LESSON 24:
CPU STRUCTURE AND FUNCTION

Processor Organisation

Hello friends! Today | am going to discuss with you about the
aspects of the processor , iwill begin with summary of
processor organization.Registers,which form the internal
memory of the processor,along with it we would discuss the
instruction cycle and the common technique known as
instruction pipelining .So let us beign ...

To understand the organisation of the CPU, let us consider the
requirements placed on the CPU, the things that it must do :

Fetch Instructions: The CPU must read instructions from
Memory.

Interpret Instructions: The instruction must have be
decoded to determine what action is required.

Fetch data: The execution of an instruction may require
reading from memory or 1/0 module.

Process data: The execution of an instruction may require
performing some arithmetic or logical operation on data.

Write Data: The results of an execution may require writing
data to memory or an 1/0 module.

In order to be able to do these things, it should be clear that the
CPU needs to temporarily store some data. It must remember
the location of the last instruction so that it can know where to
get the next instruction. It needs to store instructions and data
temporarily while an instruction is being executed. In other
words, the CPU needs is a same internal memory.

Fig. 24.1 is a simplified view of a CPU, indicating its connection
to the rest of the system via the system bus. A similar interface
would be needed for any of the interconnection structures
described in chapter 3. The reader will recall that the major
components of the CPU are an Arithmetic and Logic unit (
ALU) and a control unit. The ALU does the actual computation
or processing of data. The control unit controls the movement
of data and instructions into and out of the CPU and controls
the operation of the ALU. In addition, the figure shows a
minimal internal memory, consisting of a set of storage
locations, called registers.

Figure 24.2 is a slightly more detailed view of the CPU. The data
transfer and logic control paths are indicated, including an
element labeled internal CPU bus. This element is needed to
transfer data between the various resisters and the ALU, since
the ALU infact operators only one an data in the internal CPU
memory. The figure also shows typical basic elements of the
ALU. Note the similarly Between the internal structure of the
computer as whole and the internal structure of the CPU. In
both cases; there is a small collection of major elements (
Computer CPU, 170, Memory ; CPU : Control unit, ALU,
register) connected by data paths.

Register Organization

As we discussed in Chapter 4, a computer system employs a
memory hierarchy At higher levels of the hierarchy, memory is
faster, smaller and more expensive (Per bit) Within the CPU,
there is a set of registers that function as a level of memory

CFUT
g EENE L
Fegisters -
Il T .
< T
- i
ALLT

el "
e s
Coniral
Linit

Contrel Dala Ay
| Bus Bus Bus
I !
Figure 24.1The CPU with the system bus.
Fexiter

Inteminl CPIT Bus
I

Fig.24.2 Internal structure of the CPU
Above main memory and cache in the hierarchy. The registers in
the CPU serve two functions :
User — Visible Registers : These enable the machine or
assembly language programmer to minimize main memory
references by optimizing use of registers.
Control and status Registers : These are used by the control
unit to control the operation of the CPU and by privileged,

© Copy Right: Rai University

3.152/3A.152/3B.152/3E.152

135

operating system programs to control the execution of
programs.

There is not a clean separation of register into these two
categories. For example, on some machines the program
counter is user visible (e.g. VAX) but on many it is not. For
purpose of the following discussion., however we will use
these categories.

User - Visible Register

A user-visible register is one that may be referenced by means
of the machine language that the CPU executes. Virtually all
contemporary CPU designs provide for a number of user
visible register, as opposed to a single accumulator. We can
characterize these in the followings categories :

General Purpose
Data

Address
Condition Codes

General Purpose registers can be assigned to a verity of
functions by the programmer. Sometimes, their use within the
instruction set is orthogonal to the operation. That is nay
general- purpose register can contain the operand for any
opcode. This provides true general purpose register use. Often,
However, there are restrictions. For example, there may be
dedicated registers for floating point operations.

In some cases , general purpose registers can be used for
addressing functions (e.g. register indirect, displacement). In
other cases, there is a partial or clean separation between data
register and address register. Data register may be used only to
hold data and cannot be employed in the calculation of an
operand address. Address register may themselves be some-
what general purpose, or they may be devoted to a particular
addressing mode, example include.

Segment Pointers : In a machine with segmented
addressing, a segment register holds the address of the base
of the segment. There may be multiple register : for
example, one for the operating system and one for the
current process

Index Registers : There are used for indexed addressing and
may be auto indexed.

Stack Pointer : If there is user-visible stack addressing, then
typically the stack is in memory and there is dedicated register
that points to the top of the stack. This allows implicit
addressing ; that is, push, pop and other stack instructions
need not contain an explicit stack operand

There are several design issues to be addressed here. An
important one is whether to use completely general purpose
register or to specialize their use. We have already touched on
this issue in the preceding chapter, since it affects instruction set
design. With the use of specialized registers, it can generally be
implicit in the opcode which type of register a certain operand
specifier refers to. The operand specifeir must only identify one
of a set of specialized registers rather than one out of all the
register, thus saving bits. On the other hand, this specialization
limits the programmers flexibility. There is no final and best

solution to this design issue, but as was mentioned, the trend
seems to be toward the use of specialized registers.

Another design issue is the number of registers, either general-
purpose or data plus address, to be provided. Again, this affects
instruction set design since more registers require more operand
specifier bits. As we previously discussed, some where between
8 and 32 registers appears optimum [LUND77]. Fewer registers
result in more memory references ; more register do not
noticeably reduce memory references (e.g. see [WILL90].
However, a new approach, which finds advantage in the use of
hundreds of registers, is exhibited in some RISC systems.

Finally, there is the issue of register length. Register that must
hold addresses obviously must be at least long enough to hold
the largest address. Data registers should be able to hold values
of most data types. Some machines allow two contiguous
registers to be used as one for holding double-length values.

A finally category of registers, which is at least partially visible
to the user, holds condition codes (also referred to as flags).
Condition codes are bits set by the CPU hardware as the result
of operations. For example, an arithmetic operation may
produce a positive, negative , zero or overflow result. In
addition to the result itself being stored in a register or
memory, a condition code is also set. The code may subse-
quently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers.
Usually, they form part of a control register. Generally, machine
instructions allow these bits to be read by implicit reference, but
they can not be altered by the programmer.

In some machines, a subordinate call will result in the automatic
saving of all user visible registers, to be restored on return. The
saving and restoring is performed by the CPU as part of the
execution of call and return instructions. This allows each
subroutine to use the user visible registers independently. On
other machines, it is the responsibility of the programmer to
save the contents of the relevant user visible registers prior to a
call, by including instructions for this purpose in the program.

Control and Status Registers

There are a variety of CPU registers that are employed to control
the operation of the CPU. Most of these, on most machines,
are not visible to the user. Some of them may be visible to
machine instructions executed in a control or operating system
mode.

Of course, different machines will have different register
organizations and use different terminology. We list here a
reasonably complete list of register types, with a brief descrip-
tion.

Four registers are essential to instruction execution :

Program Counter (PC) : Contains the address of an
instruction to be fetched.

Instruction Register (IR) : Contains the instruction most
recently fetched.

Memory Address Register (MAR) : Contains the address
of a location in memory.

© Copy Right: Rai University

136

3.152/3A.152/3B.152/3E.152

Memory Buffer Register (MBR) : Contains a word of
data to be written to memory or the word most recently
read.

The Program counter contains an instruction address. Typically,
the program counter is updated by the CPU after each instruc-
jor fe 0 fralways poir 0 the extinstruction to be

executed. A branch or skip instruction will also modify the
contents of the PC. The fetched instruction is loaded into an
instruction register, where the opcode and operand specifiers are
analyzed. Data are exchanged with memory using the MAR and
MBR. In a bus organized system, the MAR connects directly to
the address bus, and the MBR connects directly to the data bus.
User Visible registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for the movement
of data between the CPU and memory. Within the CPU, data
must be presented to the ALU for processing. The ALU may
have direct access to the MBR and user visible registers. Alterna-
tively, there may be have additional buffering registers at the
boundary to the ALU; these registers serve as input and output
registers for the ALU and exchange data with the MBR and
user-visible registers.

The CPU design include a register or set of registers, often
known as the program status word (PSW), that contain status
information. The PSW typically contains condition codes plus
other status information. Common fields or flags include the
following :

Sign : Contains the sign bit of the result of the last
arithmetic operation.

Zero : Set when the result if 0.

Carry : Set if an operation resulted in a carry (addition) into
or borrow (subtraction) out of a high order bit. Used for
multiword arithmetic operations

Equal : Set if a logical compare result a equality.
Overflow : Used to indicate arithmetic overflow.

Interrupt Enable / Disable : Used to enable or disable
interrupts.

Supervisor : Indicates whether the CPU is executing in
supervisor or user mode. Certain privileged instructions can
be executed only one in supervisor mode, and certain areas
of memory can be accessed only in supervisor mode, and
certain areas of memory can be accessed only in supervisor
mode.

There are a number of other registers related to status and
control that might be found in a particular CPU Design. In
addition to the PSW, there may be a pointer to a block of
memory containing additional status information (e,g. process
control blocks). In machines using vectored interrupts, an
interrupts vector register may be provided . If a stack is used to
implement certain functions (e.g. subroutine call), then a
system stack pointer is needed. A Page table pointer is used
with a virtual memory system. Finally, registers may be used in
the control of 1/0 operations.

A number of factors go into the design of the control and

status register organization. One key issue is operating system
support. Certain types of control information are of specific

utility to the operating system. If the CPU designer has a
functional understanding of the operating system to be used,
then the register organizations can to some extent be tailored to
the operating system.

Another key design decision is the allocation of control
irformation Detween TeqgiSters and Memory. TS common to
dedicate the first [lowest] few hundred or thousand words of
memory for control purposes. The designer must decide how
much control information should be in registers and how
much in memory . The usual trade —off of cost versus speed
arises .

Example Microprocessor Register Organizations

It is instructive to examine and compare the registers
organisation of comparable systems. In this section, we look at
three 16-Bit microprocessors that were designed at about the
same time : the Zilog Z8000 [PEUT79], the Intel 8086 |
MORS78, HEYW83], and the Motorola MC68000 [STRI79].
Following fig depicts the register organisation of each; purely
internal registers, such as a memory address register are not
shown.

The Z8000 makes use of 16-16 bit general-purpose registers,
which can be used for data, addresses, and indexing. The
designers felt that it was more important to provide a regular-
ized, general set of registers than to save instruction bits by
using special-purpose registers. Further, they preferred to leave it
to the programmer to assign functions to registers, assuming
that there might be different functional

General Purpose
1

General Registers Data Registers

] AX Aeriniulite =]
1 EX Bisa L
¥ CE Cont Ca
3 DX Dl o]
+ L4
: I Boister &eIndex | 4
fi E3 ek Petifer Cxi
T BE Fam Bointer C?
B a Source Fdex
¢ DI | Crtination odex Pk e v Flegl stere
U} Al
SEETIA il
1 [[A
i I Dila 3
4 Stk Pointer 3% Shack at
5 Stk Pomter E: Edn &5
ab
Eruaran Stoims Prcprun Etaus AT hier Shadke Poinker
Flig Contel Tond | Eetmction Boicter | AT Tapemisory ek Poiter
[lags
P CATet Froepam i
P54 Segrent Frognn Courks |
BEA Cifert Stans Feprher
(2) Z8000 (b) 8086 (c) MC68000

Fig 24.3 Microprocessor Register Organisation.

breakdowns for different applications. The registers can also be
used for 8 bit and 32-bit operations. A segmented address space
is used (7 bit segment number, 16- bit offset), and two
registers are needed to hold a single address. To of the registers
are also used as implied stack pointer for system mode and
normal mode.

The Z8000 also includes five registers related to program status.
Two registers hold the program counter and two the address of
a program status Area in memory. A 16 bit flag register holds
various status and control bits.

© Copy Right: Rai University

3.152/3A.152/3B.152/3E.152

137

The Intel 8086 takes a different approach to register organiza-
tion. Every register is special purpose, although some registers
are also usable general purpose. The 8086 contains four 16 bit
data registers that are addressable on a byte or 16 bit basis and
four 16 bit pointer and index registers. The data registers can be
used as general purpose in some instructions./ In others, the
registers are used implicitly. Fro example, a multiply instruction
Always uses the accumulator. The four pointer registers are also
used implicitly in a number of operations; each contains a
segment offset. There are also four 16 bit segment registers.
Three of the four segment registers are used in a dedicated,
implicit fashion, to point the segment of the current instruction
(useful for branch instructions), a segment containing data, and
a segment containing a stack, respectively. These dedicated and
implicit uses provide for compact encoding at the cost of
reduced flexibility. The 8086 also includes an instruction pointer
and a set of 1 bit status and control flags.

The Motorola MC68000 falls somewhere between the design
philosophies of the Zilog and Intel microprocessors. The
MC68000 partitions its 32-bit registers into

General-Purpose Registers General Registers

RED EAX AX
Cht Eix [k
RE2 ECK LK
L] EDX DX
BRa

RE1Q ESP SF
BRiz E&F EF
R4 Shack Stack Pointer ESI s

Pt er

BRid | ERI | LI
BR13

B 20 Frogram Status
Bazz FLAGS Regleter
RiR24 | Instruction Pointer
Birdd

RE2E

R0
(a) Z80,000 (b) 80386

Fig : Register Organization extensions for 32-bit
microprocessors.

Eight data registers and nine address registers. The eight data
registers are used primarily for data manipulation and are used
in addressing only as index registers. The width of the registers
allows 8-, 16- and 32 bit data operations, determined by
opcode. The address contains 32-bit (no segmentation)
addresses ; two of these registers are also used as stack pointers,
one for users and one for the operating system. Depending on
the current execution mode. Both registers are numbered 7,
since only one can be used at a time. The MC68000 also includes
a 32 bit program counter and a 16 bit status register.

Like the Zilog designers, the Motorola team wanted a very
regular instruction set, with no special purpose registers. A
concern for code efficiency led them to divide the registers into
two functional components, saving one bit on each registers
speicfier. This seems a reasonable compromise between
complete generality and code compaction.

The Point of this comparison should be clear. There is, as yet,
no universally accepted philosophy concerning the best way to

organize CPU registers [TOONS81]. As with overall instruction
set design and so many other COU design issues, it is still a
matter of judgment and taste.

A second instructive point concerning register organisation
design is illustrated in Figure 11.4. this figure shows the user
visible register organization for the Zilog 80,000 [PHIL85] and
the Intel 80386 [ELAY85], which are 32-bit microprocessors
designed as extensions of the Z8000 and 8086, respectively.
Both of these new processors use 32 bit registers. However to
provide upward compatibility for programs written on the
earlier machines, both of the new processors retain the original
register organisation embedded in the new organisation. Given
this design constraint, the architects of the 32-bit processors
had limited flexibility in designing the register organisation.

1. Processor organization

2. Register organization

3. Types of registers

Question:

1. Explain the Different types of organization?
References:

1. Digital Logic and Computer Design—Moris Mano —
Prentice Hall Of India

2. Computer System Architecture —Moris Mano—"
Note:

© Copy Right: Rai University

138

3.152/3A.152/3B.152/3E.152

