
5-63

Two-Wire Peripheral Expansion
for the AT89C2051 Microcontroller

The attribute shared by most embedded
controllers is their ability to interact with
the outside world. While this fact is gen-
erally accepted, the form this I/O takes
includes everything from parallel and bit-
addressable digital I/O, analog I/O, as
well as complex functions such as a user
interface panel. Furthermore, timing
related activities such as pulse width
modulation, pulse accumulation, fre-
quency measurement, and duty cycle
and phase determination are often
lumped together under the heading of
high speed I/O. Additionally, while not
necessarily I/O related, many small sys-
tems will benefit from other functional
extensions involving real time clocks,
interval timers, and nonvolatile memo-
ries.

Traditional interface techniques for such
peripheral functions rely on using a con-
ventional microprocessor data and
address bus. While being inefficient in
terms of printed circuit board real estate
and requiring multiple interconnections,
this standard approach offers good
throughput and a choice of many estab-
lished peripherals. Regardless of the
benefits, this method is useless when
working with very small single-chip
microcontrollers that do not possess an
external bus structure. What’s required
here is a synthesized expansion bus that
does not excessively impose on the
microcontroller’s limited resources. That
is, one that does not require too many
I/O pins, firmware, or processor band-
width.

This application note details an extensi-
ble I/O and memory expansion frame-
work suitable for AT89C2051 embedded
systems. To best illustrate the point an
inordinate amount of external peripheral

and memory functions will be accommo-
dated while not intruding unnecessarily
on the controller’s limited I/O resources.

The Evolving Controller
A well established player in the embed-
ded arena has long been the venerable
8051, quite possibly the epitome of an
embedded controller. Although this fun-
damental architecture has been pressed
to serve in a multitude of derivative
designs, many of the scaled down ver-
sions have clearly been limited imple-
mentations. Worse, most of these have
been plagued by a number of subtle and
disturbing compatibility issues: almost
compatible timers; SFRs, SFR bits, and
I/O ports in the wrong places; missing
instructions and missing functions.

Now everything has changed with the
introduction of Atmel’s AT89C2051. This
small 20-pin circuit, unlike some of its
diminutive predecessors, includes the
full 8051 feature set—essentially an
80C51 in a 20-pin package. It retains all
the standard SFRs and includes the full
128-bytes of internal data RAM. More
importantly, the SFRs, SFR bits, and
ports retain their original locations and
functions. The standard processing core
guarantees compatibil ity with many
existing 8051 application programs, the
multitude of established library and sup-
port functions, and most importantly, the
immense accumulated 8051 knowledge
base.

The retention of the 128 bytes of internal
data RAM proves to be a rather signifi-
cant issue. This can spell the difference
between the option of developing code
in a high level language such as C or
being left with no other choice than work-
ing exclusively in assembler. And obvi-

0593A-B–12/97

Expanding the
AT89C2051
Microcontroller

Application
Note

Microcontroller5-64

ously, having a hardware UART opens up potential applica-
tions that were previously unattainable.

Packaging limitations reduce the AT89C2051’s available
on-chip I/O count to 15 pins. Although this is enough to
handle a wide range of applications, there will be some that
will need more.

Serial Standards
It is easy to add a lot of functionality to a very small control-
ler such as the AT89C2051. Keeping the number of pins
budgeted for the expansion bus low is desirable since most
AT89C2051 based systems will benefit from preserving as
much on-chip I/O as possible. In general, external peripher-
als are no match for the Boolean processor’s bit-address-
able I/O when high speed bit manipulation is required. And
then there are the unique pins such as the external inter-
rupts, the external timer controls, and the transmit and
receive pins to the hardware UART. Quite obviously, a
serial expansion bus is the only workable option, but this
still leaves several alternatives to choose from.

Two primary categories of serial communication are
defined: asynchronous and synchronous. Self-timed asyn-
chronous communication is generally used for interfacing a
microcontroller to other intelligent controllers or to a host
computer. The intrinsic timing constraints make this
method costly in terms of hardware or processor bandwidth
(depending on the particular implementation). Although
asynchronous methods are routinely applied in point-to-
point or multidropped communication schemes, this neces-
sitates some form of high level protocol. The implication is
a level of processing capacity that falls well outside the
domain of most dedicated peripheral circuits. Because of
this, and because of the inherent timing constraints, asyn-
chronous communication proves to be an inappropriate
choice for a general purpose peripheral expansion bus.

Synchronous communication coordinates data transfer
under control of a clock signal that is generated by the
master controller. This clock signals when data bits are
valid for both sending and receiving. Since the master con-
troller generates the synchronizing clock, the protocol
allows for a variable transfer rate. Here, the limiting factor is
the maximum clock frequency. Usually, the minimum can
go to DC. This can be an extremely important attribute in
an embedded system where the master controller must
vary the transfer rate according to varying degrees of inter-
rupt loading and the stringency of processing multi-priority
real time events.

The Microwire™ and SPI (Serial Peripheral Interface) stan-
dards are examples of popular synchronous protocols used
for peripheral I/O. Even though an abundance of valuable
peripherals exist that conform to these standards, their use-
fulness is diminished by the fact that the protocol provides
no built-in means of addressing individual peripherals on a

shared bus. Instead, each device uses a discreet chip
select that must be individually asserted by the master con-
troller before any communication can take place. This can
pose significant problems if a number of peripheral devices
must be accommodated concurrently since the number of
I/O pins escalates. This constraint renders Microwire and
SPI effective only if the system requires a small amount of
peripheral functions.

Two-Wire Protocol
When a small system must support a moderate-to-large set
of external peripherals (especially if additional functions
may ultimately be necessary), the Inter-Integrated Circuit
(I2C™) standard offers an answer to the I/O pin dilemma.
I2C uses just two wires for communication regardless of the
number of peripherals that are supported. More than just a
methodology for transporting bits and bytes, I2C introduces
the benefits of a true bus architecture to the realm of 2-wire
serial communications.

The two signal lines are defined as clock (SCL) and data
(SDA). Electrically, these bi-directional lines are specified
as open collector and, therefore, must be supplied with
pull-up resistors to the positive supply rail. Since the lines
are passively pulled up, they are in the recessive state
when they are not being driven. Any device on the bus is
free to pull these lines low thereby asserting the dominant
state. This phenomenon is utilized for a variety of bus man-
agement functions including wait state synchronization and
bus arbitration.

This 2-wire bus not only carries data and control informa-
tion but is also used to establish addressability in order to
select a specific bus member for data transfer. Additional
information can also be transferred to access specific loca-
tions within memory devices and to access special configu-
ration and status registers within complex peripherals.
Although most applications will be content using I2C in a
master/slave configuration, the protocol supports multi-
master capabilities that can be used for direct processor-to-
processor communication or for implementing shared
memories or peripherals that can be accessed from multi-
ple processors residing on a common bus.

Standard I2C throughput is specified nominally at 100 kbps
with some newer devices capable of sustaining a 400 kbps
transfer rate. This is more than adequate for many applica-
tions. Frequently, the peripherals used will be low utilization
devices such as real time clocks, nonvolatile memories,
and data converters that do not require high speed access.
The maximum line length specification of 10 meters opens
the intriguing potential of locating various devices “where
the action is.” The central controller can thus orchestrate
the functions of a moderately dispersed system as easily
as one that is self contained.

Microcontroller

5-65

Before examining some of the available peripherals and
looking at how they can be used in a small embedded sys-
tem it would be informative to summarize some I2C funda-
mentals. Since information is available on the I2C standard,
the following discussion will be limited to a brief overview of
some of the most basic features of the protocol. Further-
more, the scope will be restricted to a master/slave periph-
eral scenario.

I2C Protocol Recap
For our simple master/slave implementation two categories
of bus members will be defined: The bus master which ini-
tiates and coordinates the particular transmit or receive
operation and the bus slave that carries out the requested
function.

Special Conditions
The I2C protocol establishes a number of unique line condi-
tions that are initiated by asserting the SDA and SCL lines
in specific combinations. For example, all bus operations
are initiated by issuing a START condition which causes all
bus members to listen for incoming data. The master
accomplishes this from an idle state by first pulling SDA low
and then pulling SCL low.

The conclusion of a data transfer sequence is framed with
the complement of the START condition which, naturally
enough, is called the STOP condition. Beginning with SCL
and SDA low, the master first releases SCL and then
releases SDA. You will notice that the line transitions occur
just opposite to those of a START condition. The STOP
condition signals that the bus has been released and indi-
cates that all bus members may expect another transmis-
sion to start at any time.

Data Transfer
The start and stop conditions indicate special bus seize
and release phases. Once bus control has been estab-
lished, data is transferred in a conventional clocked fashion
eight bits at a time, MSB first. Data bits are set up when
SCL is low and must remain stable while SCL is high. After
holding SCL high for a period of time, the master pulls SCL
low before the state of SDA is allowed to change. Notice
that the only time SDA is permitted to change while SCL is
high is in a START or STOP condition.

The fact that the master controls the system clock does not
necessarily imply that it has absolute control over the trans-
fer rate. As noted, I2C’s wire AND characteristic allows
either the master or the slave device to place either SCL or
SDA in the dominant low state. This capability allows
slower slaves to cope with a high speed master at either
the bit or the byte level. At the bit level the data transfer can
be slowed down when the slave extends the SCL low inter-
val. The master checks the state of SCL while transferring
data and will not proceed while SCL is being held low. This

is the I2C version of a wait state. Note that even though the
transfer rate is variable, parameters such as setup time,
hold time, and the minimum clock high and low times must
not be violated.

In some cases it may be necessary for a slave to prevent
the master from initiating any bus activity which might be
the case if it requires additional time to process received
data. A slave can accomplish this by pulling SCL low. Since
the master will generate a start condition only when the bus
is free (SDA and SCL high), this forces the master into a
hold state until SCL and SDA are freed.

In general, each data byte transferred requires an acknowl-
edgment. This is implemented as a bit-level function that
occurs on the 9th clock pulse immediately following a data
byte transfer. Subsequent to the transmittal of the 8th data
bit, the transmitter releases SDA to the high state. At this
point the receiver must signal the successful receipt of the
data byte by pulling SDA to a logic low. This acknowledg-
ment must be asserted by the time the master drives SCL
high and must remain stable during the SCL high time. This
acknowledge bit is evaluated by the transmitter in order to
determine the status of the data byte transmission.

Device Addressing
Following the assertion of the start condition, a 7-bit slave
address is transmitted by the master. Remember that I2C
defines all data transfers as 8-bit entities. In the case of the
7-bit slave address the 8th bit functions as the direction bit,
the read/write indicator. When it is a 0 the subsequent
transfer will be a write to the slave. A 1 indicates the ensu-
ing operation will be a read from the slave. Once the
address is received, all slaves compare the received
address with their own. A match results in an acknowledge
to the master from the selected slave device indicating it is
ready to perform the requested operation.

An I2C peripheral address is composed of two parts. The
fixed part is defined by the I2C bus committee and is
assigned based on device type. The programmable part
comprises the lower order bits and is selected at the slave
by strapping address pins high or low. The number of avail-
able programmable bits depends on the number of pins
can be made available for this function on a particular IC.
This scheme allows for multiple peripherals of the same
category to reside on the bus at the same time and still be
uniquely identifiable.

I2C Summary
Depending on the particular application, using the I2C bus
can get considerably more complicated than implied in the
preceding description. Nonetheless, a great deal of practi-
cal functionality can be supported using just a master/slave
subset of the protocol. The following is a summary of the
main points just touched upon.

Microcontroller5-66

• A high-to-low transition of SDA while SCL is high signals
a START condition.

• A low-to-high transition of SDA while SCL is high signals
a STOP condition.

• ISDA must be stable during the high period of SCL while
data is being transferred.

• Data is transferred MSB first, 8 bits at a time.

• Every byte transferred must be followed by an
acknowledgment bit (generally).

• The I2C bus is considered busy following a START
condition.

• The I2C bus is considered free a certain time after the
STOP condition.

Figure 1 pictorially illustrates the criteria for data validity, a
START and STOP condi t ion, and a data t ransfer
sequence.

Simple and Registered Devices
Simple I2C devices such as parallel I/O ports contain only
one register that is located at the base address of the chip.
Accessing such a device involves merely addressing the
chip and then performing a read or write operation.

There are a number of devices, however, that contain mul-
tiple internal locations. These include memories, real time
clocks, and data converters. Memory devices contain a lin-
ear memory array whereas other devices might have multi-
ple data registers and control and status registers located
at various internal addresses. Regardless of the implemen-
tation details, it is obvious that some means of specifying
the internal address is required.

Selecting such a device’s internal address involves the
standard sequence of establishing a START condition fol-
lowed by a transmittal of the slave address with the com-
mand bit set to write. The next byte transmitted is the actual
register address which effectively sets the device’s internal
address generator to its initial value. I2C allows combining
the initial register addressing phase and the subsequent
data transfer phase into a single functional sequence. In
the case of a registered write operation, the slave will
already have been placed into write mode prior to the trans-
mission of the register address. Any subsequent data
transmitted to the slave will be deposited into the specified
internal location. A read operation requires one additional
step.

Since the slave is in write mode following the register
address transmission, it must be explicitly prepared for a
read operation. One way to “turn the line around” is to con-
clude the write sequence by setting the STOP condition
and by explicitly starting a new read operation. Although
this works, it does incur additional, and unnecessary, over-
head. This inefficiency can be circumvented by skipping the
STOP condition and, instead, immediately issuing a

repeated START condition. Now, a read operation is initi-
ated by transmitting the slave address with the command
bit set to read.

Soft I 2C
To the experienced engineer the preceding discussion
would have undoubtedly suggested a number of firmware-
based approaches for the implementation of the I2C proto-
col. This is only natural since a Boolean processor like the
AT89C2051 makes such an implementation extremely effi-
cient and straightforward. Now, it’s well known that a num-
ber of popular microcontrollers provide built-in hardware
support for I2C, but how much support are you really get-
ting?

What may not immediately be apparent from a superficial
examination is that many controllers provide this hardware
assistance only at the bit level. This is truly rudimentary
support that consumes valuable processor silicon to little
advantage. In fact, it has been the experience of many
engineers that using such minimalistic hardware support
can actually result in greater software complexity and the
use of more program memory than a purely firmware based
approach. And remember, working entirely in firmware
allows you to implement however much, or little, of the I2C
protocol as is necessary or appropriate to the task at hand.

When considering a firmware-based I2C driver it’s impor-
tant to realize that the intrinsic advantage of a synchronous
protocol is its ability to vary the data transfer rate in accor-
dance with the prevailing conditions. Asynchronous com-
munication is far more problematic due to the inherent tim-
ing constraints and is better left to a hardware UART for all
but the most trivial protocols. Given the choice, a hardware
UART and firmware I2C makes a lot of sense from a num-
ber of perspectives. Additionally, the AT89C2051’s two-
level priority interrupt structure, hardware UART, two exter-
nal interrupts, and two 16-bit timer/counters with interrupt
capability let you structure a system in a manner consistent
with modern design practices. Using these resources, it is
possible to implement all time-critical functions such as
task scheduling, communications, system timing, and real-
time event processing as interrupt service routines. This
can result in a greatly simplified application program.

A Generic I 2C Driver
Although the basic functions of an I2C driver can be parti-
tioned in a seemingly endless number of ways, the
approach adopted greatly limits the possible permutations
without being overly restrictive. The driver module contains
four user callable entry points for reading and writing to
both simple and registered devices. In order to confine the
number of variations, and to conserve code space, the reg-
istered I2C support routines operate a byte at a time and,
therefore, do not support streaming at the driver level.

Microcontroller

5-67

Start and Stop Definition

SCL

SDA

START STOP

Figure 1. Two-Wire Protocol Timing

Data Validity

SCL

SDA

DATA STABLE DATA STABLE

DATA
CHANGE

Acknowledge Response from Receiver

Microcontroller5-68

Although allowing the driver to directly handle multi-byte
transfers would result in significantly increased throughput,
speed often is not an issue. Instead, stream I/O is left to the
device-specific second level functions on a need-to-do
basis. In fact, a convincing case can be made for placing

this type of functionality away from the driver. After all, in
order for the driver to be truly generic it should, by defini-
tion, possess no device specific characteristics. As a spe-
cific example, consider I2C EEPROMs. These come in a
wide variety of memory densities with differently sized
pages and different internal configurations. They all seem
to possess minor peculiarities that become especially evi-
dent when performing sequential write operations. Obvi-
ously a driver specifically designed to deal effectively with a
particular device becomes completely dysfunctional when
used with a different one.

The assembly language support module is available on the
Atmel Web Site or BBS. To conserve program memory all
branching is performed using absolute address mode
instructions which is adequate to fully navigate the 2K pro-
gram space of the AT89C2051. Should it be desirable to
operate this driver in a larger device simply substitute the
absolute branch instructions with the corresponding long
versions.

The module begins with a set of MACROs that establish
several low level functions. These include a rudimentary bit
delay, SCL control and synchronization, and I2C START
and STOP conditions. These are all implemented as
instruction MACROs since their small size does not justify
the overhead of a function call. Here, Bit_Delay consumes
processor cycles to provide a short delay required to meet
the basic 100-kHz I2C timing parameters on a 12-MHz
AT89C2051. Set_SCL releases the SCL line and synchro-
nizes with slave devices that may be asserting clock-
stretching wait states. Clr_SCL simply pulls the SCL line to
a logic low while Emit_Clock invokes Set_SCL and
Clr_SCL in sequence. Finally the Start and Stop MACROs
embody the I2C START and STOP conditions.

Next are two general purpose subroutines for transmitting
and receiving bytes of data over the I2C bus. These primi-
tives are invoked by the public routines and are responsible
for transporting data bytes while providing error checking
and synchronization with some help from the previously
defined MACROs. Xmit_Byte evaluates the acknowledge
from the slave whereas Rec_Byte does not handle the
acknowledge generation. When receiving, the acknowledg-
ment is properly a function of the specific operation being
performed and must be handled by the calling function.
These subroutines communicate their completion status
back to the higher functions through the carry flag.

Finally, the four public entry points appear that are accessi-
ble from the main application program. These include the
transmit and receive routines for both registered and simple
devices. These perform the requisite initial bus synchroni-

zation and make use of the previously defined subroutines
and MACROs to orchestrate the requested operation. Sta-
tus information, either from the called subroutine or gener-
ated locally, is conveyed to the application to indicate the
completion status of the requested operation. Should a
problem occur, it is up to the caller to sort it out. This makes
sense since the appropriate response is often dependent
on the type of device that is being accessed. For instance,
fault status may simply mean that the device is not present
or not responding. In the case of an EPROM it could indi-
cate that a programming cycle is in progress. Obviously,
these situations have quite different implications and
should be handled differently.

Populating the Bus
Having defined the rudiments of the I2C bus and now being
in possession of a set of generic drivers, it’s time to look at
a typical peripheral set suitable for inclusion in a small
embedded system. For all intents and purposes, the I2C
bus can be viewed as a scaled down version of a parallel
bus such as used with a conventional microprocessor. As
such, it provides a vehicle for the very same types of activi-
ties you’d perform using a standard bus structure.

Figure 2 shows how an AT89C2051 based system could
populate its 2-wire bus with some standard peripheral func-
tions. Included are 8 bi-directional I/O points (PCF8574), 4
channels of 8-bit analog inputs and a single channel 8-bit
analog output (PCF8591), a real time clock/calendar/timer
with 256 bytes of nonvolatile RAM (PCF8583), 512 bytes of
EEPROM (AT24C04), and 128 bytes of RAM (PCF8570).
This represents a respectable function set applicable for
many embedded applications.

A reliance on the previously defined I2C drivers serves to
conceal the protocol details from the calling functions and
allows the application program to conceptually deal with the
peripherals strictly as basic I/O devices. Access to these
peripherals is considerably slower than with a standard par-
allel bus but, since the electrical interface consumes only
two I/O pins, the controller retains most of its fast on-chip
bit-addressable I/O for general use.

Console I/O
The 2-wire peripheral set also provides the functions of a
user I/O interface panel. This includes 20 x 4 LCD, 4 x 4
matrix keypad, an audible beeper, and several indicator
LEDs. This subsection is supported by two PCF8574 I2C
port expanders along with some additional support ICs.
The LCD interfaces use one of the PCF8574s and operates
in 4-bit mode as an output-only device. Although the
PCF8574 can be operated bidirectionally, this would offer
little advantage here and would unnecessarily complicate
the code. The LCD interface requires only 6 I/O lines: a 4-
bit data bus, a register select line (RS), and an enable line
(E). The LCD’s read/write line (RW) is hardwired to ground
to permanently enable the write function.

Microcontroller

5-69

Figure 2. Expanded AT89C2051 System

+

2 3 4 5 6 7 8 9

10
 u

F

1N
91

4
10

K

+
5

22
 p

F

22
 p

F

11
.0

59
2

M
H

z

AT
89

C
20

51

R
S

T

X
TA

L2

X
TA

L1

1 4 5

R
X

D
/P

3.
0

T
X

D
/P

3.
1

2 3

IN
T

0/
P

3.
2

IN
T

1/
P

3.
3

6 7

T
0/

P
3.

4

T
1/

P
3.

5

P
3.

7

8 9 11 10
G

N
D

A
IN

0/
P

1.
0

12
A

IN
1/

P
1.

1

P
1.

2

P
1.

3

P
1.

4

P
1.

5

P
1.

6

13141516171819
P

1.
7

V
C

C
20

+
5

.1
 u

F

2.
7K

2.
7K

+
5

P
C

F
85

74

.1
 u

F

+
5

16
V

D
D

A
0

A
1

A
2

1 2 3

S
D

A

S
C

L

\IN
T

V
S

S

15 14 13 8

LC
D

 4
2

P
7

12
P

6

P
5

P
4

P
3

P
2

P
1

P
0

111097654

LE
D

1K

+
5

1K
LE

D

20
K

+
5

LC
D

 2
0X

4

1
V

S
S

V
D

D

V
O

R
S

R
/W

E D
B

0

D
B

1

D
B

2

D
B

3

D
B

4

D
B

5

D
B

6

D
B

7

10 11 12 13 14

P
C

F
85

74
+

5

16
V

D
D

A
0

A
1

A
2

1 2 3

.1
 u

F

S
D

A

S
C

L

\IN
T

V
S

S K
E

Y
PA

D
 4

6

15 14 13 8

12
P

7

P
6

P
5

P
4

P
3

P
2

P
1

P
0

111097654

74
H

C
74

2
D C

3

4

5 6

P
R

P
R

Q Q

+
5

1
10

 u
F

.1
 u

F

74
C

92
2

17
D

A

D
B

D
C

D
D

16 15 14

\O
E

D
A

V

O
S

C

13 12

M
A

S
K

V
S

S

5 6 9
C

4

C
3

C
2

C
1

781011

R
4

4
R

3

R
2

R
1

321

V
D

D
18

+
5

1 2 3 4 5 6 7 8

4X
4

K
E

Y
PA

D

.1
 u

F
B

U
Z

Z
E

R

+
5

1K
LE

D
D

IO
 4

0

8
V

S
S

13

D
IG

IT
A

L
I/O

1 2 3 4 5 6 7 8 9 10

+
5

1 2 31 2 31 2 31 2 31 2 3 A
N

A
LO

G
 IN

 0

A
N

A
LO

G
 IN

 1

A
N

A
LO

G
 IN

 2

A
N

A
LO

G
 IN

 3

A
N

A
LO

G
 O

U
T

+
5

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

4 5 6 7 9 10 11 12
\IN

T

S
C

L

A
2

A
1

A
0

14151 2 3

V
D

D
16

P
C

F
85

74

.1
 u

F

.1
 u

F

E
E

P
R

O
M

 A
8

V
S

S

A
2

A
1

A
0

4321

S
D

A

S
C

L

W
P

V
D

D

5678
+

5

+
5

AT
24

C
04

R
A

M
 A

E

V
S

S

A
2

A
1

A
0

4321

S
D

A

S
C

L

T
E

S
T

V
D

D

5678

.1
 u

F

+
5

P
C

F
85

70

R
T

C
/T

IM
E

R
 A

0

V
S

S

O
S

C
2

O
S

C
1

421

S
D

A

S
C

L

\IN
T

V
D

D

5678

3
A

0P
C

F
85

83
.1

 u
F

18
P

F

32
 K

H
z

3V
1N

91
4

1N
91

4

+
5

+
5

10
 u

F

P
C

F
85

91

16
V

D
D

A
0

A
1

A
2

5 6 7

O
S

C

E
X

T

S
D

A

S
C

L

11 12 9 10

A
D

C
/D

A
C

 9
0V
S

S
8

A
G

N
D

1314
V

R
E

F

A
IN

3

A
IN

2

A
IN

1

A
IN

0

432115
A

O
U

T

.0
1

uF

1N
91

4

10
K

+
5

LM
38

5
-

2.
5

10
 u

F

.1
 u

F

+

+

+

+

S
D

A

Microcontroller5-70

The keyboard circuit is a simple but effective implementa-
tion based on a 74C922 4 X 4 matrix self-scan IC and a flip-
flop. Again, a PCF8574 serves as the interface port. Briefly,
the 74C922 continuously scans the keyboard looking for a
key closure. When a closure is detected, it is debounced
and, if valid, the 74C922 places the corresponding binary
key code on its data lines while asserting data available
(DAV). Since DAV is only driven while a key is actually
being depressed, the associated flip-flop records the event.
This scheme works because, although the 74C922 may
stop asserting DAV, its data lines continue to emit the key
code until a new key stroke is detected and validated.

Second Level Drivers
Armed with a considerable set of peripheral devices and a
set of low level I2C drivers, a set of device-specific driver
modules is now required to fully utilize the peripheral set.
For clarity, these functions are written in C and are pre-
sented in the code file located on the Atmel Web Site or
BBS.

Basically, two levels of support are provided that include
basic drivers for the peripheral chips themselves and
higher level functions that offer system-level services.
Basic functions include rudimentary support for the
PCF8574 parallel I/O port, PCF8591 analog converter,
PCF8583 real time clock/calendar/timer with RAM, 24C04
EEPROM, and PCF8570 RAM. These are limited in scope
and should be self explanatory.

LCD Gyrations and Library Hooks
When using a compiled language, it can be advantageous
to implement user I/O as extensions to the standard library
functions. Doing so, immediately presents a set of built-in
capabilities that include character I/O, stream I/O, format-
ted I/O, and number conversion functions. The most effec-
tive way to hook into the libraries is to replace the device
specific input/output function that falls at the end of the call
chain. To this end, replacements are provided for PutChar
and GetKey that furnish the low-level device interface to
the 20 X 4 LCD and 4 X 4 keypad while retaining the famil-
iar C language interface. With these in place, all standard
library functions that utilize console I/O will operate using
the local user I/O devices.

Most character mode LCDs are based on the HD44780
LSI. This LSI contains two internal registers defined as the
command register and the data register. The command
register receives initialization and set up information as well
as functional commands to clear the LCD, set the cursor,
select the cursor appearance, etc. The data register is the
destination of all displayable data.

The Putchar function begins by first checking the input
argument for a newline character. If the character is a new-
line, the cursor is advanced to the first position of the next
line. If the cursor is on the last line it wraps back to the first.
The cursor location is mirrored using a global variable that

is updated by any operation that modifies the location of
the cursor. If the input argument is any character other than
a newline it is written directly to the LCD.

Special support functions are provided for writing to the
LCD’s data and command registers. Both DataWr and
CommandWr dismember their input argument prior to dis-
patching it to the LCD in nibble mode. The DataWr function
additionally interrogates the global variable Cursor in order
to determine if it must take corrective action to maintain the
visual output in a sequential fashion. That is, it determines
if logical-to-physical cursor translation is required at points
where discontinuity would occur.

Additional functions are furnished for direct cursor position-
ing with cursor fixup (PositionCursor), selecting an invisi-
ble; underline; or blinking cursor (SelectCursor), and clear-
ing the LCD and homing the cursor (ClearLcd). An initial-
ization function places the LCD into 4-bit mode and sets
various operational parameters to their default values
(InitLcd).

Whereas Putchar handles console output, Getkey is
responsible for console input. While Getkey will wait indefi-
nitely for a key to be pressed, few embedded designs will
tolerate the suspension of all processing while waiting for a
key stroke. The CheckKey function handles this situation
more reasonably. Here, the function will return null if no
data is available, otherwise the corresponding ASCII code
is returned.

Basically, if a keystroke is available, CheckKey falls
through and issues an acknowledge to clear the data-avail-
able flip-flop. While generating this pulse, the beeper is
briefly enabled resulting in an audible key click that offers
feedback that is particularly useful when a membrane key-
pad is used. InitKey is used to clear the keypad interface
logic on power-on and can also be used to flush unneeded
keystrokes from the interface logic.

Console support is rounded out with the inclusion of a func-
tion that emits beep sounds of variable length.

Driver Test Drive
Having presented a formidable array of 2-wire peripherals,
it would be enlightening to verify that they behave as
expected when accessed from a typical application pro-
gram. Admittedly, most real embedded systems wouldn’t
use all these peripherals simultaneously in a given applica-
tion. I2C, however, is quite amenable to supporting a multi-
plicity of peripheral combinations without burdening the
processor’s I/O pin budget. A system requiring a single
EEPROM is served equally well as one that needs an array
of analog data converters or a mix of functions.

Although obviously a contrived design, the program shown
in the code file on the Atmel Web Site or BBS, is intended
to illustrate how the existing support code can be used to
access the peripherals. The main module takes control
immediately following the low-level start up code and first

Microcontroller

5-71

performs the requisite device and variable initialization. Fol-
lowing this, the program enters into an infinite loop where
the I2C peripherals are accessed in a continual manner.

The initial block implements a buffered keypad that scrolls
data onto the keypad field of the LCD panel. To make this
somewhat mundane function a bit more attractive, key-
strokes are scrolled in from right to left. The enter key
causes the program to evaluate the entry for a legal
numeric input in the range of 0 to 255. If it falls within these
bounds it is dispatched to the analog output channel and is
emitted as a voltage.

Next, the digital data port is set to an incrementing pattern.
Since the port is bi-directional, it can be read as well. A
read of this digital port is performed and the retrieved data
is converted to binary notation and displayed in the digital
data field of the LCD. In a similar manner, the four analog
channels are read and converted to decimal ASCII and
placed in the LCD’s analog data field. Finally, the BCD date
and time is read from the RTC and is translated to decimal
ASCII notation and is shown in the LCD’s RTC field.

This example not only shows that the peripherals are oper-
ating properly but also illustrates how easily the LCD can
be effectively manipulated now that the support services
are encapsulated with clearly defined input parameters. All

of a sudden the tiny AT89C2051 takes on some of the
attributes, and amenities, you would normally expect from a
much larger computing engine.

The Adapting Controller
This application note has presented peripheral expansion
techniques that, while using just two I/O pins, can provide a
wide array of useful functions. If your needs are special-
ized, it is possible to support non I2C serial devices by uti-
lizing the already defined SDA and SCL lines. Half duplex
Microwire peripherals will only require one additional pin
whereas those that need independent transmit and receive
pins will require the addition of two more. In many cases,
complex functions such as multi-channel, high-resolution
data converters can be picked up at the expense of just
one extra pin.

Using the techniques shown, the AT89C2051 can be
equipped with a peripheral set commensurate with its
respectable computational capabilities. I2C offers the inher-
ent extensibility that can be instrumental in allowing a basic
design to take on new capabilities and new features as
additional requirements develop.

All the code for this application note can be found on the
Atmel Web Site or BBS.

