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I Process Management

A process is a program in execution. It is a unit of work within the
system. Program is a passive entity, process is an active entity.

B Process needs resources to accomplish its task
e CPU, memory, I/O, files
e Initialization data
B Process termination requires reclaim of any reusable resources

® Single-threaded process has one program counter specifying
location of next instruction to execute

e Process executes instructions sequentially, one at a time, until
completion

® Multi-threaded process has one program counter per thread

m Typically system has many processes, some user, some operating
system running concurrently on one or more CPUs

e Concurrency by multiplexing the CPUs among the processes /
threads



I Process Management Activities

The operating system is responsible for the following activities in
connection with process management:

Creating and deleting both user and system processes
Suspending and resuming processes

Providing mechanisms for process synchronization
Providing mechanisms for process communication

Providing mechanisms for deadlock handling
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The Process

max
®  Multiple parts stack
e The program code, also called text section
e Current activity including program counter, processor registers l
e Stack containing temporary data
» Function parameters, return addresses, local variables
e Data section containing global variables
e Heap containing memory dynamically allocated during run time T
B Program is passive entity, process is active
e Program becomes process when executable file loaded into memory heap
Execution of program started via GUI mouse clicks, command line entry of its name, etc
One program can be several processes data
e Consider multiple users executing the same program
text




I Memory layout

In-Memory LayOUt Of a prog ram standard segment layout in a Linux

process:
typical 32-bit Linux OS
OxFFFFFFFF
1GB
1 GB = 9XxC0000000 == TASK_SIZE
4 } Random stack offset
0xC0000000 Stack (grows down)
] RLIMIT_STACK (e.g., 8MB)
} Random mmap offset
‘File mappings (including dynamic libraries) and anonymous
: mappings. Example: /lib/libc.so
3GB < program break
U brk
3 GB - Heap start_brk
Random brk offset
‘Uninitialized static variables, filled with zeros.
Example: static char *userName;
T Data segment end_data
~ Static variables initialized by the programmer.
‘Example: static char *gonzo = “God’s own prototype”; start data
- » nxt s.’. ment (ELF) end_code
Stores the binary image of the process (e.g., /bin/gonzo) 0x08048060
Binary image of the process (e.g. /bin/1s ~ g
e ) 0x08048000
https://manybutfinite.com/post/anatomy-of-a-program-in-memory
0x00000000 i

https://gabrieletolomei.wordpress.com/miscellanea/operating-systems/in-memory-layout
/
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I Process Creation

1) Assign a unique process identifier to the new
process.

2) Allocate space for the process.
3) Initialize the process control block.
4) Set the appropriate linkages.

5) Create or expand other data structures.



Process Control Block (PCB)
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CHAPTER 3/ PROCESS DESCRIPTION AND CONTROL

. categories:
- Process identification Process state

- Processor state information process number

- Process control information program counter
. Information associated with each process

- Process state regiSte rs

- Program counter

- CPU registers memory limits
- CPU scheduling information

list of open files

- Memory-management information
- Accounting information s o o

- |/O status information

PCB obsahuje informacie o procese, z ktorych niektoré su: — ukazovatel na zasobnik procesu, — stav procesu —novy, pripraveny, beziaci, ¢akajuci atd., — hodnota ¢€itaca inStrukcii —indikuje
adresu instrukcie, ktora bude vykonana ako nasledujuca, — registre CPU—pocet a typ registrov sa meni podla architektury pocitaca. « pocitadlo inStrukcii, akumulatory, index registre,
ukazovatele zasobnikov, univerzalne registre, inStrukcie o podmienenych kédoch a iné. — informacie pre planovanie procesu—priorita procesu, ukazovatele na fronty pre planovanie a iné, —
informacie pre spravu pamate —hodnoty limitnych a bazovych registrov, tabulky stranok alebo segmentov, podl'a pouzitej techniky spravy pamaéte, — uctovacie informéacie — spotrebovany ¢as
CPU, ¢asové limity pre proces atd., — V/V informacie —obsahuju zoznam V/V zariadeni, ktoré su pridelené procesu, zoznam otvorenych suborov atd



Table 3.5 Typical Elements of a Process Control Block

Process Identification

Identifiers
Numeric identifiers that may be stored with the process control block include

¢ Identifier of this process
o Identifier of the process that created this process (parent process)
¢ User identifier

Processor State Information

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the processor
executes while in user mode. Typically, there are from 8 to 32 of these registers, although some RISC
implementations have over 100.

Control and Status Registers
These are a variety of processor registers that are employed to control the operation of the processor. These
include

¢ Program counter: Contains the address of the next instruction to be fetched
 Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry, equal, overflow)
o Status information: Includes interrupt enabled/disabled flags, execution mode

Stack Pointers
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is used to store
parameters and calling addresses for procedure and system calls. The stack pointer points to the top of the stack.

Process Control Information

Scheduling and State Information
This is information that is needed by the operating system to perform its scheduling function. Typical items of
information:

* Process state: Defines the readiness of the process to be scheduled for execution (e.g., running, ready, wait-
ing, halted).

* Priority: One or more fields may be used to describe the scheduling priority of the process. In some systems,
several values are required (e.g., default, current, highest-allowable).

¢ Scheduling-related information: This will depend on the scheduling algorithm used. Examples are the
amount of time that the process has been waiting and the amount of time that the process executed the last
time it was running.

¢ Event: Identity of event the process is awaiting before it can be resumed.

Data Structuring

A process may be linked to other process in a queue, ring, or some other structure. For example, all processes
in a waiting state for a particular priority level may be linked in a queue. A process may exhibit a parent—child
(creator—created) relationship with another process. The process control block may contain pointers to other
processes to support these structures.

Interprocess Communication
Various flags, signals, and messages may be associated with communication between two independent
processes. Some or all of this information may be maintained in the process control block.

Process Privileges
Processes are granted privileges in terms of the memory that may be accessed and the types of instructions
that may be executed. In addition, privileges may apply to the use of system utilities and services.

Memory Management
This section may include pointers to segment and/or page tables that describe the virtual memory assigned to
this process.

Resource Ownership and Utilization
Resources controlled by the process may be indicated, such as opened files. A history of utilization of the
processor or other resources may also be included; this information may be needed by the scheduler.




Process Switching

. Clock interrupt: The OS determines whether the currently running process has been executing
for he maximum allowable unit of time, referred to as a time slice

- That s, a time slice is the maximum amount of time that a process can execute before being interrupted. If
S0, this process must be switched to a Ready state and another process dispatched.

. 1O interrupt: The OS determines what I/O action has occurred.

- If the I/O action constitutes an event for which one or more processes are waiting, then the OS moves all
of the corresponding blocked processes to the Ready state (and Blocked/Suspend processes to the
Ready/Suspend state). The OS must then decide whether to resume execution of the process currently in
the Running state or to preempt that process for a higher-priority Ready process.

. Memory fault: The processor encounters a virtual memory address reference for a word that is
not in main memory.

- The OS must bring in the block (page or segment) of memory containing the reference from secondary
memory to main memory. After the 1/0 request is issued to bring in the block of memory, the process with
the memory fault is placed in a blocked state; the OS then performs a process switch to resume execution
of another process. After the desired block is brought into memory, that process is placed in the Ready
state.



CPU Switch From Process to
Process
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I Process State

. As a process executes, it changes state

- new: The process is being created

- running: Instructions are being
executed

admitted

interrupt exit terminated

- waiting: The process is waiting for
some event to occur

- ready: The process is waiting to be
assigned to a processor /O or event completion

scheduler dispatch 6 oF suaritwait

- terminated: The process has
finished execution



Suspended Processes - THE NEED FOR SWAPPING - Page 121

Release
~€ Exii

Dispatch

occurs

(Utilizing virtual memory)

. Swapping - involves moving part or all of a process from main memory to disk.

. When none of the processes in main memory is in the Ready state, the OS swaps
one of the blocked processes out on to disk into a suspend queue. This is a queue
of existing processes that have been temporarily kicked

. out of main memory, or suspended.

. The OS then brings in another process from the suspend queue, or it honors a
new-process request.

. Execution then continues with the newly arrived process.

. Swapping, however, is an |/O operation, and therefore there is the potential for
making the problem worse, not better.



Suspended Processes - THE NEED FOR SWAPPING - Page 121

Activate

Rel -
elease >

Suspend

Event
occurs
occurs

Activate

Suspend

It clearly would not do any good to bring a blocked process back into main
memory, because it is still not ready for execution.



Not enough memory

Return .
(swapping system only)

to User

Preempt
Swap out

Return Reschedule
process

Swap in
System call,
interrupt

Wakeup Wakeup
Interrupt,

interrupt return

Swap out

Figure 3.17 UNIX Process State Transition Diagram



Context switch

3.4 / PROCESS CONTROL, page 139

1) Save the context of the processor, including program counter and other registers.

2) Update the process control block of the process that is currently in the Running state. This includes
changing the state of the process to one of the other states (Ready; Blocked; Ready/Suspend; or EXxit).
Other relevant fields must also be updated, including the reason for leaving the Running state and
accounting information.

3) Move the process control block of this process to the appropriate queue (Ready; Blocked on Event i;
Ready/Suspend).

4)  Select another process for execution; this topic is explored in Part Four.

5) Update the process control block of the process selected. This includes changing the state of this
process to Running.

6) Update memory management data structures. This may be required, depending on how address
translation is managed; this topic is explored in Part Three.

7) Restore the context of the processor to that which existed at the time the selected process was last
switched out of the Running state, by loading in the previous values of the program counter and other
reqgisters.



I Process Scheduling

®m  Maximize CPU use, quickly switch processes onto CPU for time sharing

m  Process scheduler selects among available processes for next execution on CPU
® Maintains scheduling queues of processes

e Job queue - set of all processes in the system

e Ready queue - set of all processes residing in main memory, ready and waiting to
execute

e Device queues — set of processes waiting for an /O device
e Processes migrate among the various queues



Representation of Process Scheduling
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I Levels of scheduling
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Levels of scheduling

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for processing. Thus, it
controls the degree of multiprogramming.

Figure 9.2 Levels of Scheduling

Once admitted, a job or user program becomes a process and is added to the queue for the short-term

scheduler.
- Executes relatively infrequently ; | Retoe
2T =TT == sl [—
Medium-Term Scheduling S Sheiing.
e | Roatysupend qvne
- Medium-term scheduling is part of the swapping function. P —

Typically, the swapping-in decision is based on the need to manage the degree of multiprogrammi

|

- More frequently than the long-term

Short-Term Scheduling e iy Rl dine
- Also known as the dispatcher

Executes most frequently and makes the fine-grained decision of which process to execute next.

Invoked whenever an event occurs that may lead to the blocking of the current process or that may

provide an opportunity to preempt a currently running process in favor of another. (Clock interrupts, 1/0
interrupts, Operating system calls, Signals)




I Levels of scheduling

(in other words)

Long-term scheduler (or job
scheduler) — selects which

processes should be brought into the

ready queue

controls the degree of
multiprogramming

invoked very infrequently
(seconds, minutes) = (may be
slow)

Short-term scheduler (or CPU
scheduler) — selects which process
should be executed next and
allocates CPU

Sometimes the only scheduler in
a system

invoked very frequently
(milliseconds) = (must be fast)

Processes can be described as
either:

I/0-bound process — spends
more time doing I/O than
computations, many short CPU
bursts

CPU-bound process — spends
more time doing computations;
few very long CPU bursts



Table 9.3 Characteristics of Various Scheduling Policies

Round

FCFS » SPN SRT HRRN Feedback
Robin
Selection i ) +
Feiiictiiii max|w] constant min|s] min[s — e] max( i . S) (see text)
Decision Non- Preemp e Non- Preemptive Non- Preemptwe
Mode reemptive (it e reemptive (at arrival) reemptive (4 the
P P quantum) p P p p quantum)
Not May be low Not
Throughput | emphasized .1f quantum High High High emphasized
1s too small
May be high,
especially if Provides Provides
there is good good Provides Provides
Response a large response response good good Not
Time variance time for time for response response emphasized
in process short short time time
execution processes processes
times
Overhead Minimum Minimum Can be high Can be high Can be high Can be high
Penalizes
short Penalizes Penalizes May favor
Effect on processes; Fair long long Good I/O bound
Processes penalizes treatment processes processes balance processes
I/O bound
processes
Starvation No No Possible Possible No Possible




Effect of Size of Preemption Time Quantum

Applies for the preemptive scheduling policy decision

mode
Time
Process allocated Process Process allocated Interaction
Process allocated Interaction time quantum preempted time quantum  complete
time quantum complete
7 L 7 L
4 Y D o =
| q Other processes run
—><—> ) ”
Response time q—Ss
s (b) Time quantum less than typical interaction
Figure 9.6 Effect of Size of Preemption Time Quantum
Quantum
q

(a) Time quantum greater than typical interaction
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Table 9.5 A Comparison of Scheduling Policies

Process A B D 12
Arrival Time 0 2 4 6 8
Service Time (75) 3 6 5 2 Mean
FCFS
Finish Time 3 9 13 18 20
Turnaround Time (7)) 3 7 9 12 12 8.60
I 1.00 1.17 225 2.40 6.00 2.56
RRg=1
Finish Time 4 18 17 20 15
Turnaround Time (7)) 4 16 13 14 i 10.80
TR 1% 2.67 325 2.80 3.50 i
RR¢g=4
Finish Time 3 17 11 20 19
Turnaround Time (7,) 3 15 7 14 11 10.00
T, 1.00 25 1137155 2.80 5.50 247
SPN
Finish Time 3 9 15 20 11
Turnaround Time (7}) 3 7 11 14 3 7.60
IEAIE 1.00 117/ 2405 2.80 1.50 1.84
SRT
Finish Time 3 15 20 10
Turnaround Time (7,) 3 13 4 14 2 7.20
TEAIE 1.00 2.17 1.00 2.80 1.00 1.59
HRRN
Finish Time 3 9 13 20 15
Turnaround Time (7,) 3 7 9 14 7/ 8.00
ILAIES 1.00 17/ 225 2.80 35 2.14
FBg=1
Finish Time 4 20 16 19 11
Turnaround Time (7)) 4 18 12 13 3 10.00
T 133 3.00 3.00 2.60 1155 2.29
FBg=2'
Finish Time 4 17 18 20 14
Turnaround Time (7) 4 15 14 14 6 10.60
TG 1.33 2.50 3.50 2.80 3.00 2.63




The Use of Priorities
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I Multithreading

One process
One thread

One process
Multiple threads

Multiple processes
One thread per process

Multiple processes
Multiple threads per process

5 = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]



I Multithreading

Single-threaded
process model

Process User
control stack
block
User Kernel
address stack
space

Multithreaded
process model
Thread Thread Thread

et plasiemiemtesate e
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: control || : control | : control ||
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Figure 4.2 Single-Threaded and Multithreaded Process Models



The key benefits of threads

4.1 / PROCESSES AND THREADS Page 161

The key benefits of threads derive from the performance
implications:

1) It takes far less time to create a new thread in an existing
process than to create a brand-new process.

2) It takes less time to terminate a thread than a process.

3) It takes less time to switch between two threads within the
same process than to switch between processes.

4) Threads enhance efficiency in communication between
different executing programs.



Uses of threads in a single-user
multi-processing system

Foreground and background work

- This arrangement often increases the perceived speed of the
application by allowing the program to prompt for the next command
before the previous command is complete

Asynchronous processing
- Example: periodic file saving
Speed of execution

- Even though one thread may be blocked for an 1/O operation to read
in a batch of data, another thread may be executing

Modular program structure

- Ease of program design



Categorization of threads by level

SR S A S I B

Threads \ / User User Threads User

library space space library space
Kernel Kernel Kernel
space space space

(»)
(a) Pure user-level (b) Pure kernel-level (¢) Combined

5 User-level thread @ Kernel-level thread @ Process

Figure 4.5 User-Level and Kernel-Level Threads



Linux Threads

Traditional UNIX systems support a single thread of execution per process, while modern UNIX systems
typically provide support for multiple kernel-level threads per process.

As with traditional UNIX systems, older versions of the Linux kernel offered no support for
multithreading. Instead, applications would need to be written with a set of user-level library functions,
the most popular of which is known as pthread (POSIX thread) libraries, with all of the threads mapping
into a single kernel-level process.

We have seen that modern versions of UNIX offer kernel-level threads.

Linux provides a unique solution in that it does not recognize a distinction between threads and
processes. Using a mechanism similar to the lightweight processes of Solaris, user-level threads are
mapped into kernel-level processes.

Multiple user-level threads that constitute a single user-level process are mapped into Linux
kernel-level processes that share the same group ID.

This enables these processes to share resources such as files and memory and to avoid the need for a
context switch when the scheduler switches among processes in the same group.

A new process is created in Linux by copying the attributes of the current process. A new process
can be cloned so that it shares resources, such as files, signal handlers, and virtual memory. When the
two processes share the same virtual memory, they function as threads within a single process.
However, no separate type of data structure is defined for a thread. In place of the usual fork()
command, processes are created in Linux using the clone() command. This command includes a set of
flags as arguments.

The traditional fork() system call is implemented by Linux as a clone() system call with all of the clone
flags cleared.



Example: Process creation in UNIX

1) #include <stdio.h>

2) #include <unistd.h>

3) int main(int argc, char *argv[])

4) A

5) int pid;

0) pid = fork(); /* process creation */
7) if (pid < 0) { /* error handling */

8) perror(“Fork failed”);

9) exit(-1);

10)  }

11) else if (pid == 0) { /* child process */
12) execlp("/bin/ls","1s" ,NULL);

13) '}

14) else { /* parent process */

15) watlt(NULL); /* waiting for child to finish */
16) printf(,,Child finished");

17) exit(0);

18) 1}

19) '}



I Next topics

. Interprocess Communication (IPC)

. Synchronization

. Memory management
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Concurrency

The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

* Multiprogramming: The management of multiple processes within a unipro-
cessor system

e Multiprocessing: The management of multiple processes within a multiprocessor

e Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is
a prime example of this type of system.

Concurrency arises in three different contexts:

* Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.

e Structured applications: As an extension of the principles of modular design
and structured programming, some applications can be effectively programmed
as a set of concurrent processes.

e Operating system structure: The same structuring advantages apply to systems
programs, and we have seen that operating systems are themselves often im-
plemented as a set of processes or threads.



Key Terms Related to
Concurrency

Table 5.1 Some Key Terms Related to Concurrency

atomic operation A function or action implemented as a sequence of one or more instructions that appears
to be indivisible; that is, no other process can see an intermediate state or interrupt the
operation. The sequence of instruction is guaranteed to execute as a group, or not execute
at all, having no visible effect on system state. Atomicity guarantees isolation from
concurrent processes.

critical section A section of code within a process that requires access to shared resources and that must
not be executed while another process is in a corresponding section of code.

deadlock A situation in which two or more processes are unable to proceed because each is waiting
for one of the others to do something.

livelock A situation in which two or more processes continuously change their states in response
to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses shared resources,
no other process may be in a critical section that accesses any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared data item and
the final result depends on the relative timing of their execution.

starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it 1s able to proceed, it is never chosen.




