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Abstract. As more and more security-critical computation is done in
embedded systems, it is also becoming increasingly important to facili-
tate cryptography in such systems. The Advanced Encryption Standard
(AES) specifies one of the most important cryptographic algorithms to-
day and has received a lot of attention from researchers. Most prior
work has focused on efficient implementations with throughput as main
criterion. However, AES implementations in small and constrained envi-
ronments require additional factors to be accounted for, such as limited
memory and energy supply. In this paper we present an inexpensive ex-
tension to a 32-bit general-purpose processor which allows compact and
fast AES implementations. We have integrated this extension into the
SPARC V8-compatible LEON-2 processor and measured a speedup by a
factor of up to 1.43 for encryption and 1.3 for decryption. At the same
time the code size has been reduced by 30–40%.

Keywords: Advanced Encryption Standard, 32-bit implementation, in-
struction set extensions, S-box, cache-based side-channel analysis.

1 Introduction

The recent years have seen an enormous increase in the number of small and
embedded systems in use. Cell phones, PDAs, portable media players, and smart
cards are just a few examples of such devices. But also more and more computa-
tion is performed totally hidden from the user, e.g. in sensor nodes or RFID tags.
Strong cryptographic algorithms should build the basis for achieving all of the
security assurances required by the system. However, since embedded systems
are generally constrained in resources, the overhead introduced by cryptographic
algorithms should be kept as small as possible.

Many symmetric block ciphers require to perform operations which are costly
in software, but very cheap when realized in hardware. Typical examples of such
operations are bit-level permutations or inversions in the Galois field GF(28).
Moving the execution of these operations from software to hardware, e.g. through
application-specific (custom) instructions integrated into a general-purpose pro-
cessor, can have a significant performance impact [9]. The concept of instruction
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set extensions may be viewed as a hardware/software co-design approach to
combine the performance of hardware with the flexibility of software.

The Advanced Encryption Standard (AES) [11] specifies a symmetric block
cipher that has found widespread adoption during the last five years. It can be
used to encrypt digital communication and data or to guarantee integrity and
authenticity. Today, the AES algorithm is prevalent in a plethora of devices,
ranging from high-end servers to RFID tags [5]. Most previous work on efficient
AES implementation has focused either on “pure” hardware or “pure” software.
Our approach is to improve the performance by slight modifications of a 32-bit
general-purpose processor in the form of instruction set extensions. In the current
paper we propose a single custom instruction which requires little additional
hardware and yields advantages for different parts of the AES algorithm.

The rest of this paper is organized as follows. Section 2 summarizes different
choices for AES software implementation and also presents some of the benefits
of our proposed extension. Section 3 presents our extension and also cites some
related work. Section 4 examines the effect of cache size on the performance
of different AES implementations, while Section 5 shows the benefits of our
proposed extension in terms of performance and code size. Section 6 concludes
the paper and gives a short outlook on future work.

2 Implementation Options for AES in Software

AES encrypts or decrypts the 16 bytes of input data in a number of rounds. The
number of rounds is 10, 12, or 14, depending on the chosen key size of either
128, 192 or 256 bits. In encryption, each round but the last consists of the four
transformations SubBytes, ShiftRows, MixColumns, and AddRoundKey, while
a decryption round features the respective inverse operations. The last round is
different as it does not include MixColumns in encryption and InvMixColumns
in decryption. For each round, a round key has to be derived from the cipher
key in an operation called key expansion [4].

All operations except SubBytes can be calculated quite efficiently on general-
purpose processors. SubBytes and the key expansion require a non-linear byte
substitution involving bit permutations and an inversion in GF(28), which is not
very well supported by general-purpose processors. Therefore, the inversion is
normally implemented as a lookup into a table of 256 bytes. A table of the same
size is required for the operation InvSubBytes in AES decryption.

A second implementation option is to perform most of the AES round (Sub-
Bytes, ShiftRows, and MixColumns) as 16 lookups into larger tables, commonly
referred to as T tables [4]. The overall size of these tables can either be 1 kB or
4 kB, whereby the 1 kB table requires additional rotation operations to be per-
formed. The last round can also be realized with lookup by using other tables
of either 1 kB or 4 kB size. Decryption requires different tables than encryp-
tion. Therefore, an AES implementation able to perform both encryption and
decryption may require up to 16 kB of additional memory. Gladman’s AES
implementation [7] offers the possibility to configure the size of the T tables.
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In the remainder of this paper we will use the following notation to refer to
the two implementation strategies mentioned before. Any AES implementation
which uses large lookup tables to perform most of the round transformations
will be denoted as T lookup AES implementation. On the other hand, an im-
plementation which calculates the round transformations (except SubBytes and
InvSubBytes) will be denoted as calculated AES implementation.

T lookup implementations have a number of drawbacks. For compact AES
implementations the use of large tables is not desirable. Moreover, the perfor-
mance of a lookup table-based implementation is highly dependent on memory
and cache performance. In Section 4 we demonstrate that, for small cache sizes,
the performance of AES with large lookup tables is much worse than that of a
calculated AES. Another problem of large lookup tables is an increased factor
of cache pollution by an execution of the AES. This means that each execution
of AES will throw out a large number of cache lines from other tasks. If these
tasks continue they will have to fetch their data from main memory again, thus
leading to a degradation in overall performance. Another issue for AES decryp-
tion is that it is necessary to use a much more complex key expansion if T lookup
is employed. More specifically, the key expansion requires the transformation of
nearly all round keys with InvMixColumns, which is a very costly operation.

For calculated AES implementations there are a number of design options on
32-bit processors. The 16 input bytes are represented as a 4×4-matrix, called the
state, which is subsequently transformed by the AES algorithm. The state can
be stored in four 32-bit registers, where each register can either hold a column
or a row of the state matrix. Bertoni et al. [2] have shown that a row-oriented
AES implementation yields a more efficient implementation of MixColumns and
a better overall performance, especially for decryption.

Another option is to either precompute and store all round keys (precom-
puted key schedule) or to calculate the round keys during AES encryption or
decryption (on-the-fly key expansion). The first option occupies more memory
and may also require more memory accesses while the second option saves mem-
ory at the cost of additional operations in encryption and decryption in order to
calculate the round keys.

In the present paper we propose a custom instruction for performing the non-
linear byte substitution of SubBytes and InvSubBytes in a small dedicated hard-
ware unit, which we call SBOX unit. In this fashion we can completely eliminate
the requirement of memory-resident lookup tables. The implementation details
of the sbox instruction are described in Section 3. With this instruction it is
possible to implement AES with very few memory accesses. If there are enough
spare registers to store the state and round key and an on-the-fly key expansion
is used, then the only memory accesses required are the loading of the input
data and cipher key and the storing of the result. Popular RISC architectures
for embedded systems like ARM, MIPS and SPARC offer large enough register
files to allow such implementations.

By eliminating the need for lookup tables, all possible threats through cache-
based side-channel attacks are also removed [12,18,3]. Cache pollution is kept to
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a minimum and the performance of AES becomes much more independent of the
cache size as shown in Section 4. Another advantage of our proposed extension
is the reduction of energy dissipation. Memory accesses are normally the most
energy-intensive instructions [15], and hence their minimization will lead to a
substantial energy saving.

3 Custom Instruction for S-Box Lookup

For performing the byte substitution operation of AES in hardware we have used
the implementation presented in [19] as a functional unit. It can perform the
lookup for both encryption and decryption, is relatively small, and can be easily
implemented with any standard cell library. We wanted to achieve a high degree
of flexibility, and therefore we have designed the new instruction such that it
can be used for both column-oriented and row-oriented implementations. The
sbox instruction has the following format (in SPARC notation):

sbox rs1, imm, rd

The immediate value imm contains information regarding the operation to
perform and the substituted bytes of the source register rs1 and the destination
register rd. The sbox instruction performs the following steps:

1. Select one of the four bytes in the source register (rs1), depending on the
immediate value (imm).

2. Depending on imm perform forward (for encryption and key expansion) or
inverse (for decryption) byte substitution.

3. Replace one of the four bytes in the destination register (rd) with the sub-
stituted value, as indicated by imm. The other three bytes in rd remain
unchanged.

Figure 1 illustrates the operation of the sbox instruction.
The sbox instruction requires the values from the registers rs1 and rd. Since

the second operand of the sbox instruction is always an immediate value, the
second read port of the register file is not occupied. It can therefore be used
to read in the value of the destination register rd, which is required to form
the 32-bit result. The sbox instruction is therefore easy to integrate into most
architectures for embedded processors like ARM, MIPS, and SPARC as they all
have instruction formats with two source registers.

Our instruction supports both encryption and decryption and can be used to
perform all byte substitutions in all AES rounds as well as in the key expansion.
It is possible to select the source byte in rs1 and the destination byte in rd in a
manner so that the SubBytes and ShiftRows transformation can be done at the
same time. The same applies for the InvSubBytes and InvShiftRows operations
in decryption.

We have integrated our proposed extension into the freely available SPARC
V8-compatible LEON-2 embedded processor from Gaisler Research [6] and pro-
totyped it in a Xilinx Virtex2 XC2V3000 FPGA. In Sections 4 and 5 we will
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Fig. 1. Functionality of the sbox instruction

state the practical results we have achieved by comparing an AES implementa-
tion which uses our sbox instruction with pure-software implementations. Our
implementations used a key size of 128 bits, but the results also apply to larger
key sizes. We have prototyped the extended LEON-2 on an FPGA board, where
the timing results have been obtained with help of the cycle counter which is
integrated in the processor.

In order to estimate the area overhead due to our extensions, we have synthe-
sized the functional unit presented in [19] using a 0.35 µm CMOS standard cell
library. The required area amounted to approximately 400 NAND gates, which
is negligible compared to the size of the processor. When synthesized for the
Xilinx Virtex2 XC2V3000 FPGA, the extended LEON-2 (with 1 kB instruction
and 1 kB data cache) required 4,274 slices and 5 Block RAMs.

3.1 Comparison with Related Work

Irwin and Page [8] have proposed extensions for PLX, a general-purpose RISC
architecture with multimedia instructions, and presented strategies to use multi-
media instructions for implementing AES with the goal to minimize the number
of memory accesses. The PLX is datapath-scalable, which means that register
size and datapath width are parameterizable from 32 to 128 bits (128 bits were
used in [8]). Unfortunately, most of the presented ideas do not map very well to
32-bit architectures, and hence we did not use these concepts in our work.

Nadehara et al. [10] have proposed an instruction set extension for AES
which calculates the value of a T table entry, i.e. SubBytes and MixColumns,
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for a single byte of the state. Although implementations which use such an
instruction will be faster than with our proposed solution, there are also several
drawbacks. The functional unit presented in [10] is larger than ours and it has a
longer critical path. Moreover the instruction presented in [10] cannot be used in
the last round of AES where MixColumns is omitted and for the key expansion
where SubBytes is required separately. Therefore, the need for table lookups for
byte substitution remains. Another drawback is a much more complicated key
expansion required for decryption when the extension is used, because all round
keys must be transformed with InvMixColumns before they can be used in Add-
RoundKey [11]. This is a serious limitation for decryption with on-the-fly key
expansion.

Schaumont et al. [14] investigated performance and energy characteristics
of an AES coprocessor loosely coupled to the LEON-2 core. The AES hardware
increased FPGA LUT usage by 70% but still yields lower performance than our
extended LEON-2 with just the sbox instruction (see Section 5.1 for a detailed
performance analysis).

Ravi et al. [13] used the extensible 32-bit processor Xtensa from Tensilica
Inc. [16] to design and integrate instruction set extensions for different public-
and secret-key cryptosystems (including AES). The augmented Xtensa achieved
better performance for AES encryption, but worse performance for decryption
when compared to our approach with just the sbox instruction. Unfortunately,
Ravi et al. do not give details about the functionality and area overhead of the
implemented instruction set extensions.

4 Influence of Cache Size on Performance

In order to demonstrate that an AES implementation with large lookup tables
does not necessarily deliver the best performance, we have compared imple-
mentations with different sizes of lookup tables on an extended LEON-2 with
different cache sizes. The influence of cache size on the performance of AES has
already been studied by Bertoni et al. [1]. Their work assumes that the cache
is large enough to hold all lookup tables. In this section we will examine the
situation where the cache may become too small to hold the complete tables.

In our experiments, we have varied the size of the data and instruction cache
from 1 kB to 16 kB (both caches always had the same size). The implementations
which use T lookup are based on the well-known and referenced AES code from
Brian Gladman [7], whereby we have used a size of 1 kB, 4 kB, and 8 kB for
the lookup tables, respectively. We have compared the achieved performance to
two AES implementations which calculate all round transformations except Sub-
Bytes. In one case, a 256-byte lookup table (only S-box lookup) is used, and in
the other case our sbox instruction is employed. Figure 2 shows the performance
for encryption, while Figure 3 depicts the results for decryption.

The performance of the lookup implementations is very bad for small cache
sizes. For encryption, the usage of the sbox instruction yields a similar perfor-
mance as the use of big lookup tables on a processor with very large cache.
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Fig. 2. Performance of AES-128 encryption in relation to cache size

In decryption, T lookup implementations become faster at cache sizes of more
than 4 kB. This is due to the fact, that the InvMixColumns transformation is
rather complex to calculate and therefore T lookup becomes more efficient than
calculation for large caches sizes. The main result of our experiments is that
the performance of implementations using the sbox instruction is almost inde-
pendent from the cache size. On the other hand, the performance of T lookup
implementation depends heavily on the size of the cache.

5 Comparison of Calculated AES Implementations

The previous section has shown that the performance of AES implementations
using T lookup varies greatly with cache size. In this section we aim to highlight
the benefits of using the sbox instruction in settings where T lookup is not an
option, e.g. due to limited memory. To analyze the performance, we have com-
pared a calculated AES implementation (without extensions) to one that uses
our proposed sbox instruction. We have estimated both the gain in performance
as well as the reduction in code size. All comparisons have been done for both
precomputed key schedule and on-the-fly key expansion.

The sbox instruction performs the inversion in GF(28) in a single clock cycle,
while a calculated implementation requires a number of instructions for the
inversion, which increases both the execution time and the size of the executable.
In systems with small cache, the speedup factor for the implementation with
sbox instruction will be higher than in systems with large cache, mainly because
the performance of the calculated software implementation (without extensions)
degrades due to cache misses in the instruction cache. Therefore, we have used
a LEON-2 system with large caches since we are primarily interested in the
speedup due to the sbox instruction (and not due to less cache misses).
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Fig. 3. Performance of AES-128 decryption in relation to cache size

We have also tested a third implementation that uses both the sbox instruc-
tion as well as the gf2mul/gf2mac instructions1, which have been proposed in a
previous paper of the first two authors [17]. The third implementation uses the
gf2mul/gf2mac instructions to calculate MixColumns in an efficient manner.

All three implementations have been written in C and inline assembly has
only been used to execute the custom instructions. For on-the-fly key expansion,
we have also tested an assembler-optimized implementation which uses both the
sbox and gf2mul/gf2mac instructions. This variant makes optimal use of the
large register file offered by the SPARC V8 architecture and performs only a
minimal number of memory accesses (8 loads for plaintext and key, 4 stores for
ciphertext), which cannot be reduced further.

In the following subsections, we will only comment on the benefits of using the
sbox instruction alone. The figures for the additional use of the gf2mul/gf2mac
instructions are only stated for the interested reader familiar with [17].

5.1 Performance

Table 1 contains the timings for AES encryption and decryption with a precom-
puted key schedule. The use of the sbox instruction yields a speedup of 1.43 for
encryption and 1.25 for decryption respectively. It can also be seen that the key
expansion is accelerated by the use of our proposed extension. For comparison,
Table 1 also contains the performance figures for the implementations in [14]
and [13] for pure-software and hardware-accelerated AES-128 as far as they are
available. Table 2 states the timing results for an on-the-fly key expansion. The
figures for decryption assume that the last round key is directly supplied to the
1 The gf2mul (gf2mac) instruction performs a multiplication (multiply-and-add oper-

ation) of two binary polynomials of degree 31, yielding a polynomial of degree 62.
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Table 1. Execution times of AES-128 encryption, decryption and key expansion

Key exp. Encryption Decryption
Cycles Cycles Speedup Cycles Speedup

[14] (pure SW) n/a 45,228 n/a
[14] (HW accelerated) n/a 1,494 n/a

[13] (pure SW) n/a 24,419 24,419
[13] (HW accelerated) n/a 1,400 1,400

Our work (no custom instr.) 738 1,636 1 1,954 1
Our work (sbox instr.) 646 1,139 1.43 1,554 1.25

sbox & gf2mul instruction 345 807 2.02 1,087 1.79

Table 2. Execution times of AES-128 en/decryption with on-the-fly key expansion

Encryption Decryption
Cycles Speedup Cycles Speedup

No custom instructions 2,254 1 2,433 1
sbox instruction 1,576 1.43 1,866 1.3

sbox & gf2mul instruction 868 2.59 1,126 2.16
sbox & gf2mul instr. (optimized) 612 3.68 881 2.76

AES decryption function. The speedup for encryption and decryption is about
1.43 and 1.3, resprectively.

5.2 Code Size

Savings in code size are mainly due to the fact that the lookup tables for Sub-
Bytes and InvSubBytes can be omitted with the sbox instruction and that the
code for SubBytes and ShiftRows as well as for their inverses becomes more
compact. The figures for the implementation with a precomputed key schedule
are stated in Table 3. The code size shrinks by 32% for encryption and by
36% for decryption. Table 4 specifies the code sizes for AES with on-the-fly key
expansion. Savings in code size range from nearly 43% for decryption to more
than 37% for encryption.

6 Conclusions and Future Work

In this paper we have presented an inexpensive extension to 32-bit processors
which improves the performance of AES implementations and leads to a re-
duction in code size. With the use of our sbox instruction, all data dependent
memory lookups can be removed and the overall number of memory accesses
can be brought to an absolute minimum. This instruction has been designed
with flexibility in mind and delivers compact AES implementations with good
performance even if cache is small and memory is slow. In our practical work
we have observed a speedup of up to 1.43 while code size has been reduced by
over 40%. The performance gain is much higher on processors with small cache
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Table 3. Code size of AES-128 en/decryption with precomputed key schedule in bytes

Encryption Decryption
Bytes Reduction Bytes Reduction

No custom instructions 2,168 0% 2,520 0%
sbox instruction 1,464 32.4% 1,592 36.8%

sbox & gf2mul instr. 680 68.6% 792 68.5%

Table 4. Code size of AES-128 en/decryption with on-the-fly key expansion in bytes

Encryption Decryption
Bytes Reduction Bytes Reduction

No custom instructions 1,656 0% 2,504 0%
sbox instruction 944 42.9% 1,564 37.5%

sbox & gf2mul instruction 628 62.0% 764 69.4%
sbox & gf2mul instr. (optimized) 480 71.0% 596 76.1%

size. Furthermore, the sbox instruction also improves the resistance of an AES
implementation against cache-based side-channel attacks. The extra hardware
cost of the sbox instruction amounts to only 400 gates.

As future work we will examine the possibility to provide dedicated and flex-
ible support for the MixColumns operation of AES. Our goal will be to integrate
this support with the ECC extensions we have used for AES acceleration in [17].
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