
A Short Tutorial on Matlab
( by T. Co, ©2003,2004 )

Part I.   BASICS

I. Assigning Values to Variables, Vectors and Matrices

• Use the equality symbol, e.g. A=3
• Variables are case sensitive: temperature is not the same as Temperature
• To check values, just type the variable name
• There are special constants already available, e.g.   pi, Inf
• For complex numbers, either use   3+2i or 3+2j
• Vectors and matrices are enclosed with square brackets:

a) Elements of rows are separated by commas: A=[1,2,3]
b) Elements of columns are separated by semicolons: B=[1;2;3]
c) Matrices can be seen as columns of row vectors, C=[1,2,3;4,5,6]

• Alternatively, use spaces to separate row elements and return keys for column
elements:

B = [ 1 2 3
  4 5 6
 1 0 1]

• To get size information,
a) size(A) yields [# rows, # cols]
b) size(A,1) yields # rows
c) size(A,2) yields # cols
d) length(v) yields # elements in vector v

• Some shortcuts are available:
a)  A = 1:0.1:2 yields a row vector [1, 1.1, 1.2, … , 1.9, 2]
b) diag([1,2,3]) yields a diagonal matrix [1,0,0 ; 0,2,0 ; 0,0,3]
c) diag([1,2,3],1) yields a matrix

[ 0,1,0,0 ; 0,0,2,0 ; 0,0,0,3 ; 0,0,0,0 ]
d) eye(4) yields an identity matrix of size 4x4
e) zeros(3)  yields a matrix of zeros of size 3x3
f) zeros(size(A)) yields a matrix of zeros

having the same size as A
g) ones(3), ones(2,5), ones(size(A))

works the same as zeros() except it produces
a matrix of ones

h) rand(m,n) matrix of uniformly distributed
random numbers of size m by n

i) randn(m,n) matrix of normally distributed random
numbers of size m by n

j) linspace(a,b,n) creates a vector of n elements
linearly spaced from a to b



k) logspace( a,b,n) creates a vector of n elements
logarithmically spaced from 10a to 10b

• Vectors and matrices can be appended to build larger matrices, e.g.  E=[A,B;C,D]
• To disable the echoing results you could include a semicolon after each command

line.
• To check existing list, you could type   who   or   whos
• To extract elements:

a) A(1,2) gives the element at row 1 and column 2
b) A(3,:) gives the third row of A
c) A(:,4)  gives the fourth column of A
d) A([3,2],[2,1]) extracts rows 3 and 2,  and columns 2 and 1

• To remove rows and columns:
a) A(2,:)=[] removes the 2nd row
b) A(:,1)=[] removes the 1st column

• Reshaping and vectorization
a) A(:) yields a vectorized column

[a11 ; a21 ; …;an1 ; …; a1n; …;ann]
b) reshape( A,m,n)  yields a matrix of size m by n by

building it column-wise

II. Matrix Operations and other operations

• matrix operations
1. addition C=A+B
2. multiplication C=A*B
3. determinant c=det(A)
3. inverse inv(A)  or A^(-1)
4. right division C=B/A  (same as C=B*inv(A)  )
5. left division C=A\B (same as C= inv(A)*B  )
6. transpose C=A.'  ( Note:  C=A' is conjugate
 transpose)
7. exponentiation B=A^3
8. matrix exponentiation B=expm(A)
9. rank R=rank(A)
10. eigenvalue/eigenvectors [ Eigenvals,Eigenvecs] = eig(A)
11. characeristic polynomial p = poly(A)
12 Kronecker product C=kron (A,B)
14. trace t=trace(A)
15. pseudo-inverse M = pinv(A)



• polynomials
16. roots of polynomial R = roots([ 1, 4, 2] )

 (    = roots of  s2+4s+2=0    )
17. polynomial, given roots p=poly([r1,r2])
18. polynomial multiplication p=conv( [1, 4, 2],[-2, 3] )

(     = (s2 + 4s + 2)(-2s+3)     )

• column-wise operation
19. column-wise sum s=sum([1,2,3;4,5,6])

   (   = [ 5,7,9] )
20. column-wise product p=prod([1,2,3;4,5,6])

   (  = [ 4, 10, 18] )
• sorting

21. sort cols in ascending order V = sort(A)
    if A =  [ 5, 3 ]   then V= [ 1, 3 ]

               [ 1, 4 ]                 [5, 4 ]
22. sorting and getting indices [V,K] = sort(A)

• Elementwise operation: precede operator by a dot, e.g.  A.*B , A./B , A.^2

III. Plotting

• 2D plots
plot( x,y) uses default
plot( x,y,x,z) combines plot of y vs x and z vs x
plot( x,y,'-',x,z,'--') specifies how each plot is drawn:

   solid line for x-y and dashed for x-z

• Labeling
xlabel('Time (sec)') labeling the x-axis
ylabel('Temperature') labels the y-axis
title('Case 1') puts title on top of plot
text(1.2, 3.0, 'Case 1')  puts text on specified location
gtext('Case 2')  text is place with the aid of the mouse

(or use the menu bar in the figure window)

You can use a limited version of TeX formatting for

a) greek letters and other symbols (see TeX manual)
' \ alpha \ nabla T ' yields a text : α∇Τ

b) subscript and superscripts:
'T_{surround}^{ a+b}' yields  a text : Tsurround

a+b



• Axis settings
axis([0,10,-1,1]) specifies x-range as 0 to 10,

   and y-range as -1 to 1
axis('square') makes the plot square
axis returns to automatic axis mode
hold freezes the previous plot

• 3D plots
[ x,y]= meshgrid(-10:0.5:10, -2:0.2:2)

initializes x and y matrices
       (  for the following try z=sin(x/2).*sin(y)  )
mesh( x,y,z) mesh plot
surf( x,y,z) surface plot
surfl( x,y,z) surface plots with lighting
shading interp smoothens shading scheme as interpolated
colormap(gray) changes coloring scheme to gray scale
brighten(-0.5) darkens picture ( if >0 then it brightens)
view([10,60])  changes view to azimuth=10o and

   elevation=60o

IV. Printing
print sends plot to printer
print h:\sample1.ps saves the plot as a file
print - deps h:\sample2.eps specifies format

(or you can use the menu in the figure window)

V. Workspaces
clear erases all variables
clear a, B, Temperature erases only specified variables
diary h:\case1.dry saves all terminal activity and saves in file

case1.dry
save h:\assign1.mat saves workspace
save h:\assign1.mat a, B

saves only specified variables
save h:\assign1.mat a, B - ascii

saves in ascii format
load h:\assign1.mat loads workspace
load h:\data1.any loads from a file and creates a

matrix named data1
( or you can use menu items for importing data and changing paths)



VI. Some helpful tips
help grabs help information from

functions or script files
cursor up and down keys scrolls through previous commands

VI. Multidimensional Arrays

a) Creating arrays of higher dimensions
- Method 1:  set using assignments

Given: A=[1,2; 3,4]
Then type:  A(:,:,2)= [11, 22; 33, 44]

- Method 2: using cat function

Given: A=[1,2 ; 3,4]
            B = [11 , 22; 33, 44]
Then type: C=cat(3,A,B)

- Method 3: using  “ones” , “zeros” and “repmat”

b) Dimensions and Reshaping arrays

ndims(A) gets the number of dimensions of A

size(A) gets the size of each dimension of A

reshape(A,[m,n,p]) reshapes A into a multidimensional
array of size [m,n,p] by first collecting
all elements of A in a column and then
distributing according to the specified
size.

c) Permuting arrays
permute(A,[2,1,3]) changes the dimension indexing,
(where 1,2,3 are the this is essentially like the transpose, except
dimensions, not sizes) it applies on any dimension.



VII. Structures

Features/Motivation:
- helps encapsulate and organize information of different types
- uses text fields, instead of numeric fields
- can be collected as arrays
- can have subfields
- most commands require the options to come from structures
- most commands can output to structures

a) Creating Structures

- Method 1: Use period to create fields and subfields

student .IDNumber=1234;
student .Name='Hank Hill';

- Method 2: Use the struct  command

student =struct('IDNumber',1234,...
     ' Name','Hank Hill') ;

- For building structure arrays, just start numbering

student(2)= struct('IDNumber',5678,...
     ' Name','Robert Plant') ;

b) Extracting Information: just type the structure name including the fields

student(2)
student(2).Name

c) Removing fields

student = rmfield( student , ' IDNumber' )



VIII. Cell Arrays

Features/Motivation
- Cell arrays are similar to structures except you use numeric indices.
- Instead of matrices, cell arrays can have different types of elements

a) Creation:
Use assignments with “curly brackets”

A = { [1,2;3,4],  ‘Testing’; {[1,2] ;3}} , 3+5i }

b) Extracting information:
A{1,1} should yield the element in {1,1}
A{2,1}{1,1} assuming element {2,1} is a cell,

then extracts the {1,1} th element

c) Translating to structures and vice versa:
C=cell2struct(A(:),...
    {' matrix' ,'name','vector','cell'})
D=struct2cell(C); this converts structure C to cell array

arranged in a column
E=reshape (D,2,2); this will reshape cell array D

IX. M-files

Features/Motivation
- using the Matlab editor or any text editor such as notepad
- to write a user-define function that could take different inputs and yields

different outputs
- collect subfunctions together for better organization of files
- several Matlab functions need user-supplied functions in forms of m-files.



a) Example 1. ( simple function )

function    y = example1(A,x,b)
%
%   y = example1( A,x,b)
%   ===================
%
%   solves for y=Ax+b
%

%   ( c)2004 Tom Co
%   @ Michigan Technological University
%

    y = A*x + b ;

b) Example 2. ( different inputs and outputs)

function [ y,norm] = example2( A,x,b)
%
%   [ y,norm] = example2( A,x,b)
%   ==========================
%
%   obtains
%       a) y = Ax+b
%       b) or y = Ax if b not included
%       c) norm = sqrt( y' * y )

    y = A*x;

    if  nargin==3
        y = y + b;
    end

    if  nargout == 2, % if norm is required
        norm=y'*y;
    end



c) Example 3. ( includes subfunctions)

function ynorms = example3(Y)
%
%   ynorms = example3(Y)
%   ====================
%
%   obtains ynorms = [ ynorm1, ..., ynormn ]
%   where   ynormi= xnorm( y(:, i) )
%           xnorm(x) = sqrt( x'*x)
%

    nycols = size(Y,2);
    ynorms =[];
    for i = 1:nycols
        ycol = Y(:, i);
        ynorms =[ ynorms, newnorm( ycol)];
    end

    function xnorm = newnorm(x);
        xnorm = sqrt( x'*x);


