I Operating systems

Lecture 4, 5, 6
Michal Vrabel, 06/11/2019 - 20/11/2019

- Queue of
entering
I processes

Monitor waiting area Entrance
U0

. synchronization by the use of condition MONITOR

variables that are

R
>

. contained within the monitor and
. accessible only within the monitor.

Condition cl Local data

O|O0—|0—

. Condition variables .
. . . cwalit (cl)
. special data type in monitors, Condifionvariables

. operated on by two functions:
. cwait(c): Suspend execution of the

calling process on condition c. : Procedure 1

. The monitor is now available for use
by another process.

. csignal(c): Resume execution of some

Y

process blocked after a cwait on the
same condition. Condition cn
. If there are several such processes,

O0—a|0E

choose one of them; cwait (cn)
. If there is no such process, do
nothing.
. monitor wait and signal operations are

Procedure k

different from those for the semaphore Urgent queue
. If a process in a monitor signals and no

(1| Dll]

task is waiting on the condition variable, csignal
the signal is lost.

Initialization code

. Reading:

https://en.wikipedia.org/wiki/Monitor_(synch o Dlﬂ
ronization) Al

. Practical example: Figure 5.15 Structure of a Monitor
https://www.baeldung.com/java-wait-notify

https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://www.baeldung.com/java-wait-notify

https://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitors (from wikipedia)

In concurrent programming
A synchronization construct

allows threads to have both mutual exclusion and the ability to wait
(block) for a certain condition to become false.

have a mechanism for signaling other threads that their condition has
been met

consists of a mutex (lock) object and condition variables.

- A condition variable - a container of threads that are waiting for a
certain condition.

provide a mechanism for threads to temporarily give up exclusive
access in order to wait for some condition to be met, before regaining
exclusive access and resuming their task.

https://en.wikipedia.org/wiki/Monitor_(synchronization)

https://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitors (from wikipedia, another definition)

a thread-safe class, object, or module that wraps around a mutex in

order to safely allow access to a method or variable by more than one
thread.

its methods are executed with mutual exclusion:

- At each point in time, at most one thread may be executing any
of its methods.

- By using one or more condition variables it can also provide the
ability for threads to wait on a certain condition (thus using the
above definition of a "monitor").

- "thread-safe object/class/module”.

https://en.wikipedia.org/wiki/Monitor_(synchronization)

https://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitors (from wikipedia, another definition)

monitor class Account { class Account {
private int balance := 0 private lock myLock
invariant balance >= 0
public method boolean withdraw(int amount) |.)r1va1_:e int balance := 0
precondition amount >= 0 invariant balance >= 0
{
if balance < amount { public method boolean withdraw(int amount)
return false precondition amount >= 0
} else { {
balance := balance - amount myLock.acquire()
return true try {
} } if balance < amount {
return false
public method deposit(int amount) } else {
precondition amount >= 0 balance := balance - amount
{ return true
balance := balance + amount }
} } finally {
} myLock.release()
}
}

public method deposit(int amount)
precondition amount >= 0

{

myLock.acquire()
try {

balance := balance + amount
} finally {

myLock.release()

b
}
}

https://en.wikipedia.org/wiki/Monitor_(synchronization)

I Monitors — usage of a monitor

void producer ()

{
char x;
while (true) {
produce (X) ;
append (x) ;

}

}

void consumer ()

{
char x;
while (true) {
take (x) ;
consume (x) ;

}
}

void main ()

{
}

parbegin (producer, consumer) ;

Monitors — usage of a monitor

/* program producerconsumer */
monitor boundedbuffer;

char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
cond notfull, notempty; /* condition variables for synchronization */

void append (char x)

{

if (count == N) cwait (notfull) ; /* buffer is full; avoid overflow */
buffer [nextin] = x;

nextin = (nextin + 1) % N;

count++;

/* one more item in buffer */
csignal (nonempty) ; /*resume any waiting consumer */

}

void take (char x)

{

if (count == 0) cwait (notempty) ; /* buffer is empty; avoid underflow */
x = buffer [nextout] ;
nextout = (nextout + 1) % N);
count--; /* one fewer item in buffer */
csignal (notfull) ; /* resume any waiting producer */
}
{ /* monitor body */
nextin = 0; nextout = 0; count = 0; /* buffer initially empty */

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a
Monitor

Monitors — alternate model

{

{

void append (char x)

while (count == N) cwait (notfull) ; /* buffer is full; avoid overflow
buffer [nextin] = x;

nextin = (nextin + 1) % N;

count++; /* one more item in buffer
cnotify (notempty) ; /* notify any waiting consumer

void take (char x)

while (count == 0) cwait (notempty) ; /* buffer is empty; avoid underflow
x = buffer [nextout] ;

nextout = (nextout + 1) % N);

count--; /* one fewer item in buffer
enotify(notfull) ; /* notify any waiting producer

2/

=/

*/

*

*/
*/

Figure 5.17 Bounded-Buffer Monitor Code for Mesa Monitor

Message passing

send (destination, message)

receive (source, message)

Blocking send, blocking receive:

- Both the sender and receiver are blocked until the message is delivered; this is sometimes
referred to as a rendezvous.

- This combination allows for tight synchronization between processes.

Nonblocking send, blocking receive:

- Although the sender may continue on, the receiver is blocked until the requested message
arrives.

- This is probably the most useful combination.

- It allows a process to send one or more messages to a variety of destinations as quickly as
possible.

- Aprocess that must receive a message before it can do useful work needs to be blocked
until such a message arrives.

- An example is a server process that exists to provide a service or resource to other
processes.

Nonblocking send, nonblocking receive:

- Neither party is required to wait.

Message passing - addresing

@—» Mailbox |7 Port w

(a) One to one (b) Many to one

Mailbox

@—> Mailbox

@

(c) One to many (d) Many to many

Figure 5.18 Indirect Process Communication

Message type

Destination ID

Header < Source ID

Message length

Control information

|
|
Body : Message contents
|
|
|

Figure 5.19 General Message
Format

/* program mutualexclusion */
const int n = /* number of process */
void P(int 1)
{
message msg;
while (true) {
receive (box, msqg) ;
/* critical section */;
send (box, msqg) ;
/* remainder */;

}

void main()
{
create mailbox (box) ;
send (box, null) ;
parbegin (P(1), P(2),.., P(n));

Figure 5.20 Mutual Exclusion Using Messages

const int
capacity = /* buffering capacity */ ;
null = /* empty message */
int i;
void producer ()
{ message pmsg;
while (true) {
receive (mayproduce,pmsg) ;
pmsg = produce() ;
send (mayconsume,pmsg) ;

}
}

void consumer ()
{ message cmsg;
while (true) {
receive (mayconsume,cmsqg) ;
consume (cmsg) ;
send (mayproduce,null) ;

}
}
void main ()
{

create mailbox (mayproduce) ;

create mailbox (mayconsume) ;

for (int i = 1;i<= capacity;i++) send (mayproduce,null) ;

parbegin (producer,consumer) ;

Figure 5.21 A Solution to the Bounded-Buffer Producer/Consumer Problem Using Messages

I Readers / Writers problem

Common design problem
Similar to producer / consumer problem
There is a data area shared among a number of processes.

The data area could be a file, a block of main memory, or even a bank of
processor registers.

There are a number of processes that only
- read the data area (readers)
- write to the data area (writers).
Conditions
- Any number of readers may simultaneously read the file.
- Only one writer at a time may write to the file.

- If a writer is writing to the file, no reader may read it.

I Readers / Writers problem

Readers

- processes that are not required to exclude one another
- Do not also write to the data area

Writers

- processes that are required to exclude all other processes, readers and writers
alike.

- Do not read the data area while writing

Producer / consumer problem is not readers / writers

- producer is not just a writer

must read queue pointers to determine where to write the next item,
must determine if the buffer is full

- consumer is not just a reader

must adjust the queue pointers to show that it has removed a unit from the buffer

I Readers / Writers problem

Readers Have Priority

The writer process is simple

As long as one writer is accessing the shared data area, no
other writers and no readers may access it

allows multiple readers

when there are no readers reading, the first reader that attempts
to read should wait

When there is already at least one reader reading, subsequent
readers need not wait before entering

writers are subject to starvation - Once a single reader has
begun to access the data area, it is possible for readers to retain

Writers Have Priority

/* program readersandwriters */
int readcount;

semaphore x = 1,wsem = 1;

void reader ()

{

while (true) {

semWait (x); . wsem to enforces mutual exclusion
readcount++; . when there are no readers reading,
L flEsmiconne as) the first reader that attempts to read

semWait (wsem) ; .
semSignal (x); should wait on wsem
READUNIT () ; . The global variable readcount is
semWait (x);

i - readcount--; used to keep track of the number of
if (readcount == 0) I‘eaderS,

Séemsigr(la)l = . the semaphore x is used to assure
semSigna) = .
| 7 that readcount is updated properly

}

void writer ()
{
while (true) {
semWait (wsem) ;
WRITEUNIT () ;
semSignal (wsem) ;

}
}

void main ()

{

readcount = 0;
parbegin (reader,writer) ;

}

Figure 5.22 A Solution to the Readers/Writers Problem Using Semaphore: Readers Have
Priority

I Readers / Writers problem

Readers Have Priority

. Writers Have Priority

- no new readers are allowed access to the data area once
at least one writer has declared a desire to write

- More complicated
- Solvable via message passing
- See the book:

5.6 / READERS/WRITERS PROBLEM 241

/* program readersandwriters */
int readcount,writecount;
void reader ()
{
while (true) {
semWait (z);
semWait (rsem) ;
semWait (x);
readcount++;
1 EN(rFeadcount==N1)
semWait (wsem) ;
semSignal (x);
semSignal (rsem) ;
semSignal (z);
READUNIT () ;
semWait (x);
readcount--;
if (readcount == 0) semSignal (wsem) ;
semSignal (x) ;

}

void writer ()
{
while (true) {
semWait (y);
writecount++;
if (writecount == 1)
semWait (rsem) ;
semSignal (y) ;
semWait (wsem) ;
WRITEUNIT () ;
semSignal (wsem) ;
semWait (y);
writecount;
if (writecount == 0) semSignal (rsem) ;
semSignal (y) ;

}

void main ()
readcount = writecount = 0;
parbegin (reader, writer) ;

Figure 5.23 A Solution to the Readers/Writers Problem Using Semaphore: Writers Have
Priority

void reader (int i)
{
message rmsg;
while (true) {

rmsg = 1i;

send (readrequest, rmsg) ;

receive (mbox[i], rmsg);

READUNIT () ;

rmsg = 1i;

send (finished, rmsg);

}

void writer (int j)
{
message rmsg;
while (true) {
rmeg = J;
send (writerequest, rmsqg);
receive (mbox[j], rmsg);
WRITEUNIT () ;
rmsg = j;
send (finished, rmsg);

void controller ()

{

while (true)
{
if (count > 0) A
if (!empty (finished)) {
receive (finished, msg) ;
count++;
}
else if (!empty (writerequest))
receive (writerequest, msg);
writer id = msg.id;
count = count - 100;
}
else if (!empty (readrequest))
receive (readrequest, msg) ;
count--;
send (msg.id, “OK”);

if (count == 0) {
send (writer_ id, “OK”);
receive (finished, msg) ;
eleiblaie, — 001
}
while (count < 0) {
receive (finished, msqg) ;
count++;

{

{

Figure 5.24

A Solution to the Readers/Writers Problem Using Message Passing

I Deadlock

|
(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

I Conditions for deadlock

Mutual exclusion - Only one process may use a resource
at a time. No process may access a resource unit that has
been allocated to another process.

Hold and wait - A process may hold allocated resources
while awaiting assignment of other resources.

No preemption - No resource can be forcibly removed from
a process holding it.

Circular wait - A closed chain of processes exists, such that
each process holds at least one resource needed by the
next process in the chain

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance Approaches for Operating
Systems [ISLOS80]

Resource
Allocation Different
Approach | Ppolicy Schemes Major Advantages Major Disadvantages
Hold & wait | Requesting all | ¢ Works well for processes | Inefficient
resources at that perform a single ® Delays process initiation
once burst of activity * Future resource require-
¢ No preemption necessary ments must be known by
processes
Prevention | Conservative; Preemption ¢ Convenient when e Preempts more often
(prevent at undercommits applied to resources than necessary
Ve i resources whose state can be saved
condition))
and restored easily
Resource e Feasible to enforce via ¢ Disallows incremental
Circular wait | ordering compile-time checks resource requests
¢ Needs no run-time com-
putation since problem is
solved in system design
Avoidance | Midway Manipulate to | ® No preemption e Future resource require-
Resource between that find at least necessary ments must be known
AL of detection one safe path by OS
Denial .
and prevention ® Processes can be blocked
for long periods
Detection Very liberal; Invoke peri- e Never delays process ¢ Inherent preemption
requested odically to initiation losses
resources are test for e Facilitates online
granted where deadlock handling
possible

Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC_INIT (int i)

At declaration: initialize an atomic_t to 1

int atomic_read(atomic_t *v)

Read integer value of v

void atomic_set (atomic_t *v, int i)

Set the value of v to integer i

void atomic_add(int i, atomic_t *v)

Additov

void atomic_sub(int i, atomic_t *v)

Subtract i from v

void atomic_inc(atomic_t *v)

Add1ltov

void atomic_dec (atomic_t *v)

Subtract 1 from v

int atomic_sub and test (int i,
atomic_t *v)

Subtract 1 from v; return 1 if the result is zero;
return 0 otherwise

int atomic_add negative(int 1i,
atomic_t *v)

Add i to v; return 1 if the result is negative;
return 0 otherwise (used for implementing
semaphores)

int atomic_dec_and_ test (atomic_t *v)

Subtract 1 from v; return 1 if the result is
zero; return 0 otherwise

int atomic_inc_and test (atomic_t *v)

Add 1 to v; return 1 if the result is zero;
return 0 otherwise

Atomic Bitmap Operations

void set bit (int nr, woid *addr)

Set bit nr in the bitmap pointed to by addr

void clear bit(int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr

void change bit (int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test and set bit(int nr,
void *addr)

Set bit nr in the bitmap pointed to by addr;
return the old bit value

int test and clear bit(int nr,
void *addr)

Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test and change bit (int nr,
void *addr)

Invert bit nr in the bitmap pointed to by addr;
return the old bit value

int test bit (int nr, void *addr)

Return the value of bit nr in the bitmap
pointed to by addr

Table 6.4 Linux Spinlocks

void spin lock (spinlock t *lock)

Acquires the specified lock, spinning if needed
until it is available

void spin lock irqg(spinlock t *lock)

Like spin_lock, but also disables interrupts on the
local processor

void spin lock irgsave (spinlock t *lock,

unsigned long flags)

Like spin_lock_irq, but also saves the current
interrupt state in flags

void spin lock bh(spinlock t *lock)

Like spin_lock, but also disables the execution
of all bottom halves

void spin unlock(spinlock t *lock)

Releases given lock

void spin unlock irqg(spinlock t *lock)

Releases given lock and enables local interrupts

void spin unlock irgrestore(spinlock t
*lock, unsigned long flags)

Releases given lock and restores local interrupts
to given previous state

void spin unlock bh(spinlock t *lock)

Releases given lock and enables bottom halves

void spin lock init (spinlock t *lock)

Initializes given spinlock

int spin_trylock (spinlock t *lock)

Tries to acquire specified lock; returns nonzero if
lock is currently held and zero otherwise

int spin is locked(spinlock t *lock)

Returns nonzero if lock is currently held and zero
otherwise

