B MICROCONTROLLERS & DSPs

ARM Cortex-M3 core-based MCUs
with ultra-low-power standby

By Jean-Michel Gril-maffre, STMicroelectronics

This article describes how the
STM32 ARM Cortex-M3
core-based microcontrollers
provide low power modes
and features that mitigate the
impacts of leakage on battery
powered applications, where
static current may be a major
contributor to consumption.

m Requirements for increased computing power
and more integrated functions are driving a
growing number of applications from 16-bit to
32-bit microcontrollers. This is true for battery-
powered applications, which benefit from the
lower voltage supply, as well as the high per-
formance and small die size achieved by 32-bit
devices based on advanced CMOS processes.
However, deep submicron technologies also
have an important drawback: their much high-
er leakage is a major issue, especially for the lim-
ited power resources of a battery-powered ap-
plication. To enable migration, new 32-bit mi-
crocontrollers, including general-purpose de-
vices, must provide very efficient ultra-low-
power modes for long term standby. The leak-
age can be defined as the remaining continuous
current in a CMOS gate in static state (no
switching activity). It has several root causes,
and increases with each new technology shrink.
Its three main contributors are sub-threshold,
gate, and junction tunneling leakage.

Sub-threshold leakage is linked to the threshold
voltage diminution that is required with the de-
creasing voltages used in each new technology.
Gate leakage is induced by the scaling of the
gate oxide thickness that is needed to reduce the
“short channel” effect. Junction tunneling leak-
age is induced by the electric field across a re-
verse biased p-n junction (tunneling of elec-
trons). Leakage increases as temperature rises

November 2007

mainly due to the exponential increase of the
sub-threshold leakage over temperature. With-
out any switching activity, the quiescent current
of a 32-bit microcontroller using an advanced
process can still be limited to a few pA at am-
bient temperature. However this leakage will
rise with temperature and can even exceed 1
mA at 125°C. For this reason, it is very impor-
tant to take into account the leakage at the
maximum application temperature.

Even though several techniques exist to limit
the leakage of a digital library (increase poly
length above minimum allowed by the tech-
nology, increase gate oxide thickness on tran-
sistors), such modifications impact the propa-
gation time in the digital cells. Using such a li-
brary in the entire core logic would prevent the
device from achieving high performance in run
mode. The added dilemma for 32-bit devices is
that, from a structural point of view, the main
contributors to leakage current in a microcon-
troller are digital logic and memories. In addi-
tion to the increasing leakage due to technolo-
gy shrink, both the digital gate count and av-
erage memory size have increased dramatical-
ly in subsequent generations of 8-bit, 16-bit,
and new 32-bit microcontrollers. As a result,
leakage is a major problem for all general-pur-
pose microcontrollers using the latest semi-
conductor technology, and is a particular con-
sideration for battery-powered applications

with their limited power resources. Static cur-
rent consumption becomes the main contribu-
tor to average current as soon as the average
runtime becomes very low compared to the
standby time. Given the energy level provided by
a battery, a quick estimate of the application life-
time (not including non-linearity of the battery
capacitance described by the Peukert law) is:

Eb

Tapp =
o Irun — (Irun - Istdby) = Trs

Irun: run current (mA)

Istdby: standby current (mA)

Eb: Battery capacity (mA.H)

Trs: relative time spend in standby mode from 0 to 1

For example, if the specific ultra-low-power
standby mode was not available on the STM32
128Kbyte flash microcontroller, the average cur-
rent could be significantly impacted: typical run
current at 72MHz with all peripherals enabled
is only 36mA (0.5mA/MHz) thanks to the
ARM Cortex-M3 architecture and low power
design techniques. However, due to the use of
advanced processes, the leakage current starts to
be significant at 55°C. Thanks to a very low
power voltage supervisor and regulator, static
current is still limited to 50pA at 55°C. This is
negligible compared to the run consumption.
However if the application runs only one
minute a day, the static current becomes the




B MICROCONTROLLERS & DSPs

GATE

SOURCE

P-well

Sub-thresholid leakage

Gate leakagpe

DRAIN

ﬁu nction tunneling leakage

well

Leakage currents in a CMOS transistor

Leakage current (pa)

-40

=20 [} 20 40
Temperature [°C)

100 120

Leakage increase with temperature

TP cone

&
Periphezals

- VI backup masier voltage domain

Regulator powered slave mam
core viltage dommain

Backup and core voltage implementation

main contributor to consumption (64%). To
address this problem, the designers of the
STM32 went to great lengths to enable a true
low-power standby by implementing an em-
bedded regulator, independent voltage do-
mains, and integrated power switches at the ar-
chitecture level. This implementation enables
low-power modes that can optimise battery life
depending on the application.

The total consumption of a microcontroller is

the addition of dynamic power (switching ac-
tivity of CMOS gates) and static current (leak-

November 2007

age and static analog consumption). Stopping
the product clocks, thereby eliminating all dy-
namic consumption is obviously not a suffi-
cient low-power standby for a battery-powered
application where static current can be a main
contributor to consumption. Even decreasing
the core voltage when clocks are stopped is of
little help in providing an efficient standby
mode. To achieve ultra-low-power standby
mode, most of the core logic (and memories)
must be powered off. To do this, two voltage do-
mains can be implemented at device level,
which can be powered by the internal regulator:

a small “always on” voltage domain for low-
power control, and a “main core” voltage do-
main with all other functions powered through
a switch in order to shut it down in standby
mode. As a result, the main core voltage domain
can be focussed on processing performance as
the leakage (static current) design constraints
are mainly important in the “always on” voltage
domain.

However, in this implementation the internal
regulator must be kept “on” in standby mode,
implying a significant quiescent current. For
this reason, it is better to stop the embedded
regulator in order to reach an ultra-low stand-
by supply current. The STM32 follows this type
of dual-domain implementation with VDD
backup master voltage domain and slave main
core voltage domain. VDD backup master
voltage domain is based on thick oxide high
voltage transistors focusing on very low static
current. With the high voltage transistors, it is
directly powered by the main VDD. It includes
low-power mode control and a very low-power
watchdog, associated low-power RC oscillator
and an optimised gate count. Slave main core
voltage domain includes all other functions
(CPU core, most peripherals, and memories)
kept at lower voltage, focusing on high per-
formance and low dynamic power. This imple-
mentation allows the STM32F103 to offer a
safe, very low-power standby mode with only a
2pA typical current at 3.3V. The remaining 2uA
current is the consumption of the accurate volt-
age supervisor that monitors the main supply
voltage to ensure that the standby mode is as re-
liable as the run mode. Since leakage can be
kept very low, increase of this standby current
with temperature is very limited: 2.4pA at
85°C 3.3V for a typical device.

Dynamic functions can also be implemented in
the master voltage domain. For example, the
STM32 includes an independent ultra-low-
power watchdog that is available in standby mode
with a total added consumption (dedicated RC
oscillator and watchdog digital consumption) of
only 1A at 3.3V for a typical device. This feature
can prevent application failure in case of an
unexpected entry in standby mode.

Separating the voltage domains inside the
microcontroller silicon implies many specific
design constraints. Full wake-up logic and
analog must be implemented in the backup
voltage domain making it difficult to offer a
large number of possible wake-up sources. Iso-
lation between voltage domains during power
down must be implemented (all signals coming
from core voltage are floating). The specific
sequence for clock source stops and voltage
power down/power on must be robust. The
main core voltage logic needs a dedicated reset
for example. Timing constraints between volt-




MICROCONTROLLERS & DSPs m

Loay poviver contro] &

ndepandant walchdog

Maan voltage
BUTETVI R

Wl

Wake-up

Lavel ahifters / isolation

pewer LI

Regulator & core

CPL qawe
&

ar
I

Embediled FLLASH

Periplwamls

Embeddod RAM |

Hackugp

regishers

in —D Tamper

B VDO master voltage domain

D ETC vollage domanm { povwersd cather
Ity VI or by Vhai)

- Hegulalor poworod slave mmn
core vollnre domain

- Vhat external haflery poswer

Simplified schematic of STM32 voltage domains implementation

age domains must be taken into account specif-
ically because both domains are nearly inde-
pendent for voltage and process, but not for
temperature. This implies that more cases have
to be checked during timing analysis (backup
domain with worst voltage and process and
main core voltage with best process best voltage
for example).

Some security features like watchdog function
must be implemented in the backup domain in
order to protect the application from unex-
pected standby mode entry. Keeping the ratio of
useful I/Os versus total number of I/Os is also
required to offer the performance of a 32-bit
product in small packages. On the STM32, the
main core voltage regulator does not need ex-
ternal decoupling capacitors. This is why no
extra power pin is lost on the package because

of this dual power implementation. However, in
exchange for this silicon design complexity, the
STM32 gains a true ultra-low-power standby
that will help application developers optimise
battery consumption in their applications. As a
result of the dual power domain implementa-
tion, STM32 provides two different low power
modes: stop mode and standby mode. Both
function with the voltage supervisor “on” to
protect the application in case of a voltage drop.
In stop mode, the low-power regulator is kept
on but clocks are stopped. It provides very fast
restart time on internal RC (<10pS) and retains
the software context. Typical current at ambi-
ent temperature is 15pA (3.3V). However this
mode does not mitigate the problem of leakage,
which increases exponentially with tempera-
ture. In standby mode the regulator is off in
order to provide a 2pA current at ambient tem-

perature (3.3V) and very little increase with
temperature increase (2.4pA at 85°C for a
typical device). However, restart from standby
implies that software content is lost: RAM, core
and most peripheral register contents are lost.
Restart from standby is nearly equivalent to a
restart from reset for the software.

Choosing the best mode for an application can
have a large impact on battery life. Here are
some basic tips to consider when selecting a
mode: 1. Check if the microcontroller state in
standby is compatible with application re-
quirements (for example: I/Os standby state,
wake-up sources). 2. Consider the impact on
battery life of the “worst case” temperature con-
ditions under which application functionality
must be guaranteed. 3. Check what the restart
from standby time is, and if it is fast enough for
the application restart time requirements.
4. Check if there is a saving in energy con-
sumption in standby compared to stop mode.
Between two events, is the standby consump-
tion plus the restart from standby consumption
less than the consumption in stop mode.

These questions are application-dependent.
Estimating the restart time from standby mode
includes the time from wake up to reset vector
fetch, which depends on hardware (regulator
startup time, clock source startup time around
40uS in STM32) and the time needed by the
software to restore the application context. Typ-
ically the software must check the wake-up
source(s), recover context information from
backup registers and re-configure the micro-
controller functions used by the application.
Because of this software- dependent restart
from standby, the energy lost during this wake-
up phase is also application-dependent. One
practical way to estimate this energy loss is to

November 2007




B MICROCONTROLLERS & DSPs

produce a given amount of wake-ups in a time
frame (software going back in standby mode
just after the wake-up) and compare the aver-
age current consumption when no wake-up is
generated.

In order to optimise the restart time from
standby mode, the developer must not forget to
optimise the initialisation phase added by the
compiler and reduce it as much as possible
(RAM initialisation should be removed for ex-
ample). The real time clock feature is a com-
mon requirement for battery- powered appli-
cations. Moreover, core voltage shut off implies
losing the complete program context and is
nearly equivalent to a product restart from
reset. Implementing a backup register bank for
application restart allows the recovery of min-
imum context required for program execution.

Integrating these functions directly inside the
microcontroller can be done in a backup do-
main. However, the RTC function is typically
supposed to be available over an extended pe-
riod of time (years) while the main application,
even if battery-powered, is often based on a
rechargeable battery. Creating a third power do-
main for the RTC and offering a dedicated pin
for its power supply allows the use of a small
coin cell dedicated only to this function, while
the main application is supplied by another
main supply source. This way the coin cell
power is only used by the RTC and associated
oscillator, and not by the other functions, such
as the voltage supervisor which is still available
in standby mode. However, this implementa-
tion is not optimal as the coin cell is always used
to provide the power to the RTC and backup

November 2007

registers even when the main power supply is
available. A smart alternative that is imple-
mented in the STM32 is to extend RTC battery
life by adding a power switch to provide current
to the RTC and backup registers from the main
supply when it is available and from the battery
when the main power is not available. The
switch command is provided by the main
voltage supervisor with a specific latching
mechanism. When the voltage drops below the
VDD low threshold, the switch changes the
RTC and backup registers power source to ex-
ternal VBAT power. If VDD rises above the
VDD high threshold, the switch automatically
selects VDD as the power source for this dedi-
cated voltage domain.

One additional advantage with this imple-
mentation is that extra dynamic power con-
sumption resulting from software read/write
access to this specific voltage domain (through
level shifters) never implies extra consumption
on the coin cell. In run mode current is always
taken from the main supply. Thus, coin cell
minimum battery life can be directly calculat-
ed based on RTC consumption and the coin cell
energy. On STM32 with a typical RTC current
of 1.4pA (ambient temperature 3.3V) the min-
imum battery lifetime when using a CR2032
battery is close to 20 years. However, if the main
power is present most of the time, the life can
be much longer and a coin cell with smaller ca-
pacity can be used. The implemented RTC and
backup registers are, of course, available in
standby mode. Thus, the RTC can be the
source of the wake-up from standby and some
key values can be saved in the backup registers
before entering standby mode. This imple-

10

mentation significantly increases the complex-
ity of the microcontroller design. It requires
more complex isolation between voltage do-
mains; robust power switch design, correctly
adjusted to expected consumption (internal
RTC voltage domain is not present on I/Os to
avoid reducing the number of general purpose
I/Os available in small packages, so no decou-
pling capacitor can be added). It also requires
consideration of different startup scenarios
without added static consumption on Vbat.
For example Vbat rising when VDD is not pres-
ent must not lead to an unexpected state (there
must be no consumption in this state because
the coin cell may be soldered to the application
during production phase and consumption
would cause an unnecessary depletion of its en-
ergy level). The RTC voltage domain must be
designed to tolerate a significant voltage drop
below the VDD minimum threshold before
switching on Vbat.

In spite of some new application considerations
linked to context loss in a standby state, ultra-
low-power standby and multi-voltage power ar-
chitectures like that of the STM32 can be ef-
fective solutions that allow an application to
function in a high-performance run mode,
while mitigating the impact of static con-
sumption in standby mode. In addition,
thoughtful integration of standalone func-
tions, like the RTC in the STM32, can enable
fast and efficient development of battery-
powered applications and optimum use of
application power supplies. m

For more information please go to
www.st.com/stm32






