
Operating systems

Lecture 6, 7
 Michal Vrábel, 27/11/2019

Background

Memory management requirements
● Relocation

− not possible for the programmer to know in advance which other programs will be resident in main
memory at the time of execution,

− Need for swapping

− Need to relocate the process to a different area of memory

− the processor hardware and operating system software must be able to translate the memory
references found in the code of the program into actual physical memory addresses, reflecting
the current location of the program in main memory

● Protection

− Process should be protected against unwanted interference by other processes

− All memory references generated by a process must be checked at run time to ensure that they
refer only to the memory space allocated to that process.

− Processor must be able to abort such instructions at the point of execution.

● Sharing

− Processes that are cooperating on some task may need to share access to the same data
structure.

● Logical Organization – organization into modules / segments

● Physical Organization – information movement between primary and secondary

Reallocation

Reallocation - Base and Limit Registers

Address Binding

Binding of Instructions and Data to
Memory

Logical vs. Physical Address Space

Relative address
– particular example of a logical address
– address expressed as a location relative to some known
point

Memory-Management Unit (MMU)

Dynamic relocation using a relocation register

Multistep Processing of a User Program

Loading
● the loader places the load module in main memory starting at location x.

● Absolute loading

− An absolute loader requires that a given load module always be
loaded into the same location in main memory

− Assignment of specific address values to memory references within a
program can be done either by the programmer or at compile or
assembly time

− reference to an instruction or item of data is initially represented by a
symbol

● Relocatable loading

− Decision at load time

− Assembler / compiler produces relative addresses to known point
(start of the program)

● Dynamic run-time loading

Dynamic Loading

Linking
● Linker takes as input a collection of object modules and

produce a load module, consisting of an integrated set of
program and data modules, to be passed to the loader.

● In each object module, there may be address references to
locations in other modules.

− Each such reference can only be expressed symbolically
in an unlinked object module.

● The linker creates a single load module that is the
contiguous joining of all of the object modules.

● Each intramodule reference must be changed from a
symbolic address to a reference to a location within the
overall load module.

Module A contains a
procedure invocation
of module B.
When these modules are
combined in the load module,
this symbolic
reference to module B is
changed to a specific
reference to the location of
the entry point of B within the
load module.

Relocatable load module -
Each compiled or assembled
object module is created with
references relative to the
beginning of the object
module. All of these modules
are
put together into a single
relocatable load module with
all references relative to the
origin of the load module. This
module can be used as input
for relocatable loading
or dynamic run-time loading.

A linker that produces a
relocatable load module is
often referred to as a link-
age editor

Dynamic Linking

Memory
management
techniques

Partitioning
● Memory management - bring processes into main

memory for execution by the processor.

● In almost all modern multiprogramming systems,
this involves a sophisticated scheme known as
virtual memory.

● Virtual memory is, in turn, based on the use of one
or both of two basic techniques: segmentation and
paging.

● Partitioning – the simplest scheme for managing
available memory

Partitioning

● Fixed Partitioning
− Memory partitioned into regions with fixed

boundaries
● Dynamic Partitioning

− The partitions are of variable length and number

Fixed Partitioning
● Partition sizes – equal, un-equal

● Any process whose size is less than or equal to the
partition size can be loaded into any available partition

● If all partitions are full and no process is in the Ready
or Running state, the operating system can swap a
process out of any of the partitions and load in
another process

● Difficulties

− Size of a program - If too big to fit a partition –
overlays – only portion of the program at any one
time

− memory utilization is extremely inefficient –
program occupies entire partition - internal
fragmentation

● Placement algorithm

− Equally sized – simple

− Unequally sized – smallest/optimal part., smallest
available

Fixed Partitioning – memory assignment

Dynamic partitioning

● the partitions are of variable length and number

● process is brought into main memory, it is allocated exactly as much memory
as it requires and no more.

● As time goes on, memory becomes more and more fragmented, and memory
utilization declines - external fragmentation

● technique for overcoming external fragmentation is compaction

− time-consuming procedure and wasteful of processor time

− requires dynamic relocation

● It must be possible to move a program from one region to another in
main memory without invalidating the memory references in the program

● Placement algorithm – best-fit, first-fit, next-fit

● Replacement algorithm

Partitioning – buddy system

● Compromise between dynamic and fixed partitioning

● Starts with a partition spanning whole memory, then split
until size is sufficient

● Maintains list of holes

− Hole removed by splitting into two buddies

− Unallocated buddies are removed and coalesced

Partitioning – buddy system

Partitioning – buddy system

Relocation

Paging

● Process’s address space divided into fixed-size chunks – pages

● Frames – available chunks of memory

● No external fragmentation

● Small internal fragmentation – the last page

● List of free frames is mantained by OS

● Page table maintained by OS for each process – base address register
is not sufficient

● Logical-to-physical translation is done by processor hardware – it must
access page table of the current process

● Transparent to a programmer

TODO: CPU – OS – page table relation

Paging

Paging and segmentation – logical addres

Paging and segmentation

