I Operating systems

Lecture 6, 7
Michal Vrabel, 27/11/2019

I Background

® Program must be brought (from disk) into memory and placed within a process for it to be run

® Main memory and registers are only storage CPU can access directly

® Memory unit only sees a stream of addresses + read requests, or address + data and write requests
m Register access in one CPU clock (or less)

® Main memory can take many cycles

m Cache sits between main memory and CPU registers

® Protection of memory required to ensure correct operation

Operating System Concepts Essentials — 8th Edition 7.4 Silberschatz, Galvin and Gagne ©2011

Memory management requirements

Relocation

not possible for the programmer to know in advance which other programs will be resident in main
memory at the time of execution,

- Need for swapping
- Need to relocate the process to a different area of memory

- the processor hardware and operating system software must be able to translate the memory
references found in the code of the program into actual physical memory addresses, reflecting
the current location of the program in main memory

Protection

- Process should be protected against unwanted interference by other processes

- All memory references generated by a process must be checked at run time to ensure that they
refer only to the memory space allocated to that process.

- Processor must be able to abort such instructions at the point of execution.

Sharing

- Processes that are cooperating on some task may need to share access to the same data
structure.

Logical Organization — organization into modules / segments

Physical Organization — information movement between primary and secondary

Reallocation

Process control > P THlock
- T " rocess control bloc
to program
Branch
Program instruction
—
Increasing
address
values
Reference
to data
Data
DOV R——
Current top -
of stack
Stack

Figure 7.1 Addressing Requirements for a Process

Reallocation - Base and Limit Registers

0
operating
system
256000
process
300040 < 300040
process base
420940 3 je0°00
process limit
base base + limit
880000
1024000
address es es
CPU > > Y 1 .y :
no no

trap to operating system
monitor—addressing error memory

I Address Binding

B Inconvenient to have first user process physical address always at 0000
e How can it not be?
m Further, addresses represented in different ways at different stages of a program'’s life
e Source code addresses usually symbolic
e Compiled code addresses bind to relocatable addresses
» i.e. “14 bytes from beginning of this module”
e Linker or loader will bind relocatable addresses to absolute addresses
» l.e. 74014
e Each binding maps one address space to another

Table 7.3 Address Binding

(a) Loader

Binding Time

Function

Programming time

All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or assembly time

The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.
Run time The loaded program retains relative addresses. These are converted dynamically
to absolute addresses by processor hardware.
(b) Linker
Linkage Time Function

Programming time

No external program or data references are allowed. The programmer must
place into the program the source code for all subprograms that are referenced.

Compile or assembly time

The assembler must fetch the source code of every subroutine that is referenced
and assemble them as a unit.

Load module creation

All object modules have been assembled using relative addresses. These
modules are linked together and all references are restated relative to the origin
of the final load module.

Load time External references are not resolved until the load module is to be loaded into
main memory. At that time, referenced dynamic link modules are appended to
the load module, and the entire package is loaded into main or virtual memory.

Run time External references are not resolved until the external call is executed by the

processor. At that time, the process is interrupted and the desired module is
linked to the calling program.

Binding of Instructions and Data to
Memory

® Address binding of instructions and data to memory addresses can happen at three different stages

e Compile time: If memory location known a priori, absolute code can be generated; must
recompile code if starting location changes

e Load time: Must generate relocatable code if memory location is not known at compile time

e Execution time: Binding delayed until run time if the process can be moved during its execution
from one memory segment to another

» Need hardware support for address maps (e.g., base and limit registers)

Logical vs. Physical Address Space

® The concept of a logical address space that is bound to a separate physical address space is central to
proper memory management
e Logical address — generated by the CPU; also referred to as virtual address

e Physical address — address seen by the memory unit

® Logical and physical addresses are the same in compile-time and load-time address-binding schemes;
logical (virtual) and physical addresses differ in execution-time address-binding scheme

Logical address space is the set of all logical addresses generated by a program
Physical address space is the set of all physical addresses generated by a program

Relative address
— particular example of a logical address
— address expressed as a location relative to some known

point

Memory-Management Unit (MMU)

®m Hardware device that at run time maps virtual to physical address

® Many methods possible, covered in the rest of this chapter

m To start, consider simple scheme where the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory

e Base register now called relocation register
e MS-DOS on Intel 80x86 used 4 relocation registers

® The user program deals with logical addresses; it never sees the real physical addresses
e Execution-time binding occurs when reference is made to location in memory
e Logical address bound to physical addresses

Dynamic relocation using a relocation register

relocation
register

14000
logical physical

address address
CPU 23 » memory
346 14346

MMU

other
object
modules

source
program

compiler or
assembler

object
module

system
library

dynamicall
loaded
system
library

dynamic
linking

linkage
editor

load
module

loader

h 4

in-memory
binary
memory
image

time

\L compile
J

load
time

execution
> time (run
time)

 EEE—

Y

Module 1

4

e\

Y

Module 2

~—

Linker

Figure 7.16

Multistep Processing of a User Program

Y

Load
module

A Linking and Loading Scenario

Loader

Run-time
linker/
loader

—>{

/—_/

Main memory

Loading

the loader places the load module in main memory starting at location x.

Absolute loading

- An absolute loader requires that a given load module always be
loaded into the same location in main memory

- Assignment of specific address values to memory references within a

program can be done either by the programmer or at compile or
assembly time

- reference to an instruction or item of data is initially represented by a
symbol

Relocatable loading

- Decision at load time

- Assembler / compiler produces relative addresses to known point
(start of the program)

Dynamic run-time loading

Symbolic Absolute Relative Main memory

addresses addresses addresses addresses
PROGRAM 1024 "'PROGRAM OPROGRAM X [PROGRAM
JUMP X . JUMP 1424 - JUMP 400 - JUMP 400 -
X j 1424 4_—| 400 j 400 + x :|
LOADY LOAD 2224 LOAD 1200 LOAD 1200
- pAaTA | | [DATA | | [DATA | | DATA |
Y . 2224 - 1200 <« 1200 + x o
(a) Object module (b) Absolute load module (c) Relative load module (d) Relative load module

loaded into main memory
starting at location x

Figure 7.17 Absolute and Relocatable Load Modules

I Dynamic Loading

® Routine is not loaded until it is called

B Better memory-space utilization; unused routine is never loaded

m All routines kept on disk in relocatable load format

m Useful when large amounts of code are needed to handle infrequently occurring cases
® No special support from the operating system is required

e Implemented through program design
e OS can help by providing libraries to implement dynamic loading

I L|nk|ng

Linker takes as input a collection of object modules and
produce a load module, consisting of an integrated set of
program and data modules, to be passed to the loader.

In each object module, there may be address references to
locations in other modules.

- Each such reference can only be expressed symbolically
In an unlinked object module.

The linker creates a single load module that is the
contiguous joining of all of the object modules.

Each intramodule reference must be changed from a
symbolic address to a reference to a location within the
overall load module.

External
reference to
module B

Module A

CALL B;
' > Length L

Return

Module B

CALL C;
> Length M

Return

Figure 7.18

Module C
> Length N

Return

(a) Object modules

The Linking Function

Relative
addresses
0 Module A
JSR"L"
L—1|Return |
L Module B €
JSR"L + M"
L + M — 1| Return
L+ M Module C -
L+ M+ N — 1| Retumn

(b) Load module

Module A contains a
procedure invocation

of module B.

When these modules are
combined in the load module,
this symbolic

reference to module B is
changed to a specific
reference to the location of
the entry point of B within the
load module.

Relocatable load module -
Each compiled or assembled
object module is created with
references relative to the
beginning of the object
module. All of these modules
are

put together into a single
relocatable load module with
all references relative to the
origin of the load module. This
module can be used as input
for relocatable loading

or dynamic run-time loading.

A linker that produces a
relocatable load module is
often referred to as a link-
age editor

I Dynamic Linking

Static linking — system libraries and program code combined by the loader into the binary program image
Dynamic linking —linking postponed until execution time

Small piece of code, stub, used to locate the appropriate memory-resident library routine

Stub replaces itself with the address of the routine, and executes the routine

Operating system checks if routine is in processes’ memory address
e If notin address space, add to address space

Dynamic linking is particularly useful for libraries

System also known as shared libraries

Consider applicability to patching system libraries
e Versioning may be needed

Table 7.2 Memory Management Techniques

Technique Description Strengths Weaknesses

Fixed Main memory is divided into | Simple to implement; little Inefficient use of memory

Partitioning a number of static partitions | operating system overhead. | due to internal fragmenta-
at system generation time. tion; maximum number of
A process may be loaded active processes is fixed.

into a partition of equal or
greater size.

Memory

Dynamic Partitions are created No internal fragmentation; Inefficient use of processor
Partitioning dynamically, so that each more efficient use of main due to the need for com-
m a n a g e m e nt process is loaded into a memory. paction to counter external
. partition of exactly the same fragmentation.
te c h n I q u e S size as that process.
Simple Paging Main memory is divided No external fragmentation. | A small amount of internal
into a number of equal-size fragmentation.

frames. Each process is
divided into a number of
equal-size pages of the same
length as frames. A process
is loaded by loading all of its
pages into available, not nec-
essarily contiguous, frames.

Simple Each process is divided into No internal fragmentation; | External fragmentation.
Segmentation a number of segments. A improved memory utiliza-

process is loaded by load- tion and reduced overhead

ing all of its segments into compared to dynamic

dynamic partitions that need | partitioning.
not be contiguous.

Virtual Memory | As with simple paging, No external fragmentation; | Overhead of complex
Paging except that it is not necessary | higher degree of multipro- memory management.
to load all of the pages of a gramming; large virtual
process. Nonresident pages address space.

that are needed are brought
in later automatically.

Virtual Memory | As with simple segmenta- No internal fragmentation, | Overhead of complex
Segmentation tion, except that it is not higher degree of multipro- memory management.
necessary to load all of gramming; large virtual
the segments of a process. address space; protection
Nonresident segments that and sharing support.

are needed are brought in
later automatically.

I Partitioning

. Memory management - bring processes into main
memory for execution by the processor.

. In almost all modern multiprogramming systems,
this involves a sophisticated scheme known as
virtual memory.

. Virtual memory is, in turn, based on the use of one
or both of two basic techniques: segmentation and

paging.

. Partitioning — the simplest scheme for managing
available memory

I Partitioning

. Fixed Partitioning

- Memory partitioned into regions with fixed
boundaries

. Dynamic Partitioning

- The partitions are of variable length and number

I Fixed Partitioning

. Partition sizes — equal, un-equal Operating system Operating system
8M 8M
. Any process whose size is less than or equal to the M
partition size can be loaded into any available partition at aM
. If all partitions are full and no process is in the Ready o
or Running state, the operating system can swap a ik
process out of any of the partitions and load in M
another process 8M
. Difficulties M

&M

- Size of a program - If too big to fit a partition —
overlays — only portion of the program at any one o
time M

- memory utilization is extremely inefficient —
program occupies entire partition - internal
fragmentation 16M

8M

8M

. Placement algorithm

. . (a) Equal-size partitions (b) Unequal-size partitions
- Equally sized — simple
Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

- Unequally sized — smallest/optimal part., smallest
available

Fixed Partitioning — memory assignment

Operating Operating
system system

New New

T TT— TR
processes

Processes

(a) One process queue per partition (b) Single queue

Figure 7.3 Memory Assignment for Fixed Partitioning

I Dynamic partitioning

the partitions are of variable length and number

process is brought into main memory, it is allocated exactly as much memory
as it requires and no more.

As time goes on, memory becomes more and more fragmented, and memory
utilization declines - external fragmentation

technique for overcoming external fragmentation is compaction
- time-consuming procedure and wasteful of processor time

- requires dynamic relocation

It must be possible to move a program from one region to another in
main memory without invalidating the memory references in the program

Placement algorithm — best-fit, first-fit, next-fit

Replacement algorithm

Operating
system

(a)

Operating
system

Process 1

Process 3

(e)

}SM

r S6M

> 14M

> 18M

L aMm

Operating
system

Process 1

(b)

Operating
system

Process |

Process 4

Process 3

(f)

s 20M

8M
6M

18M

4M

Operating
system

Process 1

Process 2

(c)

Operating
system

Process 4

Process 3

(2)

Figure 7.4 The Effect of Dynamic Partitioning

» 20M

> 14M

y 20M

8M
6M

18M

4M

Operating
system

Process 1

Process 2

Process 3

(d)

Operating
system

Process 2

Process 4

Process 3

(h)

> 14M

> 18M

14M

6M

&M
6M

18M

4M

8M SM
g
I2M First fit 12M
20M | g
6M
Best fit
Last 18M | >
allocated M
block (14K)
SM M
6M 6M
Allocated block
Free block
14M Possible new allocation 14M
Next fit
36M
20M
(a) Before
Figure 7.5

(b) After
Example Memory Configuration before and after Allocation of
16-Mbyte Block

Partitioning — buddy system

. Compromise between dynamic and fixed partitioning

In a buddy system, memory blocks are available of size 2K words, L=< K < U,
where

2L = smallest size block that is allocated

2V = largest size block that is allocated; generally 2Y is the size of the entire
memory available for allocation

. Starts with a partition spanning whole memory, then split
until size is sufficient

. Maintains list of holes

- Hole removed by splitting into two buddies

- Unallocated buddies are removed and coalesced

1-Mbyte block
Request 100K
Request 240K
Request 64K
Request 256K
Release B
Release A
Request 75K
Release C
Release E

Release D

Figure 7.6

Partitioning — buddy system

1M
A = 128K 128K 256K 512K
A = 128K 128K B = 256K 512K
A = 128K [C=64K| 64K B = 256K 512K
A = 128K [C=64K| 64K B = 256K D = 256K 256K
A = 128K [C=64K| 64K 256K D = 256K 256K
128K [C=64K| 64K 256K D = 256K 256K
E = 128K |C=64K| 64K 256K D = 256K 256K
E = 128K 128K 256K D = 256K 256K
512K D = 256K 256K
1M

Example of Buddy System

Partitioning — buddy system

IM

256K

128K

64K

Y Y
[[A = 128K [c- 6] 64K | 256K D = 256K | 256K

Leaf node for Leaf node for @ Non-leaf node
allocated block unallocated block

Figure 7.7 Tree Representation of Buddy System

I Relocation

Relative address

Process control block

AP T E RIS IEEI| — — — — = = = = = ==} = = = = e e o e e >

Adder Program

Absolute
address

Bounds register =3~ Comparator ~--—--

I

I

I

I

| B ey >

: * Data
I Interrupt to

: operating system

I

s ey s i e s e s itk e

Stack

Process image in
main memory

Figure 7.8 Hardware Support for Relocation

I Paging

Process’s address space divided into fixed-size chunks — pages
Frames — available chunks of memory

No external fragmentation

Small internal fragmentation — the last page

List of free frames is mantained by OS

Page table maintained by OS for each process — base address register
is not sufficient

Logical-to-physical translation is done by processor hardware — it must
access page table of the current process

Transparent to a programmer

0 0

| |

2 2

3 3
Process A

page table

O (oo

W N - O

10

Process C
page table

13
14

Free frame
list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Paging

DD O

Process B
page table

4

5

6

11

AW N —-=0O

12

Process D
page table

Frame
number

10
11
12
13
14

(a) Fifteen available frames

xooo\lo\u-.p.wm—c

Figure 7.9

Main memory

Main memory

A0
Al
A2

A3
NEN
NN
M=
)
/4514
v

(d) Load process C

10
1
12
13
14

Main memory

A0
Al
A2
A3

(b) Load process A

Main memory

A0
Al
A2
A3

/////C’ f///
////,C‘,‘Y//

(e) Swap out B

Assignment of Process to Free Frames

UI-F-L'Jt\)'—O

=)

10

11
12

13
14

O\OOO\]O\UI-I‘A‘J)N—O

o
D

3

o
= W

Main memory

A0

Al

A2

A3
NNV

NN

NANNEANN

(c) Load process B

Main memory

A0

A.l

A2

A3

D.0

D.1

D2

/////C’////
I

/////C,,','////

D.4

(f) Load process D

Paging and segmentation — logical addres

Logical address = Logical address =
Relative address = 1502 Page# = 1, Offset = 478 Segment# = 1, Offset = 752
[0000010111011110] (000001j0111011110)] 10001[001011110000)
S w
2 8
= 2 B <
) o0 2
¢ A
“ e s (|
85 " 2
g..é 3 - >
§ = ¢ &h < — 8 -~
= o) g £2
25 9
on v
=)
7o Ry
\
ol
o =
2 Y 6
~ a. = \
soas g g 8 :
(a) Partitioning } 5 ; (c) Segmentation
4 S B
o
(b) Paging -

(page size = 1K)
Figure 7.11 Logical Addresses

Paging and segmentation

= 16-bit logical address
_6-bitpage# 10-bit offset
[0[ofofoJo1]ofT]1]1[0[1[T][1][1]0]

v —

01000101
1{000110
2[011001

Process
page table Y

xS A

[o]oJof1]1]oJo[1]1[1]0f1[1]1[1]0]

16-bit physical address
(a) Paging

- 16-bit logical address
4-bit segment # 12-bit offset

.

)
>

[o[olo L Tolo[i[o[T[Ti T o]eloTo]

v v

Length Base

001011101110{/0000010000000000 Y
011110011110[0010000000100000}——>~()

Process segment table

= o

lglollloIO101111]01010111010101(1]

16-bit physical address
(b) Segmentation

Figure 7.12 Examples of Logical-to-Physical Address Translation

