I Operating systems

Lecture 4, 5, 6
Michal Vrabel, 06/11/2019 - 20/11/2019

CHAPTER 5/ CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION Page 199

Concurrency

The central themes of operating system design are all concerned with the manage-
ment of processes and threads:

* Multiprogramming: The management of multiple processes within a unipro-
cessor system

e Multiprocessing: The management of multiple processes within a multiprocessor

e Distributed processing: The management of multiple processes executing on
multiple, distributed computer systems. The recent proliferation of clusters is
a prime example of this type of system.

Concurrency arises in three different contexts:

* Multiple applications: Multiprogramming was invented to allow processing
time to be dynamically shared among a number of active applications.

e Structured applications: As an extension of the principles of modular design
and structured programming, some applications can be effectively programmed
as a set of concurrent processes.

e Operating system structure: The same structuring advantages apply to systems
programs, and we have seen that operating systems are themselves often im-
plemented as a set of processes or threads.

Key Terms Related to Concurrency

Table 5.1 Some Key Terms Related to Concurrency

atomic operation A function or action implemented as a sequence of one or more instructions that appears
to be indivisible; that is, no other process can see an intermediate state or interrupt the
operation. The sequence of instruction is guaranteed to execute as a group, or not execute
at all, having no visible effect on system state. Atomicity guarantees isolation from
concurrent processes.

critical section A section of code within a process that requires access to shared resources and that must
not be executed while another process is in a corresponding section of code.

deadlock A situation in which two or more processes are unable to proceed because each is waiting
for one of the others to do something.

livelock A situation in which two or more processes continuously change their states in response
to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses shared resources,
no other process may be in a critical section that accesses any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared data item and
the final result depends on the relative timing of their execution.

starvation A situation in which a runnable process is overlooked indefinitely by the scheduler;
although it is able to proceed, it is never chosen.

I Process Interaction

Table 5.2 Process Interaction

Degree of Awareness Relationship Influence that One Potential Control
Process Has on the Problems
Other

Processes unaware of Competition e Results of one process Mutual exclusion

each other

independent of the
action of others

e Timing of process may
be affected

Deadlock (renewable
resource)
Starvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by sharing

e Results of one process
may depend on infor-
mation obtained from
others

e Timing of process may
be affected

Mutual exclusion
Deadlock (renewable
resource)

Starvation

Data coherence ~——

Processes directly aware
of each other (have
communication
primitives available

to them)

Cooperation by commu-
nication

e Results of one process
may depend on infor-
mation obtained from
others

e Timing of process may
be affected

Deadlock (consum-
able resource)
Starvation

I Competition among processes for resources

. Critical resource

- a single nonsharable resource required by
several processes

. Critical section of the program

- the portion of the program that uses the critical
resource

. In the case of competing processes three control
problems must be faced.

- Need for mutual exclusion
- Deadlock
- Starvation

Mutual exclusion

/* PROCESS 1 */

void P1
{
while (true)

/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;

/* PROCESS 2 */

void P2
{
while (true) {

/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;

}
}

/* PROCESS n */

void Pn
{
while (true) ({

/* preceding code */;
entercritical (Ra);
/* critical section */;
exitcritical (Ra);
/* following code */;

}
}

Figure 5.1 Illustration of Mutual Exclusion

5.2 / MUTUAL EXCLUSION: HARDWARE SUPPORT 211

Mutual exclusion: hardware support

while
Interrupt Disabling - In a uniprocessor /¥
system, concurrent processes cannot have /*
overlapped execution ; *
*

Special Machine Instructions }

- Compare&swap instruction,

(true) {

disable interrupts */;
critical section */;
enable interrupts */;
remainder */;

void exchange (int *register, int *memory)

- Exchange instruction {

int temp;
temp = *memory;

*memory = *register;

*register = temp;

}

int compare and swap (int *word, int testval, int newval)

{

int oldval;

oldval = *word

if (oldval == testval) *word = newval;
return oldval;

Hardware Support for Mutual Exclusion

/* program mutualexclusion */

const int n = /* number of processes */;
int bolt;
void P (int i)

/* program mutualexclusion */
int const n = /* number of processes */;
Shared global variable —~ int bolt;

void P(int 1i)

{ {

while (true) {
while (compare and swap(bolt, 0, 1) == 1)
/* do nothing */;
/* critical section */;

int keyi = 1; Local variable
while (true) {
do exchange (&keyi, &bolt)

while (keyi != 0);

bolt = 0; /* critical section */;
/* remainder */; bolt = 0;

} } /* remainder */;
void main () } }
{ . void main()

olt = 0; {

parbegin (P(1), P(2), ... ,P(n)); bolt = 0;
parbegin (P(l)l P(z)l ...y P(n));
} }
(a) Compare and swap instruction (b) Exchange instruction

Figure 5.2 Hardware Support for Mutual Exclusion

Mutual exclusion: hardware support -
compare_and_swap

int compare and swap (int *word, int testval, int newval)

{

int oldval;
oldval = *word

if (oldval == testval) *word = newval;
return oldval;

while (compare and swap(bolt, 0, 1) == 1)
/* do nothing */;

/* critical section */;

bolt = 03

/* remainder */;

Mutual exclusion: hardware support -
compare_and_swap

A shared variable bolt is initialized to 0.

The only process that may enter its critical section is one that finds bolt equal
to 0.

All other to enter their critical section go into a busy waiting mode.

or spin waiting, refers to a technique in which a process can do nothing
until it gets permission to enter its critical section but continues to

execute an instruction or set of instructions that tests the appropriate
variable to gain entrance.

When a process leaves its critical section, it resets bolt to 0;

at this point one and only one of the waiting processes is granted
access to its critical section.

Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise.

Some version of this instruction is available on nearly all processor families (x86,

|A64, sparc, IBM z series, etc.), and most operating systems use this instruction
for support of concurrency.

Hardware Support for Mutual Exclusion

/* program mutualexclusion */

const int n = /* number of processes */;
int bolt;
void P (int i)

/* program mutualexclusion */
int const n = /* number of processes */;
Shared global variable —~ int bolt;

void P(int 1i)

{ {

while (true) {
while (compare and swap(bolt, 0, 1) == 1)
/* do nothing */;
/* critical section */;

int keyi = 1; Local variable
while (true) {
do exchange (&keyi, &bolt)

while (keyi != 0);

bolt = 0; /* critical section */;
/* remainder */; bolt = 0;

} } /* remainder */;
void main () } }
{ . void main()

olt = 0; {

parbegin (P(1), P(2), ... ,P(n)); bolt = 0;
parbegin (P(l)l P(z)l ...y P(n));
} }
(a) Compare and swap instruction (b) Exchange instruction

Figure 5.2 Hardware Support for Mutual Exclusion

Mutual exclusion: hardware support - exchange

void exchange (int *register, int *memory)
{
int temp;
temp = *memory;
*memory = *register;
*register = temp;
)
int keyi = 1:
while (true) {
do exchange (&keyi, &bolt)
while (keyi != 0);
/* critical section */;

BoOlE =0 - Shared global variable
/* remainder */;

Local variable

Mutual exclusion: hardware support - exchange

A shared variable bolt is initialized to 0.
Each process uses a local variable key that is initialized to 1.
The only process that may enter its critical section is one that
finds bolt equal to 0.
- It excludes all other processes from the critical section by
setting bolt to 1.

- When a process leaves its critical section, it resets bolt to O,
allowing another process to gain access to its critical section.

exchanges the contents of a register with that of a memory
location. Both the Intel IA-32 architecture (Pentium) and the 1A-64
architecture (Itanium) contain an XCHG instruction.

Properties of the machine - instruction
approach

Advantages

- any number of processes; It is simple - easy to verify; can be used to
support multiple critical sections.

Disadvantages
- Busy waiting is employed - consumes processor time
- Starvation is possible

- Deadlock is possible

Process P1 executes the special instruction and enters its critical
section.

P1 is then interrupted to give the processor to P2, which has higher
priority.
If P2 now attempts to use the same resource as P1, it will be denied
access because of the mutual exclusion mechanism.

- Thus, it will go into a busy waiting loop.

- However, P1 will never be dispatched because it is of lower priority
than another ready process, P2.

Table 5.3 Common Concurrency Mechanisms

Semaphore

An integer value used for signaling among processes. Only three operations may be
performed on a semaphore, all of which are atomic: initialize, decrement, and incre-
ment. The decrement operation may result in the blocking of a process, and the incre-
ment operation may result in the unblocking of a process. Also known as a counting
semaphore or a general semaphore.

Binary Semaphore

A semaphore that takes on only the values 0 and 1.

Mutex

Similar to a binary semaphore. A key difference between the two is that the process that
locks the mutex (sets the value to zero) must be the one to unlock it (sets the value to 1).

Condition Variable

A data type that is used to block a process or thread until a particular condition is true.

Monitor

A programming language construct that encapsulates variables, access procedures, and
initialization code within an abstract data type. The monitor’s variable may only be
accessed via its access procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections. A monitor may
have a queue of processes that are waiting to access it.

Event Flags

A memory word used as a synchronization mechanism. Application code may associ-
ate a different event with each bit in a flag. A thread can wait for either a single event
or a combination of events by checking one or multiple bits in the corresponding flag.
The thread is blocked until all of the required bits are set (AND) or until at least one
of the bits is set (OR).

Mailboxes/Messages

A means for two processes to exchange information and that may be used for
synchronization.

Spinlocks

Mutual exclusion mechanism in which a process executes in an infinite loop waiting for
the value of a lock variable to indicate availability.

Semaphores

struct semaphore ({
int count;
queueType queue;
void semWait (semaphore s)
s.count--;
it {g.count. = 0) {
/* place this process in s.queue */;
/* block this process */;

}
}
void semSignal (semaphore s)
{
s.count++;
if (s.count<= 0) {
/* remove a process P from s.queue */;
/* place process P on ready list */;

}

Figure 5.3 A Definition of Semaphore Primitives

semWait (s)

{

while (compare and swap(s.flag, 0 , 1) =
/* do nothing */;

S ORI e

if (s.count < 0) {

/* place this process in s.queue*/;

/* block this process (must also set

s.flag to 0) */;

}

s.flag

0;

semSignal (s)

{

while (compare and swap(s.flag, 0 , 1) =
/* do nothing */;
s.count++;
{

1f (s.count<= 0)
/* remove a process P from s.queue */;

/* place process P on ready list */;

}

s.flag

0;

1)

1)

semWait (s)
inhibit interrupts;

s.count--;
{

if (s.count < 0)
/* place this process in s.queue */;

/* block this process and allow inter-

rupts*/;

}

else
allow interrupts;

semSignal (s)

{

inhibit interrupts;
s.count++;

if (s.count<= 0)
/* remove a process P from s.queue */;

/* place process P on ready list */;

}

allow interrupts;

(a) Compare and Swap Instruction

(b) Interrupts

Figure 5.14 'Two Possible Implementations of Semaphores

Semaphores — Mutual exclusion

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int i)
{
while (true)
semWait (s) ;
/* critical section */;
semSignal (s) ;
/* remainder */;

}
}

void main|()

{

parbegin (P(1), P(2),.., P(n));

}

Figure 5.6 Mutual Exclusion Using Semaphores

The Producer/Consumer Problem

one or more producers generating some type of data (records,
characters) and placing these in a buffer

There is a single consumer that is taking items out of the buffer
one at a time.

producer: consumer:

while (true) { while (true) {
/* produce item v */; while (in <= out)
bl[in] = v; /* do nothing */;
in++; w = blout];

} out++;

/* consume item w */;

/* program producerconsumer */
int n;
binary semaphore s = 1, delay = 0;
void producer ()
{
while (true) {
produce () ;
semWaitB(s) ;
append () ;
n++;

semSignalB(s) ;

}

void consumer ()
{
semWaitB (delay) ;
while (true)
semWaitB(s) ;
take () ;
n--;
semSignalB(s) ;
consume () ;
if (n==0) semWaitB (delay) ;

}

void main ()

{
11—)
parbegin (producer, consumer) ;

if (n==1) semSignalB(delay) ;

b[1] | b[2] | b[3] | b[4] | b[5] e o o o

Out In

Note: Shaded area indicates portion of buffer that is occupied

Figure 5.8 Infinite Buffer for the
Producer/Consumer Problem

Figure 5.9 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem

Using Binary Semaphores

/* program producerconsumer */
int n;

binary semaphore s = 1, delay = 0;

void producer () b[1] | b[2] | b[3] | b[4] | b[5] e o o o

{

while (true) {
produce () ;
semWaitB(s) ;

append () ; Out In
Lt Note: Shaded area indicates portion of buffer that is occupied
if (n==1) semSignalB(delay) ; . .
semSignalB(s) ; Figure 5.8 Infinite Buffer for the
} Producer/Consumer Problem

}

void consumer ()

{

int m; /* a local variable */
semWaitB (delay) ;

while (crue) | When the consumer has exhausted
semWaitB (s) ; the buffer, it needs to reset the delay
rtflff.o ; semaphore so that it will be forced to wait
o= n until the producer has placed more items
semSignalB(s) ; in the buffer.

consume () ;
if (m==0) semWaitB (delay) ;
}
}
void main ()
{
T= 0=
parbegin (producer, consumer) ;

Figure 5.10 A Correct Solution to the Infinite-Buffer Producer/Consumer Problem Using
Binary Semaphores

Table 5.4 Possible Scenario for the Program of Figure 5.9

Producer Consumer s n Delay
1 1 0 0
2 semWaitB (s) 0 0 0
3 n++ 0 1 0
4 if (n==1)
(semSignalB (delay)) 0 1 1|
5 semSignalB (s) 1 i 1
6 semWaitB (delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 semSignalB (s) 1 0 0
10 semWaitB(s) 0 0 0
11 n++ 0 1 0
12 1f (el
(semSignalB (delay)) 0 1 1
13 semSignalB (s) 1 1 il
14 1 ER(n==0)
(semWaitB (delay)) 1 1 1
15 semWaitB(s) 0 1 1
16 n-- 0 0 1
17 semSignalB(s) 1 0 1
18 Af (n==0)
(semWaitB (delay)) 1 0 0
19 semWaitB(s) 0 0 0
20 n-- 0 -1 0
21 semSignalB (s) 1 -1 0

Note: White areas represent the critical section controlled by semaphore s.

/* program producerconsumer */
semaphore n = 0, s = 1;
void producer ()

{
while (true) ({
produce () ;
semWait (s) ;

Semaphore

append () ;
semSignal (s) ;
semSignal (n) ;

}

void consumer ()

{

while (true) {
semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
consume () ;

}

void main ()

{
}

parbegin (producer, consumer) ;

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem Using
Semaphores -

/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;
semaphore s = 1, n = 0, e = sizeofbuffer;
void producer ()

{

while (true) {
produce () ;
semWait (e) ;
semWait (s)
append () ;
semSignal (s) ;
semSignal (n) ;

’

}

void consumer ()

{

while (true) {
semWait (n) ;
semWait (s) ;
take () ;
semSignal (s) ;
semSignal (e) ;
consume () ;

}

void main ()

{
}

parbegin (producer, consumer) ;

Figure 5.13 A Solution to the Bounded-Buffer Producer/Consumer Problem Using

Semaphores ~__

I Pipes

PIPE(2) Linux Programmer's Manual PIPE(2)

NAME top

pipe, pipe2 - create pipe

SYNOPSIS top

#include <unistd.h>

/* On Alpha, IA-64, MIPS, SuperH, and SPARC/SPARC64; see NOTES */
struct fd_pair {
long fd[2];
};
struct fd_pair pipe();

/* 0On all other architectures */
int pipe(int pipefd[2]);

#define _GNU_SOURCE /* See feature test macros(7) */
#include <fcntl.h> /* Obtain 0 * constant definitions */
#include <unistd.h>

int pipe2(int pipefd[2], int flags);

DESCRIPTION top

pipe() creates a pipe, a unidirectional data channel that can be used
for interprocess communication. The array pipefd is used to return
two file descriptors referring to the ends of the pipe. pipefd[0O]
refers to the read end of the pipe. pipefd[1] refers to the write
end of the pipe. Data written to the write end of the pipe is

Semaphores in POSIX (system calls)

SEMGET(2) Linux Programmer's Manual SEMGET(2)

NAME top

semget - get a System V semaphore set identifier

SYNOPSIS top

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key t key, int nsems, int semflg);

DESCRIPTION top

The semget() system call returns the System V semaphore set
identifier associated with the argument key. It may be used either
to obtain the identifier of a previously created semaphore set (when
semflg is zero and key does not have the value IPC_PRIVATE), or to
create a new set.

A new set of nsems semaphores is created if key has the value
IPC_PRIVATE or if no existing semaphore set is associated with key
and IPC_CREAT is specified in semflg.

If semflg specifies both IPC_CREAT and IPC_EXCL and a semaphore set
already exists for key, then semget() fails with errno set to EEXIST.
(This is analogous to the effect of the combination O0_CREAT | O_EXCL
for open(2).)

Upon creation., the least sianificant 9 bits of the araument semfla

Semaphores in POSIX (system calls)

SEMCTL(2) Linux Programmer's Manual SEMCTL(2)

NAME top

semctl - System V semaphore control operations

SYNOPSIS top

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

DESCRIPTION top

semctl() performs the control operation specified by cmd on the
System V semaphore set identified by semid, or on the semnum-th
semaphore of that set. (The semaphores in a set are numbered
starting at 0.)

This function has three or four arguments, depending on cmd. When
there are four, the fourth has the type union semun. The calling
program must define this union as follows:

union semun {
int val: /* Value for SETVAL */

Semaphores in POSIX (system calls)

SEMOP(2) Linux Programmer's Manual SEMOP(2)

NAME top

semop, semtimedop - System V semaphore operations

SYNOPSIS top

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size t nsops);

int semtimedop(int semid, struct sembuf *sops, size t nsops,
const struct timespec *timeout);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

semtimedop(): GNU SOURCE

DESCRIPTION top

Each semaphore in a System V semaphore set has the following
associated values:

unsianed short semval: /* semanhore value */

