
Operating systems

Lecture 3, Michal Vrábel, 23/10/2019

Process Management

Process Management Activities

https://www.os-book.com/OS8/os8c/slide-dir/

Processes

https://www.os-book.com/OS8/os8c/slide-dir/PDF-dir/ch3.pdf

https://www.os-book.com/OS8/os8c/slide-dir/
https://www.os-book.com/OS8/os8c/slide-dir/PDF-dir/ch3.pdf

The Process

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout
/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory
/

Memory layout
 standard segment layout in a Linux
process:

In-Memory Layout of a program
typical 32-bit Linux OS

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/
https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

Process Creation

1) Assign a unique process identifier to the new
process.

2) Allocate space for the process.

3) Initialize the process control block.

4) Set the appropriate linkages.

5) Create or expand other data structures.

Process Control Block (PCB)

● categories:
− Process identification

− Processor state information

− Process control information

● Information associated with each process

− Process state

− Program counter

− CPU registers

− CPU scheduling information

− Memory-management information

− Accounting information

− I/O status information

PCB obsahuje informácie o procese, z ktorých niektoré sú: – ukazovateľ na zásobník procesu, – stav procesu –nový, pripravený, bežiaci, čakajúci atď., – hodnota čítača inštrukcií –indikuje
adresu inštrukcie, ktorá bude vykonaná ako nasledujúca, – registre CPU–počet a typ registrov sa mení podľa architektúry počítača. • počítadlo inštrukcií, akumulátory, index registre,
ukazovatele zásobníkov, univerzálne registre, inštrukcie o podmienených kódoch a iné. – informácie pre plánovanie procesu–priorita procesu, ukazovatele na fronty pre plánovanie a iné, –
informácie pre správu pamäte –hodnoty limitných a bázových registrov, tabuľky stránok alebo segmentov, podľa použitej techniky správy pamäte, – účtovacie informácie – spotrebovaný čas
CPU, časové limity pre proces atď., – V/V informácie –obsahujú zoznam V/V zariadení, ktoré sú pridelené procesu, zoznam otvorených súborov atď

130
 CHAPTER 3 / PROCESS DESCRIPTION AND CONTROL

Process Switching

● Clock interrupt: The OS determines whether the currently running process has been executing
for he maximum allowable unit of time, referred to as a time slice

− That is, a time slice is the maximum amount of time that a process can execute before being interrupted. If
so, this process must be switched to a Ready state and another process dispatched.

● I/O interrupt: The OS determines what I/O action has occurred.

− If the I/O action constitutes an event for which one or more processes are waiting, then the OS moves all
of the corresponding blocked processes to the Ready state (and Blocked/Suspend processes to the
Ready/Suspend state). The OS must then decide whether to resume execution of the process currently in
the Running state or to preempt that process for a higher-priority Ready process.

● Memory fault: The processor encounters a virtual memory address reference for a word that is
not in main memory.

− The OS must bring in the block (page or segment) of memory containing the reference from secondary
memory to main memory. After the I/O request is issued to bring in the block of memory, the process with
the memory fault is placed in a blocked state; the OS then performs a process switch to resume execution
of another process. After the desired block is brought into memory, that process is placed in the Ready
state.

CPU Switch From Process to
Process

Process State

● As a process executes, it changes state

− new: The process is being created

− running: Instructions are being
executed

− waiting: The process is waiting for
some event to occur

− ready: The process is waiting to be
assigned to a processor

− terminated: The process has
finished execution

Suspended Processes - THE NEED FOR SWAPPING - Page 121

● Swapping - involves moving part or all of a process from main memory to disk.
● When none of the processes in main memory is in the Ready state, the OS swaps

one of the blocked processes out on to disk into a suspend queue. This is a queue
of existing processes that have been temporarily kicked

● out of main memory, or suspended.
● The OS then brings in another process from the suspend queue, or it honors a

new-process request.
● Execution then continues with the newly arrived process.
● Swapping, however, is an I/O operation, and therefore there is the potential for

making the problem worse, not better.

(Utilizing virtual memory)

It clearly would not do any good to bring a blocked process back into main
memory, because it is still not ready for execution.

Suspended Processes - THE NEED FOR SWAPPING - Page 121

Context switch

1) Save the context of the processor, including program counter and other registers.

2) Update the process control block of the process that is currently in the Running state. This includes
changing the state of the process to one of the other states (Ready; Blocked; Ready/Suspend; or Exit).
Other relevant fields must also be updated, including the reason for leaving the Running state and
accounting information.

3) Move the process control block of this process to the appropriate queue (Ready; Blocked on Event i;
Ready/Suspend).

4) Select another process for execution; this topic is explored in Part Four.

5) Update the process control block of the process selected. This includes changing the state of this
process to Running.

6) Update memory management data structures. This may be required, depending on how address
translation is managed; this topic is explored in Part Three.

7) Restore the context of the processor to that which existed at the time the selected process was last
switched out of the Running state, by loading in the previous values of the program counter and other
registers.

3.4 / PROCESS CONTROL, page 139

Process Scheduling

Representation of Process Scheduling

Levels of scheduling

Levels of scheduling
● Long-Term Scheduling

− The long-term scheduler determines which programs are admitted to the system for processing. Thus, it
controls the degree of multiprogramming.

− Once admitted, a job or user program becomes a process and is added to the queue for the short-term
scheduler.

− Executes relatively infrequently

● Medium-Term Scheduling

− Medium-term scheduling is part of the swapping function.

− Typically, the swapping-in decision is based on the need to manage the degree of multiprogramming.

− More frequently than the long-term

● Short-Term Scheduling

− Also known as the dispatcher

− Executes most frequently and makes the fine-grained decision of which process to execute next.

− Invoked whenever an event occurs that may lead to the blocking of the current process or that may
provide an opportunity to preempt a currently running process in favor of another. (Clock interrupts, I/O
interrupts, Operating system calls, Signals)

Levels of scheduling
● Long-term scheduler (or job

scheduler) – selects which
processes should be brought into the
ready queue

− controls the degree of
multiprogramming

− invoked very infrequently
(seconds, minutes) ⇒ (may be
slow)

● Short-term scheduler (or CPU
scheduler) – selects which process
should be executed next and
allocates CPU

− Sometimes the only scheduler in
a system

− invoked very frequently
(milliseconds) ⇒ (must be fast)

● Processes can be described as
either:

− I/O-bound process – spends
more time doing I/O than
computations, many short CPU
bursts

− CPU-bound process – spends
more time doing computations;
few very long CPU bursts

(in other words)

Effect of Size of Preemption Time Quantum

Applies for the preemptive scheduling policy decision
mode

The Use of Priorities

Multithreading

Multithreading

The key benefits of threads

● The key benefits of threads derive from the performance
implications:

1) It takes far less time to create a new thread in an existing
process than to create a brand-new process.

2) It takes less time to terminate a thread than a process.

3) It takes less time to switch between two threads within the
same process than to switch between processes.

4) Threads enhance efficiency in communication between
different executing programs.

 In most operating systems, communication between independent processes requires the
intervention of the kernel to provide protection and the mechanisms needed for communication.
However, because threads within the same process share memory and files, they can
communicate with each other without invoking the kernel.

4.1 / PROCESSES AND THREADS Page 161

Uses of threads in a single-user
multi-processing system

● Foreground and background work

− This arrangement often increases the perceived speed of the
application by allowing the program to prompt for the next command
before the previous command is complete

● Asynchronous processing

− Example: periodic file saving

● Speed of execution

− Even though one thread may be blocked for an I/O operation to read
in a batch of data, another thread may be executing

● Modular program structure

− Ease of program design

Categorization of threads by level

Linux Threads
● Traditional UNIX systems support a single thread of execution per process, while modern UNIX systems

typically provide support for multiple kernel-level threads per process.

● As with traditional UNIX systems, older versions of the Linux kernel offered no support for
multithreading. Instead, applications would need to be written with a set of user-level library functions,
the most popular of which is known as pthread (POSIX thread) libraries, with all of the threads mapping
into a single kernel-level process.

● We have seen that modern versions of UNIX offer kernel-level threads.

● Linux provides a unique solution in that it does not recognize a distinction between threads and
processes. Using a mechanism similar to the lightweight processes of Solaris, user-level threads are
mapped into kernel-level processes.

● Multiple user-level threads that constitute a single user-level process are mapped into Linux
kernel-level processes that share the same group ID.

● This enables these processes to share resources such as files and memory and to avoid the need for a
context switch when the scheduler switches among processes in the same group.

● A new process is created in Linux by copying the attributes of the current process. A new process
can be cloned so that it shares resources, such as files, signal handlers, and virtual memory. When the
two processes share the same virtual memory, they function as threads within a single process.
However, no separate type of data structure is defined for a thread. In place of the usual fork()
command, processes are created in Linux using the clone() command. This command includes a set of
flags as arguments.

● The traditional fork() system call is implemented by Linux as a clone() system call with all of the clone
flags cleared.

Example: Process creation in UNIX

1) #include <stdio.h>
2) #include <unistd.h>
3) int main(int argc, char *argv[])
4) {
5) int pid;
6) pid = fork(); /* process creation */
7) if (pid < 0) { /* error handling */
8) perror(“Fork failed”);
9) exit(-1);
10) }
11) else if (pid == 0) { /* child process */
12) execlp("/bin/ls","ls",NULL);
13) }
14) else { /* parent process */
15) wait(NULL); /* waiting for child to finish */
16) printf(„Child finished");
17) exit(0);
18) }
19) }

Next topics

● Interprocess Communication (IPC)

● Synchronization

● …

● Memory management

Concurrency
CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION Page 199

Key Terms Related to
Concurrency

