
Operating systems

Lecture 2, Michal Vrábel, 15/10/2019

Operating System - definitions

● An OS is a program that controls the execution of application programs and
acts as an interface between applications and the computer hardware.

− Stalling: Operating systems internals and design principles 5th edition

● An operating system acts as an intermediary between the user of a computer
and the computer hardware. The purpose of an operating system is to provide
an environment in which a user can execute programs in a convenient and
efficient manner.

− Silberschatz et al.: Operating System Concepts with Java. 8th ed. 2010

● An operating system is software that manages the computer hardware. The
hardware must provide appropriate mechanisms to ensure the correct operation
of the computer system and to prevent user programs from interfering with the
proper operation of the system

− Silberschatz et al.: Operating System Concepts with Java. 8th ed. 2010

Classifications of OS

● Type of processing

− Batch
− Interactive

● Number of parallel
users

− Single-user
− Multi-user

● Response time

− Guaranteed
response time -
real-time

− Not guaranteed
● Use case

− General / Universal
− Specialized

System services of an Operating system

today

System services of an Operating system

System services of an Operating system

System services of an Operating system

System Call Implementation

System call implementation

API – System Call – OS Relationship

System Call Parameter Passing

Types of System Calls
● Process control

− end, abort

− load, execute

− create process, terminate process

− get process attributes, set process attributes

− wait for time

− wait event, signal event

− allocate and free memory

● File management

− create file, delete file

− open, close file

− read, write, reposition

− get and set file attributes

● Device management

− request device, release device

− read, write, reposition

− get device attributes, set device attributes

− logically attach or detach device

● Information maintenance

− get time or date, set time or date

− get system data, set system data

− get and set process, file, or device
attributes

● Communications

− create, delete communication
connection

− send, receive messages

− transfer status information

− attach and detach remote devices

Examples of Windows and Unix System Calls

Communication between an application and OS

● The 11 steps in making the system call read(fd, buffer, nbytes)

Operating Systems Design and Implementation, Third Edition By Andrew S. Tanenbaum

Communication between an application and OS

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 400

The system call handler, which has a structure similar to that of the other exception handlers, performs
the following operations:
1) Saves the contents of most registers in the Kernel Mode stack (this operation is common to all system

calls and is coded in assembly language).
2) Handles the system call by invoking a corresponding C function called the system call service routine.
3) Exits from the handler: the registers are loaded with the values saved in the Kernel Mode stack, and

the CPU is switched back from Kernel Mode to User Mode (this operation is common to all system
calls and is coded in assembly language).

Issuing a system call

● Native applications* can invoke a system call in two different
ways:

− By executing the int $0x80 assembly language instruction; in
older versions of the Linux kernel, this was the only way to
switch from User Mode to Kernel Mode.

− By executing the sysenter assembly language instruction,
introduced in the Intel Pentium II microprocessors; this
instruction is now supported by the Linux 2.6 kernel.

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 400

Issuing a system call

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 402

Implementations of VFS System Calls

1) shell command that copies the MS-DOS file
/floppy/TEST to the Ext2 file /tmp/test.

2) Cp executes

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 505

Actually, the code of the real cp program is more complicated, because it must
also
check for possible error codes returned by each system call.

Implementations of VFS System Calls

3) The open() system call is serviced by the
sys_open() function,

 sys_open() function. It performs the following steps:

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 507

...

● Syscall table:

− https://elixir.bootlin.com/linux/v2.6.39/source/arch/x86/kernel/syscall_table_32.S

− https://elixir.bootlin.com/linux/v4.15/source/include/linux/syscalls.h#L553

● Handler?

− https://elixir.bootlin.com/linux/v2.6.39/source/fs/open.c#L1050

− https://elixir.bootlin.com/linux/v4.15/source/fs/open.c#L1117

Od open() až do jadra
Knižničná funkcia (libc.a)
Program objdump
Program crash
Zoznam služieb (sys –c)
Disassembling (dis sys_open)

● Štruktúra programu (TXT, DATA, BSS, STACK)
− http://en.wikipedia.org/wiki/Data_segmenthttp://en.wikipedia.org/wiki/Data_segment ;

http://blog.ooz.ie/2008/09/0x03-notes-on-assembly-memory-from.html

● Služby jadra

● Ako sú realizované? (crash→sys –c; dis sys_open;
irq -d)

● C interface (libc.a)

https://elixir.bootlin.com/linux/v2.6.39/source/arch/x86/kernel/syscall_table_32.S
https://elixir.bootlin.com/linux/v4.15/source/include/linux/syscalls.h#L553
https://elixir.bootlin.com/linux/v2.6.39/source/fs/open.c#L1050
http://en.wikipedia.org/wiki/Data_segment
http://blog.ooz.ie/2008/09/0x03-notes-on-assembly-memory-from.html

File management
CHAPTER 12 / FILE MANAGEMENT

Page 521

Secondary storage management
● On secondary storage, a file consists of a collection of blocks.

● Several issues are involved in file allocation:

1) When a new file is created, is the maximum space required for the file
allocated at once? -
PREALLOCATION VERSUS DYNAMIC ALLOCATION

2) Space is allocated to a file as one or more contiguous units, which we shall refer
to as portions. That is, a portion is a contiguous set of allocated blocks. The
size of a portion can range from a single block to the entire file. What size of
portion should be used for file allocation? -
PORTION SIZE

3) What sort of data structure or table is used to keep track of the portions
assigned to a file? An example of such a structure is a file allocation table
(FAT), found on DOS and some other systems. -
FILE ALLOCATION METHODS

Of course, these items interact and must be considered together. The result is
that there are two major alternatives:
• Variable, large contiguous portions: This will provide better performance.
The
variable size avoids waste, and the file allocation tables are small. However,
space is hard to reuse.
• Blocks: Small fixed portions provide greater flexibility. They may require
large tables or complex structures for their allocation. Contiguity has been
abandoned as a primary goal; blocks are allocated as needed.

With variable-size portions, we need to be concerned
with the fragmentation
of free space. This issue was faced when we
considered partitioned main memory in
Chapter 7. The following are possible alternative
strategies:

• First fit: Choose the first unused contiguous group of
blocks of sufficient size
from a free block list.
• Best fit: Choose the smallest unused group that is of
sufficient size.
• Nearest fit: Choose the unused group of sufficient
size that is closest to the
previous allocation for the file to increase locality.

12.7 / SECONDARY STORAGE MANAGEMENT
Page 543

Secondary storage management - preallocation

● Preallocation policy requires that the maximum size of a file be
declared at the time of the file creation request.

● In a number of cases, such as program compilations, the
production of summary data files, or the transfer of a file from
another system over a communications network, this value can
be reliably estimated.

● However, for many applications, it is difficult if not impossible
to estimate reliably the maximum potential size of the file. In those
cases, users and application programmers would tend to
overestimate.

● There are advantages to the use of dynamic allocation, which
allocates space to a file in portions as needed

Secondary storage management - portion size

● Trade-off between efficiency from
the point of view of a single file
versus overall system
efficiency

● Two major alternatives:
− Variable, large contiguous

portions:
● This will provide better performance.

The variable size avoids waste, and
the file allocation tables are small.

● However, space is hard to reuse.

− Blocks
● Small fixed portions provide greater

flexibility.

● They may require large tables or
complex structures for their
allocation.

● Contiguity has been abandoned as a
primary goal; blocks are allocated as
needed.

● With variable-size portions, we
need to be concerned with the
fragmentation of free space.

● First fit: Choose the first unused
contiguous group of blocks of
sufficient size from a free block
list.

● Best fit: Choose the smallest
unused group that is of sufficient
size.

● Nearest fit: Choose the unused
group of sufficient size that is
closest to the previous allocation
for the file to increase locality.

Secondary storage management - File allocation methods

● Three methods are in common use: contiguous, chained, and indexed

● contiguous allocation
− a single contiguous set of blocks is allocated to a file at the time of file creation

− it will be necessary to perform a compaction algorithm

− External fragmentation will occur, making it difficult to find contiguous blocks of space
of sufficient length

● chained allocation
− block contains a pointer to the next block in the chain

− no external fragmentation

Secondary storage management - File allocation methods
(contiguous, chained)

Secondary storage management - File allocation methods
(contiguous, chained)

Secondary storage management - File allocation methods
(indexed)

● Indexed allocation addresses many of the problems of contiguous and chained allocation.

● In this case, the file allocation table contains a separate one-level index for each file;

● the index has one entry for each portion allocated to the file.

● Typically, the file indexes are not physically stored as part of the file allocation table.

● Rather, the file index for a file is kept in a separate block, and the entry for the file in the
file allocation table points to that block.

● File consolidation may be done from time to time

Secondary storage management - File allocation methods
(indexed)

● Allocation may be on the basis of either fixed-size blocks (Figure 12.13) or variable-size
portions (Figure 12.14).

Secondary storage management - Free Space Management

● To perform any of the file allocation techniques described previously, it is necessary to know what
blocks on the disk are available.

● Thus we need a disk allocation table in addition to a file allocation table. We discuss here a number
of techniques that have been implemented.

● BIT TABLES

− This method uses a vector containing one bit for each block on the disk.

− Each entry of a 0 corresponds to a free block, and each 1 corresponds to a block in use.

● CHAINED FREE PORTIONS

− The free portions may be chained together by using a pointer and length value in each free portion.

● INDEXING

− The indexing approach treats free space as a file and uses an index table as described under file
allocation. For efficiency, the index should be on the basis of variable-size portions rather than
blocks. Thus, there is one entry in the table for every free portion on the disk.

● FREE BLOCK LIST

− In this method, each block is assigned a number sequentially and the list of the numbers of all free
blocks is maintained in a reserved portion of the disk

Volumes

● In essence a volume is a logical disk.

● A collection of addressable sectors in secondary memory that an OS
or application can use for data storage.

● The sectors in a volume need not be consecutive on a physical
storage device; instead, they need only appear that way to the OS or
application.

● A volume may be the result of assembling and merging smaller
volumes.

● In the simplest case, a single disk equals one volume. Frequently, a disk
is divided into partitions, with each partition functioning as a separate
volume.

● It is also common to treat multiple disks as a single volume or
partitions on multiple disks as a single volume.

Reliability
● The following steps could be performed when a file allocation is

requested:

− Lock the disk allocation table on disk. This prevents another user
from causing alterations to the table until this allocation is completed.

− Search the disk allocation table for available space. This
assumes that a copy of the disk allocation table is always kept in
main memory. If not, it must first be read in.

− Allocate space, update the disk allocation table, and update the
disk. Updating the disk involves writing the disk allocation table back
onto disk. For chained disk allocation, it also involves updating some
pointers on disk.

− Update the file allocation table and update the disk.

− Unlock the disk allocation table.

File System Security - Access Rights
● Access rights that can be assigned to a

particular user for a particular file.

● None: The user may not even learn of the existence of the
file, much less access it. To enforce this restriction, the user
would not be allowed to read the user directory that includes
this file.

● Knowledge: The user can determine that
the file exists and who its owner is.

− The user is then able to petition the owner for
additional access rights.

● Execution: The user can load and execute
a program but cannot copy it.

− Proprietary programs are often made accessible with
this restriction.

● Reading: The user can read the file for any
purpose, including copying and execution.

− Some systems are able to enforce a distinction
between viewing and copying. In the former case, the
contents of the file can be displayed to the user, but
the user has no means for making a copy.

● Appending: The user can add data to the
file, often only at the end, but cannot modify
or delete any of the file’s contents.

− This right is useful in collecting data from a number of
sources.

● Updating: The user can modify, delete, and
add to the file’s data. This normally includes
writing the file initially, rewriting it completely
or in part, and removing all or a portion of
the data. Some systems distinguish among
different degrees of updating.

● Changing protection: The user can change
the access rights granted to other users.
Typically, this right is held only by the owner
of the file. In some systems, the owner can
extend this right to others.

● Deletion: The user can delete the file from
the file system.

File System Security - Access Rights

● Access can be provided to different classes of users:

● Specific user: Individual users who are designated by user ID

● User groups: A set of users who are not individually defined. The system must have some
way of keeping track of the membership of user groups.

● All: All users who have access to this system. These are public files.

Directory
● To understand the requirements for a file structure, it is helpful to consider the

types of operations that may be performed on the directory:

● Search: When a user or application references a file, the directory must be
searched to find the entry corresponding to that file.

● Create file: When a new file is created, an entry must be added to the directory.

● Delete file: When a file is deleted, an entry must be removed from the directory.

● List directory: All or a portion of the directory may be requested. Generally,this
request is made by a user and results in a listing of all files owned by that user,
plus some of the attributes of each file (e.g., type, access control information,
usage information).

● Update directory: Because some file attributes are stored in the directory, a
change in one of these attributes requires a change in the corresponding
directory entry.

Unix File Management
● Six types of files are distinguished:

− Regular, or ordinary: Contains arbitrary data in zero or more data blocks.
● Regular files contain information entered in them by a user, an application program, or a system utility program. The file system

does not impose any internal structure to a regular file but treats it as a stream of bytes.

− Directory: Contains a list of file names plus pointers to associated inodes (index nodes),
described later. Directories are hierarchically organized.

− Special: Contains no data but provides a mechanism to map physical devices to file
names.

● The file names are used to access peripheral devices, such as terminals and printers. Each I/O device is associated with a
special file

− Named pipes: As discussed in Section 6.7, a pipe is an interprocess communications
facility.

● A pipe file buffers data received in its input so that a process that reads from the pipe’s output receives the data on a
first-in-first-out basis.

− Links: In essence, a link is an alternative file name for an existing file.

− Symbolic links: This is a data file that contains the name of the file it is linked to.

Unix File Management: Inodes

● All types of UNIX files are
administered by the OS by
means of inodes.

● An inode (index node) is a
control structure that contains
the key information needed by
the operating system for a
particular file.

● Several file names may be
associated with a single
inode, but an active inode is
associated with exactly one file,
and each file is controlled by
exactly one inode.

Example: Inode and dentry management in
GlusterFS

● https://staged-gluster-docs.readthedocs.io/en/release3.7.0be
ta1/Developer-guide/datastructure-inode/

● Inode table in glusterfs mainly
contains a hash table for maintaining
inodes.

● In general a file/directory is
considered to be existing if there is a
corresponding inode present in the
inode table.

● If some fop is happening on the
inode, then the inode will be present
in the active inodes list maintained
by the inode table.
unlink/rmdir/forget).

● Apart from the hash table, inode table
also maintains 3 important list of inodes

1) Active list: Active list contains all the
active inodes (i.e inodes which are
currently part of some fop). Active inodes
are those inodes whose refcount is
greater than zero.

2) Lru list: Least recently used inodes list. A
limit can be set for the size of the lru list.
For bricks it is 16384 and for clients it is
infinity.

3) Purge list: List of all the inodes which
have to be purged (i.e inodes which have
to be deleted from the inode table due to
unlink/rmdir/forget)

https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Developer-guide/datastructure-inode/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Developer-guide/datastructure-inode/

Unix File Management: File Allocation

● File allocation is done on a block basis. Allocation is
dynamic, as needed, rather than using
preallocation.

● Hence, the blocks of a file on disk are not
necessarily contiguous.

● An indexed method is used to keep track of each
file, with part of the index stored in the inode for the
file.

● In all UNIX implementations, the inode includes a
number of direct pointers and three indirect pointers
(single, double, triple).

Unix File Management: Directories

● Directories are structured in a
hierarchical tree.

● Directory is simply a file that
contains a list of file names plus
pointers to associated inodes.

● Each directory entry (dentry)
contains a name for the
associated file or subdirectory
plus an integer called the
i-number (index number).

● When the file or directory is
accessed, its i-number is used as
an index into the inode table.

Unix File Management: Volume Structure

● Boot block: Contains code required to boot the operating system

● Superblock: Contains attributes and information about the file
system, such as partition size, and inode table size

● Inode table: The collection of inodes for each file

● Data blocks: Storage space available for data files and
subdirectories

Image: http://www.linux-magazine.com/Issues/2013/156/The-ext-Filesystem

http://www.linux-magazine.com/Issues/2013/156/The-ext-Filesystem

Unix File Management: File Access Control

● Associated with each file is a set of
12 protection bits.

− 9: rwxrwxrwx

− 3: SetUID, SetGID, Sticky bit

● Access Control Lists in UNIX

− Many modern UNIX and
UNIX-based operating systems
support access control lists,
including FreeBSD, OpenBSD,
Linux, and Solaris.

− setfacl command

Unix File Management: File Access Control

● SetUID, SetGID:

− When a user (with execute
privileges for this file) executes
the file, the system temporarily
allocates the rights of the
user’s ID of the file creator, or
the file’s group, respectively

● “Sticky” bit

− When set on a file, this originally
indicated that the system should
retain the file contents in
memory following execution.
This is no longer used.

− When applied to a directory,
though, it specifies that only the
owner of any file in the directory
can rename, move, or delete
that file.

● Useful for managing files in
shared temporary directories

Linux virtual file system

● Superblock object: Represents a
specific mounted file system

● Inode object: Represents a
specific file

● Dentry object: Represents a
specific directory entry

● File object: Represents an open
file associated with a process

