
Operating systems

Lecture 7
 Michal Vrábel, 27/11/2019

Segmentation

● Division of memory into segments

● Segments have varying length

● Logical address – 2 parts

● Similar to dynamic partitioning, but

− Program may occupy more partitions/segments

− Segments are not contiguous

● No internal fragmentation, present external fragmentation

● Visible to the programmer - convenience for organizing programs and data

− Typically, the programmer or compiler will assign programs and data to different segments.

− The programmer must be aware of the maximum segment size limitation.

● Segment table – starting address, length of a segment

● List of free blocks in memory

● Each process has its own segment table, and when all of its segments are loaded into main memory, the
segment table for a process is created and loaded into main memory

Segments – defined by OS or CPU?

Buffer Overflow Attacks

● buffer overflow/overrun:

− A condition at an interface under which more input
can be placed into a buffer or data-holding area
than the capacity allocated, overwriting other
information. Attackers exploit such a condition to
crash a system or to insert specially crafted code
that allows them to gain control of the system.

● common type of buffer overflow - stack overflow

A
dd

re
ss

, o
rd

er
 o

f w
rit

in
g

Local variables
Function argum

ents
S

ta
ck

 g
ro

w
th

Virtual memory

● It is not necessary that all of the pages or all of the
segments of a process be in main memory during
execution.

Vistual memory terms
● resident set of the process - the portion of a process that is actually in

main memory at any time

(real memory)

Virtual memory operation

1) If the processor encounters a logical address that is not in main memory, it
generates an interrupt indicating a memory access fault.

2) The OS puts the interrupted process in a blocking state.

3) For the execution of this process to proceed later, the OS must bring into main
memory the piece of the process that contains the logical address that
caused the access fault.

4) For this purpose, the OS issues a disk I/O read request.

5) After the I/O request has been issued, the OS can dispatch another process to
run while the disk I/O is performed.

6) Once the desired piece has been brought into main memory, an I/O interrupt is
issued, giving control back to the OS, which places the affected process back
into a Ready state.

Virtual memory implications

● More processes may be maintained in main
memory.

● A process may be larger than all of main memory

Locality and Virtual Memory

● Need to prevent thrashing:
The system spends most of its
time swapping pieces rather
than executing instructions.

● principle of locality

P - only some of the pages of a
process may be in main memory, a
bit is needed in each page table entry
to indicate whether the
corresponding page is present

M - modify bit, indicating whether the
contents of the corresponding
page have been altered since the
page was last loaded into main
memory.
If there has been no change, then it
is not necessary to write the page out
when it comes time to replace the
page in the frame that it currently
occupies.

Other control bits may also be
present. For example, if protection or
sharing is managed at the page level,
then bits for that purpose will be
required.

Typically, the page number field is
longer than the frame number field

Where is it defined what is in the page table

Page table structure
● the page table is of variable length, depending on the size of the process, we

cannot expect to hold it in registers.

● Instead, the page table must be in main memory to be accessed.

● the amount of memory devoted to page tables alone could be unacceptably high

− most virtual memory schemes store page tables in virtual memory rather
than real memory

− 231= 2 Gbytes of virtual memory.
Using 29 = 512-byte pages means that as many as 222 page table entries are
required per process.

● page tables are subject to paging just as other pages

● When a process is running, at least a part of its page table must be in main
memory, including the page table entry of the currently executing page

● Some processors make use of a two-level scheme to organize large page
tables

!!!!

Two-level page organization scheme
● page directory, in which each entry points to a page table.

● process can consist of up to X × Y pages.

● Typically, the maximum length of a page table is restricted to be equal to
one page (Pentium)

length = X

length = Y

How are newer CPUs?

4-Kbyte (212) pages
4-Gbyte (232) virtual address space is
composed of 220 pages.

If each of these pages
is mapped by a 4-byte page table
entry => PTEs requiring 4 Mbytes
(222) – kept in virtual memory
(occupying 210 pages)

User page table is mapped by
a root page table with 210 PTEs
occupying 4 Kbytes (212) of main
memory, always remains in main
memory

Inverted page table

● A drawback of the type of page tables that we have been
discussing is that their size is proportional to that of the
virtual address space.

● PowerPC, UltraSPARC, and the IA-64 architecture

● the page number portion of a virtual address is mapped into
a hash value using a simple hashing function

● hash value is a pointer to the inverted page table, which
contains the page table entries

● fixed proportion of real memory is required for the tables
regardless of the number of processes or virtual pages
supported

Translation lookaside buffer

● In principle, every virtual memory reference can cause two
physical memory accesses:

− one to fetch the appropriate page table entry and

− one to fetch the desired data.

● TLB - special high-speed cache for page table entries

● functions in the same way as a memory cache

● Cannot simply index into the TLB based on page number. Instead,
each entry in the TLB must include the page number as well as
the complete page table entry.

− associative mapping

● If the desired page table entry is present (TLB hit), then the frame number is retrieved and the real address is formed.
● If the desired page table entry is not found (TLB miss), then the processor uses the page number to index the process page table and examine

the corresponding page table entry.
● If the “present bit” is set, then the page is in main memory, and the processor can retrieve the frame number from the page table entry to

form the real address. The processor also updates the TLB to include this new page table entry.
● if the present bit is not set, then the desired page is not in main memory and a memory access fault, called a page fault, is issued.

● At this point, we leave the realm of hardware and invoke the OS, which loads the needed page and updates the page table.

Translation lookaside buffer - operation

● If the desired page table entry is present (TLB hit), then the frame number is
retrieved and the real address is formed.

● If the desired page table entry is not found (TLB miss), then the processor
uses the page number to index the process page table and examine the
corresponding page table entry.
− If the “present bit” is set, then the page is in main memory, and the

processor can retrieve the frame number from the page table entry to form
the real address. The processor also updates the TLB to include this new
page table entry.

− if the present bit is not set, then the desired page is not in main memory
and a memory access fault, called a page fault, is issued.

● At this point, we leave the realm of hardware and invoke the OS, which
loads the needed page and updates the page table.

associative mapping - Cannot simply index into the TLB based on page number.
Instead, each entry in the TLB must include the page number as well as the complete
page table entry.

the virtual memory mechanism must interact with
the cache system (not the TLB cache, but the main
memory cache).

Page size

● Considering: Internal
fragmentation, number of
pages,

● effect of size on page faults
– impact on locality of
reference

Segmentation

● allows the programmer to view memory as consisting of multiple
address spaces or segments

1) It simplifies the handling of growing data structures. Changing
segment size based on size of a data structure.

2) It allows programs to be altered and recompiled independently,
without requiring the entire set of programs to be relinked and
reloaded.

3) It lends itself to sharing among processes. A programmer can
place a utility program or a useful table of data in a segment that
can be referenced by other processes.

4) It lends itself to protection - privileges

More about segments

Segmentation lends itself to the implementation of protection and sharing policies.
Because each segment table entry includes a length as well as a base address, a
program cannot inadvertently access a main memory location beyond the limits of a
segment. To achieve sharing, it is possible for a segment to be referenced in the
segment tables of more than one process. The same mechanisms are, of course,
available in a paging system. However, in this case the page structure of programs
and data is not visible to the programmer, making the specification of protection and
sharing requirements more awkward.

Fetch policy and Cleaning policy

● Fetch policy

− determines when a page should be brought into main memory

− Alternatives

● Demand paging - only when a reference is made to a location on that
page

● Prepaging - pages other than the one demanded by a page fault are
brought in.

● Cleaning policy

− Determining when a modified page should be written out to secondary
memory

− Alternatives

● demand cleaning - only when a page has been selected for
replacement

● Precleaning - page is written out but remains in main memory until the
page replacement, pages can be written out in batches

Placement policy

● determines where in real memory a process piece is to reside

● pure segmentation system - best-fit, first-fit, and so on

● pure paging or paging combined with segmentation - irrelevant
because the address translation hardware and the main memory
access hardware can perform their functions for any page-frame
combination with equal efficiency

● Concern on nonuniform memory access (NUMA) multiprocessor

Replacement policy

● deals with the selection of a page in main memory to be replaced
when a new page must be brought in

● Concepts:

− How many page frames are to be allocated to each active
process

− Whether the set of pages to be considered for replacement
should be limited to those of the process that caused the page
fault or encompass all the page frames in main memory

− Among the set of pages considered, which particular page
should be selected for replacement

Replacement policy
● Frame locking

− When a frame is locked, the page currently stored in that
frame may not be replaced.

− Kernel, key control structures

− Sticky bit?

● Basic algorithms

− Optimal (impossible),

− Least recently used (LRU),

− First-in-first-out (FIFO)

− Clock

● Page buffering – replaced pages remain in memory “longer”,
less I/O

Resident Set Management
● Resident set size - not necessary and indeed may not be possible

to bring all of the pages of a process into main memory to prepare
it for execution

− Fixed-allocation, variable-allocation

● Replacement scope

