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I Segmentation

Division of memory into segments
Segments have varying length
Logical address — 2 parts
Similar to dynamic partitioning, but
- Program may occupy more partitions/segments

- Segments are not contiguous

No internal fragmentation, present external fragmentation
Visible to the programmer - convenience for organizing programs and data

- Typically, the programmer or compiler will assign programs and data to different segments.
- The programmer must be aware of the maximum segment size limitation.

Segment table — starting address, length of a segment
List of free blocks in memory

Each process has its own segment table, and when all of its segments are loaded into main memory, the
segment table for a process is created and loaded into main memory



I Buffer Overflow Attacks

. buffer overflow/overrun:

- A condition at an interface under which more input
can be placed into a buffer or data-holding area
than the capacity allocated, overwriting other
information. Attackers exploit such a condition to
crash a system or to insert specially crafted code
that allows them to gain control of the system.

. common type of buffer overflow - stack overflow



int main(int argc, char *argv([]) {
int valid = FALSE;
char strl[8];
char str2([8];

next tag(strl);
gets(str2) ;
if (strncmp(strl, str2, 8) == 0)
valid = TRUE;
printf (“bufferl: stril(%s), str2(%s), valid(%d)\n”, strl, str2, valid);

(a) Basic buffer overflow C code

$ cc -g -o bufferl bufferl.c

S ./bufferl

START

bufferl: strl (START), str2(START), wvalid(1l)

S ./bufferl

EVILINPUTVALUE

bufferl: strl (TVALUE), str2 (EVILINPUTVALUE), wvalid(0)

S ./bufferil

BADINPUTBADINPUT

bufferl: strl (BADINPUT), str2(BADINPUTBADINPUT), valid(1l)

(b) Basic buffer overflow example runs

Figure 7.13 Basic Buffer Overflow Example



Address, order of writing

Stack growth
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I Virtual memory

1. All memory references within a process are logical addresses that are dynami-
cally translated into physical addresses at run time. This means that a process
may be swapped in and out of main memory such that it occupies different
regions of main memory at different times during the course of execution.

2. A process may be broken up into a number of pieces (pages or segments) and
these pieces need not be contiguously located in main memory during execu-
tion. The combination of dynamic run-time address translation and the use of
a page or segment table permits this.

. Itis not necessary that all of the pages or all of the
segments of a process be in main memory during
execution.



I Vistual memory terms

. resident set of the process - the portion of a process that is actually in
main memory at any time

Table 8.1 Virtual Memory Terminology

Virtual memory

A storage allocation scheme in which secondary memory can be addressed as
though it were part of main memory. The addresses a program may use to reference
memory are distinguished from the addresses the memory system uses to identify
physical storage sites, and program-generated addresses are translated automatically
to the corresponding machine addresses. The size of virtual storage is limited by the
addressing scheme of the computer system and by the amount of secondary memory
available and not by the actual number of main storage locations.

Virtual address The address assigned to a location in virtual memory to allow that location to be
accessed as though it were part of main memory.

Virtual address space | The virtual storage assigned to a process.

Address space The range of memory addresses available to a process.

Real address The address of a storage location in main memory. (real memory)




I Virtual memory operation

)

2)

3)

4)

S)

6)

If the processor encounters a logical address that is not in main memory, it
generates an interrupt indicating a memory access fault.

The OS puts the interrupted process in a blocking state.

For the execution of this process to proceed later, the OS must bring into main
memory the piece of the process that contains the logical address that
caused the access fault.

For this purpose, the OS issues a disk I/O read request.

After the I/O request has been issued, the OS can dispatch another process to
run while the disk 1/O is performed.

Once the desired piece has been brought into main memory, an I/O interrupt is
issued, giving control back to the OS, which places the affected process back
into a Ready state.



I Virtual memory implications

. More processes may be maintained in main
memory.

. A process may be larger than all of main memory



Table 8.2 Characteristics of Paging and Segmentation

Simple Paging

Virtual Memory
Paging

Simple Segmentation

Virtual Memory
Segmentation

Main memory parti-
tioned into small fixed-
size chunks called frames

Main memory parti-
tioned into small fixed-
size chunks called frames

Main memory not
partitioned

Main memory not
partitioned

Program broken into
pages by the compiler
or memory management
system

Program broken into
pages by the compiler
Or memory management
system

Program segments speci-
fied by the programmer
to the compiler (i.e., the
decision is made by the
programmer)

Program segments speci-
fied by the programmer
to the compiler (i.e., the
decision is made by the
programmer)

Internal fragmentation
within frames

Internal fragmentation
within frames

No internal
fragmentation

No internal
fragmentation

No external
fragmentation

No external
fragmentation

External fragmentation

External fragmentation

Operating system must
maintain a page table
for each process showing
which frame each page
occupies

Operating system must
maintain a page table
for each process showing
which frame each page
occupies

Operating system must
maintain a segment table
for each process show-
ing the load address and
length of each segment

Operating system must
maintain a segment table
for each process show-
ing the load address and
length of each segment

Operating system must
maintain a free frame
list

Operating system must
maintain a free frame
list

Operating system must
maintain a list of free
holes in main memory

Operating system must
maintain a list of free
holes in main memory

Processor uses page
number, offset to calcu-
late absolute address

Processor uses page
number, offset to calcu-
late absolute address

Processor uses segment
number, offset to calcu-
late absolute address

Processor uses segment
number, offset to calcu-
late absolute address

All the pages of a
process must be in main
memory for process to
run, unless overlays are
used

Not all pages of a process
need be in main memory
frames for the process to
run. Pages may be read
in as needed

All the segments of a
process must be in main
memory for process to
run, unless overlays are
used

Not all segments of a
process need be in main
memory for the process
to run. Segments may be
read in as needed

Reading a page into
main memory may
require writing a page
out to disk

Reading a segment into
main memory may require
writing one or more seg-
ments out to disk
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Figure 8.1 Paging Behavior

Need to prevent thrashing:
The system spends most of its
time swapping pieces rather
than executing instructions.

principle of locality



Virtual address

PiEs e Offset P - only some of .the pages of a
process may be in main memory, a
bit is needed in each page table entry

Page table entry to indicate whether the
P|M| Other control bits Frame number corresponding page is present

(a) Paging only

M - modify bit, indicating whether the
contents of the corresponding

Virtual address page have been altered since the
Segment number Offset page was last loaded into main
memory.
Segment table entry If there has been no change, then it
P|M| Other control bits Length Segment base Is not necessary to write the page out
when it comes time to replace the
(b) Segmentation only page in the frame that it currently

occupies.

Virtual address

Other control bits may also be
present. For example, if protection or
sharing is managed at the page level,
then bits for that purpose will be

Segment number Page number Offset

Segment table entry

required.
Control bits Length Segment base
Typically, the page number field is
Page table entry longer than the frame number field
P (M| Other control bits Frame number P = present bit

M = modified bit

(c) Combined segmentation and paging

Figure 8.2 Typical Memory Management Formats
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I Page table structure

the page table is of variable length, depending on the size of the process, we
cannot expect to hold it in registers.

Instead, the page table must be in main memory to be accessed.
the amount of memory devoted to page tables alone could be unacceptably high

- most virtual memory schemes store page tables in virtual memory rather
than real memory

- 231= 2 Gbytes of virtual memory.
Using 2° = 512-byte pages means that as many as 2%? page table entries are
required per process.

page tables are subject to paging just as other pages

When a process is running, at least a part of its page table must be in main
memory, including the page table entry of the currently executing page

Some processors make use of a two-level scheme to organize large page
tables



Two-level page organization scheme

. page directory, in which each entry points to a page table.

. process can consist of up to X x Y pages.

. Typically, the maximum length of a page table is restricted to be equal to

one page (Pentium)

4-Kbyte root _
page table length = X

4-Kbyte (2'?) pages
4-Gbyte (2%?) virtual address space is
composed of 22° pages.

If each of these pages

is mapped by a 4-byte page table
entry => PTEs requiring 4 Mbytes
(222) — kept in virtual memory
(occupying 2'° pages)

User page table is mapped by

a root page table with 2'° PTEs
occupying 4 Kbytes (2'?) of main
memory, always remains in main

4-Mbyte user J’ _
page table i b length =Y
memory
4-Gbyte user J’ s
address space

Figure 8.4 A Two-Level Hierarchical Page Table
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I Inverted page table

. A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the
virtual address space.

PowerPC, UltraSPARC, and the |A-64 architecture

. the page number portion of a virtual address is mapped into
a hash value using a simple hashing function

hash value is a pointer to the inverted page table, which
contains the page table entries

. fixed proportion of real memory is required for the tables
regardless of the number of processes or virtual pages
supported



Virtual address

n bits
Page # | Offset
Control
n bits bits
Process
Hash m bits Page # ID Chain
function 0
> i
J
Y Y
m _ 1 Frame #| Offset
Inverted page table m bits

(one entry for each
physical memory frame)

Figure 8.6 Inverted Page Table Structure

Real address




I Translation lookaside buffer

In principle, every virtual memory reference can cause two
physical memory accesses:

- one to fetch the appropriate page table entry and
- one to fetch the desired data.
TLB - special high-speed cache for page table entries

functions in the same way as a memory cache

Cannot simply index into the TLB based on page number. Instead,
each entry in the TLB must include the page number as well as
the complete page table entry.

- associative mapping



If the desired page table entry is present (TLB hit), then the frame number is retrieved and the real address is formed.
If the desired page table entry is not found (TLB miss), then the processor uses the page number to index the process page table and examine
the corresponding page table entry.
If the “present bit” is set, then the page is in main memory, and the processor can retrieve the frame number from the page table entry to
form the real address. The processor also updates the TLB to include this new page table entry.
if the present bit is not set, then the desired page is not in main memory and a memory access fault, called a page fault, is issued.
At this point, we leave the realm of hardware and invoke the OS, which loads the needed page and updates the page table.

Secondary

. memory
Virtual address

Page # | Offset \/\ \/\

Main memory

Translation
lookaside buffer
—
> TLB hit
al Offset I
» > -
-

Load

age
Page table pag

\/—\ - S =
TLB miss
L

Y Y Y
Frame #| Offset

Real address \/\

Page fault

Figure 8.7 Use of a Translation Lookaside Buffer



Translation lookaside buffer - operation

If the desired page table entry is present (TLB hit), then the frame number is

retrieved and the real address is formed.

If the desired page table entry is not found (TLB miss), then the processor

uses the page number to index the process page table and examine the

corresponding page table entry.

- If the “present bit” is set, then the page is in main memory, and the

processor can retrieve the frame number from the page table entry to form
the real address. The processor also updates the TLB to include this new

page table entry.

- if the present bit is not set, then the desired page is not in main memory
and a memory access fault, called a page fault, is issued.

At this point, we leave the realm of hardware and invoke the OS, which
loads the needed page and updates the page table.
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Figure 8.8 Operation of Paging and Translation Lookaside Buffer (TLB)



page table entry.

Virtual address
Page # Offset
(S 5020

Y Y
| 37 | 502 |
Frame # Offset

Real address

Page table

(a) Direct mapping

Virtual address
Page # Offset
[ 5 | 502 |

associative mapping - Cannot simply index into the TLB based on page number.
Instead, each entry in the TLB must include the page number as well as the complete

Page # PT entries

— 19
— 511
— 37
— 27
— 14
— |
— 211

.15 37

— 90

_>

Translation lookaside buffer

(b) Associative mapping

Figure 8.9 Direct versus Associative Lookup for Page Table Entries
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_TLBoperation ... ... ... the virtual memory mechanism must interact with
the cache system (not the TLB cache, but the main

Virtual address
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Figure 8.10 Translation Lookaside Buffer and Cache Operation



I Page size

. Considering: Internal
fragmentation, number of
pages,

. effect of size on page faults
— impact on locality of
reference

Table 8.3 Example Page Sizes

Computer

Page Size

Atlas

512 48-bit words

Honeywell-Multics

1,024 36-bit words

IBM 370/XA and 370/ESA 4 Kbytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 Kbytes to 16 Mbytes
UltraSPARC 8 Kbytes to 4 Mbytes
Pentium 4 Kbytes or 4 Mbytes
Intel Itanium 4 Kbytes to 256 Mbytes

Intel core 17

4 Kbytes to 1 Gbyte




Segmentation

allows the programmer to view memory as consisting of multiple
address spaces or segments

1) It simplifies the handling of growing data structures. Changing
segment size based on size of a data structure.

2) It allows programs to be altered and recompiled independently,
without requiring the entire set of programs to be relinked and
reloaded.

3) Itlends itself to sharing among processes. A programmer can
place a utility program or a useful table of data in a segment that
can be referenced by other processes.

4) It lends itself to protection - privileges
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Address
0

20K

35K

50K

80K
90K

140K

190K

Main memory

Dispatcher

Process A

Segmentation lends itself to the implementation of protection and sharing policies.
Because each segment table entry includes a length as well as a base address, a
program cannot inadvertently access a main memory location beyond the limits of a
segment. To achieve sharing, it is possible for a segment to be referenced in the
segment tables of more than one process. The same mechanisms are, of course,
available in a paging system. However, in this case the page structure of programs
and data is not visible to the programmer, making the specification of protection and

-«——)—— sharing requirements more awkward.

No access
allowed

Branch instruction
(not allowed)

3

-

S—

Reference to
data (allowed)

Process C

Reference to
data (not allowed)

Figure 8.14 Protection Relationships between Segments



Table 8.4 Operating System Policies for Virtual Memory

Fetch Policy
Demand paging
Prepaging

Placement Policy

Replacement Policy
Basic Algorithms
Optimal
Least recently used (LRU)
First-in-first-out (FIFO)
Clock
Page Buffering

Resident Set Management
Resident set size
Fixed
Variable
Replacement Scope
Global
Local

Cleaning Policy
Demand
Precleaning

Load Control
Degree of multiprogramming




Fetch policy and Cleaning policy

Fetch policy

- determines when a page should be brought into main memory

- Alternatives

Demand paging - only when a reference is made to a location on that
page

Prepaging - pages other than the one demanded by a page fault are
brought in.

Cleaning policy

- Determining when a modified page should be written out to secondary
memory

- Alternatives

demand cleaning - only when a page has been selected for
replacement

Precleaning - page is written out but remains in main memory until the
page replacement, pages can be written out in batches



I Placement policy

determines where in real memory a process piece is to reside
pure segmentation system - best-fit, first-fit, and so on

pure paging or paging combined with segmentation - irrelevant
because the address translation hardware and the main memory
access hardware can perform their functions for any page-frame
combination with equal efficiency

Concern on nonuniform memory access (NUMA) multiprocessor



Replacement policy

deals with the selection of a page in main memory to be replaced
when a new page must be brought in

Concepts:

- How many page frames are to be allocated to each active
process

- Whether the set of pages to be considered for replacement
should be limited to those of the process that caused the page
fault or encompass all the page frames in main memory

- Among the set of pages considered, which particular page
should be selected for replacement



I Replacement policy

Frame locking

- When a frame is locked, the page currently stored in that
frame may not be replaced.

- Kernel, key control structures
- Sticky bit?

Basic algorithms

- Optimal (impossible),

- Least recently used (LRU),

- First-in-first-out (FIFO)
.2 : > 4 d & ; \-‘ ;A“ ; ‘l ;A‘ A + L .
Clock — 8.2 / OPERATING SYSTEM SOFTWARE 365

Page buffering — replaced pages remain in memory “longer”,
less 1/O



it for execution

Resident Set Management

. Resident set size - not necessary and indeed may not be possible
to bring all of the pages of a process into main memory to prepare

- Fixed-allocation, variable-allocation

. Replacement scope

Table 8.5 Resident Set Management

Fixed Allocation

Variable Allocation

Local Replacement

Global Replacement

e Number of frames allocated to a
process is fixed.

* Page to be replaced is chosen from
among the frames allocated to that
process.

* Not possible.

* The number of frames allocated to a
process may be changed from time to
time to maintain the working set of the
process.

* Page to be replaced is chosen from
among the frames allocated to that
process.

* Page to be replaced is chosen from all
available frames in main memory; this
causes the size of the resident set of
processes to vary.




Table 8.6 UNIX SVR4 Memory Management Parameters

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of
this field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate
copy of the page must first be made for all other processes that share the page. This feature allows the
copy operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.
Modity
Indicates page has been modified.
Reference
Indicates page has been referenced. This bit is set to 0 when the page is first loaded and may be periodi-
cally reset by the page replacement algorithm.
Valid
Indicates page is in main memory.
Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more
than one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the
virtual memory to be allocated should be cleared first.

Page Frame Data Table Entry

Page state
Indicates whether this frame is available or has an associated page. In the latter case, the status of the
page is specified: on swap device, in executable file, or DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.
Swap-Use Table Entry
Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.




