speed interfaces, perform

compute intensive signal processing, and manage a

GUI-based display with advanced HMI functions.

16

STM32 Journal

offer a great variety of innovative
tools that go beyond the standard
compiler and debugger so
that developers can maximize
performance without having
to create low-level code which
cannot easily be ported when the

design needs to move to a lower
cost or higher performance MCU.
These tools not only accelerate
time-to-market by simplifying
design, they make it easier to
focus on optimized performance.

To accelerate development, ST
provides a configuration wizard
for creating a base framework
upon which developers can
quickly build applications.
Configuration of peripherals is
non-trivial and failing to take
full advantage of each of the
MCU’s application-specific
peripherals can negatively
impact performance. The
framework provides optimized
drivers for all of the STM32
peripherals with documentation

describing how to use them
most efficiently under different
operating conditions. In addition,
if major specification changes
are subsequently made to the
system, so long as developers
work within the framework, it

will be flexible enough to allow
developers to quickly adapt to
the new requirements.

Real-time operating systems
(RTOS) like RTX from Keil™
provide a reliable framework
that efficiently manages real-
time processes and allows
applications to fully utilize
the STM32 architecture. Task
management can quickly
become extremely complex,
and choosing an embedded
RTOS that has been specifically
designed to exploit the
integrated capabilities of the
STM32 simplifies the process
of managing multiple real-time
tasks while optimizing allocation
of processor resources to the code to success™

Software tools
for your next
embedded design
with STM32 MCUs.

IAR Embedded Workbench® for

ARM® with Power Debugging

technology simplifies the debugging

and testing process of your code.

The multitasking capabilities of an

RTOS also eliminate the need for polling

interfaces or holding up the CPU while

waiting for a critical task to complete.

www.iar.com

17

STM32 Journal

ensure real-time deadlines are
met. For example, interrupts
never need to be turned off for
the RTOS. The multitasking
capabilities of an RTOS also
eliminate the need for polling
interfaces or holding up the
CPU while waiting for a critical
task to complete. Instead,
available CPU cycles can be
allocated to other tasks until an
interrupt signals the completion
of the task.

Developers can also rely upon
the extensive ARM development
ecosystem to speed design
with off-the-shelf code which
has been specifically adapted
for the STM32 architecture and
optimized for performance.
Networking applications, for
example, can make use of
middleware supplied by ARM
and other companies for quickly
creating efficient Flash file
systems, TCP/IP stacks, and
CAN controllers, among other
capabilities. Application-specific
software is available as well: ST
and its partners, for example,
offer a variety of solutions for
consumer audio. ST’s audio
library is designed to ensure that
audio processing is completed
in time so that users will not hear
any pops or clicks.

Middleware and libraries are
easy to integrate into STM32-
based systems because of
the Cortex Microcontroller
Software Interface Standard
(CMSIS) which provides a rich
collection of building blocks for
accelerating embedded system
design. The CMSIS CORE library
offers a standardized interface
for all Cortex-M-based MCUs
while the SVD library provides
a System View Description for
peripherals to speed design
and facilitate code compatibility
among processors. The RTOS
library comprises a standard
API for RTOSes to enable
interoperability with an extensive
variety of software templates,
middleware, and libraries.

For applications requiring
efficient signal processing
capabilities, the CMSIS
DSP library offers more than
80 algorithms including
vector operations, matrix
computing, complex arithmetic,
filtering, and PID and Fourier
transforms. Designed to make
DSP programming easy for
developers used to working
with MCUs, the CMSIS DSP
library enables engineers to
quickly develop a wide range
of complex and reconfigurable
systems across industrial,

Working With Your Compiler
By Shawn Prestridge, Senior Field Applications Engineer, IAR Systems

Today’s compilers can generate application code from C source code that
provides nearly the same or better efficiency than hand-coded assembly.
However, since code can be optimized in terms of performance, size, and/
or power, compilers need to be guided to achieve the optimal balance
for a given application. Compilers do their best to optimize code, but
ultimately programmers who assist the compiler by writing “compiler-
friendly” code will achieve higher efficiency and better performance.

〉〉 Be careful not to start the optimization process before the functionality
of code has been verified. Optimized code can look bizarre, making
it difficult to debug. In addition, it will be much easier to determine
whether a problem is the result of a bug or an unintended consequence
from some element being optimized out of the system.

〉〉 Only call a function once. Compilers cannot predict the side effects of
functions at compile time. Therefore, if an identical call is made twice,
the compiler cannot assume they will have the same result and will have
to make the call twice as well. Calling the function once and putting the
result in a variable allows the compiler to store the result in an easily
accessed register.

〉〉 Pass by reference rather than copy. Passing by reference saves
significant code space, memory, and execution cycles by avoiding
copying data during a function call, especially if large arrays are
involved. However, passing by copying may be necessary if the function
must be prevented from having direct access to data.

〉〉 Inline functions. Inlining generates function code rather than a
function call. This eliminates the overhead of a function call to improve
performance but can increase code size. IAR’s Embedded Workbench,
for example, makes intelligent decisions for when to inline code to
balance performance and code size to ease this optimization technique.
In addition, developers always the option to override these decisions.

〉〉 Use appropriate data sizes. The STM32 is a 32-bit architecture. Using a
different data size can force the compiler to shift, mask, and sign-extend
operations, leading to lower performance and issues that arise from
signedness and casting.

〉〉 Use signedness with care. Using signedness when it is not required
can increase code size (i.e., certain operations may require an extra

18

STM32 Journal

automotive, medical, and
military applications. Available
free of charge, the CMSIS
DSP library is provided as C
source code so the compiler
can optimize the code to the
application (i.e., performance
versus code and data size).
Code is portable across all
Cortex-M-based MCUs,
enabling simple migration of
DSP functionality across the
STM32 families. In addition, the
CMSIS DSP library has been
optimized to take advantage
of the optional floating point
unit (FPU) integrated into the
Cortex-M4 architecture.

Debugging to
Optimize Performance
To optimize a system,
developers need run-time
visibility into operations to
verify how various subsystems
interact with each other and
to identify, locate, and resolve
errors quickly. However,
many embedded systems,
including systems maintaining
a communications link or
providing control data, cannot
be stopped and then restarted.
Developers, however, need more
than just a “snapshot” of the
moment when code is halted
so they can analyze system

behavior and identify real-time
performance bottlenecks.

STM32 MCUs have superior
debugging capabilities integrated
into the MCU, including
hardware breakpoints, on-
the-fly read/write access to
variables and memory contents,
and instruction stream tracing
for advanced code execution
analysis, all without having to go
through the processor or halt its
execution. Rather than requiring
code to be instrumented
(and thereby impacting code
execution), developers can use
the integrated Embedded Trace
Macrocell (ETM) or serial wire
tracing to non-intrusively access
the system, including capabilities
such as monitoring the RTOS or
tracking the different threshold
levels of an ADC.

Companies like IAR Systems
and Keil offer an array of tools
which utilize the trace technology
implemented within the STM32
MCUs to assist developers
in maximizing application
performance and reliability by
giving them complete visibility
into program execution and
MCU operations. For example,
embedded trace data can be
streamed to a PC hard drive
to collect long-term run-time

test-and-jump condition to handle negative numbers) or have intended
consequences (i.e., shifting or masking data that has been sign-extended).

〉〉 Avoid explicit casting. Casting is not a free operation. Casting to a larger
type can introduce unnecessary sign-extended overhead, invoke the
floating point library, or corrupt a pointer (i.e., if developers use ints and
pointers interchangeably).

〉〉 Invoke libraries intentionally. Using print() where you can use printf()
may cause a larger library to be included in your application, needlessly
consuming code space for functions that are never called.

〉〉 Baseline your code. A dramatic increase in code size from simple
changes may mean a previously-unused library has been invoked
through an unintentional cast.

〉〉 Avoid using global variables. A function that accesses a global variable
multiple times will have to repeatedly read that value from memory. Rather,
read the global variable into a temporary variable that is local to the function
and the compiler may be able to hold it in a register for better performance.

〉〉 Group function calls. When function calls are separated by other
operations, each call forces the compiler to store any register-
allocated variable to memory. When calls are consecutive, these
values only need to be saved once.

〉〉 Avoid inlining assembly. Since the compiler knows nothing about inlined
assembly, it cannot optimize the code around it. Putting assembly code
in a separate file frees the compiler to optimize the rest of the code.

〉〉 Don’t write “clever” code. Writing an expression in the fewest lines of C
code with conditional values often results in difficult-to-read code that can
actually require more instructions and take longer to execute because of
the need to store temporary values or perform a function multiple times.

〉〉 Access structures in order. Rather than bouncing through a structure
and requiring complex pointer manipulation, accessing elements in
order enables the compiler to use a fast increment instead.

Powerful search and filtering capabilities

enable developers to focus their optimization

efforts where they will yield the most gains.

19

STM32 Journal

data for offline analysis. Having
the entire execution history of
an application synchronized to
C source code complete with
timing information is especially
useful for analyzing a wide range
of issues, including sporadic
problems that arise from data

corruption or incorrect timing.
Powerful search and filtering
capabilities combined with
different reporting and graphing
options enable developers first
to quickly sort trace data to
determine which areas of code
the application spends most of
its time executing and then focus
their optimization efforts where
they will yield the most gains.

Performance can be analyzed
from a timing perspective for an
entire module or as narrow as
a single line of code to expose
spikes in performance that
might otherwise pass unnoticed.
For example, a change in task
priority may create a conflict
with a communications link,
resulting in lost data and the
need to request a retransmission

that impacts throughput and
increases the load on the
CPU. Another benefit of using
performance analysis is that it
shows developers the actual
impact certain coding techniques
have on performance. Many
times code can be written

different ways, such as a function
outputing a single character
or a whole line. Often, one of
these approaches will yield
better performance. Over time,
developers will learn which
approaches are more efficient
so they can change how they
program and write optimized
code from the very start.

A system can also be analyzed
based on changes to variables.
Signals/variables can be
monitored graphically with
accurate timing information
showing change across time
as well as any instructions that
have modified a variable. The
STM32 debugging capabilities
can also be extended to capture
detailed statistical information
about exceptions and interrupts,

including how many times an
exception has been entered
and the min/max time spent
in each exception. Display of
event counters can be used to
reveal system behavior such
as when extra cycles are taken
to execute instructions due to

memory contention, overhead
from handling exceptions,
cycles spent in sleep mode,
cycles spent accessing memory,
and number of folded branch
instructions.

For mission-critical applications,
software validation requires
code coverage. Code coverage
tracks which lines of code in
a program are executed so
OEMs can verify that all parts
of a system are operational
and reliable. Traditionally, this
process has been tedious,
requiring developers to set a
trigger and capture trace data
until the internal buffer is full,
then reconfigure and run the
system again until coverage has
been completed. The STM32’s
ETM provides a complete, non-

intrusive instruction stream so
that testing is done on final,
optimized code running at full
speed. Data is color-coded
and summarized by function or
module and can be saved for
documentation. To view a video
showing how to perform code
coverage, click here.

With devices ranging from the
ultra-low power EnergyLite™
STM32 L1 to the industry’s
highest performance Cortex-M
processor-based MCU, the
STM32 F4, developers can
find the ideal MCU to meet the
processing, power, and cost
requirements of nearly every
embedded application. The
combination of the powerful
Cortex-M3 and Cortex-M4
cores with ST’s innovative
ART Accelerator, multi-layer
bus interconnect, dedicated
DMAs, and application-specific
peripherals provides developers
with an unbeatable platform for
high-performance applications.
In addition, STM32 MCUs are
supported by a wide range
of advanced tools that speed
design, development, and
debugging of even the most
complex applications.

The STM32’s ETM provides a complete, non-intrusive

instruction stream so that testing is done on final,

optimized code running at full speed.

www.keil.com/videos/6d40cb56-313a-47f5-8acb-76523d04d96a/

20

STM32 Journal

Designing for Low Power Applications

The increasing complexity of
portable and mobile electronics
has made power efficiency a
primary design constraint which
developers need to consider
from the very beginning of the
design process. In the past,
power efficiency was a factor
only hardware developers were
able to influence using tools like
a multimeter and oscilloscope.
So much of a system’s
functionality is now implemented
in software, however, that how
an application is architected will
have a substantial impact on its
power efficiency.

ST’s STM32 L1 EnergyLite™
architecture provides many
features that allow developers
to optimize applications for
power consumption. In addition
to a wide array of advanced
peripherals which accelerate
performance and offload the
main CPU so that devices can
spend more time in sleep mode,
the STM32 L1 platform offers
low-power operation, dynamic

voltage scaling, intelligent
peripheral management, and
partial sleep modes. STM32
L1 MCUs are built upon ST’s
130 nm ultra-low-leakage
process technology and provide
outstanding power efficiency for
a wide range of applications.

With these integrated
technologies, developers can
maximize utilization of MCU
resources while minimizing
power consumption so that
energy efficiency for all
applications can be significantly
improved. In addition, by taking
advantage of power debugging
techniques that correlate power
consumption to application
code, developers can gain
visibility into how their design
decisions impact overall power
efficiency. Armed with this
information, developers can
make more informed decisions
about how to configure MCU
resources and structure
application code.

Power Modes:
More Than Just Sleep
Estimating power used to be
a relatively straightforward
calculation. Devices were either
on or off, and developers could
instrument code to measure
active and sleep times for an
application (i.e. Total Power =
Active Current * Active Time +

Sleep Current * Sleep Time).
With the availability of multiple
power modes, however,
estimating actual power
consumption has become more
difficult. Depending upon what

background tasks are active
and whether a user is currently
interacting with the device,
the system will switch among
several different operating
modes potentially thousands
of times per second. There
are multiple factors that affect
dynamic power which can be
modified to improve efficiency,
including supply voltage,

operating frequency, peripheral
clock gating, and running from
RAM. How fast the system can
wake up also affects dynamic
power since no instructions are
executed while the CPU wakes.

By Wolfgang Schmitt, Director Sales North America, Hitex
Shawn Prestridge, Senior Field Applications Engineer, IAR Systems®
John Knab, Applications Engineer, STMicroelectronics

By taking advantage of power debugging

techniques that correlate power consumption

to application code, developers can gain

visibility into how their design decisions

impact overall power efficiency.

21

STM32 Journal

The optimal power strategy for
an application depends a great
deal upon how the system is
going to be used. A system
that stays on continuously, for
example, needs to be architected
quite differently compared to a
system that spends most of its
time asleep. Similarly, a system
that must frequently wake the
CPU to perform background
tasks, such as servicing a
communications interface, will
need to offer fast responsiveness
as well as power efficiency.
Power can also be managed
by turning off peripherals that
are not in use. Each of these
considerations results in a
distinctly different power profile,
and balancing performance,
system responsiveness, and
power requires that developers
select the most efficient
operating modes.

The STM32 architecture offers
many options for optimizing
ultra-low power consumption,
including several operating
modes (see Figure 1):

Run from Flash: When executing
code from Flash, the STM32 L1
offers an outstanding combination
of performance and low power
with power consumption down to
230 µA/MHz.

Run from RAM: Powering down
the Flash and executing code
from RAM further lowers power
consumption down to 186 µA/
MHz. An additional benefit is
that code can be executed at full
speed from the internal RAM.

Low-Power Run: In this mode,
the CPU is active but operating
at 32 kHz. Power consumption
drops to 9 µA while still enabling
the system to be completely
available, including all MCU
peripherals. This mode is useful
for systems that must always be
on to monitor system operations
but do not always require
high performance processing
capabilities (see Figure 2). In
addition, this mode provides
excellent time-to-wake-up.

Low-Power Sleep: This mode
puts the CPU to sleep but still
keeps some peripherals active
for both receiving incoming
data and waking the system
quickly. Operating at 32 kHz
with one timer available, this
mode consumes only 4.9 µA and
provides a power-effective way
to intelligently monitor and wake
the system without having to be
continuously active.

Stop Mode: The CPU and
peripherals are shut down in
Stop mode. The system can run

µA µA

time timeCompetitor Y STM32 L1

Run mode

Low power mode

Run mode

Low-power run or sleep

Ultra-low-power mode

33.3 DMIPS
at 32 MHz

〉〉 Low-power mode (µA)

〉〉 Medium performance (DMIPS)

〉〉 Ultra-low-power static modes (µA)

〉〉 Optimized dynamic modes (µA)

〉〉 High performance (DMIPS)
 〉 Energy saving (µA/DMIPS)

> 443 µA/DMIPS in run mode

Down to 185 µA/DMIPS
in run mode (STM32 L1)

Figure 2 The STM32 L1 offers superior power consumption of down to 185 µA/DMIPS
for those applications which need ultra-low power consumption.

Typical @ 25°C

230 µA/MHz

1.3 µA/
450 nA

4.9 µA

9 µA
186 µA/MHz

1.0 µA/
300 nA

Run

From Flash From RAM

Run

Stop
with or
without

RTC
Standby
with or
without

RTC

Low-power
sleep

+ 1 timer
@ 32 kHz

Low-power
Run

@ 32 kHz

CPU on

Peripherals activated

RAM & content preserved

Backup registers preserved

 STM32 L1 Consumption Values (64 to 128 Kbyte)

Figure 1 The STM32 architecture enables efficient power management by providing
developers with several operating modes. The figures listed here are typical power
consumption at 25˚ C for an STM32 L1 MCU.

22

STM32 Journal

at 450 nA without the real-time
clock or 1.3 µA with the real-time
clock active. This mode allows
the system to wake more quickly
than standby mode.

Standby Mode: This mode
provides the lowest power
operating mode: only 1.0 µA
without the real-time clock or 300
nA with the real-time clock active.

In addition to its numerous
operating modes, the STM32
architecture offers several other
options for further decreasing
power consumption (see Figure 3):

〉〉 Dynamic Voltage Scaling:
The STM32 L1 supports three
core voltage levels – 1.8, 1.5,
and 1.2 V – to scale down
power consumption when the
full processing capabilities of
the CPU are not necessary.
Selectable using an on-chip
programmable LDO voltage
regulator, each level gives
another incremental reduction
in power consumption (see
Figure 4). Developers also have
the option to scale frequency
to balance power and clock
rate to match dynamic
processing requirements.

〉〉 Flexible Clock Tree: Three
clock sources can be
configured as the main system

clock to ensure that the MCU
is not running any faster
than is needed to conserve
power. For example, for a low
power mode, a multi-speed
internal clock can serve as
the system clock. When extra
performance is needed, the
system can switch to either
the High-Speed External clock
(HSE) or the High-Speed
Internal oscillator (HSI).

〉〉 Multispeed Internal RC
Oscillator (MSI): The MSI
is one of the STM32 L1’s
five clock options and is an
ultra-low power clock that
is able to generate multiple
frequencies from 64 kHz to 4
MHz with power consumption
proportional to speed. This is
the clock the MCU uses when
powering up after a reset.

〉〉 Automatic Clock Gating:
Clock gating turns on and off
downstream buses to lower
the power consumption of
the bus and peripherals. In
addition, each peripheral can
be disabled when not in use.

〉〉 Power Down Flash: With
this feature, an application
can run code out of RAM and
disable the Flash controller,
resulting in power savings on
the order of 8.5%.

System

Control Display

Power supply
1.2 V regulator
POR/PDR/PVD
Xtal oscillators

32 kHz + 1 ~24 MHz
Internal RC oscillators

37 kHz + 16 MHz
Internal ULP

multispeed RC oscillator
64 kHz to 4 MHz

PLL
Clock control

RTC/AWU

Voltage scaling 3 modes

37/51/80 I/Os
Cyclic redundancy

check (CRC)

2x watchdogs
(independent and window)

Nested vector
interrupt

controller (NVIC)

Embedded Trace
Macrocell (ETM)

Memory protection
unit (MPU)

JTAG/SW debug/ETM

LCD driver 8x40

7-channel DMA

AHB bus matrix

ARM Cortex-M3 CPU
32 MHz

8x 16-bit timers

Analog

Connectivity

2-channel 12-bit DAC

2x SPI
2x I2C

3x USART
USB 2.0 FS

Touch sensing
Charge-transfer driver

up to 18 channels

2x comparators
Temperature sensor

12-bit ADC
24 channels

Boot ROM

10- to 16-Kbyte SRAM
84-Kbyte backup data

4-Kbyte EEPROM

64- to 128-Kbyte
Flash memory

Figure 3 The STM32 L1 (and the STM32 architecture in general) offers a variety of features
specifically designed to further decrease power consumption.

MHz mA

32

2
4
8

16 3.8 mA

1.1 mA

2.1 mA

5 mA

9.3 mA

1.3 mA

2.6 mA

1.2 V 1.5 V 1.8 VCore Voltage

Supply Voltage 1.65 V to 3.6 V 2 V to 3.6 V

0WS => 1.24 DMIPS/MHz

1WS => 1.04 DMIPS/MHz

1WS => 4.2 DMIPS max
0WS => 2.5 DMIPS max 0.8 mA

0WS => 10 DMIPS max

1WS => 16.6 DMIPS max

0WS => 19.8 DMIPS max

1WS => 33.3 DMIPS max

Figure 4 The STM32 architecture supports three core voltage levels—1.8, 1.5, and 1.2 V—
to dynamically scale down performance and power consumption when the full
processing capabilities of the CPU are not needed. The dynamic voltage scaling
figures shown are based on an STM32 L1 in run mode.

23

STM32 Journal

〉〉 ADC Automatic Shutdown:
Rather than consume ~900
µA continuously when active,
ADCs can be configured to
automatically shut down after
conversion. Figure 5 shows
the impact of this feature. In
fact, with the CPU clocked at
32 kHz, the STM32 L1 can still
support a 1 MSPS sampling
rate while only drawing an
average current of 150 µA.

〉〉 Integrated RTC with Wake-
Up from Low Power Modes:
Essential for applications that
need to wake periodically,
this RTC runs out of standby
circuitry separate from the
main core to provide maximum
standby power savings.

Which operating modes and
capabilities are best to use

depends upon what CPU
performance is required, which
peripherals need to be active,
and how fast the system has to
be able to wake up. For example,
it may be the case that the CPU
operating at a low frequency
can complete the required task
before the oscillator/PLL is able to
lock. For calculations with a long
duration, power consumption will
be better with the PLL active.

Wake time is important because
all of the power consumed while
waking is effectively wasted
since no work is being done. For
systems waking frequently, it may
make more power sense to use
a low power mode that wakes
faster. To minimize overall wake
losses, turn on system peripherals
starting with those with the lowest
current consumption and enable

peripherals only when they need
to be used.

Power Profiling
Ideally, a low power application
spends long periods in low
power modes and short periods
in active modes. With all of the
low power features of the STM32
architecture, power consumption
can be substantially improved by
dynamically switching among the
various power modes. However,
it can be difficult to accurately
determine the actual power
consumption for each use case.
To get the most out of a system
requires a clear understanding of
how the different power modes

and other power management
capabilities of the STM32 can
be used. Without knowing how
the system is consuming power,
optimization will be difficult.

To determine whether a system

meets its power budget will
require power profiling. Power
profiling, or power debugging as it
is sometimes called, is not about
locating explicit flaws in source
code but rather uncovering
opportunities to tune how the
hardware is utilized. Because
each use case imposes different
requirements upon the MCU,
developers can use profiling tools
to determine which low power
modes are best for each of the
different operating conditions.
In addition, developers can try
a variety of different test cases
using immediate feedback to see
which approach or configuration
minimizes the power profile,

as well as to determine the
maximum, minimum, and
average power consumption of
the final application. The power
data available will also enable
developers to select the optimal

CPU running at

ADC current consumption measure (in µA)

ADC is running in
Normal Mode**

ADC is On in Power
Saving Mode***

16 MHz (from HSI) 1453 µA 630 µA
4 MHz (from MSI)* 1453 µA 445 µA
1 MHz (from MSI)* 1000 µA 258 µA
32 kHz (from MSI)* 900 µA 150 µA

*HSI is On **PDI=PDD=0 ***PDI=PDD=1

Figure 5 Rather than consume ~900 µA continuously when active, ADCs can be configured
to automatically shut down after conversion for significant power savings. In this
example, the ADC is in continuous mode with a delay of 15 cycles between each
channel conversion.

Power profiling, or power debugging

as it is sometimes called, is not about

locating explicit flaws in source code

but rather uncovering opportunities to

tune how the hardware is utilized.

24

STM32 Journal

operating frequency and voltage
for each use case.

Depending upon its state, an
STM32 MCU can consume
currents from mAs down to
a few hundred nAs. This is a
huge range, and without wide
monitoring resolution, power
profiling will have limited
accuracy and may become
unusable. In addition, as soon
as a debugger is connected to
the system, the overall power
analysis is changed due to the
additional signals being used
for debugging. This is why
debugging is always a system
intrusion in terms of power
measurement.

To address this need, Hitex has
implemented the energy profiling
tool PowerScale which can
be used independently of any
debugger/compiler combination
and allows for non-intrusive
power profiling. PowerScale can
also be integrated with 3rd party
debug solutions to address the
need for correlating instruction
flow with energy profiling. Such
an implementation has been
implemented in cooperation with
ARM/Keil and their ULINK®pro
debug adapter. When used with
the µVision Debugger, profiling
can be combined with trace

events to record sleep statistics,
analyze ISR execution, and
perform code coverage with
time execution analysis.
PowerScale offers non-intrusive
monitoring using up to four
probes, giving developers the
versatility to profile up to four
different power domains. The
system measures current and
voltage simultaneously on all
power domains and accurately
correlates these measurements.
This allows for a whole-system
power profile that includes
external components such
as a Bluetooth radio, LCD, or
memory IC. Supporting a large
measurement range (Active
Current Measurement (ACM)
Probe from 200 nA to 500 mA;
standard probe from 1 mA to
1 A), a time resolution of up to
100kHz, and easy adaptation,
PowerScale analyzes the effects
of MCU-specific power features
so developers can understand
the power impact of every
design decision.

Similarly, developers can
optimize power consumption
using the J-Link debug probe
from IAR Systems® which can
be used to measure both board-
level and chip-level power
consumption (see Figure 6).
For non-intrusive board-level

Go beyond Power Debugging!
PowerScale measures the real power
consumption – current and voltage
at the same time

ACM technology provides a wide
 dynamic range from 200nA to 500mA

Easy integration to Keil ULINK

www.hitex.com/powerscale

www.hitex.com/powerscale

25

STM32 Journal

measurements which include
the power usage of all system
components, the probe is easily
connected to JTAG pin 19. For
MCU-level measurements, the
probe can be connected to the
MCU’s Vdd pins with minimal
intrusiveness. The J-Link debug
probe operates by sampling the
program counter at a frequency
up to 20 kHz and collects time-
stamped event information. The
current power is also sampled
using an ADC with a resolution
of 1 mA.

These tools play an important
role in quantifying the differences
between different low power
modes and allow developers to
quantify how each system and
program modification affects
overall power consumption.

Common tasks to profile include
the energy consumption and
execution time of an interrupt
handler, the actual power
consumption of an ADC in each
of the different modes, and which
voltage scaling option provides
the best power efficiency.

For more accurate results,
measure power consumption
over a long period of time—at
least one complete cycle of the
device's tasks. Since power
is measured statistically, the
more measurements taken and
the higher the time resolution,
the greater the precision. By
uploading data streams over
USB to a hard drive, long term
measurements for statistical
analysis can be made without
any loss of data granularity.

Effectively unlimited recording
of profile data to a hard drive
enables long-term analysis
of system performance. For
example, a system’s power
profile may change if the system
is hot or has been on for a long
time, and profiling can expose
potential problems before
products are already in the field.

Both the PowerScale and J-Link
tools also correlate current
consumption with application
code, and clicking on an event
in a power graph will open the
corresponding source code. This
allows developers to focus their
optimization effects on those
code segments which consume
the most power. These tools also
provide valuable comparisons
between the different power

saving modes to assist
developers in making sure the
different elements of the MCU are
being used as efficiently as they
can. Each tool supports multiple
ways of displaying measurement
data—from simple current/
voltage/power graphs to more
complex analysis statistics—and
can be integrated with debuggers
and other test tools.

This ability to quickly perform
root cause power analysis by
identifying any line of code
responsible for a major change
in power consumption enables
developers to efficiently optimize
power consumption by focusing
on system hot spots to maximize
their effort. Baselining power
consumption also provides a
fast means for determining if a

Figure 6 The J-Link debug probe from IAR Systems® can be used to non-intrusively measure
both board-level and chip-level power consumption as well as synchronize power
sampling with the MCU program counter.

These tools play an important role in quantifying

the differences between different low power

modes and allow developers to quantify how

each system and program modification affects

overall power consumption.

26

STM32 Journal

change in code has unintended
power consequences. In addition,
developers can switch out
different hardware components to
determine which provides better
power performance.

Power profiling can also help
identify mismanagement of
peripherals. For example, a
peripheral may be accidentally left
on after being used by a specific
function. Such an oversight
can be quickly recognized and
resolved by noting that the idle
power is several mA higher
than the expected baseline.
Alternatively, an event such as an
external signal occurring more
frequently than originally specified
may wake the system prematurely
and adversely increase power

consumption. While this
problem can be identified using
breakpoints, the process is
time-consuming and tedious.
With power profiling, developers
simply click on a power spike to
see the cause.

Power Efficient Design
A key component of power
efficiency is processor
performance given that the
faster the MCU can perform a
task, the sooner it can return to
sleep. The Cortex-M foundation
of the STM32 architecture was
specifically designed for the
real-time processing needs of
embedded systems. Its Thumb2
instruction set brings 32-bit
performance with 16-bit code
density, and combined with other

enhancements like an integrated
interrupt controller, single-
cycle multiply functionality,
and dedicated instruction and
data buses, the Cortex-M
architecture provides a 30%
performance improvement over
the ARM7TDMI architecture,
allowing applications to reduce
active time and improve power
efficiency.

For example, consider an
application requiring 20 DMIPS.
An ARM7TDMI running at 22.2
MHz will consume 8.7 W while
a Cortex-M3 running at 16.7
MHz will consume only 2.5 W.
The result is that the Cortex-M3
requires 25% less speed and
consumes 70% less power.

For additional CPU offloading,
the STM32 architecture utilizes
a flexible, multi-channel DMA
engine capable of transferring
data between peripherals
and/or memory with minimal
involvement of the CPU. The
CPU can even be put into sleep
mode during DMA transfers to
further improve power efficiency.
With its dual APB architecture,
peripherals can also be clocked
independently. To speed memory
transactions, the Cortex-M core
supports Atomic Bit Manipulation
(ABM). Traditionally, adjusting

a bit in RAM or a peripheral
requires a read/modify/write
sequence. ABM uses aliases
to enable single-instruction
reading and writing, resulting in
performance and power savings.

With much of a system’s
functionality implemented in
software, application developers
can improve power efficiency
beyond optimizing how fast
processing is completed and
the MCU can return to sleep.
The STM32 architecture, and
EnergyLite STM32 L1 MCUs
in particular, provide a variety
of low power modes and
integrated circuitry such as
dynamic voltage scaling, flexible
clocking system with automatic
clock gating, the ability to
turn off Flash, and fast time-
to-wake. Through the use of
power profiling tools like J-Link
and PowerScale, developers
can focus their optimization
efforts on power hot spots
within the system as well as
quickly identify and resolve
unexpected power spikes. In
this way, developers can meet
the changing performance and
responsiveness requirements
of their application while
achieving the optimal operating
configuration for every case.

The STM32 architecture utilizes a flexible,

multi-channel DMA engine capable of

transferring data between peripherals

and/or memory with minimal involvement

of the CPU. The CPU can even be put into

sleep mode during DMA transfers to further

improve power efficiency.

27

STM32 Journal

Simplifying Embedded Design
for Accelerated Time-to-Market

Designing an efficient, real-time
embedded system requires
that each component has
been optimized to operate in
conjunction with the rest of
the system. Today’s MCUs
accelerate system design
by integrating many of the
components an application
requires and managing their
interactions with an efficiency
not possible when using external
components.

The high level of intelligent
integration in the STM32 family,
for example, speeds time-to-
market by enabling:

〉〉 Greater performance through
coordination of all system
components

〉〉 Elimination of throughput
bottlenecks with a multi-layer
bus interconnect

〉〉 Increased responsiveness and
determinism by offloading
tasks from the CPU to reduce
interrupts

〉〉 Simplification of design
through flexible clocking and
interface options

〉〉 Increased system safety
through self-monitoring

〉〉 Lower system cost by
reducing component cost and
system complexity

Greater Performance
through Coordination
As embedded MCUs become
more complex, their internal
architectures can give rise to
bottlenecks which can impede
system performance. For
example, executing code from
embedded Flash can reduce an
MCU’s maximum performance
because of wait states imposed
by the Flash controller. Similarly,
embedded accelerators may
be unable to keep up with the
MCU core, thus slowing system
performance when their capacity
is tapped. The result is that
performance often degrades at
higher core frequencies.

Architectures designed to
compensate for known system
bottlenecks can eliminate
their negative impact on
performance. For example,
the STM32 architecture avoids
losses in performance as core
frequency increases through the
use of Adaptive Real-Time (ART)
memory accelerator technology.

The ART Accelerator introduces
a prefetch queue and branch
cache between the embedded
Flash and CPU core. Each time
an event such as a subroutine
call, interrupt, or conditional
branch occurs and breaks the
linear execution of the code,
the ART Accelerator checks
if this event has already been

By Alec Bath, Applications Engineer, STMicroelectronics

Cortex-M4
CPU

Arbitration
and branch

management

Flash
memory

12
8-

b
it

12
8-

b
it

12
8-

b
it

128-bit wide
embedded

Flash memory

ART Accelerator

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit
128-bit

Instruction bus

Data/debug bus

Figure 1 Integrated architectures can eliminate system bottlenecks by coordinating
interactions between system components. For example, the ART Accelerator of
the STM32 architectures buffers first instructions and constants so they can be
placed into the prefetch queue to eliminate any performance losses associated with
branching when executing from Flash.

28

STM32 Journal

stored in the cache (see Figure
1). If so, the first instructions
and constants associated with
this branch can be immediately
pushed from the branch cache
to the prefetch queue, thus
eliminating any performance
losses associated with
branching. If the event has not
yet been stored and its first
instructions are not available,
they are now stored in the
buffer to prevent any delay the
next time this event occurs.
With a deep branch cache,
most applications achieve
performance equivalent to
zero wait states when
executing from Flash.

Figure 2 shows the impact of
ART Accelerator technology
on MCU performance when
the MCU operating frequency
reaches a point where the
Flash becomes a bottleneck
and imposes losses which
can represent a significant
percentage of overall
performance. By eliminating
these losses, the ART
Accelerator provides consistent
performance that scales linearly
with core frequency. As can
be seen, the STM32 F4 is able
to provide its full 210 DMIPS
performance at 168 MHz when
executing from Flash. The ART Accelerator is an

excellent example of an
architectural enhancement
which is only possible when
an MCU is highly integrated.
Eliminating the wait states
associated with branching
requires intimate coordination
between the Flash controller
and the instruction pipeline.
When multiple architectural
enhancements like the ART
Accelerator and those described
below are combined in an
MCU, the improvements in
performance are tremendous.

Multi-layer Bus
Interconnect: Data
Transfers without
Involving the CPU
An essential element of a highly
integrated MCU is its internal
interconnect bus. With the
increase of digital processing
in embedded systems, whether
for motor control, decoding
of digital content, or high
speed interfaces, MCUs
need to move significantly
more data than they have
in the past. The interactions
between the CPU, numerous
accelerators, peripherals, and
high-speed data interfaces
can severely stress an MCU’s

STM32 F4 series Competitor F Competitor R

DMIPS

50

100

150

125

75

25

175

0

200

225
STM32F4:
best mix,
acceleration
and speed

Competitor R: maximum
frequency limitation

Competitor F:
Flash access bottleneck

20 40 60 80 100 120 140 160 180

FCPU
(MHz)

Figure 2 Flash bottlenecks that arise as operating frequency increases can represent a
significant percentage of overall performance. By eliminating these losses, the
ART Accelerator provides consistent performance that scales linearly with core
frequency, allowing the STM32 F4 to provide its full 210 DMIPS performance at
168 MHz when executing from Flash.

With the increase of digital

processing in embedded systems,

whether for motor control,

decoding of digital content, or high

speed interfaces, MCUs need to

move significantly more data than

they have in the past.

29

STM32 Journal

bus. Developers must be
able to account for worst-
case operating scenarios
when multiple peripherals and
interfaces are active at the
same time, and how the bus
is architected determines the
overall level of contention and
latency in the system.

With the myriad peripherals
in a highly integrated MCU, a
simple interconnect will not
suffice; rather, a bus matrix
which enables independent

connections between masters
and slaves is required. Figure
3 shows the 7-layer matrix
that interconnects the STM32
F4 to enable seamless and
efficient operation of the
core and multiple peripherals
simultaneously. Bus masters
(shown along the top) include
the CPU, the 2 DMA controllers,
and the Ethernet and USB
interfaces. Slaves, shown on the
right, include the Flash memory
through the ART Accelerator, 2

blocks of SRAM, the Flexible
Static Memory Controller
(FSMC), and the peripherals
through the AHB bus interfaces.
The nodes on the matrix
represent the actual connections
between the masters and slaves.

The flexibility and efficiency of
this approach is illustrated in
the figure with five simultaneous
operations:

〉〉 The core accesses Flash
through the ART Accelerator

〉〉 The core accesses the
112-Kbyte SRAM

〉〉 The DMA2 controller transfers
data from the camera
interface located on the AHB2
peripheral bus

〉〉 The DMA2 controller transfers
camera data to an LCD
connected through the FSMC

〉〉 The USB OTG High Speed
interface stores received data
in the 16-Kbyte SRAM block

The matrix interconnect offers
a powerful improvement on
performance. For example,
each DMA in the system can
operate, once configured, with
no CPU overhead. In addition,
because the Ethernet and USB
OTG peripherals have their
own dedicated DMA, they can
operate simultaneously as
long as they are not trying to
access the same slave. As a
result, multiple transactions can
take place simultaneously and
without interfering with each
other, significantly increasing the
internal throughput of the MCU
and potentially eliminating data
access as a system bottleneck.

It is important to note that the
CPU does not need to be involved
in transfers initiated by other
masters. For example, rather than

120 MHz

Bus masters

In
st

ru
ct

io
ns

D
at

a

S
ys

te
m

D
M

A
_M

E
M

1

D
M

A
_M

E
M

2

D
M

A
_P

1

D
M

A
_P

2 100 Mbit/s
12.5 MByte/s

480 Mbit/s
60 MByte/s

7-
la

ye
r

32
-b

it
m

ul
ti-

A
H

B
 b

us
 m

at
rix

672 MByte/s

672 MByte/s

D D

I I

Bus Slaves

SRAM 112 Kbytes

AHB1 peripheral

AHB2 peripheral

FSMC

AR
T

Ac
ce

le
ra

to
r

Flash
1 Mbyte

General
purpose
DMA1

8 channels

General
purpose
DMA2

8 channels

Ethernet
MAC 10/100

DMA

AHB1/APB1

AHB1/APB2

64 Kbytes SRAM

SRAM 16 Kbytes

Cortex-M4
with CPU

168 MHz

USB OTG
HS

DMA

Figure 3 The 7-layer matrix that interconnects the STM32 F4 enables independent connections between multiple masters and slaves.
For example, five distinct data transfers are taking place simultaneously in this example. Note that the CPU is only involved
in those transfers where it is a master.

www.st.com/stm32f4

31

STM32 Journal

a high-speed interface consuming
most of a CPU’s cycles with
interrupts to receive or send the
next byte of data, data can be
received/stored or retrieved/sent
in a way that does not involve the
CPU. This provides the MCU with
tremendous interconnect and data
transfer capabilities to eliminate
many traditional peripheral and
memory access bottlenecks.

Low to Zero Overhead
Common operations which
are executed frequently can
be integrated into an MCU in a
variety of ways. For example, in
the early days of digital motor
control, a separate DSP and
MCU were required to provide
basic control functionality.
Today, a single MCU can drive a
motor with enough overhead to
perform advanced processing,
including precision control,

enhanced filtering, and power
factor correction. In addition,
application-specific peripherals
further offload the CPU by
accelerating processing of
specific tasks in hardware:

Cryptographic Accelerator:
With the increasing number
of embedded devices
interconnected over the

network, hardware-based
cryptographic capabilities
are required to ensure secure
transactions. The STM32’s
integrated crypto/hash
processor supports DES, 3DES,
AES128, and AES 256 (up to
106 Mbytes/s) as well as SHA-1,
MD5, and HMAC hashing.

Hardware-based CRC:
Developers can add CRC
checking in hardware to SPI and

I2C interfaces to provide robust
communications for even the
noisiest industrial environments.

Nested Vector Interrupt
Controller (NVIC): The NVIC
allows the Cortex-M core to
enter and exit an interrupt in
just 12 cycles to enable highly
deterministic MCU behavior.
The process is completely

handled in hardware, allowing
developers to write application
code in C without the need for
any assembly wrappers, thus
simplifying software design.

Serial-Wire Debug: The
Cortex-M architecture supports
Serial-Wire Debug mode, which
provides more functionality than
a standard JTAG port while using
fewer wires to accelerate system
troubleshooting and verification.

For example, Serial-Wire Debug
supports up to 8 breakpoints
and provides limited real-time
data trace capabilities without
needing to halt the CPU core.

An embedded application may
also have a variety of sensors
to monitor system health. If
the temperature gets too high,
for example, the system may
need to turn on a fan or adjust
a control algorithm (such as
when managing LED lights) to
compensate for the extra heat.
Portable systems often monitor
battery voltage so they can
alert users to pending system
shutdown. A motor control
application may measure current
or voltage as part of the feedback
loop or as a check that the motor
is not being overdriven. In some
cases, such as when measuring
temperature or battery voltage,
sensors only need to be checked
infrequently. With other sensors,
such as when measuring current,
the duty cycle of the sensor can
be quite high.

Traditionally, sensor management
has been a task for the CPU to
handle. This means the CPU has
to interrupt the current task, read
the sensor, convert the captured
reading, compare this value to an
event threshold, and then take

Today, a single MCU can drive a motor with enough overhead

to perform advanced processing, including precision control,

enhanced filtering, and power factor correction. In addition,

application-specific peripherals further offload the CPU by

accelerating processing of specific tasks in hardware.

32

STM32 Journal

appropriate action. Even with a
low duty cycle, these operations
can consume a significant
number of processor cycles.
The use of an analog watchdog
takes advantage of the fact that
for most sensors, the default
response is to take no action
unless a high or low threshold is
exceeded. Developers can set
the analog watchdog with high
and low thresholds which trigger
an interrupt if the sensor ever
exceeds one of the thresholds.
The only time the CPU is
involved is if either threshold
is exceeded. The result is that
reliable sensor monitoring can
be implemented with zero CPU
overhead, regardless of the duty
cycle of the sensor.

Flexible Clocking
Depending upon the MCU family,
numerous clocking options
are available. For example,
multiple integrated PLLs allow
developers to easily run the
core and peripherals at different
frequencies as well as generate
specific frequencies such as
those required for audio codecs
or a USB link. In addition,
frequencies can be quickly
scaled down without incurring
latency to unlock a PLL when
dropping into low power modes.

For applications which don’t
need a crystal for precision
clocking (i.e., the system does
not need to support a high-
speed USB interface), an
internal RC oscillator that can
be trimmed to 1% accuracy is
sufficient for most applications
except those that require an
even more precise external
crystal (i.e., USB), thereby
reducing component count and
system cost. The STM32 family
supports an 8 MHz (16 MHz for
the STM32 F4 family) internal
RC oscillator. In addition to this
high speed clock source, STM32
L1 devices have a multi-speed
internal oscillator that allows
ultra-low power operation from
64 KHz to 1 MHz with fast wake
up. Also, all STM32 devices
have a low-speed oscillator
that runs a watchdog timer
independently of other system
clocks and drives the real-time
clock (RTC) peripheral.

The STM32 architecture also
offers multiple general-purpose
timers. Because timers can
be linked and cascaded with
each other, they can used to
manage low frequency tasks
without requiring the MCU to
handle timer rollover in software.
This can result in a significant
savings in processor cycles and
increased determinism through
a reduction of the total number
of interrupts the system handles.
Timers can be used to trigger
peripherals together, such as is
required to synchronize output
stereo audio signals.

Dedicated Timer Functions
are also available to support a
variety of applications, including
quadrature encoders, Hall
sensors, and 3-phase motor
control. For example, 3-phase
motor control enables finer
control of motor torque and
speed by synchronizing three
pairs of PWM outputs. Less

software overhead is incurred
because part of the function is
performed in hardware by the
dedicated timer function.

Extensive Interfaces
Today’s embedded systems also
need to be able to interconnect
with a wide range of off-chip
components as well as network
with other devices. The integration
of industry standard interfaces
reduces system cost by allowing
developers to quickly and easily
develop products that connect to
other devices or components with
minimal design effort:

Audio Applications: I²S
and USB peripherals with
advanced dual PLL and data
synchronization schemes provide
digital audio support.

High Speed USB OTG (external
PHY required): The STM32 F4
offers two USB peripherals, both
supporting On-The-Go (OTG)
so a device can be a host or

The integration of industry standard interfaces reduces

system cost by allowing developers to quickly and

easily develop products that connect to other devices

or components with minimal design effort.

33

STM32 Journal

peripheral. Both support Full
Speed USB and have integrated
Full Speed PHYs. Additionally,
one of the peripherals also
supports High Speed USB.
Full host and device drivers are
available to speed design.

Ethernet MAC 10/100, with
IEEE 1588 V2 hardware
support: IEEE 1588 is an
important standard for time-
synchronizing different Ethernet
devices on the network. This is

required for applications such
as industrial control where each
device must act in concert within
a few nanoseconds. The MAC
supports either standard MII
or RMII, giving developers the
flexibility to connect to the PHY
of their choice. Performance is
further enhanced through the use
of a dedicated DMA controller.

Camera interface: STM32 MCUs
have a flexible 8- to 14-bit parallel
interface which supports a

number of different color formats
and allows devices to easily
capture images or moving video
at up to 48 Mbytes/s at 48 MHz.

Flexible Static Memory
Controller (FSMC): Rather than
locking developers into using
a limited type of memory, the
FSMC is capable of driving
different types of static memory
or supporting an external display,
depending upon the needs of
the application. The FSMC runs

at up to 60 MHz and supports
different topologies so that it can
interface with SRAM, pSRAM,
Flash, NAND Flash, and others.

USART: MCUs that offer a
UART typically only support
asynchronous communications,
which limits the types of
interfaces the MCU can
implement. By supporting both
synchronous and asynchronous
communications, the STM32’s
Universal Synchronous/
Asynchronous Receiver-
Transmitter (USART) is able to
support interfaces like LINBUS
or IrDA without the need for any
other specialized hardware. In
addition, interface driver libraries
are available, including a fully-
configurable I2C library, giving
developers the flexibility to
implement whichever interfaces
they need for a particular
application. Finally, the STM32
F4’s USARTs are fast, operating
up to 10.5 Mbps.

Consumer Electronics Control
(CEC): The CEC interface is
defined within the HDMI spec
and allows different consumer
electronics devices to control
each other over HDMI.

Up to 140 GPIO: STM32 MCUs
provide enough I/O for nearly
embedded application. In

System

Control
Crypto/hash processor2

Power supply
1.2 V regulator
POR/PDR/PVD
Xtal oscillators

32 kHz + 4 ~26 MHz
Internal RC oscillators

32 kHz + 16 MHz
PLL

Clock control
RTC/AWU

SysTick timer

51/82/114/140 I/Os
Cyclic redundancy

check (CRC)

2x watchdogs
(independent and window)

Nested vector
interrupt

controller (NVIC)

MPU

Floating point unit (FPU)

JTAG/SW debug/ETM

3DES, AES 256
SHA-1, MD5, HMAC

16-channel DMA

Multi-AHB bus matrix

ART Accelerator™

ARM Cortex-M4
168 MHz

2x 16-bit motor control
PWM

Synchronized AC timer
10x 16-bit timers
2x 32-bit timers

True random number generator (RNG)

Analog

Connectivity

2-channel 2x 12-bit DAC

SDIO
1x USB 2.0 OTG FS

1x USB 2.0 OTG FS/HS1

2x CAN 2.0B

3x SPI, 2x I2S, 3x I2C
Camera interface

Temperature sensor

3x 12-bit ADC
24 channels / 2 MSPS

Ethernet MAC 10/100
with IEEE 1588

6x USART
LIN, smartcard, lrDA,

modem control

512 OTP bytes

Up to 192-Kbyte SRAM

80-byte + 4-Kbyte backup SRAM

Up to 1-Mbyte Flash memory

FSMC/SRAM/NOR/NAND/CF/LCD
parallel interface

Figure 4 STM32 F4 MCUs offer a rich variety of performance, peripherals, and memory options to ensure that manufacturers pay
only for the capabilities they need.

34

STM32 Journal

addition, these I/Os are high
performance and can toggle at
up to 60 MHz.

The extensive variety of the
STM32 family, with more than
250 different devices in its
portfolio, ensures that the optimal
mix of performance, memory,
and peripherals is available so
manufacturers pay only for the
capabilities they need. Devices
range from the minimum level
of integration required for real-
time embedded applications
all the way up to the STM32 F4
with many optional peripherals
and/or multiple peripherals (i.e.,
STM32 F4 MCUs offer as many
as 3 SPI, 3 I2C, and 6 USARTs)
for applications which need
them (see Figure 4). Extensive
peripheral libraries provide driver
code for all MCU peripherals
and ensure compatibility
of application code across
the various STM32 product
families. In addition, ST offers
its MicroXplorer development
tool which assists developer in
defining and mapping peripherals
to the MCU’s pins.

Increased Safety
Integrating protective
functionality into an MCU can
increase system robustness and
reliability by alerting the MCU of

pending system failure so that
the system can be shut down
safely before personnel injury or
property damages can occur:

Reset supervisor: This function
keeps the MCU in a safe state
when the input voltage is out
of range, such as when the
system is turned on/off. It does
so by asserting the reset line
until the voltage is back in
range. This keeps the MCU from
incorrectly fetching instructions
or transitioning I/O pins.

Brown-out detection: This is
an early warning that triggers
an interrupt when the voltage
drops below a certain software-
configurable range. Brown-
out detection is critical for
applications such as medical or
industrial which must perform a
graceful shutdown upon pending
power failure.

Windowed watchdog timer:
A watchdog timer ensures that
the system is not locked in a
loop by requiring the system to
periodically reset the watchdog
to prove it is still active. A
windowed watchdog timer also
requires that the reset happen
within a certain time frame to
prevent the system from being
locked in a loop which resets the
watchdog timer.

Dual watchdog timer: A second
watchdog timer runs off the
internal low-speed oscillator.
In this way, regardless of what
happens with the other system
clocks, the system is guaranteed
to have an operational and
reliable watchdog timer.

Lower Cost, Component
Count, and Complexity:
Many integrated peripherals
not only reduce system cost by
eliminating the need for specific
external components, they also
shrink the overall device size while
simplifying design. For example,
the STM32 architecture offers:

Voltage Regulator: By
integrating the voltage regulator,
STM32 MCUs can operate off a
single voltage without requiring
an external component. This
also gives developers the
flexibility, in the case of the
STM32 F4, to supply from 1.8
to 3.6 V to the MCU.

Multiple PLLs: An integrated
phase-locked loop (PLL)
allows the MCU to be clocked
at high frequencies using a
low frequency crystal. Having
multiple on-chip PLLs allows
every frequency an MCU needs
to be generated from a single
clock source. For example, the

core could be operated at 168
MHz while the USB peripheral
receives a 48 MHz clock while
the Ethernet peripheral receives
either 25 or 50 MHz.

Real-Time Clock: Integrating the
real-time clock not only lowers
system cost, it enables the MCU
to keep time when the system bus
voltage is removed (i.e., the system
is powered by a coin cell battery).

The STM32 architecture has
been designed to provide the
performance and capabilities
required by today’s real-time
embedded systems. By offering
the highest level of integration
technology available today,
STM32 MCUs achieve optimal
performance by minimizing CPU
loading, allowing simultaneous
data transfers, and eliminating
system bottlenecks. The flexible
configuration of clocking and
interface options, combined
with an extensive range of
application-specific peripherals,
simplifies design while reducing
component count and system
cost. Together, these factors
enable developers to create
reliable and efficient systems
based on the STM32 architecture
that can be brought to market
quickly and easily.

35

STM32 Journal

Designing Efficient Connectivity

Many embedded systems, from
sensors to handheld medical
units to energy meters, can
perform more efficiently and
offer more intelligent operation
when they are interconnected.
Network connectivity extends
a wide range of functionality
to applications, allowing
performance information, control
data, and other real-time traffic to
be exchanged between devices
to improve system performance,
reliability, and versatility.

In the past, introducing high-
speed communications to a
system could be challenging
given that embedded systems
tend to be fairly constrained
in terms of available memory
and processing resources. With
new MCUs like ST’s STM32 F1
Connectivity Line, STM32 F2,
and STM32 F4 that have been
designed to provide turnkey
communications capabilities,
developers can implement
interfaces in a reliable way that
provides sufficient bandwidth
with low latency while leaving
enough headroom on the MCU

to support the main system
application.

Connectivity versus
Throughput
The first question to consider
when adding connectivity to a
system is whether an application
requires high throughput or just
simple connectivity. Consider
the data needs of a smart meter.
Relatively little bandwidth is
required between the smart
meter and a washing machine to
collect power usage information
or to enable time-of-day/
pricing-based controls. What
matters most in this case is
basic connectivity. In contrast,
a home appliance could be
connected to the Internet to
serve up video showing the
user how to operate or service
the appliance. Because of the
large size of video streams and
the low latency requirements
associated with real-time data,
throughput becomes a critical
design constraint.

The difference between
connectivity and throughput

is substantial. Connectivity is
relatively simple to implement,
especially if the application can
tolerate high latency. When
performance does not matter,
the system can implement
fewer and smaller buffers, thus
conserving memory resources.
It is when throughput matters

that the design of an interface
becomes more complex and
potentially expensive.

Note that the amount of data to
exchange is not the only factor
determining the need for high
throughput since latency impacts
the operation and reliability
of many real-time embedded
systems. For example, even
though an industrial controller
distributing control data via
Ethernet may only need to
transfer a handful of bytes at

a time, the longer it takes to
transmit data, the lower the
responsiveness and precision
the system will have. For such
an application, implementing a
100 Mbps interface will reduce
latency significantly compared
to an interface operating at only
10 Mbps.

Once basic connectivity
is in place, it is relatively
straightforward to expand
functionality by introducing
new services. When a system
already has a TCP/IP stack, then
email, FTP, web browsing, and
web serving functionality can
easily be added to the stack.
For example, Micriµm’s µC/
TCP-IP stack enables developers
to include these services, as
well as custom functions, and
access them through an intuitive

By Christian Légaré, Vice President, Micriµm
Bob Waskiewicz, Application Engineer, STMicroelectronics

Once basic connectivity is in place, it

is relatively straightforward to expand

functionality by introducing new services.

36

STM32 Journal

API. These services can run
concurrently and be tuned for
a specific application, thereby
simplifying stack implementation
and management. The primary
design challenge is balancing
data throughput to match the
services offered so that the
CPU’s capacity is not exceeded.

For high data rate applications,
the processor has to have the
capacity to create/transmit and
receive/use packets at the desired
rate. Table 1 shows the rate at
which the MCU must be able to
process packets across a 10/100
Mbps Ethernet connection. Note
that the total amount of data
transferred does not change these
figures; i.e., whether the system
is receiving 10 packets or 1000
packets, each packet must be
processed before the next packet
arrives to prevent loss of data.

Factors which affect the ability
to process and use packets

include CPU operating frequency,
memory allocated for the TCP/IP
stack, CPU bandwidth available
to the stack, stack efficiency,
and how data is moved within
the MCU. The priority of network
communications compared to
the application’s primary function
also comes into play. For some
applications, communications
and application processing are
intimately tied together and so
have correspondingly similar
priority: without any data, the
application has nothing to
operate upon. For example,
an industrial control system
will need to balance update
frequency with the complexity of
calculations it needs to perform
during each update. For other
applications, such as a smart
meter, communications is a
secondary function which can be
delayed if the application requires
the CPU’s full attention. For these
types of applications, assuming

the presence of a real-time kernel
such as µC/OS-III, developers
will need to lower the priority
of TCP/IP stack operations so
that communications does not
negatively impact application
performance.

Turnkey Connectivity
on a Chip
While the entire STM32 platform
from ST integrates a variety of
communications interfaces,
three of the families have been
optimized to provide advanced
communication peripherals—
including an Ethernet MAC and
USB Host/OTG controller—which
speed development, increase link
performance, and reduce system
cost. Providing turnkey Ethernet
and USB connectivity with
support for consumer audio, these
MCUs are also the controller of
choice for CAN gateways. Each
family offers a range of Flash
and RAM sizes and interfaces
to enable developers to balance
memory and performance for
every application:

STM32 Connectivity Line:
Providing economical networking
capabilities for consumer and
industrial applications, STM32
Connectivity Line MCUs are
based on the ARM Cortex-M3
and offer up to 72 MHz with

256 KB Flash and 64 KB SRAM.
Integrated interfaces include an
embedded Ethernet MAC with
dedicated DMA and IEEE 1588
precision time protocol hardware
support, USB 2.0 OTG Full Speed
controller, 2 CAN ports, and two
audio-class I2S interfaces.

STM32 F2: The STM32 F2
brings more performance to
connected applications, offering
a Cortex-M3 core operating at
up to 120 MHz with 1 MB Flash
and 128 KB SRAM. In addition
to an integrated cryptographic
accelerator, on-chip interfaces
include an embedded Ethernet
MAC with dedicated DMA
and IEEE 1588 precision time
protocol hardware support,
two USB 2.0 OTG controllers
(Full Speed/High Speed), 2
CAN ports, two audio-class
I2S interfaces, and a camera
interface. The STM32 F2 also
has 528 bytes of one-time
programmable (OTP) memory for
reliably storing critical user data
such as Ethernet MAC addresses
or cryptographic keys.

STM32 F4: ST’s flagship MCU,
the STM32 F4, is based on the
Cortex-M4 core and provides
168 MHz of performance (210
DMIPS) with up to 1 MB Flash
and 192 KB SRAM for the

Bytes/Packet
10 Mbps packets/sec

(µsec/packet)
100 Mbps packets/sec

(µsec/packet)

64 19,531 (51.2) 195,312 (5.12)

256 4,883 (204.8) 48,828 (20.4)

1024 1,221 (819.2) 12,207 (81.9)

1518 823 (1,214) 8,234 (121.4)

Table 1 Rate at which an MCU must be able to process packets

37

STM32 Journal

most demanding connected
applications. In addition to
introducing hardware-based
FPU, DSP, and cryptographic
capabilities to increase the
performance of compute-
intensive applications, the
STM32 F4 integrates an
embedded Ethernet MAC with
dedicated DMA and IEEE 1588
precision time protocol hardware
support, two USB 2.0 OTG
controllers (Full Speed and High
Speed), two CAN ports, two
audio-class I2S interfaces, and a
camera interface. The STM32 F4
also has 528 bytes of one-time
programmable (OTP) memory for
reliably storing critical user data
such as Ethernet MAC addresses
or cryptographic keys.

STM32 MCUs are capable of
higher data rates because of
their streamlined architecture.
Using a multi-layer bus
interconnect and dedicated
DMA, the integrated Ethernet
controller can simultaneously
move data directly to and from
main memory without requiring
any cycles from the CPU.
Integrating the Ethernet MAC
into the STM32 architecture also
lowers processing latency since
data does not have to then be
transferred between ICs while at
the same time reducing system

size and cost. While some MCUs
integrate the PHY as well, this
limits overall flexibility by fixing
the type of interface the system
can support. STM32 MCUs
do not integrate the PHY so
that developers have complete
freedom to utilize different
Ethernet technologies using the
same base product design.

The flexible clocking architecture
of STM32 MCUs further reduces
system cost while improving
power efficiency. Depending
upon the application, a single
clock source can be distributed
to supply each of the different
frequencies required to drive
the system, USB, and Ethernet
clocks. Through the use of PLLs
and prescalers, the system
clock also drives the MCU’s
various peripherals.

The STM32 Connectivity Line,
STM32 F2, and STM32 F4 MCUs
also integrate dual I2S interfaces
with a separate PLL for
generating precise frequencies
to support high-quality audio
playback. Combined with
an integrated USB port and
ST’s STM32 audio software
supporting MP3 and WMA
formats with channel mixing,
standalone 3-band parametric
equalizer, and loudness

www.micrium.com

38

STM32 Journal

control, these MCUs meet the
requirements for most embedded
audio applications.

Finally, STM32 MCUs give
developers the flexibility to remap
peripherals and interfaces within
the device. The ability to define
pin outs not only simplifies initial
design and layout, it facilitates
migration between each of the
various STM32 families to allow
developers to quickly spinoff
high-end or low-cost products
from the same base design.

Efficient
Communications Stacks
Because the stack forms the
heart of the communications
interface, it may be in constant
use, meaning it will have a
significant impact on how
the overall system operates.
However, simply knowing the
theory behind a protocol like
TCP/IP will not improve link
efficiency. What matters is the
manner in which a particular
stack operates and how its
use of system resources and
interrupts will impact application
performance. Rather than
making function calls blindly, by
understanding the implications of
each stack call, the stack can be
used in the most efficiency way.

For example, for a lightweight
stack to have a smaller
footprint than a full stack,
certain functionality must be
dropped or implemented less
efficiently. If an important feature
like congestion control has
been eliminated, performance
may suffer since the available
bandwidth will be consumed with
more retransmissions. Similarly,
when stack execution speed is
sacrificed for footprint, latency
will be negatively affected. If
the stack is optimized for IPv4,
this may create issues when the
system is connected to IPv6-
based devices. For example, the
network infrastructure will require
the use of a dual stack router so
that the IPv4-only device will need
to be connected to this special
router to tunnel the IPv4 packets
into IPv6 packets onto the IPv6
networks, adding unnecessary
processing to the IP packets and
affecting performance. Stacks
that are based on a polling
mechanism will also consume
more CPU cycles than interrupt-
based stacks. Depending upon
the application, short cuts taken
in a stack’s design may result in
greater contention for an MCU’s
processing or memory resources,
effectively resulting in higher
system cost.

For high performance
applications, the stack needs
to be ported to the MCU.
Micriµm’s µC/TCP-IP, for
example, supports the advanced
performance capabilities of the
STM32 architecture, making
full use of not only base
Cortex-M features such as
the Count Leading Zero (CLZ)
instruction and new Cortex-M4
FPU and DSP instructions but
also the STM32 architecture
itself, including the integrated
Ethernet MAC, multiple DMAs,
multi-layer bus interconnect,
and integrated CRC engine.

µC/TCP-IP also utilizes a true
zero-copy architecture – data
can be transferred directly to
and from application memory,
eliminating the need to copy
data to and from buffers in the
operating system (see Figure
1). In addition, developers
have full control of stack task
priority so they can balance
link performance with real-time
application requirements.

For applications where
performance and cost are critical,
a full stack with source code
enables developers to customize

TCP/IP
Stack

Main Memory
Network Buffers

Ethernet
Controller

Dedicated
Memory

PHY

LAN

TCP/IP
Stack

Main Memory
Network Buffers

Ethernet
Controller

PHY

LAN

CPU copies
or DMA DMA

a b

Figure 1 a) An Ethernet controller which stores received data in dedicated memory requires
CPU involvement to transfer data to the network buffers of the TCP/IP stack. b)
Micriµm's µC/TCP-IP stack supports the advanced performance capabilities of the
STM32 architecture to implement a true zero-copy architecture where data can be
transferred directly to and from application memory, eliminating the need for the
CPU to copy data to and from buffers in the TCP/IP stack.

39

STM32 Journal

the stack configuration. The
µC/TCP-IP stack is fully
documented and implemented
using a consistent coding style.
Components can be individually
selected, and code can be
optimized by the compiler to
match the system’s performance
and memory needs. Reference
designs provide a robust
foundation to enable developers
to quickly build a stack optimized
for their application. The kernel
has also been certified in many
safety-critical applications.

For Ethernet-based applications,
developers can select between
TCP and UDP. For reliable
connectivity, TCP guarantees
packet delivery through a
connection-oriented protocol
where the receiver acknowledges
each transfer. Connections can
remain active for long periods of
time. Developers can also run a
variety of high-level application
layers on top of TCP, including
HTTP for serving web pages, FTP
for transferring files, and SMTP
and POP3 for mail services.
Designed for reliable stream
transfers, TCP is ideal for non-
time sensitive data transfers. The
types of devices and services the
system is going to connect to will
dictate which optional features
need to be included in a stack.

Some applications do not require
the robustness or reliability
of TCP, especially directly
connected devices which do not
have to contend with other data
sources (i.e., controller to servo)
and those sending real-time
data which is obsolete before it
can be resent. In these cases,
UDP offers a faster alternative to
TCP where packets are sent and
then forgotten. Providing quick
and simple single-block transfer
capabilities, data can be sent
without first having to establish a
connection. Applications include
those handling time-sensitive
data such as audio and video
as well basic network services
such as DHCP (Dynamic Host
Configuration Protocol), DNS
(Domain Name Service), TFTP
(Trivial File Transfer Protocol),
and SNTP (Simple Network
Time Protocol). See Table 2 for a
comparison of TCP and UDP.

Tuning Communications
Performance
through RAM
With up to 1 MByte of onboard
Flash (STM32F2 and STM32F4),
STM32’s MCUs provide more
than enough code space to
enable developers to optimize
stack performance for speed
as well as include higher level

connectivity features in their
application. For example,
Micriµm’s TCP/IP stack with all
options requires less than 60
KBytes even when optimized for
speed. For another 30 KBytes
or so, the following popular
application-layer services
DHCP, SMTP, and POP3 can be
included as well.

Where developers may be
required to begin making
tradeoffs is when allocating
RAM. RAM is an essential
factor in determining the overall
communications throughput of
a system. In general, the more
RAM that is available for buffers
within the communications stack,
the faster protocol processing

UDP TCP

Service Connectionless Connection-oriented

Data Verification Yes Yes

Rejection of erroneous
datagrams/segments Yes Yes

Sequence Control No Yes

Retransmission of
erroneous and lost

segments
No Yes

Reliability Low High

Delay Generated Low High

Total Throughput Higher Lower

Service Type Quick and simple
single block transfers

Reliable
stream transfers

Applications 〉〉 Network services with
short queries and
answers

〉〉 DHCP and DNS

〉〉 Time-sensitive data
that can cope with
minimal packet loss,
including voice, video,
audio, repetitive sensor
data, etc.

Non-time sensitive data
transfers, including file
transfers, web pages,
email, etc.

Table 2 Comparison between UDP and TCP

40

STM32 Journal

will be. However, the same holds
true for application code, making
RAM an important resource to
allocate with care.

One of the most important
factors in fine-tuning TCP
performance is providing enough
buffers for the TCP Receive
Window size. In general, if the
receive window is lower than the
product of latency and available
bandwidth, the system will not
be able to fill the connection
at its capacity since the client
cannot send acknowledgements
back fast enough. Effectively,
there needs to be at least a
certain number of packets in
transit on the network to make
sure the TCP stack will have
enough packets to process while
accommodating packet latency.
The system will also need 3 or
4 additional buffers to allow the
system to send ACK message for
TCP packets received. The more
RAM that is available, the more
efficient stack processes can
be. Systems can be configured
with less buffers but connection
speed will drop because of
flow-control effects or because
of the increased number of
retransmissions generated.

STM32 F4 MCUs provide up
to 192 KBytes SRAM, thereby

simplifying performance tuning
and giving developers substantial
flexibility in how they allocate
available memory. For example,
configuring the TCP/IP stack
to have ten large transmit and
receive buffers consumes only
approximately a fifth of the
available SRAM. More or less
buffers can be allocated to
match an application’s specific
performance requirements.

To offload the CPU and increase
link performance, the STM32
multi-layer bus interconnect
allows for transfers to each
of the separate SRAM blocks
simultaneously using DMA. This
enables, for example, TCP/
IP transmit and receive data to
be transferred concurrently. To
accelerate processing when
multiple interfaces are active,
the STM32 architecture has a
separate DMA for both the USB
and Ethernet peripherals. The
result is that data can be received
from several interfaces and stored
in buffers without involving the
CPU.

Developers can tune TCP/IP
performance by configuring
different buffer sizes based on
the type of data the system will
be working with. If the network
is open and any compatible

device can be connected, then
the input buffers will have to
be able to handle the largest
possible incoming packet (i.e.,
1518 bytes) to avoid exceeding
the buffer limit and either
losing data or overwriting other
application data. If the network
is closed and attached devices
can be guaranteed to send
smaller packets, then smaller
buffers can be used.

On the transmit side, buffer
size can be optimized for
small or large data packets
since the system knows how
much data it will be sending.
To conserve RAM, the system
can be designed to produce
smaller packets. Note that this is
different than segmenting larger
data blocks into smaller ones, as
segmentation potentially requires
its own buffer and that data be
copied an additional time as well.

Developers can measure
actual stack performance using
unbiased benchmarking tools
like iPerf which provide transmit
and receive throughput for
both UDP and TCP. Using iPerf
during development and testing
can provide valuable insight
into how the TCP/IP stack and
application impact each other’s
performance. Developers new

to TCP/IP should remember that
running iPerf with just the stack
active can create unreasonable
throughput expectations since
the performance figures do not
reflect system-level performance.

Balancing RAM should be done
from a system-level perspective
early in the design process to
ensure that RAM is being used
in the most efficient manner.
A system may support several
interfaces—i.e., Ethernet,
USB, and SPI for an industrial
application—which may need
to run concurrently and thus
cooperatively share the same
processing resources. Each
application-layer service running
on top of the TCP/IP requires
RAM as well, as does a graphical
user interface (GUI). At some
point, it may make sense to give
the system some breathing room
by adding external RAM. This
decision needs to be considered
well before going to hardware.

Leveraging
a Real-Time Kernel
Depending upon the application,
using a real-time kernel can
significantly improve overall
performance by enabling more
efficient use of the CPU. For
example, the most common
method for communicating using

41

STM32 Journal

TCP/IP is using a BSD (Berkeley
Software Distribution) Socket.
Sockets allow for bidirectional
communication between a
source and destination. A system
can have many sockets, with
some carrying UDP data and
others carrying TCP streams.
Developers need to be careful
when using sockets because
they can block the system until
an operation is complete (i.e., a
socket cannot complete a recv()
function until data is actually
sent by a remote host). For this
reason, blocking sockets are only
used when a real-time kernel that
allows other threads to run is
part of the product architecture.

For systems without a real-time
kernel, non-blocking sockets
must be used and the socket
API returns an error value as to
whether the call was successful
or not (i.e., data was/was not
received). The disadvantage of
this approach is that it effectively
requires the system to poll the
socket, forcing low power systems
to wake more frequently than
might otherwise be necessary.

When using sockets with a
real-time kernel, care should
be taken not to use non-
blocking sockets because
of the tendency of TCP/IP

services to “starve” low priority
applications tasks. Micriµm’s µC/
TCP-IP stack allows developers
to adjust the priority of the
various stack components so
that mission-critical or real-
time application tasks can
placed ahead of or behind
communications processing
based on the functional needs
of the application. In addition,
developers have the option of
using Micriµm’s µC/OS-II or
µC/OS-III which were the very
first kernels to be ported to the
ARM architecture.

Micriµm also offers µC/Probe,
a Microsoft Windows-based
product that displays run-time
data using a variety of GUI-based
objects (gauges, meters, bar
graphs, numeric indicators, plots
and more) and provides full run-
time visibility into the µC/OS-II/III
kernels and µC/TCP-IP stack. µC/
Probe connects to a target using
an IAR J-Link, RS-232C, or TCP/
IP connection without requiring
developers to write any code.

Developers interested
in evaluating the STM32
Connectivity Line MCU and
Micriµm’s µC/OS-II/III and µC/
TCP-IP stack can readily do so
by obtaining the µC/OS-III and
µC/TCP-IP books targeted for

the STM32 as well as the µC/
Eval-STM32F107 evaluation
board (available from Micriµm)
which has built-in J-Link SWD
debugging capabilities (see
Figure 2). The book also provides
access to free evaluation tools
from IAR allowing developers
to experience the full power of
STM32 MCUs, µC/OS-III,
and µC/TCP-IP.

Today’s embedded systems can
provide significant value when
interconnected to other devices,
and STM32 MCUs provide the
ideal platform for efficiently
implementing real-time interfaces
over Ethernet, USB, CAN, and
I2S in a cost-effective manner.

Built upon the powerful Cortex-M
architecture with integrated
interface peripherals, separate
DMAs, and a multi-layer bus
interconnect that enables data
transfers without involving the
CPU, developers can select
the optimal connected MCU
from a variety of performance,
peripheral, and memory options
among the STM32 Connectivity
Line, STM32 F2, and STM32
F4 families. In addition, with the
availability of real-time kernels
like µC/OS-II/III from Micriµm
and their µC/TCP-IP stack,
developers can introduce turnkey
connectivity to a wide range of
embedded applications.

Figure 2 The µC/Eval-STM32F107 evaluation board and µC/OS-III and µC/TCP-IP books
available from Micriµm are ideal for evaluating the STM32 Connectivity Line of MCUs.

42

STM32 Journal

Accelerating Next-Generation Design
Through IP Reuse

Given ever-changing application
requirements, it is critical for
developers to be able to easily
migrate hardware and software
designs between different MCUs.
For example, a feature added
to a system late in the design
cycle may push processing
requirements beyond the
capabilities of the current MCU.
Without a flexible architecture
and broad selection of devices,
developers may find themselves
unable to complete the system.

Conversely, developers need
to be able to scale down
systems as well. From a design
standpoint, it is much easier
to work out the initial design
of a system using a higher
performance processor with
more memory than may be
necessary for the final production
application. Once the scope of
the design has been determined,
the processor can be cost-
reduced to an MCU that has

a more optimal balance of
performance and memory.

Flexibility of the MCU
architecture as well as the ability
to reuse IP is also essential for
bringing next-generation designs
to market. Developers need to
be able to not only scale the
performance and memory of a
system’s MCU but introduce
new functionality or power
efficiency where it is needed to
meet different price points. For
example, systems built around
the STM32 F2 architecture can
be migrated to the STM32 F4
family—the industry’s highest
performance Cortex-M device to
date—to build a high-end version
of a system with more advanced
features, including greater
precision, faster responsiveness,
a GUI-based interface, and
other compute-intensive
features. Similarly, the same
design targeted for portable
applications can be migrated to

the EnergyLite™ STM32 L1 ultra-
low power line of MCUs.

The difficulty of migrating a
system to a different MCU is
determined by how much of
the system will need to be
redesigned. If the degree of
changes required is small,
typically an MCU within the
same family offering can be
used. However, at some point
developers will need to move to
a different MCU family. Low-end
MCUs simply aren’t designed to
handle high-performance tasks
like audio or video processing.
Similarly, a high-performance
MCU cannot achieve the power
efficiency of an architecture
designed specifically for
portable applications.

Consistency without sacrificing
efficiency or flexibility is essential
for ease of migration. This
consistency must encompass
every aspect of the MCU
architecture, from its low-level

hardware including pin layout
and peripheral compatibility up
through to application code,
drivers, and development tools.

To meet this need, ST offers
the STM32 architecture
which provides a high level of
consistency between its more
than 250 devices. Through
technologies such as the ST
Standard Peripheral Library
and the Cortex Microcontroller
Standard (CMSIS), low-level
implementation details can be
kept transparent to enable code
to be reused on a different MCU
as simply as reconfiguring the
compiler. In this way, developers
can easily migrate designs across
the four STM32 series to quickly
bring product line extensions to
market without a redesign.

Code Compatibility
Key to the portability of
application code is ability
to work above the specific

By Reinhard Keil, Director of MCU Tools, ARM Germany GmbH
Andrew Frame, Senior Product Manager, ARM Ltd
James Lombard, Applications Engineer, STMicroelectronics

43

STM32 Journal

implementation details of the
MCU using a higher-order
language like C. MCU and DSP
architectures which require
critical-loop code to be written
in assembly to achieve the
necessary levels of performance
impose upon developers a
plethora of details that need to
be managed. Such code also
tends to be extremely processor-
specific, making it difficult to
migrate between families.

The ability to reuse code,
especially complex algorithmic
code, is essential for fast time-
to-market. Because each STM32
MCU is based on the ARM
Cortex-M architecture, code is
fully upwards compatible across
all STM32 families. Specifically,
the Thumb-2 instruction set
provides a consistent instruction
set among STM32 devices and
improves performance and
memory efficiency through an
optimized blend of 16- and 32-
bit instructions. This means that
an STM32 F4 MCU based on
the Cortex-M4 core supports
all of the features of a Cortex-
M3-based STM32 F2 MCU
while introducing powerful
new capabilities that increase
program efficiency and reduce
code size (see Figure 1).

The ability to work in C and take
full advantage of the architectural
enhancements of each MCU
is an important aspect of
the STM32 architecture. In
addition to offering a more
simple learning curve for faster
application development, C is
easier to maintain as well as
reuse when migrating a design.
The compilers available for
STM32-based development,
including MDK-ARM from Keil,
have been specifically optimized
for the architecture, providing
highly efficient code that
utilizes the capabilities of each
MCU to its fullest. In this way,
developers are able to exploit
each aspect of the optimized
STM32 architecture—including
its Adaptive Real-Time (ART)
memory accelerator, multi-layer
bus interconnect, and dedicated
DMAs—without having to lock
code to a specific processor.

Low-level implementation details
are taken care of at all levels
of an application. At the driver
level, compatibility is achieved
using the ST Standard Peripheral
Library. For advanced DSP
algorithms, the CMSIS DSP
Library automatically handles the
migration of existing application
code to take advantage of the
advanced DSP and FPU features

of the Cortex-M4 architecture. In
addition, the STM32 architecture
itself takes care of many low-
level implementation details.
For example, when an interrupt
is triggered, the MCU will
automatically push vulnerable
registers to the stack, resolve
interrupt priority, and prepare to
execute the first line of C code
for the interrupt.

Compatibility
Beyond Code
An essential element for
ease of portability of code is
consistency through the use of
programming standards. Code
compatibility, while important,
is only one part aspect of
migration. Compatibility across
tools and libraries is required
as well if migration is to be
seamless. This is achieved
using the Cortex Microcontroller
Standard (CMSIS).

Cortex-M4 FPU Instruction Set

Cortex-M4 Instruction Set

Cortex-M3 Instruction Set

Figure 1 Because each STM32 MCU is based on the ARM Cortex-M architecture, code is
fully upwards compatible across all STM32 families. This means that an STM32 F4
MCU based on the Cortex-M4 core supports all of the features of an STM32 F2
MCU based on the Cortex-M3 core while introducing powerful new capabilities that
increase program efficiency and reduce code size.

44

STM32 Journal

Developed in conjunction
with silicon, tools, and
middleware vendors, CMSIS
is an abstraction layer that
ensures off-the-shelf code has
consistent software interfaces
throughout the tool chain so that
code can interoperate with an
RTOS, other libraries, and the
development environment. By
serving as a standard interface
between the Cortex core and
C language, CMSIS provides a
consistent structure for systems
(see Figure 2).

This consistency is the key to
enabling the future migration
of code between MCUs. Core-
specific details—such as
interfacing to internal peripherals
like the NVIC, internal core-based
control and status registers,
and special assembly language
instructions translated to a C
macro—have been abstracted to
make using an MCU’s peripherals
transparent to developers. For
example, in the case of the
CMSIS DSP library header files,
a common C function interface is
defined. This allows developers

to use the same named function
calls to execute DSP instructions
regardless of whether they are
using a Cortex-M4-based STM32
F4 with hardware FPU and SIMD
capabilities or a Cortex-M3-based
STM32 F1 where DSP funcations
are emulated in software.

The ST Standard Peripheral
Library performs the same
function as CMSIS with the
peripherals that are unique
to the STM32 architecture by
maintaining a common function
call interface across all STM32
MCUs. For example, developers
don’t have to worry about the
register differences between
the UART Status register on a
STM32 L1 and the equivalent
register on a STM32 F4. The
ST Peripheral Library uses an
abstraction layer that separates
the programmer from the register
details by handling these details
at the lower device-specific
driver level. Together, the CMSIS
Core library and ST Standard
Peripheral Library (see below)
enable portability up and down
the STM32 product families.

Access to the RTOS is simplified
using the CMSIS RTOS library,
which comprises a standard
API for use by RTOSes to
enable interoperability among

a wide range of software
frameworks, middleware, and
libraries. In effect, developers
can be assured that CMSIS-
compliant tools and middleware
will interoperate seamlessly
with the RTOS. For example,
CMSIS communicates using the
message/mail passing system of
RTOSes like Keil’s RTX real-time
operating system to enable the
debugger to offer RTOS-aware
visibility into the system.

For simplified debugging, the
CMSIS SVD Library provides a
System View Description (SVD)
layer that provides consistent
visibility between the debugger,
peripherals, and CMSIS CORE
layer. For example, when
debuggers have peripheral
awareness, developers can
debug peripherals from a
functional level. Similarly, there
are differences between the
Flash architectures of the STM32
F2 and STM32 F1. With the
various CMSIS layers in place,
developers need not concern
themselves with the individual
differences between the Flash
architectures when debugging
their application.

The final piece of CMSIS is the
CMSIS DSP Library.

Application Code

CMSIS-RTOS
API

CMSIS-DSP
DSP-Library

Real Time Kernel
(3rd Party)

Device Peripheral
Functions

(Silicon Vendor)

U
se

r
C

M
S

IS
M

C
U Cortex

CPU
Debug
+ Trace

Other
Peripherals

SysTick
RTOS Kernel

Timer

NVIC
Nested Vectored

Interrupt Controller

SIMD
Cortex-M4 Peripheral Register & Interrupt Vector Definitions

Core Peripheral Functions
CMSIS-

SVD

Debugger
(3rd Party)

System View
Description (XML)

CMSIS-CORE

Figure 2 The Cortex Microcontroller Standard (CMSIS) is an abstraction layer that ensures
off-the-shelf code has consistent software interfaces throughout the tool chain to
make low-level implementation details transparent to developers as well as simplify
future migration of code between MCUs.

45

STM32 Journal

Digital Signal Processing
Advanced digital signal
processing capabilities are
required for many consumer
electronics, industrial
automation, medical, and
military applications. The
extended DSP and FPU
capabilities of the Cortex-M4
within the STM32 F4 make
the need for a separate DSP
unnecessary. Not only is a
single-processor system more
cost effective, it avoids all of the
partitioning and synchronization
issues associated with multi-
core designs.

The CMSIS DSP Library provides
the underlying building blocks
required to support applications
ranging from motor control to
low-power handheld medical
instruments to consumer audio.
With more than 80 algorithms,
from complex arithmetic and
vector operations to various
filters and transforms, the CMSIS
DSP Library accelerates initial
product design by enabling
developers used to programming
an MCU to immediately utilize
DSP capabilities. Implemented
using both fixed and floating
point functions, developers can
also easily tradeoff between
precision and performance

based on the application
requirements of a system at
different price points using
different MCUs. Provided as C
source code so that algorithms
can be optimized by the
compiler for performance or
size, the CMSIS DSP library is
available free of charge.

Among the many reasons to
use the CMSIS DSP library is
its portability. CMSIS-based
code is portable across all
STM32 families, enabling simple
migration of DSP functionality
between MCUs without
developers having to rewrite any
complex algorithmic code. This
means that migration of even
higher-level algorithms, such as
various audio and video decode
functions, is easily managed
when these algorithms are
CMSIS-compliant.

Peripheral Compatibility
The ST Standard Peripheral
Library offers a complete
software interface and firmware
to keep user code independent
from underlying hardware
details. Providing developers
with an initial framework upon
which to build their application
speeds overall time-to-market
for new and existing designs and
simplifies future migration.

1-800-348-8051
www.keil.com

Leading Embedded
Development Tools

The complete development environment
and middleware solution for STM32
Cortex™-M processor-based devices

www.keil.com

46

STM32 Journal

To facilitate migration,
peripherals are effectively
the same across the different
STM32 families. This
consistently is at both the
hardware and software level.
From a hardware perspective,
peripheral pin-outs are typically
the same between MCUs with
the same package type, even
those from different families. In
terms of software, peripherals
have been given a common
software interface regardless of
which MCU is in use. Effectively,
code designed to work with
a specific peripheral will be
compatible across the various
STM32 MCUs.

The peripheral library achieves
this by generating code that
is CMSIS-compliant. This also
means that various tools, such
as the MDK-ARM development
environment from Keil, directly
support the libraries enabling,
for example, the debugger to be
peripheral-aware.

The ST Peripheral Configuration
tool also supports a project
having multiple targets. The
fact that each STM32 MCU has
a common framework means
that developers can easily
carry a design from one MCU
to another. For example, if a

developer wants to create a low-
power version of an existing
design using the STM32 L1,
changing out the framework
takes care of a significant portion
of the migration process. The
same application code base
can be used for both designs
by using different peripheral
configurations. This approach
greatly simplifies design
by managing configuration
differences as well as eliminating
the need to maintain distinct
versions of code which can
quickly diverge and create
additional code management
issues.

Migrating Between
Families
Each of the four STM32
MCU series offers a range
of performance, peripherals,
and memory configurations
to provide the optimal mix
of capabilities and power
consumption for an application
at the lowest cost. As a
consequence, each family has
distinct differences in how they
are architected. For example,
the STM32 F4 family of MCUs is
designed to provide the highest
performance with excellent
power consumption. The STM32
L1 family, in contrast, provides

ultra-low power efficiency with
excellent performance. To
achieve these different goals,
however, there are internal
differences between the MCU
architectures.

ST has designed the STM32
architecture to minimize the
effort required by developers
to migrate between the
different STM32 MCU
families while still achieving
maximum performance and
power efficiency. In general,
each of the four families of
STM32 MCUs maintains close
compatibility with the others.

At a hardware-level, the power
and functionality of each device
have been designed to be pin-
to-pin compatible with other
devices in same package size,

minimizing the number of pins
that may need to be rerouted.
With the various STM32 F2 and
STM32 F4 families, GPIO are
mapped to the internal AHB bus
for better performance. To speed

layout and keep board size
down, I/O pins can be mapped
to different peripherals using a
multiplexing mechanism which
prevents conflicts between
peripherals sharing the same
pin. This gives developers
flexibility in placing interfaces
as well as simplifies remapping
of peripherals when migrating
between devices.

Using the ST Standard
Peripherals Library, peripheral
firmware can be updated by
reconfiguring the peripheral
library for the new MCU.

In terms of software, peripherals have

been given a common software interface

regardless of which MCU is in use.

Effectively, code designed to work with

a specific peripheral will be compatible

across the various STM32 MCUs.

47

STM32 Journal

For example, a new Flash
architecture was implemented
between the STM32 F1 and
STM32 F2 to improve system
performance by using a more
efficient interface, employing
sectors instead of pages, and
offering three read protection
levels with JTAG fuse. The
peripheral driver libraries capture
these differences to make the
transition seamless from a
system perspective. Application
code can be quickly migrated by
updating the appropriate Flash
function calls with those for the
new MCU.

For an in-depth description of
the migration process between
the various STM32 MCU
families, individual application
notes are available describing
specific migration details such
as moving between the STM32
F1 and STM32 L1 architectures.
Note that reviewing the
migration process is well-worth
the time for developers who are
working on their first STM32
design and not yet concerned
with migration. Developers
considering migrating between
processors will want to begin
with application note AN3364
which describes the general
migration and compatibility
guidelines and lists the most

important aspects that need
to be addressed during design
migration. By understanding
the key issues now that will
need to be addressed when
migration becomes important,
developers can anticipate and
design for compatibility from
the start, thus enabling them
to take full advantage of the
migration capabilities of the
STM32 architecture and its
development tools.

Tool Compatibility
Because the CMSIS libraries
are not vendor specific, they
enable developers to use their
development tools of choice.
An extensive selection of
application-specific software
libraries and middleware
components have been designed
for Cortex-based MCUs, giving
developers a broad range of
software options to choose
from. In addition, many of
these libraries and components
have been optimized for the
STM32 architecture, specifically
taking advantage of its DMA
architecture and application-
specific peripherals. Combined
with advanced development
tools to manage code and
facilitate reuse, developers have
access to a strong software

ecosystem to accelerate
development of both new and
existing designs.

Just as MCU architectures
offload processing from the CPU
through integrated application-
specific capabilities implemented
in hardware, embedded
development tools offload
part of the design burden from
engineers through enhanced
capabilities. The embedded
developer’s primary tools—the
compiler and debugger—are
so efficient that code can
be written in C rather than
an MCU’s unique assembly
language. These tools can also
automatically optimize code. In
addition, access to performance
and power profiling tools greatly
simplify system optimization of
complex systems. This enables
developers to fully exploit the
many real-time capabilities
of the STM32 microcontroller
architecture, including its
advanced timing mechanisms,
dynamic frequency and voltage
scaling, multiple DMAs, 3-phase
motor control timer, and
cryptographic engine.

Each STM32 MCU family is
also supported by a complete
range of high-end and low-cost
evaluation, software, debugging,

and programming tools.
These tools include integrated
development environments such
as MDK-ARM from Keil that
easily integrate with middleware
such as IP stacks and libraries
from other vendors to provide
developers with everything they
need to design, manage, and
migrate applications between
different MCUs.

The ability to transparently
migrate code between
processors is an important
aspect of bringing next-
generation systems to market
quickly and easily by reusing
existing hardware and software
IP. Consistency across the
entire STM32 portfolio—from
the ultra-low power STM32 L1
through the STM32 Value Line
for cost-sensitive applications
to the high-performance
STM32 F4—gives developers
a broad portfolio of compatible
devices that enable product
line extensions without
having to substantially rewrite
code or redesign hardware.
By abstracting low-level
implementation details using
CMSIS-compliant libraries,
middleware, and tools,
migrating between different
STM32 MCUs can be as simple
as recompiling the system.

