I Operating systems

Lecture 2, Michal Vrabel, 15/10/2019

Operating System - definitions

An OS is a program that controls the execution of application programs and
acts as an interface between applications and the computer hardware.

- Stalling: Operating systems internals and design principles 5th edition

An operating system acts as an intermediary between the user of a computer
and the computer hardware. The purpose of an operating system is to provide
an environment in which a user can execute programs in a convenient and
efficient manner.

- Silberschatz et al.: Operating System Concepts with Java. 8th ed. 2010

An operating system is software that manages the computer hardware. The
hardware must provide appropriate mechanisms to ensure the correct operation
of the computer system and to prevent user programs from interfering with the
proper operation of the system

- Silberschatz et al.: Operating System Concepts with Java. 8th ed. 2010

FIGURE 1.3

A simplistic view
of the OS software
in relationship to
hardware.

Shell
(Command
Interpreter)

Utilities

Other
Programs
(browsers,

games. word
processing)

I

I

|

Operating System Kermel

I

I

Devices
(disks. keyboards)

Memory

I

CPU

Other

Shell Programs
(Command Utilities (browsers,
Interpreter) games. word

processing)
Operating System Kemel
Device Drivers BIOS
(interface to hardware)
Device

(disks, keyboards)

Memory

CPU

FIGURE 1.5
The PC (small
system) model
of an OS.

EIGURE 2.4d | of Shell User Programs
Syorac moesm.o (Command Utilities (browsers. games.
an Operating System. Interpreter) word processing)

____If _______ i_I ________ f ——

~
Memory Processor File
Management Scheduling System
> Kernel
Device Drivers
I I P
Devices
(disks. CPU Memory
keyboards)

FIGURE 1.4

A layered view
of an OS.

Applications+
Utilities+Shell

OS Kemel

I Classifications of OS

. Type of processing
- Batch
- Interactive

. Number of parallel
users

- Single-user
- Multi-user

. Response time

- Guaranteed
response time -
real-time

- Not guaranteed

. Use case

- General / Universal
- Specialized

System services of an Operating system

m Operating systems provide an environment for execution of programs and
services to programs and users

m One set of operating-system services provides functions that are helpful to the
user:

e User interface - Almost all operating systems have a user interface (Ul).

» Varies between Command-Line (CLI), Graphics User Interface (GUI),
Batch

e Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

e 1/O operations - A running program may require 1/0O, which may involve a

file or an 1/O device

today , File-system manipulation - The file system is of particular interest.

Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

Operating System Concepts Essentials — 8" Edition 2.4 Silberschatz, Galvin and Gagne ©2011

System services of an Operating system

e Communications — Processes may exchange information, on the
same computer or between computers over a network

» Communications may be via shared memory or through
message passing (packets moved by the OS)

e Error detection — OS needs to be constantly aware of possible
errors

» May occur in the CPU and memory hardware, in I/O devices, In
user program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

» Debugging facilities can greatly enhance the user’s and
programmer’s abllities to efficiently use the system

Operating System Concepts Essentials — 8t" Edition 2.4 Silberschatz, Galvin and Gagne ©2011

System services of an Operating system

® Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

e Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - Some (such as CPU cycles, main memory,
and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

e Accounting - To keep track of which users use how much and what kinds
of computer resources

e Protection and security - The owners of information stored in a multiuser
or networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

» Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access attempts

» If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest link.

Operating System Concepts Essentials — 8" Edition 2.4 Silberschatz, Galvin and Gagne ©2011

System services of an Operating system

user and other system programs

GUI

batch command line

user interfaces

system calls
program 17O file - resource :
execution operations systems communication allocation 2ecouniing
error pro;en((}jtlon
detection _ security
services

operating system

hardware

Operating System Concepts Essentials — 8" Edition

24

Silberschatz, Galvin and Gagne ©2011

System Call Implementation

Programming interface to the services provided by the OS
m Typically written in a high-level language (C or C++)

® Mostly accessed by programs via a high-level Application Program
Interface (API) rather than direct system call use

® Three most common APIs are Win32 API for Windows, POSIX API
for POSIX-based systems (including virtually all versions of UNIX,
Linux, and Mac OS X), and Java API for the Java virtual machine
(JVM)

® Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

Operating System Concepts Essentials - 8t Edition 2.12 Silberschatz, Galvin and Gagne ©2011

System call implementation

Typically, a number associated with each system call

e System-call interface maintains a table indexed according to these
numbers

® The system call interface invokes intended system call in OS kernel
and returns status of the system call and any return values

® The caller need know nothing about how the system call is
iImplemented

e Just needs to obey API and understand what OS will do as a
result call

e Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built into
libraries included with compiler)

Operating System Concepts Essentials - 8" Edition 2.15 Silberschatz, Galvin and Gagne ©2011

API — System Call — OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
> | - open ()
. Implementation
i » of open ()
" system call

return

System Call Parameter Passing

m Often, more information is required than simply identity of desired
system call

e Exact type and amount of information vary according to OS and
call

m Three general methods used to pass parameters to the OS
e Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

e Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

» This approach taken by Linux and Solaris

e Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

e Block and stack methods do not limit the number or length of
parameters being passed

Operating System Concepts Essentials - 8t Edition 2.18 Silberschatz, Galvin and Gagne ©2011

I Types of System Calls

. Process control

end, abort

load, execute

create process, terminate process

get process attributes, set process attributes
wait for time

wait event, signal event

allocate and free memory

. File management

create file, delete file
open, close file
read, write, reposition

get and set file attributes

. Device management

request device, release device
read, write, reposition
get device attributes, set device attributes

logically attach or detach device

. Information maintenance

- get time or date, set time or date
- get system data, set system data

- get and set process, file, or device
attributes

. Communications

- create, delete communication
connection

- send, receive messages
- transfer status information

- attach and detach remote devices

Examples of Windows and Unix System Calls

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit()
WaitForSingleObject () wait()
File CreateFile() open()
Manipulation ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode () ioectl()
Manipulation ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
Communication CreatePipe() pipe()
CreateFileMapping() shmget ()
MapViewOfFile() mmap ()
Protection SetFileSecurity () chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown ()

Communication between an application and OS

. The 11 steps in making the system call read (fd, buffer, nbytes)

Address
OxFFFFFFFF -
Retum to caller Libra
Trap to the kernel prooe?j’ure
5{ Put code for read in register read
A 10
User space < Increment SP 11
~ Call read
3| Push fd User program
o[Push &buffer Cging road
1| Push nbytes
6 9
= 7
Kemel space : 7 8 Sys call
(Operating system) \ e % handler

0
Operating Systems Design and Implementation, Third Edition By Andrew S. Tanenbaum

Communication between an application and OS

_____________ UserMode oo kemelMode
E o xyz() { system call: . v sys_xyz() { |
; xyz() SYSCALL ; sys xyz() E
AT . el I .. ;
2 I } o SYSEXIT W ;
systemall Wrapperroutine Sytemaall Sytemaall
invocation in in /ibc standard handler service routine
application library
program

Figure 10-1. Invoking a system call

The system call handler, which has a structure similar to that of the other exception handlers, performs

the following operations:

1) Saves the contents of most registers in the Kernel Mode stack (this operation is common to all system
calls and is coded in assembly language).

2) Handles the system call by invoking a corresponding C function called the system call service routine.

3) Exits from the handler: the registers are loaded with the values saved in the Kernel Mode stack, and
the CPU is switched back from Kernel Mode to User Mode (this operation is common to all system
calls and is coded in assembly language).

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 400

I Issuing a system call

Native applications™ can invoke a system call in two different
ways:

- By executing the int $0x80 assembly language instruction; in
older versions of the Linux kernel, this was the only way to
switch from User Mode to Kernel Mode.

- By executing the sysenter assembly language instruction,
iIntroduced in the Intel Pentium || microprocessors; this
Instruction is now supported by the Linux 2.6 kernel.

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 400

I Issuing a system call

Issuing a System Call via the int $0x80 Instruction

The “traditional” way to invoke a system call makes use of the int assembly lan-
guage instruction, which was discussed in the section “Hardware Handling of Inter-
rupts and Exceptions” in Chapter 4.

The vector 128—in hexadecimal, 0x80—is associated with the kernel entry point.
The trap_init() function, invoked during kernel initialization, sets up the Interrupt
Descriptor Table entry corresponding to vector 128 as follows:

set_system gate(0x80, &system call);

The call loads the following values into the gate descriptor fields (see the section
“Interrupt, Trap, and System Gates” in Chapter 4):

Segment Selector
The _KERNEL_CS Segment Selector of the kernel code segment.

Offset
The pointer to the system call() system call handler.
Type
Set to 15. Indicates that the exception is a Trap and that the corresponding han-
dler does not disable maskable interrupts.
DPL (Descriptor Privilege Level)
Set to 3. This allows processes in User Mode to invoke the exception handler

(see the section “Hardware Handling of Interrupts and Exceptions” in
Chapter 4).

Therefore, when a User Mode process issues an int $0x80 instruction, the CPU
switches into Kernel Mode and starts executing instructions from the system call
address.

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 402

Implementations of VFS System Calls

1) shell command that copies the MS-DOS file
[floppy/TEST to the Ext2 file /tmp/test.

2) Cp executes

inf = open("/floppy/TEST", O RDONLY, 0);
outf = open("/tmp/test", O WRONLY | O CREAT | O TRUNC, 0600);
do {
len = read(inf, buf, 4096);
write(outf, buf, len);
} while (len);
close(outf);
close(inf);

Actually, the code of the real cp program is more complicated, because it must

also
check for possible error codes returned by each system call.

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 505

Implementations of VFS System Calls

3) The open() system call is serviced by the
sys_open() function,

sys_open() function. It performs the following steps:

Understanding the Linux Kernel, Third Edition 3rd Edition by Daniel P. Bovet, Page 507

1. Invokes getnane() to read the file pathname from the process address space.

2. Invokes get_unused_fd() to find an empty slot in current->files->fd. The corre-
sponding index (the new file descriptor) is stored in the fd local variable.

3. Invokes the filp_open() function, passing as parameters the pathname, the
access mode flags, and the permission bit mask. This function, in turn, executes
the following steps

S

. Sets the f_op field to the contents of the i_fop field of the correspond-

a. Copies the access mode flags into namei_flags, but encodes the access mode ing inode object. This sets up all the methods for future file operations.
flags O_RDONLY, O_WRONLY, and 0_RDWR with a special format: the bit at index 0
(lowest-order) of namei_flags is set only if the file access requires read privi-
leges; similarly, the bit at index 1 is sct only if the file access requires write
privileges. Notice that it is not possible to specify in the open() system call
that a file access does not require cither read or write privileges; this makes
sense, however, in a pathname lookup operation involving symbolic links

o

. Inserts the file object into the list of opened files pointed to by the s_
files field of the filesystem’s superblock.

o

. If the open method of the file operations is defined, the function invokes
it.

b. Invokes open_nanei(), passing to it the pathname, the modified access mode
flags, and the address of a local naneidata data structure. The function per-
forms the lookup operation in the following manner:

~

. Invokes file_ra_state_init() to initialize the read-ahead data struc-
tures (see Chapter 16).

+ If 0_CREAT is not set in the access mode flags, starts the lookup opera-

tion with the LOOKUP_PARENT flag not set and the LOOKUP_OPEN flag set. 8. If the 0_DIRECT flag is set, it checks whether direct I/O operations can be
Moreover, the LOOKUP_FOLLOW flag is st only if O_NOFOLLON is cleared, performed on the file (see Chapter 16).
while the LOOKUP_DIRECTORY flag is set only if the 0_DIRECTORY flag is set. N

« I 0_CREAT is set in the access mode flags, starts the lookup operation 9. Returns the address of the file object.

with the LOOKUP_PARENT, LOOKUP_OPEN, and LOOKUP_CREATE ﬂags set. Once
the path_lookup() function successfully returns, checks whether the

seauested Blealrsqdy exists, lndf, allosates a nwdiskinodety invols 4. Sets current->files->fd[fd] to the address of the file object returned by dentry
ing the create method of the parent inode. =

The open_nanei() function also executes several security checks on the file open().

located by the lookup operation. For instance, the function checks whether 5. Returns fd.

the inode associated with the dentry object found really exists, whether i is

a regular file, and whether the current process is allowed to access it accord-

ing to the access mode flags. Also, if the file is opened for writing, the func-

i Elicels it e EleTs ot locked By BHET progEeses:

d. Returns the address of the file object.

. Invokes the dentry_open() function, passing to it the addresses of the den-
try object and the mounted filesystem object located by the lookup opera-
tion, and the access mode flags. In turn, this function

1. Allocates a new file object.

2. Initializes the £ flags and f_mode fields of the file object according to
the access mode flags passed to the open() system call.

3. Initializes the £ dentry and _vfsmnt ficlds of the file object according to
the addresses of the dentry object and the mounted filesystem object
passed as parameters.

Syscall table:

- https://elixir.bootlin.com/linux/v2.6.39/source/arch/x86/kernel/syscall table 32.S

- https://elixir.bootlin.com/linux/v4.15/source/include/linux/syscalls.h#L. 553

Handler?

- https://elixir.bootlin.com/linux/v2.6.39/source/fs/open.c#L 1050

- https://elixir.bootlin.com/linux/v4.15/source/fs/open.c#L1117

https://elixir.bootlin.com/linux/v2.6.39/source/arch/x86/kernel/syscall_table_32.S
https://elixir.bootlin.com/linux/v4.15/source/include/linux/syscalls.h#L553
https://elixir.bootlin.com/linux/v2.6.39/source/fs/open.c#L1050
http://en.wikipedia.org/wiki/Data_segment
http://blog.ooz.ie/2008/09/0x03-notes-on-assembly-memory-from.html

00000000 <__libc_open>:

0: 83 3d 00 00 00
% 75 21

93 53

a 8b 54 24 10

e 8b 4c 24 Oc

12: 8b 5c 24 08
16: b8 05 00 00 00
1b: cd 80

1d: 5b

le: 3d 01 £0 ff ff
23 0f 83 fc f£f f£ff
29: c3

2a: e8 fc f£f £ff ff
2% 50

30 53

313 8b 54 24 14
353 8b 4c 24 10
39: 8b 5c 24 Oc
3d: b8 05 00 00 00
42: cd 80

44: 5b

45: 87 04 24

48: e8 fc £f ff ff
4d: 58

de: 3d 01 £f0 f£f ff
53: 0f 83 fc f£f f£ff
59: c3

00 00

E£

(4

cmpl
jne
push
mov
mov
mov
mov
int
Pop
cmp
jae
ret
call
push
push
mov
mov
mov
mov
int
Pop
xchg
call
Pop
cmp
jae
ret

$0x0,0x0

2a <__ libc_open+0x2a>
%ebx

0x10 (%esp) , $edx

Oxc (%esp) , $ecx

0x8 (%esp) , $ebx

$0x5, $eax

$0x80

%ebx

SOxXf££££001, Seax

25 <__libc_open+0x25>

2b < libc_open+0x2b>
%eax

%ebx

0x14 (%esp) , %edx

0x10 (%esp) ,%ecx

Oxc (%esp) , $ebx

$0x5, $eax

$0x80

%ebx

%eax, (%esp)

49 <_ libc open+0x49>
%eax

SOxXf££££001, %eax

55 < libc open+0x55>

CHAPTER 12 / FILE MANAGEMENT

Page 521
File management
Physical blocks ~ Physical blocks
i In main memory in secondary
. Records buffers storage (disk)
File
struct
Directory ik Access _
management method , Disk
Blocking scheduling
User & program J l
— _ > -~ -~ B e —
commands Operation, File I/0 Free storage
file name manipulation management
A functions
File
allocation

User access
control

A
Y

File management concerns

A
Y

Operating system concerns

Figure 12.2 Elements of File Management

)

2)

3)

12.7 | SECONDARY STORAGE MANAGEMENT
Page 543

Secondary storage management

On secondary storage, a file consists of a collection of blocks.
Several issues are involved in file allocation:

When a new file is created, is the maximum space required for the file

allocated at once? -
PREALLOCATION VERSUS DYNAMIC ALLOCATION

Space is allocated to a file as one or more contiguous units, which we shall refer
to as portions. That is, a portion is a contiguous set of allocated blocks. The
size of a portion can range from a single block to the entire file. What size of

portion should be used for file allocation? -
PORTION SIZE

What sort of data structure or table is used to keep track of the portions
assigned to a file? An example of such a structure is a file allocation table

(FAT), found on DOS and some other systems. -
FILE ALLOCATION METHODS

Secondary storage management - preallocation

Preallocation policy requires that the maximum size of a file be
declared at the time of the file creation request.

In a number of cases, such as program compilations, the
production of summary data files, or the transfer of a file from
another system over a communications network, this value can
be reliably estimated.

However, for many applications, it is difficult if not impossible
to estimate reliably the maximum potential size of the file. In those
cases, users and application programmers would tend to
overestimate.

There are advantages to the use of dynamic allocation, which
allocates space to a file in portions as needed

Secondary storage management - portion size

Trade-off between efficiency from
the point of view of a single file
versus overall system
efficiency

Two major alternatives:
- Variable, large contiguous
portions:

This will provide better performance.
The variable size avoids waste, and
the file allocation tables are small.

. However, space is hard to reuse.
- Blocks

Small fixed portions provide greater
flexibility.

They may require large tables or
complex structures for their
allocation.

Contiguity has been abandoned as a
primary goal; blocks are allocated as
needed.

With variable-size portions, we
need to be concerned with the
fragmentation of free space.

First fit: Choose the first unused
contiguous group of blocks of
sufficient size from a free block
list.

Best fit: Choose the smallest
unused group that is of sufficient
size.

Nearest fit: Choose the unused
group of sufficient size that is
closest to the previous allocation
for the file to increase locality.

Secondary storage management - File allocation methods

Three methods are in common use: contiguous, chained, and indexed

contiguous allocation
- asingle contiguous set of blocks is allocated to a file at the time of file creation

- it will be necessary to perform a compaction algorithm

- External fragmentation will occur, making it difficult to find contiguous blocks of space
of sufficient length

chained allocation
- block contains a pointer to the next block in the chain

- no external fragmentation

Table 12.3 File Allocation Methods

Contiguous Chained Indexed
Preallocation? Necessary Possible Possible
Fixed or Variable Size Portions? | Variable Fixed blocks Fixed blocks Variable
Portion Size Large Small Small Medium
Allocation Frequency Once Low to high High Low
Time to Allocate Medium Long Short Medium
File Allocation Table Size One entry One entry Large Medium

>

File A
VTN NEN
sl Jel J7l s]l |
File B
o] Jul Jr2f []| |
is[el Ju[J s
File C
200 210 2074 3V 247
File E
5V 26 Jor[J28[Joo[]
File D

File allocation table

File name Start block Length
File A 2 3
File B <) 5
File C 18 8
File D 30 2
File E 26 3

30 RRY 31 & 32 J33[Jaa[]

Figure 12.9 Contiguous File Allocation

o T

File allocation table

Secondary storage management - File allocation methods
(contiguous, chained)

File name Start block Length
XX XX eoe
File B 1 3
XX} XX XX

File B

ol [t J2[|3 hH4l |
s Jel 7l) sl Jlol |
o] u[Jr2[Ji[|]
is| Jwel Jr[Jas[o[]
200 2] Jeo[J23[4|]
25| J26] |27 J28[29[]
30]3] 32 3] |z]

Figure 12.11 Chained Allocation

Secondary storage management - File allocation methods
(contiguous, chained)

Q File allocation table < > HHGRISEIRORHE
File A File name Start block Length File B File name _ Start block Length
NN 1 INEIREI File A 0 2 I) N e N N Y el o e
1 .
s 6] }1.17|C | 8 9 Eﬂzg 139 g sl el |70 |8 |9 | 282 S eeoe
___File] File E 16 3
wyZ A uwlz el s0 40/ o Jul Juef Ji[Jul |
File E File D
sz el 17] is[] 19kS s Jwe[|7][Jio[|
202 Ju[Ju[] 20]2 o2 J2s[Jas[]
25 |26 |27[|28 |29 | 2]] 26] Bl 28] 129 |
300 |3t] 32| |33 [34] |
30 |3t] |32]33] |34 |

Figure 12.10 Contiguous File Allocation (After Compaction)
Figure 12.12 Chained Allocation (After Consolidation)

Secondary storage management - File allocation methods
(indexed)

Indexed allocation addresses many of the problems of contiguous and chained allocation.
In this case, the file allocation table contains a separate one-level index for each file;

the index has one entry for each portion allocated to the file.

Typically, the file indexes are not physically stored as part of the file allocation table.

Rather, the file index for a file is kept in a separate block, and the entry for the file in the
file allocation table points to that block.

File consolidation may be done from time to time

>

Secondary storage management - File allocation methods
(indexed)

Allocation may be on the basis of either fixed-size blocks (Figure 12.13) or variable-size
portions (Figure 12.14).

File allocation table

File name Index block
see XX
File B 24
XX XX

File B

ol |2 |3 |4
\

s Jel_J}7[|

o Ju[2] 3]

15| || 17| s8]

200 |21 22| 23]

25 |26] |27] |28] |29]

30 |31 |32 |33 |34

Figure 12.13 Indexed Allocation with Block Portions

File allocation table
File B File name Index block
O| | l| | 2| | 3| | 4| | eeoe eeoe
File B 24
s el f| 7] 8|9 | eee eee
o] Ju[p2| i3]]]
1s{ Jwel p7[i8] Jiof |
= oo iz Start block Length
200 |21 J22[|23] Je4| | 1 3
T~o 28 4
25| 26| J27[|28 29[|| >~ 14 1
0 st 32| |33 [34[|

Figure 12.14 Indexed Allocation with Variable-Length Portions

Secondary storage management - Free Space Management

To perform any of the file allocation techniques described previously, it is necessary to know what
blocks on the disk are available.

Thus we need a disk allocation table in addition to a file allocation table. \We discuss here a number
of techniques that have been implemented.

BIT TABLES

- This method uses a vector containing one bit for each block on the disk.
- Each entry of a 0 corresponds to a free block, and each 1 corresponds to a block in use.

CHAINED FREE PORTIONS

- The free portions may be chained together by using a pointer and length value in each free portion.

INDEXING

- The indexing approach treats free space as a file and uses an index table as described under file
allocation. For efficiency, the index should be on the basis of variable-size portions rather than
blocks. Thus, there is one entry in the table for every free portion on the disk.

FREE BLOCK LIST

- In this method, each block is assigned a number sequentially and the list of the numbers of all free
blocks is maintained in a reserved portion of the disk

I Volumes

In essence a volume is a logical disk.

A collection of addressable sectors in secondary memory that an OS
or application can use for data storage.

The sectors in a volume need not be consecutive on a physical
storage device; instead, they need only appear that way to the OS or
application.

A volume may be the result of assembling and merging smaller
volumes.

In the simplest case, a single disk equals one volume. Frequently, a disk
is divided into partitions, with each partition functioning as a separate
volume.

It is also common to treat multiple disks as a single volume or
partitions on multiple disks as a single volume.

I Reliability

The following steps could be performed when a file allocation is
requested:

Lock the disk allocation table on disk. This prevents another user
from causing alterations to the table until this allocation is completed.

Search the disk allocation table for available space. This
assumes that a copy of the disk allocation table is always kept in
main memory. If not, it must first be read in.

Allocate space, update the disk allocation table, and update the
disk. Updating the disk involves writing the disk allocation table back
onto disk. For chained disk allocation, it also involves updating some
pointers on disk.

Update the file allocation table and update the disk.

Unlock the disk allocation table.

Access rights that can be assigned to a
particular user for a particular file.

None: The user may not even learn of the existence of the
file, much less access it. To enforce this restriction, the user
would not be allowed to read the user directory that includes
this file.

Knowledge: The user can determine that
the file exists and who its owner is.

- The user is then able to petition the owner for
additional access rights.

Execution: The user can load and execute
a program but cannot copy it.

- Proprietary programs are often made accessible with
this restriction.

Reading: The user can read the file for any
purpose, including copying and execution.

- Some systems are able to enforce a distinction
between viewing and copying. In the former case, the
contents of the file can be displayed to the user, but
the user has no means for making a copy.

File System Security - Access Rights

Appending: The user can add data to the
file, often only at the end, but cannot modify
or delete any of the file’'s contents.

- This right is useful in collecting data from a number of
sources.

Updating: The user can modify, delete, and
add to the file’s data. This normally includes
writing the file initially, rewriting it completely
or in part, and removing all or a portion of
the data. Some systems distinguish among
different degrees of updating.

Changing protection: The user can change
the access rights granted to other users.
Typically, this right is held only by the owner
of the file. In some systems, the owner can
extend this right to others.

Deletion: The user can delete the file from
the file system.

File System Security - Access Rights

Access can be provided to different classes of users:
Specific user: Individual users who are designated by user ID

User groups: A set of users who are not individually defined. The system must have some
way of keeping track of the membership of user groups.

All: All users who have access to this system. These are public files.

I Directory

To understand the requirements for a file structure, it is helpful to consider the
types of operations that may be performed on the directory:

Search: When a user or application references a file, the directory must be
searched to find the entry corresponding to that file.

Create file: When a new file is created, an entry must be added to the directory.
Delete file: When a file is deleted, an entry must be removed from the directory.

List directory: All or a portion of the directory may be requested. Generally,this
request is made by a user and results in a listing of all files owned by that user,
plus some of the attributes of each file (e.g., type, access control information,
usage information).

Update directory: Because some file attributes are stored in the directory, a
change in one of these attributes requires a change in the corresponding
directory entry.

Master directory

System
User_A
User_ B
User_C
®
®
Y L
Directory £ Directory
"User_C" Directory "User_B" "User_A"
°
°
Draw
Word
) ﬁ
A J ®
Directory "Word" ® Directory "Draw"
© .
° .
° °
Unit_ A = ABC
° °
® .
° .

Directory "Unit_A"

ABC File
o "ABC"

Pathname: /User_B/Draw/ABC

File
"ABCI'

Pathname: /User_B/Word/Unit_ A/ABC

Figure 12.7 Example of Tree-Structured Directory

Table 12.2 Information Elements of a File Directory

File Name

File Type
File Organization

Volume
Starting Address

Size Used
Size Allocated

Owner
Access Information

Permitted Actions

Date Created

Identity of Creator

Date Last Read Access
Identity of Last Reader
Date Last Modified
Identity of Last Modifier
Date of Last Backup

Current Usage

Basic Information

Name as chosen by creator (user or program). Must be unique within a specific
directory

For example: text, binary, load module, etc.

For systems that support different organizations

Address Information

Indicates device on which file is stored

Starting physical address on secondary storage (e.g., cylinder, track, and block
number on disk)

Current size of the file in bytes, words, or blocks

The maximum size of the file

Access Control Information

User who is assigned control of this file. The owner may be able to grant/deny
access to other users and to change these privileges.

A simple version of this element would include the user’s name and password for
each authorized user.

Controls reading, writing, executing, and transmitting over a network

Usage Information

When file was first placed in directory

Usually but not necessarily the current owner

Date of the last time a record was read

User who did the reading

Date of the last update, insertion, or deletion

User who did the modifying

Date of the last time the file was backed up on another storage medium

Information about current activity on the file, such as process or processes that
have the file open, whether it is locked by a process, and whether the file has been
updated in main memory but not yet on disk

Unix File Management

. Six types of files are distinguished:

- Regular, or ordinary: Contains arbitrary data in zero or more data blocks.

Regular files contain information entered in them by a user, an application program, or a system utility program. The file system
does not impose any internal structure to a regular file but treats it as a stream of bytes.

- Directory: Contains a list of file names plus pointers to associated inodes (index nodes),
described later. Directories are hierarchically organized.

- Special: Contains no data but provides a mechanism to map physical devices to file
names.

The file names are used to access peripheral devices, such as terminals and printers. Each I/O device is associated with a
special file

- Named pipes: As discussed in Section 6.7, a pipe is an interprocess communications
facility.

A pipe file buffers data received in its input so that a process that reads from the pipe’s output receives the data on a
first-in-first-out basis.

- Links: In essence, a link is an alternative file name for an existing file.

- Symbolic links: This is a data file that contains the name of the file it is linked to.

Unix File Management: Inodes

Mode Data Data Data
Owners (2) .
Data °
Timestamps (4)
. . : Data Data Data

. All types of UNIX files are — - :
administered by the OS by — - |

- Direct (1) ata Data
means of inodes. . - :

. Aninode (index node) is a D_,‘m) Pointer Daie b
control structure that contains ———— Pointers » :
the key information needed by S— Pointers b
the operating system for a Tipl ndirct o
particular file. Bl . o

Reference count :

. Several file names may be s @ ' o — o
associated With a Single Generation number Polnters g .. =
inode, but an active inode is B - o o
associated with exactly one file, ——"* ' .

. . Extended dointers
and each file is controlled by e _ =
exactly one inode. fnode

Figure 12.16 Structure of FreeBSD Inode and File

https://staged-gluster-docs.readthedocs.io/en/release3.7.0be
ta1/Developer-quide/datastructure-inode/

Inode table in glusterfs mainly
contains a hash table for maintaining
inodes.

In general a file/directory is
considered to be existing if there is a
corresponding inode present in the
inode table.

If some fop is happening on the
inode, then the inode will be present
in the active inodes list maintained
by the inode table.
unlink/rmdir/forget).

2)

3)

Example: Inode and dentry management in
GlusterFS

Apart from the hash table, inode table
also maintains 3 important list of inodes

Active list: Active list contains all the
active inodes (i.e inodes which are
currently part of some fop). Active inodes
are those inodes whose refcount is
greater than zero.

Lru list: Least recently used inodes list. A
limit can be set for the size of the Iru list.
For bricks it is 16384 and for clients it is
infinity.

Purge list: List of all the inodes which
have to be purged (i.e inodes which have
to be deleted from the inode table due to
unlink/rmdir/forget)

https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Developer-guide/datastructure-inode/
https://staged-gluster-docs.readthedocs.io/en/release3.7.0beta1/Developer-guide/datastructure-inode/

I Unix File Management: File Allocation

. File allocation is done on a block basis. Allocation is
dynamic, as needed, rather than using
preallocation.

. Hence, the blocks of a file on disk are not
necessarily contiguous.

. An indexed method is used to keep track of each
file, with part of the index stored in the inode for the

file.

. In all UNIX implementations, the inode includes a
number of direct pointers and three indirect pointers
(single, double, triple).

Unix File Management: Directories

Directories are structured in a HiGda table DifeetoHy
hierarchical tree. i1l Namel
= / i2 Name?2
Directory is simply a file that =
contains a list of file names plus AT e
pointers to associated inodes. o

Each directory entry (dentry)
contains a name for the
associated file or subdirectory
plus an integer called the
i-number (index number).

When the file or directory is
accessed, its i-number is used as -
an index into the inode table. .

Figure 12.17 UNIX Directories and Inodes

Unix File Management: Volume Structure

Boot block: Contains code required to boot the operating system

Superblock: Contains attributes and information about the file
system, such as partition size, and inode table size

Inode table: The collection of inodes for each file

Data blocks: Storage space available for data files and
subdirectories

Boot Sector Block Group 1 Block Group 2 Block Group 3 Block Group 4 Block Group 5

Superblock Information | 1ok Bitmé .In_ode Bitmap | Inode Table Data Blocks

Image: http://www.linux-magazine.com/lssues/2013/156/The-ext-Filesystem

http://www.linux-magazine.com/Issues/2013/156/The-ext-Filesystem

Unix File Management: File Access Control

. Associated with each file is a set of & RN
12 protection bits. & &

rw- r-- ---

T A A
user: Irw-

group::r-- —<

- 9 rWwXrwxrwx
- 3: SetUID, SetGID, Sticky bit
. Access Control Lists in UNIX

other: :--- —=

(a) Traditional UNIX approach (minimal access control list)

- Many modern UNIX and

UNIX-based operating systems & Q&" *c\@'
support access control lists, T & &
including FreeBSD, OpenBSD, e P [
Linux, and Solaris.) A \

user: rw- -

- setfacl command Masked{use“joe”w'
entries | group: :r--
mask: :rtw- -
other: :--- <

(b) Extended access control list

Figure 12.18 UNIX File Access Control

Unix File Management: File Access Control

SetUID, SetGID: . “Sticky” bit
- When a user (with execute - When set on a file, this originally
privileges for this file) executes indicated that the system should
the file, the system temporarily retain the file contents in
allocates the rights of the memory following execution.
user’s ID of the file creator, or This is no longer used.

the file’s group, respectively - When applied to a directory

though, it specifies that only the
owner of any file in the directory
can rename, move, or delete
that file.

Useful for managing files in
shared temporary directories

Linux virtual file system

System calls

System calls VES using I_I:

using VFS system filesystem X Disk I/0
user interface calls interface calls

User process]

Linux
virtual

Mapping
function

file to file
System call User system system X
- N process | -
System calls interface iﬁf;l",;ﬁf;’i;?ﬁéé
by file system X
?ttual file Figure 12.20 Linux Virtual File System Concept
system (VES)
/ Y \ .. Superblock object: Represents a
BMJFS| | DOSFS| | NTES | |exi2FS specific mounted file system
N 4// . Inode object: Represents a
Page cache specific file
J . Dentry object: Represents a
Device drivers specific directory entry

. File object: Represents an open

I/O reques . . .
e file associated with a process

Hardware
Disk controller

Figure 12.19 Linux Virtual File System Context

