
Operating systems

Lecture 4, 5, 6
 Michal Vrábel, 06/11/2019 - 20/11/2019

Concurrency
CHAPTER 5 / CONCURRENCY: MUTUAL EXCLUSION AND SYNCHRONIZATION Page 199

Key Terms Related to Concurrency

Process Interaction

Competition among processes for resources

● Critical resource
− a single nonsharable resource required by

several processes
● Critical section of the program

− the portion of the program that uses the critical
resource

● In the case of competing processes three control
problems must be faced.

− Need for mutual exclusion
− Deadlock
− Starvation

Mutual exclusion

Mutual exclusion: hardware support

● Interrupt Disabling - In a uniprocessor
system, concurrent processes cannot have
overlapped execution

● Special Machine Instructions

− Compare&swap instruction,

− Exchange instruction

Hardware Support for Mutual Exclusion

Shared global variable

Local variable

Mutual exclusion: hardware support -
compare_and_swap

Mutual exclusion: hardware support -
compare_and_swap

● A shared variable bolt is initialized to 0.

● The only process that may enter its critical section is one that finds bolt equal
to 0.

− All other to enter their critical section go into a busy waiting mode.

● or spin waiting, refers to a technique in which a process can do nothing
until it gets permission to enter its critical section but continues to
execute an instruction or set of instructions that tests the appropriate
variable to gain entrance.

− When a process leaves its critical section, it resets bolt to 0;

● at this point one and only one of the waiting processes is granted
access to its critical section.

● Another version of this instruction returns a Boolean value: true if the swap
occurred; false otherwise.

● Some version of this instruction is available on nearly all processor families (x86,
IA64, sparc, IBM z series, etc.), and most operating systems use this instruction
for support of concurrency.

Hardware Support for Mutual Exclusion

Shared global variable

Local variable

Mutual exclusion: hardware support - exchange

Shared global variable

Local variable

Mutual exclusion: hardware support - exchange

● A shared variable bolt is initialized to 0.
● Each process uses a local variable key that is initialized to 1.
● The only process that may enter its critical section is one that

finds bolt equal to 0.
− It excludes all other processes from the critical section by

setting bolt to 1.

− When a process leaves its critical section, it resets bolt to 0,
allowing another process to gain access to its critical section.

● exchanges the contents of a register with that of a memory
location. Both the Intel IA-32 architecture (Pentium) and the IA-64
architecture (Itanium) contain an XCHG instruction.

Properties of the machine - instruction
approach

● Advantages

− any number of processes; It is simple - easy to verify; can be used to
support multiple critical sections.

● Disadvantages

− Busy waiting is employed - consumes processor time

− Starvation is possible

− Deadlock is possible

● Process P1 executes the special instruction and enters its critical
section.

● P1 is then interrupted to give the processor to P2, which has higher
priority.

● If P2 now attempts to use the same resource as P1, it will be denied
access because of the mutual exclusion mechanism.

− Thus, it will go into a busy waiting loop.
− However, P1 will never be dispatched because it is of lower priority

than another ready process, P2.

Semaphores

Semaphores – Mutual exclusion

The Producer/Consumer Problem
● one or more producers generating some type of data (records,

characters) and placing these in a buffer

● There is a single consumer that is taking items out of the buffer
one at a time.

When the consumer has exhausted
the buffer, it needs to reset the delay
semaphore so that it will be forced to wait
until the producer has placed more items
in the buffer.

Semaphore

Pipes

Semaphores in POSIX (system calls)

Semaphores in POSIX (system calls)

Semaphores in POSIX (system calls)

