CC1000

Single Chip Very Low Power RF Transceiver

Applications

- Very low power UHF wireless data transmitters and receivers
- 315 / 433 / 868 and 915 MHz ISM/SRD band systems
- RKE Two-way Remote Keyless Entry
- Home automation
- Wireless alarm and security systems
- AMR Automatic Meter Reading
- Low power telemetry
- Toys

Product Description

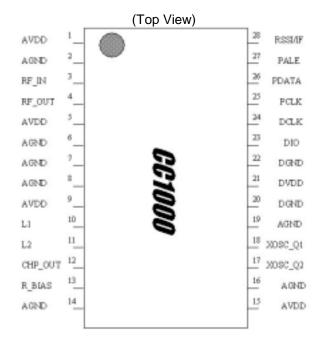
CC1000 is a true single-chip UHF transceiver designed for very low power and very low voltage wireless applications. The circuit is mainly intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868 and 915 MHz, but can easily be programmed for operation at other frequencies in the 300-1000 MHz range.

The main operating parameters of CC1000 can be programmed via an easy-tointerface serial bus, thus making CC1000 a very flexible and easy to use transceiver. In a typical system CC1000 will be used together with a microcontroller and a few external passive components.

CC1000 is based on Chipcon's SmartRF® technology in 0.35 µm CMOS.

Features

- True single chip UHF RF transceiver
- Very low current consumption
- Frequency range 300 1000 MHz
- Integrated bit synchroniser
- High sensitivity (typical -109 dBm)
- Programmable output power -20 to 10 dBm
- Small size (TSSOP-28 package)
- Low supply voltage (2.3 V to 3.6 V)
- Very few external components required
- No external RF switch / IF filter required
- RSSI output
- Single port antenna connection


- FSK data rate up to 19.2 kBaud
- Complies with EN 300 220 and FCC FCR47 part 15
- FSK modulation spectrum shaping
- Programmable frequency in 250 Hz steps makes crystal temperature drift compensation possible without TCXO
- Suitable frequency hopping protocols
- Development kit available
- Easy-to-use software for generating the CC1000 configuration data

This document contains information on a pre-production product. Specifications and information herein are subject to change without notice.

Pin Assignment

Pin no.	Pin name	Pin type	Description
1	AVDD	Power (A)	Power supply (3 V) for analog modules (mixer and IF)
2	AGND	Ground (A)	Ground connection (0 V) for analog modules (mixer and IF)
3	RF_IN	RF Input	RF signal input from antenna
4	RF_OUT	RF output	RF signal output to antenna
5	AVDD	Power (A)	Power supply (3 V) for analog modules (LNA and PA)
6	AGND	Ground (A)	Ground connection (0 V) for analog modules (LNA and PA)
7	AGND	Ground (A)	Ground connection (0 V) for analog modules (PA)
8	AGND	Ground (A)	Ground connection (0 V) for analog modules (VCO and prescaler)
9	AVDD	Power (A)	Power supply (3 V) for analog modules (VCO and prescaler)
10	L1	Analog input	Connection no 1 for external VCO tank inductor
11	L2	Analog input	Connection no 2 for external VCO tank inductor
12	CHP_OUT	Analog output	Charge pump current output
	(LOCK)		The pin can also be used as PLL Lock indicator. Output is high
			when PLL is in lock.
13	R_BIAS	Analog output	Connection for external precision bias resistor (82 k Ω , \pm 1%)
14	AGND	Ground (A)	Ground connection (0 V) for analog modules (backplane)
15	AVDD	Power (A)	Power supply (3 V) for analog modules (general)
16	AGND	Ground (A)	Ground connection (0 V) for analog modules (general)
17	XOSC_Q2	Analog output	Crystal, pin 2
18	XOSC_Q1	Analog input	Crystal, pin 1, or external clock input
19	AGND	Ground (A)	Ground connection (0 V) for analog modules (guard)
20	DGND	Ground (D)	Ground connection (0 V) for digital modules (substrate)
21	DVDD	Power (D)	Power supply (3 V) for digital modules
22	DGND	Ground (D)	Ground connection (0 V) for digital modules
23	DIO	Digital	Data input/output. Data input in transmit mode. Data output in
		input/output	receive mode
24	DCLK	Digital output	Data clock for data in both receive and transmit mode
25	PCLK	Digital input	Programming clock for 3-wire bus
26	PDATA	Digital	Programming data for 3-wire bus. Programming data input for
		input/output	write operation, programming data output for read operation
27	PALE	Digital input	Programming address latch enable for 3-wire bus
28	RSSI/IF	Analog output	The pin can be used as RSSI or 10.7 MHz IF output to optional external IF and demodulator. If not used, the pin should be left open (not connected).

A=Analog, D=Digital

Absolute Maximum Ratings

Parameter	Min.	Max.	Units	Condition
Supply voltage, VDD	-0.3	5.0	V	
Voltage on any pin	-0.3	VDD+0.3,	V	
		max 5.0		
Input RF level		10	dBm	
Storage temperature range	-50	150	°C	
Operating ambient temperature	-40	85	°C	
range				
Lead temperature		260	°C	T = 10 s

Under no circumstances the absolute maximum ratings given above should be violated. Stress exceeding one or more of the limiting values may cause permanent damage to the device.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent permanent damage.

Electrical Specifications

Tc = 25°C, VDD = 3.0 V if nothing else stated

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Overall					
RF Frequency Range	300		1000	MHz	Programmable in steps of 250 Hz
Transmit Section					
Transmit data rate	0.6		19.2	kBaud	NRZ or Manchester encoding.
Binary FSK frequency separation	1	10	65	kHz	See page 13. The frequency corresponding to the digital "0" is denoted f_0 , while f_1 corresponds to a digital "1". The frequency separation is f_1 - f_0 . The RF carrier frequency, f_c , is then given by f_c = $(f_0+f_1)/2$. (The frequency deviation is given by f_c =+/- $(f_1$ - $f_0)/2$) The frequency separation is programmable in 250 Hz steps.
Output power 433/868 MHz	-20	0	10/5	dBm	Delivered to 50 Ω load. The output power is programmable.
RF output impedance 433/868 MHz		140 / 80		Ω	Transmit mode. For matching details see "Input/ output matching" p.21.
Harmonics		-20		dBc	An external LC or SAW filter should be used to reduce harmonics emission to comply with SRD requirements. See p.26.

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Receive Section					
Receiver Sensitivity 433/868 MHz (9.5/12 mA) 433/868 MHz (7.7/9.9 mA)		-109/ -106 -107/ -105		dBm dBm	2.4 kBaud, Manchester coded data, 64 kHz frequency separation, BER = 10 ⁻³
System noise bandwidth		30		kHz	2.4 kBaud, Manchester coded data
Cascaded noise figure 433/868 MHz		10/11		dB	
Saturation	10			dBm	2.4 kBaud, Manchester coded data, BER = 10 ⁻³
Input IP3		-18		dBm	From LNA to IF output
Blocking		40		dBc	At +/- 1 MHz
LO leakage			-57	dBm	
Input impedance		88-j26 70-j26 52-j7 52-j4		Ω Ω Ω Ω	Receive mode, series equivalent at 315 MHz At 433 MHz At 868 MHz. At 915 MHz For matching details see "Input/ output matching" p. 21.
Turn on time	11		128	Baud	The turn-on time is determined by the demodulator settling time, which is programmable. See p. 16
IF Section					
Intermediate frequency (IF)		150	10.7	kHz MHz	Internal IF filter External IF filter
IF bandwidth		175		kHz	
RSSI dynamic range	-105		-50	dBm	
RSSI accuracy		± 6		dB	See p.22 for details
RSSI linearity		± 2		dB	
Frequency Synthesiser Section					
Crystal Oscillator Frequency	3		16	MHz	Crystal frequency can be 3-4, 6-8 or 9-16 MHz. Recommended frequencies are 3.6864, 7.3728, 11.0592 and 14.7456. See page 24 for details.
Crystal frequency accuracy requirement		± 50		ppm	The crystal frequency accuracy and drift (ageing and temperature dependency) will determine the frequency accuracy of the transmitted signal.

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Crystal operation		Parallel			C171 and C181 are loading capacitors, see page 24
Crystal load capacitance	12 12 12	22 16 16	30 30 16	pF pF pF	3-8 MHz, 22 pF recommended 6-8 MHz, 16 pF recommended 9-16 MHz, 16 pF recommended
Crystal oscillator start-up time		5 1.5 2		ms ms ms	3.6864 MHz, 16 pF load 7.3728 MHz, 16 pF load 16 MHz, 16 pF load
Output signal phase noise		-85		dBc/Hz	At 100 kHz offset from carrier
PLL lock time (RX / TX turn time)		150		μs	
PLL turn-on time, crystal oscillator on in power down mode		250		μs	Crystal oscillator running
Digital Inputs/Outputs					
Logic "0" input voltage	0		0.3*VD	V	
Logic "1" input voltage	0.7*VDD		D VDD	V	
Logic "0" output voltage	0		0.4	V	Output current -2.5 mA,
Logic "1" output voltage	2.5		VDD	V	3.0 V supply voltage Output current 2.5 mA,
Logic "0" input current	NA		-1	μА	3.0 V supply voltage Input signal equals GND
Logic "1" input current	NA		1	μA	Input signal equals VDD
Power Supply					
Supply voltage		3.0		V	Recommended operation voltage
	2.3		3.6	V	Operating limits
Current Consumption, receive mode 433/868 MHz		7.7/9.9		mA	Current is programmable and can be increased for improved
Current Consumption, average in receive mode using polling 433/868 MHz		77/99		μА	sensitivity 1:100 receive to power down ratio
Current Consumption, transmit mode 433/868 MHz:					
P=0.01mW (-20dBm)		5.3/8.6		mA	The ouput power is delivered to a
P=0.3mW (-5dBm)		8.0/13.9		mA	50Ω load
P=1mW (0dBm)		11.6/16.4		mA	
P=3mW (5dBm)		14.6/25.2		mA	
P=10mW (10dBm)		27.8/NA		mA	
Current Consumption, Power Down mode		30		μА	Oscillator core on, 3.6864 MHz, 16 pF load
		0.2	1	μΑ	Oscillator core off

Circuit Description

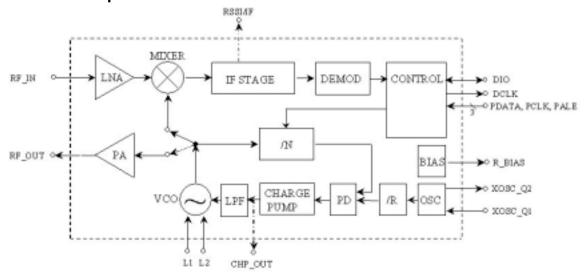


Figure 1. Simplified block diagram of the CC1000.

A simplified block diagram of *CC1000* is shown in Figure 1. Only signal pins are shown.

In receive mode CC1000 is configured as a traditional superheterodyne receiver. The RF input signal is amplified by the lownoise amplifier (LNA) and converted down to the intermediate frequency (IF) by the mixer (MIXER). In the intermediate this frequency stage (IF STAGE) downconverted signal is amplified and filtered before being fed the demodulator (DEMOD). As an option a RSSI signal, or the IF signal after the mixer is available at the RSSI/IF pin. After demodulation CC1000 outputs the digital demodulated data on the pin DIO. Synchronisation is done on-chip providing data clock at DCLK.

In transmit mode the voltage controlled oscillator (VCO) output signal is fed directly to the power amplifier (PA). The RF output is frequency shift keyed (FSK) by the digital bit stream fed to the pin DIO. The internal T/R switch circuitry makes the antenna interface and matching very easy.

The frequency synthesiser generates the local oscillator signal which is fed to the MIXER in receive mode and to the PA in transmit mode. The frequency synthesiser consists of a crystal oscillator (XOSC), phase detector (PD), charge pump (CHARGE PUMP), VCO, and frequency dividers (/R and /N). An external crystal must be connected to XOSC, and only an external inductor is required for the VCO.

The 3-wire digital serial interface (CONTROL) is used for configuration.

Application Circuit

Very few external components required for the operation of CC1000. A typical application circuit is shown in Figure 2. Component values are shown in Table

Input / output matching

C31/L32 is the input match for the receiver, and L32 is also a DC choke for biasing. C41, L41 and C42 are used to match the transmitter to 50 Ohm. An internal T/R switch circuit makes it possible to connect the input and output together and match the CC1000 to 50 Ω in both RX and TX mode. See "Input/output matching" p.21 for details.

VCO inductor

The VCO is completely integrated except for the inductor L101.

Component values for the matching network and VCO inductor are easily calculated using the SmartRF Studio software.

Additional filtering

Additional external components (e.g. RF LC or SAW-filter) may be used in order to improve the performance in specific applications. See also "Optional LC filter" p.26 for further information.

Voltage supply decoupling

C10-C16 are voltage supply de-coupling capacitors. These capacitors should be placed as close as possible to the voltage supply pins of CC1000.

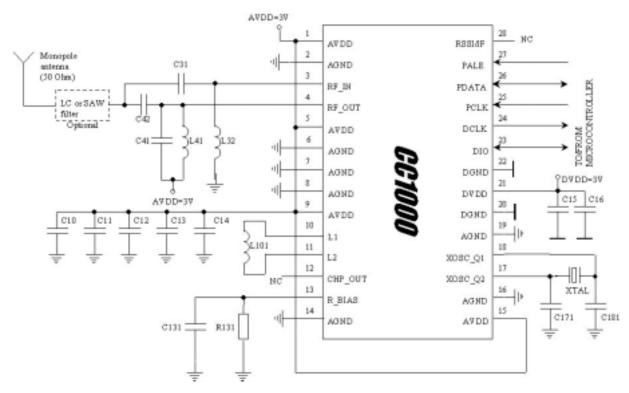


Figure 2. Typical CC1000 application circuit

Item	315 MHz	433 MHz	868 MHz	915 MHz
C10	33 nF, 10%, X7R, 0805	33 nF, 10%, X7R, 0805	33 nF, 10%, X7R, 0805	33 nF, 10%, X7R, 0805
C11	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603
C12	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603
C13	220 pF, 10%, C0G, 0603	220 pF, 10%, C0G, 0603	220 pF, 10%, C0G, 0603	220 pF, 10%, C0G, 0603
C14	220 pF, 10%, C0G, 0603	220 pF, 10%, C0G, 0603	220 pF, 10%, C0G, 0603	220 pF, 10%, C0G, 0603
C15	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603	1 nF, 10%, X7R, 0603
C16	33 nF, 10%, X7R, 0805	33 nF, 10%, X7R, 0805	33 nF, 10%, X7R, 0805	33 nF, 10%, X7R, 0805
C31	TBD pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603	10 pF, 5%, C0G, 0603	TBD pF, 5%, C0G, 0603
C41	TBD pF, 5%, C0G, 0603	8.2 pF, 5%, C0G, 0603	Not used	Not used
C42	TBD pF, 5%, C0G, 0603	5.6 pF, 5%, C0G, 0603	4.7 pF, 5%, C0G, 0603	TBD pF, 5%, C0G, 0603
C131	4.7 pF, 10%, C0G, 0603	4.7 pF, 10%, C0G, 0603	4.7 pF, 10%, C0G, 0603	4.7 pF, 10%, C0G, 0603
C141	15 pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603
C151	15 pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603
L32	TBD nH, 10%, 0805	68 nH, 10%, 0805 (Coilcraft 0805CS-680XKBC)	120 nH, 10%, 0805 (Coilcraft 0805CS-121XKBC)	TBD nH, 10%, 0805
L41	TBD nH, 10%, 0805	6.2 nH, 10%, 0805 (Coilcraft 0805HQ-6N2XKBC)	2.5 nH, 10%, 0805 (Coilcraft 0805HQ-2N5XKBC)	TBD nH, 10%, 0805
L101	TBD nH, 5%, 0805	27 nH, 5%, 0805 (Koa KL732ATE27NJ)	4.7 nH, 5%, 0805 (Koa KL732ATE4N7J)	TBD nH, 5%, 0805
R131	82 kΩ, 1%, 0603	82 kΩ, 1%, 0603	82 kΩ, 1%, 0603	82 kΩ, 1%, 0603
XTAL	11.0592 MHz crystal,	11.0592 MHz crystal,	11.0592 MHz crystal,	11.0592 MHz crystal,
	16 pF load	16 pF load	16 pF load	16 pF load

Note: Items shaded are different for different frequencies

Table 1. Bill of materials for the application circuit

Configuration Overview

CC1000 can be configured to achieve the best performance for different applications. Through the programmable configuration registers the following key parameters can be programmed:

- Receive / transmit mode.
- · RF output power.
- Frequency synthesiser key parameters: RF output frequency, FSK frequency separation (deviation), crystal oscillator reference frequency.
- Power-down / power-up mode.
- Crystal oscillator power-up / power down.
- Data rate and data format (NRZ, Manchester coded or UART interface).
- · Synthesiser lock indicator mode.
- Optional RSSI or external IF
- Modulation spectrum shaping for narrow band systems

Configuration Software

Chipcon provides users of *CC1000* with a software program, SmartRF Studio (Windows interface) that generates all necessary *CC1000* configuration data based on the user's selections of various parameters. These hexadecimal numbers will then be the necessary input to the microcontroller for the configuration of

CC1000. In addition the program will provide the user with the component values needed for the input/output matching circuit and the VCO inductor.

Figure 3 shows the user interface of the *CC1000* configuration software.

Figure 3. SmartRF Studio user interface

3-wire Serial Configuration Interface

CC1000 is configured via a simple 3-wire interface (PDATA, PCLK and PALE). There are 36 8-bit configuration registers, each addressed by a 7-bit address. A Read/Write bit initiates a read or write operation. A full configuration of CC1000 requires sending 29 data frames of 16 bits each (7 address bits, R/W bit and 8 data bits). With a clock rate of 10 MHz the time needed for a full configuration will be less than 60 µs. Setting the device in power down mode requires sending one frame only and will take less than 2 µs. All registers are also readable.

In each write-cycle 16 bits are sent on the PDATA-line. The seven most significant bits of each data frame (A6:0) are the address-bits. A6 is the MSB (Most Significant Bit) of the address and is sent as the first bit. The next bit is the R/W bit (high for write, low for read). During address and R/W bit transfer the PALE (Program Address Latch Enable) must be kept low. The 8 data-bits are then transferred (D7:0). See Figure 4.

The timing for the programming is also shown in Figure 4 with reference to Table 2. The clocking of the data on PDATA is done on the negative edge of PCLK. When the last bit, D0, of the 8 data-bits has been loaded, the data word is loaded in the internal configuration register.

The configuration data will be valid after a programmed power-down mode, but not when the power-supply is turned off. The registers can be programmed in any order.

The configuration registers can also be read by the microcontroller via the same configuration interface. The seven address bits are sent first, then the R/W bit set low to initiate the data read-back. CC1000 then returns the data from the addressed register. PDATA is in this case used as an output and must be tri-stated (or set high n the case of an open collector pin) by the microcontroller during the data read-back (D7:0). The read operation is illustrated in Figure 5.

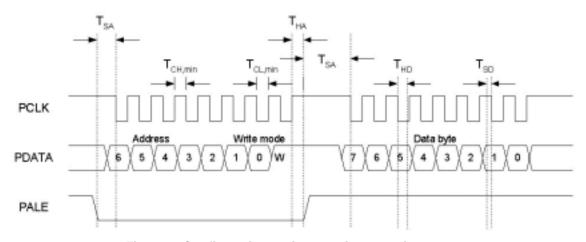


Figure 4. Configuration registers write operation

Figure 5. Configuration registers read operation

Parameter	Symbol	Min	Max	Units	Conditions
CLOCK, clock frequency	F _{CLOCK}	-	10	MHz	
CLOCK low pulse duration	$T_{CL,min}$	50		ns	The minimum time CLOCK must be low.
CLOCK high pulse duration	$T_{CH,min}$	50		ns	The minimum time CLOCK must be high.
PALE setup time	T _{SA}	10	-	ns	The minimum time PALE must be low before negative edge of CLOCK.
PALE hold time	T _{HA}	10	-	ns	The minimum time PALE must be held low after the <i>positive</i> edge of CLOCK.
PDATA setup time	T _{SD}	10	-	ns	The minimum time data on PDATA must be ready before the negative edge of CLOCK.
PDATA hold time	T _{HD}	10	-	ns	The minimum time data must be held at PDATA, after the negative edge of CLOCK.
PALE setup time	T _{SA}	10	-	ns	The minimum time PALE must be ready before negative edge of CLOCK.
Rise time	T _{rise}		100	ns	The maximum rise time for CLOCK and STROBE
Fall time	T _{fall}		100	ns	The maximum fall time for CLOCK and STROBE

Note: The set-up- and hold-times refer to 50% of VDD.

Table 2. Serial interface, timing specification

Microcontroller Interface

Used in a typical system, *CC1000* will interface to a microcontroller. This microcontroller must be able to:

- Program CC1000 into different modes via the 3-wire serial configuration interface (PDATA, PCLK and PALE).
- Interface to the bi-directional synchronous data signal interface (DIO and DCLK).
- Optionally the microcontroller can do data encoding / decoding.
- Optionally the microcontroller can monitor the frequency lock status from pin CHP_OUT (LOCK).
- Optionally the microcontroller can monitor the RSSI output for signal strength acquisition.

Connecting the microcontroller

The microcontroller uses 3 output pins for the configuration interface (PDATA, PCLK and PALE. PDATA should be a bi-directional pin for data read-back. A bi-directional pin is used for data (DIO) to be transmitted and data received. DCLK providing the data timing should be connected to a microcontroller input.

Optionally another pin can be used to monitor the LOCK signal (available at the CHP_OUT pin). This signal is logic level high when the PLL is in lock. See Figure 6.

Also the RSSI signal can be connected to the microcontroller if it has an analogue ADC input.

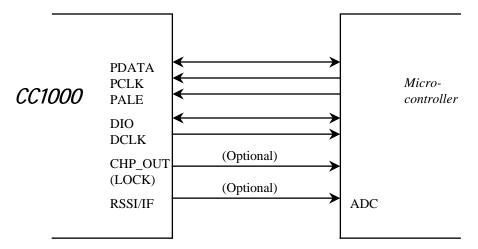


Figure 6. Microcontroller interface

Signal interface

The signal interface consists of DIO and DCLK and is used for the data to be transmitted and data received. DIO is the bi-directional data line and DCLK provides a synchronous clock both during data transmission and data reception.

The CC1000 can be used with NRZ (Non-Return-to-Zero) data or Manchester (also known as bi-phase-level) encoded data. CC1000 can also synchronise the data from the demodulator and provide the data clock at DCLK.

CC1000 can be configured for three different data formats:

Synchronous NRZ mode. In transmit mode CC1000 provides the data clock at DCLK. and DIO is used as data input. Data is clocked into CC1000 at the rising edge of DCLK. The data is modulated at RF without encoding. *CC1000* can configured for the data rates 0.6, 1.2, 2.4, 4.8, 9.6 or 19.2 kbit/s. In receive mode CC1000 does the synchronisation and provides received data clock at DCLK and data at DIO. The data should be clocked into the interfacing circuit at the rising edge of DCLK. See Figure 7.

<u>Synchronous Manchester encoded mode.</u> In transmit mode CC1000 provides the data clock at DCLK, and DIO is used as data input. Data is clocked into CC1000 at the rising edge of DCLK and should be in NRZ format. The data is modulated at RF with Manchester code. The encoding is done by CC1000. In this mode CC1000 can be configured for the data rates 0.3, 0.6, 1.2, 2.4, 4.8 or 9.6 kbit/s. The 9.6 kbit/s rate corresponds to the maximum 19.2 kBaud due to the Manchester encoding. In receive mode *CC1000* does synchronisation and provides received data clock at DCLK and data at DIO.

CC1000 does the decoding and NRZ data is presented at DIO. The data should be clocked into the interfacing circuit at the rising edge of DCLK. See Figure 8.

Transparent Asynchronous UART mode. In transmit mode DIO is used as data input. The data is modulated at RF without synchronisation or encoding. In receive mode the raw data signal from the demodulator is sent to the output. No synchronisation or decoding of the signal is done in *CC1000* and should be done by the interfacing circuit. The DCLK pin is used as data output in this mode. Data rates in the range from 0.6 to 19.2 kBaud can be used. See Figure 9.

Manchester encoding and decoding

In the Synchronous Manchester encoded mode CC1000 uses Manchester coding when modulating the data. The CC1000 also performs the data decoding and synchronisation. The Manchester code is based on transitions; a "0" is encoded as a low-to-high transition, a "1" is encoded as a high-to-low transition. See Figure 10.

The CC1000 can detect a Manchester decoding violation and will set a Manchester Violation Flag when such a violation is detected in the incoming signal. The threshold limit for the Manchester Violation can be set in the MODEM1 register. The Manchester Violation Flag can be monitored at the CHP_OUT (LOCK) pin, configured in the LOCK register.

The Manchester code ensures that the signal has a constant DC component, which is necessary in some FSK demodulators. Using this mode also ensures compatibility with CC400/CC900 designs.

Transmitter side: DIO Data provided by microcontroller DCLK Clock provided by CC1000 "RF" FSK modulating signal (NRZ), internal in CC1000 Receiver side: "RF" Demodulated signal (NRZ), internal in CC1000 DCLK Clock provided by CC1000 DIO Data provided by CC1000

Figure 7. Synchronous NRZ mode

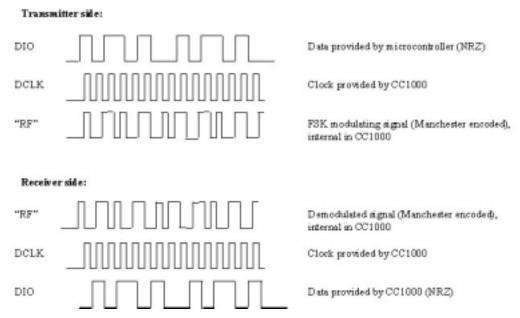


Figure 8. Synchronous Manchester encoded mode

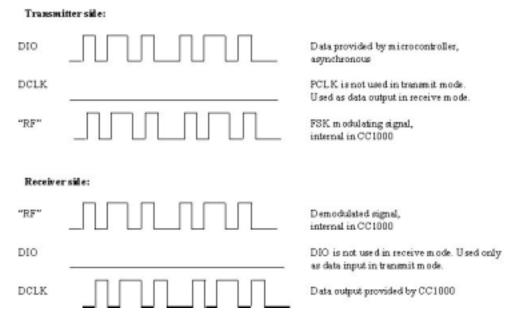


Figure 9. Transparent Asynchronous UART mode

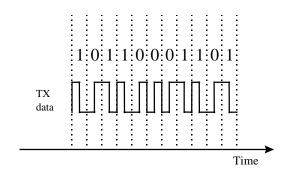


Figure 10. Manchester encoding

Bit synchroniser and data decision

The built-in bit synchroniser extracts the data rate and performs data decision. The data decision is done using over-sampling and digital filtering of the incoming signal. This improves the reliability of the data transmission. Using the synchronous modes simplifies the data-decoding task substantially.

All modes need a DC balanced preamble for the data slicer to acquire correct comparison level from an averaging filter. The minimum length of the preamble depends on the acquisition mode selected. The locking of the averaging filter value can be done through the configuration interface, or it can be done automatically

after a predefined time (LOCK_AVG_MODE in MODEM1).

The minimum number of balanced bauds depends on the settling time of the averaging filter which is set by *SETTLING* in *MODEM1*. Table 3 gives the minimum recommended number of bauds (chips) for the preamble in NRZ and UART modes.

If Manchester coding is used, there is no need to lock the averaging filter and it can be left free-running (LOCK_AVG_IN in MODEM1). Table 4 gives the the minimum recommended number of bauds (chips) for the preamble in Manchester mode.

Settling	Manual Lock	Manual Lock	Automatic Lock	Automatic Lock
	NRZ mode	UART mode	NRZ mode	UART mode
SETTLING*	LOCK_AVG_MODE =1	LOCK_AVG_MODE =1	LOCK_AVG_MODE =0	LOCK_AVG_MODE =0
	$LOCK_AVG_IN = 0 \rightarrow 1^{**}$	$LOCK_AVG_IN = 0 \rightarrow 1^{**}$	$LOCK_AVG_IN = X^{***}$	$LOCK_AVG_IN = X^{***}$
00	14	11	16	16
01	25	22	32	32
10	46	43	64	64
11	89	86	128	128

Notes:

Table 3. Minimum number of balanced bauds (chips) in the preamble in NRZ and UART modes

Settling	Free-running
SETTLING*	Manchester mode LOCK_AVG_MODE =1 LOCK_AVG_IN = 0
00	23
01	34
10	55
11	98

Note: *All configuration bits are in the MODEM1 register

Table 4. Minimum number of balanced bauds (chips) in the preamble in Manchester mode

^{*}All configuration bits are in the MODEM1 register

^{**} The averaging filter is locked when LOCK_AVG_IN is set to 1

^{***} X = Do not care. The timer for the automatic lock is started when RX mode is set in the MAIN register

Frequency programming

The operation frequency is set by programming the frequency word in the configuration registers. There are two frequency words registers, termed *A* and *B*, which can be programmed to two different frequencies. One of the frequency words can be used for RX (local oscillator frequency) and other for TX (transmitting frequency) in order to be able to switch very fast between RX mode and TX mode. They can also be used for RX (or TX) at two different channels. Frequency word *A* or *B* is selected by the *F_REG* bit in the *MAIN* register.

The frequency word is 24 bits (3 bytes) located in FREQ_2A:FREQ_1A:FREQ_0A and FREQ_2B:FREQ_1B:FREQ_0B for the A and B word respectively.

The FSK frequency separation is programmed in the FSEP1:FSEP0 registers (10 bits).

The frequency word *FREQ* is calculated by:

$$f_{vco} = f_{ref} \cdot \frac{FREQ + 8192}{16384}$$

where the reference frequency is the crystal oscillator clock divided by *REFDIV* (4 bits in the *PLL* register), a number between 2 and 15:

$$f_{ref} = \frac{f_{xosc}}{REFDIV}$$

The equation above gives the VCO frequency, that is, f_{VCO} is the LO frequency for receive mode, and the f_0 frequency for transmit mode (lower FSK frequency).

The upper FSK frequency is given by: $f_1 = f_0 + f_{sep}$ where f_{sep} is set by the separation word:

$$f_{sep} = f_{ref} \cdot \frac{FSEP}{16384}$$

Recommended settings for ISM frequencies

Shown in Table 5 are the recommended frequency synthesiser settings for a few operating frequencies in the popular ISM bands. These settings ensure optimum spur-free performance of the synthesiser in receive mode. For some settings of the synthesiser, spurious signals can degrade the receiver's performance. The transmitter is not affected by spurious

signals, but recommended transmitter settings are included for completeness. The FSK frequency separation is set to 64 kHz. A spreadsheet is available from Chipcon generating configuration data for any frequency giving spurious-free settings.

ISM Frequency [MHz]	Actual frequency [MHz]	Crystal frequency [MHz]	Low-side / high- side LO*	Reference divider REFDIV	Frequency word RX mode FREQ	Frequency word TX mode FREQ	Frequency seperation FSEP
315	315.037200	7.3728	High-side	7	4894720	4891888	995
		11.0592		10	4661248	4658551	948
433.3	433.302000	3.6864	Low-side	3	5767168	5768741	853
		7.3728		6	5767168	5768741	853
		11.0592		9	5767168	5768741	853
433.6	433.616400	3.6864	High-side	3	5775360	5772933	853
		7.3728		6	5775360	5772933	853
		11.0592		9	5775360	5772933	853
433.9	433.916400	3.6864	Low-side	3	5775360	5776933	853
		7.3728		6	5775360	5776933	853
		11.0592		9	5775360	5776933	853
434.2	434.230800	3.6864	High-side	3	5783552	5781125	853
		7.3728		6	5783552	5781125	853
		11.0592		9	5783552	5781125	853
434.5	434.530800	3.6864	Low-side	3	5783552	5785125	853
		7.3728		6	5783552	5785125	853
		11.0592		9	5783552	5785125	853
868.3	868.297200	3.6864	Low-side	2	7708672	7709720	568
		7.3728		4	7708672	7709720	568
		11.0592		5	6422528	6423402	474
868.95	868.918800	3.6864	High-side	2	7716864	7715246	568
		7.3728	1	4	7716864	7715246	568
		11.0592		6	7716864	7715246	568
869.525	869.525000	3.6864	Low-side	3	11583488	11585061	853
		7.3728		6	11583488	11585061	853
		11.0592		9	11583488	11585061	853
869.85	869.840400	3.6864	High-side	2	7725056	7723438	568
		7.3728]	4	7725056	7723438	568
		11.0592	1	6	7725056	7723438	568
915	914.998800	3.6864	High-side	2	8126464	8124846	568
		7.3728	1	4	8126464	8124846	568
		11.0592	1	6	8126464	8124846	568

*Note: When using low-side LO injection the data at DIO will be inverted.

Table 5. Recommended settings for ISM frequencies

VCO

Only one external inductor (L101) is required for the VCO. The inductor will determine the operating frequency range of the circuit. It is important to place the inductor as close to the pins as possible in order to reduce stray inductance. It is recommended to use a high Q, low tolerance inductor for best performance. Typical tuning range for the integrated varactor is 20-25%.

Component values for various frequencies are given in Table 6. Component values for other frequencies can be found using the SmartRF Studio software.

Item	315 MHz	433 MHz	868 MHz	915 MHz
L101	TBD nH, 5%, 0805	27 nH, 5%, 0805	4.7 nH, 5%, 0805	TBD nH, 5%, 0805
		(Koa KL732ATE27NJ)	(Koa KL732ATE4N7J)	

Table 6. VCO inductor component value

VCO and PLL self-calibration

To compensate for supply voltage, temperature and process variations the VCO and PLL must be calibrated. The calibration is done automatically and sets maximum VCO tuning range and optimum charge pump current for PLL stability. After setting up the device at the operating frequency, the self-calibration can be initiated by setting the CAL START bit. The calibration result is stored internally in the chip, and is valid as long as power is not turned off. If large supply voltage (more than variations 0.5 V) temperature variations (more than 40 degrees) occur after calibration, a new calibration should be performed.

The self-calibration is controlled through the CAL register (see configuration registers description p. 29). CAL COMPLETE bit indicates complete calibration. The user can poll this bit, or

simply wait for 28 ms (calibration wait time CAL_WAIT when = 1). CAL COMPLETE bit can also be monitored at the CHP_OUT (LOCK) pin (configured by LOCK_SELECT3:0) and used as an interrupt input to the microcontroller.

There are separate calibration values for the two frequency registers. If the two frequencies, A and B, differ more than 2 MHz, or different charge pump currents are used (VCO_CURRENT in the CURRENT register) the calibration should be done separately. When using a 10.7 MHz external IF the LO is 10.7 MHz below/above the transmit frequency, hence separate calibration must be done. The CAL DUAL bit in the CAL register controls dual or separate calibration.

Power management

CC1000 offers great flexibility for power management in order to meet strict power consumption requirements in battery operated applications. Power Down mode is controlled through the MAIN register. There are separate bits to control the RX part, the TX part, the frequency synthesiser and the crystal oscillator (see page 29). This individual control can be used to optimise for lowest possible

current consumption in certain application.

A typical power-on sequence for minimum power consumption is shown in Figure 11.

The VCO current is programmable and should be set according to operating frequency and output power. Recommended settings for the

Page 19 of 39

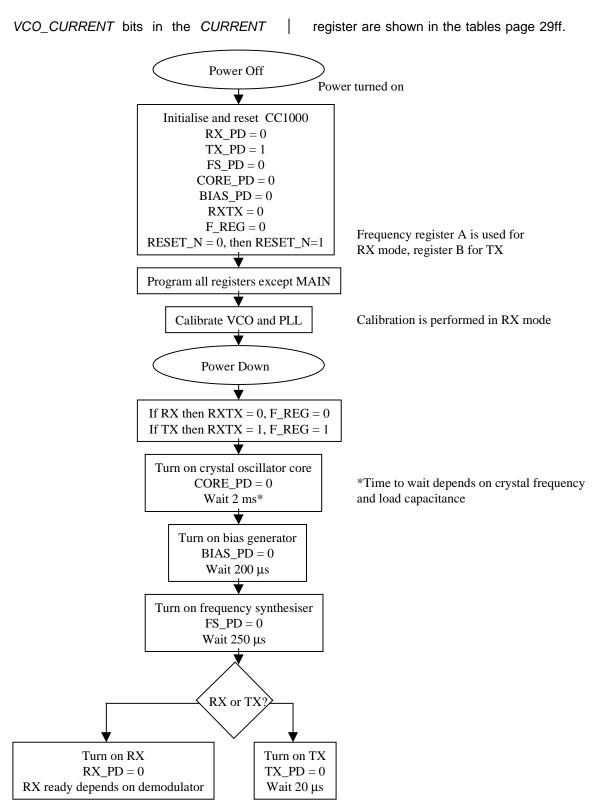


Figure 11. Power-on sequence

Input / Output Matching

A few passive external components combined with the internal T/R switch circuitry ensures match in both RX and TX mode. The matching network is shown in Figure 12. Component values for various

frequencies are given in Table 7. Component values for other frequencies can be found using the configuration software.

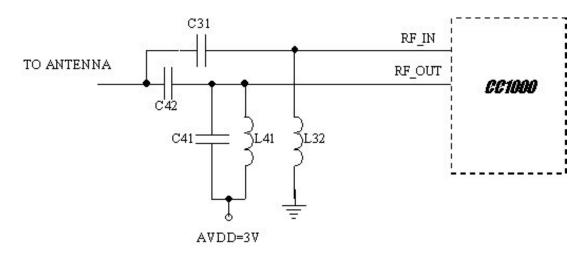


Figure 12. Input/output matching network

Item	315 MHz	433 MHz	868 MHz	915 MHz
C31	TBD pF, 5%, C0G, 0603	15 pF, 5%, C0G, 0603	10 pF, 5%, C0G, 0603	TBD pF, 5%, C0G, 0603
C41	TBD pF, 5%, C0G, 0603	8.2 pF, 5%, C0G, 0603	Not used	Not used
C42	TBD pF, 5%, C0G, 0603	5.6 pF, 5%, C0G, 0603	4.7 pF, 5%, C0G, 0603	TBD pF, 5%, C0G, 0603
L32	TBD nH, 10%, 0805	68 nH, 10%, 0805 (Coilcraft 0805CS-680XKBC)	120 nH, 10%, 0805 (Coilcraft 0805CS-121XKBC)	TBD nH, 10%, 0805
L41	TBD nH, 10%, 0805	6.2 nH, 10%, 0805 (Coilcraft 0805HQ-6N2XKBC)	2.5 nH, 10%, 0805 (Coilcraft 0805HQ-2N5XKBC)	TBD nH, 10%, 0805

Table 7. Matching network component values

RSSI output

CC1000 has a built-in RSSI (Received Signal Strength Indicator) giving an analogue output signal at the RSSI/IF pin. The IF_RSSI bits in the FRONT_END register enable the RSSI. When the RSSI function is enabled, the output current of this pin is inversely proportional to the input signal level. The output should be terminated in a resistor to convert the current output into a voltage. A capacitor is used in order to low-pass filter the signal.

The RSSI voltage range from 0 - 1.2 V when using a 27 k Ω terminating resistor, giving approximately 50 dB/V. This RSSI voltage can be measured by an A/D converter. Note that a higher voltage means a lower input signal.

RSSIMF TO ADC *ec1000* C281 R281

Figure 13. RSSI circuit

The RSSI measures the power referred to the RF_IN pin. The input power can be calculated using the following equations:

 $P = -51.3 V_{RSSI} - 49.2 [dBm]$ at 433 MHz $P = -50.0 \text{ V}_{RSSI} - 45.5 \text{ [dBm]}$ at 868 MHz

The external network for RSSI operation is shown in Figure 13. R281 = 27 k Ω , C281 = 1nF.

A typical plot of RSSI voltage as function of input power is shown in Figure 14.

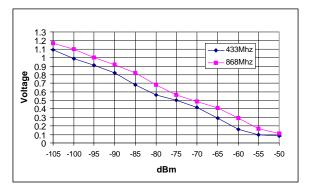


Figure 14. RSSI voltage vs. input power

IF output

CC1000 has a built-in 10.7 MHz IF output buffer. This buffer could be applied in narrow-band applications with requirements on mirror image filtering. The system is then built with CC1000, a 10.7 MHz ceramic filter and an external 10.7 MHz demodulator. The external network for IF output operation is shown in Figure 15. R281 = 470 Ω , C281 = 3.3nF.

The external network provides 330 Ω source impedance for the 10.7 MHz ceramic filter.

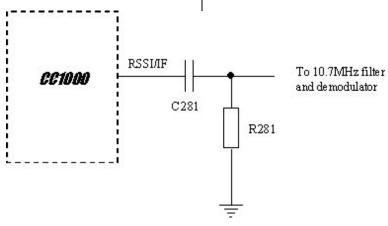


Figure 15. IF Output

Crystal oscillator

An external clock signal or the internal crystal oscillator can be used as main frequency reference. An external clock signal should be connected to XOSC_Q1, while XOSC Q2 should be left open. The XOSC BYPASS bit in the CURRENT register should be set when an external clock signal is used.

The crystal frequency should be in the range 3-4, 6-8 or 9-16 MHz. Because the crystal frequency is used as reference for the data rate (as well as other internal functions), the following frequencies are recommended: 3.6864, 7.3728, 11.0592 or 14.7456 MHz. These frequencies will give accurate data rates. The crystal frequency range is selected by XOSC_FREQ1:0 in the MODEMO register.

Using the internal crystal oscillator, the crystal must be connected between XOSC_Q1 and XOSC_Q2. The oscillator is designed for parallel mode operation of the crystal. In addition loading capacitors (C171 and C181) for the crystal are required. The loading capacitor values depend on the total load capacitance, C₁, specified for the crystal. The total load capacitance seen between the crystal terminals should equal C₁ for the crystal to oscillate at the specified frequency.

$$C_L = \frac{1}{\frac{1}{C_{171}} + \frac{1}{C_{181}}} + C_{parasitic}$$

The parasitic capacitance is constituted by pin input capacitance and PCB stray capacitance. Typically the total parasitic capacitance is 8 pF. A trimming capacitor may be placed across C171 for initial tuning if necessary.

The crystal oscillator circuit is shown in Figure 16. Typical component values for different values of C_L are given in Table 8.

The initial tolerance, temperature drift, ageing and load pulling should be carefully specified in order to meet the required frequency accuracy in а certain application. By specifying the expected frequency accuracy in SmartRF Studio together with data rate and frequency separation, the software will calculate the total bandwidth and compare to the available IF bandwidth. Any contradictions will be reported by the software and a more accurate crystal will be recommended if required.

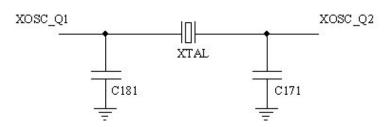


Figure 16. Crystal oscillator circuit

Item	C _L = 12 pF	C _L = 16 pF	C _L = 22 pF
C171	6.8 pF	15 pF	27 pF
C181	6.8 pF	15 pF	27 pF

Table 8. Crystal oscillator component values

Frequency spectrum shaping and dithering

The CC1000 has the unique possibility of frequency spectrum shaping and dithering. The inherent abrupt frequency change using FSK modulation gives a broad RF spectrum. By using a smooth frequency shift, the spectrum broadening can be reduced, see Figure 17. This smooth frequency shift can be implemented by stepping through several intermediate frequencies between the two FSK frequencies. CC1000 use 16 intermediate frequencies that are specified in the seven FSHAPE registers. The frequency steps are made anti-symmetrical, hence only seven values are specified to define the 16 steps, see Figure 18. The data shaping is turned on using the SHAPE bit in the FSCTRL register.

The maximum frequency separation using frequency shaping is FSEP = 63.

The time-step is programmed in the FSDELAY register. This value should correspond to the data rate used. For

equal spacing of steps through one baud period, use

$$FSDELAY = \frac{f_{ref}}{16 \cdot BaudRate} - 1$$

where the reference frequency, f_{ref} , is the crystal oscillator clock divided by *REFDIV*. Shorter time-steps could also be used.

The default values after reset correspond to a raised cosine frequency change for maximum deviation.

Dithering of the PLL can be used to reduce spurious signals originating from internal reference frequencies. The dithering is turned on by the *DITHER1* and *DITHER0* bits in the *FSCTRL* register.

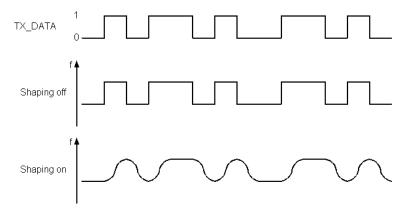


Figure 17. FSK spectrum shaping by smooth frequency transitions

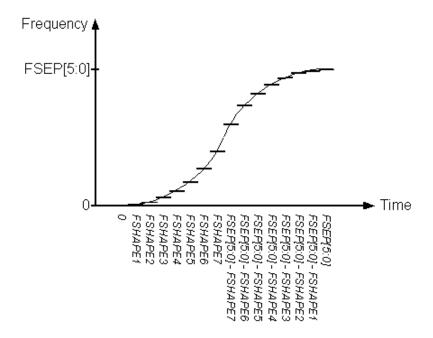


Figure 18. Stepwise frequency shaping

Optional LC Filter

An optional LC filter may be added between the antenna and the matching network in certain applications. The filter will reduce the emission of harmonics and increase the receiver selectivity.

The filter topology is shown in Figure 19. Component values are given in Table 9. The filter is designed for 50 Ω terminations. The component values may have to be tuned to compensate for layout parasitics.

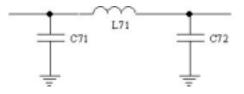


Figure 19. LC filter

Item	315 MHz	433 MHz	868 MHz	915 MHz
C71	30 pF	20 pF	10 pF	10 pF
C72	30 pF	20 pF	10 pF	10 pF
L71	15 nH	12 nH	5.6 nH	4.7 nH

Table 9. LC filter component values

System Considerations and Guidelines

SRD regulations

International regulations and national laws regulate the use of radio receivers and transmitters. SRDs (Short Range Devices) for licence free operation are allowed to operate in the 433 and 868-870 MHz bands in most European countries. In the United States such devices operate in the 260–470 and 902-928 MHz bands. *CC1000* is designed to meet the requirements for operation in all these bands. A summary of the most important aspects of these regulations can be found in Application Note *AN001 SRD regulations for licence free transceiver operation*, available from Chipcon's web site.

Low cost systems

In systems where low cost is of great importance the *CC1000* is the ideal choice. Very few external components keeps the total cost at a minimum. The oscillator crystal can then be a low cost crystal with 50 ppm frequency tolerance.

Battery operated systems

In low power applications the power down mode should be used when not being active. Depending on the start-up time requirement, the oscillator core can be powered during power down. See page 19 for information on how effective power management can be implemented.

Narrow band systems

CC1000 can also be used in narrow band systems, but CC400 and CC900 are recommended for best performance in such applications. The phase noise of CC400 / CC900 is superior and for systems with 25 kHz channel spacing with strict requirements to ACP (Adjacent Channel Power) low phase noise is important. If *CC1000* is used in a narrow band receiver, an external ceramic filter and demodulator is recommended.

A unique feature in *CC1000* is the very fine frequency resolution of 250 Hz. This can be used to do the temperature compensation of the crystal if the temperature drift curve is known and a temperature sensor is included in the system. Even initial adjustment can be

done using the frequency programmability. This eliminates the need for an expensive TCXO and trimming in some applications. In less demanding applications a crystal with low temperature drift and low ageing could be used without further compensation. A trimmer capacitor in the crystal oscillator circuit (in parallel with C171) could be used to set the initial frequency accurately.

CC1000 also exhibits a unique spectrumshaping feature in order to improve the ACP even for large data rates. In 'true' FSK systems with abrupt frequency shifting the spectrum is inherently broad. By making the frequency shift 'softer' the spectrum can be made significantly narrower. Thus, higher data rates can be transmitted in the same bandwidth.

High reliability systems

Using a SAW filter as a preselector will improve the communication reliability in harsh environments by reducing the probability of blocking. The receiver sensitivity and the output power will be reduced due to the filter insertion loss. By inserting the filter in the RX path only, together with an external RX/TX switch, only the receiver sensitivity is reduced, and output power is remained. The CHP_OUT (LOCK) pin can be configured to control an external LNA, RX/TX switch or power This is controlled amplifier. LOCK_SELECT in the LOCK register.

Frequency hopping spread spectrum systems

Due to the very fast frequency shift properties of the PLL, the *CC1000* is also suitable for frequency hopping systems. Hop rates of 1-100 hops/s are usually used depending on the bit rate and the amount of data to be sent during each transmission. The two frequency registers (*FREQ_A* and *FREQ_B*) are designed such that the 'next' frequency can be programmed while the 'present' frequency is used. The switching between the two frequencies is done through the *MAIN* register.

PCB Layout Recommendations

A two layer PCB is highly recommended. The bottom layer of the PCB should be the "ground-layer".

The top layer should be used for signal routing, and the open areas should be filled with metallisation connected to ground using several vias.

The ground pins should be connected to ground as close as possible to the package pin using individual vias. The decoupling capacitors should also be placed as close as possible to the supply pins and connected to the ground plane by separate

The external components should be as small as possible and surface mount devices are preferred.

Antenna Considerations

CC1000 can be used together with various types of antennas. The most common antennas for short range communication are monopole, helical and loop antennas.

Monopole antennas are resonant antennas with a length corresponding to one quarter of the electrical wavelength ($\lambda/4$). They are very easy to design and can be implemented simply as a "piece of wire" or even integrated into the PCB.

Non-resonant monopole antennas shorter than $\lambda/4$ can also be used, but at the expense of range. In size and cost critical applications such an antenna may very well be integrated into the PCB.

Helical antennas can be thought of as a combination of a monopole and a loop antenna. They are a good compromise in size critical applications. But helical antennas tend to be more difficult to optimise than the simple monopole.

Loop antennas are easy to integrate into the PCB, but are less effective due to

Precaution should be used when placing the microcontroller in order to avoid interference with the RF circuitry.

In certain applications where the ground plane for the digital circuitry is expected to be noisy, the ground plane may be split in an analogue and a digital part. All AGND pins and AVDD de-coupling capacitors should be connected to the analogue ground plane. All DGND pins and DVDD de-coupling capacitors should connected to the digital ground. The connection between the two ground planes should be implemented as a star connection with the power supply ground.

A development kit with a fully assembled PCB is available, and can be used as a guideline for layout.

difficult impedance matching because of their very low radiation resistance.

For low power applications the $\lambda/4$ monopole antenna is recommended giving the best range and because of its simplicity.

The length of the $\lambda/4$ -monopole antenna is given by:

L = 7125 / f

where f is in MHz, giving the length in cm. An antenna for 869 MHz should be 8.2 cm, and 16.4 cm for 434 MHz.

The antenna should be connected as close as possible to the IC. If the antenna is located away from the input pin the antenna should be matched to the feeding transmission line (50 Ω).

For a more thorough primer on antennas, please refer to Application Note ANO03 SRD Antennas available from Chipcon's web site.

Configuration registers

The configuration of *CC1000* is done by programming the 29 8-bit configuration registers. The configuration data based on selected system parameters are most easily found by using the SmartRF Studio software. A complete description of the

registers are given in the following tables. After a RESET is programmed all the registers have default values. The TEST registers are also set to default values after a RESET, and should not be altered by the user.

REGISTER OVERVIEW

ADDRESS	Byte Name	Description			
00h	MAIN	MAIN Register			
01h	FREQ_2A	Frequency Register 2A			
02h	FREQ_1A	Frequency Register 1A			
03h	FREQ_0A	Frequency Register 0A			
04h	FREQ_2B	Frequency Register 2B			
05h	FREQ_1B	Frequency Register 1B			
06h	FREQ_0B	Frequency Register 0B			
07h	FSEP1	Frequency Separation Register 1			
08h	FSEP0	Frequency Separation Register 0			
09h	CURRENT	Current Consumption Control Register			
0Ah	FRONT_END	Front End Control Register			
0Bh	PA_POW	PA Output Power Control Register			
0Ch	PLL	PLL Control Register			
0Dh	LOCK	LOCK Status Register and signal select to CHP_OUT (LOCK) pin			
0Eh	CAL	VCO Calibration Control and Status Register			
0Fh	MODEM2	Modem Control Register 2			
10h	MODEM1	Modem Control Register 1			
11h	MODEM0	Modem Control Register 0			
12h	MATCH	Match Capacitor Array Control Register for RX and TX impedance matching			
13h	FSCTRL	Frequency Synthesiser Control Register			
14h	FSHAPE7	Frequency Shaping Register 7			
15h	FSHAPE6	Frequency Shaping Register 6			
16h	FSHAPE5	Frequency Shaping Register 5			
17h	FSHAPE4	Frequency Shaping Register 4			
18h	FSHAPE3	Frequency Shaping Register 3			
19h	FSHAPE2	Frequency Shaping Register 2			
1Ah	FSHAPE1	Frequency Shaping Register 1			
1Bh	FSDELAY	Frequency Shaping Delay Register			
1Ch	PRESCALER	Prescaler and IF-strip test control register			
40h	TEST6	Test register for PLL LOOP			
41h	TEST5	Test register for PLL LOOP			
42h	TEST4	Test register for PLL LOOP			
43h	TEST3	Test register for VCO			
44h	TEST2	Test register for Calibration			
45h	TEST1	Test register for Calibration			
46h	TEST0	Test register for Calibration			

MAIN Register

REGISTER	NAME	Default	Active	Description
	5 \ (=\ \	value		
MAIN[7]	RXTX	-	-	RX/TX switch, 0 : RX , 1 : TX
MAIN[6]	F_REG	-	-	Selection of Frequency Register, 0 : Register A, 1 : Register B
MAIN[5]	RX_PD	-	Н	Power Down of LNA, Mixer, IF, Demodulator, RX part of Signal Interface
MAIN[4]	TX_PD	-	Н	Power Down of TX part of Signal Interface, PA
MAIN[3]	FS_PD	-	Н	Power Down of Frequency Synthesiser
MAIN[2]	CORE_PD	-	Н	Power Down of Crystal Oscillator Core
MAIN[1]	BIAS_PD	-	Н	Power Down of BIAS (Global_Current_Generator) and Crystal Oscillator Buffer
MAIN[0]	RESET_N	-	L	Reset, active low. Writing RESET_N low will write default values to all other registers than MAIN. Bits in MAIN do not have a default value, and will be written directly through the configurations interface. Must be set high to complete reset.

FREQ_2A Register

REGISTER	NAME	Default value	Active	Description
FREQ_2A[7:0]	FREQ_A[23:16]	01110101	-	8 MSB of frequency control word A

FREQ_1A Register

REGISTER	NAME	Default value	Active	Description
FREQ_1A[7:0]	FREQ_A[15:8]	10100000	-	Bit 15 to 8 of frequency control word A

FREQ_0A Register

REGISTER	NAME	Default value	Active	Description
FREQ_0A[7:0]	FREQ_A[7:0]	11001011	-	8 LSB of frequency control word A

FREQ_2B Register

REGISTER	NAME	Default value	Active	Description
FREQ_2B[7:0]	FREQ_B[23:16]	01110101	-	8 MSB of frequency control word B

FREQ_1B Register

REGISTER	NAME	Default value	Active	Description
FREQ_1B[7:0]	FREQ_B[15:8]	10100101	-	Bit 15 to 8 of frequency control word B

FREQ_0B Register

REGISTER	NAME	Default value	Active	Description
FREQ_0B[7:0]	FREQ_B[7:0]	01001110	-	8 LSB of frequency control word B

FSEP1 Register

· c=: : rtegiote:				
REGISTER	NAME	Default value	Active	Description
FSEP1[7:3]	-	-	-	Not used
FSEP1[2:0]	FSEP_MSB[2:0]	000	-	3 MSB of frequency separation control

FSEP0 Register

REGISTER	NAME	Default value	Active	Description
FSEP0[7:0]	FSEP_LSB[7:0]	01011001	-	8 LSB of frequency separation control

CURRENT Register

REGISTER	NAME	Default value	Active	Description
CURRENT[7:4]	VCO_CURRENT[3:0]	1100	-	Control of current in VCO core for TX and RX 0000: 150μA 0001: 250μA 0010: 350μA 0011: 450μA 0110: 950μA, use for RX, f<500 MHz 0101: 1050μA 0110: 1150μA 0110: 1150μA 0111: 1250μA 1000: 1450μA, use for RX, f>500 MHz 1001: 150μA 1010: 150μA 1010: 1250μA 1010: 1250μA 1010: 1250μA 1011: 1750μA 1011: 1750μA 1111: 2550μA 1111: 2550μA
CURRENT[3:2]	LO_DRIVE[1:0]	10		Control of current in VCO buffer for LO drive 00: 0.5mA, use for RX, f<500 MHz 01: 1.0mA 10: 1.5mA 11: 2.0mA, use for RX, f>500 MHz
CURRENT[1:0]	PA_DRIVE[1:0]	10		Control of current in VCO buffer for PA 00: 1mA 01: 2mA, use for TX, f<500 MHz 10: 3mA 11: 4mA, use for TX, f>500 MHz

FRONT_END Register

REGISTER	NAME	Default	Active	Description
REGISTER	INAIVIE	value	Active	Description
FRONT_END[7:6]	-	00	-	Not used
FRONT_END[5]	BUF_CURRENT	0	-	Control of current in the LNA_FOLLOWER 0:520uA, use for f<500 MHz 1:690uA, use for f>500 MHz
FRONT_END[4:3]	LNA_CURRENT [1:0]	01	-	Control of current in LNA 00: 0.8mA, use for f<500 MHz 01: 1.4mA 10: 1.8mA, use for f>500 MHz 11: 2.2mA
FRONT_END[2:1]	IF_RSSI[1:0]	00	-	Control of IF_RSSI pin 00: Internal IF and demodulator, RSSI inactive 01: RSSI active, RSSI/IF is analog RSSI output 10: External IF and demodulator, RSSI/IF is mixer output. Internal IF in power down mode. 11: RSSI calibration mode (for zeroing)
FRONT_END[0]	XOSC_BYPASS	0	-	0 : Internal XOSC enabled 1 : Power-Down of XOSC, external CLK used

PA_POW Register

REGISTER	NAME	Default	Active	Description
PA_POW[7:4]	PA_HIGHPOWER[3:0]	value 0000	-	Control of output power in high power array
PA_POW[3:0]	PA_LOWPOWER[3:0]	1111	-	Control of output power in low power array

PLL Register

REGISTER	NAME	Default value	Active	Description
PLL[7]	EXT_FILTER	0	-	1 : External loop filter 0 : Internal loop filter 1-to-0 transition samples F_COMP comparator when BREAK_LOOP=1 (TEST3)
PLL[6:3]	REFDIV[3:0]	0010	-	Reference divider 0000 : Not allowed 0001 : Not allowed 0010 : Divide by 2 0011 : Divide by 3
PLL[2]	ALARM_DISABLE	0	h	0 : Alarm function enabled 1 : Alarm function disabled
PLL[1]	ALARM_H	-	-	Status bit for tuning voltage out of range (too close to VDD)
PLL[0]	ALARM_L	-	-	Status bit for tuning voltage out of range (too close to GND)

LOCK Register

LOCK Regis		_	_	
REGISTE R	NAME	Default value	Active	Description
LOCK[7:4]	LOCK_SELECT[3:0]	0000	-	Selection of signals to CHP_OUT (LOCK) pin 0000 : Normal, pin can be used as CHP_OUT 0001 : LOCK_CONTINUOUS 0010 : LOCK_INSTANT 0011 : ALARM_H 0100 : ALARM_L 0101 : CAL_COMPLETE 0110 : IF_OUT 0111 : REFERENCE_DIVIDER Output 1000 : TX_PDB (activates external PA) 1001 : Manchester Violation 1010 : RX_PDB (activates external LNA) 1011 : Not defined 1100 : Not defined 1101 : LOCK_AVG_FILTER 1110 : N_DIVIDER Output 1111 : F_COMP
LOCK[3]	PLL_LOCK_ ACCURACY	0	-	0 : Sets Lock Threshold = 127, Reset Lock Threshold = 111. Corresponds to a worst case accuracy of 0.7% 1 : Sets Lock Threshold = 31, Reset Lock Threshold =15. Corresponds to a worst case accuracy of 2.8%
LOCK[2]	PLL_LOCK_ LENGTH	0	-	0: PLL_LOCK_WINDOW is 4 PRE_CLK cycles 1: PLL_LOCK_WINDOW is 8 PRE_CLK cycles
LOCK[1]	LOCK_INSTANT	-		Status bit from Lock Detector

LOCK[0] LOCK_CONTINUOUS - - Status bit from Lock Detector

CAL Register

REGISTER	NAME	Default value	Active	Description
CAL[7]	CAL_START	0	1	↑ 1 : Calibration started0 : Calibration inactive
CAL[6]	CAL_DUAL	0	Н	1 : Store calibration in both A and B 0 : Store calibration in A or B defined by MAIN[6]
CAL[5]	CAL_WAIT	0	Н	1 : Normal Calibration Wait Time Doubled 0 : Half Calibration Wait Time
CAL[4]	CAL_CURRENT	0	Н	1 : Calibration Current Doubled 0 : Normal Calibration Current
CAL[3]	CAL_COMPLETE	0	Н	Status bit defining that calibration is complete
CAL[2:0]	CAL_ITERATE	101	Н	Iteration start value for calibration DAC 000: 1 001: 2 010: 3 011: 4 100: 5 101: 6 110: 7 111: 8

MODEM2 Register

REGISTER	NAME	Default value	Active	Description
MODEM2[7]	PEAKDETECT	1	Ι	Peak Detector and Remover disabled or enabled 0: Peak detector and remover is disabled 1: Peak detector and remover is enabled
MODEM2[6:0]	PEAK_LEVEL_OFFSET[6:0]	0010110	-	Threshold level for Peak Remover in Demodulator. Correlated to frequency deviation

MODEM1 Register

REGISTER	NAME	Default value	Active	Description
MODEM1[7:5]	MLIMIT	011	-	Sets the limit for the Manchester Violation Flag. A Manchester Value = 14 is a perfect bit and a Manchester Value = 0 is a constant level (an unbalanced corrupted bit)
				000 : No Violation Flag is set 001 : Violation Flag is set for Manchester Value < 1 010 : Violation Flag is set for Manchester Value < 2 011 : Violation Flag is set for Manchester Value < 3 100 : Violation Flag is set for Manchester Value < 4 101 : Violation Flag is set for Manchester Value < 5 110 : Violation Flag is set for Manchester Value < 6 111 : Violation Flag is set for Manchester Value < 7
MODEM1[4]	LOCK_AVG_IN	0	Н	Lock control bit of Average Filter 0 : Average Filter is free-running 1 : Average Filter is locked
MODEM1[3]	LOCK_AVG_MODE	0	-	Automatic lock of Average Filter
				0 : Lock of Average Filter is controlled automatically 1 : Lock of Average Filter is controlled by LOCK_AVG_IN
MODEM1[2:1]	SETTLING[1:0]	11	-	Settling Time of Average Filter
				00: 11 baud settling time, worst case 1.2dB loss in sensitivity 01: 22 baud settling time, worst case 0.6dB loss in sensitivity 10: 43 baud settling time, worst case 0.3dB loss in sensitivity 11: 86 baud settling time, worst case 0.15dB loss in sensitivity
MODEM1[0]	MODEM_RESET_N	1	L	Separate reset of MODEM

MODEM0 Register

REGISTER	NAME	Default value	Active	Description
MODEM0[7]	-	-	-	Not used
MODEM0[6:4]	BAUDRATE[2:0]	010	-	000: 0.6 kbaud 001: 1.2 kbaud 010: 2.4 kbaud 011: 4.8 kbaud 100: 9.6 kbaud 101: 19.2kbaud 110: Not used 111: Not used
MODEM0[3:2]	DATA_FORMAT[1:0]	01	-	00 : NRZ operation. 01 : Manchester operation 10 : Transparent Asyncronous UART operation 11 : Not used
MODEM0[1:0]	XOSC_FREQ[1:0]	00	-	Selection of XTAL frequency range 00 : 3MHz - 4MHz crystal, 3.6864MHz recommended 01 : 6MHz - 8MHz crystal, 7.3728MHz recommended 10 : 9MHz - 12MHz crystal, 11.0592 MHz recommended 11 : 12MHz - 16MHz crystal, 14.7456MHz recommended

MATCH Register

REGISTER	NAME	Default value	Active	Description
MATCH[7:4]	RX_MATCH[3:0]	0000	-	Selects matching capacitor array value for RX
MATCH[3:0]	TX_MATCH[3:0]	0000	-	Selects matching capacitor array value for TX

FSCTRL Register

REGISTER	NAME	Default value	Active	Description
FSCTRL[7:4]	-	-	-	Not used
FSCTRL[3]	DITHER1	0	Н	Enable dithering when transmitting '1'
FSCTRL[2]	DITHER0	0	Н	Enable dithering during RX, and when transmitting
				'0'
FSCTRL[1]	SHAPE	0	Н	Enable data shaping
FSCTRL[0]	FS_RESET_N	1	Ĺ	Separate reset of shaping sequencer

FSHAPE1 Register

REGISTER	NAME	Default value	Active	Description
FSHAPE1[7:5]		-	-	Not used
FSHAPE1[4:0]	FSHAPE1	00001	-	Frequency shape register 1, used when SHAPE in FSCTRL is active.

FSHAPE2 Register

· · · · · · · · · · · · · · · · · · ·					
REGISTER	NAME	Default value	Active	Description	
FSHAPE2[7:5]	-	-	-	Not used	
FSHAPE2[4:0]	FSHAPE2	00011	-	Frequency shape register 2, used when SHAPE in FSCTRL is active.	

FSHAPE3 Register

REGISTER	NAME	Default value	Active	Description
FSHAPE3[7:5]	-	-	-	Not used
FSHAPE3[4:0]	FSHAPE3	00110	-	Frequency shape register 3, used when SHAPE in FSCTRL is active.

FSHAPE4 Register

REGISTER	NAME	Default value	Active	Description
FSHAPE4[7:5]	-	-	-	Not used
FSHAPE4[4:0]	FSHAPE4	01010	-	Frequency shape register 4, used when SHAPE in FSCTRL is active.

FSHAPE5 Register

REGISTER	NAME	Default value	Active	Description
FSHAPE5[7:5]	-	-	-	Not used
FSHAPE5[4:0]	FSHAPE5	10000	-	Frequency shape register 5, used when SHAPE in FSCTRL is active.

FSHAPE6 Register

REGISTER	NAME	Default value	Active	Description
FSHAPE6[7:5]	-	-	-	Not used
FSHAPE6[4:0]	FSHAPE6	10110	-	Frequency shape register 6, used when SHAPE in FSCTRL is active.

FSHAPE7 Register

REGISTER	NAME	Default	Active	Description
		value		
FSHAPE7[7:5]	-	-	-	Not used
FSHAPE7[4:0]	FSHAPE7	11100	-	Frequency shape register 7, used when SHAPE in
				FSCTRL is active.

FSDELAY Register

REGISTER	NAME	Default value	Active	Description
FSDELAY[7:0]	FSDELAY[7:0]	00101111	-	Sets the number of clock cycles delay between the use of the FSHAPE registers during frequency shaping

PRESCALER Register

PRESCALER Register						
REGISTER	NAME	Default	Active	Description		
		value				
PRESCALER[7:6]	PRE_SWING[1:0]	00	-	Prescaler swing. Fractions for		
				PRE_CURRENT[1:0] = 00		
				00 : 1 * Nominal Swing		
				01 : 2/3 * Nominal Swing		
				10 : 7/3 * Nominal Swing		
				11 : 5/3 * Nominal Swing		
PRESCALER[5:4]	PRE_CURRENT	00	-	Prescaler current scaling		
	[1:0]					
				00 : 1 * Nominal Current		
				01 : 2/3 * Nominal Current		
				10 : 1/2 * Nominal Current		
				11 : 2/5 * Nominal Current		
PRESCALER[3]	IF_INPUT	0	-	0 : Nominal setting		
				1 : RSSI/IF pin is input to IF-strips		
PRESCALER[2]	IF_FRONT	0	-	0 : Nominal setting		
				1 : Output of IF_Front_amp is switched to		
				RSSI/IF pin		
PRESCALER[1:0]	-	00	-	Not used		

TEST6 Register (for test only)

REGISTER	NAME	Default value	Active	Description
TEST6[7]	LOOPFILTER_TP1	0	-	1 : Select testpoint 1 to CHP_OUT 0 : CHP_OUT tied to GND
TEST6 [6]	LOOPFILTER_TP2	0	-	1 : Select testpoint 2 to CHP_OUT 0 : CHP_OUT tied to GND
TEST6 [5]	CHP_OVERRIDE	0	-	1 : use CHP_CO[4:0] value 0 : use calibrated value
TEST6[4:0]	CHP_CO[4:0]	10000	-	Charge_Pump Current DAC override value

TEST5 Register (for test only)

REGISTER	NAME	Default value	Active	Description
TEST5[7:6]	-	-	-	Not used
TEST5[5]	CHP_DISABLE	0	-	1 : CHP up and down pulses disabled 0 : normal operation
TEST5[4]	VCO_OVERRIDE	0	-	1 : use VCO_AO[2:0] value 0 : use calibrated value
TEST5[3:0]	VCO_AO[3:0]	1000	-	VCO_ARRAY override value

TEST4 Register (for test only)

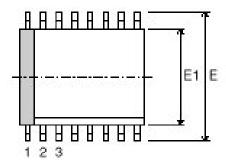
REGISTER	NAME	Default value	Active	Description
TEST4[7:6]	=	-	-	Not used
TEST4[5:0]	L2KIO[5:0]	100101	h	Constant setting charge pump current scaling/rounding factor. Sets Bandwidth of PLL

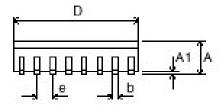
TEST3 Register (for test only)

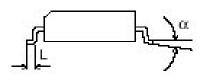
REGISTER	NAME	Default value	Active	Description
TEST3[7:5]	=	-	-	Not used
TEST3[4]	BREAK_LOOP	0	-	1 : PLL loop open 0 : PLL loop closed
TEST3[3:0]	CAL_DAC_OPEN	0100	-	Calibration DAC override value, active when BREAK_LOOP =1

TEST2 Register (for test only)

REGISTER	NAME	Default value	Active	Description
TEST2[7:5]	-	-	-	Not used
TEST2[4:0]	CHP_CURRENT [4:0]	-	-	Status vector defining applied CHP_CURRENT value


TEST1 Register (for test only)


REGISTER	NAME	Default value	Active	Description
TEST1[7:4]	-	-	-	Not used
TEST1[3:0]	CAL_DAC[3:0]	-	-	Status vector defining applied Calibration DAC value


TEST0 Register (for test only)

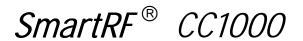
REGISTER	NAME	Default value	Active	Description
TEST0[7:4]	-	-	-	Not used
TEST0[3:0]	VCO_ARRAY[3:0]	-	-	Status vector defining applied VCO_ARRAY value

Package Description (TSSOP-28)

Note: The figure is an illustration only.

Thin Shrink Small Outline Package (TSSOP)											
		D	E1	E	Α	A1	Е	В	L	Copl.	α
TSSOP 28	Min	9.60	4.30			0.05		0.19	0.45		0°
				6.40			0.65				
	Max	9.80	4.50		1.20	0.15		0.30	0.75	0.10	8°
All dimensions in mm											

Soldering information


Recommended soldering profile is according to CECC 00 802, Edition 3

Tape and reel specification

Tape and reel is in accordance with EIA Specification 481.

Tape and Reel Specification						
Package Tape Width Component Hole Reel Units per Reel						
		Pitch	Pitch	Diameter		
TSSOP 28	16 mm	8 mm	4 mm	13"	4500	

Ordering Information

Ordering part number	Description	MOQ
CC1000	Single Chip RF Transceiver	50 (tube)
CC1000/T&R	Single Chip RF Transceiver	4500 (tape and reel)
CC1000DK	CC1000 Development Kit	1
CC1000SK	CC1000 Sample Kit (5 pcs)	1

MOQ = Minimum Order Quantity

Address:

Chipcon AS Gaustadalléen 21 N-0349 Oslo, NORWAY

Telephone : (+47) 22 95 85 44
Fax : (+47) 22 95 85 46
E-mail : wireless@chipcon.com
Web site : http://www.chipcon.com

General Information

Chipcon AS believes the furnished information is correct and accurate at the time of this printing. However, Chipcon AS reserves the right to make changes to this product without notice. Chipcon AS does not assume any responsibility for the use of the described product. Please refer to Chipcon's web site for the latest update.

SmartRF® is a registered trademark of Chipcon AS. SmartRF is Chipcon's RF technology platform with RF library cells, modules and design expertise. Based on SmartRF Chipcon develops standard component RF-circuits as well as full custom ASICs based on customers' requirements.

Life Support Policy

This Chipcon product is not designed for use in life support appliances, devices, or systems where malfunction can reasonably be expected to result in a significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Chipcon AS customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Chipcon AS for any damages resulting from such improper use or sale.