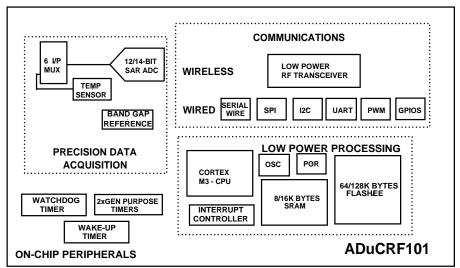


Precision Analog Microcontroller Cortex™-M3 with ISM band Transceiver

Preliminary Technical Data

ADuCRF101

FEATURES


Analog I/O 6-Channel 14-bit or 12-bit ADC Single ended and differential inputs Programmable data rate up to 842kSPS **On-Chip Voltage Reference and Temperature Sensor** Power Supply Range: 2.2 V to 3.6 V **Power Consumption** 680 nA, in power down mode, non-retained state 1.6 µA, in power down mode, MCU memory and transceiver memory retained 190 µA / MHz, Cortex in Active mode 12.8 mA transceiver in receive mode, Cortex in power down mode 9 to 32 mA transceiver in transmit mode, Cortex in power down mode **RF Transceiver Frequency bands** 862 MHz to 928 MHz 431 MHz to 464 MHz **Multiple Configurations supported Receiver sensitivity (BER)** -107.5 dBm at 38.4 kbps, 2FSK Single ended and differential PA Low External BOM Microcontroller ARM Cortex[™]-M3 32-bit processor Serial Wire download and debug **External Watch crystal for wakeup timer** 16 MHz internal Oscillator with 8-way Programmable

Divider

Memory 128k/64k Bytes Flash/EE Memory, 16k/8k Bytes SRAM 20000 cycle Flash/EE endurance 10 year Flash/EE retention In-circuit download via Serial Wire and UART **On-Chip Peripherals** UART, I²C and SPI Serial I/O 28-Pin GPIO Port 2 General Purpose Timers Wake-up Timer Watchdog Timer 8-Channel PWM **Packages and Temperature Range** 64 lead LFCSP (9mm x 9mm) package –40°C to 85°C Tools Low-Cost Development System **Third-Party Compiler and emulator tool Support**

APPLICATIONS

Battery powered wireless sensor Medical telemetry systems Industrial and home automation Asset tracking Security systems (access systems) Health and fitness applications

FUNCTIONAL BLOCK DIAGRAM

Figure 1. ADuCF101 Block Diagram

Rev. PrF

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.326.8703
 © 2012 Analog Devices, Inc. All rights reserved.

ADuCRF101

TABLE OF CONTENTS

. 1
. 1
. 3
.4
.4
. 5
.6

Preliminary Technical Data

General Electrical Specifications	8
Absolute Maximum Ratings	9
ESD Caution	9
Pin Configuration and Function Descriptions	
Outline Dimensions	
Ordering Guide	

GENERAL DESCRIPTION

The ADuCRF101 is a fully integrated data acquisition solution designed for low power wireless applications. It features an 14bit ADC, a low power Cortex[™]-M3 core from ARM^{*}, a 431 MHz to 464 MHz and 862 MHz to 928 MHz RF transceiver, and Flash/EE memory packaged in a 9 mm × 9 mm LFCSP.

The acquisition section consists of a 14 bit SAR ADC. The six inputs can be configured as single ended or differential modes. When configured in single ended mode, they can be used for ratiometric measurements on sensors, powered when required from the internal LDO. An internal battery monitor channel and an on-chip temperature sensor are also available.

This wireless data acquisition system is designed to operate in battery-powered applications where low power is critical. The device can be configured in normal operating mode or different low power modes under direct program control. In flexi mode any peripheral can operate and wake-up the device. In hibernate mode the internal wake-up timer remains active. In shutdown mode only an external interrupt can wake-up the device.

The ADuCRF101 integrates a low power Cortex-M3 core from ARM. It is a 32-bit RISC machine, offering up to 1.25 DMIPS peak performance. The Cortex-M3 MCU also has a flexible 14channel DMA controller supporting communication peripherals SPI, UART and I²C. 64 kB / 128 kB of nonvolatile Flash/EE memory and 8 kB /16 kB of SRAM are also provided on-chip. A 16 MHz on-chip oscillator generates the system clock. This clock can be internally divided for the CPU to operate at lower frequency for power saving reasons. A low power internal 32 kHz oscillator is available and can used to clock the timers. There are two general-purpose timers, a wake-up timer and a system watchdog timer.

A range of communication peripherals can be configured as required in a specific application. These peripherals include UART, I²C, and SPI, GPIO ports, PWM and RF transceiver.

The RF transceiver communicates in the 431 MHz to 464 MHz and 862 MHz to 928 MHz frequency bands using multiple configurations.

On-chip factory firmware supports in-circuit serial download via the UART while nonintrusive emulation and program download is also supported via the serial wire interface. These features are incorporated into a low cost development system supporting this precision analog microcontroller family.

The parts operate from 2.2 V to 3.6 V and are specified over an industrial temperature range of -40° C to $+85^{\circ}$ C.

Three versions of the ADuCRF101 are available:

14-bit ADC, 128k Byte Flash and 16k Byte SRAM,

12-bit ADC, 128k Byte Flash and 16k Byte SRAM,

12-bit ADC, 64k Byte Flash and 8k Byte SRAM,

SPECIFICATIONS

ANALOG FRONT END SPECIFICATIONS

 $AVDD = IOVDD = VDDBAT1 = VDDBAT2 = 2.2 V to 3.6 V, V_{REF} = 1.25 V internal reference, f_{CORE} = 16 MHz, all specifications T_A = T_{MAX}$ to T_{MIN} , unless otherwise noted. Default ADC sampling frequency: eight acquisition clocks and ADC clock frequency of 4 MHz.

Table 1. ADC channel specifications

	12-bit m	odel	14-bit m	odel		
Parameter	Тур	Мах	Тур	Мах	Unit	Test Conditions/Comments
DC ACCURACY						Single ended input mode. Applies to all ADC input channels.
Resolution	12		14		Bits	
Integral Nonlinearity	±1		±4		LSB	$V_{REF} = 1.25V$ from internal reference
	±2		±8		LSB	V _{REF} = 1.8V from LDO
Differential Nonlinearity	±1		±1		LSB	Guaranteed no missing code
DC Code Distribution	2		8		LSB	ADC input is a DC voltage
CALIBRATED ENDPOINT ERRORS						Measured using the factory-set default values ADCOF and ADCGN.
Offset Error	±0.6		±2.5		LSB	
Offset Error Match	±0.25		±1		LSB	
Gain Error	±1.25		±5		LSB	
Gain Error Match	±0.25		±1		LSB	
DYNAMIC PERFORMANCE						$f_{IN} = 10 \text{ kHz}$ sine wave.
Signal-to-Noise Ratio (SNR)	68		80		dB	
Total Harmonic Distortion	TBD		TBD			
Peak Harmonic or Spurious Noise (PHSN)	TBD		TBD			
Channel-to-Channel Crosstalk	TBD		TBD			Measured on adjacent channels

Table 2. ADC channel specifications

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
ANALOG INPUT					
Input Voltage Ranges ¹					
Single ended input	0		VREF	V	
Differential input	0		$V_{CM} \pm V_{REF}/2$	V	
Leakage Current		100		nA	
Input Capacitance		20		pF	During ADC Acquisition
ADC Power-up Time		5		μs	Excludes reference power up time
ON-CHIP VOLTAGE REFERENCE					
Output Voltage		1.25		V	
Accuracy		±5		mV	Measured at $T_A = 25^{\circ}C$
Reference Temperature Co		±40		ppm/°C	
Power Supply Rejection Ratio		60		dB	
Output Impedance		2		Ω	
Internal V _{REF} Power-On Time		5		ms	0.47µF external capacitor
TEMPERATURE SENSOR ¹					Indicates die temperature
Voltage Output at 25°C		TBD		mV	
Voltage TC	1	TBD		mV/°C	
Accuracy	1	TBD		°C	MCU in low power mode
Thermal impedance		TBD			

¹ These numbers are not production tested, but are guaranteed by design and/or characterization data at production release.

CURRENT CONSUMPTION SPECIFICATIONS

AVDD = IOVDD = VDDBAT1 = VDDBAT2 = 2.2 V to 3.6 V, $f_{CORE} = 16 MHz$, all specifications $T_A = T_{MAX}$ to T_{MIN} , unless otherwise noted.

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CURRENT CONSUMPTION					
Cortex in SHUTDOWN mode		680		nA	RF transceiver in sleep mode, memory not retained
Cortex in HIBERNATE mode					Wake up timer running from external 32kHz crystal, 8kB of SRAM retained (8kB non-retained)
RF transceiver in sleep mode, memory retained		1.6		μΑ	
RF transceiver in sleep mode, memory not retained		1.38		μΑ	
RF transceiver in receive mode		12.8		mA	
RF transceiver in transmit mode		9 to 32		mA	
Cortex active, RF transceiver active					RF transceiver in PHY_ON or PHY_OFF state
Static current		1.8		mA	
Dynamic current		190		µA/MHz	
STARTUP TIME ¹					
Cortex at Power On		40		ms	
From SLEEP mode		3 to 5		FCLK	FCLK is the Cortex-M3 clock or divided version of the 16MHz oscillator.
Cortex from HIBERNATE mode		12		μs	
Cortex from SHUTDOWN mode		40		ms	
Transceiver from sleep mode		562.8		μs	Includes 310 μ s for 26MHz crystal startup (7pF load capacitor at T _A = 25°C)
POWER SUPPLY REQUIREMENTS					
Power Supply Voltage Range ¹	2.2		3.6	V	

¹ These numbers are not production tested, but are guaranteed by design and/or characterization data at production release.

RF LINK SPECIFICATIONS

AVDD = IOVDD = VDDBAT1 = VDDBAT2 = 2.2 V to 3.6 V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. RF frequency = 868 MHz.

Parameter	Min	Тур	Max	Unit	Test Conditions / Comments
FREQUENCY RANGE					
	862		928	MHz	
	431		464	MHz	
PHASE-LOCKED LOOP					
Channel Frequency Resolution		396.7		Hz	
Phase Noise (In-Band)		-88		dBc/Hz	10 kHz offset, PA output power = 10 dBm
DATA RATE					
2FSK	1		300	kbps	
ООК	2.4		19.2	kbps	Manchester Encoding enabled (Manchester chip rate = 2 x datarate)
Data rate resolution		100		bps	
TRANSMIT POWER RANGE ¹					
Single ended PA		-20 to 13.5	5	dBm	Programmable.
Differential PA		-20 to 10		dBm	Programmable.
MODULATION					
Deviation Frequency Resolution		100		Hz	
2FSK/GFSK INPUT SENSITIVITY, BIT ERROR RATE (BER)					At BER = 10^{-3}
1.0 kbps		-116		dBm	Frequency deviation = 10 kHz, IF filter bandwidth = 100 kHz
38.4 kbps		-107.5		dBm	Frequency deviation = 19.2 kHz, IF filter bandwidth = 100 kHz
300 kbps		-100.5		dBm	Frequency deviation = 75 kHz, IF filter bandwidth = 300 kHz
2FSK/GFSK INPUT SENSITIVITY, PACKET ERROR RATE (PER)					At PER = 1%, packet length =20 bytes, packet mode
1.0 kbps		-115.5		dBm	Frequency deviation = 10 kHz, IF filter bandwidth = 100 kHz
38.4 kbps		-106		dBm	Frequency deviation = 19.2 kHz, IF filter bandwidth = 100 kHz
300 kbps		-98		dBm	Frequency deviation = 75 kHz, IF filter bandwidth = 300 kHz
ADJACENT CHANNEL REJECTION					
CW Interferer					Wanted signal 3 dB above the input sensitivity level (BER = 10^{-3}), CW interferer power level increased until BER = 10^{-3} , image calibrated
200 kHz Channel Spacing		38		dB	IF BW = 100 kHz, wanted signal: F_{DEV} = 12.5 kHz DR = 50 kbps
300 kHz Channel Spacing		39		dB	IF BW = 100 kHz, wanted signal: $F_{DEV} = 25$ kHz, DR = 100 kbps
300 kHz Channel Spacing		38		dB	IF BW = 150 kHz, wanted signal: F _{DEV} = 37.5 kHz DR = 150 kbps
400 kHz Channel Spacing		40		dB	IF BW = 200 kHz, wanted signal: F _{DEV} = 50 kHz, DR = 200 kbps
600 kHz Channel Spacing		41		dB	IF BW = 300 kHz, wanted signal: F _{DEV} = 75 kHz, DR = 300 kbps

Preliminary Technical Data

Modulated Interferer			Wanted signal 3 dB above the input sensitivity level (BER = 10^{-3}), modulated interferer with the same modulation as the wanted signal; interferer power level increased until BER = 10^{-3} , image calibrated
200 kHz Channel Spacing	38	dB	IF BW = 100 kHz, wanted signal: F_{DEV} = 12.5 kHz, DR = 50 kbps
300 kHz Channel Spacing	36	dB	IF BW = 100 kHz, wanted signal: $F_{DEV} = 25$ kHz, DR = 100 kbps
300 kHz Channel Spacing	36	dB	IF BW = 150 kHz, wanted signal: F_{DEV} = 37.5 kHz, DR = 150 kbps
400 kHz Channel Spacing	34	dB	IF BW = 200 kHz, wanted signal: F_{DEV} = 50 kHz, DR = 200 kbps
600 kHz Channel Spacing	35	dB	IF BW = 300 kHz, wanted signal: F_{DEV} = 75 kHz, DR = 300 kbps
CO-CHANNEL REJECTION	-4	dB	Desired signal 10 dB above the input sensitivity level (BER = 10^{-3}), data rate = 38.4 kbps, frequency deviation = 20 kHz.
BLOCKING, ETSI EN 300 220			Measurement procedure as per ETSI EN 300 220-1 V2.3.1; desired signal 3 dB above the ETSI EN 300 220 reference sensitivity level of -99 dBm, IF bandwidth =100 kHz, data rate = 38.4 kbps, unmodulated interferer.
±2 MHz	-28	dBm	
±10 MHz	-20.5	dBm	
WIDEBAND INTERFERENCE REJECTION	75	dB	Swept from 10 MHz to 100 MHz either side of the RF frequency
IMAGE CHANNEL ATTENUATION			Measured as image attenuation at the IF filter output, carrier wave interferer at 400 kHz below the channel frequency, 100 kHz IF filter bandwidth
868 MHz	36/45	dB	Uncalibrated ² /calibrated

¹ Measured as the maximum unmodulated power. ² Measured with IMAGE_REJECT_CAL_AMPLITUDE = 0x7 and IMAGE_REJECT_CAL_PHASE = 0x16.

GENERAL ELECTRICAL SPECIFICATIONS

 $AVDD = IOVDD = VDDBAT1 = VDDBAT2 = 2.2 V to 3.6 V, V_{REF} = 1.25 V internal reference, f_{CORE} = 16 MHz, all specifications T_A = 1.25 V to 3.6 V, V_{REF} = 1.25 V to 3.6 V to 3.6 V, V_{REF} = 1.25 V to 3.6 V to 3.6$ T_{MAX} to T_{MIN} , unless otherwise noted.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER SUPPLY MONITOR					
Trip Point voltage		2		V	
Trip Point accuracy		2		%	
POWER-ON-RESET		1.67		V	
Watchdog Timer ¹					
Timeout Period	0		512	s	Programmable
Flash/EE MEMORY ¹					
Endurance ²	20,000			Cycles	
Data Retention ³	10			Years	T _J = 85°C
Digital Inputs					All digital inputs, excluding LFXTAL1 and XOSC26P
Input Current (leakage current)		10		nA	$V_{INH} = IOVDD$ or $V_{INH} = 2.2V$, pull up disabled. $V_{INL} = 0V$, pull up disabled.
Input Capacitance		10		pF	
Logic Inputs					All Logic inputs, including LFXTAL1, excluding XOSC26P
VINL, Input Low Voltage			0.2 x IOVDD	V	
VINH, Input High Voltage	0.7 x IOVDD			V	
Logic Outputs					
VOH, Output High Voltage	IOVDD - 0.4			V	I _{source} = 1mA
VOL, Output Low Voltage			0.36	V	$I_{sink} = 1mA$
32.768kHz CRYSTAL					32.768 kHz crystal, for use with timers and/or RF transceiver wake up controller.
Input Current (leakage current)		50		nA	
LFXTAL1 Input Capacitance		2		pF	
LFXTAL2 Output Capacitance		2		pF	
26MHz CRYSTAL					
XOSC26P Input Capacitance		10		pF	
XOSC26N Output Capacitance		10		pF	
INTERNAL HF OSCILLATOR		16		MHz	MCU clock by default
Tolerance		±3		%	
INTERNAL LF OSCILLATOR		32.768		kHz	
Tolerance		±20		%	
MCU CLOCK DIVIDER ¹	1		128		8 programmable core clock dividers.
EXTERNAL CLOCK INPUT ¹					External MCU clock range allowed
Range	32.768		16000	kHz	

¹ These numbers are not production tested, but are guaranteed by design and/or characterization data at production release. ² Endurance is qualified to 20,000 cycles as per JEDEC Std. 22 Method A117 and measured at -40°C, +25°C, and +85°C. Typical endurance at 25°C is 170,000 cycles.

³ Retention lifetime equivalent at a junction temperature (T_J) of 85°C as per JEDEC Std. 22 Method A117. Retention lifetime derates with junction temperature.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$ unless otherwise noted

Table 6.	

	1
Parameter	Rating
AVDD, IOVDD, VDDBAT1 and	–0.3 V to 3.96V
VDDBAT2 to GND	
Digital Input Voltage to GND	–0.3 V to 3.96V
Digital Output Voltage to GND	–0.3 V to 3.96V
V _{REF} to GROUND	–0.3 V to 3.96V
Analog Inputs to GND	–0.3 V to 2.1V
Operating Temperature Range	–40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	105°C
$ heta_{JA}$ Thermal Impedance	
64-Pin LFCSP _VQ	25°C/W
Peak Solder Reflow Temperature	
Pb-Free Assemblies (30 s)	260°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

The exposed paddle of the LFCSP package should be connected to ground.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ADuCRF101

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

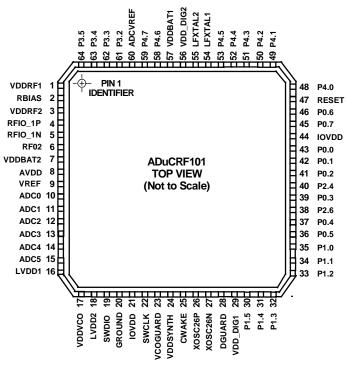


Figure 8. 64-Lead LFCSP_VQ Pin Configuration

Pin	Mnemonic	Description
No.		
1	VDDRF1	Voltage Regulator output for RF circuits. A 220 nF capacitor should be placed between this pin and ground for regulator stability and noise rejection.
2	RBIAS	External bias resistor. A 36 k Ω resistor with 2% tolerance should be used.
3	VDDRF2	Voltage Regulator output for RF block. A 220 nF capacitor should be placed between this pin and ground for regulator stability and noise rejection.
4	RFIO_1P	LNA Positive Input in Receive Mode. Differential PA Positive Output in Transmit Mode.
5	RFIO_1N	LNA Negative Input in Receive Mode. Differential PA Negative Output in Transmit Mode.
6	RF02	Single ended PA output.
7	VDDVBAT2	Battery Terminal, supply for the LDOs used in the RF section of the transceiver.
8	AVDD	Battery terminal, Supply for analog circuits such as ADC and ADC internal reference, POR, PSM and LDOs.
9	VREF	Internal 1.25V ADC reference. A 0.47 μF capacitor between this pin and ground is required.
10	ADC0	ADC input channel 0
11	ADC1	ADC input channel 1
12	ADC2	ADC input channel 2
13	ADC3	ADC input channel 3
14	ADC4	ADC input channel 4
15	ADC5	ADC input channel 5
16	LVDD1	On chip LDO decoupling output. Connect a 0.47 µF capacitor to the 1.8V output to ensure core operating voltage is stable.
17	VDDVCO	Voltage Regulator output for VCO. A 220 nF capacitor should be placed between this pin and ground for regulator stability and noise rejection.
18	LVDD2	On chip LDO decoupling output. Connect a 0.47 μ F capacitor to the 1.32V output to ensure core operating voltage is stable
19	SWDIO	Serial Wire bi-directional data
20	GND	Ground pin, should be connected to the PADDLE.
21	IOVDD	Battery terminal, General Purpose IO supply.

Preliminary Technical Data

Pin No.	Mnemonic	Description			
22	SWCLK	Serial Wire debug clock			
23	VCOGUARD	Guard, screen for VCO, should be connected to VDDVCO.			
24	VDDSYNTH	Voltage Regulator output for Synthesizer. A 220 nF capacitor should be placed between this pin and ground for regulator stability and noise rejection.			
25	CWAKE	External capacitor for wake up control. A 150 nF capacitor should be placed between this pin and ground.			
26	XOSC26P	The 26MHz reference crystal should be connected between this pin and XOSC26N.			
27	XOSC26N	The 26MHz reference crystal should be connected between this pin and XOSC26P.			
28	DGUARD	Internal Guard, Screen for Digital Cells, should be connected to VDD_DIG1.			
29	VDD_DIG 1	Voltage Regulator output for Digital. A 220 nF capacitor should be placed between this pin and ground for regulator stability and noise rejection.			
30	P1.5/IRQ6/I2CSD A/PWM7	General Purpose Input and Output Port 1.5/External Interrupt 6/I2C Serial Data/PWM channel 7.			
31	P1.4/IRQ5/I2CSC L/PWM6	General Purpose Input and Output Port 1.4/External Interrupt 5/I2C Serial Clock/PWM channel 6.			
32	P1.3/PWM5	General Purpose Input and Output Port 1.3/PWM channel 5.			
33	P1.2/PWM4	General Purpose Input and Output Port 1.2/PWM channel 4.			
34	P1.1/PORB/TXD /PWM3	General Purpose Input and Output Port 1.1/POR output/ UART TXD/ PWM channel 3.			
35	P1.0/RXD/IRQ4/ MOSI /PWM2	General Purpose Input and Output Port 1.0/UART RXD/ External Interrupt 4/ SPI1 Master Out Slave In Pin (MOSI)/PWM channel 2.			
36	P0.5/CS2 /ECLKIN	General Purpose Input and Output Port 0.5/SPI1 Chip Select 2/External Clock Input			
37	P0.4/CS1 /ECLKOUT	General Purpose Input and Output Port 0.4/SPI1 Chip Select 1/External Clock Output.			
38	P2.6/GP0	General Purpose Input and Output Port 2.6			
39	P0.3/IRQ1/CS0 /ADCCONVST/P WM1	General Purpose Input and Output Port 0.3/External Interrupt 1/SPI1 Chip Select 0/ADC convert start/PWM channel 1.			
40	P2.4/IRQ8	General Purpose Input and Output Port 2.4/ External Interrupt 8			
41	P0.2/MOSI/PWM 0	General Purpose Input and Output Port 0.2/SPI1 Master Out Slave In Pin (MOSI)/PWM channel 0.			
42	P0.1/SCLK	General Purpose Input and Output Port 0.1/SPI1 Serial Clock			
43	P0.0/MISO	General Purpose Input and Output Port 0.0/SPI1 Master In Slave Out Pin (MISO)			
44	IOVDD	General Purpose I/O supply. Connect to the battery terminal			
45	P0.7/IRQ3/CS4 /CTS	General Purpose Input and Output Port 0.7/ External Interrupt 3 / SPI1 Chip Select 4/ UART hand shake.			
46	P0.6, <u>BOO</u> T/ IRQ2/CS3 / RTS/PWM0	General Purpose Input and Output Port 0.6, BOOT pin / External Interrupt 2/ SPI1 Chip Select 3 / UART hand shake/PWM channel 0.			
47	RESET	Active Low. A low signal on this pin for 24 system clocks will cause the part to reset.			
48	P4.0/PWM0	General Purpose Input and Output Port 4.0/PWM channel 0.			
49	P4.1/PWM1	General Purpose Input and Output Port 4.1/PWM channel 1.			
50	P4.2/PWM2	General Purpose Input and Output Port 4.2/PWM channel 2.			
51	P4.3/PWM3	General Purpose Input and Output Port 4.3/PWM channel 3.			
52	P4.4/PWM4	General Purpose Input and Output Port 4.4/PWM channel 4.			
53	P4.5/PWM5	General Purpose Input and Output Port 4.5/PWM channel 5.			
54	LFXTAL1	32.768kHz watch crystal output for WU timers.			
55	LFXTAL2	32.768kHz watch crystal input for WU timers.			
56	VDD_DIG2	Voltage Regulator output for Digital section of the transceiver. A 220 nF capacitor should be placed between this pin and ground for regulator stability and noise rejection.			
57	VDDBAT1	Battery Terminal, supply for the digital section of the transceiver and GPIOs.			
58	P4.6/PWM6	General Purpose Input and Output Port 4.6/PWM channel 6.			
59	P4.7/PWM7	General Purpose Input and Output Port 4.7/PWM channel 7.			

ADuCRF101

Pin No.	Mnemonic	Description		
60	ADCVREF	Transceiver's ADC Reference Output. A 220 nF capacitor should be placed between this pin and ground for adequate noise rejection.		
61	P3.2/PWMSYNC	General Purpose Input and Output Port 3.2/PWM synchronisation.		
62	P3.3/PWMTRIP	General Purpose Input and Output Port 3.3/PWM safety cut off.		
63	P3.4	General Purpose Input and Output Port 3.4.		
64	P3.5	General Purpose Input and Output Port 3.5.		
65	PADDLE	DDLE The exposed package paddle should be soldered to a metal pad on the PCB, and connected to ground.		

OUTLINE DIMENSIONS

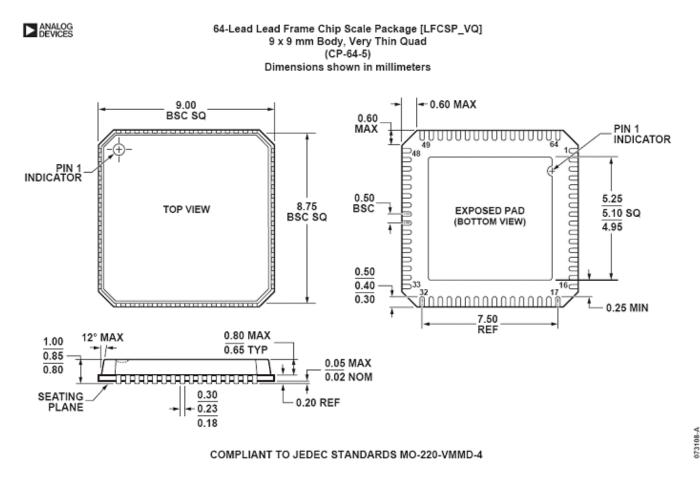


Figure 2. 64-Lead Frame Chip Scale Package [LFCSP_VQ] 9 mm x 9 mm Body, Very Thin Quad (CP-64-1) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Description	Package Option
	-40°C to 85°C	14-bit ADC, 128k Byte Flash and 16k Byte SRAM	64-lead LFCSP
	-40°C to 85°C	12-bit ADC, 128k Byte Flash and 16k Byte SRAM	64-lead LFCSP
	-40°C to 85°C	12-bit ADC, 64k Byte Flash and 8k Byte SRAM	64-lead LFCSP
	-40°C to 85°C	Evaluation board for 433MHz operation	n/a
	-40°C to 85°C	Evaluation board for 868/915MHz operation	n/a

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

Rev. PrF | Page 13 of 13