I Operating systems

Lecture 1, Michal Vrabel, 9/10/2019

I Who Am I?

. Daniel Gecasek

- daniel.gecasek@tuke.sk

. In case I'm not available, talk to Jan Genci

- genci@tuke.sk

mailto:daniel.gecasek@tuke.sk
mailto:genci@tuke.sk

I Grading

. Final oral exam 60%
. Exercises 40%

- Homeworks

I The book

. Operating Systems - Internals and Design
Principles 7th ed - W. Stallings (Pearson, 2012)
BBS

- https://github.com/jyfc/ebook
. For exercises — nothing strict — for example

- Linux System Programming: Talking Directly to
the Kernel and C Library

. https://github.com/vrnithinkumar/S5_0OS _lab/

I Operating System

No universally accepted definition

OS is a resource allocator - Manages all resources,
Decides between conflicting requests for efficient and fair

resource use

OS is a control program - Controls execution of programs
to prevent errors and improper use of the computer

“The one program running at all times on the computer” is
the kernel.

- Everything else is either a system program (ships with
the operating system) or an application program

I History

Longer text (will be provided)

- P01-01---0201180383---An_introduction_to_operating_systems--Chapter-01
-History

1940s-1950s.

- No operating systems

- Entering programs one bit at a time — Punched cards
- Assembly

- Serial processing, direct access to procesor

- First OS — one job at a time, transition between jobs

History

1960s

Batch processing systems

The central idea behind the simple batch-processing scheme is the use of a piece
of software known as the monitor - resident monitor.

job control language (JCL)

- Card readers, card punchers, printers, tape drives
- Multiprogramming — several jobs in main memory

https://en.wikipedia.org/wiki/Computer multitasking#Multiprogramming
- Running batched jobs
- Multiple interactive users

Terminals

Timesharing

https://en.wikipedia.org/wiki/Time-sharing

I History

1970s

- Emergence of software engineering
(60s - 70s)

- TCP/IP

- Commercialization

1980s

- Personal computing, workstations
- Networks — Server/client architecture

1990s

- Distributed systems
- Internet

- Information systems - Relational
databases

2000s

- Internet
- Mobile technologies
- Massive parallelism

2010s

- Virtualization
- Cloud computing

- Ubiquitous computing

I History - generations

0-th (1940s - 1950s)

Electromechanical switching

1st (1950s - early 1960s)

vacuum tubes

Assembly

Debugging tools

ALGOL, COBOL, FORTRAN

2nd (1960s)

Transistors
Multiprograming
Terminals

Time-sharing

3rd (late 1960s - 1970s)

- Integrated circuits

- Personal computers

- Networking (TCP/IP)

- Parallel systems

- User friendly OS (maybe more 80s)
(3.5th?)

- Very Large Scale Integrated (VLSI)
circuits

4t (1980s)

- Microprocessors

5th ?

- Al?, Change in the user interaction?

Operating system — resoure
allocator

Computer system

OS is a resource e ‘ Vi v |
allocatorimanager - || T | g
Manages all — O contoller | -0 <t
resources, Decides
between conflicting i
requests for efficient S—
and fair resource use

P Pro

Figure 2.2 The Operating System as Resource Manager

Operating system — unifies the
interface

. OS - unifies the interface for applications / for users
(to a certain point)

Application Application programs
programming interface o -
Application Libraries/utilities Software
binary interface
Operating system
Instruction set
architecture
Execution hardware
i Memory
System interconnect translation L —
(bus)
I/O devices Main
and
networking fhemory

Figure 2.1 Computer Hardware and Software Structure

Operating system — unifies the
interface

OS typically provides services in the . Three key interfaces in a
following areas typical computer system

- Program development - i
g P - Instruction set architecture

- Program execution (ISA)

- Access to I/0 devices - nature of

the |I/O device, the structure of the N Appllcatlon bmary interface

data contained (ABI)
- Controlled access to files - Application programming
- System access - For shared or interface (API)

ublic systems
PULIC 5y . system calls

- Error detection and response

- Accounting - usage statistics for
various resources

Operating system — unifies the
interface

POSIX
- The Portable Operating System Interface (POSIX)

- Exercises from the subject
POSIX-certified

- MacOS, HP-UX, Solaris

Mostly POSIX-compliant

- Linux, FreeBSD, Android, VMware ESXi
POSIX for Microsoft Windows

- Cygwin, MinGW, Windows Subsystem for Linux, Windows C
Runtime Library

Operating system — unifies the
interface

user and other system programs

GUI

batch command line

user interfaces

system calls
program e file communication Il R accounting
execution operations systems allocation
error pro;icétlon
detection . security
services

operating system

hardware

Basic elements of a Computer
system

m Computer-system operation

e One or more CPUSs, device controllers connect through common
bus providing access to shared memory

e Concurrent execution of CPUs and devices competing for
memory cycles

CPU

disks

=

disk
controller

mouse

keyboard printer ~ monitor
é /,.,. | on-line —\
ferecriiiiine: B\]
USB controller Urephics
adapter

memory

Basic elements of a Computer
system

CPU Main memory
° 0
e ° | In computer
us . 2 _
PC MAR T . architecture, a bus (a
uction y contraction of the Latin
I MER - omnibus) is a
v, 1/O AR . communication
Eecis [o system that transfers
21 data between
ata . .
. components inside a
1/0 module : o computer, or between
= computers.
= PC = Program counter
. IR = Instruction register
- MAR = Memory address register
Buffers MBR = Memory buffer register
I/O AR = Input/output address register

I/O BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

Address bus

1/0 device
Data bus

1/0 device
Control bus

1/0 device

Figure 2.2 Simplified block diagram of a computer system. [4]

Basic elements of a Computer
system

While the address bus carries the
information about the device with which
the CPU is communicating and

the data bus carries the actual data
being processed,

the control bus carries commands from
the CPU and returns status signals from
the devices.

An address bus is a bus that is used to specify a
physical address. When a processor or DMA-enabled
device needs to read or write to a memory location, it
specifies that memory location on the address bus (the
value to be read or written is sent on the data bus).

DMA https://en.wikipedia.org/wiki/Direct_memory_access,
IOMMU
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory
management_unit,

Computer-system operation

e One or more CPUs, device controllers connect through common
bus providing access to shared memory

e Concurrent execution of CPUs and devices competing for
memory cycles

CPU

disks

=

disk
controller

mouse

COOOOLLLL LY
lllllllllll UL

C AL O L\
L rERRRIN A}

keyboard printer ~ monitor

on-line —\

I

AN

/

SSS—

USB controller

graphics
adapter

memory

(same picture once again)

I Computer-system operation

I/O devices and the CPU can execute concurrently

Each device controller is in charge of a particular device
type

Each device controller has a local buffer

CPU moves data from/to main memory to/from local buffers
/O is from the device to local buffer of controller

Device controller informs CPU that it has finished its
operation by causing an interrupt

Computer-system operation -
Examples

INTEL" X299 CHIPSET BLOCK DIAGRAM

Intel® _ Up to 4 Channel DDR4
Up to 44 x

Core™ X-series « 2667 1DPC
PCl Express* 3.0 Processor e e-- « 2400 2DPC
Family « UDIMM non-ECC

(oMi3.0)
Up to 24 x PCl Express* 3.0

Intel® High

8 Gb/s each x 17:\ A
) - Definition Audio

8 x SATA Ports, eSATA;
Port Disable

Intel® Rapid Storage

Intel® X299 Technology for PCI
Up to 10 x USB 3.0 Ports T Chipset Express* Storage
14 x USB 2.0 Ports

XHCI; USB Port Disable

Intel® Rapid Storage
Technology with RAID

Integrated 10/100/1000

MAC
. Intel® Smart Connect

Technology

(pcle*x1) (SMBus) Intel® ME 11 Firmware and
BIOS Support

Intel® Extreme Tuning
Utility Support

Computer-system operation -
Examples

AM4 |0 CONSISTENCY WITH PREMIUM CONNECTIVITY: 2019

2019 INTRODUCES PCI EXPRESS GEN4 AND EXTENDED USB3.1 GEN2 10G 10 (RED TEXT*) FOR INCREASING PERIPHERAL AND PROCESSING BANDWIDTH REQUIREMENTS

DRAM x16 PCle Gend*
PCle x16

Controller
Or 2x8 PCle Gen4d*

DRAM
Controller

o x2 PCle Gend* X2 PCle 4 PCle
AMD rc.x
SATA 2x PCle Gen4d*, SATA
/ ’ 2x SATA NS\Q::/
Ryze n devices

3000 [slots J ;g; \ [LAN] [Rﬁ::ir] [WiFi/BT]
\. 7
ot CPUs el [USBS.lT Y uss2.0)

BOIES /\ Bt J

USB 3.1 » 4
Gen2? AM4 HDD/SSD] | oDD

PCle Ge Gend*

SPI/eSPI
Speaker: dwmll 0
udio jac. codas EC/SIO
Mic

*Configurations vary with model. Diagram is representative of Zen 2 CPUs. Always refer to Motherboard Design Guide for specific implementations.
T Does not support multi-lane or “lane bonding”

8 | AMD 500-SERIES CHIPSET ENGINEERING INTERLOCK | May 2019 | CONFIDENTIAL - NDA REQUIRED

I Processor — instruction cycle

. Processes instructions

. Compiler explorer https://godbolt.org/

Fetch stage Execute stage
< START fetch next . Execu.te C HALT)
mstruction mstruction

Figure 1.2 Basic Instruction Cycle

Execute
Instruction Operand (ALU Op.
Fetch = Decode > Fetch and

Writeback)

T

Figure 10-3 Four-stage instruction pipeline.

https://godbolt.org/

I Processor — instruction cycle

. W

Memory I

Address (8086)
Instruction
Value Value
Y .
0
Yy .
(Execution Unit) Instruction Instruction
Registers Register Counter
l L B
Adaress (Jump)
1 Decoder T Status
Register
Signal (Flags)
ALY Generator A
max Reply
address

I Execution Unit

Job

Contol Unit II/O

Unit

Processor — instruction cycle

Multiple
operands

Multiple
results

Instruction complete,
fetch next instruction

Return for string
or vector data

Figure 10.1 Instruction Cycle State Diagram

I Processor - interrupts

Interrupts are provided primarily as a way to improve
processor utilization.

- Example: I/O devices are much slower than the
processor

Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector, which
contains the addresses of all the service routines

Interrupt architecture must save the address of the
interrupted instruction

. An operating system is interrupt driven

Processor - interrupts

User program Interrupt handler
¥
1
2
@ e
@ ©
@ @
1
Interrupt ——
occurs here 74 -
@
@
@
M

Figure 1.6 Transfer of Control via Interrupts

I Processor - interrupts

. To accommodate interrupts, an interrupt stage is added to the
instruction cycle

. If aninterrupt is pending,the processor suspends execution of the
current program and executes an interrupt-handler routine

Fetch stage Execute stage Interrupt stage
B Interrupts
disabled
Check for
(START) Y . Fetch next _Execute __Interrupt;
instruction instruction Interrupts | Initiate interrupt
enabled handler

()

Figure 1.7 Instruction Cycle with Interrupts

Processor - interrupts

Hardware

Processor

Interrupt Process (from three potential sources)

Interrupt Request
(IRQ) sent from
device to
processor

Exception / Trap
sent from
processor to
processor

Software Interrupt
instruction loaded
by processor

thread execution

<

| Processor saves

| Processor halts

thread state

B

| Processor

executes interrupt
handler

:

Processor
resumes thread

execution

Hardware interrupts

- issued by an external (to the
processor) hardware device

- part of the computer, external
peripherals

A software interrupt

- requested by the processor itself
upon executing particular
instructions or when certain
conditions are met.

- A software interrupt may be
intentionally caused by executing a
special instruction

- Software interrupts may also be
unexpectedly triggered by program
execution errors.

Processor - interrupts

Hardware interrupts

- issued by an external (to the processor) hardware device

- part of the computer (e.g., disk controller) or external peripherals (e.g., pressing a
keyboard key or moving the mouse)

A software interrupt

- requested by the processor itself upon executing particular instructions or when
certain conditions are met. Every software interrupt signal is associated with a
particular interrupt handler.

- A software interrupt may be intentionally caused by executing a special
instruction which, by design, invokes an interrupt when executed. Such instructions
function similarly to subroutine calls and are used for a variety of purposes, such as
requesting operating system services and interacting with device drivers (e.g., to
read or write storage media).

- Software interrupts may also be unexpectedly triggered by program execution errors.
These interrupts typically are called traps or exceptions. For example, a
divide-by-zero exception

I Processor - interrupts

The operating system preserves the state of the CPU by storing
registers and the program counter

Processors typically have an internal interrupt mask register which
allows selective enabling and disabling of hardware interrupts.

Two approaches can be taken to dealing with multiple interrupts.

- Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt

- Define priorities for interrupts and to allow an interrupt of higher
priority to cause a lower-priority interrupt handler to be interrupted

Interrupt

User program handler X

\

/

Interrupt
handler Y
o
NG
(a) Sequential interrupt processing
Interrupt
User program handler X
: /1:
= Interrupt
= handler Y
= o

(b) Nested interrupt processing

Figure 1.12 Transfer of Control with Multiple Interrupts

Processor - interrupts

. Two approaches can be taken to
dealing with multiple interrupts.

Incoming interrupts are
disabled while another
interrupt is being
processed to prevent a lost
interrupt

Define priorities for
interrupts and to allow an
interrupt of higher priority to
cause a lower-priority
interrupt handler to be
interrupted

I Processor - interrupts

INT_NUM Short Description PM [clarification needed]
| 0x00 | Division by zero
| 0x01 | Single-step interrupt (see trap flag)
0x02 | NMI . The Interrupt Descriptor Table
| 0x03 | Breakpoint (callable by the special 1-byte instruction OxCC, used by debuggers) | (| DT) iS a data Stru Ctu re u Sed by
| 2"2: ,, Zve”rw the x86 architecture to implement
X ounds .
06 il Opoode an interrupt vector table.
| 0x07 | Coprocessor not available
| 0x08 | Double fault
| 0x09 | Coprocessor Segment Overrun (386 or earlier only)
| O0x0A | Invalid Task State Segment
| 0x0B | Segment not present
0X0C | Stack Fault
| 0x0D | General protection fault
| Ox0E | Page fault
| OxOF “ reserved
0x10 | Math Fault
| Ox11 | Alignment Check
| 0x12 Machine Check
| 0x13 | SIMD Floating-Point Exception
| 0x14 | Virtualization Exception

0x15 Control Protection Exception

I Flynn taxonomy

SISD Instruction Pool SIMD Instruction Pool
> PU -
: : [pu]-
< *| PU |+ I
= =
= A »[PU |+
> PU -
MISD Instruction Pool MIMD Instruction Pool

Data Pool
|
-
g w)
(=
1
o)
=
T
Data Pool

Low price, slow, large capacity

Figure 1.14 The Memory Hierarchy

I Cache - size

AMD Ryzen 9 3900x 1’?6
(0)
e, Uq
Cache Organization «» e
L11§ 384 KiB 12x32KiB 8-way set associative
L1§ 768 KiB
L1ID$ 384 KiB 12x32KiB 8-way set associative write-back
L2§ 6 MiB 12x512 KiB 8-way set associative write-back
L3§ 64 MiB 4x16 MiB

Intel 19 9900k

Cache O izati [Edit/Modify Cache Info]
acne urganization «»

L11§ 256 KiB 8x32KiB 8-way set associative
L1D§ 256 KiB 8x32 KiB 8-way set associative write-back

L1§ 512KiB

L2§ 2 MiB 8x256 KiB 4-way set associative write-back

L3 16 MiB 8x2 MiB 16-way set associative write-back

I Cache — mapping function

. cache size

. block size: the unit of data exchanged between
cache and main memory.

. mapping function determines which cache
location the block will occupy.

- replacement algorithm chooses, within the
constraints of the mapping function, which block
to replace when a new block is to be loaded into
the cache

I Cache - locality of reference

. Well described in:
https://en.wikipedia.org/wiki/Locality of reference

. Tendency of a processor to access the same set of
memory locations repetitively over a short period of time

. Temporal locality refers to the reuse of specific data, and/or
resources, within a relatively small time duration.

Spatial locality refers to the use of data elements within
relatively close storage locations

CPU modes (x86)

Real mode

- Real mode is characterized by a 20-bit segmented memory address
space (giving exactly 1 MiB of addressable memory) and unlimited
direct software access to all addressable memory, I/O
addresses and peripheral hardware. Real mode provides no
support for memory protection, multitasking, or code privilege levels.

- DOS
Protected mode
- Typical

- It allows system software to use features such as virtual memory,
paging and safe multi-tasking

- Privilege rings for the x86 available in protected mode

I CPU modes (x86)

. Privilege rings for
the x86 available
in protected mode

Least privileged

Most privileged
Device drivers

Device drivers

Applications

I Booting process

Well described inhttps://en.wikipedia.org/wiki/Booting#Boot sequence

In real mode, execute the instruction located at reset vector CS:IP =
FOOO:FFFO

- The reset vector is the default location a central processing unit
will go to find the first instruction it will execute after a reset.

- Usually pointing to the firmware (UEFI or BIOS)

BIOS runs a power-on self-test (POST) to check and initialize required
devices such as DRAM and the PCI bus (including running embedded

ROMs

The firmware (UEFI or BIOS) goes through pre-configured list of
non-volatile storage devices ("boot device sequence") until it finds one
that is bootable - MBR boot signature

https://en.wikipedia.org/wiki/Booting#Boot_sequence

Source: (http://www.independent-software.com/operating-system-development-first-and-second-stage-bootloaders.html)

Booting process — bootloaders

. First-stage boot loader (gsuaty
partofB1oS?)

- Must fit into the first 446 bytes of
the Master Boot Record

- For example coreboot
- Must do the following:

1) Setup the memory segments and
stack used by the bootloader code

2) Reset the disk system
3) Display a string saying “Loading
0OS..”

4) Find the second-stage boot loader in
the FAT directory

5) Read the second-stage boot loader
image into memory at 1000:0000

6) Transfer control to the
second-stage bootloader

1))

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)

12)

Second-stage boot loader

Not operating systems, but are able
to load an operating system properly
and transfer execution to it

For example GNU GRUB - Grand unified

Bootloader (includes both 1. and 2.)

In the second-stage bootloader, we must do the
following:

Copy the boot sector data bytes to a local memory
area, as they will be overwritten

Find the kernel image in the FAT directory

Read the kernel image into memory at 2000:0000
Reset the disk system

Enable the A20 line

Setup the interrupt descriptor table at 0000:0000
Setup the global descriptor table at 0000:0800
Load the descriptor tables into the CPU

Switch to protected mode

Clear the prefetch queue

Setup protected mode memory segments and stack for
use by the kernel code

Transfer control to the kernel code using a long jump

http://www.independent-software.com/operating-system-development-first-and-second-stage-bootloaders.html

I Master Boot Record

GUID Partition Table Scheme

Protective MBR

Primary GPT Header

Entry 1(Entry 2 |Entry 3

Entry 4

Entries 5-128

Partition 1

Partition 2

X Remaining Partitions X

Entry 1

Entry 2 |Entry 3 [Entry 4

Entrias 5-128

N\

Secondary GPT Header

/‘

Primary GPT

ary GPT

-
—

C

—

Secor

Disk =

Primary
partition -
one

Master — Partition—
boot table
record

Master Boot Code

1st Partition Table
Entry

2nd Partition Table
Entry

3rd Partition Table
Entry

4th Partition Table
Entry

0x55 A4

Boot Sector

Data

Primary
partition —
two

Boot Sector

Data

Primary
partition —
three

Boot Sector

Data

Extended
partition

Extended—
boot
record

Extended
Partition
Table

0xSSAA

Extended—
boot
record

Boot Sector

Data

—Logical
volume

Extended
Partition
Table

0x55 AA

Boot Sector

Data

—Logical
volume

MBR

OS Kernel

Service processes

System support | Applications
processes | |
Service control I | :
manager SVChost.exe e | Environment
Lsass Winmgmt.exe Windows ® subsystems o Kernel typeS
Winlogon Spooler explorer POSIX
| , User - Monolithic
rizlslzlo:r Services.exe application '
: Subsytem DIty T - Microkernel
"""" LYy Y Y 3y
Svetem | | Nudll.dil - Hybrid (or modular) kernel
stem
S N O O A Y D | |
IR | w— | . Windows and macQOS - Hybrid
v System service dispatcher (Or mOdU|ar) kel’ne|
(Kernel-mode callable interfaces))
o - y e . Hybrid kernels are similar to micro
- - .
| 8 2 g | & = TIEQ| g kernels, except they include some
“ (97 ler 5 —_
| B BT 8|82 2 |58 |%0|en additional code in kernel-space to
Device g g = AEEREE 5 |82 |aB|23 p
& Ug 5 = [o TN/ o = = . .
and file c | B |%2| 8 |59 | 8 [|BRE| & Crapiics increase performance
system S] = 09‘2 S 8 2| &8 £ drivers
drivers o) e < a
. Linux — originally monolithic kernel
Kernel
Hardware abstraction layer (HAL)
Lsass = local security authentication server Colored area indicates Executive

POSIX = portable operating system interface
GDI = graphics device interface
DLL = dynamic link libraries

Figure 2.15 Windows and Windows Vista Architecture [RUSS11]

I OS Kernel - Unix

User programs

UNIX commands
and libraries

.
e

LS | Libraries

—_—— e e] e

Kernel level

System call
interface

Kernel

Interprocess
communication

File subsystem
Process

control
subsystem

A
4

Scheduler

A A

\
Buffer cache Memory

i management

Y \

Character Block

Device drivers

User-written
applications

A
Y

Hardware control

Kernel level Figure 2.16 General UNIX Architecture

Hardware level

Hardware

Figure 2.17 Traditional UNIX Kernel

