
Operating systems

Lecture 1, Michal Vrábel, 9/10/2019

Who Am I?

● Daniel Gecášek

− daniel.gecasek@tuke.sk
● In case I’m not available, talk to Ján Genči

− genci@tuke.sk

mailto:daniel.gecasek@tuke.sk
mailto:genci@tuke.sk

Grading

● Final oral exam 60%

● Exercises 40%

− Homeworks

The book

● Operating Systems - Internals and Design
Principles 7th ed - W. Stallings (Pearson, 2012)
BBS

− https://github.com/jyfc/ebook
● For exercises – nothing strict – for example

− Linux System Programming: Talking Directly to
the Kernel and C Library

● https://github.com/vrnithinkumar/S5_OS_lab/

Operating System

● No universally accepted definition

● OS is a resource allocator - Manages all resources,
Decides between conflicting requests for efficient and fair
resource use

● OS is a control program - Controls execution of programs
to prevent errors and improper use of the computer

● “The one program running at all times on the computer” is
the kernel.

− Everything else is either a system program (ships with
the operating system) or an application program

History

● Longer text (will be provided)
− P01-01---0201180383---An_introduction_to_operating_systems--Chapter-01

-History

● 1940s-1950s.

− No operating systems

− Entering programs one bit at a time → Punched cards

− Assembly

− Serial processing, direct access to procesor

− First OS – one job at a time, transition between jobs

History

● 1960s

− Batch processing systems

● The central idea behind the simple batch-processing scheme is the use of a piece
of software known as the monitor - resident monitor.

● job control language (JCL)

− Card readers, card punchers, printers, tape drives

− Multiprogramming – several jobs in main memory

● https://en.wikipedia.org/wiki/Computer_multitasking#Multiprogramming

− Running batched jobs

− Multiple interactive users

● Terminals

● Timesharing

● https://en.wikipedia.org/wiki/Time-sharing

History

● 1970s

− Emergence of software engineering
(60s - 70s)

− TCP/IP

− Commercialization

● 1980s

− Personal computing, workstations

− Networks – Server/client architecture

● 1990s

− Distributed systems

− Internet

− Information systems - Relational
databases

● 2000s

− Internet

− Mobile technologies

− Massive parallelism

● 2010s

− Virtualization

− Cloud computing

− Ubiquitous computing

History - generations

● 0-th (1940s - 1950s)

− Electromechanical switching

● 1st (1950s - early 1960s)

− vacuum tubes

− Assembly

− Debugging tools

− ALGOL, COBOL, FORTRAN

● 2nd (1960s)

− Transistors

− Multiprograming

− Terminals

− Time-sharing

● 3rd (late 1960s - 1970s)

− Integrated circuits

− Personal computers

− Networking (TCP/IP)

− Parallel systems

− User friendly OS (maybe more 80s)

● (3.5th?)

− Very Large Scale Integrated (VLSI)
circuits

● 4th (1980s)

− Microprocessors

● 5th ?

− AI?, Change in the user interaction?

Operating system – resoure
allocator

● OS is a resource
allocator/manager -
Manages all
resources, Decides
between conflicting
requests for efficient
and fair resource use

Operating system – unifies the
interface

● OS – unifies the interface for applications / for users
(to a certain point)

Operating system – unifies the
interface

● OS typically provides services in the
following areas

− Program development

− Program execution

− Access to I/O devices - nature of
the I/O device, the structure of the
data contained

− Controlled access to files

− System access - For shared or
public systems

− Error detection and response

− Accounting - usage statistics for
various resources

● Three key interfaces in a
typical computer system

− Instruction set architecture
(ISA)

− Application binary interface
(ABI)

− Application programming
interface (API)

● system calls

Operating system – unifies the
interface

● POSIX

− The Portable Operating System Interface (POSIX)

− Exercises from the subject

● POSIX-certified

− MacOS, HP-UX, Solaris

● Mostly POSIX-compliant

− Linux, FreeBSD, Android, VMware ESXi

● POSIX for Microsoft Windows

− Cygwin, MinGW, Windows Subsystem for Linux, Windows C
Runtime Library

Operating system – unifies the
interface

Basic elements of a Computer
system

Basic elements of a Computer
system

In computer
architecture, a bus (a
contraction of the Latin
omnibus) is a
communication
system that transfers
data between
components inside a
computer, or between
computers.

Basic elements of a Computer
system

● While the address bus carries the
information about the device with which
the CPU is communicating and

● the data bus carries the actual data
being processed,

● the control bus carries commands from
the CPU and returns status signals from
the devices.

● An address bus is a bus that is used to specify a
physical address. When a processor or DMA-enabled
device needs to read or write to a memory location, it
specifies that memory location on the address bus (the
value to be read or written is sent on the data bus).

● DMA https://en.wikipedia.org/wiki/Direct_memory_access,
IOMMU
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_
management_unit,

Computer-system operation

(same picture once again)

Computer-system operation

● I/O devices and the CPU can execute concurrently

● Each device controller is in charge of a particular device
type

● Each device controller has a local buffer

● CPU moves data from/to main memory to/from local buffers

● I/O is from the device to local buffer of controller

● Device controller informs CPU that it has finished its
operation by causing an interrupt

●

Computer-system operation -
Examples

Computer-system operation -
Examples

Processor – instruction cycle
● Processes instructions

● Compiler explorer https://godbolt.org/

https://godbolt.org/

Processor – instruction cycle
(8086)

Processor – instruction cycle

Processor - interrupts

● Interrupts are provided primarily as a way to improve
processor utilization.

− Example: I/O devices are much slower than the
processor

● Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector, which
contains the addresses of all the service routines

● Interrupt architecture must save the address of the
interrupted instruction

● An operating system is interrupt driven

Processor - interrupts

Processor - interrupts
● To accommodate interrupts, an interrupt stage is added to the

instruction cycle

● If an interrupt is pending,the processor suspends execution of the
current program and executes an interrupt-handler routine

Processor - interrupts
● Hardware interrupts

− issued by an external (to the
processor) hardware device

− part of the computer, external
peripherals

● A software interrupt

− requested by the processor itself
upon executing particular
instructions or when certain
conditions are met.

− A software interrupt may be
intentionally caused by executing a
special instruction

− Software interrupts may also be
unexpectedly triggered by program
execution errors.

Processor - interrupts

● Hardware interrupts

− issued by an external (to the processor) hardware device

− part of the computer (e.g., disk controller) or external peripherals (e.g., pressing a
keyboard key or moving the mouse)

● A software interrupt

− requested by the processor itself upon executing particular instructions or when
certain conditions are met. Every software interrupt signal is associated with a
particular interrupt handler.

− A software interrupt may be intentionally caused by executing a special
instruction which, by design, invokes an interrupt when executed. Such instructions
function similarly to subroutine calls and are used for a variety of purposes, such as
requesting operating system services and interacting with device drivers (e.g., to
read or write storage media).

− Software interrupts may also be unexpectedly triggered by program execution errors.
These interrupts typically are called traps or exceptions. For example, a
divide-by-zero exception

Processor - interrupts

● The operating system preserves the state of the CPU by storing
registers and the program counter

● Processors typically have an internal interrupt mask register which
allows selective enabling and disabling of hardware interrupts.

● Two approaches can be taken to dealing with multiple interrupts.

− Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt

− Define priorities for interrupts and to allow an interrupt of higher
priority to cause a lower-priority interrupt handler to be interrupted

Processor - interrupts

● Two approaches can be taken to
dealing with multiple interrupts.

− Incoming interrupts are
disabled while another
interrupt is being
processed to prevent a lost
interrupt

− Define priorities for
interrupts and to allow an
interrupt of higher priority to
cause a lower-priority
interrupt handler to be
interrupted

Processor - interrupts

● The Interrupt Descriptor Table
(IDT) is a data structure used by
the x86 architecture to implement
an interrupt vector table.

Flynn taxonomy

Memory

Low price, slow, large capacity

High price, fast, small capacity

Cache - size
AMD Ryzen 9 3900x

Intel i9 9900k

Cache – mapping function

● cache size

● block size: the unit of data exchanged between
cache and main memory.

● mapping function determines which cache
location the block will occupy.

− replacement algorithm chooses, within the
constraints of the mapping function, which block
to replace when a new block is to be loaded into
the cache

Cache - locality of reference

● Well described in:
https://en.wikipedia.org/wiki/Locality_of_reference

● Tendency of a processor to access the same set of
memory locations repetitively over a short period of time

● Temporal locality refers to the reuse of specific data, and/or
resources, within a relatively small time duration.

● Spatial locality refers to the use of data elements within
relatively close storage locations

CPU modes (x86)

● Real mode

− Real mode is characterized by a 20-bit segmented memory address
space (giving exactly 1 MiB of addressable memory) and unlimited
direct software access to all addressable memory, I/O
addresses and peripheral hardware. Real mode provides no
support for memory protection, multitasking, or code privilege levels.

− DOS

● Protected mode

− Typical

− It allows system software to use features such as virtual memory,
paging and safe multi-tasking

− Privilege rings for the x86 available in protected mode

CPU modes (x86)

● Privilege rings for
the x86 available
in protected mode

Booting process
● Well described inhttps://en.wikipedia.org/wiki/Booting#Boot_sequence

● In real mode, execute the instruction located at reset vector CS:IP =
F000:FFF0

− The reset vector is the default location a central processing unit
will go to find the first instruction it will execute after a reset.

− Usually pointing to the firmware (UEFI or BIOS)

● BIOS runs a power-on self-test (POST) to check and initialize required
devices such as DRAM and the PCI bus (including running embedded
ROMs

● The firmware (UEFI or BIOS) goes through pre-configured list of
non-volatile storage devices ("boot device sequence") until it finds one
that is bootable - MBR boot signature

https://en.wikipedia.org/wiki/Booting#Boot_sequence

Booting process – bootloaders
● First-stage boot loader (usually

part of BIOS?)

− Must fit into the first 446 bytes of
the Master Boot Record

− For example coreboot
− Must do the following:

1) Setup the memory segments and
stack used by the bootloader code

2) Reset the disk system
3) Display a string saying “Loading

OS…”
4) Find the second-stage boot loader in

the FAT directory
5) Read the second-stage boot loader

image into memory at 1000:0000
6) Transfer control to the

second-stage bootloader

● Second-stage boot loader

● Not operating systems, but are able
to load an operating system properly
and transfer execution to it

● For example GNU GRUB - Grand Unified
Bootloader (includes both 1. and 2.)

● In the second-stage bootloader, we must do the
following:

1) Copy the boot sector data bytes to a local memory
area, as they will be overwritten

2) Find the kernel image in the FAT directory
3) Read the kernel image into memory at 2000:0000
4) Reset the disk system
5) Enable the A20 line
6) Setup the interrupt descriptor table at 0000:0000
7) Setup the global descriptor table at 0000:0800
8) Load the descriptor tables into the CPU
9) Switch to protected mode
10) Clear the prefetch queue
11) Setup protected mode memory segments and stack for

use by the kernel code
12) Transfer control to the kernel code using a long jump

Source: (http://www.independent-software.com/operating-system-development-first-and-second-stage-bootloaders.html)

http://www.independent-software.com/operating-system-development-first-and-second-stage-bootloaders.html

Master Boot Record

GPT MBR

OS Kernel

● Kernel types

− Monolithic

− Microkernel

− Hybrid (or modular) kernel

● Windows and macOS - Hybrid
(or modular) kernel

● Hybrid kernels are similar to micro
kernels, except they include some
additional code in kernel-space to
increase performance

● Linux – originally monolithic kernel

OS Kernel - Unix

