
Operating systems

Lecture 4, 5, 6
 Michal Vrábel, 06/11/2019 - 20/11/2019

Monitors
● synchronization by the use of condition

variables that are
● contained within the monitor and
● accessible only within the monitor.

● Condition variables
● special data type in monitors,
● operated on by two functions:
● cwait(c): Suspend execution of the

calling process on condition c.
● The monitor is now available for use

by another process.
● csignal(c): Resume execution of some

process blocked after a cwait on the
same condition.
● If there are several such processes,

choose one of them;
● If there is no such process, do

nothing.
● monitor wait and signal operations are

different from those for the semaphore
● If a process in a monitor signals and no

task is waiting on the condition variable,
the signal is lost.

● Reading:
https://en.wikipedia.org/wiki/Monitor_(synch
ronization)

● Practical example:
https://www.baeldung.com/java-wait-notify

https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://www.baeldung.com/java-wait-notify

Monitors (from wikipedia)

● In concurrent programming

● A synchronization construct

● allows threads to have both mutual exclusion and the ability to wait
(block) for a certain condition to become false.

● have a mechanism for signaling other threads that their condition has
been met

● consists of a mutex (lock) object and condition variables.

− A condition variable - a container of threads that are waiting for a
certain condition.

● provide a mechanism for threads to temporarily give up exclusive
access in order to wait for some condition to be met, before regaining
exclusive access and resuming their task.

 https://en.wikipedia.org/wiki/Monitor_(synchronization)

https://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitors (from wikipedia, another definition)

● a thread-safe class, object, or module that wraps around a mutex in
order to safely allow access to a method or variable by more than one
thread.

● its methods are executed with mutual exclusion:

− At each point in time, at most one thread may be executing any
of its methods.

− By using one or more condition variables it can also provide the
ability for threads to wait on a certain condition (thus using the
above definition of a "monitor").

− "thread-safe object/class/module".

 https://en.wikipedia.org/wiki/Monitor_(synchronization)

https://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitors (from wikipedia, another definition)

 https://en.wikipedia.org/wiki/Monitor_(synchronization)

https://en.wikipedia.org/wiki/Monitor_(synchronization)

Monitors – usage of a monitor

Monitors – usage of a monitor

Monitors – alternate model

Message passing

● Blocking send, blocking receive:

− Both the sender and receiver are blocked until the message is delivered; this is sometimes
referred to as a rendezvous.

− This combination allows for tight synchronization between processes.

● Nonblocking send, blocking receive:

− Although the sender may continue on, the receiver is blocked until the requested message
arrives.

− This is probably the most useful combination.

− It allows a process to send one or more messages to a variety of destinations as quickly as
possible.

− A process that must receive a message before it can do useful work needs to be blocked
until such a message arrives.

− An example is a server process that exists to provide a service or resource to other
processes.

● Nonblocking send, nonblocking receive:

− Neither party is required to wait.

●

Message passing - addresing

Readers / Writers problem

● Common design problem

● Similar to producer / consumer problem

● There is a data area shared among a number of processes.

● The data area could be a file, a block of main memory, or even a bank of
processor registers.

● There are a number of processes that only

− read the data area (readers)

− write to the data area (writers).

● Conditions

− Any number of readers may simultaneously read the file.

− Only one writer at a time may write to the file.

− If a writer is writing to the file, no reader may read it.

Readers / Writers problem
● Readers

− processes that are not required to exclude one another

− Do not also write to the data area

● Writers

− processes that are required to exclude all other processes, readers and writers
alike.

− Do not read the data area while writing

● Producer / consumer problem is not readers / writers

− producer is not just a writer

● must read queue pointers to determine where to write the next item,

● must determine if the buffer is full

− consumer is not just a reader

● must adjust the queue pointers to show that it has removed a unit from the buffer

Readers / Writers problem
● Readers Have Priority

− The writer process is simple

− As long as one writer is accessing the shared data area, no
other writers and no readers may access it

− allows multiple readers

− when there are no readers reading, the first reader that attempts
to read should wait

− When there is already at least one reader reading, subsequent
readers need not wait before entering

− writers are subject to starvation - Once a single reader has
begun to access the data area, it is possible for readers to retain

● Writers Have Priority

● wsem to enforces mutual exclusion
● when there are no readers reading,

the first reader that attempts to read
should wait on wsem

● The global variable readcount is
used to keep track of the number of
readers,

● the semaphore x is used to assure
that readcount is updated properly

readcount--;

Readers / Writers problem
● Readers Have Priority

− ...

● Writers Have Priority

− no new readers are allowed access to the data area once
at least one writer has declared a desire to write

− More complicated

− Solvable via message passing

− See the book:

Deadlock

Conditions for deadlock
● Mutual exclusion - Only one process may use a resource

at a time. No process may access a resource unit that has
been allocated to another process.

● Hold and wait - A process may hold allocated resources
while awaiting assignment of other resources.

● No preemption - No resource can be forcibly removed from
a process holding it.

● Circular wait - A closed chain of processes exists, such that
each process holds at least one resource needed by the
next process in the chain

Deadlock
Hold & wait

Circular wait

(prevent at
least one
condition)

Resource
Allocation
Denial

