

Macro Assembler
and Utilities

Macro Assembler, Linker/Locator,
Library Manager, and Object-HEX Converter

for 8051, Extended 8051, and 251 Microcontrollers

User’s Guide 02.2001

2

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1988-2001 Keil Elektronik GmbH., and Keil Software, Inc.
All rights reserved.

Keil C51™, Keil C251™, µVision2™, and µVision2 Debugger™ are trademarks
of Keil Elektronik GmbH.

Microsoft® and Windows™ are trademarks or registered trademarks of
Microsoft Corporation.

Intel®, MCS® 51, MCS® 251, ASM–51®, and PL/M–51® are registered trademarks
of Intel Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 3

Preface
This manual describes how to use the A51, AX51, and A251 macro assemblers
and the related utilities to translate assembly source code into executable
programs for the 8051 and variants like the Philips 80C51MX and Intel/Atmel
WM 251 devices. This manual assumes you are familiar with the Windows
operating system and know how to program microcontrollers.

“Chapter 1. Introduction,” provides an overview of the different assembler
variants and describes the basics of assembly language programming.

“Chapter 2. Architecture,” contains an overview of the 8051, extended 8051,
Philips 80C51MX, and Intel/Atmel WM 251 devices.

“Chapter 3. Writing Assembly Programs,” describes assembler statements and
the rules for arithmetic and logical expressions.

“Chapter 4. Assembler Directives,” describes how to define segments and
symbols and how to use all directives.

“Chapter 5. Assembler Macros,” describes the function of the standard macros
and contains information for using standard macros.

“Chapter 6. Macro Processing Language,” defines and describes the use of the
Intel Macro Processing Language.

“Chapter 7. Invocation and Controls,” describes how to invoke the assembler
and how to control the assembler operation.

“Chapter 8. Error Messages,” contains a list of all assembler error messages and
describes their causes and how to avoid them.

“Chapter 9. Linker/Locator,” includes reference section of all linker/locater
directives, along with examples and detailed descriptions.

“Chapter 10. Library Manager,” shows you how to create and maintain a library.

“Chapter 11. Object-Hex Converter,” describes how to create Intel HEX files.

The Appendix contains program examples, lists the differences between
assembler versions, and contains other items of interest.

4 Preface

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data
files, source files, environment variables, and commands you enter at
the Windows command prompt. This text usually represents commands
that you must type in literally. For example:

 CLS DIR BL51.EXE

Note that you are not required to enter these commands using all capital
letters.

Courier Text in this typeface is used to represent information that displays on
screen or prints at the printer.
This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name.
Occasionally, italics are also used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used in examples to indicate an item that may be
repeated.

Omitted code
 .
 .
 .

Vertical ellipses are used in source code examples to indicate that a
fragment of the program is omitted. For example:
void main (void) {
.
.
.
while (1);

�Optional Items� Optional arguments in command-line and option fields are indicated by
double brackets. For example:

C51 TEST.C PRINT �(filename)�

{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a
group of items from which one must be chosen. The braces enclose all
of the choices and the vertical bars separate the choices. One item in
the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press Enter to continue.”

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 5

Shaded directives and options are available only in AX51 and A251.

Contents
Chapter 1. Introduction..15

How to Develop A Program ... 16
What is an Assembler?.. 16
Modular Programming .. 17

Modular Program Development Process .. 19
Segments, Modules, and Programs ... 19
Translate and Link Process ... 20
Filename Extensions ... 22

Program Template File ... 23
Chapter 2. Architecture Overview ..27

Memory Classes and Memory Layout .. 27
Classic 8051 .. 28
Classic 8051 Memory Layout ... 29
Extended 8051 Variants .. 30
Extended 8051 Memory Layout.. 31
Philips 80C51MX ... 32
80C51MX Memory Layout... 33
Intel/Atmel WM 251 ... 34
251 Memory Layout.. 35

CPU Registers... 36
CPU Registers of the 8051 Variants ... 36
CPU Registers of the Intel/Atmel WM 251 .. 37
Program Status Word (PSW) .. 39

Instruction Sets ... 40
Opcode Map ... 64

8051 Instructions... 65
Additional 251 Instructions... 66
Additional 80C51MX Instructions via Prefix A5.. 67

Chapter 3. Writing Assembly Programs ..69
Assembly Statements .. 69

Directives .. 70
Controls... 70
Instructions.. 70

Comments ... 71
Symbols .. 72

Symbol Names .. 72
Labels.. 73
Operands... 74

Special Assembler Symbols .. 75
Immediate Data ... 76
Memory Access... 76

6 Contents

Shaded directives and options are available only in AX51 and A251.

DATA..77
BIT ..77
EBIT (only on Intel/Atmel WM 251)..78
IDATA ..78
EDATA (Intel/Atmel WM 251, Philips 80C51MX only)79
XDATA...80
CODE and CONST ...80
HDATA and HCONST ...81
Program Addresses..82

Expressions and Operators..84
Numbers ..84
Colon Notation for Numbers (A251 only)..85
Characters..86
Character Strings ...87
Location Counter...87
Operators ...88
Arithmetic Operators ...88
Binary Operators ...88
Relational Operators..89
Class Operators ...90
Type Operators..90
Miscellaneous Operators ...91
Operator Precedence ...92
Expressions..93
Expression Classes ..93
Relocatable Expressions..95
Simple Relocatable Expressions..96
Extended Relocatable Expressions..97
Examples with Expressions ...98

Chapter 4. Assembler Directives ...99
Introduction...99
Segment Directives ...102

Location Counter...102
Generic Segments..103
Stack Segment ...104
Absolute Segments ..105
Default Segment ..105
SEGMENT..106
RSEG...110
BSEG, CSEG, DSEG, ISEG, XSEG...111

Symbol Definition...113
EQU, SET ...113
CODE, DATA, IDATA, XDATA...114
esfr, sfr, sfr16, sbit...116
LIT (AX51 & A251 only) ..117

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 7

Shaded directives and options are available only in AX51 and A251.

Memory Initialization ... 119
DB... 119
DW.. 120
DD (AX51 & A251 only) .. 121

Reserving Memory.. 122
DBIT ... 122
DS ... 123
DSB (AX51 & A251 only) .. 124
DSW (AX51 & A251 only) ... 125
DSD (AX51 & A251 only) .. 126

Procedure Declaration (AX51 & A251 only) .. 127
PROC / ENDP (AX51 & A251 only) .. 127
LABEL (AX51 and A251 only)... 129

Program Linkage... 130
PUBLIC .. 130
EXTRN / EXTERN .. 131
NAME... 132

Address Control .. 133
ORG.. 133
EVEN (AX51 and A251 only) ... 134
USING .. 134

Other Directives.. 136
END .. 136
_ _ERROR_ _ ... 136

Chapter 5. Assembler Macros..137
Standard Macro Directives ... 139
Defining a Macro .. 140

Parameters... 141
Labels.. 142
Repeating Blocks .. 144
REPT... 144
IRP .. 145
IRPC.. 146
Nested Definitions... 147
Nested Repeating Blocks .. 147
Recursive Macros.. 148

Operators .. 149
NUL Operator ... 150
& Operator .. 151
< and > Operators ... 152
% Operator .. 153
;; Operator ... 154
! Operator .. 154

Invoking a Macro.. 155
C Macros... 156

8 Contents

Shaded directives and options are available only in AX51 and A251.

C Macro Preprocessor Directives..157
Stringize Operator ...158
Token-pasting Operator...159
Predefined C Macro Constants..160
Examples with C Macros...161
C Preprocessor Side Effects ..162

Chapter 6. Macro Processing Language ...163
Overview...163
Creating and Calling MPL Macros ...164
Creating Parameterless Macros...164
MPL Macros with Parameters...166
Local Symbols List..169
Macro Processor Language Functions ..170

Comment Function ..170
Escape Function ..171
Bracket Function ...172
METACHAR Function ...173
Numbers and Expressions ...174
Numbers ..175
Character Strings ...176
SET Function...177
EVAL Function ...178
Logical Expressions and String Comparison...179

Conditional MPL Processing ..180
IF Function ..180
WHILE Function...181
REPEAT Function...182
EXIT Function...183

String Manipulation Functions..184
LEN Function..184
SUBSTR Function...185
MATCH Function ...186

Console I/O Functions...187
Advanced Macro Processing...188

Literal Delimiters ..189
Blank Delimiters..190
Identifier Delimiters ..191
Literal and Normal Mode ..192

MACRO Errors ...193
Chapter 7. Invocation and Controls ..195

Environment Settings ..195
Running Ax51 ...196

ERRORLEVEL...197
Output Files ...197

Assembler Controls...197

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 9

Shaded directives and options are available only in AX51 and A251.

CASE (AX51 and A251 only) ... 200
COND / NOCOND ... 201
DATE.. 202
DEBUG... 203
EJECT... 204
ERRORPRINT.. 205
FIXDRK (A251 only) .. 206
GEN / NOGEN ... 207
INCDIR... 208
INCLUDE... 209
INTR2 (A251 only)... 210
LIST / NOLIST... 211
MOD51, MOD_CONT, MOD_MX51 (AX51 only) .. 212
MODSRC (A251 only) ... 213
MPL .. 214
NOLINES ... 215
NOMACRO .. 216
NOMOD51 ... 217
NOSYMBOLS.. 218
OBJECT / NOOBJECT .. 219
PAGELENGTH, PAGEWIDTH... 220
PRINT / NOPRINT .. 221
REGISTERBANK / NOREGISTERBANK ... 222
REGUSE... 223
SAVE / RESTORE ... 224
SYMLIST / NOSYMLIST.. 225
TITLE ... 226
XREF .. 227

Controls for Conditional Assembly... 228
Conditional Assembly Controls .. 229
Predefined Constants (A251 only) ... 230
SET ... 231
RESET .. 232
IF... 233
ELSEIF ... 234
ELSE... 235
ENDIF... 236

Chapter 8. Error Messages ..237
Fatal Errors ... 237
Non–Fatal Errors .. 241

Chapter 9. Linker/Locator ...255
Overview... 257

Combining Program Modules ... 258
Segment Naming Conventions .. 258
Combining Segments .. 259

10 Contents

Shaded directives and options are available only in AX51 and A251.

Locating Segments ..260
Overlaying Data Memory..261
Resolving External References..261
Absolute Address Calculation ...262
Generating an Absolute Object File ..262
Generating a Listing File ...263
Bank Switching ...264
Using RTX51, RTX251, and RTX51 Tiny ...265

Linking Programs..266
Command Line Examples..268
Control Linker Input with µVision2 ..269
ERRORLEVEL...269
Output File...269
Linker/Locater Controls ..270
BL51 Controls ...271
LX51 and L251 Controls...272

Locating Programs to Physical Memory ...273
Classic 8051 ..273
Classic 8051 without Code Banking..274
Classic 8051 with Code Banking...275
Extended 8051 Variants ..276
Philips 80C51MX..277
Intel/Atmel WM 251 ...278

Data Overlaying ..280
Program and Data Segments of Functions...281
Using the Overlay Control...282
Disable Data Overlaying ...283
Pointer to a Function as Function Argument ...284
Pointer to a Function in Arrays or Tables..286

Tips and Tricks for Program Locating ..289
Locate Segments with Wildcards ..289
Special ROM Handling (LX51 & L251 only) ...290
Segment and Class Information (LX51 & L251 only)...291
Use RAM for the 251 Memory Class NCONST ...292

Bank Switching ...293
Common Code Area ..293
Code Bank Areas...294
Optimum Program Structure with Bank Switching ...294
Program Code in Bank and Common Areas..295
Segments in Bank Areas..296
Bank Switching Configuration ..297
Configuration Examples ..299

Control Summary ..305
Listing File Controls..306
DISABLEWARNING...307
IXREF ...308

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 11

Shaded directives and options are available only in AX51 and A251.

NOCOMMENTS .. 309
NOLINES ... 310
NOMAP .. 311
NOPUBLICS .. 312
NOSYMBOLS.. 313
PAGELENGTH / PAGEWIDTH ... 314
PRINT / NOPRINT .. 315
PRINTCONTROLS.. 316
PURGE ... 317
WARNINGLEVEL... 318
Example Listing File ... 319
Output File Controls.. 321
ASSIGN .. 322
IBANKING... 323
NAME... 324
NOAJMP .. 325
NODEBUGLINES, NODEBUGPUBLICS, NODEBUGSYMBOLS 326
NOINDIRECTCALL.. 327
NOJMPTAB ... 328
NOTYPE... 329
OBJECTCONTROLS... 330
Segment and Memory Location Controls.. 331
BANKAREA .. 332
BANKx ... 333
BIT.. 334
CLASSES.. 336
CODE.. 338
DATA ... 339
IDATA.. 340
NOSORTSIZE .. 341
PDATA ... 342
PRECEDE... 343
RAMSIZE ... 344
RESERVE... 345
SEGMENTS ... 346
SEGSIZE... 348
STACK ... 349
XDATA... 350
High-Level Language Controls ... 351
NODEFAULTLIBRARY ... 352
NOOVERLAY.. 353
OVERLAY.. 354
RECURSIONS.. 356
REGFILE .. 357
RTX251, RTX51, RTX51TINY... 358
SPEEDOVL .. 359

12 Contents

Shaded directives and options are available only in AX51 and A251.

Error Messages..360
Warnings ...360
Non-Fatal Errors..365
Fatal Errors..370
Exceptions ...375

Chapter 10. Library Manager ..377
Using LIBx51..378

Interactive Mode ...378
Create Library within µVision2...378

Command Summary..379
Creating a Library ...380
Adding or Replacing Object Modules ...381
Removing Object Modules..382
Extracting Object Modules..382
Listing Library Contents..383

Error Messages..384
Fatal Errors..384
Errors...385

Chapter 11. Object-Hex Converter ...387
Using OHx51 ..388

OHx51 Command Line Examples ...389
Creating HEX Files for Banked Applications ...389
OHx51 Error Messages ...390

Using OC51 ..392
OC51 Error Messages ...393

Intel HEX File Format ..394
Record Format...394
Data Record...395
End-of-File (EOF) Record...395
Extended 8086 Segment Record ...396
Extended Linear Address Record ..396
Example Intel HEX File ..397

Appendix A. Application Examples...399
ASM – Assembler Example ..399

Using A51 and BL51...400
Using AX51 and LX51..401
Using A251 and L251 ...401

CSAMPLE – C Compiler Example...402
Using C51 and BL51...402
Using C51 and LX51...403
Using C251 and L251..403

BANK_EX1 – Code Banking with C51..404
Using C51 and BL51...405
Using C51 and LX51...406

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 13

Shaded directives and options are available only in AX51 and A251.

BANK_EX2 – Banking with Constants.. 407
Using C51 and BL51... 407
Using C51 and LX51 .. 408

BANK_EX3 – Code Banking with PL/M-51 ... 408
Using BL51... 409
Using C51 and LX51 .. 410

Philips 80C51MX – Assembler Example ... 410
Philips 80C51MX – C Compiler Example.. 411

Appendix B. Reserved Symbols ...413
Appendix C. Listing File Format...415

Assembler Listing File Format.. 415
Listing File Heading ... 417
Source Listing... 418
Macro / Include File / Save Stack Format... 419
Symbol Table.. 419
Listing File Trailer .. 421

Appendix D. Assembler Differences..423
Differences Between A51 and A251/AX51.. 423
Differences between A51 and ASM51.. 424
Differences between A251/AX51 & ASM51 ... 425

Glossary...427
Index..437

14 Contents

Shaded directives and options are available only in AX51 and A251.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 15

 1

Chapter 1. Introduction
This manual describes the macro assemblers and utilities for the classic 8051,
extended 8051, and 251 microcontroller families and explains the process of
developing software in assembly language for these microcontroller families.

A brief overview of the classic 8051, the extended 8051, and the 251
architectures may be found in “Chapter 2. Architecture Overview” on page 27.
In this overview, the differences between the classic 8051, the extended 8051
variants and the 251 processors are described. For the most complete
information about the microcontroller architecture refer to the hardware
reference manual of the microcontroller derivative that your are using.

For optimum support of the different 8051 and 251 variants, Keil provides the
following development tools:

Development Tools Support Microcontrollers, Description

A51 Macro Assembler
BL51 Linker/Locater
LIB51 Library Manager

Development Tools for classic 8051.
Includes support for 32 x 64KB code banks.

AX51 Macro Assembler
LX51 Extended Linker/Locater
LIBX51 Library Manager

Development Tools for classic and extended 8051
versions (Philips 80C51MX, Dallas 390, etc.)
Supports up to 16MB code and xdata memory.

A251 Macro Assembler
L251 Linker/Locater
LIB251 Library Manager

Development Tools for Intel/Atmel WM 251.

The AX51 and A251 assemblers are supersets of the A51 assembler. This user’s
guide therefore covers all development tools variants. Whenever a feature or an
option is available in one specific tool chain only, it is clearly marked.

For general reference to all tool variants and microcontroller architectures the
terms listed in the following table are used:

Term Refers to …

Ax51 Macro Assembler A51, AX51 and A251 Macro Assembler

Cx51 Compiler C51, CX51 and C251 ANSI C Compiler

Lx51 Linker/Locator BL51, LX51 and L251 Linker/Locator

LIBx51 Library Manager LIB51, LIBX51 and LIB251 Library Manager

OHx51 Object-Hex Converter OH51, OHX51 and OH251 Object-Hex Converter

x51 Architecture or x51 Device All classic 8051, extended 8051 and 251 device variants.

16 Chapter 1. Introduction

1

How to Develop A Program
This section presents an overview of the Ax51 macro assembler, Lx51
linker/locater and how it is used.

What is an Assembler?
An assembler is a software tool designed to simplify the task of writing computer
programs. It translates symbolic code into executable object code. This object
code may then be programmed into a microcontroller and executed. Assembly
language programs translate directly into CPU instructions which instruct the
processor what operations to perform. Therefore, to effectively write assembly
programs, you should be familiar with both the microcomputer architecture and
the assembly language.

Assembly language operation codes (mnemonics) are easily remembered (MOV
for move instructions, ADD for addition, and so on). You can also symbolically
express addresses and values referenced in the operand field of instructions.
Since you assign these names, you can make them as meaningful as the
mnemonics for the instructions. For example, if your program must manipulate a
date as data, you can assign it the symbolic name DATE. If your program
contains a set of instructions used as a timing loop (a set of instructions executed
repeatedly until a specific amount of time has passed), you can name the
instruction group TIMER_LOOP.

An assembly program has three constituent parts:

� Machine instructions

� Assembler directives

� Assembler controls

A machine instruction is a machine code that can be executed by the machine.
Detailed discussion of the machine instructions can be found in the hardware
manuals of the 8051 or derivative microcontroller. Appendix A provides an
overview about machine instructions.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 17

 1

Assembler directives are used to define the program structure and symbols, and
generate non-executable code (data, messages, etc.). Refer to “Chapter 4.
Assembler Directives” on page 99 for details on all of the assembler directives.

Assembler controls set the assembly modes and direct the assembly flow.
“Chapter 7. Invocation and Controls” on page 195 contains a comprehensive
guide to all the assembler controls.

Modular Programming
Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units.
Modular programs are usually easier to code, debug, and change than monolithic
programs.

The modular approach to programming is similar to the design of hardware that
contains numerous circuits. The device or program is logically divided into
“black boxes” with specific inputs and outputs. Once the interfaces between the
units have been defined, the detailed design of each unit can proceed separately.

The benefits of modular programming are:

Efficient Program Development: programs can be developed more quickly
with the modular approach since small subprograms are easier to understand,
design, and test than large programs. With the module inputs and outputs
defined, the programmer can supply the needed input and verify the correctness
of the module by examining the output. The separate modules are then linked
and located by the linker into an absolute executable single program module.
Finally, the complete module is tested.

Multiple Use of Subprograms: code written for one program is often useful in
others. Modular programming allows these sections to be saved for future use.
Because the code is relocatable, saved modules can be linked to any program
which fulfills their input and output requirements. With monolithic
programming, such sections of code are buried inside the program and are not so
available for use by other programs.

Ease of Debugging and Modifying: modular programs are generally easier to
debug than monolithic programs. Because of the well defined module interfaces
of the program, problems can be isolated to specific modules. Once the faulty

18 Chapter 1. Introduction

1

module has been identified, fixing the problem is considerably simpler. When a
program must be modified, modular programming simplifies the job. You can
link new or debugged modules to an existing program with the confidence that
the rest of the program will not change.

The following figure shows an overview of the steps involved in creating a
program for the x51.

PROM Programmer

MAP
File

Library
File

Assembler
Source File

A 51
Macro Assembler

x

L 51
Linker / Locator

x

HEX
File

Object
File from

C 51x

Object File
from Intel
ASM51 or
PL/M-51

Listing
File

Absolute
Object

File

Object
File

LIB 51
Library Manager

x

Library
File

OH 51
Object HEX Converter

x µVision2
Debugger

In-Circuit
Emulator

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 19

 1

Modular Program Development Process
This section is a brief discussion of the program development process with the
relocatable Ax51 assembler, Lx51 Linker/Locator, and the OHx51 code
conversion program.

Segments, Modules, and Programs
In the initial design stages, the tasks to be performed by the program are defined,
and then partitioned into subprograms. Here are brief introductions to the kinds
of subprograms used with the Ax51 assembler and Lx51 linker/locator.

A segment is a block of code or data memory. A segment may be relocatable or
absolute. A relocatable segment has a name, type, and other attributes.
Segments with the same name, from different modules, are considered part of the
same segment and are called partial segments. Several partial segments with
the same name are combined into one segment by the Lx51 linker/locater. An
absolute segment cannot be combined with other segments.

A module contains one or more segments or partial segments. A module is a
source code unit that can be translated independently. It contains all symbol
definitions that are used within the module. A module might be a single ASCII
text file that is created by any standard text editor. However, with you may use
the include assembler directive to merge several text files. The Ax51 assembler
translates a source file into an object file. Each object file is one module.

After assembly of all modules of the program, Lx51 processes the object module
files. The Lx51 linker/locator assigns absolute memory locations to all the
relocatable segments, combining segments with the same name and type. Lx51
also resolves all references between modules. Lx51 outputs an absolute object
module file with the completed program, and a map file that lists the results of
the link/locate process.

20 Chapter 1. Introduction

1

Translate and Link Process
Typically you will use the Ax51 assembler and the tools within the µVision2
IDE. For more information on using the µVision2 IDE refer to the User’s Guide
µVision2: Getting Started for 8051.

However, you may invoke the Ax51 assembler also from the command line.
Simply type the name of the assembler version that you want to use, for example
A51 at the Windows command prompt. On this command line, you must include
the name of the assembler source file to be translated, as well as any other
necessary control directives required to translate your source file. Example:

A51 DEMO.A51

The assembler output for this command line is:

A51 MACRO ASSEMBLER V6.00
ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

After assembly of all your program modules, the object modules are linked and
all variables and addresses are resolved and located into an executable program
by the Lx51 linker. The following example shows a simple command line for
the linker:

BL51 DEMO.OBJ, PRINT.OBJ

The linker generates an absolute object file as well as a map file that contains
detailed statistic information and screen messages. The output of the linker is:

BL51 LINKER/LOCATER V4.00
LINK/LOCATE RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)

Then you might convert the executable program into an Intel HEX file for
PROM programming. This is done with the OHx51 hex conversion utility with
the following invocation:

OH51 DEMO

The output of the hex conversion utility is:

OBJECT TO HEX FILE CONVERTER OH51 V2.40
GENERATING INTEL HEX FILE: DEMO.HEX
OBJECT TO HEX CONVERSION COMPLETED.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 21

 1

An example listing file generated by the assembler is shown on the following
page.

A51 MACRO ASSEMBLER ASSEMBLER DEMO PROGRAM 07/07/2000 18:32:30 PAGE 1

MACRO ASSEMBLER A51 V6.01
OBJECT MODULE PLACED IN demo.OBJ
ASSEMBLER INVOKED BY: C:\KEIL\C51\BIN\A51.EXE DEMO.A51 DEBUG

LOC OBJ LINE SOURCE

1 $title (ASSEMBLER DEMO PROGRAM)
2 ; A simple Assembler Module for Demonstration
3
4 ; Symbol Definition

000D 5 CR EQU 13 ; Carriage?Return
000A 6 LF EQU 10 ; Line?Feed

7
8 ; Segment Definition
9 ?PR?DEMO SEGMENT CODE ; Program Part

10 ?CO?DEMO SEGMENT CODE ; Constant Part
11
12 ; Extern Definition
13 EXTRN CODE (PRINTS, DEMO)
14
15 ; The Program Start

---- 16 CSEG AT 0 ; Reset Vector
0000 020000 F 17 JMP Start

18
---- 19 RSEG ?PR?DEMO ; Program Part
0000 900000 F 20 START: MOV DPTR,#Txt ; Demo Text
0003 120000 F 21 CALL PRINTS ; Print String

22 ;
0006 020000 F 23 JMP DEMO ; Demo Program

24
25 ; The Text Constants

---- 26 RSEG ?CO?DEMO ; Constant Part
0000 48656C6C 27 Txt: DB 'Hello World',CR,LF,0
0004 6F20576F
0008 726C640D
000C 0A00

28
29 END ; End of Module

SYMBOL TABLE LISTING
------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES

?CO?DEMO C SEG 000EH REL=UNIT
?PR?DEMO C SEG 0009H REL=UNIT
CR N NUMB 000DH A
DEMO C ADDR ----- EXT
LF N NUMB 000AH A
PRINTS C ADDR ----- EXT
START. C ADDR 0000H R SEG=?PR?DEMO
TXT. C ADDR 0000H R SEG=?CO?DEMO

REGISTER BANK(S) USED: 0
ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

22 Chapter 1. Introduction

1

Filename Extensions
Typically, the filename extension is used to indicate the contents of each file.
The following table lists the file name extensions that are used in the 8051 tool
chain.

Extension Content and Description

.A51

.ASM

.SRC

Source code file: contains ASCII text that is the input for the Ax51 assembler.

.C

.C51
C source code file: contains ASCII text that is the input for the Cx51 ANSI C
compiler.

.INC

.H
Include file: contains ASCII text that is merged into an source code file with the
include directive. Also these files are input files for Ax51 or Cx51.

.OBJ Relocatable object file: is the output of the Ax51 or Cx51 that contains the program
code and control information. Several relocatable object files are typically input files
for the Lx51 Linker/Locater.

.LST Listing object file: is generated by Ax51 or Cx51 to document the translation
process. A listing file typically contains the ASCII program text and diagnostic
information about the source module. Appendix F describes the format of the Ax51
listing file.

. (none)

.ABS
Absolute object file: is the output of the Lx51. Typically it is a complete program
that can be executed on the x51 CPU.

.M51

.MAP
Linker map file: is the listing file generated from Lx51. A map file contains
information about the memory usage and other statistic information.

.HEX

.H86
Hex file: is the output file of the OHx51 object hex converter in Intel HEX file
format. HEX files are used as input file for PROM programmers or other utility
programs.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 23

 1

Program Template File
The following code template contains guidelines and hints on how to write your
own assembly modules. This template file TEMPLATE.A51 is provided in the
folder \C51\ASM or \C251\ASM.

$NOMOD51 ; disable predefined 8051 registers
#include <reg52.h> // include CPU definition file (for example, 8052)

;--
; Change names in lowercase to suit your needs.
;
; This assembly template gives you an idea of how to use the A251/A51
; Assembler. You are not required to build each module this way-this is only
; an example.
;
; All entries except the END statement at the End Of File are optional.
;
; If you use this template, make sure you remove any unused segment declarations,
; as well as unused variable space and assembly instructions.
;
; This file cannot provide for every possible use of the A251/A51 Assembler.
;--

;--
; Module name (optional)
;--
NAME module_name

;--
; Here, you may import symbols form other modules.
;--
EXTRN CODE (code_symbol) ; May be a subroutine entry declared in

; CODE segments or with CODE directive.

EXTRN DATA (data_symbol) ; May be any symbol declared in DATA segments
; segments or with DATA directive.

EXTRN BIT (bit_symbol) ; May be any symbol declared in BIT segments
; or with BIT directive.

EXTRN XDATA (xdata_symbol) ; May be any symbol declared in XDATA segments
; or with XDATA directive.

EXTRN NUMBER (typeless_symbol); May be any symbol declared with EQU or SET
; directive

;--
; You may include more than one symbol in an EXTRN statement.
;--
EXTRN CODE (sub_routine1, sub_routine2), DATA (variable_1)

;--
; Force a page break in the listing file.
;--
$EJECT

;--
; Here, you may export symbols to other modules.
;--
PUBLIC data_variable
PUBLIC code_entry
PUBLIC typeless_number
PUBLIC xdata_variable
PUBLIC bit_variable

24 Chapter 1. Introduction

1

;--
; You may include more than one symbol in a PUBLIC statement.
;--
PUBLIC data_variable1, code_table, typeless_num1, xdata_variable1

;--
; Put the STACK segment in the main module.
;--
?STACK SEGMENT IDATA ; ?STACK goes into IDATA RAM.

RSEG ?STACK ; switch to ?STACK segment.
DS 5 ; reserve your stack space

; 5 bytes in this example.

$EJECT

;--
; Put segment and variable declarations here.
;--

;--
; DATA SEGMENT--Reserves space in DATA RAM--Delete this segment if not used.
;--
data_seg_name SEGMENT DATA ; segment for DATA RAM.

RSEG data_seg_name ; switch to this data segment
data_variable: DS 1 ; reserve 1 Bytes for data_variable
data_variable1: DS 2 ; reserve 2 Bytes for data_variable1

;--
; XDATA SEGMENT--Reserves space in XDATA RAM--Delete this segment if not used.
;--
xdata_seg_name SEGMENT XDATA ; segment for XDATA RAM

RSEG xdata_seg_name ; switch to this xdata segment
xdata_variable: DS 1 ; reserve 1 Bytes for xdata_variable
xdata_array: DS 500 ; reserve 500 Bytes for xdata_array

;--
; INPAGE XDATA SEGMENT--Reserves space in XDATA RAM page (page size: 256 Bytes)
; INPAGE segments are useful for @R0 addressing methodes.
; Delete this segment if not used.
;--
page_xdata_seg SEGMENT XDATA INPAGE ; INPAGE segment for XDATA RAM

RSEG xdata_seg_name ; switch to this xdata segment
xdata_variable1:DS 1 ; reserve 1 Bytes for xdata_variable1

;--
; ABSOLUTE XDATA SEGMENT--Reserves space in XDATA RAM at absolute addresses.
; ABSOLUTE segments are useful for memory mapped I/O.
; Delete this segment if not used.
;--

XSEG AT 8000H ; switch absolute XDATA segment @ 8000H
XIO: DS 1 ; reserve 1 Bytes for XIO port
XCONFIG: DS 1 ; reserve 1 Bytes for XCONFIG port

;--
; BIT SEGMENT--Reserves space in BIT RAM--Delete segment if not used.
;--
bit_seg_name SEGMENT BIT ; segment for BIT RAM.

RSEG bit_seg_name ; switch to this bit segment
bit_variable: DBIT 1 ; reserve 1 Bit for bit_variable
bit_variable1: DBIT 4 ; reserve 4 Bits for bit_variable1

;--
; Add constant (typeless) numbers here.
;--
typeless_number EQU 0DH ; assign 0D hex
typeless_num1 EQU typeless_number-8 ; evaluate typeless_num1

$EJECT

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 25

 1

;--
; Provide an LJMP to start at the reset address (address 0) in the main module.
; You may use this style for interrupt service routines.
;--

CSEG AT 0 ; absolute Segment at Address 0
LJMP start ; reset location (jump to start)

;--
; CODE SEGMENT--Reserves space in CODE ROM for assembler instructions.
;--
code_seg_name SEGMENT CODE

RSEG code_seg_name ; switch to this code segment

USING 0 ; state register_bank used
; for the following program code.

start: MOV SP,#?STACK-1 ; assign stack at beginning

;--
; Insert your assembly program here. Note, the code below is non-functional.
;--

ORL IE,#82H ; enable interrupt system (timer 0)
SETB TR0 ; enable timer 0

repeat_label: MOV A,data_symbol
ADD A,#typeless_symbol
CALL code_symbol
MOV DPTR,#xdata_symbol
MOVX A,@DPTR
MOV R1,A
PUSH AR1
CALL sub_routine1
POP AR1
ADD A,R1
JMP repeat_label

code_entry: CALL code_symbol
RET

code_table: DW repeat_label
DW code_entry
DB typeless_number
DB 0

$EJECT

;--
; To include an interrupt service routine, provide an LJMP to the ISR at the
; interrupt vector address.
;--

CSEG AT 0BH ; 0BH is address for Timer 0 interrupt
LJMP timer0int

;--
; Give each interrupt function its own code segment.
;--
int0_code_seg SEGMENT CODE ; segment for interrupt function

RSEG int0_code_seg ; switch to this code segment
USING 1 ; register bank for interrupt routine

timer0int: PUSH PSW
MOV PSW,#08H ; register bank 1
PUSH ACC
MOV R1,data_variable
MOV DPTR,#xdata_variable
MOVX A,@DPTR
ADD A,R1
MOV data_variable1,A
CLR A
ADD A,#0

26 Chapter 1. Introduction

1

MOV data_variable1+1,A
POP ACC
POP PSW
RETI

;--
; The END directive is ALWAYS required.
;--

END ; End Of File

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 27

 2

Chapter 2. Architecture Overview
This chapter gives you an overview of the 8051 architecture and the variants of
the 8051. It reviews the memory layout of the classic 8051, extended 8051
variants, the Philips 80C51MX, and the 251 architecture. Also described are the
register sets and the CPU instructions of the various CPU variants.

Memory Classes and Memory Layout
This section introduces the different memory classes (also known as memory
types) that are used during programming of the 8051 and variants. Memory
classes are used to identify the different physical memory regions of the
microcontroller architecture that can be represented in a memory layout.

An overview of the different physical memory regions in an x51 system is
provided below:

Program Memory: in the classic 8051 this is a 64KB space that is called
CODE. This region is typically a ROM space that is used for program code and
constants. With the BL51 you may expand the physical program code memory
to 32 code banks with 64KB each. Constants are fetched with the MOVC
instruction. In extended 8051 variants and the 251 you may have program
memory of up to 16MB that is called ECODE and HCONST.

Internal Data Memory: in the classic 8051 this is the on-chip RAM space with
a maximum of 256 Bytes that contains register banks, BIT space, direct
addressable DATA space, and indirect addressable IDATA space. This region
should be used for frequently used variables. In the 80C51MX and the 251 this
space is expanded to up to 64KB with an EDATA space.

External Data Memory: in classic 8051 devices this area, called XDATA, is
off-chip RAM with a space of up to 64KB. However several new 8051 devices
have additional on-chip RAM that is mapped into the XDATA space. Usually
you need to enable this additional on-chip RAM via dedicated SFR registers. In
extended variants and the 251 you may have external data memory of up to
16MB that is called HDATA.

28 Chapter 2. Architecture Overview

2

Classic 8051
The following table shows the memory classes used for programming the classic
8051 architecture. These memory classes are available when you are using the
A51 macro assembler and the BL51 linker/locater.

Memory Class Address Range Description

DATA D:00 – D:7F Direct addressable on-chip RAM.

BIT D:20 – D:2F bit-addressable RAM; accessed bit instructions.

IDATA I:00 – I:FF Indirect addressable on-chip RAM; can be
accessed with @R0 or @R1.

XDATA X:0000 – X:FFFF 64 KB RAM (read/write access). Accessed with
MOVX instruction.

CODE C:0000 – C:FFFF 64 KB ROM (only read access possible). Used
for executable code or constants.

BANK 0
… BANK 31

B0:0000 – B0:FFFF
B31:0000 – B31:FFFF

Code Banks for expanding the program code
space to 32 x 64KB ROM.

NOTE
The memory prefix D: I: X: C: B0: .. B31: cannot be used at Ax51 assembler
or BL51 linker/locater level. The memory prefixes are only listed for better
understanding. Several Debugging tools, for example the µVision2 Debugger,
are using memory prefixes to identify the memory class of the address.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 29

 2

Classic 8051 Memory Layout

The classic 8051 memory layout, shown in the following figure, is familiar to
8051 users the world over.

IDATA
256 BYTE

DATA
128 BYTE

 I:0x100

 I:0x80

 D:0

DATA
128 BYTE

D:0x7F

DATA

DATA FF

SFR
SPACE

80

88

90

98

F8

2F

20
1F

0

4 Register

Banks

8051
Bitspace

80

CODE

C:0000

C:FFFF

8051
Bit

addressable

XDATA

X:FFFF

X:0000

BANK 0
... BANK 31

Bx:0000

Bx:FFFF

The memory code banks overlap the CODE space. The size of the code banks is
selected with the Lx51 directive BANKAREA.

30 Chapter 2. Architecture Overview

2

Extended 8051 Variants
Several new variants of the 8051 extend the code and/or xdata space of the
classic 8051 with address extension registers. The following table shows the
memory classes used for programming the extended 8051 devices. These
memory classes are available for classic 8051 devices when you are using
memory banking with the LX51 linker/locater. In addition to the code banking
known from the BL51 linker/locater, the LX51 linker/locator supports also data
banking for xdata and code areas with standard 8051 devices.

Memory Class Address Range Description

DATA D:00 – D:7F Direct addressable on-chip RAM.

BIT D:20 – D:2F bit-addressable RAM; accessed bit instructions.

IDATA I:00 – I:FF Indirect addressable on-chip RAM; can be
accessed with @R0 or @R1.

XDATA X:0000 – X:FFFF 64 KB RAM (read/write access). Accessed with
MOVX instruction.

HDATA X:0000 – X:FFFFFF 16 MB RAM (read/write access). Accessed with
MOVX instruction and extended DPTR.

CODE C:0000 – C:FFFF 64 KB ROM (only read access possible). Used
for executable code or constants.

ECODE C:0000 – C:FFFFFF 16 MB ROM (only read access possible). Used
for constants. In some modes of the Dallas 390
architecture also program execution is possible.

BANK 0
… BANK 31

B0:0000 – B0:FFFF
B31:0000 – B31:FFFF

Code Banks for expanding the program code
space to 32 x 64KB ROM.

NOTES
The memory prefixes D: I: X: C: B0: .. B31: cannot be used at Ax51
assembler level. The memory prefix is only listed for better understanding. The
Lx51 linker/locater and several Debugging tools, for example the µVision2
Debugger, are using memory prefixes to identify the memory class of the
address.

If you are using the Dallas 390 contiguous mode the address space for CODE
can be C:0000 - C:0xFFFFFF.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 31

 2

Extended 8051 Memory Layout

The extended 8051 memory layout, shown in the following figure, expands the
address space for variables to a maximum of 16MB.

HCONST
16MB
max. addressable

HDATA
16MB
max.

 D:0 0

IDATA
256 BYTE

DATA
128 BYTE

 I:0x100

 I:0x80

128 BYTE

D:0x7F

DATA

DATA FF

SFR
SPACE

80

88

90

98

F8

2F

20
1F

4 Register

Banks

8051
Bitspace

80

8051
Bit

XDATA

X:FFFF

X:0000

C:0000

CODE
BANK 0

C:10000

BANK 1

C:20000

C:3F0000

BANK 63

C:3FFFFF

DATA

In several variants the DPTR register is expanded to a 24-bit register with an
DPX SFR. Fox example, the Dallas 390 and provides new operating modes
where this addressing is enabled. You may even use the HCONST and HDATA
memory classes with classic 8051 devices by using the memory banking
available in LX51.

32 Chapter 2. Architecture Overview

2

Philips 80C51MX
The Philips 80C51MX provides a unified 16 MB address space. New
instructions can access up to 16MB memory whereby CODE and XDATA space
are mapped into one single address space. The stack pointer can be configured
as 16-Bit stack pointer that addresses the on-chip RAM area in the EDATA
memory class. The following table shows the memory classes used for
programming the 80C51MX architecture. These memory classes are available
when you are using the AX51 macro assembler and the LX51 linker/locater.

Memory Class Address Range Description

DATA 7F:0000 – 7F:007F Direct addressable on-chip RAM.

BIT 7F:0020 – 7F:002F Bit-addressable RAM; accessed bit instructions.

IDATA 7F:0000 – 7F:00FF Indirect addressable on-chip RAM; can be
accessed with @R0 or @R1.

EDATA 7F:0000 – 7F:FFFF Complete on-chip RAM; can be used as stack
space or can be accessed with @PR0 or
@PR1.

XDATA 00:0000 – 00:FFFF 64 KB RAM (read/write access). Accessed with
MOVX instruction.

HDATA 00:0000 – 7F:FFFF 8 MB RAM (read/write access). Accessed with
MOVX instruction and extended DPTR.

CODE 80:0000 – 80:FFFF Classic 8051 compatible 64 KB ROM (only read
access possible). Used for executable code or
constants.

ECODE 80:0000 – 80:FFFF 8 MB ROM (only read access possible).

HCONST 80:0000 – 80:FFFF 8 MB ROM. Same as ECODE, this class is
used by the CX51 Compiler for constants.

BANK 0
… BANK 63

80:0000 – 0xBF:FFFF
B0:0000 – B63:FFFF

Used by the CX51 Compiler to expand the
program memory to more than 64KB. Refer to
“Philips 80C51MX” on page 277 for more
information.

NOTES
Colons are used to improve the readability only. The addresses are entered in
the tools as numbers without colon.

The memory prefixes D: I: X: C: B0: .. B31: cannot be used at Ax51
assembler level. The memory prefix is only listed for better understanding. The
Lx51 linker/locater and several Debugging tools, for example the µVision2
Debugger, are using memory prefixes to identify the memory class of the
address.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 33

 2

80C51MX Memory Layout

The Philips 80C51MX memory layout, shown in the following figure, provides a
universal memory map that includes all memory types in a single 16MB address
region. The memory layout of the Philips 80C51MX is shown below:

HDATA
8MB

XDATA
64KB

00:0000

 00:FFFF

7F:FFFF

EDATA
64KB

IDATA
256 Bytes

DATA
128 Bytes

7F:0080

7F:0000

7F:FFFF

DATA
128 Bytes

DATA

DATA
80

SFR
SPACE
DATA

DA
TA

80

88

90

98

2F

20
1F

0

4
Register
Banks

8051
Bitspace

FF

7F:
007F

EDATA
64KB

7F:0000

7F:00FF

80:0000

CODE
(= Bank 0)

64KB

ECODE
8MB

FF:FFFF

The 80C51MX offers new CPU instructions that provide a new addressing
mode, called Universal Pointer addressing. Two Universal Pointer registers PR0
and PR1 are available. PR0 is composed of registers R1, R2, and R3. PR1 is
composed of registers R5, R6, and R7. These new Universal Pointer registers
hold a 24-bit address that is used together with the EMOV instruction to address
the complete 16MB memory.

34 Chapter 2. Architecture Overview

2

Intel/Atmel WM 251
Also the 251 architecture is a superset of the classic 8051 architecture. The 251
is the most advanced variant and provides the following key features:

� Completely code compatible with the standard 8051 microcontroller.

� Powerful 8/16/32-bit instructions and flexible 8/16/32-bit registers.

� 16MB linear address space and CPU support for 16-bit and 32-bit pointers.

� True stack-oriented instructions with 16-bit stack pointer.

The following table shows the memory classes used for programming a 251
microcontroller. These memory classes are available when you are using the
A251 macro assembler and the L251 linker/locater.

Memory
Class

Address Range Description

DATA 00:0000 - 00:007F Direct addressable on-chip RAM.

BIT 00:0020 - 00:002F 8051 compatible bit-addressable RAM; can be accessed
with short 8-bit addresses.

IDATA 00:0000 - 00:00FF Indirect addressable on-chip RAM; can be accessed with
@R0 or @R1.

EDATA 00:0000 – 00:FFFF Extended direct addressable memory area; can be
accessed with direct 16-bit addresses available on the 251.

ECONST 00:0000 – 00:FFFF Same as EDATA - but allows the definition of ROM
constants.

EBIT 00:0020 - 00:007F Extended bit-addressable RAM; can be accessed with the
extended bit addressing mode available on the 251.

XDATA 01:0000 – 01:FFFF
(default space)

8051 compatible DATA space. Can be mapped on the 251
to any 64 KB memory segment. Accessed with MOVX
instruction.

HDATA 00:0000 – FF:FFFF Full 16 MB address space of the 251. Accessed with MOV
@DRK instructions. This space is used for RAM areas.

HCONST 00:0000 – FF:FFFF Same as HDATA - but allows the definition of ROM
constants.

ECODE 00:0000 – FF:FFFF Full 16 MB address space of the 251; executable code
accessed with ECALL or EJMP instructions.

CODE FF:0000 - FF:FFFF
(default space)

8051 compatible CODE space; used for executable code or
RAM constants. Can be located with L251 to any 64 KB
segment

CONST FF:0000 - FF:FFFF
(default space)

Same as CODE - but can be used for ROM constants only.

Colons are used to improve the readability only.
The addresses are entered in the tools as numbers without colon.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 35

 2

251 Memory Layout

The following figure shows the memory layout of the 251 architecture.

HDATA
ECODE
HCONST
16 MB

XDATA
(default,
SEGMENT
mapable)

EDATA
64 KB

01:0000

00:0000

02:0000

CODE
default page

FF:0000

Reset Vector

FF:FFFF

EDATA
64 KB

IDATA
256 Bytes

DATA
128 Bytes

00:0100

00:0080

00:0000

00:FFFF

DATA
128 BYTE

007F

DATA

DATA

SFR
SPACE

80

88

90

98

F8

EBIT

bitaddr.
251

2F

20
1F

0

4 Register
Banks

8051
Bitspace

FF

80

00:

The 251 completely supports all aspects of the classic 8051 memory layout and
instruction set. Existing 8051 programs can be directly execute on the 251. The
four 8051 memory spaces (DATA, IDATA, CODE and XDATA) are mapped
into specific regions of the 16 MB address space.

36 Chapter 2. Architecture Overview

2

CPU Registers
The following section provides an overview of the CPU registers that are
available on the x51 variants.

In addition to the CPU registers R0 - R7, all x51 variants have an SFR space that
is used to address on-chip peripherals and I/O ports. In the SFR area also reside
the CPU registers SP (stack pointer), PSW (program status word), A
(accumulator, accessed via the SFR space as ACC), B, DPL and DPH (16-bit
register DPTR).

CPU Registers of the 8051 Variants
The classic 8051 provides 4 register banks of 8 registers each. These register
banks are mapped into the DATA memory area at address 0 – 0x1F. In addition
the CPU provides a 8-bit A (accumulator) and B register and a 16-bit DPTR
(data pointer) for addressing XDATA and CODE memory. These registers are
also mapped into the SFR space as special function registers.

R0 R1 R2 R3 R4 R5 R6 R7

8 Bytes

CPU REGISTERDATA MEMORY

Registerbank 0
D:0x00

Registerbank 1
D:0x08

Registerbank 2
D:0x10

Registerbank 3
D:0x18

The active Registerbank is selected via the bits
RB0 and RB1 in the program status word (PSW).

PR0 PR1

Universal Pointers on Philips 80C51MX

DPH DPL A B PSW

DPTR

SP

DPX

SPX

Some CPU variants provide extended
DPTR and/or SP registers. Also several
devices have multiple DPTR registers.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 37

 2

CPU Registers of the Intel/Atmel WM 251
The 251 architecture supports an extra 32 bytes of registers in addition to the 4
banks of 8 registers found in the classic 8051. The lower 8 byte registers are
mapped between locations 00:00 - 00:0x1F. The lower 8 byte registers are
mapped in this way to support 8051 microcontroller register banking. The
register file can be addressed in the following ways:

� Register 0 - 15 can be used as either byte, word, or double word (Dword)
registers.

� Register 16 - 31 can be addressed as either word or Dword registers.

� Register DR56 and DR60 can be addressed only as Dword registers.

� There are 16 possible byte registers (R0 - R15), 16 possible word registers
(WR0 - WR30) and 10 possible Dword registers (DR0 - DR28, DR56 -
DR60) that can be addressed in any combination.

� All Dword registers are Dword aligned; each is addressed as DRk with “k”
being the lowest of the 4 consecutive registers. For example, DR4 consists of
registers 4 - 7.

� All word registers are word aligned; each is addressed as WRj with “j” being
the lower of the 2 consecutive registers. For example WR4 consists of
registers 4 - 5.

� All byte registers are inherently byte aligned; each is addressed as Rm with
“m” being the register number. For example R4 consists of register 4.

38 Chapter 2. Architecture Overview

2

The following figure shows the register file format for the 251 microcontroller.

WR24 WR26 WR28 WR30

WR16 WR18 WR20 WR22

WR8 WR10 WR12 WR14

WR0 WR2 WR4 WR6

R14 R15R13R12R11R10R9R8

R0 R1 R2 R3 R4 R5 R6 R7

8 Bytes

WORD REGISTER

BYTE REGISTER

DWORD REGISTER

Stack Pointer (SPX)

DR56 DR60

DR24

DR16

DR8

DR0

DR28

DR20

DR12

DR4

Stack Pointer (SPX)

DR56 DR60

DR24

WR16

WR8

WR0

WR28

DR20

R12

DR4

R13 R14 R15

WR30

WR18

WR10

R2 R3

EXAMPLE OF MIXED USAGE

Register 56 - 63

Register 8 - 31

Register 0 - 7

MEMORY

The 8051 CPU Registers A, B,
DPL, DPH and SP are mapped
into the 251 register file. The
following 251 CPU registers are
identical with the 8051 CPU
registers:

8051 Register 251 Register
 A (ACC) R11
 B R10
 DPL low byte of DR56
 DPH 2nd byte of DR56
 SP low byte of DR60

The stack pointer register (DR60)
of the 251 CPU is a 16-bit register.
DR60 is used for all stack
operations (PUSH, POP, CALL,
RET, ect.) and can be also used for
indirect addressing. Therefore the
251 provides efficient stack
addressing modes for reentrant
functions.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 39

 2

Program Status Word (PSW)
The Program Status Word (PSW) contains status bits that reflect the current
CPU state. The 8051 variants provide one special function register called PSW
with this status information. The 251 provides two additional status flags, Z and
N, that are available in a second special function register called PSW1.

PSW Register (all 8051 and 251 variants)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CY AC F0 RS1 RS0 OV UD P

Additional PSW1 Register (on Intel/Atmel WM 251 only)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CY AC N RS1 RS0 OV Z –

The following table describes the status bits in the PSW.

Symbol Function

CY Carry flag

AC Auxiliary Carry flag (For BCD Operations)

F0 Flag 0 (Available to the user for General Purpose)

RS1,
RS0

Register bank select: RS1 RS0 Working Register Bank and Address
 0 0 Bank0 (D:0x00 - D:0x07)
 0 1 Bank1 (D:0x08 - D:0x0F)
 1 0 Bank2 (D:0x10 - D:0x17)
 1 1 Bank3 (D:0x18H - D:0x1F)

OV Overflow flag

UD User definable flag

P Parity flag

– Reserved for future use

Z Zero flag 25
1

O
N

LY

N Negative flag

40 Chapter 2. Architecture Overview

2

Instruction Sets
This section lists the instructions of all x51 CPU variants in alphabetical order.
The following terms are used in the descriptions.

 Identifier Explanation

 A Accumulator
 AB Register Pair A & B
 B Multiplication Register
 C Carry Flag
 DPTR Data pointer
 PC Program Counter
 Rn Register R0 - R7 of the currently selected Register Bank.
 dir8 8-bit data address; Data RAM (D:0x00 - D:0x7F) or SFR (D:0x80 - D:0xFF)
 #data8 8-bit constant included in instruction.
 #data16 16-bit constant included in instruction.
 addr16 16-bit destination address.
 addr11 11-bit destination address. Used by ACALL & AJMP. The branch will be within the

same 2KByte block of program memory of the first byte of the following instruction.
 rel Signed (two’s complement) 8-bit offset. Used by SJMP and conditional jumps.

Range is -128 .. +127 bytes relative to the first byte of the following instruction.
 bit8 Direct addressed bit in Data RAM Location.

Rm Register R0 - R15 of the currently selected Register File.
WRj Register WR0 - WR30 of the currently selected Register File.
DRk Register DR0 - DR28, DR56, DR60 of the currently selected Register File.
dir16 16-bit data address; Data RAM location (00:00 - 00:FFFF).
@WRj Data RAM location (0 - 64K) addressed indirectly via WR0 - WR30.
@DRk Data RAM location (0 - 16M) addressed indirectly via DR0 - DR28, DR56, DR60.
#short constant 1, 2 or 4 included in instruction.
bit11 Direct addressed bit in Data RAM or Special Function Register.
@Wrj+dis Data RAM location (0 - 64K) addressed indirectly via WR0 - WR30 + displacement.

25
1

O
N

LY

@DRk+dis Data RAM location (0 - 16M) addressed indirectly via DR0 - DR28, DR56, DR60+
16-bit signed displacement.

EPTR 23-bit extended data pointer register.
PR0, PR1 Universal Pointer Register (PR0 represents R1,R2,R3; PR1 represents R5,R6,R7)
@PR0+d2
@PR1+d2

Universal memory location (0 - 16M) addressed indirectly via PR0 or PR1+ 2-bit
displacement (+0, +1, +2, +3).

#data2 2-bit constant included in instruction (value range: #1, #2, #3, #4). 51
M

X
O

N
LY

addr23 23-bit destination address for HDATA or ECODE

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 41

 2

ACALL Absolute Subroutine CALL CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

ACALL addr11 Absolute Subroutine Call 2 2

DALLAS 24-Bit Contiguous Address Mode ONLY
ACALL addr19 Absolute Subroutine Call 3

 ADD ADD destination, source
Addition

CY
X

AC
X

N
X

OV
X

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 ADD A,Rn Add register to accumulator 1 2
 ADD A,dir8 Add direct byte to accumulator 2 2
 ADD A,@Ri Add indirect RAM to accumulator 1 2
 ADD A,#data8 Add immediate data to accumulator 2 2

ADD Rm,Rm Add byte register to byte register 3 2
ADD WRj,WRj Add word register to word register 3 2
ADD DRk,DRk Add double word register to dword register 3 2
ADD Rm,#data8 Add 8 bit data to byte register 4 3
ADD Wrj,#data16 Add 16 bit data to word register 5 4
ADD Drk,#data16 Add 16 bit unsigned data to dword register 5 4
ADD Rm,dir8 Add direct address to byte register 4 3
ADD WRj,dir8 Add direct address to word register 4 3
ADD Rm,dir16 Add direct address (64K) to byte register 5 4
ADD WRj,dir16 Add direct address (64K) to word register 5 4
ADD Rm,@WRj Add indirect address (64K) to byte register 4 3

25
1

O
N

LY

ADD Rm,@DRk Add indirect address (16M) to byte register 4 3

ADD PR0,#data2 Add immediate data to PR0 2

M
X5

1

ADD PR1,#data2 Add immediate data to PR1 2

42 Chapter 2. Architecture Overview

2

ADDC ADDC destination, source
Addition with Carry

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

ADDC A,Rn Add register to accumulator with carry flag 1 2
ADDC A,dir8 Add direct byte to accumulator with carry flag 2 2
ADDC A,@Ri Add indirect RAM to accumulator with carry

flag
1 2

ADDC A,#data8 Add immediate data to accumulator with carry
flag

2 2

AJMP Absolute JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

AJMP addr11 Absolute Jump 2 2

DALLAS 24-Bit Contiguous Address Mode ONLY
AJMP addr19 Absolute Jump 3

 ANL AND destination, source
Logical AND

CY
—

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 ANL A,Rn AND register to accumulator 1 2
 ANL A,dir8 AND direct byte to accumulator 2 2
 ANL A,@Ri AND indirect RAM to accumulator 1 2
 ANL A,#data8 AND immediate data to accumulator 2 2
 ANL dir,A AND accumulator to direct byte 2 2
 ANL dir,#data8 AND immediate data to direct byte 3 3

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 43

 2

 ANL AND destination, source
Logical AND

CY
—

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

ANL Rm,Rm AND byte register to byte register 3 2
ANL WRj,WRj AND word register to word register 3 2
ANL Rm,#data8 AND 8 bit data to byte register 4 3
ANL Wrj,#data16 AND 16 bit data to word register 5 4
ANL Rm,dir8 AND direct address to byte register 4 3
ANL Wrj,dir8 AND direct address to word register 4 3
ANL Rm,dir16 AND direct address (64K) to byte register 5 4
ANL Wrj,dir16 AND direct address (64K) to word register 5 4
ANL Rm,@WRj AND indirect address (64K) to byte register 4 3

25
1

O
N

LY

ANL Rm,@DRk AND indirect address (16M) to byte register 4 3

 ANL ANL destination, source
Logical AND for bit variables

CY
X

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 ANL C,bit8 AND direct bit to carry; from BIT space 2 2

Intel/Atmel WM 251 ONLY
ANL C,bit11 AND direct bit to carry; from EBIT space 4 3

 ANL/ ANL/ destination, source
Logical AND for bit variables

CY
X

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 ANL C,/bit8 AND complement of dir bit to carry; BIT space 2 2

Intel/Atmel WM 251 ONLY
ANL C,/bit11 AND complement of dir bit to carry; EBIT

space
4 3

44 Chapter 2. Architecture Overview

2

CJNE COMPARE destination, source
and jump if not equal

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

CJNE A,dir8,rel Compare dir byte to acc. and jump if not equal 3 3
CJNE /A,#data8,rel Compare imm. data to acc. and jump if not

equal
3 3

CJNE Rn,#data8,rel Compare imm. data to reg and jump if not
equal

3 4

CJNE @Ri,#data8,rel Compare imm. data to indir and jump if not
equal

3 4

CLR CLEAR Operand CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

CLR A Clear accumulator 1 1

 CLR CLEAR Bit Operand CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 CLR C Clear carry 1 1
 CLR bit8 Clear direct bit from BIT space 2 2

Intel/Atmel WM 251 ONLY
CLR bit11 Clear direct bit from EBIT space 4 3

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 45

 2

CMP COMPARE Operands CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

CMP Rm,Rm Compare registers 3 2
CMP WRj,WRj Compare word registers 3 2
CMP DRk,DRk Compare double word registers 3 2
CMP Rm,#data8 Compare register with immediate data 4 3
CMP Wrj,#data16 Compare word register with immediate data 5 4
CMP Drk,#00 Compare dword reg with zero extended data 5 4
CMP Drk,#ff Compare dword reg with one extended data 5 4
CMP Rm,dir8 Compare register with direct byte 4 3
CMP WRj,dir8 Compare word register with direct word 4 3
CMP Rm,dir16 Compar register with direct byte (64K) 5 4
CMP WRj,dir16 Compare word register with direct word (64K) 5 4
CMP Rm,@WRj Compare register with indirect address (64K) 4 3

25
1

O
N

LY

CMP Rm,@DRk Compare register with indirect address (16M) 4 3

CPL COMPLEMENT Operand CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

CPL A Complement accumulator 1 1

 CPL COMPLEMENT Bit Operand CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 CPL C Complement carry 1 1
 CPL bit8 Complement direct bit from BIT space 2 2

Intel/Atmel WM 251 ONLY
CPL bit11 Complement direct bit from EBIT space 4 3

46 Chapter 2. Architecture Overview

2

DA DECIMAL ADJUST Accumulator
for Addition

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

DA A Decimal adjust accumulator 1 1

 DEC DECREMENT Operand with a
constant

CY
—

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 DEC A Decrement accumulator 1 1
 DEC Rn Decrement register 1 2
 DEC dir Decrement dir byte 2 2
 DEC @Ri Decrement indir RAM 1 2

Intel/Atmel WM 251 ONLY
DEC Rm,#short Decrement byte register with 1, 2 or 4 3 2
DEC WRj,#short Decrement word register with 1, 2 or 4 3 2
DEC DRk,#short Decrement double word register with 1, 2 or 4 3 2

 DIV DIVIDE Operands CY
0

AC
—

N
X

OV
X

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 DIV AB Divide A by B 1 1

Intel/Atmel WM 251 ONLY
DIV Rm,Rm Divide byte register by byte register 3 2
DIV WRj,WRj Divide word register by word register 3 2

DJNZ DECREMENT Operand and Jump
if Not Zero

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

DJNZ Rn,rel Decrement register and jump if not zero 2 3
DJNZ dir8,rel Decrement direct byte and jump if not zero 3 3

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 47

 2

 ECALL Extended Subroutine CALL CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

Intel/Atmel WM 251 ONLY
ECALL addr24 Extended subroutine call 5 4
ECALL DRk Extended subroutine call 3 2

Philips 80C51MX ONLY
ECALL addr23 Extended subroutine Call 5

 EJMP Extended JUMP CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

Intel/Atmel WM 251 ONLY
EJMP addr24 Extended jump 5 4
EJMP DRk Extended jump 3 2

Philips 80C51MX ONLY
EJMP addr23 Extended jump 5

EMOV MOV destination, source
Move data via Unversal Pointer

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

EMOV A,@PR0+d2 Move indirect (16M) via Universal Pointer to A 2
EMOV A,@PR1+d2 Move indirect (16M) via Universal Pointer to A 2
EMOV @PR0+d2,A Move A to indirect (16M) via Universal Pointer 2

51
M

X
 O

N
LY

EMOV @PR1+d2,A Move A to indirect (16M) via Universal Pointer 2

48 Chapter 2. Architecture Overview

2

ERET RETURN from extended
Subroutine

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

25
1&

 5
1M

X
 O

N
LY

ERET Return from subroutine 2 1

 INC INCREMENT Operand with a
constant

CY
—

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 INC A Increment accumulator 1 1
 INC Rn Increment register 1 2
 INC dir Increment direct byte 2 2
 INC @Ri Increment indirect RAM 1 2
 INC DPTR Increment Data Pointer 1 1

INC Rm,#short Increment byte register with 1, 2 or 4 3 2
INC WRj,#short Increment word register with 1, 2 or 4 3 2

25
1

O
N

LY

INC Drk,#short Increment double word register with 1, 2 or 4 3 2

Philips 80C51MX ONLY
INC EPTR Increment Enhanced Data Pointer 2

 JB JUMP if Bit is set CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 JB bit8,rel Jump if dir bit (from BIT space) is set 3 3

Intel/Atmel WM 251 ONLY
JB bit11,rel Jump if dir bit (from EBIT space) is set 5 4

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 49

 2

 JBC JUMP if Bit is set and clear bit CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 JBC bit8,rel Jump if dir bit (BIT space) is set and clear bit 3 3

Intel/Atmel WM 251 ONLY
JBC bit11,rel Jump if dir bit (EBIT space) is set and clear bit 5 4

 JC / JL JUMP if Carry is set
JUMP if less than

CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 JC rel Jump if carry is set 2 2

Intel/Atmel WM 251 ONLY
JL rel Jump if less than 2 2

JE JUMP if equal CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JE rel Jump if equal 3 2

JG JUMP if greater than CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JG rel Jump if greater than 3 2

50 Chapter 2. Architecture Overview

2

JLE JUMP if less than or equal CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JLE rel Jump if less than or equal 3 2

JMP JUMP indir relative to DPTR CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

JMP @A+DPTR Jump indir relative to DPTR 1 1

Philips 80C51MX ONLY
JMP @A+EPTR JUMP indirect relative to EPTR 2

 JNB JUMP if Bit is Not set CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 JNB bit8,rel Jump if dir bit (from BIT space) is not set 3 3

Intel/Atmel WM 251 ONLY

 JNB bit11,rel Jump if dir bit (from EBIT space) is not set 5 4

 JNC / JGE JUMP if Carry is Not set
JUMP if greater than or equal

CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 JNC rel Jump if carry is not set 2 2

Intel/Atmel WM 251 ONLY
JGE rel Jump if greater than or equal 2 2

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 51

 2

JNE JUMP if Not Equal CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JNE rel Jump if not equal 3 2

JNZ JUMP if Accumulator is Not Zero CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

JNZ rel Jump if accumulator is not zero 2 2

JSG JUMP if greater than (Signed) CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JSG rel Jump if greater than (signed) 3 2

JSGE JUMP if greater than or Equal
(Signed)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JSGE rel Jump if greater than or equal (signed) 3 2

JSL JUMP if Less than (Signed) CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JSL rel Jump if less than (signed) 3 2

52 Chapter 2. Architecture Overview

2

JSLE JUMP if Less than or Equal
(Signed)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

JSLE rel Jump if less than or equal (signed) 3 2

JZ JUMP if Accumulator is Zero CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

JZ rel Jump if accumulator is zero 2 2

LCALL Long Subroutine CALL CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

LCALL addr16 Long Subroutine Call 3 3

Intel/Atmel WM 251 ONLY
LJMP @WRj Long Jump indirect via word register 3 2

DALLAS 24-Bit Contiguous Address Mode ONLY
LCALL addr24 Absolute Subroutine Call 4

LJMP Long JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

LJMP addr16 Long Jump 3 3

Intel/Atmel WM 251 ONLY
LJMP @WRj Long Jump indirect via word register 3 2

DALLAS 24-Bit Contiguous Address Mode ONLY
LJMP addr24 Absolute Subroutine Call 4

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 53

 2

 MOV MOV destination, source
Move data

CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 MOV A,Rn Move register to accumulator 1 2
 MOV A,dir8 Move direct byte to accumulator 2 2
 MOV A,@Ri Move indirect RAM to accumulator 1 2
 MOV A,#data8 Move immediate data to accumulator 2 2
 MOV Rn,A Move accumulator to register 1 2
 MOV Rn,dir8 Move direct byte to register 2 3
 MOV Rn,#data8 Move immediate data to register 2 3
 MOV dir8,A Move accumulator to direct byte 2 2
 MOV dir8,Rn Move register to direct byte 2 3
 MOV dir8,dir8 Move direct byte to direct byte 3 3
 MOV dir8,@Ri Move indirect RAM to direct byte 2 3
 MOV dir8,#data8 Move immediate data to direct byte 3 3
 MOV @Ri,A Move accumulator to indirect RAM 1 2
 MOV @Ri,dir8 Move direct byte to indirect RAM 2 3
 MOV @Ri,#data8 Move immediate data to indirect RAM 2 3
 MOV DPTR,#data16 Load Data Pointer with 16-bit constant 3 3
 MOV C,bit8 Move dir bit to carry 2 2
 MOV bit8,C Move carry to dir bit 2 2

MOV Rm,Rm Move byte register to byte register 3 2
MOV WRj,WRj Move word register to word register 3 2
MOV DRk,DRk Move dword register to dword register 3 2
MOV Rm,#data8 Move 8 bit data to byte register 4 3
MOV WRj,#data16 Move 16 bit data to word register 5 4
MOV DRk,#0data16 Move 16 bit zero extended data to dword reg. 5 4
MOV DRk,#1data16 Move 16 bit one extended data to dword reg. 5 4
MOV Rm,dir8 Move dir address to byte register 4 3
MOV WRj,dir8 Move direct address to word register 4 3
MOV DRk,dir8 Move direct address to dword register 4 3
MOV Rm,dir16 Move direct address (64K) to byte register 5 4
MOV WRj,dir16 Move direct address (64K) to word register 5 4
MOV DRk,dir16 Move direct address (64K) to dword register 5 4
MOV Rm,@WRj Move indirect address (64K) to byte register 4 3
MOV Rm,@DRk Move indirect address (16M) to byte register 4 3
MOV WRj,@WRj Move indirect address (64K) to word register 4 3

25
1

O
N

LY

MOV WRj,@DRk Move indirect address (16M) to word register 4 3

54 Chapter 2. Architecture Overview

2

 MOV MOV destination, source
Move data

CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

MOV dir8,Rm Move byte register to direct address 4 3
MOV dir8,WRj Move word register to direct address 4 3
MOV dir8,DRk Move dword register to direct address 4 3
MOV dir16,Rm Move byte register to direct address (64K) 5 4
MOV dir16,WRj Move word register to direct address (64K) 5 4
MOV dir16,DRk Move dword register to direct address (64K) 5 4
MOV @WRj,Rm Move byte register to direct address (64K) 4 3
MOV @DRk,Rm Move byte register to indirect address (16M) 4 3
MOV @WRj,WRj Move word register to indirect address (64K) 4 3
MOV @DRk,WRj Move word register to indirect address (16M) 4 3
MOV Rm,@WRj+dis Move displacement address (64K) to byte reg. 5 4
MOV WRj,@WRj+dis Move displacement address (64K) to word reg. 5 4
MOV Rm,@DRk+dis Move displacement address (16M) to byte reg. 5 4
MOV WRj,@DRk+dis Move displacement address (16M) to word

reg.
5 4

MOV @WRj+dis,Rm Move byte reg. to displacement address (64K) 5 4
MOV @WRj+dis,WRj Move word reg. to displacement address (64K) 5 4
MOV @DRk+dis,Rm Move byte reg. to displacement address (16M) 5 4
MOV @DRk+dis,WRj Move word reg. to displacement address

(16M)
5 4

MOV C,bit11 Move dir bit from 8 bit address location to
carry

2 2

MOV bit11,C Move carry to dir bit from 16 bit address
location

5 4

Philips 80C51MX ONLY
MOV EPTR,#adr23 Load extended data pointer with constant 5

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 55

 2

MOVC MOV destination, source
Move Code byte

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

MOVC A,@A+DPTR Move code byte relative to DPTR to
accumulator

1 1

MOVC A,@A+PC Move code byte relative to PC to accumulator 1 1

Philips 80C51MX ONLY
MOVC A,@A+EPTR Move code byte relative to EPTR to

accumulator
2

MOVH MOVH destination, source
Move data to high word of DR

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

MOVH DRk,#data16 Move 16bit imm. data to high word of dword
reg.

3 2

MOVS MOVS destination, source
Move byte to word (signed ext.)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

MOVS WRj,Rm Move byte register to word register 3 2

MOVX MOV destination, source
External RAM access

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

MOVX A,@Ri Move xdata RAM (8 bit address) to
accumulator

1 2

MOVX A,@DPTR Move xdata RAM (16 bit address) to
accumulator

1 1

MOVX @Ri,A Move accumulator to xdata RAM (8 bit
address)

1 2

MOVX @DPTR,A Move accumulator to xdata RAM (16 bit
address)

1 1

56 Chapter 2. Architecture Overview

2

MOVX MOV destination, source
External RAM access

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

Philips 80C51MX ONLY
MOVX @EPTR,A Move accu to xdata RAM (23 bit address) 2
MOVX A,@EPTR Move xdata RAM (23 bit address) to accu 2

MOVZ MOV destination, source
Move byte to word (zero ext.)

CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

MOVZ WRj,Rm Move byte reg. to word reg. (zero extended) 3 2

 MUL MULTIPLY Operands CY
0

AC
—

N
X

OV
X

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 MUL AB Multiply A and B 1 1

Intel/Atmel WM 251 ONLY
MUL Rm,Rm Multiply byte register with byte register 3 2
MUL WRj,WRj Multiply word register with word register 3 2

NOP No Operation CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

NOP No operation 1 1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 57

 2

 ORL ORL destination, source
Logical OR

CY
—

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 ORL A,Rn OR register to accumulator 1 2
 ORL A,dir8 OR dir byte to accumulator 2 2
 ORL A,@Ri OR indir RAM to accumulator 1 2
 ORL A,#data8 OR immediate data to accumulator 2 2
 ORL dir,A OR accumulator to dir byte 2 2
 ORL dir,#data8 OR immediate data to dir byte 3 3

ORL Rm,Rm OR byte register to byte register 3 2
ORL WRj,WRj OR word register to word register 3 2
ORL Rm,#data8 OR 8 bit data to byte register 4 3
ORL WRj,#data16 OR 16 bit data to word register 5 4
ORL Rm,dir8 OR dir address to byte register 4 3
ORL WRj,dir8 OR dir address to word register 4 3
ORL Rm,dir16 OR dir address (64K) to byte register 5 4
ORL WRj,dir16 OR dir address (64K) to word register 5 4
ORL Rm,@WRj OR indir address (64K) to byte register 4 3

25
1

O
N

LY

ORL Rm,@DRk OR indir address (16M) to byte register 4 3

 ORL ORL destination, source
Logical OR for bit variables

CY
X

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 ORL C,bit8 OR direct bit to carry; from BIT space 2 2

Intel/Atmel WM 251 ONLY
ORL C,bit11 OR direct bit to carry; from EBIT space 4 3

58 Chapter 2. Architecture Overview

2

 ORL/ ORL/ destination, source
Logical OR with Complement

CY
X

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 ORL C,/bit8 OR complement of direct bit to carry; BIT
space

2 2

Intel/Atmel WM 251 ONLY
ORL C,/bit11 OR complement of dir bit to carry; EBIT space 4 3

 POP POP Operand from Stack CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 POP dir8 Pop direct byte from stack 2 2

POP Rm Pop byte register from stack 3 2
POP WRj Pop word register from stack 3 2

25
1

O
N

LY

POP DRk Pop double word register from stack 3 2

 PUSH PUSH Operand onto Stack CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 PUSH dir8 Push direct byte onto stack 2 2

PUSH Rm Push byte register onto stack 3 2
PUSH WRj Push word register onto stack 3 2
PUSH DRk Push double word register onto stack 3 2
PUSH #data8 Push immediate data onto stack 4 3 25

1
O

N
LY

PUSH #data16 Push immediate data (16 bit) onto stack 5 4

RET RETURN from Subroutine CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

RET Return from subroutine 1 1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 59

 2

RETI RETURN from Interrupt CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

RETI Return from interrupt 1 1

RL ROTATE Accumulator Left CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

RL A Rotate accumulator left 1 1

RLC ROTATE Accumulator Left
through the Carry

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

RLC A Rotate accumulator left through the carry 1 1

RR ROTATE Accumulator Right CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

RR A Rotate accumulator right 1 1

RRC ROTATE Accumulator Right
through the Carry

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

RRC A Rotate accumulator right through the carry 1 1

60 Chapter 2. Architecture Overview

2

 SETB SET Bit Operand CY
—

AC
—

N
—

OV
—

Z
—

 Mnemonic Description Bytes
Binary

Bytes
Source

 SETB C Set carry 1 1
 SETB bit8 Set direct bit from BIT space 2 2

Intel/Atmel WM 251 ONLY
SETB bit11 Set direct bit from EBIT space 5 4

SJMP Short JUMP CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

SJMP rel Short jump (relative address) 2 2

SLL SHIFT Register Left CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

SLL Rm Shift byte register left 3 2

25
1

O
N

LY

SLL WRj Shift word register left 3 2

SRA SHIFT Register Right (arithmet.)
sign extended

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

SRA Rm Shift byte register right; sign extended 3 2

25
1

O
N

LY

SRA WRj Shift word register right; sign extended 3 2

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 61

 2

SRL SHIFT Register Right (logic) zero
extended

CY
X

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

SRL Rm Shift byte register right; zero extended 3 2

25
1

O
N

LY

SRL WRj Shift word register right; zero extended 3 2

SUB SUB destination, source
Subtraction

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

SUB Rm,Rm Subtract byte register from byte register 3 2
SUB WRj,WRj Subtract word register from word register 3 2
SUB DRk,DRk Subtract dword register from dregister 3 2
SUB Rm,#data Subtract 8 bit data from byte register 4 3
SUB Wrj,#data16 Subtract 16 bit data from word register 5 4
SUB Drk,#data16 Subtract 16 bit unsigned data from dword reg. 5 4
SUB Rm,dir Subtract direct address from byte register 4 3
SUB Wrj,dir Subtract direct address from word register 4 3
SUB Rm,dir16 Subtract direct address (64K) from byte

register
5 4

SUB Wrj,dir16 Subtract direct address (64K) from word
register

5 4

SUB Rm,@WRj Subtract indirect address (64K) from byte reg. 4 3

25
1

O
N

LY

SUB Rm,@DRk Subtract indirect address (16M) from byte reg. 4 3

62 Chapter 2. Architecture Overview

2

SUBB SUBB destination, source
Subtraction with Borrow

CY
X

AC
X

N
X

OV
X

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

SUBB A,Rn Subtract register from accumulator with borrow 1 2
SUBB A,dir8 Subtract direct byte from accumulator with

borrow
2 2

SUBB A,@Ri Subtract indirect byte from accumulator with
borrow

1 2

SUBB A,#data8 Subtract immediate data from accumulator
with borrow

2 2

SWAP SWAP Nibbles within the
Accumulator

CY
—

AC
—

N
X

OV
—

Z
X

Mnemonic Description Bytes
Binary

Bytes
Source

SWAP A Swap nibbles within the accumulator 1 1

TRAP JUMP to the Trap Interrupt CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source 25

1
 O

N
LY

TRAP Jumps to the trap interrupt vector 2 1

XCH EXCHANGE Operands CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

XCH A,Rn Exchange register with accumulator 2 2
XCH A,dir8 Exchange direct byte with accumulator 2 2
XCH A,@Ri Exchange indirect byte with accumulator 1 2

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 63

 2

XCHD EXCHANGE Digit CY
—

AC
—

N
—

OV
—

Z
—

Mnemonic Description Bytes
Binary

Bytes
Source

XCHD A,@Ri Exchange low-order digit in indir. RAM with
accumulator

1 2

 XRL EXCL.-OR destination, source
Logical Exclusive-OR

CY
—

AC
—

N
X

OV
—

Z
X

 Mnemonic Description Bytes
Binary

Bytes
Source

 XRL A,Rn Exclusive-OR register to accumulator 1 2
 XRL A,dir8 Exclusive-OR direct byte to accumulator 2 2
 XRL A,@Ri Exclusive-OR indirect byte to accumulator 1 2
 XRL A,#data8 Exclusive-OR immediate data to accumulator 2 2
 XRL dir8,A Exclusive-OR accumulator to direct byte 2 2
 XRL dir8,#data8 Exclusive-OR immediate data to direct byte 3 3

XRL Rm,Rm Exclusive-OR byte register to byte register 3 2

XRL WRj,WRj Exclusive-OR word register to word register 3 2

XRL Rm,#data8 Exclusive-OR 8 bit data to byte register 4 3

XRL WRj,#data16 Exclusive-OR 16 bit data to word register 5 4

XRL Rm,dir8 Exclusive-OR direct address to byte register 4 3

XRL WRj,dir8 Exclusive-OR direct address to word register 4 3

XRL Rm,dir16 Exclusive-OR direct address (64K) to byte reg. 5 4

XRL WRj,dir16 Exclusive-OR direct address (64K) to word
reg.

5 4

XRL Rm,@WRj Exclusive-OR indirect address (64K) to byte
reg.

4 3

25
1

O
N

LY

XRL Rm,@DRk Exclusive-OR indirect address (16M) to byte
reg.

4 3

64 Chapter 2. Architecture Overview

2

Opcode Map
The following opcode maps provide an overview of the instruction encoding for
the 8051, the 80C51MX, and the 251 architecture. It is arranged as separate
maps as described below:

8051 Instructions: these opcode are available on all x51 variants. Both the
Philips 80C51MX and the Intel/Atmel WM 251 use an OPCODE PREFIX byte
with the encoding A5 to extend the classic 8051 instruction set. The additional
251 an 80C51MX instructions are described in the following tables.

Additional 251 Instructions: if the 251 is configured in binary mode the 8051
instructions are the default opcode map and the OPCODE PREFIX is the first
opcode byte for the additional 251 instructions. If the 251 is configured in
source mode the additional 251 instructions are the default opcode map and the
OPCODE PREFIX is the first op-code byte when the 251 should execute
standard 8051 instructions that are encode with the byte values x6-xF.

Additional 80C51MX Instructions via Prefix A5: contains the 80C51MX
instructions that require the OPCODE PREFIX byte. The Philips 80C51MX
provides instructions for addressing the 16MB address space and the extended
SFR area that are listed in this table.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 65

 2

8051 Instructions
Binary
Mode x0 x1 x2 x3 x4 x5 x6-x7 x8-xF

Source
Mode x0 x1 x2 x3 x4 x5 A5x6-A5x7 A5x8-A5xF

0x NOP AJMP
adr11

LJMP
adr16

RR
A

INC
A

INC
dir

INC
@Ri

INC
Rn

1x JBC
bit,rel

ACALL
adr11

LCALL
adr16

RRC
A

DEC
A

DEC
dir

DEC
@Ri

DEC
Rn

2x JB
bit,rel

AJMP
adr11 RET RL

A
ADD

A,#data
ADD
A,dir

ADD
A,@Ri

ADD
A,Rn

3x JNB
bit,rel

ACALL
adr11 RETI RLC

A
ADDC

A,#data
ADDC
A,dir

ADDC
A,@Ri

ADDC
A,Rn

4x JC
rel

AJMP
adr11

ORL
dir,A

ORL
dir,#data

ORL
A,#data

ORL
A,dir

ORL
A,@Ri

ORL
A,Rn

5x JNC
rel

ACALL
adr11

ANL
dir,A

ANL
dir,#data

ANL
A,#data

ANL
A,dir

ANL
A,@Ri

ANL
A,Rn

6x JZ
rel

AJMP
adr11

XRL
dir,A

XRL
dir,#data

XRL
A,#data

XRL
A,dir

XRL
A,@Ri

XRL
A,Rn

7x JNZ
rel

ACALL
adr11

ORL
c,bit

JMP
@A+DPTR

MOV
A,#data

MOV
dir,#data

MOV
@Ri,#data

MOV
Rn,#data

8x SJMP
rel

AJMP
adr11

ANL
C,bit

MOVC
A,@A+PC

DIV
AB

MOV
dir,dir

MOV
dir,@Ri

MOV
dir,Rn

9x MOV
DPTR,#d16

ACALL
adr11

MOV
bit,c

MOVC
A,@A+DPTR

SUBB
A,#data

SUBB
A,dir

SUBB
A,@Ri

SUBB
A,Rn

Ax ORL
C,/bit

AJMP
adr11

MOV
C,bit

INC
DPTR

MUL
AB

OPCODE
PREFIX

MOV
@Ri,dir

MOV
Rn,dir

Bx ANL
C,/bit

ACALL
adr11

CPL
bit

CPL
C

CJNE
A,#d8,rel

CJNE
A,dir,rel

CJNE
@Ri,#d8,rel

CJNE
Rn,#d8,rel

Cx PUSH
dir

AJMP
adr11

CLR
bit

CLR
C

SWAP
A

XCH
A,dir

XCH
A,@Ri

XCH
A,Rn

Dx POP
dir

ACALL
adr11

SETB
bit

SETB
C

DA
A

DJNZ
dir,rel

XCHD
A,@Ri

DJNZ
Rn,rel

Ex MOVX
A,@DPTR

AJMP
adr11

MOVX
A,@Ri

CLR
A

MOV
A,dir

MOV
A,@Ri

MOV
A,Rn

Fx MOV
@DPTR,A

ACALL
adr11

MOVX
@Ri,A

CPL
A

MOV
dir,A

MOV
@Ri,A

MOV
Rn,A

66 Chapter 2. Architecture Overview

2

Additional 251 Instructions
Binary
Mode A5x8 A5x9 A5xA A5xB A5xC A5xD A5xE A5xF

Source
Mode x8 x9 xA xB xC xD xE xF

0 JSLE
rel

MOV Rm
@WRj+dis

MOVZ
WRj,Rm

INC Rm/WRj/
Drk,#short

MOV reg,ind
 SRA

reg

1 JSG
rel

MOV@WRj
+dis,Rm

MOVS
WRj,Rm

DEC Rm/WRj/
Drk,#short

MOV ind,reg
 SRL

reg

2 JLE
rel

MOV Rm,
@DRk+dis ADD

Rm,Rm
ADD

WRj,WRj
ADD

reg,op2
ADD

DRk,DRk

3 JG
rel

MOV@DRk
 +dis,Rm SLL

reg

4 JSL
rel

MOV Wrj,
@WRjj+dis ORL

Rm,Rm
ORL

WRj,WRj
ORL

reg,op2

5 JSGE
rel

MOV@WRj
+ dis,WRj ANL

Rm,Rm
ANL

WRj,WRj
ANL

reg,op2

6 JE
rel

MOV Wrj,
@DRk+dis XRL

Rm,Rm
XRL

WRj,WRj
XRL

reg,op2

7 JNE
rel

MOV @Drk
 +dis,WRj

MOV
op1,reg MOV

Rm,Rm
MOV

WRj,WRj
MOV

reg,op2
MOV

DRk,DRk

8 LJMP@WRj
EJMP@DRk

EJMP
addr24 DIV

Rm,Rm
DIV

WRj,WRj

9 LCALL@WR
ECALL@DRk

ECALL
addr24 SUB

Rm,Rm
SUB

WRj,WRj
SUB

reg,op2
SUB

DRk,DRk

A BIT
instructions ERET MUL

Rm,Rm
MUL

WRj,WRj

B TRAP CMP
Rm,Rm

CMP
WRj,WRj

CMP
reg,op2

CMP
DRk,DRk

C PUSH
op1

D POP
op1

E

F

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 67

 2

Additional 80C51MX Instructions via Prefix A5

 A5x0 A5x1 A5x2 A5x3 A5x4 A5x5 A5x6-A5x7 A5x8-A5xF A5x8-A5xF

0x EJMP
adr23 INC

esfr

1x JBC
esbit,rel ECALL

adr23 DEC
esfr

2x JB
esbit,rel ADD

A,esfr

3x JNB
esbit,rel ADDC

A,esfr

4x ORL
esfr,A

ORL
esfr,#data ORL

A,esfr
EMOV

A,@PR0+d2

EMOV
A,@PR1+d2

5x ANL
esfr,A

ANL
esfr,#data ANL

A,esfr EMOV
@PR0+d2,A

EMOV
@PR1+d2,A

6x XRL
esfr,A

XRL
esfr,#data XRL

A,esfr ADD
PR0,#data2

ADD
PR1,#data2

7x ORL
c,esbit

EJMP
@A+EPTR MOV

dir,#data

8x ANL
C,esbit MOV

esfr,esfr
MOV

esfr,@Ri
MOV

esfr,Rn

9x MOV
EPTR,#d23 MOV

esbit,c
MOVC

A,@A+EPTR SUBB
A,esfr

Ax ORL
C,/esbit MOV

C,esbit
INC

EPTR MOV
@Ri,esfr

MOV
Rn,esfr

Bx ANL
C,/esbit CPL

esbit CJNE
A,esfr,rel

Cx PUSH
esfr CLR

esbit XCH
A,esfr

Dx POP
esfr SETB

esbit DJNZ
esfr,rel

Ex MOVX
A,@EPTR MOV

A,esfr

Fx MOV
@EPTR,A MOV

esfr,A

68 Chapter 2. Architecture Overview

2

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 69

Shaded directives and options are available only in AX51 and A251.

 3

Chapter 3. Writing Assembly Programs
The Ax51 macro assembler is a multi pass assembler that translates x51
assembly language programs into object files. These object files are then
combined or linked using the Lx51 Linker/Locator to form an executable, ready
to run, absolute object module. As a subsequent step, absolute object modules
can be converted to Intel HEX files suitable for loading onto to your target
hardware, device programmer, or ICE (In-Circuit Emulator) unit.

The following sections describe the components of an assembly program, and
some aspects of writing assembly programs. An assembly program consists of
one or more statements. These statements contain directives, controls, and
instructions.

Assembly Statements
Assembly program source files are made up of statements that may include
assembler controls, assembler directives, or x51 assembly language instructions
(mnemonics). For example:

$TITLE(Demo Program #1)
CSEG AT 0000h
JMP $
END

This example program consists of four statements. $TITLE is an assembler
control, CSEG and END are assembler directives, and JMP is an assembly
language instruction.

Each line of an assembly program can contain only one control, directive, or
instruction statement. Statements must be contained in exactly one line. Multi–
line statements are not allowed.

Statements in x51 assembly programs are not column sensitive. Controls,
directives, and instructions may start in any column. Indentation used in the
examples in this manual, is done for program clarity and is neither required nor
expected by the assembler. The only exception is that arguments and instruction
operands must be separated from controls, directives, and instructions by at least
one space.

70 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

All x51 assembly programs must include the END directive. This directive
signals to the assembler that this is the end of the assembly program. Any
instructions, directives, or controls found after the END directive are ignored.
The shortest valid assembly program contains only an END directive.

Directives
Assembler directives instruct the assembler how to process subsequent assembly
language instructions. Directives also provide a way for you to define program
constants and reserve space for variables.

“Chapter 4. Assembler Directives” on page 99 provides complete descriptions
and examples of all of the assembler directives that you may include in your
program. Refer to this chapter for more information about how to use directives.

Controls
Assembler controls direct the operation of the assembler when generating a
listing file or object file. Typically, controls do not impact the code that is
generated by the assembler. Controls can be specified on the command line or
within an assembler source file.

The conditional assembly controls are the only assembler controls that will
impact the code that is assembled by the Ax51 assembler. The IF, ELSE,
ENDIF, and ELSEIF controls provide a powerful set of conditional operators
that can be used to include or exclude certain parts of your program from the
assembly.

“Chapter 7. Invocation and Controls” on page 195 describes the available
assembler controls in detail and provides an example of each. Refer to this
chapter for more information about control statements.

Instructions
Assembly language instructions specify the program code that is to be assembled
by the Ax51 assembler. The Ax51 assembler translates the assembly

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 71

Shaded directives and options are available only in AX51 and A251.

 3

instructions in your program into machine code and stores the resulting code in
an object file.

Assembly instructions have the following general format:

�label:� mnemonic �operand� �, operand� �, operand� �; comment�

where

label is a symbol name that is assigned the address at which the
instruction is located.

mnemonic is the ASCII text string that symbolically represents a
machine language instruction.

operand is an argument that is required by the specified mnemonic.

comment is an optional description or explanation of the instruction.
A comment may contain any text you wish. Comments are
ignored by the assembler.

The “Instruction Sets” of the x51 microcontrollers are listed on page 40 by
mnemonic and by machine language opcode. Refer to this section for more
information about assembler instructions.

Comments
Comments are lines of text that you may include in your program to identify and
explain the program. Comments are ignored by the Ax51 assembler and are not
required in order to generate working programs.

You can include comments anywhere in your assembler program. Comments
must be preceded with a semicolon character (;). A comment can appear on a
line by itself or can appear at the end of an instruction. For example:

;This is a comment
NOP ;This is also a comment

When the assembler recognizes the semicolon character on a line, it ignores
subsequent text on that line. Anything that appears on a line to the right of a
semicolon will be ignored by the Ax51 assembler. Comments have no impact on
object file generation or the code contained therein.

72 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Symbols
A symbol is a name that you define to represent a value, text block, address, or
register name. You can also use symbols to represent numeric constants and
expressions.

Symbol Names
Symbols are composed of up to 31 characters from the following list:

A - Z, a - z, 0 - 9, _, and ?

A symbol name can start with any of these characters except the digits 0 - 9.

Symbols can be defined in a number of ways. You can define a symbol to
represent an expression using the EQU or SET directives:

NUMBER_FIVE EQU 5
TRUE_FLAG SET 1
FALSE_FLAG SET 0

You can define a symbol to be a label in your assembly program:

LABEL1: DJNZ R0, LABEL1

You can define a symbol to refer to a variable location:

SERIAL_BUFFER DATA 99h

Symbols are used throughout assembly programs. A symbolic name is much
easier to understand and remember than an address or numeric constant. The
following sections provide more information about how to use and define
symbols.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 73

Shaded directives and options are available only in AX51 and A251.

 3

Labels
A label defines a “place” (an address) in your program or data space. All rules
that apply to symbol names also apply to labels. When defined, a label must be
the first text field in a line. It may be preceded by tabs or spaces. A colon
character (:) must immediately follow the symbol name to identify it as a label.
Only one label may be defined on a line. For example:

LABEL1: DS 2
LABEL2: ;label by itself
NUMBER: DB 27, 33, 'STRING', 0 ;label at a message
COPY: MOV R6, #12H ;label in a program

In the above examples, LABEL1, LABEL2, NUMBER, and COPY are all labels.

When a label is defined, it receives the current value of the location counter of
the currently selected segment. Refer to “Location Counter” on page 87 for
more information about the location counter.

You can use a label just like you would use a program offset within an
instruction. Labels can refer to program code, to variable space in internal or
external data memory, or can refer to constant data stored in the program or code
space.

You can use a label to transfer program execution to a different location. The
instruction immediately following a label can be referenced by using the label.
Your program can jump to or make a call to the label. The code immediately
following the label will be executed.

You can also use labels to provide information to simulators and debuggers. A
simulator or debugger can provide the label symbols while debugging. This can
help to simplify the debugging process.

Labels may only be defined once. They may not be redefined.

74 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Operands
Operands are arguments, or expressions, that are specified along with assembler
directives or instructions. Assembler directives require operands that are
constants or symbols. For example:

VVV EQU 3
DS 10h

Assembler instructions support a wider variety of operands than do directives.
Some instructions require no operands and some may require up to 3 operands.
Multiple operands are separated by commas. For example:

MOV R2, #0

The number of operands that are required and their types depend on the
instruction or directive that is specified. In the following table the first four
operands can also be expressions. Instruction operands can be classified as one
the following types:

Operand Type Description

Immediate Data Symbols or constants the are used as an numeric value.
Direct Bit Address Symbols or constants that reference a bit address.
Program Addresses Symbols or constants that reference a code address.
Direct Data Addresses Symbols or constants that reference a data address.
Indirect Addresses Indirect reference to a memory location, optionally with offset.
Special Assembler Symbol Register names.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 75

Shaded directives and options are available only in AX51 and A251.

 3

Special Assembler Symbols
The Ax51 assembler defines and reserves names of the x51 register set. These
predefined names are used in x51 programs to access the processor registers.
Following, is a list of the each of the 8051, 80C51MX, and 251 registers along
with a brief description:

 Register Description

 A Represents the 8051 Accumulator. It is used with many operations including
multiplication and division, moving data to and from external memory, Boolean
operations, etc.

 DPTR The DPTR register is a 16-bit data pointer used to address data in XDATA or
CODE memory.

 PC The PC register is the 16-bit program counter. It contains the address of the
next instruction to be executed.

 C The Carry flag; indicates the status of operations that generate a carry bit. It is
also used by operations that require a borrow bit.

 AB The A and B register pair used in MUL and DIV instructions.

 R0 – R7 The eight 8-bit general purpose 8051 registers in the currently active register
bank. A Maximum of four register banks are available.

 AR0 – AR7 Represent the absolute data addresses of R0 through R7 in the current register
bank. The absolute address for these registers will change depending on the
register bank that is currently selected. These symbols are only available when
the USING directive is given. Refer to the USING directive for more information
on selecting the register bank. These representations are suppressed by the
NOAREGS directive. Refer to the NOAREGS directive for more information.

PR0, PR1 Universal Pointer Registers of the 80C51MX architecture. Universal Pointer
can access the complete 16MB address space of the 80C51MX. PR0 is
composed of registers R1, R2, and R3. PR1 is composed of registers R5, R6,
and R7.

51
M

X
O

N
LY

EPTR Additional extended data pointer register of the 80C51MX architecture. EPTR
may be used to access the complete memory space.

R8 – R15 Additional eight 8–bit general purpose registers of the 251.

WR0 –
WR30

Sixteen 16–bit general purpose registers of the 251. The registers WR0 -
WR14 overlap the registers R0 - R15. Note that there is no WR1 available.

25
1

O
N

LY

DR0 – DR28
DR56, DR60

Ten 32-bit general purpose registers of 251. The registers DR0 - DR28 overlap
the registers WR0 - WR30. Note that there is no DR1, DR2 and DR3 available.

76 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Immediate Data
An immediate data operand is a numeric expression that is encoded as a part of
the machine language instruction. Immediate data values are used literally in an
instruction to change the contents of a register or memory location. The pound
(or number) sign (#) must precede any expression that is to be used as an
immediate data operand. The following shows some examples of how the
immediate data is typically used:

MY_VAL EQU 50H ; an equate symbol

MOV A,IO_PORT2 ; direct memory access to DATA
MOV A,#0E0h ; load 0xE0 into the accumulator
MOV DPTR,#0x8000 ; load 0x8000 into the data pointer
ANL A,#128 ; AND the accumulator with 128
XRL A,#0FFh ; XOR A with 0ffh
MOV R5,#MY_VAL ; load R5 with the value of MY_VAL

Memory Access
A memory access reads or writes a value in to the various memory spaces of the
x51 system.

Direct memory access encodes the memory address in the instruction that to
reads or writes the memory. With direct memory accesses you can access
variables in the memory class DATA and BIT. For the 251 also the EDATA
memory class is addressable with direct memory accesses.

Indirect memory accesses uses the content of a register in the instruction that
reads or writes into the memory. With indirect address operands it is possible to
access all memory classes of the x51.

The following examples show how to access the different memory classes of an
x51 system.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 77

Shaded directives and options are available only in AX51 and A251.

 3

DATA

Memory locations in the memory class DATA can be addressed with both:
direct and indirect memory accesses. Special Function Registers (SFR) of the
x51 have addresses above 0x80 in the DATA memory class. SFR locations can
be addressed only with direct memory accesses. An indirect memory access to
SFRs is not supported in the x51 microcontrollers.

Example for all 8051 variants
?DT?myvar SEGMENT DATA ; define a SEGMENT of class DATA

RSEG ?DT?myvar
VALUE: DS 1 ; reserve 1 BYTE in DATA space

IO_PORT2 DATA 0A0H ; special function register
VALUE2 DATA 20H ; absolute memory location

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV A,IO_PORT2 ; direct memory access to DATA
ADD A,VALUE
MOV VALUE2,A
MOV R1,#VALUE ; load address of VALUE to R1
ADD A,@R1 ; indirect memory access to VALUE

BIT

Memory locations in the memory class BIT are addressed with the bit
instructions of the 8051. Also the Special Function Registers (SFR) that are
located bit-addressable memory locations can be addressed with bit instructions.
Bit-addressable SFR locations are: 80H, 88H, 90H, 98H, 0A0H, 0A8H, 0B0H,
0B8H, 0C0H, 0C8H, 0D0H, 0D8H, 0E0H, 0E8H, 0F0H, and 0F8H.

Example for all 8051 variants
?BI?mybits SEGMENT BIT ; define a SEGMENT of class BIT

RSEG ?BI?mybits
FLAG: DBIT 1 ; reserve 1 Bit in BIT space
P1 DATA 90H ; 8051 SFR PORT1
GREEN_LED BIT P1.2 ; GREEN LED on I/O PORT P1.2

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
SETB GREEN_LED ; P1.2 = 1
JB FLAG,is_on ; direct memory access to DATA
SETB FLAG
CLR ACC.5 ; reset bit 5 in register A
:

is_on: CLR FLAG
CLR GREEN_LED ; P1.2 = 0

78 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

EBIT (only on Intel/Atmel WM 251)

The 251 provides with the EBIT memory class an expanded bit-addressable
memory space that is addressed with extended bit instructions. Also all Special
Function Registers (SFR) in the 251 can be addressed with extended bit
instructions.

Example for Intel/Atmel WM 251
?EB?mybits SEGMENT EBIT ; define a SEGMENT of class EBIT

RSEG ?EB?mybits
FLAG: DBIT 1 ; reserve 1 Bit in BIT space
CMOD DATA 0D9H ; PCA Counter Modes
CPS0 BIT CMOD.1 ; CPS0 bit

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
JB FLAG,is_on ; direct memory access to DATA
SETB FLAG
:

is_on: CLR FLAG
CLR CPS0 ; CMOD.1 = 0

IDATA

Variables in this memory class are accessed via registers R0 or R1.

Example for all 8051 variants
?ID?myvars SEGMENT IDATA ; define a SEGMENT of class IDATA

RSEG ?EB?mybits
BUFFER: DS 100 ; reserve 100 Bytes

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV R0,#BUFFER ; load the address in R0
MOV A,@R0 ; read memory location buffer
INC R0 ; increment memory address in R0
MOV @R0,A ; write memory location buffer+1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 79

Shaded directives and options are available only in AX51 and A251.

 3

EDATA (Intel/Atmel WM 251, Philips 80C51MX only)

The EDATA memory is only available in the Philips 80C51MX and the
Intel/Atmel WM 251 architecture.

In the Philips 80C51MX, the EDATA memory can be accessed via EPTR or the
Universal Pointers PR0 and PR1. Universal Pointers can access any memory
location in the 16MB address space.

Example for Philips 80C51MX
?ED?my_seg SEGMENT EDATA ; define a SEGMENT of class EDATA

RSEG ?ED?my_seg
STRING: DS 100 ; reserve 100 Bytes

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV R1,#BYTE0 STRING ; load address of STRING in PR0
MOV R2,#BYTE1 STRING
MOV R3,#BYTE2 STRING
MOV A,@PR0 ; load first byte of STRING in A

In the 251, EDATA memory can be accessed with direct memory addressing or
indirect via the registers WR0 .. WR30. Also the memory class IDATA and
DATA can be access with this addressing mode.

Example for Intel/Atmel WM 251
?ED?my_seg SEGMENT EDATA ; define a SEGMENT of class EDATA

RSEG ?ED?my_seg
STRING: DS 100 ; reserve 100 Bytes

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV R11,STRING+2 ; load character at STRING[2]
MOV WR4,#STRING ; load address of STRING
MOV R6,@WR4 ; indirect access
MOV @WR4+2,R6 ; access with constant offset

80 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

XDATA

The XDATA memory class can be accessed with the instruction MOVX via the
register DPTR. A single page of the XDATA memory can be also accessed or
via the registers R0, R1. At the C Compiler level this memory type is called
pdata and the segment prefix ?PD? is used. The high address for this pdata page
is typically set with the P2 register. But in new 8051 variants there are also
dedicated special function registers that define the XDATA page address.

Example for all 8051 variants
?XD?my_seg SEGMENT XDATA ; define a SEGMENT of class XDATA

RSEG ?ED?my_seg
XBUFFER: DS 100 ; reserve 100 Bytes

?PD?myvars SEGMENT XDATA INPAGE ; define a paged XDATA segment
RSEG ?PD?myvars

VAR1: DS 1 ; reserve 1 byte

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV P2,#HIGH ?PD?myvars ; load page address register
:
MOV DPTR,#XBUFFER ; load address
MOVX A,@DPTR ; access via DPTR
MOV R1,#VAR1 ; load address
MOVX @R1,A ; access via R0 or R1

CODE and CONST

CODE or CONST memory can be accessed with the instruction MOVC via the
DPTR register. The memory class CONST not possible with A51 and BL51.

Example for all 8051 variants
?CO?my_seg SEGMENT CODE ; define a SEGMENT of class CODE

RSEG ?CO?my_seg
TABLE: DB 1,2,4,8,0x10 ; a table with constant values

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV DPTR,#TABLE ; load address of table
MOV A,#3 ; load offset into table
MOVC A,@A+DPTR ; access via MOVC instruction

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 81

Shaded directives and options are available only in AX51 and A251.

 3

HDATA and HCONST

The HDATA and HCONST memory can be accessed with CPU instructions only
in the Philips 80C51MX and the 251 architecture. HDATA and HCONST
memory is simulated with memory banking on classic 8051 devices. The
HDATA and HCONST memory class is not possible with A51 and BL51.

In the Philips 80C51MX, the HDATA and HCONST memory can be accessed
via EPTR or the Universal Pointers PR0 and PR1. Universal Pointers can access
any memory location in the 16MB address space.

Example for Philips 80C51MX
?HD?my_seg SEGMENT HDATA ; define a SEGMENT of class HDATA

RSEG ?HD?my_seg
ARRAY: DS 100 ; reserve 100 Bytes

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV R1,#BYTE0 ARRAY ; load address of ARRAY in PR0
MOV R2,#BYTE1 ARRAY
MOV R3,#BYTE2 ARRAY
MOV A,@PR0 ; load first byte of ARRAY in A

In the 251, HDATA and HCONST memory can be accessed via the registers
DR0 .. DR28 and DR56. Any memory location can be accessed with this
registers.

Example for Intel/Atmel WM 251
?HD?my_seg SEGMENT HDATA ; define a SEGMENT of class HDATA

RSEG ?HD?my_seg
ARRAY: DS 100 ; reserve 100 Bytes

?PR?myprog SEGMENT CODE ; define a segment for program code
RSEG ?PR?myprog
MOV WR8,#WORD2 ARRAY ; load address of ARRAY
MOV WR10,#WORD0 ARRAY ; into DR8
MOV R4,@DR8 ; indirect access
MOV @DR8+50H,R4 ; access with constant offset

82 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Program Addresses
Program addresses are absolute or relocatable expressions with the memory class
CODE or ECODE. Typically program addresses are used in jump and call
instructions. For indirect jumps or calls it is required to load a program address
in a register or a jump table. The following jumps and calls are possible:

SJMP
JZ
JNZ
…

Relative jumps include conditional jumps (CJNE, DJNZ, JB, JBC,
JC, …) and the unconditional SJMP instruction. The addressable offset
is –128 to +127 bytes from the first byte of the instruction that follows
the relative jump. When you use a relative jump in your code, you must
use an expression that evaluates to the code address of the jump
destination. The assembler does all the offset computations. If the
address is out of range, the assembler will issue an error message.

ACALL
AJMP

In-block jumps and calls permit access only within a 2KByte block of
program space. The low order 11 bits of the program counter are
replaced when the jump or call is executed. For Dallas 390 contiguous
mode the block size is 512KB or 19 bits. If ACALL or AJMP is the
last instruction in a block, the high order bits of the program counter
change and the jump will be within the block following the ACALL or
AJMP.

LCALL
LJMP

Long jumps and calls allow access to any address within a 64KByte
segment of program space. The low order 16 bits of the program
counter are replaced when the jump or call is executed. For Dallas 390
contiguous mode: the block size is 16MB or 24 bits. One Philips
80C51MX and Intel/Atmel WM 251: if LCALL or LJMP is the last
instruction in a 64KByte segment, the high order bits of the program
counter change and the jump will into the segment following the
LCALL or LJMP.

ECALL
EJMP

Extended jumps and calls allow access within the extended program
space of the Intel/Atmel WM 251 or Philips 80C51MX.

CALL
JMP

Generic jumps and calls are two instruction mnemonics that do not
represent a specific opcode. JMP may assemble to SJMP, AJMP,
LJMP or EJMP. CALL may assemble to ACALL, LCALL or
ECALL. These generic mnemonics always evaluate to an instruction,
not necessarily the shortest, that will reach the specified program

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 83

Shaded directives and options are available only in AX51 and A251.

 3

address operand.

Example for all 8051 Variants
EXTRN CODE (my_function)

CSEG AT 3
JMP ext_int ; an interrupt vector

?PR?myintr SEGMENT CODE ; define a segment for program code
RSEG ?PR?myintr

ext_int: JB FLAG,flag_OK
INC my_var

flag_OK: CPL FLAG
RETI

?PR?myprog SEGMENT CODE INBLOCK ; a segment within a 2K block
RSEG ?PR?myprog

func1: CALL sub_func ; will generate ACALL
loop: CALL my_function ; external function -> LCALL

MOV A,my_var
JNZ loop
RET

sub_func: CLR FLAG
MOV R0,#20

loop1: CALL my_function
DJNZ R0,loop1
RET

Example with EJMP, ECALL for Philips 80C51MX and Intel/Atmel WM
251
EXTRN ECODE:FAR (my_farfunc)

Reset EQU ECODE 0FF0000H ; Reset location on 251

?PR?my_seg SEGMENT ECODE ; define a SEGMENT of class EDATA
RSEG ?PR?my_seg

func1 PROC FAR ; far function called with ECALL
CALL func2 ; generates LCALL
CALL my_farfunc ; generates ECALL
JNB Flag,mylab
EJMP Reset

mylab: ERET
ENDP

func2 PROC NEAR
CALL my_farfunc ; generates ECALL
RET
ENDP

84 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Expressions and Operators
An operand may be a numeric constant, a symbolic name, a character string or an
expression.

Operators are used to combine and compare operands within your assembly
program. Operators are not assembly language instructions nor do they generate
x51 assembly code. They represent operations that are evaluated at
assembly-time. Therefore, operators can only handle calculations of values that
are known when the program is assembled.

An expression is a combination of numbers, character string, symbols, and
operators that evaluate to a single 32-bit binary number (for A51: 16-bit binary
number). Expressions are evaluated at assembly time and can, therefore, be used
to calculate values that would otherwise be difficult to determine beforehand.

The following sections describe operators and expressions and how they are used
in x51 assembly programs.

Numbers
Numbers can be specified in hexadecimal (base 16), decimal (base 10), octal
(base 8), and binary (base 2). The base of a number is specified by the last
character in the number. A number that is specified without an explicit base is
interpreted as decimal number.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 85

Shaded directives and options are available only in AX51 and A251.

 3

The following table lists the base types, the base suffix character, and some
examples:

Base Suffix Legal Characters Examples

Hexadecimal H, h 0 – 9, A – F, a – f 0x1234 0x99 1234H 0A0F0h 0FFh
Decimal D, d 0 – 9 1234 65590d 20d 123
Octal O, o, Q, q 0 – 7 177o 25q 123o 177777q
Binary B, b 0 and 1 10011111b 101010101b

The first character of a number must be a digit between 0 and 9. Hexadecimal
numbers which do not have a digit as the first character should be prefixed with
a 0. The Ax51 assembler supports also hex numbers written in C notation.

The dollar sign character ($) can be used in a number to make it more readable,
however, the dollar sign character cannot be the first or last character in the
number. A dollar sign used within a number is ignored by the assembler and has
no impact on the value of the number. For example:

1111$0000$1010$0011b is equivalent to 1111000010100011B
1$2$3$4 is equivalent to 1234

Colon Notation for Numbers (A251 only)

The A251 assembler supports the notation page:number for specifying absolute
addresses. Numbers specified with this notation receive the memory type
EDATA when page is 0 or ECODE for all other pages. In this way, you can use
such numbers for referencing any memory location. For example:

ABSVAL1 EQU 0:20H ; symbol to address location 20H
ABSVAL2 EQU 0:80H ; symbol to address location 80H in EDATA space
PORT0 EQU S:80H ; symbol to SFR space 80H
ENTRY EQU 10:2000H ; entry point at location 102000H

MOV WR0,ABSVAL1
MOV R1,ABSVAL2
MOV PORT0,R1
EJMP ENTRY
MOV WR0,0:20H ; access to ABSVAL1
MOV R1,0:80H ; access to ABSVAL2
MOV S:80H,R1
EJMP 10:2000H

The colon notation is accepted in several A251 controls and is converted as
described.

86 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Number in Colon Notation Replaced with

VAL1 EQU 0:20H VAL1 EQU EDATA 20H
VAL2 EQU 0FF:1000H VAL2 EQU ECODE 0FF1000H
ORG 0FE:2000H ?modulename?number SEGMENT ECODE AT 0FE2000H

RSEG ?modulename?number
ORG 0:400H ?modulename?number SEGMENT EDATA AT 400H

RSEG ?modulename?number
CSEG AT 0FE:2000H ?modulename?number SEGMENT ECODE AT 0FE2000H

RSEG ?modulename?number
BVAR1 BIT 0:20H.1 BVAR1 BIT 20H.1
BVAR1 BIT 0:30H.1 BVAR1 EQU EBIT 30H.1
PUSH.B #13 PUSH BYTE #13
PUSH.W #13 PUSH WORD #13

NOTE
The colon notation is provided for source compatibility with other 251 macro
assemblers. If you do not need to port your code to other assemblers, it is
recommended to use directly the replacement sequence in your assembler source
file.

Characters
The Ax51 assembler allows you to use ASCII characters in an expression to
generate a numeric value. Up to two characters enclosed within single quotes (')
may be included in an expression. More than two characters in single quotes in
an expression will cause the Ax51 assembler to generate an error. Following are
examples of character expressions:

'A' evaluates to 0041h
'AB' evaluates to 4142h
'a' evaluates to 0061h
'ab' evaluates to 6162h
'' null string evaluates to 0000h
'abc' generates an ERROR

Characters may be used anywhere in your program as a immediate data operand.
For example:

LETTER_A EQU 'A'

TEST: MOV @R0, #'F'
SUBB A, #'0'

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 87

Shaded directives and options are available only in AX51 and A251.

 3

Character Strings
Character strings can be used in combination with the DB directive to define
messages that are used in your x51 assembly program. Character strings must be
enclosed within single quotes ('). For example:

KEYMSG: DB 'Press any key to continue.'

generates the hexadecimal data (50h, 72h, 65h, 73h, 73h, 20h, … 6Eh, 75h, 65h,
2Eh) starting at KEYMSG. You can mix string and numeric data on the same line.
For example:

EOLMSG: DB 'End of line', 00h

appends the value 00h to the end of the string 'End of line'.

Two successive single quote characters can be used to insert a single quote into a
string. For example:

MSGTXT: DB 'ISN''T A QUOTE REQUIRED HERE?'.

Location Counter
The Ax51 assembler maintains a location counter for each segment. The
location counter contains the offset of the instruction or data being assembled
and is incremented after each line by the number of bytes of data or code in that
line.

The location counter is initialized to 0 for each segment, but can be changed
using the ORG directive.

The dollar sign character ($) returns the current value of the location counter.
This operator allows you to use the location counter in an expression. For
example, the following code uses $ to calculate the length of a message string.

MSG: DB 'This is a message', 0
MSGLEN EQU $ – MSG

You can also use $ in an instruction. For example, the following line of code
will repeat forever.

JMP $; repeat forever

88 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Operators
The Ax51 assembler provides several classes of operators that allow you to
compare and combine operands and expressions. These operators are described
in the sections that follow.

Arithmetic Operators

Arithmetic operators perform arithmetic functions like addition, subtraction,
multiplication, and division. These operators require one or two operands
depending on the operation. The result is always a 16-bit value. Overflow and
underflow conditions are not detected. Division by zero is detected and causes
an assembler error.

Operator Syntax Description

+ + expression Unary plus sign

– – expression Unary minus sign

+ expression + expression Addition

– expression – expression Subtraction

* expression * expression Multiplication

/ expression / expression Integer division

MOD expression MOD expression Remainder

(and) (expression) Specify order of execution

Binary Operators

Binary operators are used to complement, shift, and perform bit–wise operations
on the binary value of their operands.

Operator Syntax Description

NOT NOT expression Bit–wise complement

SHR expression SHR count Shift right

SHL expression SHL count Shift left

AND expression AND expression Bit–wise AND

OR expression OR expression Bit–wise OR

XOR expression XOR expression Bit–wise exclusive OR

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 89

Shaded directives and options are available only in AX51 and A251.

 3

Relational Operators

The relational operators compare two operands. The result of the comparison is
a TRUE or FALSE. A FALSE result has a value of 0000h. A TRUE result has a
non–zero value.

The following table lists the relational operators and provides a brief description
of each.

Operator Syntax Result

GTE expression1 GTE expression2 True if expression1 is greater than or equal to
expression2

LTE expression1 LTE expression2 True if expression1 is less than or equal to
expression2

NE expression1 NE expression2 True if expression1 is not equal to expression2

EQ expression1 EQ expression2 True if expression1 is equal to expression2

LT expression1 LT expression2 True if expression1 is less than expression2

GT expression1 GT expression2 True if expression1 is greater than expression2

>= expression1 >= expression2 True if expression1 is greater than or equal to
expression2

<= expression1 <= expression2 True if expression1 is less than or equal to
expression2

<> expression1 <> expression2 True if expression1 is not equal to expression2

= expression1 = expression2 True if expression1 is equal to expression2

< expression1 < expression2 True if expression1 is less than expression2

> expression1 > expression2 True if expression1 is greater than expression2

90 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Class Operators

The class operator assigns a memory class to an expression. This is how you
associate an expression with a class. The Ax51 assembler generates an error
message if you use an expression with a class on an instruction which does not
support this class, for example, when you use an XDATA expression as a direct
address.

The following table lists the class operators and provides a brief description of
each.

Operator Syntax Description

BIT BIT expression Assigns the class BIT to the expression.

CODE CODE expression Assigns the class CODE to the expression.

CONST CONST expression Assigns the class CONST to the expression.

DATA DATA expression Assigns the class DATA to the expression.

EBIT EBIT expression Assigns the class EBIT to the expression.

ECODE ECODE expression Assigns the class ECODE to the expression.

ECONST ECONST expression Assigns the class ECONST to the expression.

EDATA EDATA expression Assigns the class EDATA to the expression.

IDATA IDATA expression Assigns the class IDATA to the expression.

HCONST HCONST expression Assigns the class HCONST to the expression.

HDATA HDATA expression Assigns the class HDATA to the expression.

XDATA XDATA expression Assigns the class XDATA to the expression.

Type Operators

The type operator assigns a data type to an expression. The A251 assembler
generates an error if you attempt to use an instruction with the incorrect data
type. For example, this happens when you use a WORD expression as an
argument in a byte-wide instruction of the 251.

Operator Syntax Description

BYTE BYTE expression Assigns the type BYTE to the expression.

WORD WORD expression Assigns the class WORD to the expression.

DWORD DWORD expression Assigns the class DWORD to the expression.

NEAR NEAR expression Assigns the class NEAR to the expression.

FAR FAR expression Assigns the class FAR to the expression.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 91

Shaded directives and options are available only in AX51 and A251.

 3

Miscellaneous Operators

Ax51 provides operators that do not fall into the previously listed categories.
These operators are listed and described in the following table.

Operator Syntax Description

LOW LOW expression Low–order byte of expression

HIGH HIGH expression High–order byte of expression

BYTE0 BYTE0 expression Byte 0 of expression. See table below. (identical
with LOW).

BYTE1 BYTE1 expression Byte 1 of expression. See table below. (identical
with HIGH).

BYTE2 BYTE2 expression Byte 2 of expression. See table below.

BYTE3 BYTE3 expression Byte 3 of expression. See table below.

WORD0 WORD0 expression Word 0 of expression. See table below.

WORD2 WORD2 expression Word2 of expression. See table below.

MBYTE MBYTE expression AX51 only: memory type information for C51
run-time libraries. Returns the memory type that
is used in the C51 run-time library to access
variables defined with the far memory type.

The following table shows how the byte and word operators impact a 32-bit
value.

MSB LSB

BYTE3 BYTE2 BYTE1 BYTE0

WORD2 WORD0

 HIGH LOW

The following table shows how the byte and word operators impact a 32-bit
value.

92 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Operator Precedence

All operators are evaluated in a certain, well–defined order. This order of
evaluation is referred to as operator precedence. Operator precedence is required
in order to determine which operators are evaluated first in an expression. The
following table lists the operators in the order of evaluation. Operators at level 1
are evaluated first. If there is more than one operator on a given level, the
leftmost operator is evaluated first followed by each subsequent operator on that
level.

Level Operators

1 ()

2 NOT, HIGH, LOW, BYTE0, BYTE1, BYTE2, BYTE3, WORD0, WORD2
3 BIT, CODE, CONST, DATA, EBIT, EDATA, ECONST, ECODE, HCONST,

HDATA, IDATA, XDATA
4 BYTE, WORD, DWORD, NEAR, FAR
5 + (unary), – (unary)

6 *, /, MOD
7 +, –

8 SHR, SHL
9 AND, OR, XOR
10 >=, <=, =, <>, <, >, GTE, LTE, EQ, NE, LT, GT

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 93

Shaded directives and options are available only in AX51 and A251.

 3

Expressions
An expression is a combination of operands and operators that must be
calculated by the assembler. An operand with no operators is the simplest form
of an expression. An expression can be used in most places where an operand is
required.

Expressions have a number of attributes that are described in the following
sections.

Expression Classes

Expressions are assigned classes based on the operands that are used. The
following classes apply to expressions:

Expression Class Description

N NUMB A classless number.

C ADDR A CODE address symbol.
D ADDR A DATA address symbol.
I ADDR An IDATA address symbol.
X ADDR An XDATA address symbol.
B ADDR A BIT address symbol.
CO ADDR A CONST address symbol.
EC ADDR An ECONST address symbol.
CE ADDR An ECODE address symbol.
ED ADDR An EDATA address symbol.
EB ADDR An EBIT address symbol.
HD ADDR An HDATA address symbol.
HC ADDR An HCONST address symbol.

94 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Typically, expressions are assigned the class NUMBER because they are
composed only of numeric operands. You may assign a class to an expression
using a class operand. An address symbol value is automatically assigned the
class of the segment where it is defined. When a value has a class, a few rules
apply to how expressions are formed:

1. The result of a unary operation has the same class as its operand.

2. The result of all binary operations except + and – will be a NUMBER type.

3. If only one of the operands of an addition or subtraction operation has a class,
the result will have that class. If both operands have a class, the result will be
a NUMBER.

This means that a class value (i.e. an addresses symbol) plus or minus a number
(or a number plus a class value) give a value with class.

Examples
data_address - 10 gives a data_address value
10 + edata_address gives an edata_address value
(data_address - data_address) gives a classless number
code_address + (data_address - data_address) gives a code_address value

Expressions that have a type of NUMBER can be used virtually anywhere.
Expressions that have a class can only be used where a class of that type is valid.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 95

Shaded directives and options are available only in AX51 and A251.

 3

Relocatable Expressions

Relocatable expressions are so named because they contain a reference to a
relocatable or external symbol. These types of expressions can only be partially
calculated by the assembler since the assembler does not know the final location
of relocatable segments. The final calculations are performed by the linker.

A relocatable expression normally contains only a relocatable symbol, however,
it may contain other operands and operators as well. A relocatable symbol can
be modified by adding or subtracting a constant value.

Examples for valid relocatable expression

� relocatable_symbol + absolute_expression

� relocatable_symbol - absolute_expression

� absolute_expression + relocatable_symbol

There are two basic types of relocatable expressions: simple relocatable
expressions and extended relocatable expressions.

96 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Simple Relocatable Expressions

Simple relocatable expressions contain symbols that are defined in a relocatable
segment. Segment and external symbols are not allowed in simple relocatable
expressions.

Simple relocatable expression can be used in four contexts:

1. As an operand to the ORG directive.

2. As an operand to a symbol definition directive (i.e. EQU, SET)

3. As an operand to a data initialization directive (DB, DW or DD)

4. As an operand to a machine instruction

Examples for simple relocatable expressions
REL1 + ABS1 * 10
REL2 - ABS1
REL1 + (REL2 - REL3) assuming REL2 and REL3 refer to the same segment.

Invalid form of simple relocatable expressions
(REL1 + ABS1) * 10 relocatable value may not be multiplied.
(EXT1 - ABS1) this is a general relocatable expression
REL1 + REL2 you cannot add relocatable symbols.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 97

Shaded directives and options are available only in AX51 and A251.

 3

Extended Relocatable Expressions

The extended relocatable expressions have generally the same rules that apply to
simple relocatable expressions. Segment and external symbols are allowed in
extended relocatable expressions. Extended relocatable expressions may be used
only in statements that generate code as operands; these are:

� As an operand to a data initialization directive (DB, DW or DD)

� As an operand to a machine instruction

Examples for extended relocatable expressions
REL1 + ABS1 * 10
EXT1 - ABS1
LOW (REL1 + ABS1)
WORD2 (SEG1)

Invalid form of simple relocatable expressions
(SEG1 + ABS1) * 10 relocatable value may not be multiplied.
(EXT1 - REL1) you can add/subtract only absolute quantities

LOW (REL1) + ABS1 LOW may be applied only to the
final relocatable expression

98 Chapter 3. Writing Assembly Programs

Shaded directives and options are available only in AX51 and A251.

3

Examples with Expressions
EXTRN CODE (CLAB) ; entry in CODE space
EXTRN DATA (DVAR) ; variable in DATA space

MSK EQU 0F0H ; define a symbol to replace 0xF0
VALUE EQU MSK - 1 ; another constant symbolic value
LVAL EQU 12345678H ; LVAL get the value 12345678H

?PR?FOO SEGMENT CODE
RSEG ?PR?FOO

ENTRY: MOV A,#40H ; load register with constant
MOV R5,#VALUE ; load constant symbolic value
MOV R3,#(0x20 AND MASK) ; examples for calculations
MOV R7,#LOW (VALUE + 20H)
MOV R6,#1 OR (MSK SHL 4)

MOV R0,DVAR+20 ; load content from address DVAR+20
MOV R1,#LOW (CLAB+10) ; load low byte of address CLAB+10
MOV WR4,#WORD2 (LVAL) ; load high word of LVAL
MOV DR0,#ENTRY ; load low word of addr. ENTRY to DR0
MOVH DR0,#WORD2 (ENTRY) ; load high word of addr. ENTRY to DR0
MOV R4,@DR0 ; load content of ENTRY to R4

;
MOV R5,80H ; load DATA addr. 80H (= SFR P0) to R5
MOV R5,EDATA 80H ; load EDATA address 80H to R5
SETB 30H.2 ; set bit at 30H.2 (long address)
SETB 20H.2 ; set bit at 20H.2 (short address)

END

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 99

Shaded directives and options are available only in AX51 and A251.

 4

Chapter 4. Assembler Directives
This chapter describes the assembler directives. It shows how to define symbols
and how to control the placement of code and data in program memory.

Introduction
The Ax51 assembler has several directives that permit you to define symbol
values, reserve and initialize storage, and control the placement of your code.

The directives should not be confused with instructions. They do not produce
executable code, and with the exception of the DB, DW and DD directives, they
have no direct effect on the contents of code memory. These directives change
the state of the assembler, define user symbols, and add information to the object
file.

The following table provides an overview of the assembler directives. Page
refers to the page number in this user’s guide where you can find detailed
information about the directive.

Directive / Page Format Description

BIT 114 symbol BIT bit_address Define a bit address in bit data space.

BSEG 111 BSEG [AT absolute address] Define an absolute segment within the
bit address space.

CODE 114 symbol CODE code_address Assign a symbol name to a specific
address in the code space.

CSEG 111 CSEG [AT absolute address] Define an absolute segment within the
code address space.

DATA 114 symbol DATA data_address Assign a symbol name to a specific
on-chip data address.

DB 119 [label:] DB expression [, expr ...] Generate a list of byte values.

DBIT 122 [label:] DBIT expression Reserve a space in bit units.

DD 121 [label:] DD expression [, expr ...] Generate a list of double word values.

DS 123 [label:] DS expression Reserve space in byte units.

DSB 124 [label:] DSB expression Reserve space in byte units.

DSD 126 [label:] DSD expression Reserve space in double word units.

DSEG 111 DSEG [AT absolute address] Define an absolute segment within the
indirect internal data space.

100 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Directive / Page Format Description

DSW 125 [label:] DSW expression Reserve space in word units;
advances the location counter of the
current segment.

DW 120 [label:] DW expression [, expr. ...] Generate a list of word values.

END 136 END Indicate end of program.

EQU 113 EQU expression Set symbol value permanently.

_ _ERROR_ _136 _ _ERROR_ _ text Generate a standard error message.

EVEN 134 EVEN Ensure word alignment for variables.

EXTRN 131
EXTERN

EXTRN class [:type] (symbol [, ...])
EXTERN class [:type] (symbol [, ...])

Defines symbols referenced in the
current module that are defined in
other modules.

IDATA 114 symbol IDATA idata_address Assign a symbol name to a specific
indirect internal address.

ISEG 111 ISEG [AT absolute address] Define an absolute segment within the
internal data space.

LABEL 129 name[:] LABEL [type] Assign a symbol name to a address
location within a segment.

LIT 116 symbol LIT ’literal string’ Assign a symbol name to a string.

NAME 132 NAME modulname Specify the name of the current
module.

ORG 133 ORG expression Set the location counter of the current
segment.

PROC 127
ENDP

name PROC [type]
name ENDP

Define a function start and end.

PUBLIC 130 PUBLIC symbol [, symbol ...] Identify symbols which can be used
outside the current module.

RSEG 110 RSEG seg Select a relocatable segment.

SEGMENT 106 seg SEGMENT class [reloctype]
[alloctype]

Define a relocatable segment.

SET 113 SET expression Set symbol value temporarily.

sfr, 116
sfr16
sbit

sfr symbol = address;
sfr16 symbol = address;
sbit symbol = address;

Define a special function register
(SFR) symbol or a SFR bit symbol.

USING 134 USING expression Set the predefined symbolic register
address and reserve space for the
specified register bank.

XDATA 114 symbol XDATA xdata_address Assign a symbol name to a specific
off-chip data address.

XSEG 111 XSEG [AT absolute address] Define an absolute segment within the
external data address space.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 101

Shaded directives and options are available only in AX51 and A251.

 4

The directives are divided into the following categories:

� Segment Control
Generic Segments: SEGMENT, RSEG
Absolute Segments: CSEG, DSEG, BSEG, ISEG, XSEG

� Symbol Definition
Generic Symbols: EQU, SET
Address Symbols: BIT, CODE, DATA, IDATA, XDATA
SFR Symbols: sfr, sfr16, sbit
Text Replacement: LIT

� Memory Initialization
DB, DW, DD

� Memory Reservation
DBIT, DS, DSB, DSW, DSD

� Procedure Declaration
PROC / ENDP, LABEL

� Program Linkage
PUBLIC, EXTRN / EXTERN, NAME

� Address Control
ORG, EVEN, USING

� Others
END, _ _ERROR_ _

The Ax51 assembler is a multi-pass assembler. In the first pass, symbol values
are determined. In the subsequent passes, forward references are resolved and
object code is produced. This structure imposes a restriction on the source
program: expressions which define symbol values (refer to “Symbol Definition”
on page 113) and expressions which control the location counter (refer to
“ORG” on page 133, “DS” on page 123, and “DBIT” on page 122) may not have
forward references.

102 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Segment Directives
A segment is a block of code or data memory the assembler creates from code or
data in an x51 assembly source file. How you use segments in your source
modules depends on the complexity of your application. Smaller applications
need less memory and are typically less complex than large multi–module
applications.

The x51 CPU has several specific memory areas. You use segments to locate
program code, constant data, and variables in these areas.

Location Counter
Ax51 maintains a location counter for each segment. The location counter is a
pointer to the address space of the active segment. It represents an offset for
generic segments or the actual address for absolute segments. When a segment
is first activated, the location counter is set to 0. The location counter is changed
after each instruction by the length of the instruction. The memory initialization
and reservation directives (i.e. DS, DB or DBIT) change the value of the location
counter as memory is allocated by these directives. The ORG directive sets a
new value for the location counter. If you change the active segment and later
return to that segment, the location counter is restored to its previous value.
Whenever the assembler encounters a label, it assigns the current value of the
location counter and the type of the current segment to that label.

The dollar sign ($) indicates the value of the location counter in the active
segment. When you use the $ symbol, keep in mind that its value changes with
each instruction, but only after that instruction has been completely evaluated. If
you use $ in an operand to an instruction or directive, it represents the address of
the first byte of that instruction.

The following sections describe the different types of segments.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 103

Shaded directives and options are available only in AX51 and A251.

 4

Generic Segments
Generic segments have a name and a class as well as other attributes. Generic
segments with the same name but from different object modules are considered
to be parts of the same segment and are called partial segments. These segments
are combined at link time by the linker/locator.

Generic segments are created using the SEGMENT directive. You must specify
the name of the segment, the segment class, and an optional relocation type and
alignment type when you create a relocatable segment.

Example
MYPROG SEGMENT CODE

defines a segment named MYPROG with a memory class of CODE. This means
that data in the MYPROG segment will be located in the code or program area of
the x51. Refer to “SEGMENT” on page 106 for more information on how to
declare generic segments.

Once you have defined a relocatable segment name, you must select that segment
using the RSEG directive. When RSEG is used to select a segment, that
segment becomes the active segment that Ax51 uses for subsequent code and
data until the segment is changed with RSEG or with an absolute segment
directive.

Example
RSEG MYPROG

will select the MYPROG segment that is defined above.

Typically, assembly routines are placed in generic segments. If you interface
your assembly routines to C, all of your assembly routines must reside in
separate generic segments and the segment names must follow the standards
used by Cx51. Refer to the Compiler User’s Guide for more information on
interfacing assembler programs to C.

104 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Stack Segment
The x51 architecture uses a hardware stack to store return addresses for CALL
instructions and also for temporary storage using the PUSH and POP
instructions. An 8051 application that uses these instructions must setup the
stack pointer to an area of memory that will not be used by other variables.

For the classic 8051 a stack segment must be defined and space must be reserved
as follows. This definition also works for the extended 8051 and the 251,
however these controllers typically support stack also in other areas.

STACK SEGMENT IDATA
RSEG STACK ; select the stack segment
DS 10h ; reserve 16 bytes of space

Then, you must initialize the stack pointer early in your program.

CSEG AT 0 ; RESET Vector
JMP STARTUP ; Jump to startup code

STARTUP: ; code executed at RESET
MOV SP,#STACK - 1 ; load Stack Pointer

For the Philips 80C51MX or the Intel/Atmel WM 251 a stack segment may be
defined and space must be reserved as follows.

STACK SEGMENT EDATA
RSEG STACK ; select the stack segment
DS 100h ; reserve 256 bytes of space

Then, you must initialize the stack pointer early in your program.

CSEG AT 0 ; RESET Vector
JMP STARTUP ; Jump to startup code

STARTUP: ; code executed at RESET
; Stack setup for Philips 80C51MX

ORL MXCON,#0x02 ; enable extended stack
MOV SPE,#HIGH (STACK - 1) ; load Stack high
MOV SP,#LOW (STACK - 1) ; load Stack low

; for Intel/Atmel WM 251
MOV DR60,#STACK - 1 ; load Stack Pointer

If you are interfacing assembly routines to C, you probably do not need to setup
the stack. This is already done for you in the C startup code.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 105

Shaded directives and options are available only in AX51 and A251.

 4

Absolute Segments
Absolute segments reside in a fixed memory location. Absolute segments are
created using the CSEG, DSEG, XSEG, ISEG, and BSEG directives. These
directives allow you to locate code and data or reserve memory space in a fixed
location. You use absolute segments when you need to access a fixed memory
location or when you want to place program code or constant data at a fixed
memory address. Refer to the CSEG, DSEG, ISEG, XSEG, ISEG directives
for more information on how to declare absolute segments.

After reset, the 8051 variants begin program executing at CODE address 0. The
Intel/Atmel WM 251 starts execution at address FF0000. Some type of program
code must reside at this address. You can use an absolute segment to force
program code into this address. The following example is used in the Cx51
startup routines to branch from the reset address to the beginning of the
initialization code.

.

.

.
CSEG AT 0

RESET_VEC: LJMP STARTUP
.
.
.

The program code that we place at address 0000h (for 251 at address FF0000h)
with the CSEG AT 0 directive performs a jump to the STARTUP label.

AX51 and A251 supports absolute segment controls for compatibility to A51.
AX51 and A251 translates the CSEG, DSEG, XSEG, ISEG and BSEG directives
to a generic segment directive.

Default Segment
By default, Ax51 assumes that the CODE segment is selected and initializes the
location counter to 0000h (FF0000h) when it begins processing an assembly
source module. This allows you to create programs without specifying any
relocatable or absolute segment directives.

106 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

SEGMENT
The SEGMENT directive is used to declare a generic segment. A relocation
type and an allocation type may be specified in the segment declaration. The
SEGMENT directive is specified using the following format:

segment SEGMENT class reloctype alloctype

where

segment is the symbol name to assign to the segment. This symbol
name is referred by the following RSEG directive. The
segment symbol name can be used also in expressions to
represent the base or start address of the combined segment
as calculated by the Linker/Locator.

class is the memory class to use for the specified segment. The
class specifies the memory space for the segment. See the
table below for more information.

reloctype is the relocation type for the segment. This determines
what relocation options may be performed by the
Linker/Locator. Refer to the table below for more
information.

alloctype is the allocation type for the segment. This determines what
relocation options may be performed by the Linker/Locator.
Refer to the table below for more information.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 107

Shaded directives and options are available only in AX51 and A251.

 4

Class

The name of each segment within a module must be unique. However, the linker
will combine segments having the same segment type. This applies to segments
declared in other source modules as well.

The class specifies the memory class space for the segment. The A251
differentiates between basic classes and user-defined classes. The class is used
by the linker/locator to access all the segments which belong to that class.

The basic classes are listed below:

Basic Class Description

BIT BIT space (address 20H .. 2FH).

CODE CODE space

CONST CONST space; same as CODE but for constant only; access via MOVC.

DATA DATA space (address 0 to 7FH & SFR registers).

EBIT Extended 251 bit space (address 20H .. 7FH)

EDATA EDATA space

ECONST ECONST space; same as EDATA but for constants

IDATA IDATA space (address 0 to 0FFH).

ECODE Entire Intel/Atmel WM 251 and Philips 80C51MX address space for program
code.

HCONST Entire Intel/Atmel WM 251 and Philips 80C51MX address space for constants.

HDATA Entire Intel/Atmel WM 251 and Philips 80C51MX address space for data.

XDATA XDATA space; access via MOVX.

User-defined Class Names (AX51 & A251 only)

User-defined class names are composed of a basic class name and an extension
and are enclosed in single quotes ('). They let you access the same address space
as basic class names. The advantage is that you may declare several segments
with a user-defined class and later use the linker to locate that class (and its
segments) at a specific physical address. Refer to the “CLASSES” on page 336
for information on how to locate user defined classes.

Examples
seg1 SEGMENT 'NDATA_FLASH'
seg2 SEGMENT 'HCONST_BITIMAGE'
seg3 SEGMENT 'DATA1'

108 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Relocation Type

The optional relocation type defines the relocation operation that may be
performed by the Linker/Locator. The following table lists the valid relocation
types:

Relocation Type Description

AT address Specifies an absolute segment. The segment will be placed at the
specified address.

BITADDRESSABLE Specifies a segment which will be located within the bit addressable
memory area (20H to 2FH in DATA space). BITADDRESSABLE is only
allowed for segments with the class DATA that do not exceed 16 bytes in
length.

INBLOCK Specifies a segment which must be contained in a 2048Byte block. This
relocation type is only valid for segments with the class CODE.

INPAGE Specifies a segment which must be contained in a 256Byte page.

OFFS offset Specifies an absolute segment. The segment is placed at the starting
address of the memory class plus the specified offset. The advantage
compared to the AT relocation type is that the start address can be
modified with the Lx51 linker/locater control CLASSES. Refer to the
“CLASSES” on page 336 for more information.

OVERLAYABLE Specifies that the segment can share memory with other segments.
Segments declared with this relocation type can be overlaid with other
segments which are also declared with the OVERLAYABLE relocation
type. When using this relocation type, the segment name must be
declared according to the C251, CX51, C51 or PL/M-51 segment naming
rules. Refer to the C Compiler User’s Guide for more information.

INSEG Specifies a segment which must be contained in a 64KByte segment.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 109

Shaded directives and options are available only in AX51 and A251.

 4

Allocation Type

The optional allocation type defines the allocation operation that may be
performed by the Linker/Locator. The following table lists the valid allocation
types:

Allocation Type Description

BIT Specify bit alignment for the segment. Default for all segments with the
class BIT.

BYTE Specify byte alignment for the segment. Default for all segments except of
BIT.

WORD Specify word alignment for the segment.

DWORD Specify dword alignment for the segment.

PAGE Specify a segment whose starting address must be on a 256Byte page
boundary.

BLOCK Specify a segment whose starting address must be on a 2048Byte block
boundary.

SEG Specify a segment whose starting address must be on a 64KByte segment
boundary.

Examples for Segment Declarations
IDS SEGMENT IDATA

Defines a segment with the name IDS and the memory class IDATA.

MYSEG SEGMENT CODE AT 0FF2000H

Defines a segment with the name MYSEG and the memory class CODE to be
located at address 0FF2000H.

HDSEG SEGMENT HDATA INSEG DWORD

Defines a segment with the name HDSEG and the memory class HDATA. The
segment is located within one 64KByte segment and is DWORD aligned.

XDSEG SEGMENT XDATA PAGE

Defines a segment with the name XDSEG and the memory class XDATA. The
segment is PAGE aligned, this means it starts on a 256Byte page.

110 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

HCSEG SEGMENT HCONST SEG

Defines a segment with the name HCSEG with the memory class HCONST.
The segment is SEGMENT aligned, this means it starts on a 64KByte segment.

RSEG
The RSEG directive selects a generic segment that was previously declared
using the SEGMENT directive. The RSEG directive uses the following format:

RSEG segment

where

segment is the name of a segment that was previously defined using
the SEGMENT directive. Once selected, the specified
segment remains active until a new segment is specified.

Example
.
.
.
MYPROG SEGMENT CODE ; declare a segment

RSEG MYPROG ; select the segment
MOV A, #0
MOV P0, A

.

.

.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 111

Shaded directives and options are available only in AX51 and A251.

 4

BSEG, CSEG, DSEG, ISEG, XSEG
The BSEG, CSEG, DSEG, ISEG, XSEG directives select an absolute segment.
This directives use the following formats:

BSEG AT address defines an absolute BIT segment.
CSEG AT address defines an absolute CODE segment.
DSEG AT address defines an absolute DATA segment.
ISEG AT address defines an absolute IDATA segment.
XSEG AT address defines an absolute XDATA segment.

where

address is an optional absolute base address at which the segment
begins. The address may not contain any forward
references and must be an expression that can be evaluated
to a valid address.

CSEG, DSEG, ISEG, BSEG and XSEG select an absolute segment within the
code, internal data, indirect internal data, bit, or external data address spaces. If
you choose to specify an absolute address (by including AT address), the
assembler terminates the last absolute segment, if any, of the specified segment
type, and creates a new absolute segment starting at that address. If you do not
specify an address, the last absolute segment of the specified type is continued.
If no absolute segment of this type was selected and the absolute address is
omitted, a new segment is created starting at location 0. You cannot use any
forward references and the start address must be an absolute expression.

The AX51 and A251 Macro Assembler supports the BSEG, CSEG, DSEG,
ISEG, and XSEG directives for A51 compatibility.

112 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

These directives are converted to standard segments as follows:

A51 Directive Converted to AX51/A251 Segment Declaration

BSEG AT 20H.1 ?BI?modulename?n SEGMENT OFFS 20H.1
CSEG AT 1234H ?CO?modulename?n SEGMENT OFFS 1234H
DSEG AT 40H ?DT?modulename?n SEGMENT OFFS 40H
ISEG AT 80H ?ID?modulename?n SEGMENT OFFS 80H
XSEG AT 5100H ?XD?modulename?n SEGMENT OFFS 5100H

where

modulname is the name of the current assembler module

n is a sequential number incremented for every absolute
segment.

Examples
BSEG AT 30h ; absolute bit segment @ 30h

DEC_FLAG: DBIT 1 ; absolute bit
INC_FLAG: DBIT 1

CSEG AT 100h ; absolute code segment @ 100h
PARITY_TAB: DB 00h ; parity for 00h

DB 01h ; 01h
DB 01h ; 02h
DB 00h ; 03h

.

.

.
DB 01h ; FEh
DB 00h ; FFh
DSEG AT 40h ; absolute data segment @ 40h

TMP_A: DS 2 ; absolute data word
TMP_B: DS 4

ISEG AT 40h ; abs indirect data seg @ 40h
TMP_IA: DS 2
TMP_IB: DS 4

XSEG AT 1000h ; abs external data seg @ 1000h
OEMNAME: DS 25 ; abs external data
PRDNAME: DS 25
VERSION: DS 25

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 113

Shaded directives and options are available only in AX51 and A251.

 4

Symbol Definition
The symbol definition directives allow you to create symbols that can be used to
represent registers, numbers, and addresses.

Symbols defined by these directives may not have been previously defined and
may not be redefined by any means. The SET directive is the only exception to
this.

EQU, SET
The EQU and SET directive assigns a numeric value or register symbol to the
specified symbol name. Symbols defined with EQU may not have been
previously defined and may not be redefined by any means. The SET directive
allows later redefinition of symbols. Statements involving the EQU or SET
directive are formatted as follows:

symbol EQU expression
symbol EQU register
symbol SET expression
symbol SET register

where

symbol is the name of the symbol to define. The expression or
register specified in the EQU or SET directive will be
substituted for each occurrence of symbol that is used in
your assembly program.

expression is a numeric expression which contains no forward
references, or a simple relocatable expression.

register is one of the following register names: A, R0, R1, R2, R3,
R4, R5, R6, or R7.

Symbols defined with the EQU or SET directive may be used anywhere in
operands, expressions, or addresses. Symbols that are defined as a register name
can be used anywhere a register is allowed. A251 replaces each occurrence of
the defined symbol in your assembly program with the specified numeric value
or register symbol.

114 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Symbols defined with the EQU directive may not be changed or redefined. You
cannot use the SET directive if a symbol was previously defined with EQU and
you cannot use the EQU directive if a symbol which was defined with SET.

Examples
LIMIT EQU 1200
VALUE EQU LIMIT – 200 + 'A'
SERIAL EQU SBUF
ACCU EQU A
COUNT EQU R5
VALUE SET 100
VALUE SET VALUE / 2
COUNTER SET R1
TEMP SET COUNTER
TEMP SET VALUE * VALUE

CODE, DATA, IDATA, XDATA
The BIT, CODE, DATA, IDATA, and XDATA directives assigns an address
value to the specified symbol. Symbols defined with the BIT, CODE, DATA,
IDATA, and XDATA directives may not be changed or redefined. The format
of theses directives is:

symbol BIT bit_address defines a BIT symbol
symbol CODE code_address defines a CODE symbol
symbol DATA data_address defines a DATA symbol
symbol IDATA idata_address defines an IDATA symbol
symbol XDATA xdata_address defines a XDATA symbol

where

symbol is the name of the symbol to define. The symbol name can
be used anywhere an address of this memory class is valid.

bit_address is the address of a bit in internal data memory in the area
20H .. 2FH or a bit address of an 8051 bit-addressable SFR.

code_address is a code address in the range 0000H .. 0FFFFH.

data_address is a data memory address in the range 0 to 127 or a special
function register (SFR) address in the range 128 .. 255.

idata_address is an idata memory address in the range 0 to 255.

xdata_address is an xdata memory address in the range 0 to 65535.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 115

Shaded directives and options are available only in AX51 and A251.

 4

Example
DATA_SEG SEGMENT BITADDRESSABLE
RSEG DATA_SEG ; a bit-addressable rel_seg

CTRL: DS 1 ; a 1–byte variable (CTRL)
ALARM BIT CTRL.0 ; bit in a relocatable byte
SHUT BIT ALARM+1 ; the next bit
ENABLE_FLAG BIT 60H ; an absolute bit
DONE_FLAG BIT 24H.2 ; an absolute bit
P1_BIT2 EQU 90H.2 ; a SFR bit
RESTART CODE 00H
INTVEC_0 CODE RESTART + 3
INTVEC_1 CODE RESTART + 0BH
INTVEC_2 CODE RESTART + 1BH
SERBUF DATA SBUF ; redfinition of SBUF
RESULT DATA 40H
RESULT2 DATA RESULT + 2
PORT1 DATA 90H ; a SFR symbol
BUFFER IDATA 60H
BUF_LEN EQU 20H
BUF_END IDATA BUFFER + BUF_LEN – 1
XSEG1 SEGMENT XDATA
RSEG XSEG1

DTIM: DS 6 ;reserve 6–bytes for DTIM
TIME XDATA DTIM + 0
DATE XDATA DTIM + 3

116 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

esfr, sfr, sfr16, sbit
The sfr, sfr16 and sbit directives are fully compatible to the Cx51 compiler and
allows you to use a generic SFR register definition file for both: the Ax51 macro
assembler and the Cx51 compiler. The esfr directive defines symbols in the
extended SFR space of the Philips 80C51MX architecture. This directive is only
available in the AX51 macro assembler. These directives have the following
format:

sfr sfr_symbol = address;
esfr sfr_symbol = address;
sfr16 sfr_symbol = address; ; ignored by Ax51
sbit sfr_symbol = bit-address;

where

sfr_symbol is the name of the special function register (SFR) symbol to
define.

address is an SFR address in the range 0x80 – 0xFF.

bit-address is address of an SFR bit in the format address ^ bitpos or
sfr_symbol ^ bitpos. address or sfr_symbol refers to an bit-
addressable SFR and bitpos specifies the bit position of the
SFR bit in the range 0 – 7.

Symbols defined with the esfr, sfr, or sbit directive may be used anywhere as
address of a SFR or SFR bit.

Example
sfr P0 = 0x80;
sfr P1 = 0x90;
sbit P0_0 = P0^0;
sbit P1_1 = 0x90^1;
esfr MXCON = 0xFF; /* extended Philips 80C51MX SFR */
sfr16 T2 = 0xCC; /* ignored by Ax51 */

NOTE
The Ax51 assembler ignores symbol definitions that start with sfr16. This is
implemented for compatibility to the Cx51 compiler.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 117

Shaded directives and options are available only in AX51 and A251.

 4

LIT (AX51 & A251 only)
The LIT directive provides a simple text substitution facility. The LIT directive
has the following format:

symbol LIT 'literal string'
symbol LIT "literal string"

where

symbol is the name of the symbol to define. The literal string
specified in the LIT directive will be substituted for each
occurrence of symbol that is used in your assembly
program.

literal string is a numeric expression which contains no forward
references, or a simple relocatable expression.

Every time the symbol is encountered, it is replaced by the literal string
assigned to the symbol name. The symbol name follows the same rules as other
identifiers, that is, a literal name is not encountered if it does not form a separate
token. If a substring is to be replaced, symbol must be enclosed in braces:
TEXT{symbol}. The assembler listing shows the expanded lines where literals
are substituted.

Example

Source text containing literals before assembly:

$INCLUDE (REG51.INC)

REG1 LIT 'R1'
NUM LIT 'A1'
DBYTE LIT "DATA BYTE"
FLAG LIT 'ACC.3'

?PR?MOD SEGMENT CODE
RSEG ?PR?MOD

MOV REG1,#5
SETB FLAG
JB FLAG,LAB_{NUM}
PUSH DBYTE 0

LAB_{NUM}:

END

118 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Assembler listing from previous example:

1 $INCLUDE (REG51.INC)
+1 80 +1 $RESTORE

81
82 REG1 LIT 'R1'
83 NUM LIT 'A1'
84 DBYTE LIT "DATA BYTE"
85 FLAG LIT 'ACC.3'
86

------ 87 ?PR?MOD SEGMENT CODE
------ 88 RSEG ?PR?MOD

89
000000 7E1005 90 MOV R1,#5
000003 D2E3 91 SETB ACC.3
000005 20E300 F 92 JB ACC.3,LAB_A1
000008 C000 93 PUSH DATA BYTE 0
00000A 94 LAB_A1:

95
96 END

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 119

Shaded directives and options are available only in AX51 and A251.

 4

Memory Initialization
The memory initialization directives are used to initialize code or constant space
in either word, double-word, or byte units. The memory image starts at the point
indicated by the current value of the location counter in the currently active
segment.

DB
The DB directive initializes code memory with 8-bit byte values. The DB
directive has the following format:

label: DB expression , expression …

where

label is the symbol that is given the address of the initialized
memory.

expression is a byte value. Each expression may be a symbol, a
character string, or an expression.

The DB directive can only be specified within a code or const segment. If the
DB directive is used in a different segment, Ax51 will generate an error
message.

Example
REQUEST: DB 'PRESS ANY KEY TO CONTINUE', 0
TABLE: DB 0,1,8,'A','0', LOW(TABLE),';'
ZERO: DB 0, ''''
CASE_TAB: DB LOW(REQUEST), LOW(TABLE), LOW(ZERO)

120 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

DW
The DW directive initializes code memory with 16-bit word values. The DW
directive has the following format:

label: DW expression , expression …

where

label is the symbol that is given the address of the initialized
memory.

expression is the initialization data. Each expression may contain a
symbol, a character string, or an expression.

The DW directive can only be specified within a code or const segment. If the
DW directive is used in a different segment, Ax51 will generate an error
message.

Example
TABLE: DW TABLE, TABLE + 10, ZERO
ZERO: DW 0
CASE_TAB: DW CASE0, CASE1, CASE2, CASE3, CASE4

DW $

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 121

Shaded directives and options are available only in AX51 and A251.

 4

DD (AX51 & A251 only)
The DD directive initializes code memory with 32–bit double word values. The
DD directive has the following format:

label: DD expression , expression …

where

label is the symbol that is given the address of the initialized
memory and

expression is the initialization data. Each expression may contain a
symbol, a character string, or an expression.

The DD directive can only be specified within a code or const segment. If the
DD directive is used in a different segment, Ax51 will generate an error
message.

Example
TABLE: DD TABLE, TABLE + 10, ZERO

DD $
ZERO: DD 0
LONG_VAL: DD 12345678H, 0FFFFFFFFH, 1

122 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Reserving Memory
The memory reservation directives are used to reserve space in either word,
dword, byte, or bit units. The space reserved starts at the point indicated by the
current value of the location counter in the currently active segment.

DBIT
The DBIT directive reserves space in a bit or ebit segment. The DBIT directive
has the following format:

label: DBIT expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type BIT and gets the
current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bits to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DBIT directive reserves space in the bit segment starting at the current
address. The location counter for the bit segment is increased by the value of the
expression. You should note that the location counter for the bit segment
references bits and not bytes.

NOTE
The Ax51 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DBIT directive may not contain forward
references.

Example
ON_FLAG: DBIT 1 ; reserve 1 bit
OFF_FLAG: DBIT 1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 123

Shaded directives and options are available only in AX51 and A251.

 4

DS
The DS directive reserves a specified number of bytes in a memory space. The
DS directive has the following format:

label: DS expression

where

label is the symbol that is given the address of the reserved
memory. The label is a typeless number and gets the current
address value and the memory class of the active segment.
The label can only be used where a symbol of this type is
allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DS directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The A251 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DS directive may not contain forward
references.

Example
GAP: DS (($ + 16) AND 0FFF0H) – $

DS 20
TIME: DS 8

124 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

DSB (AX51 & A251 only)
The DSB directive reserves a specified number of bytes in a memory space. The
DSB directive has the following format:

label: DSB expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type BYTE and gets
the current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DSB directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The Ax51 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSB directive may not contain forward
references.

Example

DAY: DSB 1
MONTH: DSB 1
HOUR: DSB 1
MIN: DSB 1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 125

Shaded directives and options are available only in AX51 and A251.

 4

DSW (AX51 & A251 only)
The DSW directive reserves a specified number of words in a memory space.
The DSW directive has the following format:

label: DSW expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type WORD and gets
the current address value and the memory class of the active
segment. The label can only be used where a symbol of this
type is allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DSW directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The Ax51 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSW directive may not contain forward
references.

Example
YEAR: DSW 1
DAYinYEAR: DSW 1

126 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

DSD (AX51 & A251 only)
The DSD directive reserves a specified number of double words in a memory
space. The DSD directive has the following format:

label: DSD expression

where

label is the symbol that is given the address of the reserved
memory. The label is a symbol of the type DWORD and
gets the current address value and the memory class of the
active segment. The label can only be used where a symbol
of this type is allowed.

expression is the number of bytes to reserve. The expression cannot
contain forward references, relocatable symbols, or external
symbols.

The DSD directive reserves space in the current segment at the current address.
The current address is then increased by the value of the expression. The sum
of the location counter and the value of the specified expression should not
exceed the limitations of the current address space.

NOTE
The Ax51 assembler is a two–pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the DSD directive may not contain forward
references.

Example
SEC_CNT: DSD 1
LONG_ARR: DSD 50

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 127

Shaded directives and options are available only in AX51 and A251.

 4

Procedure Declaration (AX51 & A251 only)
Ax51 provides procedures to implement the concept of subroutines. Procedures
can be executed in-line (control “falls through” to them), jumped to, or invoked
by a CALL. Calls are recommended as a better programming practice.

PROC / ENDP (AX51 & A251 only)
The PROC and ENDP directives are used to define a label for a sequence of
machine instructions called a procedure. For the Philips 80C51MX and
Intel/Atmel WM 251 architecture a procedure may have either the type NEAR or
FAR. Depending on the type it is called with LCALL or ACALL (for NEAR) or
ECALL (for FAR). Unlike C functions, assembler procedures do not provide
local scopes for labels. Identifiers must be unique in A251 because the visibility
is module wide. The format of the PROC/ENDP directives is:

name PROC [type]
; procedure text

:
:

RET
name ENDP

where

name is the name of the procedure.

type specifies the type of the procedure, and must be one of the
following:

Type Description

none The type defaults to NEAR

NEAR Defines a near procedure; called with LCALL or ACALL.
FAR Defines a far procedure; called with ECALL.

128 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

You should specify FAR if the procedure is called from a different 64KByte
segment. A procedure normally ends with a RET instruction. The software
instruction RET will automatically be converted to an appropriate machine
return instruction. For example:

RET Return from a near procedure.

ERET Return from a far procedure.

Example
P100 PROC NEAR

RET ; near return
ENDP

P200 PROC FAR
RET ; far return (ERET)
ENDP

P300 PROC NEAR
CALL P100 ; LCALL
CALL P200 ; ECALL
RET ; near return
ENDP

END

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 129

Shaded directives and options are available only in AX51 and A251.

 4

LABEL (AX51 and A251 only)
A label is a symbol name for an address location in a segment. The LABEL
directive can be used to define a program label. The label name can be followed
by a colon, but it is not required. The label inherits the attributes of the program
or code segment currently active. The LABEL directive may therefore never be
used outside the scope of a program segment. The syntax of that directive is:

name[:] LABEL [type]

where

name is the name of the label.

type specifies the type of the label, and must be one of the following:

Type Description

none The type defaults to NEAR

NEAR Defines a near label.
FAR Defines a far label; use ECALL or EJMP.

You should specify FAR if the label will be referenced from a different 64KByte
segment. NEAR lets you refer to this label for the current 64KByte segment.

Example
RSEG ECODE_SEG1 ; activate an ECODE segment

ENTRY: LABEL FAR ; entry point

RSEG ECODE_SEG2 ; activate another ECODE segment
EJMP ENTRTY ; Jump across 64KB segment

130 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Program Linkage
Program linkage directives allow the separately assembled modules to
communicate by permitting inter-module references and the naming of modules.

PUBLIC
The PUBLIC directive lists symbols that may be used in other object modules.
The PUBLIC directive makes the specified symbols available in the generated
object module. This, in effect, publicizes the names of these symbols. The
PUBLIC directive has the following format:

PUBLIC symbol , symbol …

where

symbol must be a symbol that was defined somewhere within the
source file. Forward references to symbol names are
permitted. All symbol names, with the exception of register
symbols and segment symbols, may be specified with the
PUBLIC directive. Multiple symbols must be separated
with a comma (,).

If you want to use public symbols in other source files, the EXTRN or
EXTERN directive must be used to specify that the symbols are declared in
another object module.

Example
PUBLIC PUT_CRLF, PUT_STRING, PUT_EOS
PUBLIC ASCBIN, BINASC
PUBLIC GETTOKEN, GETNUMBER

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 131

Shaded directives and options are available only in AX51 and A251.

 4

EXTRN / EXTERN
The EXTRN and EXTERN directives list symbols (referenced by the source
module) that are actually declared in other modules. The format for the EXTRN
and EXTERN directives is as follows:

EXTRN class : type (symbol , symbol …)
EXTERN class : type (symbol , symbol …)

where

class is the memory class where the symbol has been defined and
may be one of the following: BIT, CODE, CONST,
DATA, EBIT, ECONST, EDATA, ECODE, HDATA,
HCONST, IDATA, XDATA, or NUMBER (to specify a
typeless symbol).

type is the symbol type of the external symbol and may be one of
the following: BYTE, WORD, DWORD, NEAR, FAR.

symbol is an external symbol name.

The EXTRN or EXTERN directive may appear anywhere in the source
program. Multiple symbols may be separated and included in parentheses
following the class and type information.

Symbol names that are specified with the EXTRN / EXTERN directive must
have been specified as public symbols with the PUBLIC directive in the source
file in which they were declared.

The Linker/Locator resolves all external symbols at link time and verifies that
the symbol class and symbol types (specified with the EXTRN / EXTERN and
PUBLIC directives) match. Symbols with the class NUMBER match every
memory class.

Examples
EXTRN CODE (PUT_CRLF), DATA (BUFFER)
EXTERN CODE (BINASC, ASCBIN)
EXTRN NUMBER (TABLE_SIZE)
EXTERN CODE:FAR (main)
EXTRN EDATA:BYTE (VALUE, COUNT)
EXTRN NCONST:DWORD (LIMIT)

132 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

NAME
The NAME directive specifies the name to use for the object module generated
for the current program. The filename for the object file is not the object module
name. The object module name is embedded within the object file. The format
for the NAME directive is as follows:

NAME modulename

where

modulename is the name to use for the object module and can be up to 40
characters long. The modulename must adhere to the rules
for symbol names.

If a NAME directive is not present in the source program, the object module
name will be the basename of the source file without the extension.

NOTE
Only one NAME directive may be specified in a source file.

Example
NAME PARSERMODULE

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 133

Shaded directives and options are available only in AX51 and A251.

 4

Address Control
The following directives allow the control of the address location counter or the
control of absolute register symbols.

ORG
The ORG directive is used to alter the location counter of the currently active
segment and sets a new origin for subsequent statements. The format for the
ORG statement is as follows:

ORG expression

where

expression must be an absolute or simple relocatable expression without
any forward references. Only absolute addresses or symbol
values in the current segment may be used.

When an ORG statement is encountered, the assembler calculates the value of
the expression and changes the location counter for the current segment. If the
ORG statement occurs in an absolute segment, the location counter is assigned
the absolute address value. If the ORG statement occurs in a relocatable
segment, the location counter is assigned the offset of the specified expression.

The ORG directive changes the location counter but does not produce a new
segment. A possible address gap may be introduced in the segment. With
absolute segments, the location counter may not reference an address prior to the
base address of the segment.

NOTE
The Ax51 assembler is a multi-pass assembler. Symbols are collected and the
length of each instruction is determined in the first pass. In the second pass,
forward references are resolved and object code is produced. For these
reasons, an expression used with the ORG directive may not contain forward
references.

Example
ORG 100H
ORG RESTART

134 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

ORG EXTI1
ORG ($ + 16) AND 0FFF0H

EVEN (AX51 and A251 only)
The EVEN directive ensures that code or data following EVEN is aligned on a
word boundary. The assembler creates a gap of one byte if necessary. The
content of the byte gap is undefined. The EVEN directive has the following
syntax:

EVEN

Example
MYDATA SEGMENT DATA WORD ; word alignment

RSEG MYDATA ; activate segment
var1: DSB 1 ; reserve a byte variable

EVEN ; ensure word alignment
var2: DSW 1 ; reserve a word variable

USING
The USING directive specifies which register bank to use for coding the AR0
through AR7 registers. The USING directive is specified as follows:

USING expression

where

expression is the register bank number which must be a value between
0 and 3.

The USING directive does not generate any code to change the register bank.
Your program must make sure the correct register bank is selected. For example,
the following code can be used to select register bank 2:

PUSH PSW ;save PSW/register bank
MOV PSW,#(2 SHL 3) ;select register bank 2

.

.

.
;function or subroutine body

.

.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 135

Shaded directives and options are available only in AX51 and A251.

 4

.
POP PSW ;restore PSW/register bank

The register bank selected by the USING directive is marked in the object file
and the memory area required by the register bank is reserved by the
Linker/Locator.

The value of AR0 through AR7 is calculated as the absolute address of R0
through R7 in the register bank specified by the USING directive. Some 8051
instruction (i.e. PUSH / POP) allow you to use only absolute register addresses.
By default register bank 0 is assigned to the symbols AR0 through AR7.

NOTE
When the EQU directive is used to define a symbol for an ARn register, the
address of the register Rn is calculated when the symbol is defined; not when it
is used. If the USING directive subsequently changes the register bank, the
defined symbol will not have the proper address of the ARn register and the
generated code is likely to fail.

Example
USING 3
PUSH AR2 ; Push register 2 in bank 3

USING 1
PUSH AR2 ; Push register 2 in bank 1

136 Chapter 4. Assembler Directives

Shaded directives and options are available only in AX51 and A251.

4

Other Directives

END
The END directive signals the end of the assembly module. Any text in the
assembly file that appears after the END directive is ignored.

The END directive is required in every assembly source file. If the END
statement is excluded, Ax51 will generate a warning message.

Example
END

_ _ERROR_ _
The _ _ERROR_ _ directive generates standard error messages that are report
the same style as normal Ax51 assembler errors. The _ _ERROR_ _ directive
is specified as follows:

__ERROR__ text

where

text is the error text that should be displayed in the listing file.
The error text is also displayed on the console if the
“ERRORPRINT” control described on page 205 is used.

Example
IF CVAR1LEN > 10
__ERROR__ "CVAR1 LEN EXCEEDS 10 BYTES"

ENDIF

$IF TESTVERS AND RELEASE
__ERROR__ "TESTVERS GENERATED IN RELEASE MODE"

$ENDIF

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 137

 5

Chapter 5. Assembler Macros
A macro is a name that you assign to one or more assembly statements. For
maximum flexibility the Ax51 macro assembler provides three different macro
languages:

� Standard Assembler Macros: are known from many other macro
assemblers and allow you to define macros that look like standard assemblers
instructions. Refer to “Standard Macro Directives” on page 139 for a
detailed description.

� C Macros: are known from ANSI C compilers and allow you to use
common header files with constant definitions that can be used on the Ax51
macro assembler as well as on the Cx51 compiler. Refer to “C Macros” on
page 156 for more information.

� MPL Macros: are compatible with the Intel ASM-51 and allow you to
retranslate existing source files that initially written for this macro assembler.
The assembler control MPL enables this macro processor. If you enable
MPL macros the C Macros are disabled. Refer to “Chapter 6. Macro
Processing Language” on page 163 for a detailed description.

A macro processor enables you to define and to use macros in your x51 assembly
programs. This section describes some of the features and advantages of using
macros, lists the directives and operators that are used in macro definitions, and
provides a number of example macros.

When you define a macro, you provide text (usually assembly code) that you
want to associate with a macro name. Then, when you want to include the macro
text in your assembly program, you provide the name of the macro. The Ax51
assembler will replace the macro name with the text specified in the macro
definition.

138 Chapter 5. Assembler Macros

5

Macros provide a number of advantages when writing assembly programs.

� The frequent use of macros can reduce programmer induced errors. A macro
allows you to define instruction sequences that are used repetitively
throughout your program. Subsequent use of the macro will faithfully
provide the same results each time. A macro can help reduce the likelihood
of errors introduced in repetitive programming sequences. Of course,
introduction of an error into a macro definition will cause that error to be
duplicated where the macro is used.

� The scope of symbols used in a macro is limited to that macro. You do not
need to be concerned about utilizing a previously used symbol name.

� Macros are well suited for the creation of simple code tables. Production of
these tables by hand is both tedious and error prone.

A macro can be thought of as a subroutine call with the exception that the code
that would be contained in the subroutine is included in–line at the point of the
macro call. However, macros should not be used to replace subroutines. Each
invocation of a subroutine only adds code to call the subroutine. Each
invocation of a macro causes the assembly code associated with the macro to be
included in–line in the assembly program. This can cause a program to grow
rapidly if a large macro is used frequently. In a static environment, a subroutine
is the better choice, since program size can be considerably reduced. But in time
critical, dynamic programs, macros will speed the execution of algorithms or
other frequently called statements without the penalty of the procedure calling
overhead.

Use the following guidelines when deciding between macros or subroutines:

� Subroutines are best used when certain procedures are frequently executed or
when memory space usage must be kept to a minimum.

� Macros should be used when maximum processor speed is required and when
memory space used is of less importance.

� Macros can also be used to make repetitive, short assembly blocks more
convenient to enter.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 139

 5

Standard Macro Directives
Ax51 provides a number of directives that are used specifically for defining
macros. These directives are listed in the following table:

Directive Description

ENDM Ends a macro definition.

EXITM Causes the macro expansion to immediately terminate.

IRP Specifies a list of arguments to be substituted, one at a time, for a specified
parameter in subsequent lines.

IRPC Specifies an argument to be substituted, one character at a time, for a
specified parameter in subsequent lines.

LOCAL Specifies up to 16 local symbols used within the macro.

MACRO Begins a macro definition and specifies the name of the macro and any
parameters that may be passed to the macro.

REPT Specifies a repetition factor for subsequent lines in the macro.

Refer to “Assembler Controls” on page 197 as well as the following sections for
more information on these and other directives.

140 Chapter 5. Assembler Macros

5

Defining a Macro
Macros must be defined in the program before they can be used. A macro
definition begins with the MACRO directive which declares the name of the
macro as well as the formal parameters. The macro definition must be
terminated with the ENDM directive. The text between the MACRO and
ENDM directives is called the macro body.

Example
WAIT MACRO X ; macro definition

REPT X ; generate X NOP instructions
NOP
ENDM ; end REPT

ENDM ; end MACRO

In this example, WAIT is the name of the macro and X is the only formal
parameter.

In addition to the ENDM directive, the EXITM directive can be used to
immediately terminate a macro expansion. When an EXITM directive is
detected, the macro processor stops expanding the current macro and resumes
processing after the next ENDM directive. The EXITM directive is useful in
conditional statements.

Example
WAIT MACRO X ; macro definition

IF NUL X ; make sure X has a value
EXITM ; if not then exit
ENDIF

REPT X ; generate X NOP instructions
NOP
ENDM ; end REPT

ENDM ; end MACRO

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 141

 5

Parameters
Up to 16 parameters can be passed to a macro in the invocation line. Formal
parameter names must be defined using the MACRO directive.

Example
MNAME MACRO P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15,P16

defines a macro with 16 parameters. Parameters must be separated by commas
in both the macro definition and invocation. The invocation line for the above
macro would appear as follows:

MNAME A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P

where A, B, C, … O, P are parameters that correspond to the format parameter
names P1, P2, P3, … P15, P16.

Null parameters can be passed to a macro. Null parameters have the value
NULL and can be tested for using the NUL operator described later in this
chapter. If a parameter is omitted from the parameter list in the macro
invocation, that parameter is assigned a value of NULL.

Example
MNAME A,,C,,E,,G,,I,,K,,M,,O,

P2, P4, P6, P8, P10, P12, P14, and P16 will all be assigned the value NULL
when the macro is invoked. You should note that there are no spaces between
the comma separators in the above invocation line. A space has an ASCII value
of 20h and is not equivalent to a NULL.

142 Chapter 5. Assembler Macros

5

Labels
You can use labels within a macro definition. By default, labels used in a macro
are global and if the macro is used more than once in a module, Ax51 will
generate an error.

Example
LOC OBJ LINE SOURCE

1 GLABEL MACRO
2 LOOP: NOP
3 JMP LOOP
4 ENDM
5
6
7 GLABEL

0000 00 8+1 LOOP: NOP
0001 80FD 9+1 JMP LOOP

10 GLABEL
11+1 LOOP: NOP

*** _________________________^
*** ERROR #9, LINE #11, ATTEMPT TO DEFINE AN ALREADY DEFINED LABEL
0003 80FB 12+1 JMP LOOP

13
14
15 END

Labels used in a macro should be local labels. Local labels are visible only
within the macro and will not generate errors if the macro is used multiple times
in one source file. You can define a label (or any symbol) used in a macro to be
local with the LOCAL directive. Up to 16 local symbols may be defined using
the LOCAL directive.

NOTE
LOCAL must be in the next line after the MACRO definition.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 143

 5

Example

CLRMEM MACRO ADDR, LEN
LOCAL LOOP
MOV R7, #LEN
MOV R0, #ADDR
MOV A, #0

LOOP: MOV @R0, A
INC R0
DJNZ R7, LOOP
ENDM

In this example, the label LOOP is local because it is defined with the LOCAL
directive. Any symbol that is not defined using the LOCAL directive will be a
global symbol.

Ax51 generates an internal symbol for local symbols defined in a macro. The
internal symbol has the form ??0000 and is incremented each time the macro is
invoked. Therefore, local labels used in a macro are unique and will not
generate errors.

144 Chapter 5. Assembler Macros

5

Repeating Blocks
Ax51 provides the ability to repeat a block of text within a macro. The REPT,
IRP, and IRPC directives are used to specify text to repeat within a macro.
Each of these directives must be terminated with an ENDM directive.

REPT
The REPT directive repeats a block of text a fixed number of times. The
following macro:

DELAY MACRO ;macro definition
REPT 5 ;insert 5 NOP instructions
NOP
ENDM ;end REPT block

ENDM ;end macro definition

inserts 5 NOP instructions when it is invoked.

Example
NOP
NOP
NOP
NOP
NOP

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 145

 5

IRP
The IRP directive repeats a block once for each argument in a specified list. A
specified parameter in the text block is replaced by each argument. The
following macro:

CLRREGS MACRO ; macro definition
IRP RNUM, <R0,R1,R2,R3,R4,R5,R6,R7>

MOV RNUM, #0
ENDM ; end IRP

ENDM ; end MACRO

replaces the argument RNUM with R0, R1, R2, … R7.

It generates the following code when invoked:

MOV R0, #0
MOV R1, #0
MOV R2, #0
MOV R3, #0
MOV R4, #0
MOV R5, #0
MOV R6, #0
MOV R7, #0

146 Chapter 5. Assembler Macros

5

IRPC
The IRPC directive repeats a block once for each character in the specified
argument. A specified parameter in the text block is replaced by each character.
The following macro:

DEBUGOUT MACRO ; macro definition
IRPC CHR, <TEST>
JNB TI, $; wait for xmitter
CLR TI
MOV A,#'CHR'
MOV SBUF,A ; xmit CHR
ENDM ; end IRPC
ENDM ; end MACRO

replaces the argument CHR with the characters T, E, S, and T and generates
the following code when invoked:

JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'T'
MOV SBUF,A ; XMIT T
JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'E'
MOV SBUF,A ; XMIT E
JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'S'
MOV SBUF,A ; XMIT S
JNB TI, $; WAIT FOR XMITTER
CLR TI
MOV A,#'T'
MOV SBUF,A ; XMIT T

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 147

 5

Nested Definitions
Macro definitions can be nested up to nine levels deep.

Example
L1 MACRO

LOCAL L2
L2 MACRO

INC R0
ENDM

MOV R0, #0
L2
ENDM

The macro L2 is defined within the macro definition of L1. Since the LOCAL
directive is used to define L2 as a local symbol, it is not visible outside L1. If
you want to use L2 outside of L1, exclude L2 from the LOCAL directive
symbol list.

Invocation of the L1 macro generates the following:

MOV R0, #0
INC R0

Nested Repeating Blocks
You can also nest repeating blocks, specified with the REPT, IRP, and IRPC
directives.

Example
PORTOUT MACRO ; macro definition

IRPC CHR, <Hello>
REPT 4 ; wait for 4 cycles
NOP
ENDM ; end REPT

MOV A,#'CHR'
MOV P0,A ; write CHR to P0
ENDM ; end IRPC

ENDM ; end MACRO

This macro nests a REPT block within an IRPC block.

148 Chapter 5. Assembler Macros

5

Recursive Macros
Macros can call themselves directly or indirectly (via another macro). However,
the total number of levels of recursion may not exceed nine. A fatal error will be
generated if the total nesting level is greater than nine. The following example
shows a recursive macro that is invoked by a non–recursive macro.

RECURSE MACRO X ; recursive macro
IF X<>0

RECURSE %X–1
ADD A,#X ; gen add a,#?

ENDIF
ENDM

SUMM MACRO X ; macro to sum numbers
MOV A,#0 ; start with zero

IF NUL X ; exit if null argument
EXITM

ENDIF
IF X=0 ; exit if 0 argument

EXITM
ENDIF

RECURSE X ; sum to 0
ENDM

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 149

 5

Operators
Ax51 provides a number of operators that may be used within a macro
definition. The following table lists the operators and gives a description of
each.

Operator Description

NUL The NUL operator can be used to determine if a macro argument is NULL.
NUL generates a non–zero value if its argument is a NULL. Non–NULL
arguments will generate a value of 0. The NUL operator can be used with an
IF control to enable condition macro assembly.

& The ampersand character is used to concatenate text and parameters.

< > Angle brackets are used to literalize delimiters like commas and blanks. Angle
brackets are required when passing these characters to a nested macro. One
pair of angle brackets is required for every nesting level.

% The percent sign is used to prefix a macro argument that should be interpreted
as an expression. When this operator is used, the numeric value of the
following expression is calculated. That value is passed to the macro instead
of the expression text.

;; A double semicolon indicates that subsequent text on the line should be
ignored. The remaining text is not processed or emitted. This helps to reduce
memory usage.

! If an exclamation mark is used in front of a character, that character will be
literalized. This allows character operators to be passed to a macro as a
parameter.

150 Chapter 5. Assembler Macros

5

NUL Operator
When a formal parameter in a macro call is omitted, the parameter is given a
value of NULL. You can check for NULL parameters by using the NUL
operator within an IF control statement in the macro. The NUL operator
requires an argument. If no argument is found, NUL returns a value of 0 to the
IF control.

For example, the following macro definition:

EXAMPLE MACRO X
IF NUL X
EXITM

ENDIF
ENDM

when invoked by:

EXAMPLE

will cause the IF NUL X test to pass, process the EXITM statement, and exit the
macro expansion.

NOTE
A blank character (‘ ’) has an ASCII value of 20h and is not equivalent to a
NULL.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 151

 5

& Operator
The ampersand macro operator (&) can be used to concatenate text and macro
parameters. The following macro declaration demonstrates the proper use of this
operator.

MAK_NOP_LABEL MACRO X
LABEL&X: NOP

ENDM

The MAK_NOP_LABEL macro will insert a new label and a NOP instruction for
each invocation. The argument will be appended to the text LABEL to form the
label for the line.

Example
LOC OBJ LINE SOURCE

1 MAK_NOP_LABEL MACRO X
2 LABEL&X: NOP
3 ENDM
4
5
6 MAK_NOP_LABEL 1

0000 00 7+1 LABEL1: NOP
8 MAK_NOP_LABEL 2

0001 00 9+1 LABEL2: NOP
10 MAK_NOP_LABEL 3

0002 00 11+1 LABEL3: NOP
12 MAK_NOP_LABEL 4

0003 00 13+1 LABEL4: NOP
14
15 END

The MAK_NOP_LABEL macro is invoked in the above example in lines 6, 8, 10,
and 12. The generated label and NOP instructions are shown in lines 7, 9, 11,
and 13. Note that the labels are concatenated with the argument that is passed in
the macro invocation.

152 Chapter 5. Assembler Macros

5

< and > Operators
The angle bracket characters (< >) are used to enclose text that should be
passed literally to macros. Some characters; for example, the comma; cannot be
passed without being enclosed within angle brackets.

The following example shows a macro declaration and invocation passing an
argument list within angle brackets.

1 FLAG_CLR MACRO FLAGS
2 MOV A, #0
3 IRP F, <FLAGS>
4 MOV FLAG&F, A
5 ENDM
6 ENDM
7
8 DSEG

0000 9 FLAG1: DS 1
0001 10 FLAG2: DS 1
0002 11 FLAG3: DS 1
0003 12 FLAG4: DS 1
0004 13 FLAG5: DS 1
0005 14 FLAG6: DS 1
0006 15 FLAG7: DS 1
0007 16 FLAG8: DS 1
0008 17 FLAG9: DS 1

18
19 CSEG
20
21 FLAG_CLR <1>

0000 7400 22+1 MOV A, #0
23+1 IRP F, <1>
24+1 MOV FLAG&F, A
25+1 ENDM

0002 F500 26+2 MOV FLAG1, A
27 FLAG_CLR <1,2,3>

0004 7400 28+1 MOV A, #0
29+1 IRP F, <1,2,3>
30+1 MOV FLAG&F, A
31+1 ENDM

0006 F500 32+2 MOV FLAG1, A
0008 F501 33+2 MOV FLAG2, A
000A F502 34+2 MOV FLAG3, A

35 FLAG_CLR <1,3,5,7>
000C 7400 36+1 MOV A, #0

37+1 IRP F, <1,3,5,7>
38+1 MOV FLAG&F, A
39+1 ENDM

000E F500 40+2 MOV FLAG1, A
0010 F502 41+2 MOV FLAG3, A
0012 F504 42+2 MOV FLAG5, A
0014 F506 43+2 MOV FLAG7, A
.
.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 153

 5

In the previous example, the FLAG_CLR macro is declared to clear any of a
number of flag variables. The FLAGS argument specifies a list of arguments that
are used by the IRP directive in line 3. The IRP directive repeats the instruction
MOV FLAG&F, A for each parameter in the FLAGS argument.

The FLAG_CLR macro is invoked in lines 21, 27, and 35. In line 21, only one
parameter is passed. In line 27, three parameters are passed, and in line 35, four
parameters are passed. The parameter list is enclosed in angle brackets so that it
may be referred to as a single macro parameter, FLAGS. The code generated by
the macro is found in lines 26, 32–34, and 40–43.

% Operator
The percent character (%) is used to pass the value of an expression to a macro
rather than passing the literal expression itself. For example, the following
program example shows a macro declaration that requires a numeric value along
with macro invocations that use the percent operator to pass the value of an
expression to the macro.

1 OUTPORT MACRO N
2 MOV A, #N
3 MOV P0, A
4 ENDM
5
6

00FF 7 RESET_SIG EQU 0FFh
0000 8 CLEAR_SIG EQU 0

9
10
11 OUTPORT %(RESET_SIG AND NOT 11110000b)

0000 740F 12+1 MOV A, #15
0002 F580 13+1 MOV P0, A

14
15 OUTPORT %(CLEAR_SIG OR 11110000b)

0004 74F0 16+1 MOV A, #240
0006 F580 17+1 MOV P0, A

In this example, the expressions evaluated in lines 11 and 15 could not be passed
to the macro because the macro expects a numeric value. Therefore, the
expressions must be evaluated before the macro. The percent sign forces Ax51
to generate a numeric value for the expressions. This value is then passed to the
macro.

154 Chapter 5. Assembler Macros

5

;; Operator
The double semicolon operator is used to signal that the remaining text on the
line should not be emitted when the macro is expanded. This operator is
typically used to precede comments that do not need to be expanded when the
macro is invoked.

Example
REGCLR MACRO CNT
REGNUM SET 0

MOV A, #0 ;; load A with 0
REPT CNT ;; rpt for CNT registers
MOV R®NUM, A ;; set R# to 0
REGNUM SET %(REGNUM+1)
ENDM

ENDM

! Operator
The exclamation mark operator is used to indicate that a special character is to
be passed literally to a macro. This operator enables you to pass comma and
angle bracket characters, that would normally be interpreted as delimiters, to a
macro.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 155

 5

Invoking a Macro
Once a macro has been defined, it can be called many times in the program. A
macro call consists of the macro name plus any parameters that are to be passed
to the macro.

In the invocation of a macro, the position of the actual parameters corresponds to
the position of the parameter names specified in the macro definition. Ax51
performs parameter substitution in the macro starting with the first parameter.
The first parameter passed in the invocation replaces each occurrence of the first
formal parameter in the macro definition, the second parameter that is passed
replaces the second formal parameter in the macro definition, and so on.

If more parameters are specified in the macro invocation than are actually
declared in the macro definition, Ax51 ignores the additional parameters. If
fewer parameters are specified than declared, Ax51 replaces the missing
parameters with a NULL character.

To invoke a macro in your assembly programs, you must first define the macro.
For example, the following definition:

.

.

.
DELAY MACRO CNT ;macro definition

REPT CNT ;insert CNT NOP instructions
NOP
ENDM ;end REPT block

ENDM ;end macro definition
.
.
.

defines a macro called DELAY that accepts one argument CNT. This macro will
generate CNT NOP instructions. So, if CNT is equal to 3, the emitted code will
be:

NOP
NOP
NOP

156 Chapter 5. Assembler Macros

5

The following code shows how to invoke the DELAY macro from an assembly
program.

.

.

.
LOOP: MOV P0, #0 ;clr PORT 0

DELAY 5 ;wait 5 NOPs
MOV P0, #0ffh ;set PORT 0
DELAY 5 ;wait 5 NOPs
JMP LOOP ;repeat

.

.

.

In this example, a value of 0 is written to port 0. The DELAY macro is then
invoked with the parameter 5. This will cause 5 NOP instructions to be inserted
into the program. A value of 0FFh is written to port 0 and the DELAY macro is
invoked again. The program then repeats.

C Macros
The Ax51 macro assembler has a standard C macro preprocessor that is almost
identical with the macro preprocessors in the Cx51 compiler. This allows you to
use common header files with constant definitions that can be used in assembler
and C source files. The Ax51 macro assembler accepts also the special function
register directives from the Cx51 compiler. Therefore you may use the same
SFR register definition files for both assembler and C source files.

NOTE
C Macros are not available if you have enabled the Intel ASM-51 compatible
MPL macro language with the MPL assembler control.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 157

 5

C Macro Preprocessor Directives
C macro preprocessor directives must be the first non-whitespace text specified
on a line. All directives are prefixed with the pound or number-sign character
(‘#’). For example:

#include <reg51f.h>
#if TEST
#define DEBUG 1

#endif

The following table lists the preprocessor directives and gives a brief description
of each.

Directive Description

define Defines a preprocessor macro or constant.

elif Initiates an alternative branch of the if condition, when the previous if, ifdef, ifndef,
or elif branch was not taken.

else Initiates an alternative branch when the previous if, ifdef, or ifndef branch was not
taken.

endif Ends an if, ifdef, ifndef, elif, or else block.
error Outputs an error message defined by the user. This directive instructs the

compiler to emit the specified error message.
ifdef Evaluates an expression for conditional compilation. The argument to be evaluated

is the name of a definition.
ifndef Same as ifdef but the evaluation succeeds if the definition is not defined.

if Evaluates an expression for conditional compilation.

include Reads source text from an external file. The notation sequence determines the
search sequence of the included files. Ax51 searches for include files specified
with less-than/greater-than symbols (‘<’ ‘>’) in the include file folder. The include
file folder is specified with the INCDIR assembler control and with the environment
variable C51INC and is therefore compatible with the Cx51 compiler. Ax51
searches for include files specified with double-quotes (“ “) in the current folder,
which is typically the folder of the project file.

line Specifies a line number together with an optional filename. These specifications
are used in error messages to identify the error position.

pragma Allows you to specify assembler controls and are converted into Ax51 control lines.
Refer to “Assembler Controls” on page 197 for more information.

undef Deletes a preprocessor macro or constant definition.

158 Chapter 5. Assembler Macros

5

Stringize Operator
The stringize or number-sign operator (‘#’), when used within a macro
definition, converts a macro parameter into a string constant. This operator may
be used only in a macro that has a specified argument or parameter list.

When the stringize operator immediately precedes the name of one of the macro
parameters, the parameter passed to the macro is enclosed within quotation
marks and is treated as a string literal. For example:

#define stringer(x) DB #x, 0x0D, 0x0A

stringer (text)

results in the following actual output from the preprocessor.

DB "text", 0x0D, 0x0A

NOTES
The Ax51 macro assembler does not accept C escape sequences like "\n", "\r" or
"\x0d". You need to replace these characters with hex values.

Unlike the Cx51 compiler, multiple strings are not concatenated to a single
string by the Ax51 macro assembler. Therefore you need to separate multiple
items with a comma when using the Ax51 macro assembler.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 159

 5

Token-pasting Operator
The token-pasting operator (##) within a macro definition combines two
arguments. It permits two separate tokens in the macro definition to be joined
into a single token.

If the name of a macro parameter used in the macro definition is immediately
preceded or followed by the token-pasting operator, the macro parameter and the
token-pasting operator are replaced by the value of the passed parameter. Text
that is adjacent to the token-pasting operator that is not the name of a macro
parameter is not affected. For example:

TEST1 EQU 0x10
TEST2 EQU 0x20

#define paster(n) DB TEST##n

paster (2)

results in the following actual output from the preprocessor.

DB TEST2

160 Chapter 5. Assembler Macros

5

Predefined C Macro Constants
Ax51 provides you with predefined constants to use in preprocessor directives
and C code for more portable programs. The following table lists and describes
each one.

Constant Description

_ _A51_ _ Allows you to identify the A51 assembler and returns the version number (for
example, 600 for version 6.00). Only defined when using A51.

_ _AX51_ _ Allows you to identify the AX51 assembler and returns the version number
(for example, 100 for version 1.00). Only defined when using AX51.

_ _A251_ _ Allows you to identify the A251 assembler and returns the version number
(for example, 300 for version 3.00). Only defined when using A251.

_ _DATE_ _ Date when the compilation was started.

_ _FILE_ _ Name of the file being compiled.

_ _KEIL_ _ Defined to 1 to indicate that you are using a development tool from Keil
Software.

_ _LINE_ _ Current line number in the file being compiled.

_ _TIME_ _ Time when the compilation was started.

_ _STDC_ _ Defined to 1 to indicate full conformance with the ANSI C Standard.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 161

 5

Examples with C Macros
The following assembler source file shows the usage of C Macros.

#if !defined (__A51__) || __A51__ < 600
#error "This source file requires A51 V6.00 or higher"

#endif

#pragma NOLIST
#include <reg52.h> // register definition file for 80C52
#pragma LIST

#define TEST1 10
#define MYTEXT "Hello World"

#if TEST1 == 10
DB MYTEXT

#endif
DB "GENERATED: ", __DATE__

MOV R0,#TEST1 * 10

END

The listing file generated by A51 shows the text replacements performed by the
C preprocessor:

LOC OBJ LINE SOURCE

1

4
117 $LIST
118
119
120
121
122

0000 48656C6C 123 DB "Hello World"
0004 6F20576F
0008 726C64

124
000B 47454E45 125 DB "GENERATED: ", "Jul 28 2000"
000F 52415445
0013 443A204A
0017 756C2032
001B 38203230
001F 3030

126
0021 7864 127 MOV R0,#10 * 10

128
129 END

162 Chapter 5. Assembler Macros

5

C Preprocessor Side Effects
The integrated C preprocessor in Ax51 has two side effects. This might cause
problems when you translate programs that are written for previous Ax51
versions.

1. If you are using the backslash character at the end of a comment line, the next
line will be a comment too.

; THIS IS A COMMENT ENDING WITH \
MOV A,#0 DUE TO THE \ IN THE PREVIOUS LINE THE LINES A CONCATINATED

; AND THE MOV INSTRUCTION WILL NOT BE TRANSLATED

2. If you are using $INCLUDE in conditional assembly blocks, the file must
exist even when the block will not be assembled.

$IF 0
$INCLUDE (MYFILE.INC) ; this file must exist, even when the block

; is not translated, since the C preprocessor
$ENDIF ; interprets the file first.

#if 0 // with C preprocessor statements
#include (myfile.inc) // the file needs not to exist
#endif

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 163

 6

Chapter 6. Macro Processing Language
The Macro Processing Language (MPL) is a string replacement facility. The
macro processing language is enabled with the assembler control MPL and fully
compatible to the Intel ASM-51 macro processing language. It permits you to
write repeatedly used sections of code once and then insert that code at several
places in your program. Perhaps MPL’s most valuable capability is conditional
assembly-with all microprocessors, compact configuration dependent code is
very important to good program design. Conditional assembly of sections of
code can help to achieve the most compact code possible.

Overview
The MPL processor views the source file in different terms than the assembler:
to the assembler, the source file is a series of lines – control lines, and directive
lines. To the MPL processor, the source file is a long string of characters.

All MPL processing of the source file is performed before your code is
assembled. Because of this independent processing of the MPL macros and
assembly of code, we must differentiate between macro-time and
assembly-time. At macro-time, assembly language symbols and labels are
unknown. SET and EQU symbols, and the location counter are also not
known. Similarly, at assembly-time, no information about the MPL is
known.

The MPL processor scans the source file looking for macro calls. A macro
call is a request to the processor to replace the macro name of a built-in or
user-defined macro by some replacement text.

164 Chapter 6. Macro Processing Language

6

Creating and Calling MPL Macros
The MPL processor is a character string replacement facility. It
searches the source file for a macro call, and then replaces the call
with the macro's return value. A % character signals a macro call.

The MPL processor function DEFINE creates macros. MPL processor functions
are a predefined part of the macro language, and can be called without definition.
The syntax for DEFINE is:

%[*]DEFINE (macro name) [parameter-list] (macro-body)

DEFINE is the most important macro processor function. Each of the symbols in
the syntax above (macro name, parameter-list, and macro-body) are described in
the following.

Creating Parameterless Macros
When you create a parameterless macro, there are two parts to a DEFINE call:

� macro name
The macro name defines the name used when the macro is called.

� macro body
The macro-body defines the return value of the call.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 165

 6

The syntax of a parameterless macro definition is shown below:

%*DEFINE (macro name) (macro-body)

The ‘ %’ is the metacharacter that signals a macro call. The ‘*’ is the literal
character. The use of the literal character is described later in this part.

Macro names have the following conventions:

� Maximum of 31 characters long

� First character: ‘A’ - ‘Z’, ‘a’ - ‘z’, ‘_’, or ‘?’

� Other characters: ‘A’ - ‘Z’, ‘a’ - ‘z’, ‘_’, ‘?’, ‘0’ - ‘9’

The macro-body is usually the replacement text of the macro call. However, the
macro-body may contain calls to other macros. If so, the replacement text is
actually the fully expanded macro-body, including the calls to other macros.
When you define a macro using the syntax shown above, macro calls contained
in the body of the macro are not expanded, until you call the macro.

The syntax of DEFINE requires that left and right parentheses surround the
macro-body. For this reason, you must have balanced parentheses within the
macro-body (each left parenthesis must have a succeeding right parenthesis, and
each right parenthesis must have a preceding left parenthesis). We call character
strings that meet these requirements balanced-text.

To call a macro, use the metacharacter followed by the macro name for the MPL
macro. (The literal character is not needed when you call a user-defined macro.)
The MPL processor will remove the call and insert the replacement text of the
call. If the macro- body contains any call to other macros, they will be replaced
with their replacement text.

Once a macro has been created, it may be redefined by a second DEFINE.

166 Chapter 6. Macro Processing Language

6

MPL Macros with Parameters
Parameters in a macro body allow you to fill in values when you call the MPL
macro. This permits you to design a generic macro that produces code for many
operations.

The term parameter refers to both the formal parameters that are specified when
the macro is defined, and the actual parameters or arguments that are replaced
when the macro is called.

The syntax for defining MPL macros with parameters is:

%*DEFINE (macro-name(parameter-list)) (macro-body)

The parameter-list is a list of identifiers separated by macro delimiters. The
identifier for each parameter must be unique.

Typically, the macro delimiters are parentheses and commas. When using these
delimiters, you would enclose the parameter-list in parentheses and separate each
formal parameter with a comma. When you define a macro using parentheses
and commas as delimiters, you must use those same delimiters, when you call
that macro.

The macro-body must be a balanced-text string. To indicate the locations of
parameter replacement, place the parameter's name preceded by the
metacharacter in the macro-body. The parameters may be used any number of
times and in any order within the macro-body. If a macro has the same name as
one of the parameters, the macro cannot be called within the macro-body since
this would lead to infinite recursion.

The example below shows the definition of a macro with three dummy
parameters - SOURCE, DESTINATION, and COUNT. The macro will produce
code to copy any number of bytes from one part of memory to another.

%*DEFINE (BMOVE (src, dst, cnt)) LOCAL lab (
MOV R0,#%src
MOV R1,#%dst
MOV R2,#%cnt

%lab: MOV A,@R0
MOV @R1,A
INC R0
INC R1
DJNZ R2, %lab

)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 167

 6

To call the above macro, you must use the metacharacter followed by the macro's
name similar to simple macros without parameters. However, a list of the actual
parameters must follow. The actual parameters must be surrounded in the macro
definition. The actual parameters must be balanced-text and may optionally
contain calls to other macros. A simple program example with the macro
defined above might be:

Assembler source text
%*DEFINE (BMOVE (src, dst, cnt)) LOCAL lab (

MOV R0,#%src
MOV R1,#%dst
MOV R2,#%cnt

%lab: MOV A,@R0
MOV @R1,A
INC R0
INC R1
DJNZ R2, %lab

)

ALEN EQU 10 ; define the array size
DSEC SEGMENT IDATA ; define a IDATA segment
PSEC SEGMENT CODE ; define a CODE segment

RSEG DSEC ; activate IDATA segment
arr1: DS ALEN ; define arrays
arr2: DS ALEN

RSEG PSEC ; activate CODE segment
; move memory block
%BMOVE (arr1,arr2,ALEN)

END

168 Chapter 6. Macro Processing Language

6

The following listing shows the assembler listing of the above source code.

LOC OBJ LINE SOURCE

1
2

00000A 3 ALEN EQU 10 ; define the array size
-------- 4 DSEC SEGMENT IDATA ; define a IDATA segment
-------- 5 PSEC SEGMENT CODE ; define a CODE segment

6
-------- 7 RSEG DSEC ; activate IDATA segment
000000 8 arr1: DS ALEN ; define arrays
00000A 9 arr2: DS ALEN

10
-------- 11 RSEG PSEC ; activate CODE segment

12 ; move memory block
13 ; %BMOVE (arr1,arr2,ALEN)
14 ;
15 ; MOV R0,#%src
16 ; MOV R1,#%dst
17 ; MOV R2,#%cnt
18 ; %lab: MOV A,@R0
19 ; MOV @R1,A
20 ; INC R0
21 ; INC R1
22 ; DJNZ R2, %lab
23
24 ; MOV R0,#%src
25 ; arr1

000000 7E0000 F 26 MOV R0,#arr1
27 ; MOV R1,#%dst
28 ; arr2

000003 7E1000 F 29 MOV R1,#arr2
30 ; MOV R2,#%cnt
31 ; ALEN

000006 7E200A 32 MOV R2,#ALEN
33 ; %lab: MOV A,@R0
34 ;LAB0

000009 A5E6 35 LAB0: MOV A,@R0
00000B A5F7 36 MOV @R1,A
00000D A508 37 INC R0
00000F A509 38 INC R1

39 ; DJNZ R2, %lab
40 ; LAB0

000011 A5DA00 F 41 DJNZ R2, LAB0
42
43 END

The example lists an assembled file that contains a macro definition in lines
1 to 9. The macro definition is listed with semicolons at start of each line. These
semicolons are added by the assembler to prevent assembly of the definition text
which is meaningful to the MPL preprocessor, but not to the remaining
assembler phases. The listing only includes macro definitions or macro calls, if
the control GEN is given.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 169

 6

The macro BMOVE is called in line 12 with three actual parameters. Lines 14 to
20 shows the macro expansion, which is the return value of the macro call. This
text will be assembled.

The example will produce assembly errors because no section directives are
included in the source file. The purpose here is to show MPL processing, not the
assembler semantics.

Local Symbols List
The DJNZ instruction in the previous example uses a local label as the target of
the branch. If you use a fixed label name (for example xlab, without a leading
%), and you use the macro two or more times is the same assembly source file,
errors will occur due to multiple definitions of a single name.

Local symbol definitions solve this problem. Local symbols are generated by the
MPL processor as local_symbol_nnn, whereby local_symbol is the name of the
local symbol and nnn is some number. Each time the macro is called, the
number is automatically incremented. The resulting names are unique to each
macro invocation.

The MPL processor increments a counter each time your program calls a macro
that uses a LOCAL construct. The counter is incremented once for each symbol
in the LOCAL list. Symbols in the LOCAL list, when used in the macro-body,
receive a one to five digit suffix that is the decimal value of the counter. The
first time you call a macro that uses the LOCAL construct, the suffix is 0.

The syntax for the LOCAL construct in the DEFINE functions is shown below:

%*DEFINE (macro-name (parameter-list)) [LOCAL local-list] (macro-body)

The local-list is a list of valid macro identifiers separated by spaces or commas.
The LOCAL construct in a macro has no affect on the syntax of a macro call.

170 Chapter 6. Macro Processing Language

6

Macro Processor Language Functions
The MPL processor has several predefined macro processor functions. These
MPL processor functions perform many useful operations that would be difficult
or impossible to produce in a user-defined macro. An important difference
between a user-defined macro and a MPL processor function is that user-defined
macros may be redefined, while MPL processor functions can not be redefined.

We have already seen one of these MPL processor functions, DEFINE. DEFINE
creates user defined macros. MPL processor functions are already defined when
the MPL processor is started.

Comment Function
The MPL processing language can be very subtle, and the operation of macros
written in a straightforward manner may not be immediately obvious. Therefore,
it is often necessary to comment macro definitions. The comment function has
the following syntax:

%'text'
%'text end-of-line

The comment function always evaluates to the null string. Two terminating
characters are recognized, the apostrophe and the end-of-line character. The
second form allows you to spread macro definitions over several lines while
avoiding unwanted end-of-lines in the return value. In either form, the text or
comment is not evaluated for macro calls.

Example
%'this is macro comment.' ; this is an assembler comment.

%'the complete line including end-of-line is a comment

Source text before MPL processing
MOV R5, R15 %'the following line will be kept separate'
MOV R1, %'this comment eats the newline character
R12

Output text from MPL processor
MOV R5, R15
MOV R1, R12

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 171

 6

Escape Function
Sometimes it is required to prevent the MPL processor from processing macro
text. Two MPL processor functions perform this operation:

� escape function

� bracket function

The escape function interrupts scanning of macro text. The syntax of the escape
function is:

%n text-n-characters-long

The metacharacter followed by a single decimal digit specifies the number of
characters (maximum is 9) that are not evaluated. The escape function is useful
for inserting a metacharacter (normally the % character), a comma, or a
parenthesis.

Example
10%1% OF 10 = 1; expands to: 10% OF 10 = 1;
ASM%0251 expands to: ASM251

172 Chapter 6. Macro Processing Language

6

Bracket Function
The other MPL processor function that inhibits the processing of macro text is
the bracket function. The syntax of the bracket function is:

%(balanced-text)

The bracket function disables all MPL processing of the text contained within
the parentheses. However, the escape function, the comment function, and
parameter substitution are still recognized.

Since there is no restriction for the length of the text within the bracket function,
it is usually easier to use than the escape function.

Example
ASM%(251) evaluates to: ASM251
%(1,2,3,4,5) evaluates to: 1,2,3,4,5

Macro definition of ‘DW’
%*DEFINE (DW (LIST, LABEL)) (
%LABEL: DW %LIST
)

Macro call to ‘DW’
%DW (%(120, 121, 122, 123, -1), TABLE)

Return value of the macro call to ‘DW’
TABLE: DW 120, 121, 122, 123, -1

The macro above will add word definitions to the source file. It uses two
parameters: one for the word expression list and one for the label name. Without
the bracket function it would not be possible to pass more than one expression in
the list, since the first comma would be interpreted as the delimiter separating
the actual parameters to the macro. The bracket function used in the macro call
prevents the expression list (120, 121, 122, 123, -1) from being evaluated as
separate parameters.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 173

 6

METACHAR Function
The MPL processor function METACHAR allows the programmer to change the
character that will be recognized by the MPL processor as the metacharacter.
The use of this function requires extreme care.

The syntax of the METACHAR function is:

%METACHAR (balanced_text)

The first character of the balanced text is taken to be the new value of the
metacharacter. The characters @, (,), *, blank, tab, and identifier-characters are
not allowed to be the metacharacter.

Example
%METACHAR (!) ; change metacharacter to '!'
!(1,2,3,4) ; bracket function invoked with !

174 Chapter 6. Macro Processing Language

6

Numbers and Expressions
Balanced text strings appearing in certain places in built-in MPL processor
functions are interpreted as numeric expressions:

� The argument to evaluate function 'EVAL'

� The argument to the flow of control functions 'IF', 'WHILE', 'REPEAT'
and 'SUBSTR'.

Expressions are processed as follows:

� The text of the numeric expression will be expanded in the ordinary manner
of evaluating an argument to a macro function.

� The resulting string is evaluated to both a numeric and character
representation of the expressions result. The return value is the character
representation.

The following operators are allowed (shown in order of precedence).

1. Parenthesized Expressions

2. HIGH, LOW

3. *, /, MOD, SHL, SHR

4. EQ, LT, LE, GT, GE, NE

5. NOT

6. AND, OR, XOR

The arithmetic is done using signed 16-bit integers. The result of the relational
operators is either 0 (FALSE) or 1 (TRUE).

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 175

 6

Numbers
Numbers can be specified in hexadecimal (base 16), decimal (base 10), octal
(base 8) and binary (base 2). A number without an explicit base is interpreted as
decimal, this being the default representation. The first character of a number
must always be a digit between 0 and 9. Hexadecimal numbers which do not
have a digit as the first character must have a 0 placed in front of them.

Base Suffix Valid Characters Examples

hexadecimal H,h 0 - 9, A-F (a - f) 1234H 99H 123H 0A0F0H 0FFH
 Hexadecimal numbers must be preceded with a 0, if the first

digit is in range A to F
decimal D,d 0 - 9 1234 65590D 20d 123
octal O,o,Q,q 0 - 7 177O 7777o 25O 123o 177777O
binary B,b 0 - 1 1111B 10011111B 101010101B

Dollar ($) signs can be placed within the numbers to make them more readable.
However a $ sign is not allowed to be the first or last character of a number and
will not be interpreted.

1111$0000$1010$0011B is equivalent to 1111000010100011B

1$2$3$4 is equivalent to 1234

Hexadecimal numbers may be also entered using the convention from the C
language:

0xFE02 0x1234
0X5566 0x0A

176 Chapter 6. Macro Processing Language

6

Character Strings
The MPL processor allows ASCII characters strings in expressions. An
expression is permitted to have a string consisting of one or two characters
enclosed in single quote characters (').

'A' evaluates to 0041H

'AB' evaluates to 4142H

'a' evaluates to 0061H

'ab' evaluates to 6162H

'' the null string is not valid!

'abc' ERROR due to more than two characters

The MPL processor cannot access the assembler's symbol table. The values of
labels, SET and EQU symbols are not known during MPL processing. But, the
programmer can define macro-time symbols with the MPL processor function
'SET'.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 177

 6

SET Function
The MPL processor function SET permits you to define macro-time symbols.
SET takes two arguments: a valid identifier, and a numeric expression.

The syntax of the SET function is:

%SET (identifier,expression)

SET assigns the value of the numeric expression to the identifier.

The SET function affects the MPL processor symbol table only. Symbols
defined by SET can be redefined with a second SET function call, or defined as
a macro with DEFINE.

Source text
%SET (CNT, 3)
%SET (OFS, 16)
MOV R1,#%CNT+%OFS
%SET (OFS, %OFS + 10)
OFS = %OFS

Output text
MOV R1,#3+16
OFS = 26

The SET symbol may be used in the expression that defines its own value:

Source text
%SET (CNT, 10) %' define variable CNT'
%SET (OFS, 20) %' define variable OFS'

% 'change values for CNT and OFS'
%SET (CNT, %CNT+%OFS) %' CNT = 30'
%SET (OFS, %OFS * 2) %' OFS = 40'
MOV R2,#%CNT + %OFS %' 70'
MOV R5,#%CNT %' 30'

Output text
MOV R2,#30 + 40
MOV R5,#30

178 Chapter 6. Macro Processing Language

6

EVAL Function
The MPL processor function EVAL accepts an expression as an argument and
returns the decimal character representation of it's result.

The syntax of the EVAL function is:

%EVAL (expression)

The expression arguments must be a legal expression with already defined macro
identifiers, if any.

Source text
%SET (CNT, 10) %' define variable CNT'
%SET (OFS, 20) %' define variable OFS'

MOV R15,#%EVAL (%CNT+1)
MOV WR14,#%EVAL (14+15*200)
MOV R13,#%EVAL (-(%CNT + %OFS - 1))
MOV R2,#%EVAL (%OFS LE %CNT)
MOV R7,#%EVAL (%OFS GE %CNT)

Output text
MOV R15,#11
MOV WR14,#3014
MOV R13,#-29
MOV R2,#0
MOV R7,#1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 179

 6

Logical Expressions and String Comparison
The following MPL processor functions compare two balanced-text string
arguments and return a logical value based on that comparison. If the function
evaluates to TRUE, then it returns a value of 1. If the function evaluates to
FALSE, then it returns a value of 0. The list of string comparison functions
below shows the syntax and describes the type of comparison made for each.
Both arguments to these function may contain macro calls. (These MPL calls
are expanded before the comparison is made).

%EQS (arg1,arg2) True if both arguments are identical

%NES (arg1,arg2) True if arguments are different in any way

%LTS (arg1,arg2) True if first argument has a lower value than second
argument

%LES (arg1,arg2) True if first argument has a lower value then second
argument or if both arguments are identical

%GTS (arg1,arg2) True if first argument has a higher value than second
argument

%GES (arg1,arg2) True if first argument has a higher value than second
argument or if both arguments are identical

Example
%EQS (A251, A251) 0 (FALSE), the space after the comma is part of the

second argument
LT%S (A251,a251) 1 (TRUE), the lower case characters have a higher ASCII

value than upper case
%GTS (10,16) 0 (FALSE), these macros compare strings not numerical

values. ASCII '6' is greater than ASCII '1'
%GES (a251,a251) 0 (FALSE), the space at the end of the second argument

makes the second argument greater than the first
%*DEFINE (VAR1) (A251)
%*DEFINE (VAR2) (%VAR1)
%EQS (%VAR1,%VAR2)
%EQS(A251,A251)

1 (TRUE) expands to:

180 Chapter 6. Macro Processing Language

6

Conditional MPL Processing
Some MPL functions accept logical expressions as arguments. The MPL uses the
value 1 and 0 to determine TRUE or FALSE. If the value is one, then the
expression is TRUE. If the value is zero, then the expression is FALSE.

Typically, you will use either the relational operators (EQ, NE, LE, LT, GT, or
GE) or the string comparison functions (EQS, NES, LES, LTS, GTS, or GES) to
specify a logical value.

IF Function
The IF MPL function evaluates a logical expression, and based on that
expression, expands or skips its text arguments. The syntax of the MPL
processor function IF is:

%IF (expression) THEN (balanced-text1) [ELSE (balanced-text2)] FI

IF first evaluates the expression, if it is TRUE, then balanced-text1 is expanded;
if it is FALSE and the optional ELSE clause is included, then balanced-text2 is
expanded. If it is FALSE and the ELSE clause is not included, the IF call returns
a null string. FI must be included to terminate the call.

IF calls can be nested; when they are, the ELSE clause refers to the most recent
IF call that is still open (not terminated by FI). FI terminates the most recent IF
call that is still open.

Source text
%*DEFINE (ADDSUB (op,p1,p2)) (
%IF (%EQS (%op,ADD)) THEN (
ADD %p1,%p2
)ELSE (%IF (%EQS (%op,SUB)) THEN (
SUB %p1,%p2
) FI

) FI
)

%ADDSUB (ADD,R15,R3) %' generate ADD R15,R3'
%ADDSUB (SUB,R15,R9) %' generate SUB R15,R9'
%ADDSUB (MUL,R15,R4) %' generates nothing !'

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 181

 6

Output text
ADD R15,R3
SUB R15,R9

WHILE Function
Often you may wish to perform macro operations until a certain condition is met.
The MPL processor function WHILE provides this facility.

The syntax for the MPL processor function WHILE is:

%WHILE (expression) (balanced-text)

WHILE first evaluates the expression. If it is TRUE, then the balanced-text is
expanded; otherwise, it is not. Once the balanced-text has been expanded, the
logical argument is retested and if it is still TRUE, then the balanced-text is
again expanded. This loop continues until the logical argument proves FALSE.

Since the MPL continues processing until expression evaluates to FALSE, the
balanced-text should modify the expression, or the WHILE may never terminate.

A call to the MPL processor function EXIT will always terminate a WHILE
function. EXIT is described later.

Source text
%SET (count, 5) %' initialize count to 5'
%WHILE (%count GT 0)
(ADD R15,R15 %SET (count, %count - 1)
)

Output text
ADD R15,R15
ADD R15,R15
ADD R15,R15
ADD R15,R15
ADD R15,R15

182 Chapter 6. Macro Processing Language

6

REPEAT Function
The MPL processor function REPEAT expands its balanced-text a specified
number of times. The syntax for the MPL processor function REPEAT is:

%REPEAT (expression) (balanced-test)

REPEAT uses the expression for a numerical value that specifies the number of
times the balanced-text will be expanded. The expression is evaluated once
when the macro is first called, then the specified number of iterations is
performed.

Source text
%REPEAT (5)
(-enter any key to shut down-
)

%REPEAT (5) (+%REPEAT (9) (-))+

Output text
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-
-enter any key to shut down-

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 183

 6

EXIT Function
The EXIT MPL processor function terminates expansion of the most recently
called REPEAT, WHILE or user-defined macro function. It is most commonly
used to avoid infinite loops (example: a WHILE that never becomes FALSE, or a
recursive user-defined macro that never terminates). It allows several exit points
in the same macro.

The syntax for the MPL processor function EXIT is:

%EXIT

Source text
%SET (count, 0)

%WHILE (1)
(%IF (%count GT 5) THEN (%EXIT)
FI DW %count, -%count
%SET (count, %count + 1))

Output text
DW 0, -0
DW 1, -1
DW 2, -2
DW 3, -3
DW 4, -4
DW 5, -5

184 Chapter 6. Macro Processing Language

6

String Manipulation Functions
The purpose of the MPL is to manipulate character strings. Therefore, there are
several MPL functions that perform common character string manipulations.

LEN Function
The MPL processor function LEN returns the length of the character string
argument in hexadecimal: The character string is limited to 256 characters.

The syntax for the MPL processor function LEN is:

%LEN (balanced-text)

Source text
%LEN (A251) %' len = 4'
%LEN (A251,A251) %' comma counts also'
%LEN ()
%LEN (ABCDEFGHIJKLMNOPQRSTUVWXYZ)
%DEFINE (TEXT) (QUEEN)
%DEFINE (LENGTH) (%LEN (%TEXT))
LENGTH OF '%TEXT' = %LENGTH.

Output text
4
9
0
26
LENGTH OF 'QUEEN' = 5.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 185

 6

SUBSTR Function
The MPL processor function SUBSTR returns a substring of the given text
argument. The function takes three arguments: a character string to be divided
and two numeric arguments.

The syntax for the MPL processor function SUBSTR is:

%SUBSTR (balanced-text,expression1,expression2)

Where balanced-text is any text argument, possibly containing macro calls.
Expression1 specifies the starting character of the substring. Expression2
specifies the number of characters to be included in the substring.

If expression1 is zero or greater than the length of the argument string, then
SUBSTR returns the null string. The index of the first character of the balanced
text is one.

If expression2 is zero, then SUBSTR returns the null string. If expression2 is
greater than the remaining length or the string, then all characters from the start
character to the end of the string are included.

Source text
%DEFINE (STRING) (abcdefgh)
%SUBSTR (%string, 1, 2)
%SUBSTR (%(1,2,3,4,5), 3, 20)

Output text
ab
2,3,4,5

186 Chapter 6. Macro Processing Language

6

MATCH Function
The MPL processor function MATCH searches a character string for a delimiter
character, and assigns the substrings on either side of the delimiter to the
identifiers.

The syntax for the MPL processor function MATCH is:

%MATCH (identifier1 delimiter identifier2) (balanced-text)

Identifier1 and identifier2 must be valid macro identifiers. Delimiter is the first
character to follow identifier1. Typically, a space or comma is used, but any
character that is not a macro identifier character may be used. Balanced-text is
the text searched by the MATCH function. It may contain macro calls.

MATCH searches the balanced-text string for the specified delimiter. When the
delimiter is found, then all characters to the left are assigned to identifier1 and
all characters to the right are assigned to identifier2. If the delimiter is not
found, the entire balanced-text string is assigned to identifier1 and the null string
is assigned to identifier2.

Source text
%DEFINE (text) (-1,-2,-3,-4,-5)
%MATCH (next,list) (%text)
%WHILE (%LEN (%next) NE 0)
(MOV R8,#%next

MOV @WR2,R8 %MATCH (next,list)(%list)
INC WR2,#1

)

Output text
MOV R8,#-1
MOV @WR2,R8
INC WR2,#1
MOV R8,#-2
MOV @WR2,R8
INC WR2,#1
MOV R8,#-3
MOV @WR2,R8
INC WR2,#1
MOV R8,#-4
MOV @WR2,R8
INC WR2,#1
MOV R8,#-5
MOV @WR2,R8
INC WR2,#1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 187

 6

Console I/O Functions
There are two MPL processor functions that perform console I/O: IN and OUT.
Their names describe the function each performs. IN outputs a character '>' as a
prompt, and returns the line typed at the console. OUT outputs a string to the
console; a call to OUT is replaced by the null string.

The syntax for the MPL processor functions IN and OUT is:

%IN
%OUT (balanced-text)

Source text
%OUT (enter baud rate)
%set (BAUD_RATE,%in)
BAUD_RATE = %BAUD_RATE

Output text
<19200 was entered at the console>
BAUD_RATE = 19200

188 Chapter 6. Macro Processing Language

6

Advanced Macro Processing
The MPL definition function associates an identifier with a functional string.
The macro may or may not have an associated pattern consisting of parameters
and/or delimiters. Optionally present are local symbols.

The syntax for a macro definition is:

%DEFINE (macro_id define_pattern) [LOCAL id_list] (balanced_text)

The define_pattern is a balanced string which is further analyzed by the MPL
processor as follows:

define_pattern = { [parm_id] [delimiter_specifier] }

Delimiter_specifier is one of the following:

� A string that contains no non-literal id-continuation, logical blank, or at
character (‘@’).

� @delimiter_id

The macro call must have a call pattern which corresponds to the macro define
pattern. Regardless of the type of delimiter used to define a macro, once it has
been defined, only delimiters used in the definition can be used in the macro call.
Macros defined with parentheses and commas require parentheses and commas
in the macro call. Macros defined with spaces or any other delimiter require that
delimiter when called.

The define pattern may have three kinds of delimiters: implied blank delimiters,
identifier delimiters and literal delimiters.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 189

 6

Literal Delimiters
The delimiters used in user-defined macros (parentheses and commas) are literal
delimiters. A literal delimiter can be any character except the metacharacter.

When you define a macro using a literal delimiter, you must use exactly that
delimiter when you call the macro. If the specified delimiter is not used as it
appears in the definition, a macro error occurs.

When defining a macro, the delimiter string must be literalized, if the delimiter
meets any of the following conditions:

� more than one character,

� a macro identifier character (A-Z, 0-9, _, or ?),

� a commercial at (@), a space, tab, carriage return, or linefeed.

Use the escape function (%n) or the bracket function (%()) to literalize the
delimiter string.

This is the simple form shown earlier:

Before Macro Expansion After Macro Expansion

%*DEFINE(MAC(A,B))(%A %B) null string

%MAC(4,5) 4 5

In the following example brackets are used instead of parentheses. The
commercial at symbol separates parameters:

%*DEFINE (MOV[A%(@)B]) (MOV %A,%B) →→→→ null string
%MOV[P0@P1] →→→→ MOV P0,P1

In the next two examples, delimiters that could be id delimiters have been
defined as literal delimiter (the differences are noted):

%*DEFINE(ADD (R10 AND B)) (ADD R10,%B) →→→→ null string
%ADD (R10 AND #27H) →→→→ ADD R10,#27H

Spaces around AND are considered as part of the argument string.

190 Chapter 6. Macro Processing Language

6

Blank Delimiters
Blank delimiters are the easiest to use. Blank delimiter is one or more spaces,
tabs or new lines (a carriage-return/linefeed pair) in any order. To define a
macro that uses the blank delimiter, simply place one or more spaces, tabs, or
new lines surrounding the parameter list.

When the macro defined with the blank delimiter is called, each delimiter will
match a series of spaces, tabs, or new lines. Each parameter in the call begins
with the first non-blank character, and ends when a blank character is found.

Source text
%*DEFINE (X1 X2 X3) (P2=%X2, P3=%X3)
%X1 assembler A251

Output text
P2=assembler, P3=A251

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 191

 6

Identifier Delimiters
Identifier delimiters are legal macro identifiers designated as delimiters. To
define a macro that uses an identifier delimiter, you must prefix the delimiter
with the @ symbol. You must separate the identifier delimiter from the macro
identifiers (formal parameters or macro name) by a blank character.

When calling a macro defined with identifier delimiters, a blank delimiter is
required to precede the identifier delimiter, but none is required to follow the
identifier delimiter.

Source text
%*DEFINE (ADD X1 @TO X2 @STORE X3)(
MOV R1,%X1
MOV R2,%X2
ADD R1,R2
MOV %X3,R1

)

%ADD VAR1 TO VAR2 STORE VAR3

Output text
MOV R1,VAR1
MOV R2,VAR2
ADD R1,R2
MOV VAR3,R1

192 Chapter 6. Macro Processing Language

6

Literal and Normal Mode
In normal mode, the MPL processor scans for the metacharacter. If it is found,
parameters are substituted and macros are expanded. This is the usual operation
of the MPL processor.

When the literal character (*) is placed in a DEFINE function, the MPL
processor shifts to literal mode while expanding the macro. The effect is similar
to surrounding the entire call with the bracket function. Parameters to the
literalized call are expanded, the escape, comment, and bracket functions are
also expanded, but no further processing is performed. If there are any calls to
other macros, they are not expanded.

If there are no parameters in the macro being defined, the DEFINE function can
be called without literal character. If the macro uses parameters, the MPL
processor will attempt to evaluate the formal parameters in the macro-body as
parameterless macro calls.

The following example illustrates the difference between defining a macro in
literal mode and normal mode:

%SET (TOM, 1)
%*DEFINE (AB) (%EVAL (%TOM))
%DEFINE (CD) (%EVAL (%TOM))

When AB and CD are defined, TOM is equal to 1. The macro body of AB has
not been evaluated due to the literal character, but the macro body of CD has
been completely evaluated, since the literal character is not used in the
definition. Changing the value of TOM has no effect on CD, but it changes the
value of AB:

%SET (TOM,2) →→→→ null string
%AB →→→→ 2
%CD →→→→ 1
%*CD →→→→ 1
%*AB →→→→ %EVAL (%TOM)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 193

 6

MACRO Errors
The MPL processor emits error messages if errors occur in the MPL processing
phase. Macro errors are displayed like other assembly errors in the listing file.
The following table lists the error messages generated by the MPL processor.

Number Error Message and Description

200 PREMATURE END OF FILE

The end of the source module was reached while processing some macro call, which
requires more input from the source file.

201 '<token>' IDENTIFIER EXPECTED

The MPL processor expected an identifier while processing some macro. None was
found. The unexpected token is displayed with this error message.

202 MPL FUNCTION '<name>': '<character>' EXPECTED

The context of the MPL processor language requires a specific character from the
input given by <character> while processing the built-in function given by <name>.

203 <string>: UNBALANCED PARENTHESES

A balanced string requires the same number of right parentheses and left parentheses.
204 EXPECTED '<token>'

The syntax requires a specific token to follow, for example THEN after the balanced
text argument to IF.

205 INCOMPLETE MACRO DEFINITION

The macro definition has not been completely processed due to premature end of input
file.

206 FUNCTION 'MATCH': ILLEGAL CALL PATTERN

The built-in function MATCH was called with an illegal call pattern. The call pattern
must consist of some formal name followed by a delimiter specification and another
formal name.

207 FUNCTION 'EXIT' IN BAD CONTEXT

The built-in function EXIT is allowed only in the loop control constructs WHILE and
REPEAT.

208 ILLEGAL METACHARACTER '<character>'

The first character of the balanced text argument to METACHAR is taken to be the
new value of the metacharacter. The characters @, (,), *, blank, tab, and
identifier-characters are not allowed to be the metacharacter.

209 CALL PATTERN - DELIMITER '<delimiter>' NOT FOUND

The call pattern of some macro does not conform to the define pattern of that macro.
The delimiters of the macro call should be checked for conformance.

210 CALL TO UNDEFINED MACRO '<name>'

The macro call specifies the name of an undefined macro.

194 Chapter 6. Macro Processing Language

6

Number Error Message and Description

211 INVALID MPL COMMAND '%<character>'

The character following the metacharacter does not form a valid MPL command.
212 INVALID DIGIT '<character>' IN NUMBER

A number of an expression contains an invalid digit.
213 UNCLOSED STRING OR CHARACTER CONSTANT

214 INVALID STRING OR CHARACTER CONSTANT

The string representing a number in an expression is invalid. The string must be either
one or two characters long. A character constant must not be longer than one character.
Strings or character constants must be enclosed by single or double quotes.

215 UNKNOWN EXPRESSION IDENTIFIER

The identifier within some expression is not an operator or a number.
216 <character>: INVALID EXPRESSION TOKEN

The given character does not form a valid operator or an identifier operator.
217 DIV/MOD BY ZERO

A division or modulo by zero error occurred while evaluating an expression.
218 EVAL: SYNTAX ERROR IN EXPRESSION

The expression to be evaluated contains a syntax error, for example two consecutive
number, not separated by an operator.

219 CAN'T OPEN FILE '<file>'

The file specified in the INCLUDE directive could not be opened.
220 '<file>' IS NOT A DISK FILE

The file name given in the INCLUDE directive does not specify a disk file. Files other
than disk files are not allowed (example: CON).

221 ERROR IN INCLUDE DIRECTIVE

The INCLUDE directive is ill-formed. The argument to INCLUDE must be the name
of some file, enclosed in parentheses.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 195

 7

Chapter 7. Invocation and Controls
This chapter explains how to use Ax51 to assemble x51 assembly source files
and discusses the assembler controls that may be specified on the command line
and within the source file.

Using the controls described in this chapter, you can specify which operations
are performed by Ax51. For example, you can direct Ax51 to generate a listing
file, produce cross reference information, and control the amount of information
included in the object file. You can also conditionally assemble sections of code
using the conditional assembly controls.

Environment Settings
To run the Ax51 macro assembler and the utilities from a Windows command
prompt, you must create new entries in the environment table. In addition, you
must specify a PATH for the compiler folder. The following table lists the
environment variables, their default paths, and a brief description.

Variable Path Description

PATH KEIL\C51\BIN
or KEIL\C251\BIN

This environment variable specifies the path of the Ax51
executable programs.

TMP This environment variable specifies which path to use for
temporary files generated by the assembler. If the specified
path does not exist, the assembler generates an error and
aborts compilation.

C51INC KEIL\C51\INC

This environment variable specifies the location of the
standard C51 or CX51 include files.

C251INC KEIL\C251\INC

This environment variable specifies the location of the
standard C251 include files.

Typically, these environment settings are automatically placed in your
AUTOEXEC.BAT file. However, to put these settings in a separate batch file, use
the following example as guideline:

PATH = C:\KEIL\C51\BIN
SET TMP = D:\
SET C51INC = C:\KEIL\C51\INC

196 Chapter 7. Invocation and Controls

7

Running Ax51
The Ax51 assembler is invoked by typing the program name at the Windows
command prompt. On this command line, you must include the name of the
assembler source file to be translated, as well as any other necessary assembler
controls required to translate your source file. The format for the Ax51
command line is:

A51 sourcefile ����directives…����

AX51 sourcefile ����directives…����

A251 sourcefile ����directives…����

or:
A51 @commandfile
AX51 @commandfile
A251 @commandfile

where

sourcefile is the name of the source program you want to assemble.

controls are used to direct the operation of the assembler. Refer to
“Assembler Controls” on page 197 for more information.

commandfile is the name of a command input file that may contain
sourcefile and directives. A commandfile is used, when the
Ax51 invocation line gets complex and exceeds the limits of
the Windows command prompt.

The following command line example invokes A251 macro assembler and
specifies the source file SAMPLE.A51 and uses the controls DEBUG, XREF,
and PAGEWIDTH.

A251 SAMPLE.A51 DEBUG XREF PAGEWIDTH(132)

A251 displays the following information upon successful invocation and
assembly.

A251 MACRO ASSEMBLER V3.00

ASSEMBLY COMPLETE. 0 ERROR(S) 0 WARNING(S)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 197

 7

ERRORLEVEL
After assembly, the number of errors and warnings detected is output to the
screen. Ax51 then sets the ERRORLEVEL to indicate the status of the assembly.
The ERRORLEVEL values are identical for all the Ax51 assembler, Lx51
linker/locater and other x51 utilities. The values are listed in the following table:

ERROR LEVEL Meaning

0 No ERRORS or WARNINGS

1 WARNINGS only

2 ERRORS and possibly also WARNINGS

3 FATAL ERRORS

You can access the ERRORLEVEL variable in batch files for conditional tests to
terminate the batch processing when an error occurs. Refer to the Windows on-
line help for more information about ERRORLEVEL or batch files.

Output Files
Ax51 generates a number of output files during assembly. By default, these files
use the same basename as the source file, but with a different file extension.
The following table lists the files and gives a brief description of each.

File Extension Description
basename.LST Files with this extension are listing files that contain the formatted source

text along with any errors detected by the assembler. Listing files may
optionally contain symbols used and the generated assembly code. Refer
to “PRINT / NOPRINT” on page 221 for more information.

basename.OBJ Files with this extension are object modules that contain relocatable object
code. Object modules can be linked into an absolute object module by the
Lx51 Linker/Locator. Refer to “OBJECT / NOOBJECT” on page 219 for
more information.

Assembler Controls
Ax51 provides a number of controls that you can use to direct the operation of
the assembler. Controls can be specified after the filename on the invocation

198 Chapter 7. Invocation and Controls

7

line or in a control line within the source file. Control lines are prefixed by the
dollar sign character (‘$’).

Example
A51 TESTFILE.A51 MPL DEBUG XREF

or

$MPL
$DEBUG
$XREF

or

$MPL DEBUG XREF

In the above example, MPL, DEBUG, and XREF are all control commands and
TESTFILE.A51 is the source file to assemble.

Ax51 has two classes of controls: primary and general. Primary controls are
specified in the invocation line on the first few lines of the assembly source file.
Primary controls remain in effect throughout the assembly. For this reason,
primary controls may be used only in the invocation line or in control lines at the
beginning of the program. Only other control lines that do not contain the
INCLUDE control may precede a line containing a primary control. The
INCLUDE control marks the end of any primary control specifications.

If a primary control is specified in the invocation line and on the first few lines
of the assembly source file, the specification on the invocation line is used. This
enables you override primary controls via the invocation line.

The general controls are used to control the immediate action of the assembler.
Typically their status is set and modified during the assembly. Control lines
containing only general controls may be placed anywhere in your source code.

The table on the next page lists all of the controls, their abbreviations, their
default values, and a brief description of each.

NOTE
Some controls like EJECT and SAVE cannot be specified on the command line.
The syntax for each control is the same when specified on the command line or
when specified within the source file. Ax51 will generate a fatal error for
controls that are improperly specified.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 199

 7

Directive Page Description

CASE ‡ 200 AX51, A251 ONLY: enable case sensitive mode for symbol names.
COND / NOCOND 201 Enable or disable skipped sections to appear in the listing file.
DATE(date) ‡ 202 Places a date string in header (9 characters maximum).
DEBUG ‡ 203 Outputs debug symbol information to object file.
EJECT 204 Continue listing on next page.
ERRORPRINT[(file)] ‡ 205 Designates a file to receive error messages in addition to the

listing.
FIXDRK ‡ 206 A251 ONLY: Replaces INC DRk with ADD DRk for C-Step devices.
GEN ‡ 207 Generates a full listing of macro expansions in the listing file.
NOGEN ‡ 207 List only the original source text in listing file.
INCDIR(path) 208 Define paths to be searched when a file is included via INCLUDE.
INCLUDE(file) 209 Designates a file to be included as part of the program.
INTR2 210 A251 ONLY: Select 2-Byte interrupt frame size on 251 devices.
LIST, NOLIST 211 Print or do not print the assembler source in the listing file.
MOD51 ‡ 212 AX51 ONLY: Select classic 8051 instruction set (default).
MOD_MX51 ‡ 212 AX51 ONLY: Select Philips 80C51MX instruction set).
MOD_CONT ‡ 212 AX51 ONLY: Select Dallas 390 contiguous mode instruction set.
MODSRC ‡ 213 A251 ONLY: Select Intel/Atmel WM 251 source mode.
MPL ‡ 214 Enable Macro Processing Language.
NOLINES 215 Do not generate LINE number information.
NOMACRO ‡ 216 Disable Standard Macros
NOMOD51 217 Do not recognize the 8051-specific predefined special register.
NOOBJECT 219 Designates that no object file will be created.
NOREGISTERBANK 222 Indicates that no banks are used.
NOSYMBOLS 218 No symbol table is listed.
NOSYMLIST 225 Do not list the following symbol definitions in the symbol table.
OBJECT[(file)] 219 Designate file to receive object code.
PAGELENGTH(n) ‡ 220 Sets maximum number of lines in each page of listing file.
PAGEWIDTH(n) ‡ 220 Sets maximum number of characters in each line of listing file.
PRINT[(file)] ‡ 221 Designates file to receive source listing.
NOPRINT ‡ 221 Designates that no listing file will be created.
REGISTERBANK 222 Indicates one or more banks used in program module.
REGUSE 223 Defines register usage of assembler functions for the C optimizer.
RESTORE 224 Restores control setting from SAVE stack.
SAVE 224 Stores current control setting for GEN, LIST and SYMLIST.
SYMLIST 225 List the following symbol definitions in the symbol table.
TITLE(string) ‡ 226 Places a string in all subsequent page headers.
XREF ‡ 227 Creates a cross reference listing of all symbols used in program.
‡ marks general controls that may be specified only once on the command line or at the beginning

of a source file in a $control line. They may not be used more than once in a source file.

200 Chapter 7. Invocation and Controls

7

CASE (AX51 and A251 only)

Abbreviation: CA

Arguments: None.

Default: No case sensitivity. All characters are converted to
uppercase.

Control Class: Primary

µVision2 Control: Options – Ax51 – Case sensitive symbols.

Description: The CASE control directs the assembler to operate in case
sensitive mode. Without CASE, the assembler operates in
case insensitive mode and maps lowercase input characters
to uppercase.

CASE becomes meaningful when modules generated by the
assembler are combined with modules generated by the C
compiler. Identifiers exported from C modules always
appear in uppercase and lowercase (as written).
Corresponding names used in an assembler module must
match the case of the names from the C module.

Example: $CASE

AX51 SAMPLE.A51 CASE

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 201

 7

COND / NOCOND

Abbreviation: None.

Arguments: None.

Default: COND

Control Class: General

µVision2 Control: Options – Listing – Assembler Listing – Conditional.

Description: The COND control directs the Ax51 assembler to include
unassembled parts of conditional IF–ELSEIF–ENDIF
blocks in the listing file. Unassembled code is listed without
line numbers.

The NOCOND control prevents unassembled portions of
IF–ELSE–ENDIF blocks from appearing in the listing file.

Examples: AX51 SAMPLE.A51 COND

$COND

AX51 SAMPLE.A51 NOCOND

$NOCOND

202 Chapter 7. Invocation and Controls

7

DATE

Abbreviation: DA

Arguments: A string enclosed within parentheses.

Default: The date obtained from the operating system.

Control Class: Primary

µVision2 Control: Options – Ax51 – Misc controls: enter the control.

Description: The Ax51 assembler includes the current date in the header
of each page in the listing file. The DATE control allows
you to specify the date string that is included in the header.
The string must immediately follow the DATE control and
must be enclosed within parentheses. Only the first 8
characters of the date string are used. Additional characters
are ignored.

Example: AX51 SAMPLE.A51 DATE(19JAN00)

$DATE(10/28/00)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 203

 7

DEBUG

Abbreviation: DB

Arguments: None.

Default: No debugging information is generated.

Control Class: Primary

µVision2 Control: Options – Output – Debug Information

Description: The DEBUG control instructs the Ax51 assembler to
include debugging information in the object file. This
information is used when testing the program with an
emulator or simulator.

The DEBUG control also includes line number information
for source level debugging. Line number information can be
disabled with the NOLINES control.

Examples: A51 SAMPLE.A51 DEBUG

$DEBUG

204 Chapter 7. Invocation and Controls

7

EJECT

Abbreviation: EJ

Arguments: None

Default: None

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The EJECT control inserts a form feed into the listing file
after the line containing the EJECT statement. This control
is ignored if NOLIST or NOPRINT was previously
specified.

Example: $EJECT

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 205

 7

ERRORPRINT

Abbreviation: EP

Arguments: An optional filename enclosed within parentheses

Default: No error messages are output to the console.

Control Class: Primary

µVision2 Control: This control is used by µVision2 to get the error output. It
should be not specified when you are using the µVision2
IDE.

Description: The ERRORPRINT control directs the Ax51 assembler to
output all error messages either to the console (if no
filename is specified) or to a specified file.

Examples: AX51 SAMPLE.A51 ERRORPRINT(SAMPLE.ERR)

AX51 SAMPLE2.A51 ERRORPRINT

$EP

206 Chapter 7. Invocation and Controls

7

FIXDRK (A251 only)

Abbreviation: FD

Arguments: None.

Default: Use the INC DRk,#const instruction.

Control Class: Primary

µVision2 Control: Options – A251 – Misc controls: enter the control.

Description: The FIXDRK control instructs the assembler to replace the
INC DRk,#const instruction with the ADD DRk,#const
instruction.

You may require this control because the INC DRk,#const
instruction does not work in the Intel 251SB C-step CPU.
Check the stepping level or contact your silicon vendor to
find out if you need to use this control. If you are using the
Intel 8xC251SB device and if you are in doubt about the
stepping code, you should apply this control.

Examples: A251 SAMPLE.A51 FIXDRK

$FIXDRK

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 207

 7

GEN / NOGEN

Abbreviation: GE / NOGE

Arguments: None

Default: NOGEN

Control Class: General

µVision2 Control: Options – Listing – Assembler Listing – Macros.

Description: The GEN control directs the Ax51 assembler to expand or
list, in a listing file, all assembly instructions contained in a
macro.

The NOGEN control prevents the Ax51 assembler from
including macro expansion text in the listing file. Only the
macro name is listed.

Examples: A51 SAMPLE.A51 GEN

$GEN

A51 SAMPLE.A51 NOGEN

$NOGEN

208 Chapter 7. Invocation and Controls

7

INCDIR

Abbreviation: ID

Arguments: Path specifications for include files enclosed in parentheses.

Default: None.

Control Class: General

µVision2 Control: Options – Ax51 – Include Paths.

Description: The INCDIR control specifies the location of files specified
with the INCLUDE control. Multiple path declarations
must be separated by semicolon characters (‘;’). A
maximum of 5 paths may be specified.

When searching for include files, the assembler searches
first the current folder, which is typically the folder of the
project file.. Then, paths specified by INCDIR are
searched.

Example: AX51 SAMPLE.A51 INCDIR(C:\AX51\MYINC;C:\CHIP_DIR)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 209

 7

INCLUDE

Abbreviation: IC

Arguments: A filename enclosed within parentheses.

Default: None.

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The INCLUDE control directs the Ax51 assembler to
include the contents of the specified file in the assembly of
the program. The include file’s contents are inserted
immediately following the INCLUDE control line.
INCLUDE files may be nested up to 9 levels deep.

The INCLUDE control is usually used to include special
function register definition files for x51 derivatives. It is
also commonly used to include declarations for external
routines, variables, and macros. Files containing assembly
language code may also be included.

Example: $INCLUDE (REG51F.INC)

The macro assembler searches the current folder and the
folders specified with the INCDIR control for include files.
If the specified file cannot be found in this folders, the
assembler tries to locate the file in the folder
path_of_the_EXE_file\..\ASM\. In a typical installation of
the tool chain this is the correct path for the derivate specific
include files. (The \C51\BIN\ or \C251\BIN folder contains
the macro assembler and the \C51\ASM\ or \C251\ASM\
folder contains the register definition files).

210 Chapter 7. Invocation and Controls

7

INTR2 (A251 only)

Abbreviation: I2

Arguments: None.

Default: The A251 assembler assumes that an interrupt pushes 4
bytes onto the stack: a 24-bit return address and PSW1.

Control Class: General

µVision2 Control: Options – Target – 4 Byte interrupt frame size.

Description: The INTR2 control informs the A251 assembler and the
L251 linker/locator that the 251 CPU saves the low order 16
bits of the program counter but does not automatically save
PSW1 when entering an interrupt.

The INTR2 control does not change any assembler code or
instruction encoding. It only informs the linker and
debugging tools of the interrupt frame size assumed for
interrupt functions. The linker uses this information to
check the consistency of the interrupt frame sizes between
program modules. If the interrupt frame sizes of the object
modules differ, the L251 linker/locator generates a warning
message.

Example: A251 SAMPLE.A51 INTR2

$INTR2

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 211

 7

LIST / NOLIST

Abbreviation: LI / NOLI

Arguments: None

Default: LIST

Control Class: General

µVision2 Control: Options – Ax51 – Misc controls: enter the control.

Description: The LIST control directs the Ax51 assembler to include the
program source text in the generated listing file.

The NOLIST control prevents subsequent lines of your
assembly program from appearing in the generated listing
file.

If a line that would normally not be listed causes an
assembler error, that line will be listed along with the error
message.

Examples: AX51 SAMPLE.A51 LI

$LIST

AX51 SAMPLE.A51 NOLIST

$NOLI

212 Chapter 7. Invocation and Controls

7

MOD51, MOD_CONT, MOD_MX51 (AX51 only)

Abbreviation: M51, MC, MX

Arguments: None

Default: MOD51: generate code for classic 8051.

Control Class: Primary

µVision2 Control: Options – Target (mode selection depends on the device).

Description: The MODxxx controls selects the instruction set that is used
in the application code.

The MOD51 control is the default setting of AX51 and
instructs the assembler to generate code with that uses only
the instructions of the classic 8051.

The MOD_MX51 control enables the instruction set
extensions for the Philips 80C51MX architecture. If you are
using a device with this architecture, at least one module
must be translated with this directive. You can intermix
code that has be written for the classic 8051 in a project for
the Philips 80C51MX.

The MOD_CONT control enables the 24-bit contiguous
address mode that is available on some Dallas devices. If
you are using this mode, you need to translate all modules
with this directive. It is not possible to use code that has
been translated for the classic 8051 when you are using this
CPU mode.

Examples: AX51 SAMPLE.A51 MOD_MX51
AX51 SAMPLE.A51 MOD_COND

$MX ; generate code for Philips 80C51MX architecture
$MC ; generate code for Dallas 24-bit contiguous mode

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 213

 7

MODSRC (A251 only)

Abbreviation: MS

Arguments: None

Default: Generate code for binary mode of the Intel/Atmel WM 251
CPU.

Control Class: Primary

µVision2 Control: Options – Target – CPU Mode.

Description: The MODSRC control instructs the A251 assembler to
generate code for the Intel/Atmel WM 251 architecture
using the SOURCE mode of this CPU.

Examples: A251 SAMPLE.A51 MODSRC

$MODSRC

214 Chapter 7. Invocation and Controls

7

MPL

Abbreviation: None

Arguments: None

Default: The Macro Processing Language is disabled.

Control Class: Primary.

µVision2 Control: Options – Ax51 – Macro processor – MPL.

Description: The MPL control enables the Macro Processing Language.
The MPL language is compatible to the Intel ASM51.
Refer to “Chapter 6. Macro Processing Language” on page
163 for more information about the MPL processor.

Examples: A251 SAMPLE.A51 MPL

$MPL

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 215

 7

NOLINES

Abbreviation: NOLN

Arguments: None.

Default: Line numbers for source level debugging are generated
when the DEBUG control is used.

Control Class: Primary

µVision2 Control: Options – Ax51 – Misc controls: enter the control.

Description: The NOLINES control disables the line number information
for source level debugging. This control is useful when the
Ax51 assembler is used with very old debugging tools and
very old emulators.

Examples: A251 SAMPLE.A51 NOLINES

$NOLINES

216 Chapter 7. Invocation and Controls

7

NOMACRO

Abbreviation: None.

Arguments: None.

Default: Standard Macros are fully expanded.

Control Class: Primary

µVision2 Control: Options – Ax51 – Macro processor – Standard.

Description: The NOMACRO control disables the standard macro
facility of the Ax51 assembler so that standard macros are
not expanded.

Examples: A251 SAMPLE.A51 NOMACRO

$NOMACRO

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 217

 7

NOMOD51

Abbreviation: NOMO

Arguments: None.

Default: The A51 assembler pre-defines all special function registers
of the 8051 CPU. The A251 assembler and the AX51
assembler do not pre-define any CPU special function
registers.

Control Class: Primary

µVision2 Control: Options – Ax51 – Special Function Registers – Define 8051
SFR Names.

Description: The NOMOD51 control prevents the A51 assembler from
implicitly defining symbols for the default 8051 special
function registers. This is necessary when you want to
include a definition file to declare symbols for the special
function registers of a different 8051 derivative.

The A251 assembler and the AX51 assembler support the
NOMOD51 control only for source compatibility to the
A51. However, the 8051 special function registers are not
predefined in A251 or AX51.

Examples: A251 SAMPLE.A51 NOMO

$NOMOD51

218 Chapter 7. Invocation and Controls

7

NOSYMBOLS

Abbreviation: SB / NOSB

Arguments: None

Default: The Ax51 assembler generates a table of all symbols used in
and by the assembly program module. This symbol table is
included in the generated listing file.

Control Class: Primary

µVision2 Control: Options – Listing – Assembler Listing – Symbols

Description: The NOSYMBOLS control prevents the Ax51 assembler
from generating a symbol table in the listing file.

Examples: A251 SAMPLE.A51 SYMBOLS

$SB

A251 SAMPLE.A51 NOSB

$NOSYMBOLS

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 219

 7

OBJECT / NOOBJECT

Abbreviation: OJ / NOOJ

Arguments: An optional filename enclosed within parentheses.

Default: OBJECT (basename.OBJ)

Control Class: Primary

µVision2 Control: Options – Output – Select Folder for Objects

Description: The OBJECT control specifies that the Ax51 assembler
generate an object file. The default name for the object file
is basename.OBJ, however, an alternate filename may be
specified in parentheses immediately following the
OBJECT control statement.

The NOOBJECT control prevents the Ax51 assembler from
generating an object file.

Examples: A51 SAMPLE.A51 OBJECT (OBJDIR\SAMPLE.OBJ)

OJ(OBJ\SAMPLE.OBJ)

A251 SAMPLE.A51 NOOJ

$NOOBJECT

220 Chapter 7. Invocation and Controls

7

PAGELENGTH, PAGEWIDTH

Abbreviation: PL, PW

Arguments: PAGELENGTH accepts a number between 10 and 65535;
PAGEWIDTH accepts a number between 78 and 132
enclosed within parentheses.

Default: PAGELENGTH (60)
PAGEWIDTH (120)

µVision2 Control: Options – Listing – Page Length / Page Width

Description: The PAGELENGTH control specifies the number of lines
printed per page in the listing file. The number must be a
decimal value between 10 and 65535. The default is 60.

The PAGEWIDTH control specifies the maximum number
of characters in a line in the listing file. Lines that are
longer than the specified width are automatically wrapped
around to the next line. The default number of characters
per line is 120.

Example: A251 SAMPLE.A51 PAGELENGTH(132) PAGEWIDTH (79)

$PL (66)
$PW(132)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 221

 7

PRINT / NOPRINT

Abbreviation: PR / NOPR

Arguments: An optional filename enclosed within parentheses.

Default: PRINT(basename.LST)

Control Class: Primary

µVision2 Control: Options – Listing – Select Folder for List Files

Description: The PRINT control directs the Ax51 assembler to generate
a listing file. The default name for the listing file is
basename.LST, however, an alternate filename may be
specified in parentheses immediately following the PRINT
control statement.

The NOPRINT control prevents the Ax51 assembler from
generating a listing file.

Examples: A251 SAMPLE.A51 PRINT

A51TESTPRG.A51 PR(TESTPRG1.LST)

$PRINT(LPT1)

AX51 SAMPLE.A51 NOPRINT

$NOPR

222 Chapter 7. Invocation and Controls

7

REGISTERBANK / NOREGISTERBANK

Abbreviation: RB / NORB

Arguments: Register bank numbers separated by commas and enclosed
within parentheses. For example, RB (1,2,3).

Default: REGISTERBANK (0)

Control Class: Primary

µVision2 Control: Options – Ax51 – Misc controls: enter the control.

Description: The REGISTERBANK control specifies the register banks
used in a source module. This information is stored in the
generated object file for further processing by the Lx51
linker/locator.

The NOREGISTERBANK control specifies that the Ax51
assembler reserve no memory for the register bank. This is
useful for assembler modules that should be used in a
generic library. Since this library might be called with any
active register bank, you may use the NOREGISTERBANK
directive. Thus the program that calls the library module
must reserve the register bank that is in use.

Examples: A251 RBUSER.A51 REGISTERBANK(0,1,2)

$RB(0,3)

A51 SAMPLE.A51 NOREGISTERBANK

$NORB

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 223

 7

REGUSE

Abbreviation: RU

Arguments: Name of a PUBLIC symbol and a register list enclosed in
parentheses.

Default: Not applicable.

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The REGUSE control specifies the registers modified
during a function’s execution. This control may be used in
combination with the C51 Compiler or C251 Compiler to
allow global register optimization for functions written in
assembly language. For more information about global
register optimization refer to the C Compiler User’s Guide.

The REGUSE control may not be specified on the A251
assembler invocation line.

Examples: $REGUSE MYFUNC (ACC, B, R0 - R7)

$REGUSE PROCA (DPL, DPH)

$REGUSE PUTCHAR (R6,R7, CY, ACC)

224 Chapter 7. Invocation and Controls

7

SAVE / RESTORE

Abbreviation: SA / RS

Arguments: None

Default: None

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The SAVE control stores the current settings of the LIST
and GEN controls. Subsequent controls can modify the
LIST and GEN settings.

This control allows these settings to be saved, altered for a
number of program lines, and restored using the RESTORE
control. The SAVE control can be nested up to 9 levels
deep.

The RESTORE control fetches and restores the values of
the GEN and LIST controls that were stored by the last
SAVE control statement.

Example: .
.
.
$SAVE
$NOLIST
$INCLUDE(SAMPLE.INC)
$RESTORE
.
.
.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 225

 7

SYMLIST / NOSYMLIST

Abbreviation: SL/NOSL

Arguments: None.

Default: SYMLIST

Control Class: General

µVision2 Control: Options – Ax51 – Misc controls: enter the control.

Description: The SYMLIST control lists symbol definitions in the
symbol table.

The NOSYMLIST control prevents the Ax51 assembler
from listing symbol definitions in the symbol table. The
NOSYMLIST control is useful in special function register
definition files or other files where symbols are not desired
in the symbol table.

Examples: A251 SAMPLE.A51 NOSYMLIST

$NOSYMLIST
$INCLUDE (REG251S.H)
$SYMLIST

226 Chapter 7. Invocation and Controls

7

TITLE

Abbreviation: TT

Arguments: A string enclosed within parentheses.

Default: The basename of the source file excluding the extension.

Control Class: General

µVision2 Control: Options – Ax51 – Misc controls: enter the control.

Description: The TITLE control allows you to specify the title to use in
the header line of the listing file. The text used for the title
must immediately follow the TITLE control and must be
enclosed in parentheses. A maximum of 60 characters may
be specified for the title. If the TITLE control is not used,
the module name specified with the “NAME” directive
described on page 132 will be used as title string.

Example: A251 SAMPLE.A51 TITLE(Oven Controller Version 3)

$TT(Race Car Controller)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 227

 7

XREF

Abbreviation: XR

Arguments: None.

Default: No error references are listed.

µVision2 Control: Options – Listing – Assembler Listing – Cross Reference

Description: The XREF control directs the Ax51 assembler to generate a
cross reference table of the symbols used in the source
module. The alphabetized cross reference table will be
included in the generated listing file. Refer to “Assembler
Listing File Format” on page 415 for an example of a cross
reference table.

Example: AX51 SAMPLE.A51 XREF

$XREF

228 Chapter 7. Invocation and Controls

7

Controls for Conditional Assembly
The controls for conditional assembly are General controls—they may be
specified any number of times in the body of a source file. Conditional assembly
may be used to implement different program versions or different memory
models with one source file. You may use conditional assembly to maintain one
source module that satisfies several applications.

Conditional text blocks are enclosed by IF, ELSEIF, ELSE and ENDIF.

The SET and RESET controls may be used in the invocation line of the
assembler to set and reset conditions tested by the IF and ELSEIF controls.

The remaining instructions for conditional assembly are only allowed within the
source file and cannot be part of the assembler invocation line.

IF blocks may be nested a maximum of 10 levels deep. If a block is not
translated, conditional blocks nested within it are also skipped.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 229

 7

Conditional Assembly Controls
Conditional assembly controls allow you to write x51 assembly programs with
sections that can be included or excluded from the assembly based on the value
of a constant expression. Blocks that are conditionally assembled are enclosed
by IF, ELSEIF, ELSE, and ENDIF control statements.

The conditional control statements IF, ELSE, ELSEIF, and ENDIF may be
specified only in the source program. They are not allowed on the invocation
line. Additionally, these controls may be specified both with and without the
leading dollar sign ($).

When prefixed with a dollar sign, the conditional control statements may only
access symbols defined by the SET and RESET controls.

When specified without a dollar sign, the conditional control statements may
access all symbols except those defined by the SET and RESET controls. These
control statements may access parameters in a macro definition.

The following table lists the conditional assembly control statements.

Directive Page Description

IF 233 Translate block if condition is true

ELSE 235 Translate block if the condition of a previous IF is false.
ELSEIF 234 Translate block if condition is true and a previous IF or ELSEIF is

false.
ENDIF 236 Marks end of a block.

RESET 232 Set symbols checked by IF or ELSEIF to false.
SET 231 Set symbols checked by IF or ELSEIF to true or to a specified

value.

230 Chapter 7. Invocation and Controls

7

Predefined Constants (A251 only)

The A251 macro assembler provides you with predefined constants to use in
conditional $IF / $ELSEIF controls for more portable assembler modules. The
following table lists and describes each one.

Constant Description

_ _INTR4_ _ Set to 1 to when A251 assumes 4 byte interrupt frames. If the A251 control
INTR2 is used, the _ _INTR4_ _ symbol is not defined.

_ _MODBIN_ _ Set to 1 if the binary mode of 251 CPU is used. If the source mode is
specified with the MODSRC control, the _ _MODBIN_ _ symbol is not
defined.

_ _MODSRC_ _ Set to 1 if the source mode of 251 CPU is specified with the MODSRC
control. If the binary mode of the 251 CPU is used the _ _MODSRC_ _
symbol is not defined.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 231

 7

SET

Abbreviation: None.

Arguments: A list of symbols with optional value assignments separated
by commas and enclosed within parentheses. For example:

SET (symbol �= number� �, symbol �= number� …�)

Default: None.

Control Class: General

µVision2 Control: Options – Ax51 – Set.

Description: The SET control assigns numeric values to the specified
symbols. Symbols that do not include an explicit value
assignment are assigned the value 0FFFFh. Symbols that
are specified with an equal sign (‘=’) and a numeric value
are assigned the specified value.

These symbols can be used in IF and ELSEIF control
statements for conditional assembly. They are only used for
conditional assembly. These symbols are administered
separately and do not interfere with other symbols.

Example: A251 SAMPLE.A51 SET(DEBUG1=1, DEBUG2=0, DEBUG3=1)

$SET (TESTCODE = 0)

$SET (DEBUGCODE, PRINTCODE)

232 Chapter 7. Invocation and Controls

7

RESET

Abbreviation: None.

Arguments: A list of symbols separated by commas and enclosed within
parentheses. For example:

RESET (symbol �, symbol …�)

Default: None

Control Class: General

µVision2 Control: Options – Ax51 – Reset.

Description: The RESET control assigns a value of 0000h to the
specified symbols. These symbols may then be used in IF
and ELSEIF control statements for conditional assembly.
These symbols are only used for conditional assembly.
They are administered separately and do not interfere with
other symbols.

Example: A251 SAMPLE.A51 RESET(DEBUG1, DEBUG2, DEBUG3)

$RESET (TESTCODE)

$RESET (DEBUGCODE, PRINTCODE)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 233

 7

IF

Abbreviation: None

Arguments: A numeric expression

Default: None

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The IF control begins an IF–ELSE–ENDIF construct that
is used for conditional assembly. The specified numeric
expression is evaluated and, if it is non–zero (TRUE), the IF
block is assembled. If the expression is zero (FALSE), the
IF block is not assembled and subsequent blocks of the IF
construct are evaluated.

IF blocks can be terminated by an ELSE, ELSEIF, or
ENDIF control statement.

Example: .
.
.
$IF (DEBUG_VAR = 3)
.
.
.
Version_3: MOV DPTR, #TABLE_3
.
.
.
$ ENDIF
.
.
.

234 Chapter 7. Invocation and Controls

7

ELSEIF

Abbreviation: None

Arguments: A numeric expression.

Default: None

µVision2 Control: This control cannot be specified on the command line.

Description: The ELSEIF control is used to introduce an alternative
program block after an IF or ELSEIF control. The
ELSEIF block is only assembled if the specified numeric
expression is non–zero (TRUE) and if previous IF and
ELSEIF conditions in the IF–ELSE–ENDIF construct
were FALSE. ELSEIF blocks are terminated by an
ELSEIF, ELSE, or ENDIF control.

Example: .
.
.
$IF SWITCH = 1 ; Assemble if switch is 1
.
.
.
$ELSEIF SWITCH = 2 ; Assemble if switch is 2
.
.
.
$ELSEIF SWITCH = 3 ; Assemble if switch is 3
.
.
.
$ENDIF
.
.
.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 235

 7

ELSE

Abbreviation: None.

Arguments: None.

Default: None.

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The ELSE control is used to introduce an alternative
program block after an IF or ELSEIF control. The ELSE
block is only assembled if previous IF and ELSEIF
conditions in the IF–ELSE–ENDIF construct were all
FALSE. ELSE blocks are terminated with an ENDIF
control.

Example: .
.
.
$IF (DEBUG) ; TRUE when DEBUG <> 1
.
.
.
$ELSEIF (TEST)
.
.
.
$ELSE
.
.
.
$ENDIF
.
.
.

236 Chapter 7. Invocation and Controls

7

ENDIF

Abbreviation: None

Arguments: None

Default: None

Control Class: General

µVision2 Control: This control cannot be specified on the command line.

Description: The ENDIF control terminates an IF–ELSE–ENDIF
construct. When the Ax51 assembler encounters an ENDIF
control statement, it concludes processing the IF block and
resumes assembly at the point of the IF block. Since IF
blocks may be nested, this may involve continuing in
another IF block. The ENDIF control must be preceded by
an IF, ELSEIF, or ELSE control block.

Example: .
.
.
$IF TEST
.
.
.
$ENDIF
.
.
.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 237

 8

Chapter 8. Error Messages
This chapter lists the error messages generated by Ax51. The following sections
include a brief description of the possible error messages along with a
description of the error and any corrective actions you can take to avoid or
eliminate the error.

Fatal errors terminate the assembly and generate a message that is displayed on
the console. Non–fatal errors generate a message in the assembly listing file but
do not terminate the assembly.

Fatal Errors
Fatal errors cause immediate termination of the assembly. These errors usually
occur as a result of an invalid command line. Fatal errors are also generated
when the assembler cannot access a specified source file or when the macros are
nested more than 9 deep.

Fatal errors produce a message that conforms to one of the following formats:

A251 FATAL ERROR –
FILE: <file in which the error occurred>
LINE: <line in which the error occurred
ERROR: <corresponding error message>

A251 TERMINATED.

or

A251 FATAL ERROR –

ERROR: <error message with description>
A251 TERMINATED.

where

FILE is the name of an input file that could not be opened.

LINE is the line where the error occurred

ERROR is the fatal error message text explained below.

238 Chapter 8. Error Messages

8

Fatal Error Messages

ATTEMPT TO SHARE FILE

A file is used both for input and output (e.g. list file uses the same name as
the source file).

BAD NUMERIC CONSTANT

The numeric argument to the given control is illegal.

CAN’T ATTACH FILE

The given file can’t be opened for read access.

CAN’T CREATE FILE

The given file can’t be opened for write/update access.

CAN’T HAVE GENERAL CONTROL IN INVOCATION LINE

The given control is allowed in $control lines within the source file only (for
example the EJECT control). Some controls are allowed only in the source
text and not in the command line. Refer to “Chapter 7. Invocation and
Controls” on page 195 for more information about the A251 controls.

CAN’T REMOVE FILE

The given temporary file could not be removed for some reason.

CONFLICTING CONTROL

The given control conflicts with an earlier control (for example
$NOMOD251 MODSRC).

CONTROL LINE TOO LONG (500)

A $-control line has more than 500 characters.

DISK FILE REQUIRED

The given file does not represent a disk file.

ERRORPRINT– AND LIST–FILE CANNOT BE THE SAME

It is illegal to direct the listing file output and the errorprint output to the
console at the same time.

EXPECTED DELIMITER ‘(‘ AFTER CONTROL

The given control requires a brace enclosed argument

EXPECTED DELIMITER ‘)‘ AFTER ARGUMENT

The given control requires a brace enclosed argument

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 239

 8

FILE DOES NOT EXIST

The given file does not exist.

FILE IS READ ONLY

The given file does not permit write/update access.

FILE WRITE ERROR

The given file could not be written to (check free space)

IDENTIFIER EXPECTED

The given control requires an identifier as it’s argument, for example SET
(VAR1=1234H).

ILLEGAL FILE NAME, VOLUME OR DIRECTORY NAME

The name of the file is invalid or designates an invalid file.

INVOCATION LINE TOO LONG

The invocation line is longer than 500 characters.

LIMIT EXCEEDED: BALANCED TEXT LENGTH

The maximum length of a balanced text string is 65000 characters.

LIMIT EXCEEDED: INCLUDE OR MACRO NESTING

The maximum nesting level for MPL-macros is 50. The maximum nesting
level of standard macros plus include files is 10.

LIMIT EXCEEDED: MACRO DEFINITION LENGTH

The maximum definition length of a standard macro is 20000 characters.
MPL macros are limited to 65000 characters.

LIMIT EXCEEDED: MORE THAN 16000 SYMBOLS

The number of symbols (labels, equ/set symbols, externals, segment-symbols)
must not exceed 16000 per source file.

LIMIT EXCEEDED: SOURCE LINE LENGTH (500)

A single source line must not exceed the 500 characters per line limit.

LIMIT EXCEEDED: TOO MANY EXTERNALS (65535)

The number of external symbols must not exceed 65535 per source module.

LIMIT EXCEEDED: TOO MANY EXTERNALS (65535)

The number of externals must not exceed 65535 per source module.

LIMIT EXCEEDED: TOO MANY SEGMENTS (65535)

The number of segments must not exceed 65535 per source module.

240 Chapter 8. Error Messages

8

NON-NULL ARGUMENT EXPECTED

The argument to the given control must not be null (for example $PRINT()).

OUT OF MEMORY

The assembler has run out of memory. Remove unnecessary drivers from
your system configuration.

OUT OF RANGE NUMERIC VALUE

The numeric argument to the given control is out of range (for example
$PAGEWIDTH(3000)).

UNKNOWN CONTROL

The given control is undefined.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 241

 8

Non–Fatal Errors
Non–fatal errors usually occur within the source program and are typically
syntax errors. When one of these errors is encountered, the assembler attempts
to recover and continue processing the input file. As more errors are
encountered, the assembler will produce additional error messages. The error
messages that are generated are included in the listing file.

Non–fatal errors produce a message using the following format:

*** ERROR number IN line (file, LINE line): error message

or

*** WARNING number IN line (file, LINE line): warning message

where

number is the error number.

line corresponds to the logical line number in the source file.

file corresponds to the source or include file which contains the
error.

LINE corresponds to the physical line number in <file>.

error message is descriptive text and depends on the type of error
encountered.

The logical line number in the source file is counted including the lines of all
include files and may therefore differ from the physical line number. For that
reason, the physical line number and the associated source or include file is also
given in error and warning messages.

Example
11 MOV R0,# 25 * | 10

*** --^
*** ERROR #4 IN 11 (TEST.A51, LINE 11), ILLEGAL CHARACTER

The caret character (^) is used to indicate the position of the incorrect character
or to identify the point at which the error was detected. It is possible that the
position indicated is due to a previous error. If a source line contains more than
one error, the additional position indicators are displayed on subsequent lines.

242 Chapter 8. Error Messages

8

The following table lists the non–fatal error messages that are generated by
A251. These messages are listed by error number along with the error message
and a brief description of possible causes and corrections.

Number Non–Fatal Error Message and Description

1 ILLEGAL CHARACTER IN NUMERIC CONSTANT

This error indicates that an invalid character was found in a numeric constant.
Numeric constants must begin with a decimal digit and are delimited by the
first non–numeric character (with the exception of the dollar sign). The base of
the number decides which characters are valid.
• Base 2: 0, 1 and the base indicator B
• Base 8: 0–7 and the base indicator O or Q
• Base 10: 0–9 and the base indicator D or no indicator
• Base 16: 0–9, A–F and the base indicator H
• Base 16: 0xhhhh, 0–9, and A–F

2 MISSING STRING TERMINATOR

The ending string terminator was missing. The string was terminated with a
carriage return.

3 ILLEGAL CHARACTER

The assembler has detected a character which is not in the set of valid
characters for the 51/251 assembler language (for example `).

4 BAD INDIRECT REGISTER IDENTIFIER

This error occurs if combined registers are entered incorrectly; e.g.,
@R7, @R3, @PC+A, @DPTR+A.

5 ILLEGAL USE OF A RESERVED WORD

This error indicates that a reserved word is used for a label.

6 DEFINITION STATEMENT EXPECTED

The first symbol in the line must be part of a definition. For example:
VAR1 EQU 12

7 LABEL NOT PERMITTED

A label was detected in an invalid context.

8 ATTEMPT TO DEFINE AN ALREADY DEFINED LABEL

A label was defined more than once. Labels may be defined only once in the
source program.

9 SYNTAX ERROR

Ax51 encountered an error processing the line at the specified token.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 243

 8

Number Non–Fatal Error Message and Description

10 ATTEMPT TO DEFINE AN ALREADY DEFINED SYMBOL

An attempt was made to define a symbol more than once. The subsequent
definition was ignored.

11 STRING CONTAINS ZERO OR MORE THAN TWO CHARACTERS

Strings used in an expression can be a maximum of two characters long (16
bits).

12 ILLEGAL OPERAND

An operand was expected but was not found in an arithmetic expression. The
expression is illegal.

13 ')' EXPECTED

A right parenthesis is expected. This usually indicates an error in the definition
of external symbols.

14 BAD RELOCATABLE EXPRESSION

A relocatable expression may contain only one relocatable symbol which may
be a segment symbol, external symbol, or a symbol belonging to a relocatable
segment. Mathematical operations cannot be carried out on more than one
relocatable symbol.

15 MISSING FACTOR

A constant or a symbolic value is expected after an operator.

16 DIVIDE BY ZERO ERROR

A division by zero was attempted while calculating an expression. The value
calculated is undefined.

17 INVALID BASE IN BIT ADDRESS EXPRESSION

This error indicates that the byte base in the bit address is invalid. This
occurs if the base is outside of the range 20h–2Fh or if it lies between 80h and
0FFh and is not evenly divisible by 8. For the 251 chip, the byte base address
must be in range 20H-0FFH with no restrictions. Note that with symbolic
operands, the operand specifies an absolute bit segment or an addressable
data segment.

18 OUT OF RANGE OR NON–TYPELESS BIT–OFFSET

The input of the offset (base.offset) in a bit address must be a typeless
absolute expression with a value between 0 and 7.

19 INVALID REGISTER FOR EQU/SET

The registers R0–R7, A and C may be used in SET or EQU directives. No
other registers are allowed.

244 Chapter 8. Error Messages

8

Number Non–Fatal Error Message and Description

20 INVALID SIMPLE RELOCATABLE EXPRESSION

A simple relocatable expression is intended to represent an address in a
relocatable segment. External symbols as well as segment symbols are not
allowed. The expression however may contain more symbols of the same
segment. Simple relocatable expressions are allowed in the instructions ORG,
EQU, SET, CODE, XDATA, IDATA, BIT, DATA, DB and DW.

21 EXPRESSION WITH FORWARD REFERENCE NOT PERMITTED

Expressions in EQU and SET directives may not contain forward references.

22 EXPRESSION TYPE DOES NOT MATCH INSTRUCTION

The expression does not conform to the x51 conventions. A #, /Bit, register, or
numeric expression was expected.

23 NUMERIC EXPRESSION EXPECTED

A numeric expression is expected. The expression of another type is found.

24 SEGMENT–TYPE EXPECTED

The segment type of a definition was missing or invalid.

25 RELOCATION–TYPE EXPECTED

An invalid relocation type for a segment definition was encountered.
26 INVALID RELOCATION–TYPE

The types PAGE and INPAGE are only allowed for the CODE/ECODE and
XDATA segments. INBLOCK/INSEG is only allowed for the CODE/ECODE
segments and BITADDRESSABLE is only for the DATA segment (maximum
length 16 Bytes). EBITADDRESSABLE is allowed for DATA segments
(maximum length 96 Bytes). The type UNIT is the default for all segment
types if no input is entered.

27 LOCATION COUNTER MAY NOT POINT BELOW SEGMENT–BASE

An ORG directive used in a segment defined by the AT address directive may
not specify an offset that lies below the segment base. The following example
is, therefore, invalid:
CSEG AT 1000H
ORG 800H

28 ABSOLUTE EXPRESSION REQUIRED

The expression in a DS or DBIT instruction must be an absolute typeless
expression. Relocatable expressions are not allowed.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 245

 8

Number Non–Fatal Error Message and Description

29 SEGMENT–LIMIT EXCEEDED

The maximum limit of a segment was exceeded. This limit depends on the
segment and relocation type. Segments with the attribute DATA should not
exceed 128 bytes. BITADDRESSABLE segments should not exceed 16 bytes
and INPAGE segments should not exceed 2 KBytes.

30 SEGMENT–SYMBOL EXPECTED

The operand to an RSEG directive must be a segment symbol.

31 PUBLIC–ATTRIBUTE NOT PERMITTED

The PUBLIC attribute is not allowed on the specified symbol.

32 ATTEMPT TO RESPECIFY MODULE NAME

An attempt was made to redefine the name of the module by using a second
NAME directive. The NAME directive may only appear once in a program.

33 CONFLICTING ATTRIBUTES

A symbol may not contain the attributes PUBLIC and EXTRN simultaneously.

34 ',' EXPECTED

A comma is expected in a list of expressions or symbols.

35 '(' EXPECTED

A left parenthesis is expected at the indicated position.

36 INVALID NUMBER FOR REGISTERBANK

The expression in a REGISTERBANK control must be an absolute typeless
number between 0 and 3.

37 OPERATION INVALID IN THIS SEGMENT

x51 instructions are allowed only within CODE/ECODE segments.

38 NUMBER OF OPERANDS DOES NOT MATCH INSTRUCTION

Either too few or too many operands were specified for the indicated
instruction. The instruction was ignored.

39 REGISTER–OPERAND EXPECTED

A register operand was expected but an operand of another type was found.

40 INVALID REGISTER

The specified register operand does not conform to the x51 conventions.

246 Chapter 8. Error Messages

8

Number Non–Fatal Error Message and Description

41 MISSING ‘END’ STATEMENT

The last instruction in a source program must be the END directive. The
preceding source is assembled correctly and the object is valid.

42 INTERNAL ERROR (PASS-2), CONTACT TECHNICAL SUPPORT

Occurs if a symbol in pass 2 contains a value different than in pass 1.

43 RESPECIFIED PRIMARY CONTROL, LINE IGNORED

A control was repeated or conflicts with a previous control. The control
statement was ignored.

44 MISPLACED PRIMARY CONTROL, LINE IGNORED

A primary control was misplaced. Primary controls may be entered in the
invocation line or at the beginning of the source file (as $ instruction). The
processing of primary controls in a source file ends when the first non
empty/non comment line containing anything but a primary control is
processed.

45 UNDEFINED SYMBOL (PASS–2)

The symbol is undefined.

46 CODE/ECODE–ADDRESS EXPECTED

An operand of memory type CODE/ECODE or a typeless expression is
expected.

47 XDATA–ADDRESS EXPECTED

An operand of memory type XDATA or a typeless expression is expected.

48 DATA–ADDRESS EXPECTED

An operand of memory type DATA or a typeless expression is expected.

49 IDATA–ADDRESS EXPECTED

An operand of memory type 'IDATA' or a typeless expression is expected.

50 BIT–ADDRESS EXPECTED

An operand of memory type BIT or a typeless expression is expected.

51 TARGET OUT OF RANGE

The target of a conditional jump instruction is outside of the +127/–128 range
or the target of an AJMP or ACALL instruction is outside the 2 KByte memory
block.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 247

 8

Number Non–Fatal Error Message and Description

52 VALUE HAS BEEN TRUNCATED TO 8 BITS

The result of the expression exceeds 255 decimal. Only the 8 low–order bits
are used for the byte operand.

53 MISSING 'USING' INFORMATION

The absolute register symbols AR0 through AR7 can be used only if a USING
register bank directive was specified. This error indicates that the USING
directive is missing and the assembler cannot assign data addresses to the
register symbols.

54 MISPLACED CONDITIONAL CONTROL

An ELSEIF, ELSE, or ENDIF control must be preceded by an IF instruction.

55 BAD CONDITIONAL EXPRESSION

The expression to the IF or ELSEIF control is invalid. These expressions must
be absolute and may not contain relocatable symbols.

The $IF and $ELSEIF can only access symbols defined with the $SET and
$RESET controls. Both IF and ELSEIF allow access to all symbols of the
source program.

56 UNBALANCED IF–ENDIF–CONTROLS

Each IF block must be terminated with an ENDIF control. This is also true with
skipped nested IF blocks.

57 SAVE STACK UNDERFLOW

A $RESTORE control instruction is then valid only if a $SAVE control was
previously given.

58 SAVE STACK OVERFLOW

The context of the GEN, COND, and LIST controls may be stored by the
$SAVE control up to a maximum of 9 levels.

59 MACRO REDEFINITION

An attempt was made to define an already defined macro.

60 Not generated by Ax51.

61 MACRO TERMINATED BY END OF FILE, MISSING ‘ENDM’

An attempt was made to define an already defined macro.

62 TOO MANY FORMAL PARAMETERS (16)

The number of formal parameters to a macro is limited to 16.

248 Chapter 8. Error Messages

8

Number Non–Fatal Error Message and Description

63 TOO MANY LOCALS (16)

The number of local symbols within a macro is limited to 16.

64 DUPLICATE LOCAL/FORMAL

The number of local or formal identifier must be distinct.

65 IDENTIFIER EXPECTED

While parsing a macro definition, an identifier was expected but something
different was found.

66 ‘EXITM’ INVALID OUTSIDE A MACRO

The EXITM (exit macro) keyword is illegal outside a macro definition.

67 EXPRESSION TOO COMPLEX

A too complex expression was encountered. This error occurs, if the number
of operands and operators in one expression exceeds 50.

68 UNKNOWN CONTROL OR BAD ARGUMENT(S)

The control given in a $-control line or the argument(s) to some control are
invalid.

69 MISPLACED ELSEIF/ELSE/ENDIF CONTROL

These controls require a preceding IF control.

70 LIMIT EXCEEDED: IF-NESTING (10)

IF controls may be nested up to a level of 10.

71 NUMERIC VALUE OUT OF RANGE

The value of a numeric expression is out of range (for example $PAGEWIDTH
(2048) where only values in range 80 to 132 are allowed).

72 TOO MANY TOKENS IN SOURCE LINE

The number of tokens (identifiers, operators, punctuation characters and end
of line) exceeds 200. The source line is truncated at 200 tokens.

72 TOO MANY TOKENS IN SOURCE LINE

The number of tokens (identifiers, operators, punctuation characters and end
of line) exceeds 200. The source line is truncated at 200 tokens.

73 TEXT FOUND BEYOND END STATEMENT - IGNORED

Text following the END directive is not processed by the assembler.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 249

 8

Number Non–Fatal Error Message and Description

74 REGISTER USAGE: UNDEFINED REGISTER NAME

A register name argument given to the REGUSE control does not represent
the name of a register.

75 ‘REGISTER USAGE’ REQUIRES A PUBLIC CODE SYMBOL

The register usage value must be assigned to a public symbol, which
represents a CODE or ECODE symbol.

76 MULTIPLE REGISTER USES GIVEN TO ONE SYMBOL

The register usage value may be assigned to a symbol or procedure only
once.

77 INSTRUCTION NOT AVAILABLE

The given instruction is not available in the current mode of operation.

78 Not generated by Ax51.

79 INVALID ATTRIBUTE

The OVERLAYABLE attribute given in a segment definition is not valid for
code and constant segments.

80 INVALID ABSOLUTE BASE/OFFS VALUE

The absolute address given in a segment definition does not conform to the
memory type of the segment (for example DATA AT 0x1000).

81 EXPRESSION HAS DIFFERENT MEMORY SPACE

The expression given in a symbol definition statement does not have the
memory space required by the directive, for example:
 VAR1 CODE EXPR
where ‘EXPR’ has a memory type other than CODE or NUMBER.

82 LABEL STATEMENT MUST BE WITHIN CODE/ECODE SEGMENT

The LABEL statement is not allowed outside a CODE or ECODE segment.

83 TYPE INCOMPATIBLE WITH GIVEN MEMORY SPACE

The type given in an external declaration is not compatible to the given
memory space. The following examples shows an invalid type since a bit can
never reside in code space:
 EXTRN CODE:BIT (bit0, bit1)

84 OPERATOR REQUIRES A CODE/ECODE ADDRESS

The type override operators NEAR and FAR cannot be applied to addresses
with memory type other than CODE and ECODE.

250 Chapter 8. Error Messages

8

Number Non–Fatal Error Message and Description

85 INVALID OPERAND TYPE

An expression contains invalid typed operands to some operator, for example
addition/unary minus on bit-type operands.

86 PROCEDURES CAN’T BE NESTED

A251 does not support nested procedures.

87 UNCLOSED PROCEDURE

A251 detected an unclosed procedure after scanning the source file.

88 VALUE HAS BEEN TRUNCATED TO 16 BITS

The displacement value given in a register expression (WRn+disp16,
DRk+disp16) has been truncated to 16 bits.

89 Not generated by Ax51.

90 ‘FAR’ RETURN IN ‘NEAR’ PROCEDURE

The return far instruction (ERET) was encountered in a procedure of type
NEAR (the code may not work).

91 TYPE MISMATCH

The operand type of an instruction operand does not match the requested type
of the instruction, for example:

MOV WR10,Byte_Memory_Operand. ; Word/Byte mismatch

Use a type override to avoid the warning as shown:

MOV WR10,WORD Byte_Memory_Operand

92, 93 Not generated by Ax51.

94 VALUE DOES NOT MATCH INSTRUCTION

The short value given in a INC/DEC Rn,#short is not one of 1,2,4.

95 ILLEGAL MEMORY CLASS SPECIFIER

The memory class specifier in a segment definition statement does not
correspond to one of the predefined memory class names (CODE, ECODE,
BIT, EBIT ...).

96 ACCESS TO MISALIGNED ADDRESS

A word instruction accesses a misaligned (odd) address. This warning is
generated only if the $WORDALIGN control was given.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 251

 8

Number Non–Fatal Error Message and Description

97 ‘FAR’ REFERENCE TO ‘NEAR’ LABEL

An ECALL/AJMP instruction to some label of type NEAR has been detected.

98 ‘NEAR’ REFERENCE TO ‘FAR’ LABEL

An ACALL/AJMP/SJMP or conditional jump instruction to some label of type
FAR has been detected.

99 'PROC' NAME REQUIRED

Ax51 expects the name of the procedure.

100 ILLEGAL CONSTANT VALUE

The constant value is illegal or has an illegal format.

101 TRAP INSTRUCTION IS RESERVED FOR DEBUGGING TOOLS

The TRAP instruction should be used for program debugging only.

102 PONTENTIAL ADDRESS OVERLAP

There is a potential address overlay in your program that is caused by ORG
statements.

103 <user error text>

This error is generated by the C preprocessor #error directive or the
__ERROR__ directive.

104 - 149 Not generated by Ax51.

150 PREMATURE END OF FILE ENCOUNTERED

The MPL macro processor encountered the end of the source file while
parsing a macro definition.

151 <name>: IDENTIFIER EXPECTED

The macro or function given by <name> in the error message expected an
identifier but found something else.

152 MPL FUNCTION <name>: <character> EXPECTED

The MPL function <name> expected a specific character in the input stream
but found some other character.

153 <name>: UNBALANCED PARENTHESIS

While scanning balanced text, the macro processor expected a ‘)’ character,
but found some other character.

252 Chapter 8. Error Messages

8

Number Non–Fatal Error Message and Description

154 EXPECTED <identifier>

The macro processor expected some specific identifier (for example ELSE) but
found some other text.

155 Not generated by Ax51.

156 FUNCTION ‘MATCH’: ILLEGAL CALL PATTERN

The call pattern to the MPL function match must be a formal parameter
followed by a delimiter followed by another formal parameter.

157 FUNCTION ‘EXIT’ IN BAD CONTEXT

The EXIT function must not appear outside a macro expansion, %REPEAT or
%WHILE.

158 ILLEGAL METACHARACTER <character>

The metacharacter may not be @, (,), *, TAB, EOL, A-Z,a-z, 0-9, _ and ?.

159 CALL PATTERN - DELIMITER <delimiter> NOT FOUND

The actual parameters in a macro call do not match the call pattern defined in
the macro definition of that macro.

160 CALL TO UNDEFINED MACRO <macroname>

An attempt to activate an undefined macro has been encountered .

161 ERROR-161
Not generated by Ax51.

162 INVALID DIGIT ‘character’ IN NUMBER

An ill formed number has been encountered. For numbers, the rules are
equal to the numbers in the assembler language with the exception of $ signs,
which are not supported within the MPL.

163 UNCLOSED STRING OR CHARACTER CONSTANT

A string or character constant is terminated by an end of line character instead
of the closing character.

164 INVALID STRING OR CHARACTER CONSTANT

A string or character constant may contain one or two characters.

165 EVAL: UNKNOWN EXPRESSION IDENTIFIER

An MPL expression contains an unknown identifier.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 253

 8

Number Non–Fatal Error Message and Description

166 <token>: INVALID EXPRESSION TOKEN

An MPL expression contains a token which neither represents an operator nor
an operand.

167 <function>: DIV/MOD BY ZERO

The evaluation of an expression within the MPL function <function> yields a
division or modulus by zero.

168 EVAL: SYNTAX ERROR IN EXPRESSION

An expression is followed by one or more erroneous tokens.

169 CAN’T OPEN FILE <name of file>

The file given in an $INCLUDE control cannot be opened.

170 <name of file>: IS NOT A DISK FILE

An attempt was made to open a file which is not a disk file (for example
$INCLUDE (CON).

171 ERROR IN INCLUDE DIRECTIVE

The argument to the INCLUDE control must be the brace enclosed name of
the file, for example $INCLUDE (REG251.INC).

172 CAN’T REDEFINE PREDEFINED MACRO ‘SET’

The .predefined %SET macro can’t be redefined.

254 Chapter 8. Error Messages

8

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 255

 9

Chapter 9. Linker/Locator
The Lx51 linker/locator is used to link or join together object modules that were
created using the Ax51 assembler, the Cx51 compiler, and the Intel PL/M-51
compiler. Object modules that are created by these translators are relocatable
and cannot be directly executed. They must be converted into absolute object
modules. The Lx51 linker/locator does this and much more.

For optimum support of the different 8051 and 251 variants, the following
linker/locater variants are available. The LX51 and L251 linker/locater provide
an improved memory allocation handling and are supersets of the BL51
linker/locater. The following table gives you an overview of the linker/locater
variants along with the translators that are supported.

Linker/Locater Processes Files from… Description

BL51 Code
Banking
Linker/Locater

Keil A51 Macro Assembler
Keil C51 Compiler
Intel ASM51 Assembler
Intel PL/M51 Compiler

For classic 8051. Includes support for
32 x 64KB code banks.

LX51 Extended
Linker/Locater

Keil A51 Macro Assembler
Keil C51 Compiler
Keil AX51 Macro Assembler
Keil CX51 Compiler for
80C51MX
Intel ASM51 Assembler
Intel PL/M51 Compiler

For classic 8051 and extended 8051
versions (Philips 80C51MX, Dallas 390,
etc.)
Allows code and data banking and
supports up to 16MB code and xdata
memory.

L251
Linker/Locater

Keil A51 Macro Assembler
Keil C51 Compiler
Keil A251 Macro Assembler
Keil C251 Compiler
Intel ASM51 Assembler
Intel PL/M51 Compiler

For Intel/Atmel WM 251.

Programs you create using the Ax51 Assembler and the Cx51 Compiler must be
linked using the Lx51 linker/locator. You cannot execute or simulate programs
that are not linked, even if they consist of only one source module. The Lx51
linker/locator will link one or more object modules together and will resolve
references within these modules. This allows you to create a large program that
is spread over a number of source files.

256 Chapter 9. Linker/Locator

9

The Lx51 linker/locator provides the following functions:

� Combines several program modules into one module, automatically
incorporating modules from the library files

� Combines relocatable partial segments of the same segment name into a
single segment

� Allocates and manipulates the necessary memory for the segments with
which all relocatable and absolute segments are processed

� Analyzes the program structure and manipulates the data memory using
overlay techniques

� Resolves external and public symbols
� Defines absolute addresses and computes the addresses of relocatable

segments
� Produces an absolute object file that contains the entire program
� Produces a listing file that contains information about the Link/Locate

procedure, the program symbols, and the cross reference of public and
external symbol names

� Detects errors found in the invocation line or during the Link/Locate run.
� Supports programs that are larger than 64 Kbytes and applications that are

using a Real-Time Multitasking Operating System (RTX51, RTX251, etc.).

All of these operations are described in detail in the remaining sections of this
chapter.

“Overview” on page 257 provides you with a summary of the features and
capabilities of the BL51 linker/locator. This chapter introduces the concepts of
what a linker is and does.

“Linking Programs” on page 266 describes how to invoke the linker from the
command line. The command-line arguments are discussed, and examples are
provided.

“Locating Programs to Physical Memory” on page 273 shows how to specify the
physical memory available in the target hardware and how to locate segments to
specific addresses.

“Data Overlaying” on page 280 explains how the Lx51 linker/locater creates a
call tree for segment overlaying of local variables and discusses how to modify
this call tree for applications that use indirect program calls.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 257

 9

“Tips and Tricks for Program Locating” on page 289 shows you several
additional features of the Lx51 linker/locater. These features allow you to create
in-system programmable applications, to determine the addresses of segments, to
use the C251 memory class NCONST without ROM in segment 0, or to locate
several segments within a 2KB block.

“Bank Switching” on page 293 describes what bank switching is and how it is
implemented by the Lx51 linker/locator. This chapter also shows how to make
applications that are larger than 64 KBytes work with code banking.

“Control Summary” on page 305 lists the command-line controls by category
and provides you with descriptions of each, along with examples.

“Error Messages” on page 360 lists the errors that you may encounter when you
use the Lx51 linker/locator.

Overview
The Lx51 linker/locator takes the object files and library files you specify and
generates a absolute object file. Absolute object files can be loaded into
debugging tools or may be converted into Intel HEX files for PROM
programming by OHx51 Object-Hex Converter.

NOTE
Banked object files generated by the BL51 linker/locater must be converted by
the OC51 Banked Object File Converter into absolute object files (one for each
bank) before they can be converted into Intel HEX files by the OH51 Object-Hex
Converter.

While processing object and library files, the Lx51 linker/locator performs the
following operations.

258 Chapter 9. Linker/Locator

9

Combining Program Modules
The object modules that the Lx51 linker/locator combines are processed in the
order in which they are specified on the command line. The Lx51 linker/locator
processes the contents of object modules created with the Ax51 assembler or the
Cx51 compiler. Library files, however, contain a number of different object
modules; and, only the object modules in the library file that specifically resolve
external references are processed by the Lx51 linker/locator.

Segment Naming Conventions
Objects generated by the Cx51 and Intel PL/M-51 compilers are stored in
segments, which are units of code or data memory. A segment may be
relocatable or may be absolute. Each relocatable segment has a type and a name.
This section describes the conventions used for naming these segments.

Segment names include a module_name. The module_name is the name of the
source file in which the object is declared and excludes the drive letter, path
specification, and file extension. In order to accommodate a wide variety of
existing software and hardware tools, all segment names are converted and
stored in uppercase.

Each segment name has a prefix (or in case of PL/M-51 a postfix) that
corresponds to the memory type used for the segment. The prefix is enclosed in
question marks (?). The following is a list of the standard segment name
prefixes.

Segment Prefix Memory Class Description

?PR? CODE Executable program code

?CO? CONST Constant data in program memory

?ED? EDATA EDATA memory for near variables
?FD? HDATA HDATA memory for far variables
?XD? XDATA XDATA memory

?DT? DATA DATA memory

?ID? IDATA IDATA memory

?BI? BIT Bit data in internal data memory

?BA? DATA Bit-addressable data in internal data memory

?PD? XDATA Paged data in XDATA memory
For detailed information about the segment naming conventions refer

to the Cx51 Compiler User’s Guide.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 259

 9

Combining Segments
A segment is a code or data block that is created by the compiler or assembler
from your source code. There are two basic types of segments: absolute and
relocatable. Absolute segments reside in a fixed memory location. They cannot
be moved by the linker. Absolute segments do not have a segment name and will
not be combined with other segments. Relocatable segments have a name and a
type (as well as other attributes shown in the table below). Relocatable segments
with the same name but from different object modules are considered parts of the
same segment and are called partial segments. The linker/locator combines these
partial relocatable segments.

The following table lists the segment attributes that are used to determine how to
link, combine, and locate code or data in the segment.

Attribute Description

Name Each relocatable segment has a name that is used when combining
relocatable segments from different program modules. Absolute
segments do not have names.

Memory Class The memory class identifies the address space to which the segment
belongs. For BL51 the type can be CODE, XDATA, DATA, IDATA, or
BIT. LX51 and L251 support in addition CONST, EBIT, ECONST,
EDATA, HDATA, HCODE, HCONST, and user-define memory classes.

Relocation Type The relocation type specifies the relocation operations that can be
performed by the linker/locator. Valid relocation types are AT address,
BITADDRESSABLE, INBLOCK, INPAGE, INSEG, OFFS offset, and
OVERLAYABLE.

Alignment Type The alignment type specifies the alignment operations that can be
performed by the linker/locator. Valid alignment types are BIT, BYTE,
WORD, DWORD, PAGE, BLOCK, and SEG.

Length The length attribute specifies the length of the segment.
Base Address The base address specifies the first assigned address of the segment.

For absolute segments, the address is assigned by the assembler. For
relocatable segments, the address is assigned by the linker/locator.

While processing your program modules, the linker/locator produces a table or
map of all segments. The table contains name, type, location method, length,
and base address of each segment. This table aids in combining partial
relocatable segments. All partial segments having the same name are combined
by the linker/locator into one single relocatable segment.

260 Chapter 9. Linker/Locator

9

The linker/locator uses the following rules when combining partial segments.

� All partial segments that share a common name must have the same memory
class. An error occurs if the types do not correspond.

� The length of the combined segments must not exceed the length of the
physical memory area.

� The location method for each of the combined partial segments must
correspond.

Absolute segments are not combined with other absolute segments, they are
copied directly to the output file.

Locating Segments
After the linker/locator combines partial segments it must determine a physical
address for them. The linker/locator processes each memory class separately.
Refer to “Memory Classes and Memory Layout” on page 27 for a discussion of
the different memory class and the physical address ranges.

After the linker/locator combines partial segments, it must determine a physical
address for them. The linker/locator places different segments in each of these
memory areas. The memory is allocated in the following order:

1. Register Banks and segments with an absolute address.

2. Segments specified in Lx51 segment allocation controls.

3. Segments with the relocation type BITADDRESSABLE and other BIT
segments.

4. All other segments with the memory class DATA.

5. Segments with the memory class IDATA, EDATA and NCONST.

6. Segments with the memory class XDATA.

7. Segments with the memory class CODE and the relocation type INBLOCK.

8. Other Segments with the memory class CODE and CONST.

9. Segments with the memory classes ECODE, HCONST, and HDATA.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 261

 9

Overlaying Data Memory
The stack addressing of the x51 CPU is slower compared to accessing fixed,
absolute memory locations. For this reason, local variables and function
arguments of C and PL/M-51 routines are stored at fixed memory locations
rather than on the stack. By using techniques to overlay the parameters and local
variables of C and PL/M-51 functions, the linker/locator attempts to maximize
the amount of available space.

NOTE
The Cx51 compiler supports also reentrant functions where the parameters and
automatic variables are store on the CPU stack of a simulate stack. For
detailed information refer to the Cx51 User’s Guides.

To accomplish overlaying, the linker/locator analyzes all references or calls
between the various functions. Using this information, the linker/locator can
determine precisely which data and bit segments can be overlaid.

You may use the OVERLAY and NOOVERLAY control to enable or disable
data overlaying. The OVERLAY control is the default and allows for very
compact data areas. Use the NOOVERLAY control to disable the segment
overlay function.

Resolving External References
External symbols reference addresses in other modules. A declared external
symbol must be resolved with a public symbol of the same name. Therefore, for
each external symbol, a public symbol must exist in another module.

The linker/locator builds a table of all public and external symbols that it
encounters. External references are resolved with public references as long as
the names match and the symbol attributes correspond.

The linker/locator reports an error if the symbol types of an external and public
symbol do not correspond. The linker/locator also reports an error if no public
symbol is found for an external reference.

The absolute addresses of the public symbols are resolved after the location of
the segments is determined.

262 Chapter 9. Linker/Locator

9

Absolute Address Calculation
After the segments are assigned fixed memory locations and external and public
references are processed, the linker/locator calculates the absolute addresses of
the relocatable addresses and external addresses. Symbolic debugging
information is also updated to reflect the new addresses.

Generating an Absolute Object File
The linker/locator generates the executable target program in absolute object
module format. The generated object module may contain debugging
information if the linker/locator is so directed. This information facilitates
symbolic debugging and testing. You may use the linker controls to suppress
debugging information in the object file.

The output file generated by the linker/locator may be loaded into the µVision2
debugger, in-circuit emulators, or may be translated into an Intel HEX file for
use with an EPROM programmer. The following table provides an overview of
the output format and the processing method for the different linker/locater
variants.

Linker/Locater Output Format Description

BL51
Linker/Locater

Extended
Intel OMF51
 or
Banked OMF51

Intel OMF51 is the standard format for programming the
8051 and supported by virtually all emulator vendors.
Extensions in this format provide symbolic information.
For banked applications the BL51 Linker/Locater
generates a banked OMF51 file that can be converted with
the OC51 Object File Converter into standard OMF51
files. The OC51 step is also required to convert the file
into an Intel HEX file.

LX51 Extended
Linker/Locater

Keil OMFx51 The Keil OMFx51 format supports of up to 16MB code and
xdata memory. This format is required for extended 8051
versions (Philips 80C51MX, Dallas 390, etc.). Check
with your emulator vendor if this format is supported.

L251
Linker/Locater

Intel OMF251 Intel OMF251 is the standard format for programming the
251 and supported by all 251 emulator vendors.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 263

 9

Generating a Listing File
The linker/locator generates a listing file that lists information about each step in
the link and locate process. This file also contains information about the
symbols and segments involved in the linkage. In addition, the following
information may be found in the listing file:

� The filenames and other parameters specified on the command line.
� Filenames and module names of all processed modules.
� A memory allocation table, which contains the location of the segments, the

segment type, the location method, and the segment name. This table may be
suppressed by specifying the NOMAP control.

� The overlay map which shows the structure of the finished program and lists
address information for the local data and bit segments of a function. The
overlay map also lists all code segments for which OVERLAYABLE
segments exist. You may suppress the overlay map by specifying the
NOMAP control.

� LX51 and L251 provide a list of all PUBLIC symbols within a program.
� A list of all errors in segments and symbols. The error causes are listed at the

end of the listing file.
� A list of all unresolved external symbols. An external symbol is unresolved

if no corresponding public symbol exists in another input file. Each reference
to an unresolved external symbol is listed in an error message at the end of
the listing file.

� A symbol table, which contains the symbol information from the input files.
This information consists of the names of the MODULES, SYMBOLS,
PUBLICS, and LINES. You may selectively suppress the symbolic
information with linker controls.

� An alphabetically sorted cross reference report of all PUBLIC and EXTERN
symbols in which the memory type and the module names that contain a
reference to that symbol are displayed.

� Errors detected during the execution of the linker/locator are displayed on the
screen as well as at the end of the listing file. Refer to “Error Messages” on
page 360 for a summary of the linker/locator errors and causes.

264 Chapter 9. Linker/Locator

9

Bank Switching
The classic 8051 directly supports a maximum of 64 KBytes of code space. The
Lx51 linker/locator allows 8051 programs to be created that are larger than 64
KBytes by using a technique known as code banking or bank switching. Bank
switching involves using extra hardware to select one of a number of code banks
all of which will reside at a common physical address.

For example, your hardware design may include a ROM mapped from address
0000h to 7FFFh (known as the common area) and four 32K ROM blocks
mapped from code address 8000h to 0FFFFh (known as the code bank area).
The following figure shows the memory structure.

ROM ROM

ROM

ROM ROM

Common
Area

Bank #0 Bank #1 Bank #2 Bank #3

32 KB 32 KB 32 KB

32 KB

32 KB

0000h

7FFFh

FFFFh

8000h

The code banking facility of Lx51 is compatible with the C51 compiler, the
CX51 compiler, and the Intel PL/M-51 compiler. Modules written using on of
these compilers can be easily used in code banking applications. No
modifications to the original source files are required.

Refer to “Bank Switching” on page 293 for detailed information about memory
banking and instructions for building code banking programs.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 265

 9

Using RTX51, RTX251, and RTX51 Tiny
Programs you create that utilize the RTX51, and RTX51 Tiny Real-Time
Operating Systems must be linked using the BL51 or the LX51 linker/locator.
The RTX51 and RTX51TINY controls enable link-time options that are
required to generate RTX51 Full and RTX51 Tiny applications.

Programs that use the RTX251 Full Real-Time Operating Systems must be
linked using the L251 linker/locator. The RTX251 control enable link-time
options that are required to generate RTX251 Full applications.

266 Chapter 9. Linker/Locator

9

Linking Programs
The Lx51 linker/locater is invoked by typing the program name at the Windows
command prompt. On this command line, you must include the name of the
assembler source file to be translated, as well as any other necessary assembler
controls required to translate your source file. The format for the Lx51
command line is:

BL51 ����inputlist���� ����TO outputfile���� ����controls����

LX51 ����inputlist���� ����TO outputfile���� ����controls����

L251 ����inputlist���� ����TO outputfile���� ����controls����

or
BL51 @commandfile
LX51 @commandfile
L251 @commandfile

where

inputlist is a list of the object files, separated by commas, for the
linker/locator to include in the outputfile. The inputlist
can contain files from Ax51, Cx51, PL/M-51 and library files.
For library files you may force the inclusion of modules by
specifying the module names in parentheses. The format of the
inputlist is described below.

outputfile is the name of the absolute object file that the linker/locator
creates. If no outputfile is specified on the command line,
the first filename in the input list is used. The basename of the
outputfile is also the default name for the map file.

controls are commands and parameters that control the operation of the
Lx51 linker/locator.

commandfile is the name of a command input file that may contain an
inputlist, outputfile, and controls. The text in a
commandfile has the same format as the standard command line
and is produced by any standard ASCII text editor. Newline
characters and comments a commandfile are ignored. Lx51
interprets the first filename preceded by an at sign (@) as a
commandfile.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 267

 9

The inputlist uses the following general format:

filename �(modulename �, …�)� �, …�

where

filename is the name of an object file created by Ax51, Cx51, or Intel
PL/M-51 or a library file created by the LIBx51 library
manager. The filename must be specified with its file
extension. Object files use the extension .OBJ. Library files use
the extension .LIB.

modulename is the name of an object module in the library file. The
modulename may only be used after the name of a library file.
The modulenames must be specified in parentheses after the
filename. Multiple modulenames may be separated by commas.

268 Chapter 9. Linker/Locator

9

Command Line Examples
The following examples are proper command lines for the Lx51 linker/locator.

BL51 C:\MYDIR\PROG.OBJ TO C:\MYDIR\PROG.ABS

In this example, only the input file, C:\MYDIR\PROG.OBJ, is processed and the
absolute object file generated is stored in the output file C:\MYDIR\PROG.ABS.

LX51 SAMPLE1.OBJ, SAMPLE2.OBJ, SAMPLE3.OBJ TO SAMPLE.ABS

In this example, the files SAMPLE1.OBJ, SAMPLE2.OBJ, and SAMPLE3.OBJ are
linked and absolute object file that is generated is stored in the file
SAMPLE.ABS.

L251 PROG1.OBJ, PROG2.OBJ, UTILITY.LIB

In this example, unresolved external symbols are resolved with the public
symbols from the library file UTILITY.LIB. The modules required from the
library are linked automatically. Modules from the library that are not
referenced are not included in the generated absolute object file.

BL51 PROG1.OBJ, PROG2.OBJ, UTILITY.LIB (FPMUL, FPDIV)

In this example, unresolved external symbols are resolved with the public
symbols from the library file UTILITY.LIB. The modules required from the
library are linked automatically. In addition, the FPMUL and FPDIV modules
are included whether they are needed or not. Other modules from the library that
are not referenced are not included in the generated absolute object file.

LX51 @PROJECT.LIN

Content of the file PROJECT.LIN:
PROG1.OBJ, /* Program Module 1 */
PROG2.OBJ, // program module 2
UTILITY.LIB (FPMUL, FPDIV) ; include always FPMUL and FPDIV

This is example is the same as the example before, but uses a command input file
that includes comments.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 269

 9

Control Linker Input with µVision2
The C and assembler source files that are part of a µVision2 project are
translated when you build your application. The object files generated are then
supplied as linker input file by the µVision2 build process. However you may
also include object and library files as part of a µVision2 project in the same way
as you include source files. You may set additional linker options for a file or
file group using the Options – Properties dialog. For detailed information refer
to the Getting Started and Creating Applications User’s Guide.

ERRORLEVEL
After linking, the Lx51 linker/locator sets the ERRORLEVEL to indicate the
status of the linking process. The Lx51 linker/locater and the other utilities
generate the same ERRORLEVEL values as the Ax51 macro assembler. Refer to
“ERRORLEVEL” on page 197 for more information.

Output File
The Lx51 linker/locator creates an output file using the input object files that
you specify on the command line. The output file is an absolute object file that
may be loaded into debugging tools like the µVision2 Debugger or may be
converted into a Intel HEX for PROM programming.

270 Chapter 9. Linker/Locator

9

Linker/Locater Controls
Controls for the Lx51 linker/locater may be entered after the output file
specification. Multiple controls must be separated by at least one space
character (). Each control may be entered only once on the command line. If a
control is entered twice, the Lx51 linker/locator reports an error.

The following table lists all Lx51 linker/locator controls and a brief description.
The controls of the BL51 linker/locater are listed in the first table. The controls
of the extended LX51 linker/locater and L251 linker/locater are listed in the
second table. LX51 and L251 provide the same sets of controls.

The “Control Summary” on page 305 explains the command-line controls in
detail. Refer to page number provided in the tables for quick reference to
descriptions and examples for each control.

NOTE
Underlined characters denote the abbreviation for the particular control.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 271

 9

BL51 Controls

Controls Page Description
BANKAREA 332 Specifies the address range where the code banks are located.
BANKx 333 Specifies the start address and segments for code banks.
BIT 334 Locates and orders BIT segments.
CODE 338 Locates and orders CODE segments.
DATA 339 Locates and orders DATA segments.
DISABLEWARNING 307 Disables specified warning messages.
IBANKING 323 Generate bank switch code for Infineon TV TEXT devices.
IDATA 340 Locates and orders IDATA segments.
IXREF 308 Includes a cross reference report in the listing file.
NAME 323 Specifies a module name for the object file.
NOAJMP 325 Generate bank switch code without AJMP instructions.
NODEBUGLINES 325 Excludes line number information from the object file.
NODEBUGPUBLICS 325 Excludes public symbol information from the object file.
NODEBUGSYMBOLS 325 Excludes local symbol information from the object file.
NODEFAULTLIBRARY 352 Excludes modules from the run-time libraries.
NOINDIRECTCALL 327 Do not generate bank switch code for indirectly called functions.
NOJMPTAB 328 Do not generate bank switch code.
NOLINES 310 Excludes line number information from the listing file.
NOMAP 311 Excludes memory map information from the listing file.
NOOVERLAY 353 Prevents overlaying or overlapping local bit and data segments.
NOPRINT 315 Disables generation of a listing file.
NOPUBLICS 312 Excludes public symbol information from the listing file.
NOSORTSIZE 341 Disable size sorting for segments before allocating the memory.
NOSYMBOLS 313 Excludes local symbol information from the listing file.
OVERLAY 354 Modifies call tree for data overlaying of local data & bit segments.
PAGELENGTH 314 Sets maximum number of lines in each page of listing file.
PAGEWIDTH 314 Sets maximum number of characters in each line of listing file.
PDATA 341 Specifies the starting address for PDATA segments.
PRECEDE 343 Locates segments that precede others in the DATA memory.
PRINT 315 Specifies the name of the listing file.
RAMSIZE 344 Specifies the size of the on-chip data memory.
RECURSIONS 356 Allows analyze of the call tree of complex recursive applications.
REGFILE 356 Specifies the register usage information file generated by Lx51.
RTX51 358 Includes support for the RTX-51 full real-time kernel.
RTX51TINY 358 Includes support for the RTX-51 tiny real-time kernel.
SPEEDOVL 359 Ignore during overlay analysis references from constant segments.
STACK 349 Locates and orders STACK segments.
XDATA 350 Locates and orders XDATA segments.

272 Chapter 9. Linker/Locator

9

LX51 and L251 Controls

Controls Page Description

ASSIGN 322 Defines public symbols on the command line.

BANKAREA 332 Specifies the address range where the code banks are located.

CLASSES 336 Specifies a physical address range for segments in a memory
class.

DISABLEWARNING 307 Disables specified warning messages.

IXREF 308 Includes a cross reference report in the listing file.

NAME 323 Specifies a module name for the object file.

NOAJMP 325 Generate bank switch code without AJMP instructions.

NOCOMMENTS 309 Excludes comment information from listing file and the object file.

NODEFAULTLIBRARY 352 Excludes modules from the run-time libraries.

NOINDIRECTCALL 327 Do not generate bank switch code for indirectly called functions.

NOLINES 310 Excludes line number information from listing file and object file.

NOMAP 311 Excludes memory map information from the listing file.

NOOVERLAY 353 Prevents overlaying or overlapping local bit and data segments.

NOPRINT 315 Disables generation of a listing file.

NOPUBLICS 312 Excludes public symbol information from the listing and object file.

NOSYMBOLS 313 Excludes local symbol information from the listing file.

NOSORTSIZE 341 Disable size sorting for segments before allocating the memory.

NOTYPE 327 Excludes type information from the listing file and the object file.

OBJECTCONTROLS 330 Excludes specific debugging information from the object file.

OVERLAY 354 Modifies call tree for data overlaying of local data & bit segments.

PAGELENGTH 314 Sets maximum number of lines in each page of listing file.

PAGEWIDTH 314 Sets maximum number of characters in each line of listing file.

PRINT 315 Specifies the name of the listing file.

PRINTCONTROLS 316 Excludes specific debugging information from the listing file.

PURGE 317 Excludes all debugging information from the listing and object file.

RECURSIONS 356 Allows analyze the call tree of complex recursive applications.

REGFILE 356 Specifies the register usage information file generated by Lx51.

RESERVE 345 Reserves memory and prevent Lx51 from using memory areas.
RTX251 358 Includes support for the RTX-251 full real-time kernel.

RTX51 358 Includes support for the RTX-51 full real-time kernel.

RTX51TINY 358 Includes support for the RTX-51 tiny real-time kernel.

SEGMENTS 346 Defines physical memory addresses and orders for segments.

SEGSIZE 348 Specifies memory space used by a segment.

WARNINGLEVEL 318 Controls the types and severity of warnings generated.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 273

 9

Locating Programs to Physical Memory
This section describes with examples how you locate your application into the
physical memory space for the different x51 variants. Refer to “Segment and
Memory Location Controls” on page 331 for a detailed description of the
linker/locater controls used in the examples below.

The linker/locator determines the physical memory range for relocatable
segments based on the memory class that is assigned to the segment. Refer to
“Memory Classes and Memory Layout” on page 27 for more information.
However, it is also possible to specify a fixed address for a segment using
linker/locater controls.

Classic 8051
The classic 8051 provides three different memory areas: on-chip RAM that
covers the DATA, BIT and IDATA memory, XDATA memory, and CODE
memory. The “Classic 8051 Memory Layout” is shown on page 29.

274 Chapter 9. Linker/Locator

9

Classic 8051 without Code Banking

The following examples illustrate how to setup the linker/locater. For the BL51
linker/locater the physical memory is defined with the RAMSIZE, XDATA and
CODE control. For the LX51 linker/locater the CLASSES control is used to
specify the available physical memory.

The following example assumes the following memory areas.

Memory Type Address Range Used by

ON-CHIP RAM D:0 – D:0x7F (128 Bytes) registers, bits, variables, etc.

XDATA RAM X:0 – X:0x7FFF, X:0xF800 – X:0xFFFF space for variables.

CODE ROM C:0 – C:0x7FFF program code and constant area.

To specify this memory layout BL51 should be invoked with as follows:

BL51 PROG.OBJ XDATA (0-0x7FFF, 0xF800-0xFFFF) CODE (0-0x7FFF) RAMSIZE(128)

You may also you the LX51 linker/locater. The CLASSES directive should
have the following settings:

LX51 PROG.OBJ CLASSES (IDATA (D:0-D:0x7F),
XDATA (X:0-X:0x7FFF, X:0xF800-X:0xFFFF),
CODE (C:0-C:0x7FFF))

NOTE
You need not to define the address range for the memory classes DATA and BIT
since the LX51 default setting already covers the correct physical address range.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 275

 9

Classic 8051 with Code Banking

The following example uses classic 8051 with a code banking hardware. This
hardware has the following memory resources:

Memory Type Address Range Used by

ON-CHIP RAM I:0 – I:0xFF (256 Bytes) registers, bits, variables, etc.

XDATA RAM X:0 – X:0xEFFF space for variables.

CODE ROM C:0 – C:0x7FFF (common area)
B0:0x8000 – B3:0xFFFF (four banks)

program code and constant area.

Parts of your program will be located into banks using BANKx in the inputlist
portion of the Lx51 linker/locater command-line. Refer to “Bank Switching” on
page 293 for more information. In addition you must specify the size of the
common area and the other memory resources of your hardware. For this
memory layout, the BL51 linker/locater should be invoked with as follows:

BL51 BANK0 {A.OBJ}, BANK1 {B.OBJ}, BANK2 {C.OBJ}, BANK3 {D.OBJ}
XDATA (0-0xEFFF) BANKAREA (0x8000 – 0xFFFF) RAMSIZE(256)

The LX51 linker/locater needs to be invoked as follows:

LX51 BANK0 {A.OBJ}, BANK1 {B.OBJ}, BANK2 {C.OBJ}, BANK3 {D.OBJ}
CLASSES (IDATA (I:0-I:0xFF), XDATA (X:0-X:0xEFFF),

CODE (C:0-C:0xFFFF)) BANKAREA (0x8000-0xFFFF)

276 Chapter 9. Linker/Locator

9

Extended 8051 Variants
Some extended 8051 variants expand the external data and program memory to
up to 16MB. The additional memory space is addressed with the memory
classes HDATA and HCONST. The “Extended 8051 Memory Layout” is shown
on page 31. Only the LX51 linker/locater supports this expanded memory space.
The following example shows assumes the following memory areas.

Memory Type Address Range Used by

ON-CHIP RAM D:0 – D:0xFF (256 Bytes) registers, bits, variables.

XDATA RAM X:0 – X:0x1FFFF (128 KB) space for variables.

CODE ROM C:0 – C:0xFFFFF (1 MB) program code and constant area.

To specify this memory layout LX51 should be invoked with the following
CLASSES directive.

LX51 MYPROG.OBJ CLASSES (HDATA (X:0 – X:0x1FFFF),
HCONST (C:0 – C:0xFFFFF))

NOTE
You need not to define the address range for the memory classes DATA, IDATA,
BIT, CODE, CONST, and XDATA since the LX51 default already covers the
correct physical address ranges for these memory classes.

The memory classes HDATA and HCONST are used for constants or variables
only. Program code is located into the expanded program memory with the same
code banking mechanism as described above under “Classic 8051 with Code
Banking”. A command line example that locates also program code into the
expanded program memory will look as follows:

LX51 BANK0 {A.OBJ}, BANK1 {B.OBJ}, BANK2 {C.OBJ}, BANK3 {D.OBJ}
CLASSES (IDATA (I:0-I:0xFF), XDATA (X:0-X:0xEFFF),

HDATA (X:0-X:0x1FFFF), HCONST (C:0-C:0xFFFFF)
CODE (C:0-C:0xFFFF)) BANKAREA (0x8000-0xFFFF)

There are several Keil Application Notes available that show how to create
programs for extended 8051 devices. Check www.keil.com or the Keil
development tools CD-ROM for Keil Application Notes that explain how to
setup the tools for extended 8051 devices.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 277

 9

Philips 80C51MX
The Philips 80C51MX has a linear 16MB address space that includes the
standard 8051 memory areas DATA/IDATA, CODE, and XDATA. In addition
both the external data space and the program space can be up to 8 MB. The
“80C51MX Memory Layout” is shown on page 33. The LX51 linker/locater is
used for the Philips 80C51MX microcontroller family. The following example
shows assumes the following memory areas.

Memory Type Address Range Used by

ON-CHIP RAM 7F:0000H .. 7F:03FFH registers, bits, variables.

RAM 00:0000H .. 01:FFFFH EDATA space for variables.

ROM 80:0000H .. 83:FFFFH program code and constant area.

To specify this memory layout LX51 should be invoked with the following
CLASSES directive.

LX51 MYPROG.OBJ CLASSES (HDATA (0 – 0x1FFFF),
EDATA (0x7F0000 – 0x7F03FF),
ECODE (0x800000 – 0x83FFFF),
HCONST (0x800000 – 0x83FFFF))

NOTE
You need not to define the address range for the memory classes DATA, IDATA,
BIT, CODE, CONST, and XDATA since the LX51 default already covers the
correct physical address ranges for these memory classes.

In the AX51 assembler it is possible to use the ECODE class and therefore the
complete 8MB code address space for program code. However, the CX51
compiler uses code banks to allocate parts of your program into the extended
program memory. Therefore you must use same technique as described above
under “Classic 8051 with Code Banking” to locate parts of your program into the
ECODE space. A command line example will look as follows:

LX51 BANK0 {A.OBJ}, BANK1 {B.OBJ}, BANK2 {C.OBJ}, BANK3 {D.OBJ}
CLASSES (HDATA (0 – 0x1FFFF), EDATA (0x7F0000 – 0x7F03FF),

ECODE (0x800000 – 0x83FFFF), HCONST (0x800000 – 0x83FFFF))

278 Chapter 9. Linker/Locator

9

Intel/Atmel WM 251
The Intel/Atmel WM 251 has like the Philips 80C51MX a linear 16MB address
space that includes all the memory classes. The “251 Memory Layout” is shown
on page 35. The following examples show you the invocation of the L251
linker/locater that is used for the Intel/Atmel WM 251 microcontroller family.

Example 1: The following example assumes the following memory areas.

Memory Type Address Range Used by

ON-CHIP RAM 00:0000H .. 00:041FH registers, bits, variables.

RAM 00:8000H .. 00:FFFFH EDATA space for variables.

ROM FF:0000H .. FF:7FFFH program code and constant area.

To specify this memory layout L251 should be invoked with the following
CLASSES directive.

L251 MYPROG.OBJ CLASSES (EDATA (0 – 0x41F, 0x8000 – 0xFFFF),
CODE (0xFF0000 – 0xFF7FFF),
CONST (0xFF0000 – 0xFF7FFF))

NOTES
You need not to define the address range for the memory classes DATA, IDATA,
BIT and EBIT since the L251 default already covers the correct physical address
ranges for these memory classes.

This example assumes that the memory classes XDATA, HDATA, HCONST,
HCODE, and NCONST are not used in your application.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 279

 9

Example 2: In addition to the example above, the next system contains a third
RAM for the memory class XDATA. In addition the ROM space is increased.

Memory Type Address Range Used by

ON-CHIP RAM 00:0000H .. 00:041FH registers, bits, variables.

ROM 00:0420H .. 00:7FFFH NCONST space.

RAM 00:8000H .. 01:7FFFH EDATA/HDATA space for variables.

ROM FE:0000H .. FF:FFFFH program code and constant area.

To specify this memory layout L251 should be invoked with the following
CLASSES directive.

L251 MYPROG.OBJ CLASSES (EDATA (0 – 0x41F, 0x8000 – 0xFFFF),
NCONST (0x420 – 0x7FFF),
HDATA (0x8000-0x1FFFF),
HCONST (0xFE0000 – 0xFFFFFF),
ECODE (0xFE0000 – 0xFFFFFF))

NOTE
You need not to define the address range for the memory classes DATA, IDATA,
BIT, EBIT, CODE, CONST, and XDATA since the L251 default already covers
the correct physical address ranges for these memory classes.

280 Chapter 9. Linker/Locator

9

Data Overlaying
Because of the limited amount of stack space available on the x51, local
variables and function arguments of C and PL/M-51 routines are stored at fixed
memory locations rather than on the stack. Normally, the Lx51 linker/locator
analyses the program structure of your application, creates a call tree and
overlays the data segments that contain local variables and function arguments.

This technique usually works very well and provides the same efficient use of
memory than a conventional stack frame would. Therefore this technique is also
known as compiled-time stack since the stack layout is fixed during the Compiler
and Linker run. However, in certain situations, this can be undesirable. You
may use the NOOVERLAY control to disable overlay analysis and data
overlaying. Refer to “NOOVERLAY” on page 353 for more information about
this control.

By default, the Lx51 linker/locator overlays the memory areas for local variables
and function arguments with the same memory areas of other functions, provided
that the functions do no call each other. Therefore the Lx51 linker/locator
analyses the program structure and creates a function call tree.

The local data and bit segments that belong to a function are determined by their
segment names. The local data and bit segments of a function are overlaid with
other function’s data and bit segments under the following conditions:

� No call references may exist between the functions. The Lx51 linker/locator
considers direct calls between functions, as well as calls via other functions.

� The functions may be invoked by only one program event: main or interrupt.
It is not possible to overlay data areas if a function is called by an interrupt
and during the main program. The same is true when the function is called by
several interrupts that might be nested.

� The segment definitions must conform to the rules described below.

NOTE
Typically, the Lx51 linker/locator generates overlay information that is
accurate. However, in some instances the default analysis of the call tree is
ineffective or incorrect. This occurs with indirectly called functions through
function pointers and functions that are called by both the main program and an
interrupt function.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 281

 9

Program and Data Segments of Functions
For correct data overlaying the Lx51 linker/locater must know the function code
and the local variable space that belongs to this function. The program and data
segments that belong together are determined by standard segment naming
convention used by the Cx51 compiler and PL/M-51 compiler. Therefore,
segments used in assembler programs should be constructed according to the
following rules.

Segment Content Cx51 Segment Name PL/M-51 Segment Name

Program CODE ?PR?functionname?modulename ?modulename?PR

Local BIT space ?BI?functionname?modulename ?modulename?BI

Local DATA space ?DT?functionname?modulename ?modulename?DT

Local IDATA space ?ID?functionname?modulename —

Local XDATA space ?XD?functionname?modulename —

Local PDATA space ?PD?functionname?modulename —

Local EDATA space ?ED?functionname?modulename —

Local EBIT space ?EB?functionname?modulename —

Local HDATA space ?HD?functionname?modulename —
?PR?, ?BI?, ?DT?, ?XD?, ?ID?, ?PD?, ?ED?, ?EB?, and ?HD? is derived from the memory class.

In addition each bit and data segment must have the relocation type OVERLAYABLE.

The Cx51 compiler and PL/M-51 compiler define automatically local data
segments according to these rules. However, if you use overlayable segments in
your assembly modules, you must follow these naming conventions. Refer to
“SEGMENT” on page 106 for information on how to declare segments.

Example for Segment declaration in assembly language:

?PR?func1?module1 SEGMENT CODE ; segment for func1 code
?DT?func1?module1 SEGMENT DATA OVERLAYABLE ; data segment belongs to func1

RSEG ?DT?func1?module1
func1_var: DS 10 ; space for local variables in func1

RSEG ?PR?func1?module1
func1: MOV func1_var,A

RET

More information can be found in the Keil Application Note 149: Data
Overlaying and Code Banking with Assembler Modules that is available on
www.keil.com or the Keil development tools CD-ROM.

282 Chapter 9. Linker/Locator

9

Using the Overlay Control
In most cases, the Lx51 data overlay algorithm works correct and does not
require any adjustments. However, in some instances the overlay algorithm
cannot determine the real structure of your program and you must adjust the
function call tree with the OVERLAY control. This is the case when your
program uses function pointers or contains virtual program jumps as it is the case
in the scheduler of a real-time operating system.

NOTE
The Lx51 linker/locater recognizes correctly the program structure and the call
tree of applications that are using the RTXx51 real-time operating system. You
need not to use the OVERLAY control to specify the task functions of the RTXx51
application, since this is automatically performed by the Lx51 linker/locater.

The OVERLAY control allows you to change the call references used by the
Lx51 linker/locator during the overlay analysis. Using the OVERLAY control
is easy when you know the structure of your program. The program structure or
call tree is reflected in the segments listed in the OVERLAY MAP of the listing
file created by the Lx51 linker/locater.

The following application examples show situations where the OVERLAY
control is required to correct the call tree. In general, a modification of the
references (calls) is required in the following cases:

� When a pointer to a function is passed or returned as function argument.
� When a pointer to a function is contained in initialized variables.
� When your program includes a real-time operating system.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 283

 9

Disable Data Overlaying

If you are in doubt about whether certain segments should be overlaid or not, you
may disable overlaying of those segments. Segment overlaying can be disabled
at Cx51 compiler level or with the OVERLAY control at the Lx51 linker/locator
command line as follows:

� You can invoke the Lx51 linker/locator with the NOOVERLAY option to
disable data overlaying for the entire application.

� The Lx51 linker/locator control OVERLAY (sfname ! *) disables data
overlaying for the function specified by sfname.

� C code that is translated with the Cx51 compiler directive OPTIMIZE (1)
does not use the relocation type OVERLAYABLE. Therefore the local data
segments of this code portions cannot be overlaid.

284 Chapter 9. Linker/Locator

9

Pointer to a Function as Function Argument

In the following example indirectfunc1 and indirectfunc2 are indirectly
called through a function pointer in execute. The value of the function pointer
is passed in the function main. Since main contains the reference, the Lx51
linker/locator thinks that main calls indirectfunc1 and indirectfunc2. But
this is incorrect, since the real function call is in the function execute.

Following is a program listing for this example.

:
:
bit indirectfunc1 (void) { /* indirect function 1 */
unsigned char n1, n2;
return (n1 < n2);

}

bit indirectfunc2 (void) { /* indirect function 2 */
unsigned char a1, a2;
return ((a1 - 0x41) < (a2 - 0x41));

}

void execute (bit (*fct) ()) { /* sort routine */
unsigned char i;
for (i = 0; i < 10; i++) {
if (fct ()) i = 10;

}
}

void main (void) {

if (SWITCH) /* switch: defines function */
execute (indirectfunc1);

else
execute (indirectfunc2);

}
:
:

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 285

 9

The following listing file shows the overlay map for the program before making
adjustments with the OVERLAY control.

OVERLAY MAP OF MODULE: OVL1 (OVL1)

SEGMENT BIT-GROUP DATA-GROUP
+--> CALLING SEGMENT START LENGTH START LENGTH

--
?C_C51STARTUP ----- ----- ----- -----
+--> ?PR?MAIN?OVL1

?PR?MAIN?OVL1 ----- ----- ----- -----
+--> ?PR?INDIRECTFUNC1?OVL1
+--> ?PR?EXECUTE?OVL1
+--> ?PR?INDIRECTFUNC2?OVL1

?PR?INDIRECTFUNC1?OVL1 ----- ----- 0008H 0002H

?PR?EXECUTE?OVL1 ----- ----- 0008H 0004H

?PR?INDIRECTFUNC2?OVL1 ----- ----- 0008H 0002H

The entry for ?PR?MAIN?OVL1 shows a call to ?PR?INDIRECTFUNC1?OVL1,
?PR?EXECUTE?OVL1, and ?PR?INDIRECTFUNC2?OVL1. However, only the
function execute is called from main. The other references are results from
using the function pointer fct, which is passed to execute. The function call to
indirectfunc1 and indirectfunc2 takes place in execute, not in main where
the functions are referenced.

In this situation, the linker/locator cannot locate the actual function calls.
Therefore, the Lx51 linker/locator incorrectly overlays the local segments of the
functions execute, indirectfunc1, and indirectfunc2. This might result in a
data overwrites of the variables i and fct.

You can use the OVERLAY control to correct the function call tree as it seen by
the linker. For this example, you must remove the references from main to
indirectfunc1 and indirectfunc2. Do this with main ~ (indirectfunc1,
indirectfunc2). Then, add the actual function call from execute to
indirectfunc1 and indirectfunc2 with executed ! (indirectfunc1,
indirectfunc2). The following shows the complete linker invocation line for
this example.

Lx51 OVL1.OBJ OVERLAY (main ~ (indirectfunc1, indirectfunc2),
execute ! (indirectfunc1, indirectfunc2))

286 Chapter 9. Linker/Locator

9

With this Lx51 invocation the overlay map shows the correct references.

OVERLAY MAP OF MODULE: OVL1 (OVL1)

SEGMENT BIT-GROUP DATA-GROUP
+--> CALLING SEGMENT START LENGTH START LENGTH

--
?C_C51STARTUP ----- ----- ----- -----
+--> ?PR?MAIN?OVL1

?PR?MAIN?OVL1 ----- ----- ----- -----
+--> ?PR?EXECUTE?OVL1

?PR?EXECUTE?OVL1 ----- ----- 0008H 0004H
+--> ?PR?INDIRECTFUNC1?OVL1
+--> ?PR?INDIRECTFUNC2?OVL1

?PR?INDIRECTFUNC1?OVL1 ----- ----- 000CH 0002H

?PR?INDIRECTFUNC2?OVL1 ----- ----- 000CH 0002H

Pointer to a Function in Arrays or Tables

Another typical scenario is an array that contains a pointer to a function. This is
typical for applications with function tables. In the following example, func1
and func2 are called indirectly by main but the entry points are stored as
constant values in the table functab. This table is located in the segment
?CO?modulname. Therefore, the ?CO?OVL2 segment contains references to func1
and func2.

In reality, however, the calls are executed from the main function. But, the Lx51
linker/locator assumes that func1 and func2 are recursive called, because in
func1 and func2 constant strings are used. These constants strings are also
stored in the segment ?CO?OVL2. The result is that the Lx51 linker/locator
reports warnings which indicate recursive calls from the segment ?CO?OVL2 to
func1 and func2.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 287

 9

The following listing shows part of the OVL2 program.

.

.

.
void func1 (void) {
unsigned char i; /* function 1 */

for (i = 0; i < 10; i++) printf ("THIS IS FUNCTION1\n");
}

void func2 (void) { /* function 2 */
unsigned char i;

for (i = 0; i < 10; i++) printf ("THIS IS FUNCTION2\n");
}

code void (*functab []) () = {func1, func2}; /* function table */

void main (void) {
(*functab [P1 & 0x01]) ();

}
.
.
.

The Lx51 linker/locater generates typically warnings when you generate
programs that contain a table with pointer to functions. Although the program
can be executed correct in this example above, the references should be adjusted
to the real calls. In the real application the functions func1 and func2 are
called by the main function.

If you are using the BL51 linker/locater in the default configuration you need to
delete the references from the code segment that contains the tables with
?CO?OVL2 ~ (func1, func2). Then you need to add the calls from main to
func1 and func2 with main ! (func1, func2):

BL51 OVL2.OBJ OVERLAY (?CO?OVL2~(func1, func2), main!(func1, func2))

The SPEEDOVL control of BL51 ignores all references from constant segments
to program code. This is also the operation mode of LX51 and L251. Therefore
you need only to add the calls from main to func1 and func2 with main !
(func1, func2):

BL51 OVL2.OBJ OVERLAY (main ! (func1, func2)) SPEEDOVL

The LX51 and L251 linker/locater always ignores the references from constant
segments to program code and requires only to add the function calls:

LX51 OVL2.OBJ OVERLAY (main ! (func1, func2))

288 Chapter 9. Linker/Locator

9

After this correction the memory usage of your application is typically more
efficient and the overlay map shows a call tree that matches your application.
Also the linker/locater does not generate any warning messages.

OVERLAY MAP OF MODULE: OVL2 (OVL2)

SEGMENT BIT-GROUP DATA-GROUP
+--> CALLING SEGMENT START LENGTH START LENGTH

?C_C51STARTUP ----- ----- ----- -----
+--> ?PR?MAIN?OVL2

?PR?MAIN?OVL2 ----- ----- ----- -----
+--> ?PR?FUNC1?OVL2
+--> ?PR?FUNC2?OVL2

?PR?FUNC1?OVL2 ----- ----- 0008H 0001H
+--> ?PR?PRINTF?PRINTF

?PR?PRINTF?PRINTF ----- ----- 0009H 0014H
+--> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?OVL2 ----- ----- 0008H 0001H
+--> ?PR?PRINTF?PRINTF

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 289

 9

Tips and Tricks for Program Locating
The Lx51 linker/locator supports several techniques that are required in for
special tasks, for example in-system Flash programming or systems that use a
RAM section for constants. The following section provides examples that show
the usage of the Lx51 linker/locater in such situations.

Locate Segments with Wildcards
The Lx51 linker/locater allows in the segment controls wildcards for specifying
the segment name. For example you may use such segment name specifications
to locate all segments within one module into one 2KB block. In this way you
can use the ACALL and AJMP instructions for function calls within this module.

BL51 myfile.obj CODE (?PR?*?myfile (0x1000))

LX51 myfile.obj SEGMENTS (?PR?*?myfile (C:0x1000))

290 Chapter 9. Linker/Locator

9

Special ROM Handling (LX51 & L251 only)
The LX51 and L251 linker/locater provide the memory class SROM that is used
to handle segments or memory classes that are to be stored in ROM, but copied
for execution into RAM areas. This is useful for:

� In-system Flash programming when the Flash ROM contains also the flash
programming code. With standard Flash devices it is impossible to fetch
program code from the while other parts of the device are erased or
programmed. The Keil Application Note 139: “In-system Flash
Programming with 8051 and 251” that is available on www.keil.com or the
Keil development tools CD-ROM contains a program example.

� For using the C251 TINY or XTINY memory model it is required to provide
a NCONST memory class in the lowest 64KB memory region. However, if
only RAM is mapped into this memory region, you can specify a different
storage address for the NCONST memory class and copy the content at the
program start into RAM. This allows you to use the efficient TINY or
XTINY memory model while the system hardware just provides RAM in the
lowest 64KB memory segment. Refer to “Use RAM for the 251 Memory
Class NCONST” on page 292 for a program example.

Refer to Lx51 linker/locater controls “SEGMENTS” on page 346 and
“CLASSES” on page 336 for syntax on defining segments and memory classes
that have a different storage and execution address.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 291

 9

Segment and Class Information (LX51 & L251 only)

The Lx51 linker/locater creates special symbols that can be used to obtain
address and length information for segments or classes used in an application.
The information is passed via external variable declarations. The Lx51
linker/locater uses symbols with the notation segmentname_p_ or
_classname_p_. Question mark (?) characters in the segment name generated by
the Cx51 compiler are replaced with underscore (_) characters. The postfix _p_
specifies the information that should be obtained and is explained in the
following table:

Postfix Description

l is the length in bytes of the segment or memory class. For a memory class this
number includes also any gaps that are required to allocate all segments that belong to
this memory class.

s is the start address of the segment or memory class. For a memory class this number
refers to the first segment that belongs to this memory class.

e is the end address of the segment or memory class. For a memory class this number
refers to the last segment that belongs to this memory class.

t is the target or execution address of the segment or memory class. For a memory
class this number refers to the first segment that belongs to this memory class. This
information is only available for segments or memory classes which have assigned a
different storage and execution address.

Examples:

If ?PR?FUNC1 is the segment name:
_PR_FUNC1_L_ is the length in bytes of the segment ?PR?FUNC1.
_PR_FUNC1_S_ is the start address of the segment ?PR?FUNC1.
_PR_FUNC1_E_ is the end address of the segment ?PR?FUNC1.
_PR_FUNC1_T_ is the target or execution address of the segment ?PR?FUNC1.

If NCONST is the memory class name:
_NCONST_L_ is the length in bytes of the memory class NCONST.
_NCONST_S_ is the start address of the memory class NCONST.
_NCONST_E_ is the end address of the memory class NCONST.
_NCONST_T_ is the target or execution address of the memory class NCONST.

292 Chapter 9. Linker/Locator

9

You may access this information in Cx51 applications as shown in the following
program example:

extern char _PR_FUNC1_L_;

unsigned int get_length (void) {
return ((unsigned int) &_PR_FUNC1_L_); // length of segment ?PR?FUNC1

}

The file SROM.H contains macro definitions for accessing segment and class
information. Refer to the Keil Application Note 139: “In-system Flash
Programming with 8051 and 251” for more information.

Use RAM for the 251 Memory Class NCONST

The C251 compiler memory model TINY or XTINY requires a NCONST
memory class in the lowest 64KB memory region. If your hardware provides
only RAM in this memory area, you may use the SROM memory class to store
the constants somewhere in the 16MB memory space and you may copy the
content of the NCONST memory class into a RAM in the lowest 64KB memory.
This is shown in the following program example. Refer to the “CLASSES”
control on page 336 for more information.

#include <string.h>

extern char huge _NCONST_S_;
extern char huge _NCONST_T_;
extern char near _NCONST_L_;

const char text [] = "This text is accessed in the NCONST memory class";

void main (void) {
fmemcpy (&_NCONST_T_, &_NCONST_S_, (unsigned int)&_NCONST_L_);
:

}

The C251 compiler and L251 linker/locater is invoke as follows:

C251 SAMPLE.C XTINY DEBUG

L251 SAMPLE.C CLASSES (NCONST (0x2000-0x4000)[]), SROM (0xFE0000-0xFEFFFF)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 293

 9

Bank Switching
The Lx51 linker/locator manages and allows you to locate program code in up to
32 code banks and one common code area. The common code area is always
available for all the code banks. The common code area and other aspects of the
code banking are described below.

Common Code Area
The common code area can be accessed by all banks. This area usually includes
routines and constant data that must always be accessible; for example, interrupt
and reset vectors, interrupt routines, string constants, bank switching routines,
etc. The following code sections must always be located in the common area:

� Reset and Interrupt Vectors: reset and interrupt jump entries must remain
in the common area, since the code bank selected by the x51 program is not
known at the time of the CPU reset or interrupt. The Lx51 linker/locator,
therefore, locates absolute code segments in the common area in each case.

� Code Constants: constant values (strings, tables, etc.) which are defined in
the code area must be stored in the common area unless you guarantee that
the code bank containing the constant data is selected at the time they are
accessed by program code. You can relocate these segments in code banks
by means of control statements.

� Interrupt Functions: generated using the Cx51 compiler must always be
located in the common area. However, interrupt functions can call functions
in other code banks. The Lx51 linker/locator produces a warning when an
attempt is made to locate a Cx51 interrupt function in a code bank.

� Bank Switch Code: is required for switching the code banks as well as the
associated jump table are located in the common area since these program
sections are required by all banks. By default, the Lx51 linker/locator
automatically locates these segments in the common area. Do not attempt to
locate these program sections into bank areas.

� Library Functions: intrinsic run-time library functions used by the Cx51
compiler or the PL/M-51 compiler must be located in the common area. It is
possible that the bank switch code will use registers that are used to transfer
values to such library functions. Therefore, the Lx51 linker/locator always
locates program sections of the runtime library in the common area. Do not
locate these program sections in other bank areas.

294 Chapter 9. Linker/Locator

9

It is difficult to estimate the size of the common area. The size will always
depend on the particular software application and hardware constraints. If the
ROM area that is dedicated as common area is not large enough to contain the
entire common code, the Lx51 linker/locator will duplicate the remaining part of
the common code area into each code bank. This is also the case, if your
hardware does not provide a common code area section in the ROM space.

Code Bank Areas
The classic 8051 only provides 16 address lines for accessing code memory.
With 16 address lines, only 64 KBytes of code space can be accessed. Code
banks are addressed using up to five additional address lines that must originate
from 8051 I/O ports or from external hardware devices (latch or port I/O device)
that are mapped into the XDATA space. A particular code bank is selected by
controlling the state of the additional address lines. Up to 32 banks can be used.

Code banking applications must include the assembly file L51_BANK.A51 that is
located in the folder LIB. This source module contains the code that is invoked
to switch code banks. You must configure this source file to match the bank
switching technique used by your target hardware. Refer to “Bank Switching
Configuration” on page 297 for a description of this source file.

Optimum Program Structure with Bank Switching

The Lx51 linker/locator automatically generates a jump table for all functions,
which are stored in the bank area and are called from the common area or from
other banks. The Lx51 linker/locator only uses bank switching when the
program section called actually lies in another memory bank or when it can be
called from the common area. This improves performance and prevents bank
switching from significantly impacting the performance of your application
program. Additionally, the memory and stack requirements for this bank
switching technique are considerably smaller than other alternative solutions.

Each bank switch takes on a classic 8051 approximately 50 CPU cycles and
requires two additional bytes in the stack area. Bank switches are relatively fast,
however, programs should be structured so that bank switches are seldom
required to achieve maximum performance. This means that functions that are
frequently invoked and functions that are called from multiple code banks should
be located in the common code area.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 295

 9

Program Code in Bank and Common Areas

The Lx51 linker/locator provides the BANKAREA, BANKx, and COMMON
controls to specify the location and size of the bank switching area and to locate
segments in code banks or the common area.

When you generate a code banking application, you must specify the modules
you want located in a code bank or common area. This is accomplished using
BANKx or COMMON in the inputlist portion of the Lx51 linker/locator
command line.

BANKx in the inputlist specifies the code bank for object and library files.
The x in the BANKx keyword specifies a bank number from 0 to 31. For
example, BANK0 for code bank number 0, BANK1 for code bank number 1,
and so on. All program code segments contained in these modules will be
located in the specified code bank. A program code segment is determined by it
prefix or postfix ?PR?.

COMMON locates program code into the common area. This is also the default
for modules that are not explicitly located with BANKx.

The general format for BANKx and COMMON in the inputlist are:

BANKx { filename �(modulename)� �, filename …�} �, …�

COMMON { filename �(modulename)� �, filename …�} �, …�

where

x is the bank number to use and can be a number from 0 to 15.

{ and } are used to enclose object files or library files.

filename is the name of an object file or library file.

modulename is the name of an object module in a library file.

The start and end address of the area where the code banks are located is
specified with the BANKAREA control. These address range should reflect the
space where the code bank ROMs are physically mapped. All program code
segments that are assigned to a bank will with the BANKx keyword in the
inputlist will be located within this address range. Refer to “BANKAREA”
on page 332 for more information.

296 Chapter 9. Linker/Locator

9

Command-Line Example:

A typical Lx51 linker/locator command line appears as follows. More “Error!
Reference source not found.” can be found on page Error! Bookmark not
defined..

LX51 COMMON{C_ROOT.OBJ},
BANK0{C_BANK0.OBJ, MODUL1.OBJ},
BANK1{C_BANK1.OBJ},
BANK2{C_BANK2.OBJ}
TO MYPROG.ABS &
BANKAREA(8000H,0FFFFH)

Segments in Bank Areas

In the controls portion of the BL51 linker/locator command line you can use
the BANKx control to locate or order segments within a code bank. Refer to
“BANKx” on page 333 for more information.

For the LX51 linker/locator the SEGMENTS control allows you also to locate
or order segments within a code banks. Refer to “SEGMENTS” on page 346 for
more information.

With these controls you may place constants in code banks. You can use this
technique to locate arrays or large tables in code banks other than the one in
which your program resides. However, in your Cx51 programs, you must
manually ensure that the proper code bank is used when accessing that constant
data. You can do this with the switchbank function which is defined in the
L51_BANK.A51 module. “BANK_EX2 – Banking with Constants” on page 407
shows a complete example program.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 297

 9

Bank Switching Configuration
When you create a code banking application, you must specify the number of
code banks your hardware provides as well as how the code banks are switched.
This is done with definitions in an assembler source file. For the classic 8051
devices the bank switch configuration is defined in the file L51_BANK.A51 found
in the \C51\LIB\ subdirectory. For the Philips 80C51MX the file MX51BANK.A51
is used.

NOTE
For extended 8051 devices there are several Keil Application Notes available
on www.keil.com or the Keil development tools CD-ROM that explain the
banking and memory configuration for these devices.

The following table explains the definitions in the Bank Configuration File:

Name Description

?B_NBANKS number of banks to be supported. The following values are allowed: 2, 4,
8, 16, and 32. Two banks require one additional address (or I/O Port) line;
four banks require two lines; eight banks require three lines; sixteen banks
require four lines, and thirty-two banks require five address lines.

?B_MODE indicates the way how the address extension is done. 0 for using an
standard 8051 I/O Port, 1 for using an XDATA port; 2 for using 80C51MX
address line; and 4 for user provide bank switch code.

?B_RTX specifies if the application uses RTX-51 Full. Only ?B_MODE 0 and 1 are
supported by RTX51 Full.

?B_VARBANKING Enables variable banking in XDATA and CODE memory. Variable banking
requires the LX51 linker/locater. It is not supported by BL51. Refer to
“Banking With Common Area” on page 303 for an example on how to setup
the LX51 linker/locater.

?B_RST_BANK Specifies the default bank that is selected after CPU reset. This setting is
used by the LX51 linker/locater to reduce the entries in the INTERBANK
CALL TABLE. The value 0xFF disables this optimization. This value is not
used by BL51.

For ?B_MODE = 0 (bank switching via 8051 I/O Port) define the following:
?B_PORT used to specify the address of the internal data port. The SFR address of

an internal data port must be specified. (For example: P1 as for port 1).
?B_FIRSTBIT indicates which bit of the 8051 I/O port is to be assigned first. The value 3

indicates that port bit 3 is used as first port line for the address extension.
If, for example, two address lines are used, P1.3 and P1.4 are allocated in
this case. The remaining lines of the 8051 I/O port can be used for other
purposes.

298 Chapter 9. Linker/Locator

9

Name Description

For ?B_MODE = 1 (bank switching via xdata mapped port) define the following:
?B_XDATAPORT specifies the XDATA memory address used to select the bank address and

defines the address of an external data port. Any XDATA address can be
specified (address range 0H to 0FFFFH) under which a port can be
addressed in the XDATA area. 0FFFFH is defined as the default value. In
this mode ?B_CURRENTBANK and ?B_XDATAPORT are initialized with
the value 0 at the start of the program by the C51 startup code.

?B_FIRSTBIT indicates which bit of the defined port is to be assigned first. Other than
with ?B_MODE=0 the remaining bits of the XDATA port cannot be used for
other purposes.

For ?B_MODE = 4 (bank switching via user provided code) define the following:
SWITCHx For each memory bank a own macro defines the bank switch code. The

number of macros must conform with the ?B_NBANKS definition. For
example 4 banks require a SWITCH0, SWITCH1, SWITCH2 and SWITCH3
macro. Each macro must generate exactly the same number of code
bytes. If the size is different you use should NOP instructions to make it
identical. You must also ensure that the CPU has selected a defined state
at startup. The RTX51 real-time operating system does not support this
banking mode.

The Ax51 assembler is required to assemble L51_BANK.A51 or MX51BANK.A51.
The source file should be copied as part of your project file. Public Symbols in
L51_BANK.A51

Additional PUBLIC Symbols are provided in L51_BANK.A51 for your
convenience. They are described below.

Name Description

?B_CURRENTBANK is a memory location in the DATA or SFR memory, which contains the
currently selected memory bank. This memory location can be read for
debugging. A modification of the memory location, however, does not
cause a bank switching in most cases. Only required bits based on setting
of ?B_NBANKS and ?B_FIRSTBIT are valid in this memory location.
The bits, which are not required, must be masked out with a corresponding
mask.

_SWITCHBANK is a Cx51 compatible function, which allows the bank address to be
selected by the user program. This function can be used for bank
switching if the constant memory is too small. Note that this C function
can be called only from code in the common area. The function is
accessed as follows:

extern void switchbank (unsigned char bank_number);
 :
 :
switchbank (0);

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 299

 9

Configuration Examples
The following examples demonstrate how to configure code banking.

Banking With Four 64 KByte Banks

This example demonstrates the configuration required to bank switch using one
256KB EPROM. The following figure illustrates the hardware schematic.

P1.0
P1.1
P1.2
P1.3

P1.5
P1.4

P1.6
P1.7

P3.0
P3.1
P3.2
P3.3

P3.5
P3.4

P3.6
P3.7

P2.0
P2.1
P2.2
P2.3

P2.5
P2.4

P2.6
P2.7

ALE

PSEN/

P0.0
P0.1
P0.2
P0.3

P0.5
P0.4

P0.6
P0.7AD7

AD5
AD6

AD4
AD3
AD2
AD1
AD0

A8
A9

A10
A11
A12
A13
A14
A15

P
o

rt
1 {

P
o

rt
3 {

Classic
8051

EN

Latch

EN

Latch

A15
A14

A16
A17

A13
A12
A11
A10
A9
A8

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

OE/

EPROM
256 KB

BANK0 - BANK3

CE/

The following figure illustrates the memory map for this example.

ROM ROMROM ROM

Bank #0 Bank #1 Bank #2 Bank #3

0000H

FFFFH

300 Chapter 9. Linker/Locator

9

One 256KB EPROM is used in this hardware configuration. The bank switching
can be implemented by using two bank select address lines (in this example
Port 1.5 and Port 3.3). L51_BANK.A51 can be configured as follows for this
hardware configuration.

?N_BANKS EQU 4 ; Four banks are required.
?B_MODE EQU 4 ; user-provided bank switch code is used.

The section that starts with IF ?B_MODE = 4 defines the code that switches
between the code banks. This section needs to be configured as follows:

P1 DATA 90H ; I/O Port Addresses *
P3 DATA 0B0H ; *
; *
SWITCH0 MACRO ; Switch to Memory Bank #0 *

CLR P3.3 ; Clear Port 3 Bit 3 *
CLR P1.5 ; Clear Port 1 Bit 5 *
ENDM *

; *
SWITCH1 MACRO ; Switch to Memory Bank #1 *

SETB P3.3 ; Set Port 3 Bit 3 *
CLR P1.5 ; Clear Port 1 Bit 5 *
ENDM *

; *
SWITCH2 MACRO ; Switch to Memory Bank #2 *

CLR P3.3 ; Clear Port 3 Bit 3 *
SETB P1.5 ; Set Port 1 Bit 5 *
ENDM *

; *
SWITCH3 MACRO ; Switch to Memory Bank #3 *

SETB P3.3 ; Set Port 3 Bit 3 *
SETB P1.5 ; Set Port 1 Bit 5 *
ENDM *

You need to ensure that the CPU starts in a defined state at reset. Therefore the
following code needs to be added to the STARTUP.A51 file of your application:

MOV SP,#?STACK-1
; added for bank switching
P1 DATA 90H ; I/O Port Addresses
P3 DATA 0B0H

EXTRN DATA (?B_CURRENTBANK)
MOV ?B_CURRENTBANK,#0 ; select code bank 0
CLR P3.3 ; Clear Port 3 Bit 3
CLR P1.5 ; Clear Port 1 Bit 5

; end
JMP ?C_START

The Lx51 linker/locator automatically places copies of the code and data in the
common area into each bank so that the contents of all EPROM banks are
identical in the address range of the common area. The BANKAREA control is
not required since the default setting already defines address range 0 to 0xFFFF
as banked area.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 301

 9

Banking With On-Chip Code ROM

Several device variants offer SFR registers that
configure the on-chip code ROM space. You
may use this feature for existing hardware
designs to introduce code banking. For
example, if your hardware uses currently a
Dallas 80C320 (ROM-less device) and an
external 64KB ROM, you may increase the code
space of this existing hardware design with
Dallas 80C520 design that offers 16KB on-chip
ROM. You may use the ROMSIZE SFR
register for code bank switching of the 16KB
on-chip and off-chip ROM block.

The figure on the right shows this memory layout.
For this configuration the following settings in
L51_BANK.A51 are required.

ROM
Bank #1
(off-chip)

Common
ROM
Area

(off-chip)

4000h

FFFFh

3FFFh

0000h

ROM
Bank #0
(on-chip)

?N_BANKS EQU 2 ; Two banks are required.
?B_MODE EQU 4 ; user-provided bank switch code is used.

The macros need to be configured as follows:

ROMSIZE DATA 0C2H ; SFR Address *
; *
SWITCH0 MACRO ; Switch to Memory Bank #0 *

MOV ROMSIZE,#05H ; Enable on-chip 16KB ROM *
ENDM *

; *
SWITCH1 MACRO ; Switch to Memory Bank #1 *

MOV ROMSIZE,#00H ; Disable on-chip 16KB ROM *
ENDM *

You need to ensure that the CPU starts in a defined state at reset. Therefore the
following code needs to be added to the STARTUP.A51 file of your application:

MOV SP,#?STACK-1
; added for bank switching
ROMSIZE DATA 0C2H ; SFR Address

EXTRN DATA (?B_CURRENTBANK)
MOV ?B_CURRENTBANK,#0 ; select code bank 0
MOV ROMSIZE,#05H ; start with on-chip ROM enabled

; end
JMP ?C_START

The Lx51 linker/locater BANKAREA control should be set as follows:

BL51 ... BANKAREA (0,0x3FFF)

302 Chapter 9. Linker/Locator

9

Banking With XDATA Port

You may also use a latch or I/O device that is mapped into the XDATA space to
extend the address lines of the 8051 device. The following application illustrates
a hardware that uses a latch mapped into the XDATA space to address a 512KB
EPROM.

P2.0
P2.1
P2.2
P2.3

P2.5
P2.4

P2.6
P2.7

ALE

PSEN/

P0.0
P0.1
P0.2
P0.3

P0.5
P0.4

P0.6
P0.7AD7

AD5
AD6

AD4
AD3
AD2
AD1
AD0

A8
A9

A10
A11
A12
A13
A14
A15

Classic
8051

EN

Latch

EN

Latch

A14
A13
A12
A11
A10
A9
A8

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

OE/

CE/

EPROM
512 KB

Bank0-7

A17
A16

A15

WR/

A18

The following figure illustrates the memory map for this example.

ROM ROMROM ROM

Bank #0 Bank #1 Bank #2 Bank #3

0000H

0FFFFH

ROM

Bank #4

ROM

Bank #5

ROM

Bank #6

ROM

Bank #7

For this hardware the L51_BANK.A51 file can be configured as follows:

?N_BANKS EQU 8 ; Eight banks are required.
?B_MODE EQU 1 ; bank switch via xdata port.
?B_XDATAPORT EQU 0 ; any I/O address can be given for the example.
?B?FIRSTBIT EQU 0 ; bit 0 is used as first address line.

You need no additional configuration in the STARTUP.A51 file. The Lx51
linker/locator automatically places copies of the code and data in the common

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 303

 9

area into each bank so that the contents of all EPROM banks are identical in the
address range of the common area. The BANKAREA control is not required
since the default setting already defines address range 0 to 0xFFFF as banked
area.

Banking With Common Area

The following schematic shows a hardware that offers a 32KB common area and
seven 32KB code banks. A single EPROM is used to map the complete memory.
Due to the address decoding logic, the code bank 0 is identical with the common
area and should be therefore not used by your application. The design also
provides 256KB xdata memory that is mapped the same way as the code
memory. The xdata space might be used for variable banking.

P1.0
P1.1
P1.2
P1.3

P1.5
P1.4

P1.6
P1.7

P3.0
P3.1
P3.2
P3.3

P3.5
P3.4

P3.6
P3.7

P2.0
P2.1
P2.2
P2.3

P2.5
P2.4

P2.6
P2.7

ALE

PSEN/

P0.0
P0.1
P0.2
P0.3

P0.5
P0.4

P0.6
P0.7AD7

AD5
AD6

AD4
AD3
AD2
AD1
AD0

A8
A9

A10
A11
A12
A13
A14
A15

P
o
rt

1 {

P
o
rt

3 {

Classic
8051

A14
A13
A12
A11
A10
A9
A8

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

OE/

EPROM
256 KB

Common
(0x0000- 0x7FFF)

A15

Bank#1 - Bank#7
(0x8000- 0x3FFFF)

A17

A16

EN

Latch

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

OE/

A14
A13
A12
A11
A10
A9
A8

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

WR/

RAM
256 KB

Common
(0x0000- 0x7FFF)

A15

Bank#1 - Bank#7
(0x8000- 0x3FFFF)

A17

A16

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

RD/

A14
A13
A12
A11
A10
A9
A8

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

OE/

EPROM
256 KB

Common
(0x0000- 0x7FFF)

A15

Bank#1 - Bank#7
(0x8000- 0x3FFFF)

A17

A16

A1
A2
A3
A4
A5
A6
A7

A0

D1
D2
D3
D4
D5
D6
D7

D0

OE/

RD/

WR/

304 Chapter 9. Linker/Locator

9

The following figure illustrates the memory map for this example.

ROMROM ROM

Bank #1 Bank #2 Bank #3

8000H

0FFFFH

ROM

Bank #4

ROM

Bank #5

ROM

Bank #6

ROM

Bank #7

ROM
Common

Area

0000H

7FFFH ROM Bank #0 is not available it is physically the
same memory space as the cmmon area.

For this hardware the L51_BANK.A51 file can be configured as follows:

?N_BANKS EQU 8 ; Eight banks are required.
?B_MODE EQU 0 ; banking via on-chip I/O Port.
?B_VAR_BANKING EQU 1 ; you may use also variable banking.
?B_PORT EQU 090H ; Port address of P1.
?B_FIRSTBIT EQU 2 ; Bit 2 is used as the first address line.

You should not use the code bank 0 in your application, since this memory is
effectively identical with the common area. Therefore no module of you
application should be assigned to code bank 0. The Lx51 linker/locater
BANKAREA control should be set as follows:

BL51 BANK1 {A.OBJ}, ..., BANK7{G.OBJ} ... BANKAREA (0x8000,0xFFFF)

If you are using variable banking, you need to use LX51 linker/locator. To
define the additional memory the HDATA and HCONST memory classes are
used. In this case the memory classes need to be set as follows:

LX51 BANK1 {A.OBJ}, ..., BANK7{G.OBJ} ... BANKAREA (0x8000,0xFFFF)
CLASSES (XDATA (X:0-X:0x7FFF),

HDATA (X:0x18000-X:0x1FFFF,X:0x28000-X:0x2FFFF,
X:0x38000-X:0x3FFFF,X:0x48000-X:0x4FFFF,
X:0x58000-X:0x5FFFF,X:0x68000-X:0x6FFFF,
X:0x78000-X:0x7FFFF),

HCONST (C:0x18000-C:0x1FFFF,C:0x28000-C:0x2FFFF,
C:0x38000-C:0x3FFFF,C:0x48000-C:0x4FFFF,
C:0x58000-C:0x5FFFF,C:0x68000-C:0x6FFFF,
C:0x78000-C:0x7FFFF))

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 305

 9

Control Summary
This section describes all Lx51 linker/locator command-line controls. The
controls are grouped into the following categories:

� Listing File Controls
� Output File Controls
� Segment and Location Controls
� High-Level Language Controls

Many of the Lx51 linker/locator controls allow you to specify optional
arguments and parameters in parentheses immediately following the control.
The following table lists the types of arguments that are allowed with certain
controls.

Argument Description

address A value representing a memory location. For BL51, L251 and LX51 in Philips
80C51MX mode plain numbers are used to represent an address. LX51 uses for
classic 8051 devices a memory prefix in the address specification. For example:
 D:0x55 refers to DATA memory address 0x55
 C:0x8000 refers to CODE memory address 0x8000
 B4:0x4000 refers to CODE memory address 0x4000 in code bank 4.

classname A name of a memory class. The x51 tools allows basic classes and user defined
classes. Refer to “Memory Classes and Memory Layout” the page 27 for more
information about memory classes.

filename A file name that corresponds to the Windows file name conventions.
modname A module name. Can be up to 40 characters long and must start with:

A – Z, ?, _, or @; following characters can be: 0 – 9, A – Z, ?, _, or @.
range An address range in the format:

 startaddress � – endaddress�

The startaddress is the first address specified by the range. The endaddress is
optional and specifies the last address which is included in the address range.

segname A segment name. Can be up to 40 characters long and must start with:
A – Z, ?, _, or @; following characters can be: 0 – 9, A – Z, ?, _, or @.

sfname A segment or function name.
value A number, for example, 1011B, 2048D, 0x1000, or 0D5FFh.

306 Chapter 9. Linker/Locator

9

Listing File Controls
The Lx51 linker/locator generates a listing file that contains information about
the link/locate process. This file is sometimes referred to as a map file. The
following controls specify the filename, format, and information that is included
in the listing file. For a detailed description of each control refer to the page
listed in the table.

BL51 LX51, L251 Page Description

DISABLEWARNING DISABLEWARNING 307 Disables specified warning messages.

IXREF IXREF 308 Includes a cross reference report.

– NOCOMMENTS 309 Excludes comment information.

NOLINES NOLINES 310 Excludes line number information.

NOMAP NOMAP 311 Excludes memory map information.

NOPRINT NOPRINT 315 Disables generation of a listing file.

NOPUBLICS NOPUBLICS 312 Excludes public symbol information.

NOSYMBOLS NOSYMBOLS 313 Excludes local symbol information.

PAGELENGTH(n) PAGELENGTH(n) 314 Sets number of lines in each page.

PAGEWIDTH(n) PAGEWIDTH(n) 314 Sets number of characters in each line.

PRINT PRINT 315 Specifies the name of the listing file.

– PRINTCONTROLS 316 Excludes specific debugging information.

– PURGE 317 Excludes all debugging information.

– WARNINGLEVEL(n) 318 Controls the types and severity of warnings
generated.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 307

 9

DISABLEWARNING

Abbreviation: DW

Arguments: DISABLEWARNING (number, �…�)

Default: All warning messages are displayed.

µVision2 Control: Options – Lx51 Misc – Warnings – Disable Warning
Numbers.

Description: The DISABLEWARNING control lets you to selectively
disable Linker warnings. The warning numbers that should
be suppressed are specified in parenthesis.

The following examples disables the report of Warning
Number 1 and 5.

Example: LX51 myfile.obj DISABLEWARNING (1, 5)

308 Chapter 9. Linker/Locator

9

IXREF

Abbreviation: IX

Arguments: IXREF �(NOGENERATED, NOLIBRARIES)�

Default: No cross reference is generated in the listing file.

µVision2 Control: Options – Listing – Linker Listing – Cross Reference

Description: The IXREF control instructs the Lx51 linker/locator to
include a cross reference report in the listing file. The cross
reference is an alphabetically sorted list of all PUBLIC and
EXTERN symbols in your program along with memory type
and module names. The first module name is the module in
which the PUBLIC symbol is defined. Further module
names show the modules in which the EXTERN symbol is
defined. If no PUBLIC symbol is present,
** UNRESOLVED ** is shown as first module name.

The option NOGENERATED suppresses symbols starting
with ‘?’. These question mark symbols are normally
produced by the compiler for calling specific C functions or
passing parameters.

The option NOLIBRARIES suppresses those symbols,
which are defined in a library file.

Example: BL51 myfile.obj IXREF

LX51 myfile.obj IXREF (NOGENERATED)

L251 myfile.obj IXREF(NOLIBRARIES, NOGENERATED)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 309

 9

NOCOMMENTS

Restriction: This control is available in LX51 and L251 only.

Abbreviation: NOCO

Arguments: None

Default: include comment information.

Description: The NOCOMMENTS control removes the comment
records contained in the input files from the listing file and
the object output file. Comment records are added to the
object module to identify the compiler or assembler that
produced the object file. If you want to exclude comment
information just from the listing file you have to use the
PRINTCONTROL control.

See Also: OBJECTCONTROLS, PRINTCONTROLS

Example: L251 MYPROG.OBJ NOCOMMENTS

310 Chapter 9. Linker/Locator

9

NOLINES

Abbreviation: NOLI

Arguments: None

Default: Include line number information

µVision2 Control: Options – Listing – Linker Listing – Line Numbers

Description: For the BL51 linker/locator, the NOLINES control excludes
line number information in the listing file.

For the LX51 linker/locater and the L251 linker/locator, the
NOLINES control excludes line number information in the
listing file and object output file. If you want to exclude
line number information just from the listing file you have to
use the PRINTCONTROL control.

NOTE
Line numbers are address information about the source
code lines and are used for debugging purposes. The Lx51
linker/locator generates line numbers for source modules in
your program only, if the Ax51 assembler and Cx51
compiler include that information in the input object files.
Refer to the assembler control NOLINES on page 215 and to
the Cx51 User’s Guide for information on including line
number information in the object files.

See Also: NODEBUGLINES, PRINTCONTROLS,
OBJECTCONTROLS

Example: BL51 MYPROG.OBJ NOLINES

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 311

 9

NOMAP

Abbreviation: NOMA

Arguments: None

Default: Include a memory map in the listing file.

µVision2 Control: Options – Listing – Linker Listing – Memory Map

Description: The NOMAP control prevents the Lx51 linker/locator from
including the memory map in the listing file.

Example: BL51 MYPROG.OBJ NOMAP

312 Chapter 9. Linker/Locator

9

NOPUBLICS

Abbreviation: NOPU

Arguments: None

Default: Include information about public symbols

µVision2 Control: Options – Listing – Linker Listing – Public Symbols

Description: For the BL51 linker/locator, the NOPUBLICS control
excludes public symbols from the listing file.

For the LX51 linker/locater and the L251 linker/locator, the
NOLINES control excludes public symbols from the listing
file and object output file. If you want to exclude public
symbols just from the listing file you have to use the
PRINTCONTROLS control.

See Also: NODEBUGPUBLICS, PRINTCONTROLS,
OBJECTCONTROLS

Example: BL51 MYPROG.OBJ NOPUBLICS

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 313

 9

NOSYMBOLS

Abbreviation: NOSY

Arguments: None

Default: Include information about local program symbols

µVision2 Control: Options – Listing – Linker Listing – Local Symbols

Description: For the BL51 linker/locator, the NOSYMBOLS control
excludes local symbols from the listing file.

For the LX51 linker/locater and the L251 linker/locator, the
NOSYMBOLS control excludes local symbols from the
listing file and object output file. If you want to exclude
local symbols just from the listing file you have to use the
PRINTCONTROLS control.

NOTE
Symbols information is typically used for debugging
purposes. The Lx51 linker/locator generates symbol
information for source modules in your program only, if the
Ax51 assembler and Cx51 compiler include that
information in the input object files. Refer to the assembler
control DEBUG on page 203 and to the Cx51 User’s Guide
for information on including symbol information in the
object files.

See Also: NODEBUGSYMBOLS, PRINTCONTROLS,
OBJECTCONTROLS

Example: BL51 MYPROG.OBJ NOSYMBOLS

314 Chapter 9. Linker/Locator

9

PAGELENGTH / PAGEWIDTH

Abbreviation: PL

Arguments: PAGELENGTH (value)
PAGEWIDTH (value)

Default: PAGELENGTH (60)
PAGEWIDTH (132)

µVision2 Control: Options – Listing – Page Width, Page Length

Description: The PAGELENGTH control sets the maximum number of
lines per page for the listing file.

The PAGEWIDTH control defines the maximum width of
lines in the listing file. The page width may be set to a
number in the 72 to 132 range.

Examples: BL51 PROG.OBJ TO PROG.ABS PAGELENGTH(50) PAGEWIDTH(100)

 L251 MYPROG.OBJ PAGELENGTH(30000) PAGEWIDTH(120)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 315

 9

PRINT / NOPRINT

Abbreviation: PR / NOPR

Arguments: PRINT (filename)

Default: The listing file is generated using the basename of the output
file. BL51 use the extension .M51; LX51 and L251 use the
extension .MAP as default for the listing file.

µVision2 Control: Options – Listing – Select Folder for Listing Files

Description: The PRINT control allows you to specify the name of the
listing file that is generated by the Lx51 linker/locator. The
name must be enclosed in parentheses immediately
following the PRINT control on the command line.

The NOPRINT control prevents the linker/locater from
generating a listing file.

Example: LX51 MYPROG.OBJ TO MYPROG.ABS PRINT(OUTPUT.MAP)

316 Chapter 9. Linker/Locator

9

PRINTCONTROLS

Restriction: This control is available in LX51 and L251 only.

Abbreviation: PC

Arguments: PRINTCONTROLS (subcontrol�, …�)

Default: all debug information is printed in the listing file.

µVision2 Control: Options – Listing – Linker Listing

Description: The PRINTCONTROLS control allows you to remove
specific debug information from the listing file. The
subcontrol option can be one or more of the following
parameters:

subcontrol Removes from the listing file ...

NOCOMMENTS ... comment records.

NOLINES ... line number information.

NOPUBLICS ... public symbol information.

NOSYMBOLS ... local symbol information.

PURGE ... complete debug information.

See Also: NOCOMMENTS, NOLINES, NOPUBLICS,
NOSYMBOLS, OBJECTCONTROLS, PURGE

Example: LX51 MYPROG.OBJ PRINTCONTROLS (NOLINES, NOSYMBOLS)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 317

 9

PURGE

Restriction: This control is available in LX51 and L251 only.

Abbreviation: PU

Default: all debug information is processed.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: The PURGE control allows you to remove the complete
debug information contained in the input files from the
listing file and the object output file. PURGE has the same
effect as specifying NOCOMMENTS, NOLINES,
NOPUBLICS and NOSYMBOLS. The debug information
is only required for program debugging and has no influence
on the executable code. If you want to exclude line number
information just from the listing file you have to use the
PRINTCONTROLS control.

See Also: NOCOMMENTS, NOLINES, NOPUBLICS,
NOSYMBOLS, OBJECTCONTROLS,
PRINTCONTROLS

Example: L251 MYPROG.OBJ PURGE

318 Chapter 9. Linker/Locator

9

WARNINGLEVEL

Restriction: This control is available in LX51 and L251 only.

Abbreviation: WL

Arguments: A number between 0 .. 2.

Default: WARNINGLEVEL (2)

µVision2 Control: Options – Lx51 Misc – Warnings – Warning Level.

Description: The WARNINGLEVEL control allows you to suppress
linker warnings. Refer to “Warnings” on page 360 for a full
list of the linker warnings.

Warning Level Description

0 Disables almost all linker warnings.

1 Lists only those warnings that may generate
incorrect code, including information about data
type mismatches of total different types.

2 (Default) Lists all WARNING messages including
warnings all data type mismatches.

Example: LX51 MYFILE.OBJ WL (1)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 319

 9

Example Listing File

The following example includes all optional sections of the listing file.

L251 LINKER/LOCATER V3.00 09/06/2000 12:09:21 PAGE 1

L251 LINKER/LOCATER V3.00, INVOKED BY: The listing file shows the command
E:\L251.EXE MEASURE.OBJ, MCOMMAND.OBJ, GETLINE.OBJ IXREF line that invoked the linker.

CPU MODE: 251 SOURCE MODE CPU mode, interrupt frame size,
INTR FRAME: 4 BYTES SAVED ON INTERRUPT memory model and floating point
MEMORY MODEL: SMALL WITH FLOATING POINT ARITHMETIC arithmetic are listed.

INPUT MODULES INCLUDED: Object modules that were included
MEASURE.OBJ (MEASURE) along with translator information

COMMENT TYPE 0: C251 V3.00 are listed.
MCOMMAND.OBJ (MCOMMAND)

COMMENT TYPE 0: C251 V3.00
GETLINE.OBJ (GETLINE)

COMMENT TYPE 0: C251 V3.00
C:\KEIL\C251\LIB\C2SFPS.LIB (?C_FPADD)

COMMENT TYPE 0: A251 V3.00
:

ACTIVE MEMORY CLASSES OF MODULE: MEASURE (MEASURE) LX51 and L251 list an overview of all
 memory classes in used.
BASE START END MEMORY CLASS
==
FF0000H FF0000H FFFFFFH CODE
000000H 000000H 00007FH DATA
000000H 000000H 0000FFH IDATA
010000H 010000H 01FFFFH XDATA
000020H.0 000020H.0 00002FH.7 BIT
000000H 000000H 00FFFFH EDATA

The memory map is included
MEMORY MAP OF MODULE: MEASURE (MEASURE) You can disable the memory map
 using the NOMAP control.
START STOP LENGTH ALIGN RELOC MEMORY CLASS SEGMENT NAME
===
000000H 000007H 000008H --- AT.. DATA "REG BANK 0"
000008H 00000FH 000008H --- AT.. DATA "REG BANK 1"
000010H 000010H 000001H BYTE UNIT DATA ?DT?GETCHAR
000011H 00001FH 00000FH BYTE UNIT IDATA _IDATA_GROUP_
000020H.0 000020H.2 000000H.3 BIT UNIT BIT ?BI?MEASURE
000020H.3 000020H.3 000000H.1 BIT UNIT BIT ?BI?GETCHAR
000020H.4 000021H.6 000001H.3 BIT UNIT BIT _BIT_GROUP_
000022H 000039H 000018H BYTE UNIT DATA ?DT?MEASURE
00003AH 000065H 00002CH BYTE UNIT DATA _DATA_GROUP_
000066H 000165H 000100H BYTE UNIT EDATA ?STACK
010000H 011FF7H 001FF8H BYTE UNIT XDATA ?XD?MEASURE
FF0000H FF0002H 000003H --- OFFS.. CODE ?CO?START251?3
FF0003H FF0008H 000006H BYTE UNIT CODE ?PR?GETCHAR?UNGETCHAR

:
An overlay map is listed after the

OVERLAY MAP OF MODULE: MEASURE (MEASURE) memory map. The overlay map shows
 the call tree of your application.
FUNCTION/MODULE BIT_GROUP DATA_GROUP IDATA_GROUP
--> CALLED FUNCTION/MODULE START STOP START STOP START STOP
==
TIMER0/MEASURE ----- ----- ----- ----- ----- -----
--> SAVE_CURRENT_MEASUREMENTS/MEASURE

*** NEW ROOT *************************

?C_C251STARTUP ----- ----- ----- ----- ----- -----
--> MAIN/MEASURE

320 Chapter 9. Linker/Locator

9

MAIN/MEASURE ----- ----- 003AH 003CH 0011H 001FH
--> CLEAR_RECORDS/MEASURE
--> PRINTF/PRINTF
--> GETLINE/GETLINE
--> TOUPPER/TOUPPER
--> READ_INDEX/MEASURE
--> GETKEY/_GETKEY
--> MEASURE_DISPLAY/MCOMMAND
--> SET_TIME/MCOMMAND
--> SET_INTERVAL/MCOMMAND

PRINTF/PRINTF 20H.4 21H.4 0049H 0064H ----- -----
--> PUTCHAR/PUTCHAR

GETLINE/GETLINE ----- ----- 003DH 0040H ----- -----
: A list of all public symbols is printed.

PUBLIC SYMBOLS OF MODULE: MEASURE (MEASURE) This list can be disabled using the
 NOPUBLICS or PRINTCONTROLS

VALUE CLASS TYPE PUBLIC SYMBOL NAME control.
===
00000021H.2 BIT BIT ?C?ATOFFIRSTCALL
00FF0F5CH CODE --- ?C?CASTF
00FF12D3H CODE --- ?C?CCASE
00000020H.3 BIT BIT ?C?CHARLOADED
00FF186DH CODE --- _SSCANF

:
SYMBOL TABLE OF MODULE: MEASURE (MEASURE) The symbol table lists the complete
 debug information of your project.

VALUE REP CLASS TYPE SYMBOL NAME
==
--- MODULE --- --- MEASURE
00000020H.2 PUBLIC BIT BIT MEASUREMENT_INTERVAL
00000036H PUBLIC DATA --- INTERVAL
00000020H.1 PUBLIC BIT BIT MDISPLAY You can use the PRINTCONTROL
00000035H PUBLIC DATA BYTE INTCYCLE control to exclude part of the
00000033H PUBLIC DATA WORD SAVEFIRST symbol information from the listing.

:
00FF000EH BLOCK CODE --- LVL=0
00FF000EH LINE CODE --- #87
00FF000EH LINE CODE --- #88

:
--- BLOCKEND --- --- LVL=0

:
INTER-MODULE CROSS-REFERENCE LISTING The IXREF control instructs Lx51
 to include a cross reference table.
NAME CLASS MODULE NAMES
===
?C?ATOFFIRSTCALL BIT ?C_ATOF SCANF
?C?CASTF CODE ?C_CASTF MCOMMAND
?C?CCASE CODE ?C_CCASE PRINTF SCANF
?C?CHARLOADED. BIT GETCHAR UNGETC
?C?COPY2 CODE ?C_COPY2 MCOMMAND MEASURE
?C?FCASTC. CODE ?C_FCAST ?C_ATOF MCOMMAND
?C?FCASTI. CODE ?C_FCAST
?C?FCASTL. CODE ?C_FCAST
?C?FPADD CODE ?C_FPADD ?C_ATOF ?C_FPCONVERT
?C?FPATOF. CODE ?C_ATOF SCANF
?C?FPCMP CODE ?C_FPCMP
?C?FPCMP3. CODE ?C_FPCMP MCOMMAND
?C?FPCONVERT CODE ?C_FPCONVERT PRINTF

:

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 321

 9

Output File Controls
The linker/locator either generates absolute object files or banked object files.
Absolute object files contain no relocatable information or external references.
Absolute object files can be loaded into debugging tools or may be converted
into Intel HEX files for PROM programming by OHx51 Object-Hex Converter.

Banked object files generated by the BL51 linker/locater must be converted by
the OC51 Banked Object File Converter into absolute object files (one for each
bank) to convert them into Intel HEX files by the OH51 Object-Hex Converter.

The generated object module may contain debugging information if the
linker/locator is so directed. This information facilitates symbolic debugging
and testing. You may use the linker controls to suppress debugging information
in the object file. The following table provides an overview of the controls that
control information in the output file. For a detailed description of each control
refer to the page specified in the table.

BL51 LX51, L251 Page Description

– ASSIGN 322 Defines public symbols on the command
line.

IBANKING – 323 Generate bank switch code for Infineon
TV TEXT devices SDA555x and
SDA30C16x.

NAME NAME 323 Specifies a module name for the object
file.

NOAJMP NOAJMP 325 Generate bank switch code without
AJMP instructions.

NOINDIRECTCALL NOINDIRECTCALL 327 Do not generate by default bank switch
code for indirectly called functions.

NOJMPTAB – 328 Do not generate bank switch code.

– NOTYPE 327 Specifies a module name for the object
file.

NODEBUGLINES
NODEBUGPUBLICS
NODEBUGSYMBOLS

OBJECTCONTROLS 325
330

Excludes debug information from the
object file.

322 Chapter 9. Linker/Locator

9

ASSIGN

Restriction: This control is available in LX51 and L251 only.

Abbreviation: AS

Arguments: ASSIGN (symname (value) �, ...�)

Default: None

µVision2 Control: Options – Lx51 Misc – Assign.

Description: ASSIGN defines a PUBLIC symbol whit a numeric value at
Lx51 linker/locater level. The PUBLIC symbol is handled
as a number without a specific memory class and matches
with an unresolved external symbol with the same name.

Example: L251 MYFILE.OBJ ASSIGN (FUNC (0x2000), BITVAR (20H.2))

In this example the public symbols FUNC and BITVAR are
defined. The value 0x2000 is given as value for FUNC.
The value 20H.2 is used as bit-address for BITVAR.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 323

 9

IBANKING

Restriction: This control is available in BL51 only.

Abbreviation: IB

Arguments: IBANKING �(bank_sfr_address)�

Default: The default bank_sfr_address is 0x94. This is also the SFR
address for the support Infineon devices.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: With the BL51 linker/locater control IBANKING the linker
uses the on-chip code banking hardware of the Infineon
SDA30C16x/26x and SDA555x TV TEXT devices. The
BL51 linker/locater places automatically all code segments
in the bank area, which do not have the ?CO? prefix or ?CO
postfix. Segments with a ?CO prefix or postfix are placed
into the common area.

The module L51_BANK.A51 is not used when the control
IBANKING is used. The BL51 linker/locater generates in
this operation mode a jump table with the following format:

MOV bank_sfr,#BANK_NUMBER
LJMP target

NOTE
When you are using this directive, you need also special
C51 run-time libraries. Please contact Keil Software to
obtain these C51 run-time libraries.

See Also: NOAJMP, NOINDIRECTCALL, NOJMPTAB,
BANKAREA

Example: BL51 BANK0 {MODULA.OBJ}, BANK1 {MODULB.OBJ} IBANKING

BL51 BANK0 {MODULA.OBJ}, BANK1 {MODULB.OBJ} IB (80H)

324 Chapter 9. Linker/Locator

9

NAME

Abbreviation: NA

Arguments: NAME (modulename)

Default: Module name of the first object file in the input list is used.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: Use the NAME control to specify a module name for the
absolute object module that the BL51 linker/locator
generates. The NAME control may be accompanied by the
module name (in parentheses) that you want to assign. If no
module name is specified with the NAME control, the name
of the first input module is used for the module name.

NOTE
The module name specified with the NAME control is not the
filename of the absolute object file. The module name is
stored in the object module file and may be accessed only by
a program that reads the contents of that file.

Example: BL51 MYPROG.OBJ TO MYPROG.ABS NAME(BIGPROG)

In this example BIGPROG is the module name stored in the
object file.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 325

 9

NOAJMP

Abbreviation: NOAJ

Default: The Lx51 linker/locater generates for code banking
applications an inter-bank jump table. This bank switch
table is used for jumps into a code bank from a different
code bank or the common area. Depending on the table size,
the linker uses AJMP or LJMP instructions within this bank
switch table.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: With the NOAJMP control you can disable the AJMP
instruction in the inter-bank jump table. This option is
required for 8051 derivatives that are not supporting the
AJMP instruction.

See Also: IBANKING, NOINDIRECTCALL, NOJMPTAB,
BANKAREA

Example: BL51 MYPROG.OBJ NOAJMP

326 Chapter 9. Linker/Locator

9

NODEBUGLINES, NODEBUGPUBLICS,
NODEBUGSYMBOLS

Restriction: This control is available in BL51 only. For LX51 and L251
use the OBJECTCONTROLS control.

Abbreviation: NODL, NODP, NODS

Default: Include complete debug information in the output file.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: The NODEBUGLINES control directs the BL51
linker/locator to exclude line number information from the
output object file.

The NODEBUGPUBLICS control excludes public symbol
information from the output object file.

The NODEBUGSYMBOLS control excludes local symbol
information from the output object file.

NOTE
Line number and symbol information in the absolute object
file is used for symbolic debugging in the µVision2 debugger
or in-circuit emulator. If you exclude debug information,
source level debugging of your program is no longer
possible.

See Also: NOLINES, NOPUBLICS, NOSYMBOLS,
OBJECTCONTROLS, PRINTCONTROLS

Example: BL51 MYPROG.OBJ NODEBUGLINES NODEBUGSYMBOLS

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 327

 9

NOINDIRECTCALL

Abbreviation: NOIC

Default: In code banking applications, the Lx51 linker/locater inserts
an interbank CALL for each function that is indirectly called
via a function pointer. This is done (by the linker) to ensure
that functions which are invoked through a function pointer
are available to all code banks.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: The NOINDIRECTCALL control allows you to disable the
generation of interbank CALLs (for indirect function calls).
This directive is useful if your application uses tables that
contain pointers to functions and if you ensure that these
indirect function calls never cross a code bank.

See Also: IBANKING, NOAJMP, NOJMPTAB, BANKAREA

Example: BL51 MYPROG.OBJ NOINDIRECTCALL

328 Chapter 9. Linker/Locator

9

NOJMPTAB

Restriction: This control is available in BL51 only.

Abbreviation: NOJT

Default: The Lx51 linker/locater generates for code banking
automatically an inter-bank jump table or bank switch table.
For each function that is located in a code bank and is called
from a different code bank or the common area the linker
inserts a bank switch code into the inter-bank jump table
redirects the function call to this table.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: When the NOJMPTAB control is stated, BL51 no longer
inserts inter-bank calls for program calls. This feature is
implemented to use the user-defined bank switch mechanism
for code banking. The NOJMPTAB directive modifies the
following features of BL51:

� The linker no longer needs the bank switch configuration
file: L51_BANK.OBJ.

� The linker does not modify any jump call instructions.

The linker does not generate any warnings if a jump/call is
made to another bank. The user must ensure that the proper
bank is selected before a call is made since the BL51
linker/locator no longer selects the bank automatically.

See Also: IBANKING, NOAJMP, NOINDIRECTCALL,
BANKAREA

Example: BL51 MYPROG.OBJ NOJMPTAB

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 329

 9

NOTYPE

Restriction: This control is available in LX51 and L251 only.

Syntax: NOTYPE

Abbreviation: NOTY

Default: Include complete type information in the output file.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: The NOTYPE control removes symbol type information for
debug symbols from the output file. The symbol type
information is only required for program debugging and has
no influence on the executable code.

NOTE
Symbol type information in the absolute object file is used
for symbolic debugging in the µVision2 debugger or in-
circuit emulator. The Cx51 compiler generates complete
symbol information up to structure members and parameter
passing values. If you exclude symbol type information, you
might no be able to display variables during debugging.

See also: OBJECTCONTROL, PURGE

Example: LX51 file1.obj NOTYPE

330 Chapter 9. Linker/Locator

9

OBJECTCONTROLS

Restriction: This control is available in LX51 and L251 only.

Abbreviation: OC

Arguments: OBJECTCONTROLS (subcontrol�, …�)

Default: Include complete debug information in the output file.

µVision2 Control: Options – Lx51 Misc – Misc Controls – enter the control.

Description: The OBJECTCONTROLS control allows you to remove
specific debug information from the object output file. The
subcontrol option can be one or more of the following
parameters:

subcontrol Removes from the object output file ...

NOCOMMENTS ... comment records.

NOLINES ... line number information.

NOPUBLICS ... public symbol information.

NOSYMBOLS ... local symbol information.

PURGE ... complete debug information.

See Also: NOCOMMENTS, NOLINES, NOPUBLICS,
NOSYMBOLS, OBJECTCONTROLS, PURGE

Example: LX51 MYPROG.OBJ OBJECTCONTROLS (NOCOMMENTS)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 331

 9

Segment and Memory Location Controls
The Lx51 linker/locator allows you to specify the size of the different memory
areas or memory classes, the order of the segments within the different memory
areas, and the location or absolute memory address of different segments. Also
the size of segments can be manipulated and specific memory areas can be
excluded from being used. These segment manipulations are performed using
the following controls.

BL51 LX51, L251 Page Description

BANKAREA BANKAREA 332 Specifies the address range where the code
banks are located.

BANKx – 333 Locates and orders segments in code bank
x (where x is a code bank from 0 to 31).

BIT – 334 Locates and orders BIT segments.
– CLASSES 336 Specifies a physical address range for

segments in a memory class.
CODE – 338 Locates and orders CODE segments.
DATA – 339 Locates and orders DATA segments.
IDATA – 340 Locates and orders IDATA segments.
NOSORTSIZE NOSORTSIZE 341 Disable size sorting for segments before

allocating the memory.
PDATA – 341 Specifies start address for PDATA

segments.
PRECEDE – 343 Locates and orders segments that should

precede others in DATA memory.
RAMSIZE – 344 Specifies size of DATA and IDATA memory.
– RESERVE 345 Reserves memory ranges and prevents the

linker from using these memory areas.
– SEGMENTS 346 Defines physical memory addresses and

orders for specified segments.
– SEGSIZE 348 Modifies the size for a specific segment.

STACK – 349 Locates and orders STACK segments.
XDATA – 350 Locates and orders XDATA segments.

The Lx51 linker/locator locates segments in according their memory class and
follows a predefined order of precedence. The standard allocation algorithm
usually produces the best workable solution and does not requiring you to enter
any segment names on the command line. The controls described in this section
allow you to define the physical memory layout of your target system and more
closely control the location of segments within the different memory classes.
Refer to “Locating Programs to Physical Memory” on page 273 for examples on
how to define the available memory in your x51 system.

332 Chapter 9. Linker/Locator

9

BANKAREA

Abbreviation: BA

Arguments: BANKAREA (start_address, end_address)

Default: None

µVision2 Control: Options – Target – Code Banking – Bank Area.

Description: Use the BANKAREA control to specify the starting and
ending address of the area where the code banks will be
located. The addresses specified should reflect the actual
address where the code bank ROMs are physically mapped.
All segments that are assigned to a bank will be located
within this address range unless they are defined differently
using the BANKx control. Refer to “Bank Switching” on
page 293 for more information about the code banking
controls.

See Also: BANKx

Example: LX51 COMMON{C_ROOT.OBJ}, BANK0{C_BANK0.OBJ},
BANK0{C_BANK0.OBJ}, BANK1{C_BANK1.OBJ},
BANK2{C_BANK2.OBJ} TO MYPROG.ABS &
BANKAREA(8000H,0FFFFH)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 333

 9

BANKx

Restriction: This control is available in BL51 only. For LX51 and L251
use the SEGMENTS control.

Abbreviation: B0, B1, B2, … B30, B31

Arguments: BANKx (�start_address� �segname �(address)� �, …��)

µVision2 Control: Options – BL51 Misc – Misc Controls – enter the control.

Description: Use the BANKx control to specify a code bank for segments
(x in BANKx is replaced by a bank number). Refer to
“Bank Switching” on page 293 for more information about
the code banking controls.

Segments are located in the specified code bank starting at
start_address or address 0000h if start_address is not
specified. If an address is specified the segment referred by
segname will be located at this address.

If you allocate a constant segment of a Cx51 program into a
code bank, you must manually ensure that the proper code
bank is used when accessing that constant data. You can do
this with the switchbank function that is defined in the
L51_BANK.A51 module. “BANK_EX2 – Banking with
Constants” on page 407 shows a complete example program.

See Also: BANKAREA, CODE

Example: This example will locate the segment ?PR?FUNC1?A that
belongs to the C function func1 in module “A.C” into code
bank 1 starting at address 0x8000. The segment
?PR?FUNC1?A will be located at address 0x8200.

BL51 COMMON{A.OBJ}, BANK0{B.OBJ}
BANK1(0x8000, ?PR?FUNC1?A, ?PR?FUNC2?B(0x8200))

334 Chapter 9. Linker/Locator

9

BIT

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: BI

Arguments: BIT (�start_address� �segname �(address)� �, …��)

µVision2 Control: Options – BL51 Locate – Bit.

Description: The BIT control allows you to specify:
� The starting address for segments placed in the

bit-addressable internal data space
� The order of segments within the bit-addressable internal

data space
� The absolute memory location of segments in the

bit-addressable internal data space.

Addresses that you specify with the BIT control are bit
addresses. Bit addresses 00h through 7Fh reference bits in
DATA memory bytes from byte address 20h to 2Fh (16
bytes of 8 bits each, 16 × 8 = 128 = 80h). Bit addresses that
are evenly divisible by 8 are aligned on a byte boundary. A
DATA segment that is bit-addressable can be located with
the BIT control; however, the bit address specified must be
byte aligned, that means evenly divisible by 8.

See Also: CODE, DATA, IDATA, XDATA

Examples: The following example specifies that relocatable BIT
segments be located at or after bit address 48 decimal (30
hex) which is equivalent to byte address 26H.0 in the data
memory:

BL51 MYPROG.OBJ BIT(48)

 or
BL51 MYPROG.OBJ BIT(0x30)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 335

 9

 To specify the order for segments, you must include the
segment names, separated by commas. The following
example places the ?DT?A, ?DT?B, and ?DT?C segments at
the beginning of the bit-addressable DATA memory.

BL51 MYPROG.OBJ,A.OBJ,B.OBJ,C.OBJ BIT(?DT?A,?DT?B,?DT?C)

You may also specify the bit address for the segments. The
following example places the ?DT?A and ?DT?B segments
at 28h and 30h:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ BIT(?DT?A(28h),?DT?B(30h))

336 Chapter 9. Linker/Locator

9

CLASSES

Restriction: This control is available in LX51 and L251 only.

Abbreviation: CL

Arguments: CLASSES (classname (range�, …�) �, …�)

Default: None

µVision2 Control: Options – Lx51 Locate – User Classes.

Description: The CLASSES control specifies the physical address range
for segments within a memory class. The CLASSES
control provides an efficient way to define the physical
memory layout. If the address limits for a memory class are
not specified with the CLASSES control, the Lx51
linker/locater uses the physical address limits of the memory
class. The address ranges that are used are listed in the
linker MAP file in the section ACTIVE MEMORY CLASSES.
It is recommended to check this section of the MAP file,
since it lists where the Lx51 linker/locater assumes memory
in your target hardware. More information about “Locating
Programs to Physical Memory” can be found on page 273.

With the CLASSES control the absolute address for
segments with the relocation type OFFS can be modified.
For more information on how to declare such segments refer
to “Relocation Type” on page 108. The offset is specified as
first address in the range field with a ‘$’ prefix, for example:
CLASSES (CODE ($0xFF8000, 0xFF8000 - 0xFFFFFF).
In this case all segments that are defined with the OFFS
relocation type, are redirected to the address 0xFF8000.
Typically the interrupt and reset vectors of a program are
defined this way. In this way, you can quickly redirect these
vectors, for example, when you are debugging programs
with the Monitor-251 installed at address 0xFF0000.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 337

 9

A memory class can be copied into RAM for execution
whereas the content is stored in the SROM memory class.
In this case you must copy the memory class from ROM to
RAM before execution. Empty brackets after the address
range are used to store the content of a memory class within
the address range of the SROM memory class, for example:
CLASSES (NCONST (0xE000 - 0xFFFF)[]). Refer to
“Use RAM for the 251 Memory Class NCONST” on page
292 for a program example that uses this feature.

See Also: SEGMENTS

Examples: The following example specifies the address range of the
EDATA and CODE memory class:

L251 MYFILE.OBJ &
CLASSES (EDATA (0 - 0x41F, 0x2000H - 0x3FFF),

CODE (0xFF0000 - 0xFF7FFF))

This example defines the memory classes for a classic 8051
device:

LX51 MYFILE.OBJ
CLASSES (IDATA (I:0-I:0xFF), XDATA (X:0-X:0xEFFF),

CODE (C:0-C:0x7FFF, C:0xC000-C:0xFFFF))

In this example the user-defined memory class
XDATA_FLASH is defined. Refer to “User-defined Class
Names” on page 107 for more information.

LX51 MYFILE.OBJ
CLASSES (XDATA_FLASH (X:0x8000-X:0xEFFF))

338 Chapter 9. Linker/Locator

9

CODE

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: CO

Arguments: CODE (�address_range� �segname �(address)� �, …��)

µVision2 Control: Options – BL51 Locate – Code Range, Code.

Description: The CODE control allows you to specify:
� The address range for segments placed in the CODE

memory class or CODE memory space.
� The order of segments within the CODE space.
� The absolute memory location of segments in the CODE

memory space.

See Also: BIT, DATA, IDATA, XDATA

Examples: The example below specifies that relocatable CODE
segments be located in the address space 0 – 0x3FFF and
0x8000 – 0xFFFF:

BL51 MYPROG.OBJ CODE(0 - 0x3FFF, 0x8000 - 0xFFFF)

To specify the order for segments, you must include the
names of the segments separated by commas. The following
example will place the ?PR?FUNC1?A and ?PR?FUNC2?A
segments at the beginning of the CODE memory:

BL51 A.OBJ CODE(?PR?FUNC1?A, ?PR?FUNC2?A)

You can also specify the memory location for a segment.
The example below will place the ?PR?FUNC1?A segment at
800h and the ?PR?FUNC2?A segment after at this segment:

BL51 A.OBJ CODE(?PR?FUNC1?A (0x800), ?PR?FUNC2?A)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 339

 9

DATA

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: DA

Arguments: DATA (�start_address� �segname �(address)� �, …��)

µVision2 Control: Options – BL51 Locate – Data.

Description: The DATA control allows you to specify:
� The address range for segments placed in the

directly-addressable DATA space.
� The order of segments within the DATA space.
� The absolute memory location of segments in the

directly-addressable internal DATA space.

See Also: BIT, CODE, IDATA, XDATA

Examples: The example below specifies that relocatable DATA
segments be located at or after address 48 decimal (30 hex)
in the on-chip DATA memory:

BL51 MYPROG.OBJ DATA(48)

 or
BL51 MYPROG.OBJ DATA(0x30)

To specify the order for segments, you must include the
names of the segments separated by commas. The following
example will place the ?DT?A, ?DT?B, and ?DT?C
segments at the beginning of the DATA memory:

BL51 A.OBJ,B.OBJ,C.OBJ DATA(?DT?A,?DT?B,?DT?C)

You can also specify the memory location. The example
below will place the ?DT?A and ?DT?B segments at 28h
and 30h in the DATA memory:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ DATA(?DT?A(28h),?DT?B(30h))

340 Chapter 9. Linker/Locator

9

IDATA

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: ID

Arguments: IDATA (�start_address� �segname �(address)� �, …��)

µVision2 Control: Options – BL51 Locate – Idata.

Description: The IDATA control allows you to specify:

� The starting address for segments placed in the
indirectly-addressable on-chip IDATA space.

� The order of segments within the IDATA space.
� The absolute memory location of segments in the IDATA

memory space.

See Also: BIT, CODE, DATA, XDATA

Examples: The example below specifies that relocatable IDATA
segments be located at or after address 64 decimal (40 hex)
in the IDATA memory.

BL51 MYPROG.OBJ IDATA(64)

 or
BL51 MYPROG.OBJ IDATA(0x40)

To specify the order for segments, you must include the
names of the segments separated by commas. The following
example places the ?ID?A, ?ID?B, and ?ID?C segments at
the beginning of the IDATA memory:

BL51 A.OBJ,B.OBJ,C.OBJ IDATA(?ID?A,?ID?B,?ID?C)

You may also specify the memory location. This example
places the ?ID?A and ?ID?B segments at 30h and 40h in
the on-chip IDATA memory:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ IDATA(?ID?A(30h),?ID?B(40h))

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 341

 9

NOSORTSIZE

Abbreviation: NOSO

Arguments: None

Default: The segments are sorted according their size before the Lx51
linker/locater allocates the memory space. This reduces
typically the memory gaps that are required to fulfill the
allocation requirements.

µVision2 Control: Options – Lx51 Misc – Misc Controls: enter the control.

Description: The NOSORTSIZE control allows you disable the sorting
algorithm. In this case the linker allocates the memory in
the order the segments appear in the input files.

Example: BL51 MYPROG.OBJ NOSORTSIZE

342 Chapter 9. Linker/Locator

9

PDATA

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: None

Arguments: PDATA (address)

µVision2 Control: Options – BL51 Locate – Pdata.

Description: The PDATA control allows you to specify the starting
address in external data space for PDATA segments. You
must enter the starting address immediately following the
PDATA control on the command line. The address must be
enclosed in parentheses.

In addition to specifying the starting address for PDATA
segments on the linker command line, you must also modify
the startup code stored in STARTUP.A51 to indicate that
PDATA segments are located at 8000h. Refer to the C51
User’s Guide for more information about PDATA and
COMPACT model programming.

See Also: XDATA

Example: This example specifies that PDATA segments are to be
located starting at address 8000 hex in the external data
memory.

BL51 MYPROG.OBJ PDATA(0x8000)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 343

 9

PRECEDE

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: PC

Arguments: PRECEDE (segname �(address)��, …�)

µVision2 Control: Options – BL51 Locate – Precede.

Description: The PRECEDE control allows you to specify segments that
lie in the on-chip DATA memory that should precede other
segments in that memory space. Segments that you specify
with this control are located after the BL51 linker/locator
has located register banks and any absolute BIT, DATA,
and IDATA segments, but before any other segments in the
internal DATA memory.

See Also: DATA, STACK

Examples: You specify segment names with the PRECEDE control.
Segment names must be separated by commas and must be
enclosed in parentheses immediately following the
PRECEDE control. For example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ PRECEDE(?DT?A,?DT?B)

The segments that you specify are located at the lowest
available memory location in the DATA memory in the
order that you specify. You may also specify the memory
location of the segments you specify with the PRECEDE
control. The example below places the ?DT?A and ?DT?B
segments at 09h and 13h in the DATA memory:

BL51 A.OBJ,B.OBJ PRECEDE(?DT?A(09h),?DT?B(13h))

344 Chapter 9. Linker/Locator

9

RAMSIZE

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: RS

Arguments: RAMSIZE (value)

Default: RAMSIZE (128)

µVision2 Control: Generated from the Device Database Information.

Description: The RAMSIZE control allows you to specify the number of
bytes of DATA and IDATA memory that are available in
your target 8051 derivative. The number of bytes must be a
number between 64 and 256. This number must be enclosed
in parentheses.

NOTE
In the device data sheets the size of the DATA and IDATA
memory is usually referred as on-chip RAM size. However,
several new 8051 devices have additional on-chip RAM that
is mapped into the XDATA space. If the on-chip RAM size
of your 8051 derivative is more than 256 bytes, then your
device has most likely additional RAM that is accessed as
XDATA memory. In this case use RAMSIZE (256) to
enable the complete DATA and IDATA address space and
define the additional on-chip RAM with the XDATA control.

Example: BL51 MYPROG.OBJ RAMSIZE(256)

This example specifies there are 256 bytes of on-chip
memory for DATA and IDATA that may be allocated by
the linker.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 345

 9

RESERVE

Restriction: This control is available in LX51 and L251 only.

Abbreviation: RE

Arguments: RESERVE (range�, …�)

Default: no memory areas are reserved.

µVision2 Control: Options – Lx51 Misc – Reserve.

Description: The RESERVE directive allows you to prevent Lx51 from
locating segments in the specified address ranges of the
physical memory. The Lx51 linker/locater will not use all
memory address within the specified address range.

 If an absolute segment uses a reserved memory area, a
warning message is generated. Refer to “Error Messages”
on page 360 for more information about this directive.

See Also: CLASSES, SEGMENTS

Example: L251 MYPROG.OBJ RESERVE(0x200 - 0x3FFF,
0xFF8000H - 0xFFBFFFH)

346 Chapter 9. Linker/Locator

9

SEGMENTS

Restriction: This control is available in LX51 and L251 only.

Abbreviation: SE

Arguments: SEGEMENTS (segname �(address)��, …�)

µVision2 Control: Options – Lx51 Locate – User Segments.

Description: The SEGMENTS control allows you to specify:
� The absolute memory location of a segment. The

absolute address can be either a start or an end address.
� The order of segments within the memory. Segments

may be located as first or last segment. Segments
defined in the SEGMENTS control are allocated
sequentially. By default, the first segment is located at
the lowest possible address range (specified with the
CLASSES control). Subsequent segments are located at
ascending addresses. When you are using the keyword
LAST in the address field, then the segment is located as
last segment for this memory class.

� A segment can be executed in RAM whereas the content
is stored in the ROM memory class. Such segments need
to be copied from ROM to RAM before execution. You
can specify both the ROM address that stores the content
and the RAM address that is used to address the segment
during program execution. This syntax is:

SEGMENTS Syntax for Store in ROM and Executed in RAM

SEGMENTS (segment_name(exec_address)[store_address], …)
exec_address specifies the execution address for the segment.
store_address is the address where the segment is stored in ROM.
SEGMENTS (segment_name(exec_address)[], …)
If you specify empty brackets [] for the store_address the segment will
be stored within the address range of the SROM memory class.
SEGMENTS (segment_name(exec_address)[!store_address], …)
Lx51 does not reserve the space for execution, if the exclamation mark is
given before the store_address. This is useful, if the segment content is
copied over RAM that is temporarily used, for example the stack area.
SEGMENTS (segment_name(exec_address)[!], …)
If not store_address is given the segment is stored within the range of
the SROM memory class. Also here not space is reserved for execution.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 347

 9

See Also: CLASSES, RESERVE, SEGSIZE

Examples: The example below will place the ?DT?A and ?DT?B
segments at 28h and 30h in the DATA memory:
LX51 A.OBJ,B.OBJ SEGMENTS (?DT?A(D:0x28),?DT?B(D:0x30))

To specify the order for segments, you must include the
names of the segment separated by commas. The following
example places the ?DT?A, ?DT?B, and ?DT?C segments at
the beginning of the memory class. If these segments
belong to the DATA memory class they will be places as
first segments in the DATA memory class.
L251 A.OBJ,B.OBJ,C.OBJ SEGMENTS(?DT?A,?DT?B,?DT?C)

A segment can be located to a code bank. The next example
locates the segment ?PR?FUNC2?B into code bank 0 and the
segment ?PR?FUNC1?A to address 0x8000 in code bank 1.
L251 BANK0 {A.OBJ}, BANK1 {B.OBJ}
SEGMENTS(?PR?FUNC2?B (B0:), ?PR?FUNC1?A (B1:0x8000))

You can also specify that a segment should be placed as last
segment in a memory class by using the LAST keyword as
address specification. The following example places the
segment ?DT?A as last segment in the DATA memory class:
LX51 A.OBJ,B.OBJ,C.OBJ SEGMENTS(?DT?B(LAST))

The prefix '^' before the address specifies the end address
for a segment. The following command places the segment
?PR?SUM?B in memory so that it ends at address 0xFF8000.
L251 A.OBJ,B.OBJ SEGMENTS (?PR?SUM?B(^0xFF8000))

Next, the segment ?PR?FUNC1?A is assigned an execution
address of 0x4000 and a storage address of 0xFF8000.
L251 A.OBJ SEGMENTS (?PR?FUNC1?A(0x4000)[0xFF8000])

The last example uses only an exclamation point as store_
address. This means that no memory is reserved at address
0x2000 and the section will be stored within the address
range of the SROM memory class.
L251 A.OBJ SEGMENTS (?PR?FUNC1?A(0x2000)[!])

348 Chapter 9. Linker/Locator

9

SEGSIZE

Restriction: This control is available in LX51 and L251 only.

Abbreviation: SEGSIZE

Arguments: SEGSIZE (segname (size) �, …�})

µVision2 Control: Options – Lx51 Misc – Misc Controls: enter the control.

Description: The SEGSIZE directive allows you to specify the memory
space used by a segment. For BIT segments the size may be
specified in bits with the „.“ operator. The segname is any
segment contained in the input modules.

 The size specifies the change of the segment size or segment
length. There are three ways of specifying this value:

� ‘+’ indicates that the value should be added to the current
segment length.

� ‘–’ indicates that the value should be subtracted from the
current segment length.

� No sign indicates that the value should become the new
segment length.

See Also: SEGMENTS

Example: L251 MYPROG.OBJ SEGSIZE (?STACK (+200H))

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 349

 9

STACK

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: ST

Arguments: STACK (segname �(address)��, …�)

µVision2 Control: Options – BL51 Locate – Stack.

Description: The STACK control locates segments in the uppermost
IDATA memory space. The segments specified will follow
all other segments in the internal data memory space.

Both, the Cx51 compiler and the PL/M-51 compiler
generate a stack segment named ?STACK which is
automatically located at the top of the IDATA memory. The
stack pointer is initialized by the startup code to point to the
start of this segment. All return addresses and data that are
pushed are stored in this memory area. It is not necessary to
specifically locate this ?STACK segment. The STACK
control is usually used with assembly programs which might
have several stack segments.

NOTE
Use extreme caution when relocating the ?STACK segment.
It might result in a target program that does not run since
data or idata variables are corrupted.

See Also: DATA, IDATA, PRECEDE

Examples: The segments that you specify are located at the highest
available memory location in the internal data memory in
the order that you specify, for example:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ STACK(?DT?A,?DT?B)

You can also specify the memory location. This example
places the ?DT?A and ?DT?B segments at 69h and 73h:

BL51 MYPROG.OBJ,A.OBJ,B.OBJ STACK(?DT?A(69h),?DT?B(73h))

350 Chapter 9. Linker/Locator

9

XDATA

Restriction: This control is available in BL51 only. For LX51 and L251
use the CLASSES and SEGMENTS control.

Abbreviation: XD

Arguments: XDATA (�address_range� �segname �(address)� �, …��)

µVision2 Control: Options – BL51 Locate – Xdata Range, Xdata.

Description: The XDATA control allows you to specify:

� The starting address for segments placed in the external
data space

� The order of segments within the external data space
� The absolute memory location of segments in the

external data space.

See Also: BIT, CODE, DATA, IDATA, PDATA

Examples: The example below specifies that relocatable XDATA
segments be located in the address space 0 – 0x3FF and
0xF800 – 0xFFFF:

BL51 MYPROG.OBJ CODE(0 - 0x3FF, 0xF800 - 0xFFFF)

To specify the order for segments, you must include the
names of the segments separated by commas. The following
example will place the ?XD?MOD1 and ?XD?MOD2 segments
at the beginning of the XDATA memory:

BL51 MOD1.OBJ,MOD2.OBJ CODE(?XD?MOD1, ?XD?MOD2)

You can also specify the memory location for a segment.
The example below will place the ?XD?MOD1 segment at
800h:

BL51 MOD1.OBJ,MOD2.OBJ CODE(?XD?MOD1 (0x800))

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 351

 9

High-Level Language Controls
The Lx51 linker/locator provides controls that have to do with the high-level
languages Cx51 and PL/M-51 and the real-time operating systems RTXx51.
For example, you can control whether or not the Lx51 linker/locator includes
automatically the run-time library and whether or overlays the local variable
areas of C and PL/M-51 functions.

The following table provides an overview of these controls. For a detailed
description of each control refer to the page specified in the table.

BL51 LX51, L251 Page Description

NODEFAULT
LIBRARY

NODEFAULT
LIBRARY

352 Excludes modules from the run-time
libraries.

NOOVERLAY NOOVERLAY 353 Prevents overlaying or overlapping local bit
and data segments.

OVERLAY OVERLAY 354 Lets you change call references between
functions and segments for data overlaying
program flow analysis.

RECURSIONS RECURSIONS 356 Allows you to analyze the call tree of
complex recursive applications.

REGFILE REGFILE 356 Specifies the name of the generated file to
contain register usage information.

– RTX251 358 Includes support for the RTX-251 full
real-time kernel.

RTX51 RTX51 358 Includes support for the RTX-51 full
real-time kernel.

RTX51TINY RTX51TINY 358 Includes support for the RTX-51 tiny
real-time kernel.

SPEEDOVL – 359 Ignore during the overlay analysis
references from constant segments to
program code.

352 Chapter 9. Linker/Locator

9

NODEFAULTLIBRARY

Abbreviation: NLIB

Arguments: None

Default: The run-time libraries of Cx51, RTXx51, and PL/M-51 are
searched to resolve external references in your C or PL/M
programs.

The path of the run-time libraries can be set for BL51 and
LX51 with the C51LIB environment variable and for L251
with the C251LIB environment variable. This variable is the
defined with the SET command that is typically entered in
the AUTOEXEC.BAT batch file as shown below:

SET C51LIB=C:\KEIL\C51\LIB

In µVision2 the path for run-time libraries can be specified
in the dialog Project – File Extensions, Books and
Environment under environment setup – LIB folder.

If no environment variable is set, the linker tries to locate the
libraries in: path_of_the_EXE_file\..\LIB\. In a typical
installation of the tool chain this sets the correct path for the
run-time libraries to \C51\LIB\ or \C251\LIB. These
folders contain the run-time libraries for the Cx51 compiler
and the RTXx51 real-time operating system.

The libraries that are automatically searched depend on the
memory model and floating-point requirements of your
application. For more information refer to the Cx51
Compiler User’s Guide.

µVision2 Control: Options – Lx51 Misc – Misc Controls: enter the control.

Description: Use the NODEFAULTLIBRARY control to prevent the
Lx51 linker/locator from automatically including run-time
libraries.

Example: BL51 MYPROG.OBJ NODEFAULTLIBRARY

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 353

 9

NOOVERLAY

Abbreviation: NOOL

Arguments: None

Default: The Lx51 linker/locater is analyzing your program and
overlays the segments of local variables and function
arguments.

µVision2 Control: Options – Lx51 Misc – Misc Controls: enter the control.

Description: The NOOVERLAY control disables the overlay analysis
and the data overlaying. When this control is specified, the
Lx51 linker/locator does not overlay the data space of local
variables and function arguments.

Examples: LX51 MYPROG.OBJ NOOVERLAY

354 Chapter 9. Linker/Locator

9

OVERLAY

Abbreviation: OL

Arguments: OVERLAY (sfname { ! | ~ } sfname �, …�)
OVERLAY (sfname { ! | ~ } (sfname, sfname �, …�)�, …�)
OVERLAY (sfname ! *)
OVERLAY (* ! sfname)

Default: The Lx51 linker/locater is analyses the call tree of your
program and assumes normal program flow without indirect
calls via function pointers.

µVision2 Control: Options – Lx51 Misc – Overlay.

Description: The OVERLAY control allows you to modify the call tree
as it is recognized by the Lx51 linker/locater in the overlay
analysis. Adjustments to the program call tree are typically
required when your application uses function pointers or
contains virtual program jumps as it is the case in the
scheduler of a real-time operating system. The different
forms of the overlay control are shown below:

Control Specification Description

OVERLAY (* ! sfname) Add new root for sfname.

OVERLAY (sfname ! *) Exclude sfname from the
overlay analysis and locate
data & bit segments in non-
overlaid memory. This
does not influence data
overlaying of other
functions.

OVERLAY (sfname ! sfname1)
OVERLAY (sfname ! (sfname1, sfname2))

Add virtual call references
to segments or functions.

OVERLAY (sfname ~ sfname1)
OVERLAY (sfname ~ (sfname1, sfname2))

Ignore call references
between segments or
functions.

sfname can be the name of a function or a segment.

Refer to “Using the Overlay Control” on page 282 for
program examples that require the OVERLAY control.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 355

 9

Examples:

Identify tasks of
a real-time OS

Exclude a
function from
overlaying

Add virtual
function calls

Ignore references
or function calls

If your application uses a real-time operating system, each
task function might be an own program path or root and the
call tree of that task must be independently analyzed. This
is required since the task can be terminated (i.e. by a time-
out) and a previously terminated task becomes running
again. In the following example Lx51 handles the functions
TASK0 and TASK1 as independent programs or call trees:

LX51 SAMPLE.OBJ OVERLAY (* ! TASK0, TASK1)

NOTE
Task functions of the RTXx51 real-time operating system
are automatically handled as in depended program roots.
The OVERLAY control is not required for RTXx51 tasks.

In the next example, the local data and bit segments of
FUNC1 are excluded from data overlaying. This does not
influence data overlaying of other functions.

BL51 SAMPLE.OBJ OVERLAY (FUNC1 ! *)

You may add virtual references or functions calls for
between segments or functions. In the following example,
Lx51 thinks during the overlay analysis that function FUNC1
calls FUNC2 and FUNC3 even when no real calls exist.

BL51 CMODUL1.OBJ OVERLAY (FUNC1 ! (FUNC2, FUNC3))

You may delete or remove references between segments or
functions. The next example Lx51 ignores during overlay
analysis the references to the ?PR?MAINMOD segment from
FUNC1 and FUNC2:

BL51 MAINMOD.OBJ, TEXTOUT.OBJ &
OVERLAY (FUNC1 ~ ?PR?MAINMOD, FUNC2 ~ ?PR?MAINMOD)

356 Chapter 9. Linker/Locator

9

RECURSIONS

Abbreviation: RC

Arguments: RECURSIONS (number of recursions)

Default: RECURSIONS (10)

µVision2 Control: Options – Lx51 Misc – Misc Controls: enter the control.

Description: The RECURSIONS control allows you to specify the
number of recursions that are allowed before the Lx51
linker/locator responds with:

FATAL ERROR 232: APPLICATION CONTAINS TOO MANY RECURSIONS.

Each time the linker encounters a recursive call during the
overlay analysis of the application, this recursive call is
automatically removed from the call tree and the overlay
analysis is restarted. You might increase the number of
accepted recursions on very complex recursive applications.
However this might increase significantly the execution time
of the Lx51 linker/locater.

If your application contains many pointer to function tables,
you might receive the FATAL ERROR 232 before you have
corrected the call tree with the OVERLAY control. The
RECURSIONS control allows you in such situations to
analysis the OVERLAY MAP of your application. Refer to
“Pointer to a Function in Arrays or Tables” on page 286 for
more information on correcting the call tree.

See Also: OVERLAY, SPEEDOVL

Example: LX51 MYPROG.OBJ,A.OBJ,B.OBJ RECURSIONS (100)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 357

 9

REGFILE

Abbreviation: RF

Arguments: REGFILE (filename)

Default: No register usage file is generated.

µVision2 Control: Options – Cx51 Compiler – Global Register Coloring.

Description: The REGFILE control allows you to specify the name of
the register usage file generated by the Lx51 linker/locator.
The information in this file is used for global register
optimization by the Cx51 compiler. The register usage
information allows the Cx51 compiler to optimize the use of
registers when calling external functions.

Example: In this example, the LX51 linker/locator generates the file
MYPROG.REG that contains register usage information.

LX51 MYPROG.OBJ,A.OBJ,B.OBJ REGFILE(MYPROG.REG)

358 Chapter 9. Linker/Locator

9

RTX251, RTX51, RTX51TINY

Abbreviation: None

Arguments: None

Default: None

µVision2 Control: Options – Target – Operating System.

Description: These controls specify to the Lx51 linker/locator that the
application should be linked for use with the RTXx51 real-
time multitasking operating system. This involves resolving
references within your program to RTXx51 functions found
in the library of the real-time operating system.

The control that you should use, depends on the real-time
operating system that you are using in your application:

Control Real-Time Operating System used

RTX251 RTX251 Full Multitasking RTOS.

RTX51 RTX51 Full Multitasking RTOS.

RTX51TINY RTX51 Tiny Multitasking RTOS.

Examples: Linker/Locater invocation for RTX51 Full:

BL51 RTX_EX1.OBJ RTX51

Linker/Locater invocation for RTX251 Full:

L251 RTX_EX1.OBJ RTX251

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 359

 9

SPEEDOVL

Restriction: This control is available in BL51 only. LX51 and L251
always ignore references from constant segments to program
code during the overlay analysis.

Abbreviation: SP

Arguments: None

Default: BL51 does not ignore the references from constant segments
to program code during the overlay analysis.

µVision2 Control: Options – BL51 Misc – Misc Controls: enter the control.

Description: The RECURSIONS control instructs BL51 to ignore
references from constant segments to program code during
the overlay analysis. This improves the execution speed of
the BL51 linker/locater during overlay analysis and is useful
for applications that are using “Pointer to a Function in
Arrays or Tables” as described on page 286. However, the
usage of the SPEEDOVL control makes the linker
incompatible to existing applications that are using the
OVERLAY control to correct the call tree of the
application.

See Also: OVERLAY, SPEEDOVL

Example: BL51 MYPROG.OBJ SPEEDOVL

360 Chapter 9. Linker/Locator

9

Error Messages
The Lx51 linker/locator generates error messages that describe warnings, non-
fatal errors, fatal errors, and exceptions.

Fatal errors immediately abort the Lx51 linker/locator operation.

Errors and warnings do not abort the Lx51 linker/locator operation; however,
they may result in an output module that cannot be used. Errors and warnings
generate messages that may or may not have been intended by the user. The
listing file can be very useful in such an instance. Error and warning messages
are displayed in the listing file as well as on the screen.

This section displays all the Lx51 linker/locator error messages, causes, and any
recovery actions.

Warnings

Warning Warning Message and Description

1 UNRESOLVED EXTERNAL SYMBOL
SYMBOL: external-name
MODULE: filename (modulename)
The specified external symbol, requested in the specified module, has no
corresponding PUBLIC symbol in any of the input files.

2 REFERENCE MADE TO UNRESOLVED EXTERNAL
SYMBOL: external-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified unresolved external symbol is referenced at the specified code
address.

3 ASSIGNED ADDRESS NOT COMPATIBLE WITH ALIGNMENT
SEGMENT: segment–name
The address specified for the segment is not compatible with the alignment of the
segment declaration.

4 DATA SPACE MEMORY OVERLAP
FROM: byte.bit address
TO: byte.bit address
The specified area of the on-chip data RAM is occupied by more than one
segment.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 361

 9

Warning Warning Message and Description

5 CODE SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address
The specified area of the code memory is occupied by more than one segment.

6 XDATA SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address
The specified area of the external data memory is occupied by more than one
segment.

7 MODULE NAME NOT UNIQUE
MODULE: filename (modulename)
The specified module name is used for more than one module. The specified
module name is not processed.

8 MODULE NAME EXPLICITLY REQUESTED FROM ANOTHER FILE
MODULE: filename (modulename)
The specified module name is requested in the invocation line of another file that
has not yet been processed. The specified module name is not processed.

9 EMPTY ABSOLUTE SEGMENT
MODULE: filename (modulename)
The specified module contains an empty absolute segment. This segment is not
located and may be overlapped with another segment without any additional
message.

10 CANNOT DETERMINE ROOT SEGMENT
The Linker/Locator has recognized the C51 compiler or PL/M-51 input files and
tries to process a flow analysis. However, it is impossible to determine the root
segment. This error occurs if the main program is called by an assembly module.
In this case, the available references (calls) must be modified with the OVERLAY
control.

11 CANNOT FIND SEGMENT OR FUNCTION NAME
NAME: overlay-control-name
A segment or function name defined in the OVERLAY control cannot be found in
the object modules.

12 NO REFERENCE BETWEEN SEGMENTS
SEGMENT1: segment-name
SEGMENT2: segment-name
An attempt was made to delete a reference or call between two non-existent
functions or segments, with the OVERLAY control.

362 Chapter 9. Linker/Locator

9

Warning Warning Message and Description

13 RECURSIVE CALL TO SEGMENT
SEGMENT: segment-name
CALLER: segment-name
The specified segment is called recursively from CALLER specified segments.
Recursive calls are not allowed in C51 and PL/M-51 programs.

14 INCOMPATIBLE MEMORY MODEL
MODULE: filename (modulename)
MODEL: memory model
The specified module is not compiled in the same memory model as the former
compiled modules. The memory model of the improper module is showed by
MODEL.

15 MULTIPLE CALL TO SEGMENT
SEGMENT: segment-name
CALLER1: segment-name
CALLER2: segment-name
The specified segment is called from two levels, CALLER1, and CALLER2; e.g.,
main and interrupt program. This has the same effect as a recursive call and may
thus lead to the overwriting of parameters or data.

16 UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
SEGMENT: segment-name
This warning occurs when functions, which were not previously called, are
contained in a program (e.g., for test purposes). The function specified is
excluded from the overlay process in this case. It is possible that the program
then occupies more memory as during a call of the specified segment.

17 INTERRUPT FUNCTION IN BANKS NOT ALLOWED
SYMBOL: function-name
SPACE: code-bank
The specified C function is an interrupt function (a C51 function) that was specified
to be located in a code bank. Interrupt functions cannot be located in a code bank.

18 no generated by Lx51

19 COMMON CODE SEGMENTS LOCATED TO BANKED AREA
Some segments that are usually located to the common area located into the
banked area. This warning just informs you, that you might free up some code
space by locating program code into banks. The warning is not generated for the
default setting of the BANKAREA (0 - 0xFFFF).

20 L51_BANK.A51: NBANKS < NUMBER OF CODE BANKS
The setting for NBANKS in the L51_BANK.A51 module is smaller than the number
of banks used in your application.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 363

 9

Warning Warning Message and Description

21 SEGMENT LOCATED OUTSIDE BANKED AREA

A segment that should be located in the code banking area is located outside the
address range of the BANKAREA directive.

22 SEGMENT SIZE UNDERFLOW: OLD SIZE + CHANGE < 0
SEGMENT: segment–name
The size change specified in the SEGSIZE control causes the segment size to be
less than zero.

23 UNRESOLVED EXTERNAL SYMBOL DURING LINK PROCESS
During the link run one or more external symbols have no corresponding PUBLIC
symbol in any of the input files.

24 INCOMPATIBLE CPU MODE
MODULE: module-name
MODE: cpu-mode
The specified module is not translated with the same CPU mode as the former
Lx51 input modules. The CPU mode of the invalid module is displayed by MODE.
The CPU mode of other input modules is displayed in the Lx51 listing file.

25 DATA TYPES DIFFERENT
SYMBOL: symbol-name
MODULE: module-name
The definition of the specified symbol in the specified module is not identical with
the public definition of that symbol. The module which contains the public symbol
can be determined with the IXREF listing. This warning is disabled with
WARNINGLEVEL (0) control.

26 DATA TYPES SLIGHTLY DIFFERENT
SYMBOL: symbol-name
MODULE: module-name
The definition of the specified symbol in the specified module is not 100% identical
with the public definition of that symbol. This warning is the result when unsigned
signed mismatches occur, i.e. unsigned char does not match char. The module
which contains the public symbol can be determined with the IXREF listing. This
warning is disabled with WARNINGLEVEL (1) control.

27 INCOMPATIBLE INTERRUPT FRAME SIZE
MODULE: module-name
FRAME: frame-size
The specified module is not translated with the same interrupt frame size
assumptions as the former input modules. The frame size of the invalid module is
displayed by FRAME. The frame size of other input modules is displayed in the
Lx51 listing file.

364 Chapter 9. Linker/Locator

9

Warning Warning Message and Description

28 DECRESING SIZE OF SEGMENT
SEGMENT: segment-name
The size specified in the SEGSIZE control has caused Lx51 to decrease the size
of the specified segment.

29 SEGMENT LOCATED OUTSIDE CLASS AREA
SEGMENT: segment-name
The specified segment is located outside the memory class limits specified by the
CLASSES control.

30 MEMORY SPACE OVERLAP
FROM: address
TO: address
The specified area of the physical memory is occupied by more than one segment.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 365

 9

Non-Fatal Errors

Error Error Message and Description

101 SEGMENT COMBINATION ERROR
SEGMENT: segment-name
MODULE: filename (modulename)
The attributes of the specified partial segment in the specified module cannot be
combined with the attributes of the previous defined partial segments of the same
name. The partial segment is ignored.

102 EXTERNAL ATTRIBUTE MISMATCH
SYMBOL: external-name
MODULE: filename (modulename)
The attributes of the specified external symbol in the specified module do not
match the attributes of the previously defined external symbols. The specified
symbol is ignored.

103 EXTERNAL ATTRIBUTE DO NOT MATCH PUBLIC
SYMBOL: public-name
MODULE: filename (modulename)
The attributes of the specified public symbols in the specified module do not match
the attributes of the previous defined external symbols. The specified symbol is
ignored.

104 MULTIPLE PUBLIC DEFINITIONS
SYMBOL: public-name
MODULE: filename (modulename)
The specified public symbol in the specified module has already been defined in a
previously processed file.

105 PUBLIC REFERS TO IGNORED SEGMENT
SYMBOL: public-name
SEGMENT: segment-name
The specified public symbol is defined in the specified segment. It cannot be
processed on account of an error. The public symbol is therefore ignored.

106 SEGMENT OVERFLOW
SEGMENT: segment-name
The specified segment is longer than the limits implied by the memory class to
which the segment belongs to.

107 ADDRESS SPACE OVERFLOW
SPACE: space-name
SEGMENT: segment-name
The specified segment cannot be located at the specified address space. The
segment is ignored.

366 Chapter 9. Linker/Locator

9

Error Error Message and Description

108 SEGMENT IN LOCATING CONTROL CANNOT BE ALLOCATED
SEGMENT: segment-name
The specified segment in the invocation line cannot be processed on account of its
attributes.

109 EMPTY RELOCATABLE SEGMENT
SEGMENT: segment-name
The specified segment after combination has a zero size. The specified segment
is ignored.

110 CANNOT FIND SEGMENT
SEGMENT: segment-name
The specified segment is contained in the invocation line but cannot be found in an
input module. The specified segment is ignored.

111 SPECIFIED BIT ADDRESS NOT ON BYTE BOUNDARY
SEGMENT: segment-name
The specified segment contained in the BIT control is a DATA segment. The
specified BIT address however is not on a byte boundary. The segment is
ignored.

112 SEGMENT TYPE NOT LEGAL FOR COMMAND
SEGMENT: segment-name
The specified segment cannot be processed because it does not have a legal
type.

113 SEGMENT IN LOCATING CONTROL IS ALREADY ABSOLUTE
SEGMENT: segment-name
The specified segment is already an absolute segment and cannot be located with
the SEGMENTS control.

114 SEGMENT DOES NOT FIT
SPACE: space-name
SEGMENT: segment-name
BASE: base-address
LENGTH: segment-length
The specified segment cannot be located at the base address in the specified
address space because of its length. The segment is ignored.

115 INPAGE SEGMENT IS GREATER THAN 256 BYTES
SEGMENT: segment-name
The specified segment with the attributes PAGE or INPAGE is greater than 256
bytes. The segment is ignored.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 367

 9

Error Error Message and Description

116 INBLOCK SEGMENT IS GREATER THAN 2048 BYTES
SEGMENT: segment-name
The specified segment with the attribute INBLOCK is greater than 2048 bytes.
The segment is ignored.

117 BIT ADDRESSABLE SEGMENT IS GREATER THAN 16 BYTES
SEGMENT: segment-name
The specified bit or data segment that was declared with the BITADDRESSABLE
attribute is larger than 16 bytes. The segment is not ignored.

118 REFERENCE MADE TO ERRONEOUS EXTERNAL
SYMBOL: symbol-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified external symbol that was erroneously processed, is referenced in the
specified code address.

119 REFERENCE MADE TO ERRONEOUS SEGMENT
SEGMENT: symbol-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified segment processed with an error, is referenced in the specified code
address.

120 CONTENT BELONGS TO ERRONEOUS SEGMENT
SEGMENT: segment-name
MODULE: filename (modulename)
A specified segment that was erroneously processed, is referenced at a specific
code address. The segment contents are not available.

121 IMPROPER FIXUP
MODULE: filename (modulename)
SEGMENT: segment-name
OFFSET: segment-address
After evaluation of absolute fix-ups, an address is not accessible. The improper
address along with the specific module name, partial segment, and segment
address are displayed. The fix-up command is not processed.
This error occurs when an instruction cannot reach the address, i.e. ACALL
instruction calls a location outside the 2KB block. If you are working with the Cx51
compiler, you have typically selected the ROM(SMALL) option for a program that
exceeds the 2KB ROM size. You can locate the instruction, when you open the
LST file of the translator and search for the instruction that is located in the offset
of the specified segment.

122 CANNOT FIND MODULE
MODULE: filename (modulename)
The module specified in the invocation line cannot be found in the input file.

368 Chapter 9. Linker/Locator

9

Error Error Message and Description

123 ABSOLUTE DATA/IDATA SEGMENT DOES NOT FIT
MODULE: filename (modulename)
FROM: byte address
TO: byte address
An absolute DATA or IDATA segment contained in the specified module is not
permissible due to a conflict with the value specified with the RAMSIZE control.
The absolute segment cannot be located in the area, which was output.

124 BANK SWITCH MODULE INCORRECT
This error message is issued when the bank switch module file (L51_BANK.OBJ)
contains invalid information or is not specified.

125 DUPLICATE TASK NUMBER
TASK1: function name
TASK2: function name
TASKID: task-id
A task number has been assigned to more than one RTXx51 task function.

126 TASK WITH PRIORITY 3 CANNOT WORK WITH REGISTERBANK 0
TASK: function name
TASKID: task-id
A task that has priority 3 must have a using attribute that refers to register bank 1,
2, or 3.

127 UNRESOLVED EXTERNAL SYMBOL
SYMBOL: external-name
MODULE: filename (modulename)
The specified external symbol, requested in the specified module, has no
corresponding PUBLIC symbol in any of the input files.

128 REFERENCE MADE TO UNRESOLVED EXTERNAL
SYMBOL: external-name
MODULE: filename (modulename)
ADDRESS: code-address
The specified unresolved external symbol is referenced at the specified code
address.

129 TASK REQUIRES REGISTERBANK
TASK: function name
TASKID: task-id
The task function requires that you assign a register bank with an using attribute.

130 NO MATCHING SEGMENT FOR WILDCARD SEGMENT NAME
SEGMENT: segment-name
The linker could not find a segment name that matches the wildcard segment
name stated in the command line.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 369

 9

Error Error Message and Description

131 ILLEGAL PRIORITY FOR TASK
TASK: function name
TASKID: task-id
You have assigned a priority for an RTX51 Tiny task. RTX51 Tiny does not
support priorities.

132 ILLEGAL TASKID: RTX-51 TINY SUPPORTS ONLY 16 TASKS
TASK: function name
TASKID: task-id
You have assigned a task-id that is higher than 15. RTX51 Tiny tasks supports
only 16 tasks.

133 SFR SYMBOL HAS DIFFERENT VALUES
SYMBOL: public-name
MODULE: filename (modulename)
The specified SFR symbol is defined with different values in several input
modules.

134 ADDRESS SPACE OVERFLOW IN BANKAREA
SPACE: space-name
SEGMENT: segment-name
The specified segment cannot be located in the banked area, since the banked
area is already full.

370 Chapter 9. Linker/Locator

9

Fatal Errors

Error Error Message and Description

201 INVALID COMMAND LINE SYNTAX
A syntax error is detected in the command line. The command line is displayed up
to and including the point of error.

202 INVALID COMMAND LINE, TOKEN TOO LONG
The command line contains a token that is too long. The command line is
displayed up to and including the point of error.

203 EXPECTED ITEM MISSING
An expected item is missing in the command line. The command line is displayed
up to and including the point of error.

204 INVALID KEYWORD
The invocation line contains an invalid keyword. The command line is displayed
up to and including the point of error.

205 CONSTANT TOO LARGE
A constant in the invocation line is larger than 0FFFFH. The command line is
displayed up to and including the point of error.

206 INVALID CONSTANT
A constant in the invocation line is invalid; e.g., a hexadecimal number with a
leading letter. The command line is displayed up to and including the point of
error.

207 INVALID NAME
A module or segment name is invalid. The command line is displayed up to and
including the point of error.

208 INVALID FILENAME
A filename is invalid. The command line is displayed up to and including the point
of error.

209 FILE USED IN CONFLICTING CONTEXTS
FILE: filename
A specified filename is used for multiple files or used as an input as well as an
output file.

210 I/O ERROR ON INPUT FILE:
system error message
FILE: filename
An I/O error is detected by accessing an input file. A detailed error description of
the EXCEPTION messages is described afterwards.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 371

 9

Error Error Message and Description

211 I/O ERROR ON OUTPUT FILE:
system error message
FILE: filename
An I/O error is detected by accessing an output file. A detailed error description of
the EXCEPTION messages is described afterwards.

212 I/O ERROR ON LISTING FILE:
system error message
FILE: filename
An I/O error is detected by accessing a listing file. A detailed error description of
the EXCEPTION messages is described afterwards.

213 I/O ERROR ON WORK FILE:
system error message
An I/O error is detected by accessing a temporary work file of BL51. A detailed
error description of the EXCEPTION messages is described afterwards.

214 INPUT PHASE ERROR
MODULE: filename (modulename)
This error occurs when BL51 encounters different data during pass two. This error
could be the result of an assembly error.

215 CHECK SUM ERROR
MODULE: filename (modulename)
The checksum does not correspond to the contents of the file.

216 INSUFFICIENT MEMORY
The memory available for the execution of BL51 is used up.

217 NO MODULE TO BE PROCESSED
No module to be processed is found in the invocation line.

218 NOT AN OBJECT FILE
FILE: filename
The specified file is not an object file.

219 NOT AN 8051/X51 OBJECT FILE
FILE:filename
The specified file is not a valid x51 object file.

220 INVALID INPUT MODULE
FILE: filename
The specified input module is invalid. This error could be the result of an
assembler error.

372 Chapter 9. Linker/Locator

9

Error Error Message and Description

221 MODULE SPECIFIED MORE THAN ONCE
The invocation line contains the specified module more than once. The command
line is displayed up to and including the point of error.

222 SEGMENT SPECIFIED MORE THAN ONCE
The invocation line contains the specified segment more than once. The
command line is displayed up to and including the point of error.

224 DUPLICATE KEYWORD OR CONFLICTING CONTROL
The same keyword is contained in the invocation line more than once or
contradicts with other keywords. The command line is displayed up to and
including the point of error.

225 SEGMENT ADDRESS ARE NOT IN ASCENDING ORDER
The base addresses for the segments are not displayed in ascending order during
the location control. The command line is displayed up to and including the point
of error.

226 SEGMENT ADDRESS INVALID FOR CONTROL
The base addresses for the segments are invalid for the location control. The
command line is displayed up to and including the point of error.

227 PARAMETER OUT OF RANGE
The specified value for the PAGEWIDTH or PAGELENGTH control is out of the
acceptable range. The command line is displayed up to and including the point of
error.

228 RAMSIZE PARAMETER OUT OF RANGE
The specified value for the RAMSIZE control is out of the acceptable range. The
command line is displayed up to and including the point of error.

229 INTERNAL PROCESS ERROR
Lx51 detects an internal processing error. Please contact your dealer.

230 START ADDRESS SPECIFIED MORE THAN ONCE
The invocation line contains more than one start address for unnamed segment
group. The command is displayed up to and including the point of error.

231 ADDRESS RANGE FOR BANKAREA INCORRECT
The address space specified with the BANKAREA control is invalid.

232 APPLICATION CONTAINS TOO MANY RECURSIONS
The application contains to many recursive calls. Refer to “RECURSIONS” on
page 356 for more information.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 373

 9

Error Error Message and Description

233 ILLEGAL USE OF * IN OVERLAY CONTROL
The use of “* ! *” or “* ~ *” with the OVERLAY control is illegal.

234 USE RTX251 OR RTX51 CONTROL
The application uses RTXx51 tasks.

233 ILLEGAL USE OF * IN OVERLAY CONTROL
command line
The use of “* ! *” or “* ~ *” with the OVERLAY control is illegal.

234 USE RTX-251 SWITCH
The application uses a real-time operating system RTX251 Full or RTX251 Tiny.
The L251 linker/locater must be invoked with the RTX251 or RTX251TINY control.

235 TOO MANY ADDRESS RANGES
You are using to many address ranges.

236 ADDRESSES ARE NOT IN ASCENDING ORDER
The address range does not contain addresses in ascending order.

237 INVALID CLASS NAME
The class name given in the CLASSES control is not valid.

238 BIT ADDRESS INVALID FOR THIS CLASS TYPE
The CLASSES control contains a bit address for a memory class which cannot be
used for bit objects.

239 BASE ADDRESS ALREADY GIVEN FOR THIS CLASS
The CLASSES control contains a base address, but the class has already a base
address specified with a previous CLASSES control.

240 BASE ADDRESS MUST BE THE FIRST ARGUMENT
The base address must be the first argument in the CLASSES control.

241 BASE ADDRESS CANNOT BE GIVEN FOR THIS CLASS
A base address cannot be given for this memory class in the CLASSES control.

242 WRONG SYNTAX FOR THE EXECUTION ADDRESS
The execution address field contains a wrong syntax.

243 EXECUTION ADDRESS REQUIRED IF SPACE IS NOT RESERVED
You need to specify an execution address, if the execution space should not be
reserved.

374 Chapter 9. Linker/Locator

9

Error Error Message and Description

244 OVERLAPPING CLASS RANGE
The address ranges in the classes control are overlapping.

245 ADDRESS RANGE INVALID FOR THIS CLASS TYPE
The address range given in the CLASSES control is not valid for this memory
class type.

246 SYMBOL SPECIFIED MORE THAN ONCE
The symbol name is already used.

249 MODULE USES AN UNKNOWN OMF VERSION
MODULE: filename (modulename)
The module uses an un-known or unsupported OMF version.

250 CODE SIZE LIMIT IN RESTRICTED VERSION EXCEEDED
You are using modules that are created with an evaluation version or a code size
limited version and the size limit is exceeded.

251 RESTRICTED MODULE IN LIBRARY NOT SUPPORTED
A library contains a module that is created with an evaluation version or a code
size limited version. This is not supported.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 375

 9

Exceptions
Exception messages are displayed with some error messages. The BL51
linker/locator exception messages that are possible are listed below:

Exception Exception Message and Description

0021H PATH OR FILE NOT FOUND
The specified path or filename is missing.

0026H ILLEGAL FILE ACCESS

An attempt was made to write to or delete a write-protected file.

0029H ACCESS TO FILE DENIED

The file indicated is a directory.

002AH I/O-ERROR

The drive being written to is either full or the drive was not ready.

0101H ILLEGAL CONTEXT

An attempt was made to access a file in an illegal context; e.g., the printer was
opened for reading.

376 Chapter 9. Linker/Locator

9

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 377

 10

Chapter 10. Library Manager
The LIBx51 library manager allows you to create and maintain library files. A
library file is a formatted collection of one or more object files. Library files
provide a convenient method of referencing a large number of object files and
can be used by the Lx51 linker/locator. The LIBx51 library manager can be
controlled interactively or from the command line.

The following table gives you an overview of the LIBx51 library manager
variants along with the translators that are supported.

Library Manager Processes Files from… Description

LIB51 Keil A51 Macro Assembler
Keil C51 Compiler
Intel ASM51 Assembler
Intel PL/M51 Compiler

For classic 8051. Includes support for
32 x 64KB code banks.

LIBX51 Keil A51 Macro Assembler
Keil C51 Compiler
Keil AX51 Macro Assembler
Keil CX51 Compiler for
80C51MX
Intel ASM51 Assembler
Intel PL/M51 Compiler

For classic 8051 and extended 8051
versions (Philips 80C51MX, Dallas 390,
etc.)
Allows code and data banking and
supports up to 16MB code and xdata
memory.

LIB251 Keil A51 Macro Assembler
Keil C51 Compiler
Keil A251 Macro Assembler
Keil C251 Compiler
Intel ASM51 Assembler
Intel PL/M51 Compiler

For Intel/Atmel WM 251.

378 Chapter 10. Library Manager

10

Using LIBx51
To invoke the LIBx51 library manager from the command prompt, type the
program name along with an optional command. The format for the LIBx51
command line is:

LIB51 �command�

LIBX51 �command�

LIB251 �command�

or
LIB51 @commandfile
LIBX51 @commandfile
LIB251 @commandfile

where

command may be a single library manager command.

commandfile is the name of a command input file that may contain a very long
library manager command.

Interactive Mode
If no command is entered on the command line, or if the ampersand character is
included at the end of the line, the LIB51 library manager enters interactive
mode. The LIBx51 library manager displays an asterisk character (*) to signal
that it is in interactive mode and is waiting for input.

Any of the LIBx51 library manager commands may be entered on the command
line or after the * prompt when in interactive mode.

Type EXIT to leave the LIBx51 library manager interactive mode.

Create Library within µVision2
You can directly create a library file from your µVision2 project. Select Create
Library in the dialog Options for Target – Output. µVision2 will call the
correct LIBx51 Library Manager instead of the Lx51 Linker/Locater. Since the

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 379

 10

code in the Library will be not linked and located, the entries in the L51 Locate
and L51 Misc options page are ignored.

Command Summary
The following table lists the commands that are available for the LIBx51 library
manager. The usage and the syntax of these commands are described in the
sections that follow.

NOTE
Underlined characters denote the abbreviation for the particular command.

LIBx51 Command Description

ADD Adds an object module to the library file. For example,
 LIB51 ADD GOODCODE.OBJ TO MYLIB.LIB
adds the GOODCODE.OBJ object module to MYLIB.LIB.

CREATE Creates a new library file. For example,
 LIB251 CREATE MYLIB.LIB
creates a new library file named MYLIB.LIB.

DELETE Removes an object module from the library file. For example,
 LIBX51 DELETE MYLIB.LIB (GOODCODE)
removes the GOODCODE module from MYLIB.LIB.

EXTRACT Extracts an object module from the library file. For example,
 LIB251 EXTRACT MYLIB.LIB (GOODCODE) TO GOOD.OBJ
copies the GOODCODE module to the object file GOOD.OBJ.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Lists the module and public symbol information stored in the library file.
For example,
 LIB251 LIST MYLIB.LIB TO MYLIB.LST PUBLICS
generates a listing file (named MYLIB.LST) that contains the module
names stored in the MYLIB.LIB library file. The PUBLICS directive
specifies that public symbols are also included in the listing.

REPLACE Replaces an existing object module to the library file. For example,
 LIB51 REPLACE GOODCODE.OBJ IN MYLIB.LIB
replaces the GOODCODE.OBJ object module in MYLIB.LIB. Note that
Replace will add GOODCODE.OBJ to the library if it does not exist.

TRANSFER Generates a complete new library and adds object modules. For example,
 LIB251 TRANSFER FILE1.OBJ, FILE2.OBJ TO MYLIB.LIB
deletes the existing library MYLIB.LIB, re-creates it and adds the object
modules FILE1.OBJ and FILE2.OBJ to that library.

380 Chapter 10. Library Manager

10

Creating a Library
The CREATE command creates a new, empty library file and has the following
format:

CREATE libfile

libfile is the name of the library file to create and should include a file extension.
Usually, .LIB is the extension that is used for library files.

Example:
LIBX51 CREATE MYFILE.LIB

* CREATE FASTMATH.LIB

The TRANSFER command creates a new library file and adds object modules.
The TRANSFER command must be entered in the following format:

TRANSFER filename �(modulename, …)� �, …� TO libfile

where

filename is the name of an object file or library file. You may specify
several files separated by a comma.

modulename is the name of a module in a library file. If you do not want
to add the entire contents of a library, you may select the
modules that you want to add. Module names are specified
immediately following the filename, must be enclosed in
parentheses, and must be separated by commas.

libfile is the name of the library file that should be created. The
LIBx51 library manager will remove a previous version of
the library, if this file already exists. The specified object
modules are added to the new created library.

Example:
LIB251 TRANSFER FILE1.OBJ, FILE2.OBJ TO MYLIB.LIB

LIBX51 @mycmd.lin

--- content of mycmd.lin: ---
TRANSFER FILE1.OBJ, FILE2.OBJ, FILE3.OBJ TO MYLIB.LIB

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 381

 10

Adding or Replacing Object Modules
The ADD command is used to add one or more object modules to an existing
library file. The ADD command must be entered in the following format:

ADD filename �(modulename, …)� �, …� TO libfile

where

filename is the name of an object file or library file. You may specify
several files separated by a comma.

modulename is the name of a module in a library file. If you do not want
to add the entire contents of a library, you may select the
modules that you want to add. Module names are specified
immediately following the filename, must be enclosed in
parentheses, and must be separated by commas.

libfile is the name of an existing library file. The specified object
modules are added to this library.

Example:
LIB51 ADD MOD1.OBJ, UTIL.LIB(FPMUL, FPDIV) TO NEW.LIB

* ADD FPMOD.OBJ TO NEW.LIB

With the REPLACE command you can update an existing object module in a
library file. The REPLACE command will the object module to the library if it
does not exist. The format is:

REPLACE filename IN libfile

where

filename is the name of an object file you want to update.

libfile is the name of an existing library file. The object module is
replaced in this library.

Example:
LIBX51 REPLACE MOD1.OBJ IN MYLIB.LIB

* REPLACE FPMOD.OBJ TO FLOAT.LIB

382 Chapter 10. Library Manager

10

Removing Object Modules
The DELETE command removes object modules from a library file. This
command must be entered in the following format:

DELETE libfile (modulename �, modulename …�)

where

libfile is the name of an existing library file. The specified object
modules are removed from this library.

modulename is the name of a module in the library file that you want to
remove. Module names are entered in parentheses and are
separated by commas.

Example:
LIB51 DELETE NEW.LIB (MODUL1)

* DELETE NEW.LIB (FPMULT, FPDIV)

Extracting Object Modules
The EXTRACT command creates a standard object module for a specified
module in a library file. This command must be entered in the following format:

EXTRACT libfile (modulename) TO filename

where

libfile is the name of an existing library file. For the specified
object module a standard object module will be created.

modulename is the name of a module in the library file. Only one module
name can be entered in parentheses.

filename is the name of the object file that should be created from the
library module.

Example:
LIBX51 EXTRACT FLOAT.LIB(FPMUL) TO FLOATMUL.OBJ

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 383

 10

Listing Library Contents
Use the LIST command to direct the LIBx51 library manager to generate a
listing of the object modules that are stored in a library file. LIST may be
specified on the command line or after the * prompt in interactive mode. This
command has the following format:

LIST libfile �TO listfile� �PUBLICS�

where

libfile is the library file from which a module list is generated.

listfile is the file where listing information is written. If no
listfile is specified, the listing information is displayed on
the screen.

PUBLICS specifies that public symbols are included in the listing.
Normally, only module names are listed.

Example:
LIB251 LIST NEW.LIB

* LIST NEW.LIB TO NEW.LST PUBLICS

The LIBx51 library manager produces a module listing that appears as follows:

LIBRARY: NEW.LIB
PUTCHAR

_PUTCHAR
PRINTF

?_PRINTF517?BYTE
?_SPRINTF517?BYTE
?_PRINTF?BYTE
?_SPRINTF?BYTE
_PRINTF
_SPRINTF
_PRINTF517
_SPRINTF517

PUTS
_PUTS

In this example, PUTCHAR, PRINTF, and PUTS are module names. The names
listed below each of these module names are public symbols found in each of the
modules.

384 Chapter 10. Library Manager

10

Error Messages
This chapter lists the fatal and non-fatal errors that may be generated by the
LIB51 library manager during execution. Each section includes a brief
description of the message, as well as corrective actions you can take to
eliminate the error or warning condition.

Fatal Errors
Fatal errors cause immediate termination of the LIB51 library manager. These
errors normally occur as the result of a corrupt library or object file, or as a result
of a specification problem involving library or object files.

Error Error Message and Description

215 CHECK SUM ERROR
FILE: filename
The checksum for filename is incorrect. This usually indicates a corrupt file.

216 INSUFFICIENT MEMORY
There is not enough memory for the LIB51 library manager to successfully
complete the requested operation.

217 NOT A LIBRARY
FILE: filename
The filename that was specified is not a library file.

219 NOT AN 8051 OBJECT FILE
FILE: filename
The filename that was specified is not a valid 8051 object file.

222 MODULE SPECIFIED MORE THAN ONCE
MODULE: filename (modulename)
The specified modulename is included on the command line more than once.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 385

 10

Errors
The following errors cause immediate termination of the LIB51 library manager.
These errors usually involve invalid command line syntax or I/O errors.

Error Error Message and Description
201 INVALID COMMAND LINE SYNTAX

A syntax error was detected in the command. The command line is displayed up
to and including the point of error.

202 INVALID COMMAND LINE, TOKEN TOO LONG
The command line contains a token that is too long for the LIB51 library manager
to process.

203 EXPECTED ITEM MISSING
The command line is incomplete. An expected item is missing.

205 FILE ALREADY EXISTS
FILE: filename
The filename that was specified already exists. This error is usually generated
when attempting to create a library file that already exists. Erase the file or use a
different filename.

208 MISSING OR INVALID FILENAME
A filename is missing or invalid.

209 UNRECOGNIZED COMMAND
A command is unrecognized by the LIB51 library manager. Make sure you
correctly specified the command name.

210 I/O ERROR ON INPUT FILE:
system error message
FILE: filename
An I/O error was detected when accessing one of the input files.

211 I/O ERROR ON LIBRARY FILE:
system error message
FILE: filename
An I/O error was detected when accessing a library file.

212 I/O ERROR ON LISTING FILE:
system error message
FILE: filename
An I/O error was detected when accessing a listing file.

386 Chapter 10. Library Manager

10

Error Error Message and Description
213 I/O ERROR ON TEMPORARY FILE:

system error message
FILE: filename
An I/O error was detected when a temporary file was being accessed.

220 INVALID INPUT MODULE
FILE: filename
The specified input module is invalid. This error could be the result of an
assembler error or could indicate that the input object file is corrupt.

221 FILE SPECIFIED MORE THAN ONCE
FILE: filename
The filename specified was included on the command line more than once.

223 CANNOT FIND MODULE
MODULE: filename (modulename)
The modulename specified on the command line was not located in the object or
library file.

224 ATTEMPT TO ADD DUPLICATE MODULE
MODULE: filename (modulename)
The specified modulename already exists in the library file and cannot be added.

225 ATTEMPT TO ADD DUPLICATE PUBLIC SYMBOL
MODULE: filename (modulename)
PUBLIC: symbolname
The specified public symbolname in modulename already exists in the library file
and cannot be added.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 387

 11

Chapter 11. Object-Hex Converter
Program code stored in an absolute object file can be converted an Intel HEX
file. Intel HEX files may be used as input files for EPROM programmers or
emulators.

For the each Lx51 linker/locater variant a different OHx51 object hex converter
is required to create an Intel HEX file. For code banking applications generated
with the BL51 linker/locater, you need in addition the OC51 Banked Object File
Converter to create HEX files. The following table gives you an overview of the
conversion tools required to create an Intel HEX file.

Output from… Object Hex Converter Description

BL51 OH51 For classic 8051 applications without banking.

BL51 Banked
Application

OC51 combined with
OH51

For classic 8051 applications with banking.

LX51 OHX51 For classic 8051 and extended 8051 versions.

L251 OH251 For Intel/Atmel WM 251.
In µVision2 you enable the generation of an Intel Object file in the dialog Options – Output with

Create HEX File. The µVision2 project manager selects automatically the correct utility.

The following sections describe how to use the OHx51 and OC51 utilities, the
command-line options that are available, and any errors that may be encountered
during execution.

388 Chapter 11. Object-Hex Converter

11

Using OHx51
To invoke OHx51 from the command prompt, type the program name along with
the name of the absolute object file. The command line format for the OHx51
utilities is:

OH51 abs_file �HEXFILE (file)�

OHX51 abs_file �HEXFILE (file)��H386��RANGE (start–end)��OFFSET (offset)�

OH251 abs_file �HEXFILE (file)��H386��RANGE (start–end)��OFFSET (offset)�

where

abs_file is the name of the absolute object file that is generated by the
Lx51 linker/locator.

file is the name of the Intel HEX file to generate. By default, the
HEX file name is the name of the abs_file with the
extension .HEX.

H386 specifies Intel HEX-386 format for the Intel HEX file. This
format is automatically used, if the specified address range is
more than 64KBytes.

start-end specifies the address range of the abs_file that should be
converted to the Intel HEX file. The default range depends on
the device you are using and is listed in the following table:

OHx51 Converter (Architecture) Address Range

OHX51 (Classic, and Extended 8051)
Note: For code banking applications OHX51
the default setting converts the complete
content into an Intel HEX-386 format.

C:0x0000 - C:0xFFFF

OHX51 (Philips 80C51MX) 0x800000 - 0x80FFFF

OH251 (Intel/Atmel WM 251) 0xFF0000 - 0xFFFFFF

offset specifies an offset which is added to the address stored in
the abs_file.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 389

 11

OHx51 Command Line Examples
The following command generates an Intel HEX-386 file for a 251 device. The
address range 0xFE0000 - 0xFFFFFF should be converted. The offset
0xFE0000 is subtracted to get an Intel HEX file that can be directly programmed
into an EPROM that is mapped to the address space 0xFE0000 - 0xFFFFFF in
the 251 address space.

OH251 MYPROG RANGE (0xFE0000-0xFFFFFF) OFFSET (-0xFE0000)

The next example generates an Intel HEX file for a banked application with a
classic 8051 device. Only the code bank 0 should be converted. The file format
used will be the standard Intel HEX format.

OHX51 PROG RANGE (B:0-B:0xFFFF)

The command below generates an Intel HEX-386 file for a Philips 80C51MX
device. The OFFSET control is used to create an output file that can be directly
programmed into an EPROM.

OHX51 MYAPP RANGE (0x800000-0x81FFFF) OFFSET (-0x800000)

With the next command line, the constants stored in the XDATA space are
converted into an Intel HEX file.

OHX51 MYPROG RANGE (X:0-X:FFFF)

Creating HEX Files for Banked Applications
For the BL51 linker/locater the OC51 Banked Object File Converter described
on page 392 is used to split banked object files into standard object files that
contain a 64KB code bank. These files can be converted with OH51 into HEX
files that store the content of a 64KB bank. These files are programmed
separately into the corresponding physical address space of the EPROM.

For the extended LX51 linker/locater the OHX51 object hex converter generates
in the default setting and Intel HEX-386 file that contains the common area and
all the code banks. If code bank 0 does not exist in your application, OHX51
will skip this memory area.

Examples:

The figure below shows the HEX The following figure shows the

390 Chapter 11. Object-Hex Converter

11

file content for the example
“Banking With Four 64 KByte
Banks” on page 299.

0

10000H

20000H

30000H

Code Bank #0

Code Bank #2

Code Bank #1

Code Bank #3

HEX file content for the example
“Banking With Common Area”
on page 303.

0

8000H

10000H

18000H

20000H

28000H

30000H

38000H

Common Area

Code Bank #1

Code Bank #5

Code Bank #4

Code Bank #3

Code Bank #2

Code Bank #6

Code Bank #7

OHx51 Error Messages
The following tables list error and warning messages of OHx51. Each message
includes a brief description of the reason for the error or warning condition.

Error Message

*** ERROR, INVALID RECORD-TYPE ENCOUNTERED
The absolute object file contains an invalid record type.
*** FATAL, INCONSISTENT OBJECT FILE
The input file has an invalid format.
*** ERROR, ARGUMENT TOO LONG
An argument in the command line is too long.
*** ERROR, DELIMITER '(' AFTER PARAMETER EXPECTED
The command-line parameter must be followed by an argument enclosed in parentheses ().
*** ERROR, DELIMITER ')' AFTER PARAMETER EXPECTED
The command-line parameter must be followed by an argument enclosed in parentheses ().
*** ERROR, UNKNOWN CONTROL:
The specified command-line parameter is unrecognized.
*** ERROR, RESPECIFIED CONTROL, IGNORED
The indicated command-line control was specified twice.
*** ERROR, CAN’T OPEN FILE filename
The specified file cannot be open for read.
*** ERROR, CAN’T CREATE FILE filename
The specified file cannot be open for write.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 391

 11

Error Message

*** I/O-ERROR ON FILE filename
A read/write error occurred during access of the specified file.

*** ERROR: PREMATURE END OF FILE ON filename
The input file does not end correctly. This is usually a result of a previous fatal error of an
translator or linker/locater.
*** ERROR: MORE THAN 512 CLASSES ON filename
The input file contains more than 512 memory classes. This is the limit of OHx51.
*** ERROR, NON-NULL ARGUMENT EXPECTED
An argument is missing.

Warning Message

WARNING: <PUBDEF> HEX-FILE WILL BE INVALID
The absolute object file still contains public definitions. This warning usually indicates that the
object file has not been processed by the Lx51 linker/locator. The hex file that is produced may be
invalid.
WARNING: <EXTDEF> UNDEFINED EXTERNAL
The absolute object file still contains external definitions. This warning usually indicates that the
object file has not been processed by the Lx51 linker/locator. The hex file that is produced may be
invalid.
WARNING: <FIXUPP> HEX-FILE WILL BE INVALID
The absolute object file still contains fix-ups. This warning usually indicates that the object file has
not been processed by the L251 linker/locator. The hex file that is produced may be invalid.

392 Chapter 11. Object-Hex Converter

11

Using OC51
The BL51 linker/locator generates a banked object file for programs that use
bank switching. Banked object files contain several banks of code that reside at
the same physical location. These object files can be converted into standard
object files using the OC51 Banked Object File Converter.

The OC51 Banked Object File Converter will create an absolute object file for
each code bank represented in the banked object file. Symbolic debugging
information that was included in the banked object file will be copied to the
absolute object modules that are generated. Once you have created absolute
object files with OC51, you may use the OH51 Object-Hex Converter to create
Intel HEX files for each absolute object file.

The OC51 Banked Object File Converter is invoked from the command prompt
by typing OC51 along with the name of the banked object file. The command
line format is:

OC51 banked_obj_file

where

banked_obj_file is the name of the banked object file that is generated by the
BL51 linker/locator.

OC51 will create separate absolute object modules for each code bank
represented in the banked object file. The absolute object modules will be
created with a filename consisting of the basename of the banked object file
combined with the file extension Bnn where nn corresponds to the bank number
00 - 31. For example:

OC51 MYPROG

creates the absolute object files MYPROG.B00 for code bank 0, MYPROG.B01
for code bank 1, MYPROG.B02 for code bank 2, etc.

NOTE
Use the OC51 Banked Object File Converter only if you used the BANKx
control on the BL51 linker/locator command line. If your program does not use
code banking, do not use OC51.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 393

 11

OC51 Error Messages
The following table lists the errors that you may encounter when you use the
OC51 Banked Object File Converter. Each message includes a brief description
of the message as well as corrective actions you can take to eliminate the error
condition.

Error Error Message and Description

201 FILE ACCESS ERROR ON INPUT FILE
FILE: filename
An error occurred while reading the specified file.

202 FILE ACCESS ERROR ON OUTPUT FILE
FILE: filename
An error occurred while writing the specified file.

203 NOT A BANKED 8051 OBJECT FILE
The input file is not a banked object file.

204 INVALID INPUT FILE
The input file has an invalid format.

205 CHECKSUM ERROR
The input file has an invalid checksum. This error is usually caused by an error
from BL51. Make sure that your program was linked successfully.

206 INTERNAL ERROR
OC51 has detected an internal error. Contact technical support.

207 SCOPE LEVEL ERROR
MODULE: modulename
The symbolic information in the specified file contains errors. This error message
is usually the result of an error at link time. Make sure that your program was
linked successfully.

208 PATH OR FILE NOT FOUND
FILE: filename
The OC51 Banked Object File Converter cannot find the specified file. Make sure
the file actually exists.

394 Chapter 11. Object-Hex Converter

11

Intel HEX File Format
The Intel HEX file is an ASCII text file with lines of text that follow the Intel
HEX file format. Each line in an Intel HEX file contains one HEX record.
These records are made up of hexadecimal numbers that represent machine
language code and/or constant data. Intel HEX files are often used to transfer
the program and data that would be stored in a ROM or EPROM. Most EPROM
programmers or emulators can use Intel HEX files.

Record Format
An Intel HEX file is composed of any number of HEX records. Each record is
made up of five fields that are arranged in the following format:

:llaaaatt�dd...�cc

Each group of letters corresponds to a different field, and each letter represents a
single hexadecimal digit. Each field is composed of at least two hexadecimal
digits—which make up a byte—as described below:

: is the colon that starts every Intel HEX record.

ll is the record-length field that represents the number of data
bytes (dd) in the record.

aaaa is the address field that represents the starting address for
subsequent data in the record.

tt is the field that represents the HEX record type, which may
be one of the following:

 00 data record
 01 end-of-file record
 02 extended 8086 segment address record.
 04 extended linear address record.

dd is a data field that represents one byte of data. A record may
have multiple data bytes. The number of data bytes in the
record must match the number specified by the ll field.

cc is the checksum field that represents the checksum of the
record. The checksum is calculated by summing the values

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 395

 11

of all hexadecimal digit pairs in the record modulo 256 and
taking the two’s complement.

Data Record
The Intel HEX file is made up of any number of data records that are terminated
with a carriage return and a linefeed. Data records appear as follows:

:10246200464C5549442050524F46494C4500464C33

where:

10 is the number of data bytes in the record.

2462 is the address where the data are to be located in memory.

00 is the record type 00 (a data record).

464C...464C is the data.

33 is the checksum of the record.

End-of-File (EOF) Record
An Intel HEX file must end with an end-of-file (EOF) record. This record must
have the value 01 in the record type field. An EOF record always appears as
follows:

:00000001FF

where:

00 is the number of data bytes in the record.

0000 is the address where the data are to be located in memory. The
address in end-of-file records is meaningless and is ignored. An
address of 0000h is typical.

01 is the record type 01 (an end-of-file record).

FF is the checksum of the record and is calculated as
01h + NOT(00h + 00h + 00h + 01h).

396 Chapter 11. Object-Hex Converter

11

Extended 8086 Segment Record
The Intel HEX contains extended 8086 segment records when the H86 directive
is used. This record is used to specify an address offset (in 8086 paragraph
form) for the following data records. Extended 8086 segment records appear as
follows:

:02000002F0000C

where:

02 is the number of data bytes in the record.

0000 is always 0 in a extended 8086 segment record.

02 is the record type 02 (a extended 8086 segment record).

F000 is the offset in 8086 paragraph notation (= 0x0F0000).

0C is the checksum of the record.

Extended Linear Address Record
The Intel HEX contains extended linear address records when the H386 directive
is used. This record is used to specify the two most significant bytes (bits 16 -
31) of the absolute address. This address offset is used for all following data
records. Extended linear address records appear as follows:

:0200000400FFFB

where:

02 is the number of data bytes in the record.

0000 is always 0 in a extended 8086 segment record.

04 is the record type 04 (a extended linear address record).

00FF is the high word of the address offset (= 0xFF0000).

FB is the checksum of the record.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 397

 11

Example Intel HEX File
Following is an example of a complete Intel HEX file:

:0200000400FFFB
:03000000020003F8
:10000300758107758920758DFDD28E759852C20052
:0B00130090001E12003612002B80F53A
:0D001E00544553542050524F4752414D005D
:10002B00740D120047740A12004722200004E49357
:0C003B008001E06006120047A380F02264
:080047003099FDC299F59922E0
:00000001FF

398 Chapter 11. Object-Hex Converter

11

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 399

 A

Appendix A. Application Examples
This chapter illustrates project development for the x51 microcontroller family.
The sample programs are found in the C:\KEIL\C51\EXAMPLES\ or
C:\KEIL\C251\EXAMPLES\ folder. Each sample program is stored in a separate
folder along with µVision2 project files that help you quickly build each sample
program.

The following table lists the sample programs that are discussed in the following
section and their folder names.

Example Description

ASM This section describes a short x51 program, developed in assembler
language. The program displays the text "PROGRAM TEST" on the serial
interface.

CSAMPLE Simple addition and subtraction calculator that shows how to build a C
application.

BANK_EX1 C application for a classic 8051 device that shows code banking.

BANK_EX2 C program for a classic 8051 device that stores constants in different code
banks.

BANK_EX3 Intel PL/M-51 application that uses code banking.

Philips 80C51MX
\ASM

Assembler example that demonstrates the new instructions of the Philips
80C51MX.

Philips 80C51MX
\Banking

C Compiler example that shows how to use the extended address space of the
Philips 80C51MX.

The folder EXAMPLES contains several other example programs that are described in the
µVision2 for the x51 Family User’s Guide.

ASM – Assembler Example
This section shows you how to create a x51 program, developed in assembler
language. The program outputs the text "PROGRAM TEST" on the serial
interface. The program consists of three modules that can be translated using the
various tool versions.

400 Appendix A. Application Examples

A

Using A51 and BL51
The following commands are required to translate and link the ASM example
with the A51 macro assembler and the BL51 linker/locater. The output file can
be converted into an Intel HEX file with the OH51 hex file converter.

A51 ASAMPLE1.A51 DEBUG XREF
A51 ASAMPLE2.A51 DEBUG XREF
A51 ASAMPLE3.A51 DEBUG XREF

The XREF control causes the A51 assembler to include in the listing (LST) files
a cross reference report of the symbols used in the module. The DEBUG control
includes complete symbol information in the object file.

After assembly, the files are linked by the BL51 linker/locator with:

BL51 ASAMPLE1.OBJ, ASAMPLE2.OBJ, ASAMPLE3.OBJ PRECEDE (VAR1) IXREF

In the above linker command line, the PRECEDE control locates the VAR1
segment before other internal data memory segments. The IXREF control
includes a cross reference report of all public and external symbols in the linker
listing (M51) file. The linker creates an absolute object module that is stored in
the file ASAMPLE1. This file can be used as input for debuggers or may be used
to create an Intel HEX file using the OH51 object hex converter with the
following command:

OH51 ASAMPLE1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 401

 A

Using AX51 and LX51
The commands for translating the application with the AX51 macro assembler
and the LX51 linker/locater are:

AX51 ASAMPLE1.A51 DEBUG XREF
AX51 ASAMPLE2.A51 DEBUG XREF
AX51 ASAMPLE3.A51 DEBUG XREF

After assembly, the files are linked by the LX51 linker/locator with:

LX51 ASAMPLE1.OBJ, ASAMPLE2.OBJ, ASAMPLE3.OBJ SEGMENTS (VAR1) IXREF

The SEGMENTS control replaces the PRECEDE control used in the BL51
command line to locate the VAR1 segment before other internal data memory
segments. The IXREF control includes a cross reference in the linker listing
(MAP) file. The file ASAMPLE1 is the absolute object module created by the
linker. This file can be used as input for debuggers or may be converted into an
Intel HEX file using OHX51 with the following command:

OHX51 ASAMPLE1

Using A251 and L251
The Intel/Atmel WM 251 application is build with the following commands:

A251 ASAMPLE1.A51 DEBUG XREF
A251 ASAMPLE2.A51 DEBUG XREF
A251 ASAMPLE3.A51 DEBUG XREF

L251 ASAMPLE1.OBJ, ASAMPLE2.OBJ, ASAMPLE3.OBJ SEGMENTS (VAR1) IXREF

The SEGMENTS control locates the VAR1 segment before other internal data
memory segments. The IXREF control includes a cross reference in the linker
listing (MAP) file. The file ASAMPLE1 is the absolute object module created by
the linker. This file can be used as input for debuggers or may be converted into
an Intel HEX file using OH251 with the following command:

OH251 ASAMPLE1

402 Appendix A. Application Examples

A

CSAMPLE – C Compiler Example
This section describes shows a x51 program, developed with the Cx51 compiler.
This program demonstrates the concept of modular programming development
and can be translated using the various tool versions.

The program calculates the sum of two input numbers and displays the result.
Numbers are input with the getchar library function and results are output with
the printf library function. The program consists of three source modules,
which are translated using the following command lines.

Using C51 and BL51
The following commands are required to translate and link the C example with
the C51 compiler and the BL51 linker/locater. The output file can be converted
into an Intel HEX file with the OH51 hex file converter.

C51 CSAMPLE1.C DEBUG OBJECTEXTEND
C51 CSAMPLE2.C DEBUG OBJECTEXTEND
C51 CSAMPLE3.C DEBUG OBJECTEXTEND

The DEBUG and OBJECTEXTEND control directs the compiler to include
complete symbol information in the object file.

After compilation, the files are linked using the BL51 linker/locator:

BL51 CSAMPLE1.OBJ, CSAMPLE2.OBJ, CSAMPLE3.OBJ PRECEDE (?DT?CSAMPLE3) IXREF

In the above linker command line, the PRECEDE control locates the
?DT?CSAMPLE3 segment before other internal data memory segments. The
IXREF control includes a cross reference report in the linker listing (M51) file.
The linker creates an absolute object module that is stored in the file CSAMPLE1.
This file can be used as input for debuggers or may be used to create an Intel
HEX file using the OH51 object hex converter with the following command:

OH51 CSAMPLE1

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 403

 A

Using C51 and LX51
The commands for translating the application with the C51 compiler and the
LX51 linker/locater are:

C51 CSAMPLE1.C DEBUG OMF251
C51 CSAMPLE2.C DEBUG OMF251
C51 CSAMPLE3.C DEBUG OMF251

The DEBUG control directs the compiler to include symbol information in the
object file. The OMF251 control generates extended object files that support
the extensions of the LX51 linker/locater. The files are linked with:

LX51 CSAMPLE1.OBJ, CSAMPLE2.OBJ, CSAMPLE3.OBJ SEGMENTS (?DT?CSAMPLE3) IXREF

The SEGMENTS control replaces the PRECEDE control used in the BL51
command line to locate the ?DT?CSAMPLE3 segment before other internal
data memory segments. The IXREF control includes a cross reference in the
linker listing (MAP) file. The file CSAMPLE1 is the absolute object module
created by the linker. This file can be used as input for debuggers or may be
converted into an Intel HEX file using OHX51 with the following command:

OHX51 CSAMPLE1

Using C251 and L251
The Intel/Atmel WM 251 application is build with the following commands:

C251 CSAMPLE1.C DEBUG
C251 CSAMPLE2.C DEBUG
C251 CSAMPLE3.C DEBUG

After assembly, the files are linked by the L251 linker/locator with:

L251 CSAMPLE1.OBJ, CSAMPLE2.OBJ, CSAMPLE3.OBJ SEGMENTS (?DT?CSAMPLE3) IXREF

The SEGMENTS control locates the ?DT?CSAMPLE3 segment before other
internal data memory segments. The IXREF control includes a cross reference
in the linker listing (MAP) file. The file CSAMPLE1 is the absolute object
module created by the linker. This file can be used as input for debuggers or
may be converted into an Intel HEX file using OH251 with the following
command:

OH251 CSAMPLE1

404 Appendix A. Application Examples

A

BANK_EX1 – Code Banking with C51
The following C51 example shows how to compile and link a program using
multiple code banks.

The program begins with function main in C_ROOT.C. The main function calls
functions in other code banks. These functions, in turn, call functions in yet
different code banks. The printf function outputs the number of the code bank
in each function.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 405

 A

Using C51 and BL51
The program can be translated using the following commands:

C51 C_ROOT.C DEBUG OBJECTEXTEND
C51 C_BANK0.C DEBUG OBJECTEXTEND
C51 C_BANK1.C DEBUG OBJECTEXTEND
C51 C_BANK2.C DEBUG OBJECTEXTEND

C_ROOT.C contains the main function and is located in the common area.
C_BANK0.C, C_BANK1.C, and C_BANK2.C contain the bank functions and are
located in the bank area. The BL51 linker/locator is invoked as follows:

BL51 COMMON{C_ROOT.OBJ}, BANK0{C_BANK0.OBJ},
BANK1{C_BANK1.OBJ}, BANK2{C_BANK2.OBJ}
BANKAREA(8000H,0FFFFH)

The BANKAREA (8000H, 0FFFFH) control defines the address space 80000H
to 0FFFFH as the area for code banks. The COMMON control places the
C_ROOT.OBJ module in the common area. The BANK0, BANK1, and BANK2
controls place modules in bank 0, 1, and 2 respectively.

The BL51 linker/locator creates a listing file, C_ROOT.M51, which contains
information about memory allocation and about the intra-bank jump table that is
generated. BL51 also creates the output file C_ROOT that in banked object file
format. You must use the OC51 banked object file converter to convert this file
into standard object files:

OC51 C_ROOT

For this example program, the OC51 banked object file converter produces three
standard object files from C_ROOT. They are listed in the following table.

Filename Contents

C_ROOT.B00 All information (including symbols) for code bank 0 and the common area.

C_ROOT.B01 Information for code bank 1 and the common area.

C_ROOT.B02 Information for code bank 2 and the common area.

You can create Intel HEX files for each of these object files by using the OH51
object to hex converter. The Intel HEX files you create with OH51 contain
complete information for each code bank including the common area:

OH51 C_ROOT.B00 HEXFILE (C_ROOT.H00)
OH51 C_ROOT.B01 HEXFILE (C_ROOT.H01)
OH51 C_ROOT.B02 HEXFILE (C_ROOT.H02)

406 Appendix A. Application Examples

A

Using C51 and LX51
When you are using the extended LX51 linker/locater the program is generated
as shown below:

C51 C_ROOT.C DEBUG OMF251
C51 C_BANK0.C DEBUG OMF251
C51 C_BANK1.C DEBUG OMF251
C51 C_BANK2.C DEBUG OMF251

LX51 COMMON{C_ROOT.OBJ}, BANK0{C_BANK0.OBJ},
BANK1{C_BANK1.OBJ}, BANK2{C_BANK2.OBJ}
BANKAREA(8000H,0FFFFH)

The LX51 linker/locator creates a listing file, C_ROOT.MAP, which contains
information about memory allocation and about the intra-bank jump table that is
generated. The linker output file C_ROOT can be directly converted into an Intel
HEX file with OHX51:

OHX51 C_ROOT

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 407

 A

BANK_EX2 – Banking with Constants
This example shows how to place constants in code banks. You can use this
technique to place messages or large tables in code banks other than the one in
which your program resides. This example uses three source files: C_PROG.C,
C_MESS0.C, and C_MESS1.C.

You use the LX51 linker/locator to locate constant segments in particular code
banks. Segment names for constant data have the general format
?CO?modulename where modulename is the name of the source file the constant
data is declared.

In your C51 programs, when you access constant data that is in a different
segment, you must manually ensure that the proper code bank is used when
accessing that constant data. You so this with the switchbank function. This
function is defined in the L51_BANK.A51 source module.

Using C51 and BL51
These source files are compiled and linked using the following commands.

C51 C_PROG.C DEBUG OBJECTEXTEND
C51 C_MESS0.C DEBUG OBJECTEXTEND
C51 C_MESS1.C DEBUG OBJECTEXTEND

BL51 C_PROG.OBJ, C_MESS0.OBJ, C_MESS1.OBJ
BANKAREA(8000H,0FFFFH) &
BANK0(?CO?C_MESS0 (8000H)) BANK1(?CO?C_MESS1 (8000H))

OC51 C_PROG
OH51 C_PROG.B00 HEXFILE (C_PROG.H00)
OH51 C_PROG.B01 HEXFILE (C_PROG.H01)

408 Appendix A. Application Examples

A

Using C51 and LX51
When you are using the extended LX51 linker/locater the program is generated
as shown below:

C51 C_PROG.C DEBUG OMF251
C51 C_MESS0.C DEBUG OMF251
C51 C_MESS1.C DEBUG OMF251

LX51 C_PROG.OBJ, C_MESS0.OBJ, C_MESS1.OBJ
BANKAREA(8000H,0FFFFH) &
SEGMENTS (?CO?C_MESS0 (B0:8000H)) BANK1(?CO?C_MESS1 (B1:8000H))

OHX51 C_PROG

BANK_EX3 – Code Banking with PL/M-51
The following PL/M-51 example shows how to compile and link a PL/M-51
program using multiple code banks. The function of this example is similar to
that shown in “BANK_EX1 – Code Banking with C51” on page 404.

The program begins with the procedure in P_ROOT.P51. This routine calls
routines in other code banks, which, in turn, call routines in yet different code
banks.

The PL/M-51 programs are compiled using the following commands.

PLM51 P_ROOT.P51 DEBUG
PLM51 P_BANK0.P51 DEBUG
PLM51 P_BANK1.P51 DEBUG
PLM51 P_BANK2.P51 DEBUG

In this example, P_ROOT.OBJ is located in the common area and P_BANK0.OBJ,
P_BANK1.OBJ, and P_BANK2.OBJ are located in the bank area.

NOTE
The PL/M-51 runtime library, PLM51.LIB, must be included in the linkage. You
must either specify a path to the directory in which this library is stored, or you
must include it directly in the linker command line.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 409

 A

Using BL51
The BL51 linker/locator is invoked as follows:

BL51 COMMON{P_ROOT.OBJ}, BANK0{P_BANK0.OBJ}, &
BANK1{P_BANK1.OBJ}, BANK2{P_BANK2.OBJ} &
BANKAREA(8000H,0FFFFH)

The BANKAREA (8000H, 0FFFFH) control defines the address space 8000H
to 0FFFFH as the area for code banks. The COMMON control places the
P_ROOT.OBJ module in the common area. The BANK0, BANK1, and BANK2
controls place modules in bank 0, 1, and 2 respectively.

The BL51 linker/locator creates a listing file, P_ROOT.M51, which contains
information about memory allocation and about the intra-bank jump table that is
generated. BL51 also creates the output module, P_ROOT, which is stored in
banked OMF format. You must use the OC51 banked object file converter to
convert the banked OMF file into standard OMF files. OMF files may be loaded
with the µVision2 Debugger/Simulator or an in-circuit emulator. Invoke the
OC51 banked object file converter as follows:

OC51 P_ROOT

For this example program, the OC51 banked object file converter produces three
standard OMF-51 files from P_ROOT. They are listed in the following table.

Filename Contents

P_ROOT.B00 All information (including symbols) for code bank 0 and the common area.

P_ROOT.B01 Information for code bank 1 and the common area.

P_ROOT.B02 Information for code bank 2 and the common area.

You can create Intel HEX files for each of these OMF-51 files by using the
OH51 object to hex converter. The Intel HEX files you create with OH51
contain complete information for each code bank including the common area.
Intel HEX files can be generated using the following OH51 object to hex
converter command line.

OH51 P_ROOT.B00 HEXFILE (P_ROOT.H00)
OH51 P_ROOT.B01 HEXFILE (P_ROOT.H01)
OH51 P_ROOT.B02 HEXFILE (P_ROOT.H02)

410 Appendix A. Application Examples

A

Using C51 and LX51
When you are using the extended LX51 linker/locater the program is generated
as shown below:

LX51 COMMON{P_ROOT.OBJ}, BANK0{P_BANK0.OBJ},
BANK1{P_BANK1.OBJ}, BANK2{P_BANK2.OBJ}
BANKAREA(8000H,0FFFFH)

OHX51 P_ROOT

Philips 80C51MX – Assembler Example
The example Philips 80C51MX\ASM shows how to use the new instructions of
the Philips 80C51MX architecture in assembly language. Segments with the
memory class ECODE are used to show the ECALL and ERET instructions.
Segments with HCONST and HDATA are used to show how to access memory
in the 16MB address space of this architecture.

The example program is build with the AX51 macro assembler and the LX51
linker/locater as shown below:

AX51 MX_INST.A51 DEBUG MOD_MX51

LX51 MX_INST.OBJ

OHX51 MX_INST

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 411

 A

Philips 80C51MX – C Compiler Example
The example Philips 80C51MX\Banking shows how to create large C programs
for the Philips 80C51MX architecture. The program uses the code banking
facilities of the LX51 linker/locater to place program code into the code pages
0x80:0000 (bank 0) and 0x81:0000 (bank 1). The function of this example is
similar to that shown in “BANK_EX1 – Code Banking with C51” on page 404.
In addition some variables are declared with the far memory type to show the
usage of the HCONST and HDATA memory class.

The example program is build with the AX51 macro assembler and the LX51
linker/locater as shown below:

CX51 C_ROOT.C DEBUG
CX51 C_BANK0.C DEBUG
CX51 C_BANK1.C DEBUG
AX51 START_MX.A51 MOD_MX51

LX51 COMMON {C_ROOT.OBJ, START_MX.OBJ},
BANK0 {C_BANK0.OBJ}, BANK1 {C_BANK1.OBJ}
CLASSES (HCONST (0x810000 - 0x81FFFF), HDATA (0x010000 - 0x01FFFF))

OHX51 C_ROOT

412 Appendix A. Application Examples

A

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 413

 B

Appendix B. Reserved Symbols
The Ax51 assembler uses predefined or reserved symbols that may not be
redefined in your program. Reserved symbol names include instruction
mnemonics, directives, operators, and register names. The following lists the
reserved symbol names that are found in all Ax51 variants:

A
AB
ACALL
ADD
ADDC
AJMP
AND
ANL
AR0
AR1
AR2
AR3
AR4
AR5
AR6
AR7
BIT
BITADDRESSABLE
BLOCK
BSEG
C
CALL
CJNE
CLR
CMP
CODE
CPL
CSEG

DA
DATA
DB
DBIT
DEC
DIV
DJNZ
DPTR
DS
DSEG
DW
ELSE
ELSEIF
END
ENDIF
ENDM
ENDP
EQ
EQU
EXITM
EXTRN
GE
GT
HIGH
IDATA
IF
INBLOCK
INC

INPAGE
INSEG
IRP
IRPC
ISEG
JB
JBC
JC
JE
JG
JLE
JMP
JNB
JNC
JNE
JNZ
JSG
JSGE
JSL
JSLE
JZ
LCALL
LE
LJMP
LOCAL
LOW
LT
MACRO

MOD
MOV
MOVC
MOVX
MUL
NAME
NE
NOP
NOT
NUL
NUMBER
OR
ORG
ORL
OVERLAYABLE
PAGE
PC
POP
PUBLIC
PUSH
R0
R1
R2
R3
R4
R5
R6
R7

REPT
RET
RETI
RL
RLC
RR
RRC
RSEG
SEG
SEGMENT
SET
SETB
SHL
SHR
SJMP
SUB
SUBB
SWAP
UNIT
USING
XCH
XCHD
XDATA
XOR
XRL
XSEG

The A51 assembler defines the following additional reserved symbols which are
special function registers (SFR) of the classic 8051 CPU. These SFR definitions
may be disabled using the NOMOD51 control. The predefined SFR symbols are
reserved symbols and may not be redefined in your program.

AC
ACC
B
CY
DPH
DPL
EA
ES
ET0
ET1}
EX0
EX1
F0

IE
IE0
IE1
INT0
INT1
IT0
IT1
OV
P
P0
P1
P2
P3

PS
PSW
PT0
PT1
PX0
PX1
RB8
RD
REN
RI
RS0
RS1
RXD

SBUF
SCON
SM0
SM1
SM2
SP
T1
TB8
TCON
TF0
TF1
TH0
TH1

TI
TL0
TL1
TMOD
TO
TR0
TR1
TXD
WR

414 Appendix B. Reserved Symbols

B

The AX51 assembler defines the following additional reserved symbols which
comprise the additional instructions and registers of the Philips 80C51MX
architecture.

AT
BYTE
BYTE0
BYTE1
BYTE2
BYTE3
CONST

DD
DSB
DSD
DSW
DWORD
ECALL
ECODE

EDATA
EJMP
EMOV
EPTR
ERET
EVEN
EXTERN

FAR
HCONST
HDATA
LABEL
LIT
MBYTE
NEAR

OFFS
PR0
PR1
PROC
WORD
WORD0
WORD2

The A251 assembler defines the following additional reserved symbols which
comprise the additional instructions and registers of the Intel and Atmel WM
251 architectures.

AT
BYTE
BYTE0
BYTE1
BYTE2
BYTE3
CONST
DD
DR0
DR12
DR16
DR20
DR24
DR28
DR4

DR56
DR60
DR8
DSB
DSD
DSW
DWORD
EBIT
EBITADDRESSABLE
ECALL
ECODE
EDATA
EJMP
ERET
EVEN

EXTERN
FAR
HCONST
HDATA
LABEL
LIT
MOVH
MOVS
MOVZ
NCONST
NEAR
OFFS
PROC
R10
R11

R12
R13
R14
R15
R8
R9
SLL
SRA
SRL
TRAP
WORD
WORD0
WORD2
WR0
WR10

WR12
WR14
WR16
WR18
WR2
WR20
WR22
WR24
WR26
WR28
WR30
WR4
WR6
WR8

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 415

 C

Appendix C. Listing File Format
This appendix describes the format of the listing file generated by the assembler.

Assembler Listing File Format
The Ax51 assembler, unless overridden by controls, outputs two files: an object
file and a listing file. The object file contains the machine code. The listing file
contains a formatted copy of your source code with page headers and, if
requested through controls (SYMBOL or XREF), a symbol table.

Sample Ax51 Listing
A251 MACRO ASSEMBLER ASAMPLE1 25/01/2001 15:02:23 PAGE 1

A251 MACRO ASSEMBLER V1.40
OBJECT MODULE PLACED IN ASAMPLE1.OBJ
ASSEMBLER INVOKED BY: F:\RK\ZX\ASM\A251.EXE ASAMPLE1.A51 XREF

LOC OBJ LINE SOURCE

1 $NOMOD51
2 $INCLUDE (REG52.INC)

+1 3 +1 $SAVE
+1 106 +1 $RESTORE

107
108 NAME SAMPLE
109
110 EXTRN CODE (PUT_CRLF, PUTSTRING)
111 PUBLIC TXTBIT
112

------ 113 PROG SEGMENT CODE
------ 114 PCONST SEGMENT CODE
------ 115 VAR1 SEGMENT DATA
------ 116 BITVAR SEGMENT BIT
------ 117 STACK SEGMENT IDATA

118
------ 119 RSEG STACK
000000 120 DS 10H ; 16 Bytes Stack

121
000000 122 CSEG AT 0

123 USING 0 ; Register-Bank 0
124 ; Execution starts at address 0 on power-up.

000000 020000 F 125 JMP START
126

------ 127 RSEG PROG
128 ; first set Stack Pointer

000000 758100 F 129 START: MOV SP,#STACK-1
130
131 ; Initialize serial interface
132 ; Using TIMER 1 to Generate Baud Rates
133 ; Oscillator frequency = 11.059 MHz

000003 758920 134 MOV TMOD,#00100000B ;C/T = 0, Mode = 2
000006 758DFD 135 MOV TH1,#0FDH
000009 D28E 136 SETB TR1
00000B 759852 137 MOV SCON,#01010010B

138

416 Appendix C. Listing File Format

C

139 ; clear TXTBIT to read form CODE-Memory
00000E C200 F 140 CLR TXTBIT

141
142 ; This is the main program. It is a loop,
143 ; which displays the a text on the console.

000010 144 REPEAT:
145 ; type message

000010 900000 F 146 MOV DPTR,#TXT
000013 120000 E 147 CALL PUTSTRING
000016 120000 E 148 CALL PUT_CRLF

149 ; repeat
000019 8000 F 150 SJMP REPEAT

151 ;
------ 152 RSEG PCONST
000000 54455354 153 TXT: DB 'TEST PROGRAM',00H
000004 2050524F
000008 4752414D
00000C 00

154
155 ; only for demonstration

------ 156 RSEG VAR1
000000 157 DUMMY: DS 21H

158
159 ; TXTBIT = 0 read text from CODE Memory
160 ; TXTBIT = 1 read text from XDATA Memory

------ 161 RSEG BITVAR
0000.0 162 TXTBIT: DBIT 1

163
164 END

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E T Y P E V A L U E ATTRIBUTES / REFERENCES

BITVAR B SEG 000001H REL=UNIT, ALN=BIT 116# 161
DUMMY. D ADDR 000000H R SEG=VAR1 157#
PCONST C SEG 00000DH REL=UNIT, ALN=BYTE 114# 152
PROG C SEG 00001BH REL=UNIT, ALN=BYTE 113# 127
PUTSTRING. C ADDR ------- EXT 110# 147
PUT_CRLF C ADDR ------- EXT 110# 148
REPEAT C ADDR 000010H R SEG=PROG 144# 150
SAMPLE 108
STACK. I SEG 000010H REL=UNIT, ALN=BYTE 117# 119 129
START. C ADDR 000000H R SEG=PROG 125 129#
TXT. C ADDR 000000H R SEG=PCONST 146 153#
TXTBIT B ADDR 0000H.0 R SEG=BITVAR 111 140 162#
VAR1 D SEG 000021H REL=UNIT, ALN=BYTE 115# 156

REGISTER BANK(S) USED: 0

ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 417

 C

Listing File Heading
Every page has a header on the first line. It contains the words Ax51 MACRO
ASSEMBLER followed by the title, if specified. If the title is not specified, then
the module name is used. It is derived from the NAME directive (if specified),
or from the root of the source filename. On the extreme right side of the header,
the date (if specified) and the page number are printed.

In addition to the normal header, the first page of listing includes the Ax51
listing file header. This header shows the assembler version number, the file
name of the object file, if any, and the entire invocation line.

418 Appendix C. Listing File Format

C

Source Listing
The main body of the listing file is the formatted source listing. A section of
formatted source is shown in the following.

Sample Source Listing
LOC OBJ LINE SOURCE

000006 758DFD 135 MOV TH1,#0FDH

The format for each line in the listing file depends on the source line that appears
on it. Instruction lines contain 4 fields. The name of each field and its meanings
is shown in the list below:

� LOC shows the location relative or absolute (code address) of the first byte of
the instruction. The value is displayed in hexadecimal.

� OBJ shows the actual machine code produced by the instruction, displayed in
hexadecimal. If the object that corresponds to the printed line is to be fixed
up (it contains external references or is relocatable), an F or E is printed after
the OBJ field. The object fields to be fixed up contain zeros.

� LINE shows the INCLUDE nesting level, if any, the number of source lines
from the top of the program, and the macro nesting level, if any. All values in
this field are displayed in decimal numbers.

� SOURCE shows the source line as it appears in the file. This line may be
extended onto the subsequent lines in the listing file.

DB, DW, and DD directives are formatted similarly to instruction lines, except
the OBJ field shows the data values placed in memory. All data values are
shown. If the expression list is long, then it may take several lines in the listing
file to display all of the values placed in memory. The extra lines will only
contain the LOC and OBJ fields.

The directives that affect the location counter without initializing memory (e.g.
ORG, DBIT, or DS) do not use the OBJ field, but the new value of the location
counter is shown in the LOC field.

The SET and EQU directives do not have a LOC or OBJ field. In their place the
assembler lists the value that the symbol is set to. If the symbol is defined to
equal one of the registers, then REG is placed in this field. The remainder of the
directive line is formatted in the same way as the other directives.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 419

 C

Macro / Include File / Save Stack Format
In the listing file, the assembler displays the macro nesting level, the include file
level, and the level of the SAVE/RESTORE stack. These nesting levels are
shown before and after the LINE number as shown in the following listing.

LOC OBJ LINE SOURCE
1 $GEN ; Enable Macro Listing
2
3 MYMACRO MACRO ; A sample macro
4 INC A ; Macro Level 1
5 MACRO2
6 ENDM
7
8 MACRO2 MACRO ; Macro 2
9 NOP ; Macro Level 2

10 ENDM
11
12

------ 13 MYPROG SEGMENT CODE
------ 14 RSEG MYPROG

15
000000 7400 16 MOV A,#0

17 MYMACRO
000002 04 18+1 INC A ; Macro Level 1

19+1 MACRO2
000003 00 20+2 NOP ; Macro Level 2

21 $INCLUDE (MYFILE.INC) ; A include file
+1 22 ; This is a comment ; Include Level 1
+1 23 MACRO2

000004 00 +1 24+1 NOP ; Macro Level 1
000005 7401 25 MOV A,#1

26 +1 $SAVE ; Save Control
27 +1 MYMACRO ; SAVE Level 1

000007 04 28+1+1 INC A ; Macro Level 1
29+1+1 MACRO2

000008 00 30+2+1 NOP ; Macro Level 2
31 +1 $RESTORE

000009 00 32 NOP
33 END

Symbol Table
The symbol table is a list of all symbols defined in the program along with the
status information about the symbol. Any predefined symbols used will also be
listed in the symbol table. If the XREF control is used, the symbol table will
contain information about where the symbol was used in the program.

420 Appendix C. Listing File Format

C

The status information includes a NAME field, a TYPE field, a VALUE field, and an
ATTRIBUTES field.

The TYPE field specifies the type of the symbol: ADDR if it is a memory
address, NUMB if it is a pure number (e.g., as defined by EQU), SEG if it is a
relocatable segment, and REG if a register. For ADDR and SEG symbols, the
segment type is added.

The VALUE field shows the value of the symbol when the assembly was
completed. For REG symbols, the name of the register is given. For NUMB and
ADDR symbols, their absolute value (or if relocatable, their offset) is given,
followed by A (absolute) or R (relocatable). For SEG symbols, the segment size
is given here. Bit address and size are given by the byte part, a period (.),
followed by the bit part. The scope attribute, if any, is PUB (public) or EXT
(external). These are given after the VALUE field.

The ATTRIBUTES field contains an additional piece of information for some
symbols: relocation type for segments, segment name for relocatable symbols.

Example Symbol Table Listing
SYMBOL TABLE LISTING
------ ----- -------
N A M E T Y P E V A L U E ATTRIBUTES
BITVAR B SEG 000001H REL=UNIT, ALN=BIT
DUMMY. D ADDR 000000H R SEG=VAR1
PCONST C SEG 00000DH REL=UNIT, ALN=BYTE
PROG C SEG 00001BH REL=UNIT, ALN=BYTE
PUTSTRING. C ADDR ------- EXT
PUT_CRLF C ADDR ------- EXT
REPEAT C ADDR 000010H R SEG=PROG
SAMPLE
STACK. I SEG 000010H REL=UNIT, ALN=BYTE
START. C ADDR 000000H R SEG=PROG
TXT. C ADDR 000000H R SEG=PCONST
TXTBIT B ADDR 0000H.0 R SEG=BITVAR
VAR1 D SEG 000021H REL=UNIT, ALN=BYTE

If the XREF control is used, then the symbol table listing will also contain all of
the line numbers of each line of code that the symbol was used. If the value of
the symbol was changed or defined on a line, then that line will have a hash mark
(#) following it. The line numbers are displayed in decimal.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 421

 C

Listing File Trailer
At the end of the listing, the assembler prints a message in the following format:

REGISTER BANK(S) USED: [r r r r]

ASSEMBLY COMPLETE. (n) WARNING(S), (m) ERROR(S)

where

r are the numbers of the register banks used.

n is the number of warnings found in the program.

m is the number of errors found in the program.

422 Appendix C. Listing File Format

C

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 423

 D

Appendix D. Assembler Differences
This appendix lists the differences between the Intel ASM-51 assembler, the
Keil A51 assembler, and the Keil A251/AX51 assembler.

Differences Between A51 and A251/AX51
Assembly modules written for the A51 assembler may be assembled using the
A251/AX51 macro assembler. However, since the A251 macro assembler
supports the Intel/Atmel WM 251 architecture and the AX51 macro assembler
supports extended 8051 variants like the Philips 80C51MX, the following
incompatibilities may arise when A51 assembly modules are assembled with the
A251/AX51 assembler.

� 32-Bit Values in Numeric Evaluations
The A51 assembler uses 16-bit values for all numerical expressions. The
A251/AX51 macro assembler uses 32-bit values. This may cause problems
when overflows occur in numerical expressions. For example:
Value EQU (8000H + 9000H) / 2

generates the result 800h in A51 since the result of the addition is only a
16-bit value (1000h). However, the A251/AX51 assembler calculates a value
of 8800h.

� 8051 Pre-defined Special Function Register Symbol Set
The default setting of the A51 assembler pre-defines the Special Function
Register (SFR) set of 8051 CPU. This default SFR set can be disabled with
the A51 control NOMOD51. Both A251 and AX51 do not pre-define the
8051 SFR set. The control NOMOD51 is accepted by A251/AX51 but does
not influence any SFR definitions.

� More Reserved Symbols
The A251/AX51 macro assembler has more reserved symbols as A51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol ECALL cannot be used as label name in A251/AX51,
since it is a mnemonic for a new instruction.

424 Appendix D. Assembler Differences

D

� Object File Differences
Ax51 uses the OMF-251/51MX file format for object files. A51 uses an
extended version of the Intel OMF-51 file format. The OMF-51 file format
limits the numbers of external symbols and segments to 256 per module. The
OMF-251 file format does not have such a limit on the segment and external
declarations.

Differences between A51 and ASM51
Assembly modules written for the Intel ASM51 macro assembler can be
re-translated with the A51 macro assembler. However you have to take care
about the following differences:

� Enable the MPL Macro Language
If your assembly module contains Intel ASM51 macros, the A51 MPL macros
need to be enable with the MPL control.

� 8051 Pre-defined Interrupt Vectors
The Intel ASM51 pre-defines the following symbol names if MOD51 is
active: RESET, EXTI0, EXTI1, SINT, TIMER0, TIMER1. A51 does not
pre-define this symbol names.

� More Reserved Symbols
Since the A51 macro assembler supports also conditional assembly and
standard macros, A51 has more reserved symbols then Intel ASM51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol IF cannot be used as label name in A51, since it is a
control for conditional assembly.

� Object File Differences
The A51 assembler generates line number information for source level
debugging and file dependencies. For compatibility to previous A51 versions
and to ASM51, the line number information can be disabled with the A51
control NOLINES.

� C Preprocessor Side Effects
The integrated C preprocessor in Ax51 has two side effects that are
incompatible to the Intel ASM51 macro assembler. If you are using the
backslash character at the end of a comment line, the next line will be
comment out too. If you are using $INCLUDE in conditional assembly
blocks, the file must exist even when the block will not be assembled.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 425

 D

Differences between A251/AX51 & ASM51
Assembly modules written for Intel ASM51 can be re-translated with the A251
macro assembler. However, since the A251 macro assembler supports additional
251 features, the following incompatibilities can arise when ASM51 modules are
re-translated with A251.

� 32-Bit Values in Numeric Evaluations
The ASM51 assembler uses 16-bit numbers for all numerical expressions.
The A251 macro assembler uses 32-bit values. This can cause problems
when overflows occur in numerical expressions. For example:
Value EQU (8000H + 9000H) / 2

has the result 800H in ASM51 since the result of the addition is only a 16-bit
value (1000H), whereas the A251 calculates Value as 8800H.

� 8051 Pre-defined Symbols
The default setting of Intel ASM51 pre-defines the Special Function Register
(SFR) set and symbol names for reset and interrupt vectors of 8051 CPU.
This default symbol set can be disabled with the ASM51 control NOMOD51.
A251 does not pre-define any of the 8051 SFR or interrupt vector symbols.
The control NOMOD51 is accepted by A251 but does not influence any
symbol definitions.

� More Reserved Symbols
The A251 macro assembler has more reserved symbols as ASM51.
Therefore it might be necessary to change user-defined symbol names. For
example the symbol ECALL cannot be used as label name in A251, since the
Intel/Atmel WM 251 has a new instruction with that mnemonic.

� Enable the MPL Macro Language
If your assembly module contains Intel ASM51 macros, the A251 MPL
macros need to be enabled with the MPL control.

� Object File Differences
The A251 assembler uses the Intel OMF-251 file format for object files. The
ASM51 assembler uses the Intel OMF-51 file format. The OMF-51 file
format limits the numbers of external symbols and segments to 256 per
module. The OMF-251 file format does not have such a limit on the segment
and external declarations. The ASM51 assembler generates line number
information for source level debugging. For compatibility with ASM51, line
number information can be disabled with the A251 control NOLINES.

426 Appendix D. Assembler Differences

D

� C Preprocessor Side Effects
The integrated C preprocessor in Ax51 has two side effects that are
incompatible to the Intel ASM51 macro assembler. If you are using the
backslash character at the end of a comment line, the next line will be
comment out too. If you are using $INCLUDE in conditional assembly
blocks, the file must exist even when the block will not be assembled.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 427

Glossary
A51

The standard 8051 Macro Assembler.

AX51
The extended 8051 Macro Assembler.

A251
The 251 Macro Assembler.

ANSI
American National Standards Institute. The organization responsible for
defining the C language standard.

argument
The value that is passed to a macro or function.

arithmetic types
Data types that are integral, floating-point, or enumerations.

array
A set of elements, all of the same data type.

ASCII
American Standard Code for Information Interchange. This is a set of 256
codes used by computers to represent digits, characters, punctuation, and
other special symbols. The first 128 characters are standardized. The
remaining 128 are defined by the implementation.

batch file
An ASCII text file containing commands and programs that can be invoked
from the command line.

Binary-Coded Decimal (BCD)
A BCD (Binary-Coded Decimal) is a system used to encode decimal numbers
in binary form. Each decimal digit of a number is encoded as a binary value
4 bits long. A byte can hold 2 BCD digits – one in the upper 4 bits (or
nibble) and one in the lower 4 bits (or nibble).

BL51
The standard 8051 linker/locator.

428 Glossary

block
A sequence of C statements, including definitions and declarations, enclosed
within braces ({ }).

C51
The Optimizing C Compiler for classic 8051 and extended 8051 devices.

CX51
The Optimizing C Compiler for Philips 80C51MX architecture.

C251
The Optimizing C Compiler for Intel/Atmel WM 251.

constant expression
Any expression that evaluates to a constant non-variable value. Constants
may include character and integer constant values.

control
Command line control switch to the compiler, assembler or linker.

declaration
A C construct that associates the attributes of a variable, type, or function
with a name.

definition
A C construct that specifies the name, formal parameters, body, and return
type of a function or that initializes and allocates storage for a variable.

directive
Instruction or control switch to the compiler, assembler or linker.

escape sequence
A backslash (‘\’) character followed by a single letter or a combination of
digits that specifies a particular character value in strings and character
constants.

expression
A combination of any number of operators and operands that produces a
constant value.

formal parameters
The variables that receive the value of arguments passed to a function.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 429

function
A combination of declarations and statements that can be called by name to
perform an operation and/or return a value.

function body
A block containing the declarations and statements that make up a function.

function call
An expression that invokes and possibly passes arguments to a function.

function declaration
A declaration providing the name and return type of a function that is
explicitly defined elsewhere in the program.

function definition
A definition providing the name, formal parameters, return type, declarations,
and statements describing what a function does.

function prototype
A function declaration that includes a list of formal parameters in parentheses
following the function name.

in-circuit emulator (ICE)
A hardware device that aids in debugging embedded software by providing
hardware-level single-stepping, tracing, and break-pointing. Some ICEs
provide a trace buffer that stores the most recent CPU events.

include file
A text file that is incorporated into a source file.

keyword
A reserved word with a predefined meaning for the compiler or assembler.

L51
The old version of the 8051 linker/locator. L51 is replaced with the BL51
linker/locater.

LX51
The extended 8051 linker/locator.

L251
The 251 linker/locator.

LIB51, LIBX51, LIB251
The commands to manipulate library files using the Library Manager.

430 Glossary

library
A file that stores a number of possibly related object modules. The linker can
extract modules from the library to use in building a target object file.

LSB
Least significant bit or byte.

macro
An identifier that represents a series of keystrokes.

manifest constant
A macro that is defined to have a constant value.

MCS® 51
The general name applied to the Intel family of 8051 compatible
microprocessors.

MCS® 251
The general name applied to the Intel family of 251 compatible
microprocessors.

memory model
Any of the models that specifies which memory areas are used for function
arguments and local variables.

mnemonic
An ASCII string that represents a machine language opcode in an assembly
language instruction.

MON51
An 8051 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

MON251
A 251 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

MSB
Most significant bit or byte.

newline character
A character used to mark the end of a line in a text file or the escape sequence
(‘\n’) to represent the newline character.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 431

null character
ASCII character with the value 0 represented as the escape sequence (‘\0’).

null pointer
A pointer that references nothing. A null pointer has the integer value 0.

object
An area of memory that can be examined. Usually used when referring to the
memory area associated with a variable or function.

object file
A file, created by the compiler, that contains the program segment
information and relocatable machine code.

OH51, OHX51, OH251
The commands to convert absolute object files into Intel HEX file format.

opcode
Also referred to as operation code. An opcode is the first byte of a machine
code instruction and is usually represented as a 2–digit hexadecimal number.
The opcode indicates the type of machine language instruction and the type
of operation to perform.

operand
A variable or constant that is used in an expression.

operator
A symbol (e.g., +, -, *, /) that specifies how to manipulate the operands of an
expression.

parameter
The value that is passed to a macro or function.

PL/M-51
A high-level programming language introduced by Intel at the beginning of
the 1980’s.

pointer
A variable containing the address of another variable, function, or memory
area.

pragma
A statement that passes an instruction to the compiler at compile time.

432 Glossary

preprocessor
The compiler’s first pass text processor that manipulates the contents of a C
file. The preprocessor defines and expands macros, reads include files, and
passes control directives to the compiler.

relocatable
Object code that can be relocated and is not at a fixed address.

RTX51 Full
An 8051 Real-time Executive that provides a multitasking operating system
kernel and library of routines for its use.

RTX51 Tiny
A limited version of RTX51.

RTX251 Full
An 251 Real-Time Executive that provides a multitasking operating system
kernel and library of routines for its use.

scalar types
In C, integer, enumerated, floating-point, and pointer types.

scope
Sections of a program where an item (function or variable) can be referenced
by name. The scope of an item may be limited to file, function, or block.

Special Function Register (SFR)
An SFR or Special Function Register is a register in the 8051 internal data
memory space that is used to read an write to the hardware components of the
8051. This includes the serial port, timers, counters, I/O ports, and other
hardware control registers.

source file
A text file containing C program or assembly program code.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto and popped off of the stack.
Items in the stack are removed on a LIFO (last-in first-out) basis.

static
A storage class that, when used with a variable declaration in a function,
causes variables to retain their value after exiting the block or function in
which they are declared.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 433

stream functions
Routines in the library that read and write characters using the input and
output streams.

string
An array of characters that is terminated with a null character (‘\0’).

string literal
A string of characters enclosed within double quotes (“ ”).

structure
A set of elements of possibly different types grouped together under one
name.

structure member
One element of a structure.

token
A fundamental symbol that represents a name or entity in a programming
language.

two’s complement
A binary notation that is used to represent both positive and negative
numbers. Negative values are created by complementing all bits of a positive
value and adding 1.

type
A description of the range of values associated with a variable. For example,
an int type can have any value within its specified range (-32768 to 32767).

type cast
An operation in which an operand of one type is converted to another type by
specifying the desired type, enclosed within parentheses, immediately
preceding the operand.

µµµµVision2
An integrated software development platform that supports the Keil Software
development tools. µVision2 combines Project Management, Source Code
Editing, and Program Debugging in one environment.

whitespace character
Characters used as delimiters in C programs such as space, tab, and newline.

434 Glossary

wild card
One of the characters (? or *) that can be used in place of characters in a
filename.

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 435

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 437

Index

!, macro operator 149,154
.. 157
##... 159
#define... 157
#elif.. 157
#else... 157
#endif... 157
#error ... 157
#if .. 157
#ifdef ... 157
#ifndef ... 157
#include ... 157
#line... 157
#pragma... 157
#undef.. 157
$.. 87
%, macro operator 149,153
&, macro operator..................... 149,151
(, operator .. 88
), operator .. 88
*, operator.. 88
; ... 149,154
–, operator ... 88
/, operator .. 88
_ _A251_ _ 160
_ _A51_ _ .. 160
_ _AX51_ _ 160
_ _DATE_ _ 160
_ _ERROR_ _, directive.................. 136
_ _FILE_ _ 160
_ _INTR4_ _ 230
_ _KEIL_ _...................................... 160
_ _LINE_ _...................................... 160
_ _MODBIN_ _............................... 230
_ _MODSRC_ _ 230
_ _STDC_ _..................................... 160
_ _TIME_ _ 160
+, operator ... 88
<, macro operator 149,152
<, operator ... 89

<=, operator89
<>, operator89
=, operator..89
>, macro operator......................149,152
>, operator..89
>=, operator89
µVision2

Create Library378
µVision2 Linker Input......................269
251 ...34

A
A, register...75
A251, defined...................................427
A51, defined.....................................427
AB, register..75
Absolute Address Calculation..........262
Absolute Object File262
Absolute object files257
ACALL ..82
Add command

library manager379
Additional items, notational

conventions4
Address

Program Addresses.......................82
Address Control133
Address Counter.................................87
AJMP ...82
Allocation Type109
Allocation types

BIT ...109
BLOCK109
BYTE ...109
DWORD.....................................109
PAGE ...109
SEG..109
WORD109

ampersand character.........................149
AND, operator88
angle brackets149
ANSI

438 Index

Standard C Constant................... 160
ANSI, defined 427
AR0, register...................................... 75
AR1, register...................................... 75
AR2, register...................................... 75
AR3, register...................................... 75
AR4, register...................................... 75
AR5, register...................................... 75
AR6, register...................................... 75
AR7, register...................................... 75
argument, defined 427
Arithmetic operators 88
arithmetic types, defined 427
array, defined 427
ASCII, defined................................. 427
Assembler Controls.......................... 197
Assembler Directives 99

Introduction.................................. 99
Assembler Macros 137
Assembly Programs 69
ASSIGN... 322
AT, relocation type 108
AUTOEXEC.BAT........................... 195
AX51, defined.................................. 427

B
Bank Switching......................... 264,293
Bank Switching Configuration......... 297
BANKAREA 332
Banked Applications and HEX

Files... 389
Banked object files 257
Banking With Common Area........... 303
Banking With Four 64 KByte

Banks .. 299
Banking With On-Chip Code

ROM ... 301
Banking With XDATA Port 302
BANKx .. 333
batch file, defined 427
BI ... 334
Binary numbers.................................. 84
Binary operators................................. 88
Binary-Coded Decimal (BCD),

defined .. 427

BIT ..77,334
BIT, allocation type..........................109
BIT, operator......................................90
BIT, segment type107
BITADDRESSABLE, relocation

type..108
BL51 Controls..................................271
BL51 Linker/Locater........................255
BL51, defined...................................427
BLOCK, allocation type...................109
block, defined...................................428
bold capital text, use of4
braces, use of..4
Bracket Function172
BSEG, directive111
BYTE, allocation type......................109
BYTE, operator..................................90
BYTE0, operator................................91
BYTE1, operator................................91
BYTE2, operator................................91
BYTE3, operator................................91

C
C Macros ..156

Examples161
C Preprocessor Side Effects

...162,424,426
C, register ...75
C251, defined428
C251INC ..195
C251LIB ..352
C51, defined428
C51INC ..195
C51LIB ..352
CA, control.......................................200
CALL ...82
carat character241
CASE, control200
Character constants86
Choices, notational conventions...........4
Class ...107
Class operators90
CLASSES...336
Classic 805128
CO..338

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 439

CODE... 80,338
Code Bank Areas............................. 294
CODE, directive 114
CODE, external symbol segment

type ... 131
CODE, operator................................. 90
CODE, segment type 107
Colon Notation 85
Combining Program Modules.......... 258
Combining Segments....................... 259
Command line.................................. 196
Comment Function 170
Comments.. 71
Common Code Area 293
COND, control 201
CONST.. 80
CONST, operator 90
CONST, segment type 107
constant expression, defined............ 428
Constants in Bank Areas.................. 296
Control Summary............................. 305
control, defined................................ 428
Controls

BL51 .. 271
CASE... 200
COND.. 201
DATE .. 202
DEBUG 203
EJECT.. 204
ELSE.. 235
ELSEIF 234
ENDIF 236
ERRORPRINT 205
GEN... 207
IF.. 233
INCLUDE.................................. 209
L251... 272
LIST... 211
LX51.. 272
MOD_CONT 212
MOD_MX51 212
MOD51...................................... 212
MODSRC 213
MPL... 214
NOCOND 201
NOGEN 207

NOLINES...................................215
NOLIST211
NOMACRO216
NOMOD51.................................217
NOOBJECT219
NOPRINT221
NOREGISTERBANK................222
NOREGUSE223
NOSYMBOLS218
NOSYMLIST.............................225
OBJECT.....................................219
PAGELENGTH220
PAGEWIDTH............................220
PRINT..221
REGISTERBANK222
REGUSE223
RESET232
RESTORE..................................224
SAVE ...224
SET ..231
SYMLIST...................................225
TITLE ..226
XREF ...227

courier typeface, use of4
CPU

Instructions...................................40
CPU Registers....................................36

8051 Variants36
Intel/Atmel WM 25137

Create command
library manager379

CSEG, directive111
CUBSTR Function...........................185
CX51, defined..................................428

D
DA..339
DA, control202
DATA ...77,339
Data Overlaying280
DATA, directive114
DATA, external symbol segment

type..131
DATA, operator90
DATA, segment type107

440 Index

DATE, control 202
DB, control 203
DB, directive.................................... 119
DBIT, directive................................ 122
DD, directive 121
DEBUG, control 203
Decimal numbers 84
declaration, defined.......................... 428
define ... 157
Defining a macro 140
definition, defined............................ 428
Delete command

library manager 379
Differences between A251 and

ASM51.. 425
32-bit evaluation 425
8051 Symbols............................. 425
Macro Processing Language 425
Object File.................................. 425
Reserved Symbols...................... 425

Differences between A51 and
A251

32-bit evaluation 423
8051 Special Function

Registers.................................. 423
Object File.................................. 424
Reserved Symbols...................... 423

Differences Between A51 and
A251 ... 423

Differences between A51 and
ASM51.. 424

Interrupt Vectors 424
Macro Processing Language 424
Object File.................................. 424
Reserved Symbols...................... 424

directive, defined 428
Directives

_ _ERROR_ _ 136
BSEG ... 111
CODE... 114
CSEG ... 111
DATA .. 114
DB.. 119
DBIT .. 122
DD.. 121
DS .. 123

DSB ..124
DSD..126
DSEG ...111
DSW...125
DW ...120
END..136
ENDP ...127
EQU..113
esfr..116
EVEN ...134
EXTERN131
EXTRN.......................................131
IDATA114
ISEG...111
LABEL129
LIT..117
NAME ..132
ORG ...133
PROC ...127
PUBLIC......................................130
RSEG..110
sbit ..116
SEGMENT106
sfr..116
sfr16..116
USING..134
XDATA......................................114
XSEG ...111

Disable Data Overlaying283
DISABLEWARNING......................307
Displayed text, notational

conventions..4
Document conventions4
dollar sign

location counter87
used in a number...........................85

double brackets, use of4
double semicolon149
DPTR, register75
DS, directive.....................................123
DSB, directive..................................124
DSD, directive..................................126
DSEG, directive111
DSW, directive.................................125
DW...307
DW, directive120

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 441

DWORD, operator............................. 90

E
EBIT.. 78
EBIT, operator................................... 90
EBIT, segment type 107
ECALL .. 82
ECODE, operator 90
ECODE, segment type..................... 107
ECONST, operator 90
ECONST, segment type................... 107
EDATA ... 79
EDATA, operator 90
EDATA, segment type..................... 107
EJ, control.. 204
EJECT, control 204
EJMP ... 82
elif.. 157
ellipses, use of 4
ellipses, vertical, use of........................ 4
else... 157
ELSE, control 235
ELSEIF, control............................... 234
END, directive................................. 136
endif... 157
ENDIF, control................................ 236
ENDP, directive............................... 127
EOF record 395
EP, control....................................... 205
EPTR, register 75
EQ, operator 89
EQU, directive................................. 113
error ... 157
Error Messages 237

Fatal Errors 237
Non-Fatal Errors 241

ERRORLEVEL 197,269
ERRORPRINT, control................... 205
Escape Function............................... 171
escape sequence, defined................. 428
esfr, directive 116
EVAL Function 178
EVEN, directive 134
Exceptions 375
exclamation mark 149

Exit command
library manager379

EXIT Function183
Expression

Classes..93
expression, defined428
Expressions84,93
Extended 805130
Extended jumps and calls...................82
EXTERN, directive..........................131
External symbol segment types131
Extract command

library manager379
EXTRN, directive131

F
FAR, operator90
FD, control206
Filename, notational conventions.........4
Files generated by Ax51197
FIXDRK ..206
formal parameters, defined...............428
function body, defined429
function call, defined........................429
function declaration, defined............429
function definition, defined..............429
function prototype, defined429
Function Segments281
function, defined428

G
GEN, control....................................207
Generating a Listing File..................263
Generating an Absolute Object

File ..262
Generic jumps and calls82
GT, operator.......................................89
GTE, operator89

H
HCONST, operator90
HCONST, segment type...................107
HDATA ...81
HDATA, operator90

442 Index

HDATA, segment type 107
Help command

library manager 379
HEX Files for Banked

Applications 389
Hexadecimal numbers........................ 84
HIGH, operator.................................. 91
High-Level Language Controls........ 351

I
I2.. 210
IB ... 323
IBANKING 323
IC, control.. 209
ICE, defined..................................... 429
ID.. 208,340
IDATA.. 78,340
IDATA, directive............................. 114
IDATA, external symbol

segment type 131
IDATA, operator 90
IDATA, segment type 107
if 157
IF Function....................................... 180
IF, control .. 233
ifdef.. 157
ifndef.. 157
In-block jumps and calls 82
INBLOCK, relocation type.............. 108
INCDIR ... 208
in-circuit emulator, defined.............. 429
include ... 157
include file, defined 429
Include Files..................................... 208
INCLUDE, control 209
INPAGE, allocation type 109
INPAGE, relocation type................. 108
INSEG, relocation type.................... 108
Instruction Sets 40
Intel HEX

Data record................................. 395
End-of-file record....................... 395
EOF record................................. 395
Example file 397

Extended 8086 segment
record.......................................396

Extended linear address
record.......................................396

Record format.............................394
Intel HEX file format394
Intel HEX files257
Intel/Atmel WM 25134
Interrupt..210
INTR2 ..210
Invoking a Macro155
Invoking Ax51..................................196
ISEG, directive.................................111
italicized text, use of.............................4
IX ...308
IXREF ..308

J
JMP ..82

K
Key names, notational

conventions..4
keyword, defined..............................429

L
L251 Controls272
L251 Linker/Locater255
L251, defined429
L51, defined429
L51_BANK.A51297
LABEL, directive129
Labels ...73
Labels in macros...............................142
LEN Function...................................184
LI, control...211
LIB251 ...377
LIB251, defined429
LIB51 ...377
LIB51, defined429
library manager

Add command379
Create command.........................379
Delete command.........................379

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 443

Exit command 379
Extract command 379
Help command........................... 379
List command 379
Replace command...................... 379
Transfer command 379

Library Manager 377
library, defined 429
LIBx51

Add Object Modules.................. 381
Command line............................ 378
Commands 379
Create a Library 380
Error Messages 384
Extract Object Modules 382
Interactive mode 378
List Library Contents 383
Remove Object Modules 382
Replace Object Modules............ 381

LIBX51.. 377
LIBX51, defined.............................. 429
line... 157
Linker Command Line Examples 268
Linker Controls................................ 270
Linker/Locater 255

L251... 255
LX51.. 255

Linking Programs 266
List command

library manager 379
LIST, control 211
Listing File....................................... 263
Listing File Controls........................ 306
Listing File Format 415

File Heading............................... 417
File Trailer 421
Include File Level 419
Macro Level............................... 419
Save Stack Level........................ 419
Source Listing............................ 418
Symbol Table............................. 419

LIT, directive................................... 117
Locating Programs........................... 273
Locating Segments........................... 260
Location Counter 87
LOW, operator 91

LSB, defined430
LST files ..197
LT, operator89
LTE, operator.....................................89
LX51 Controls272
Lx51 Error Messages360
Lx51 Linker

Control Summary305
LX51 Linker/Locater255
LX51, defined429

M
M51,control212
Macro definition140
Macro definitions nested..................147
Macro directives139
Macro invocation155
Macro labels.....................................142
Macro operators149

! 149,154
% ...149,153
& ...149,151
;; 149,154
< 149,152
> 149,152
NUL149,150

Macro parameters141
Macro Processing Language 163

Macro Errors193
MPL Functions...........................170
MPL Macro164
Overview....................................163

Macro repeating blocks....................144
macro, defined430
Macros and recursion.......................148
manifest constant, defined................430
MATCH Function............................186
MBYTE, operator91
MC,control.......................................212
MCS® 251, defined430
MCS® 51, defined430
memory classes

classic 805128,34
extended 805130
Philips 80C51MX32

444 Index

Memory Classes................................. 27
BIT... 77
CODE... 80
CONST .. 80
DATA .. 77
EBIT .. 78
EDATA.. 79
HDATA.. 81
IDATA... 78
XDATA.. 80

Memory Initialization 119
Memory Layout 27

Classic 8051 29
Extended 8051 31
Intel/Atmel WM 251 35
Philips 80C51MX 33

Memory Location Controls.............. 331
memory model, defined 430
Memory Reservation........................ 122
METACHAR Function.................... 173
Miscellaneous operators 91
mnemonic, defined........................... 430
MOD, operator................................... 88
MOD_CONT, control...................... 212
MOD_MX51, control 212
MOD51, control............................... 212
MODSRC, control 213
monitor51, defined........................... 430
MPL Functions

Bracket 172
Comment.................................... 170
Escape .. 171
EVAL... 178
EXIT .. 183
IF.. 180
LEN.. 184
MATCH 186
METACHAR 173
REPEAT 181
SET .. 177
SUBSTR 185
WHILE....................................... 181

MPL, control.................................... 214
MPL, Macro Processing

Language
delimiters.................................... 188

MS,control..213
MSB, defined430
MX,control.......................................212
MX51BANK.A51297

N
NA..324
NAME..324
NAME, directive132
Names...72
NE, operator89
NEAR, operator90
Nesting macro definitions.................147
newline character, defined................430
NLIB ..352
NOAJ ...325
NOAJMP..325
NOCM..309
NOCOMMENTS309,316,330
NOCOND, control201
NODEBUGLINES...........................326
NODEBUGPUBLICS......................326
NODEBUGSYMBOLS326
NODEFAULTLIBRARY352
NODL...326
NODP...326
NODS...326
NOGEN, control207
NOIC..327
NOINDIRECTCALL.......................327
NOJT..328
NOLI ..310
NOLINES...........................310,316,330
NOLINES, control215
NOLIST, control211
NOLN,control215
NOMA ...311
NOMACRO, control216
NOMAP ...311
NOMO, control217
NOMOD51, control217
Non-Fatal Errors...............................365
NOOBJECT, control219
NOOJ, control219
NOOL...353

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 445

NOOVERLAY 353
NOPR, control 221
NOPRINT.. 315
NOPRINT, control 221
NOPU.. 312
NOPUBLICS..................... 312,316,330
NORB, control................................. 222
NOREGISTERBANK, control........ 222
NOREGUSE, control 223
NORU, control 223
NOSB,control 218
NOSL, control 225
NOSO.. 341
NOSORTSIZE................................. 341
NOSY.. 313
NOSYMBOLS 313,316,330
NOSYMBOLS, control 218
NOSYMLIST, control..................... 225
NOT, operator 88
NOTYPE ... 329
NUL, macro operator................ 149,150
null character, defined 430
NULL macro parameters 150
null pointer, defined......................... 430
NUMBER, external symbol

segment type 131
Numbers .. 84

Colon Notation............................. 85

O
OBJ files.. 197
object file, defined........................... 431
OBJECT, control 219
object, defined 431
OBJECTCONTROLS 330
OC ... 330
OC51 .. 257,387

Command line............................ 392
Octal numbers.................................... 84
OFFS, relocation type...................... 108
OH251 ... 387
OH251, defined 431
OH51 ... 387
OH51, defined 431
OHx51 ... 257

Command line388
Error messages390

OHX51...387
OHx51 Command Line

Examples.......................................389
OHx51 Error Messages390
OHX51, defined...............................431
OJ, control..219
OL..354
Omitted text, notational

conventions4
Opcode Map.......................................64

251 Instructions............................66
8051 Instructions..........................65

opcode, defined................................431
operand, defined...............................431
Operands ..74
Operaters..84
Operator ...88

arithmetic......................................88
binary ...88
class..90
miscellaneous91
precedence....................................92
relational.......................................89
type...90

operator, defined431
Operators

(...88
) ...88
* ...88
/ ...88
+ ...88
< ...89
<= ...89
<> ...89
= ...89
> ...89
>= ...89
AND...88
BIT ...90
BYTE ...90
BYTE0 ...91
BYTE1 ...91
BYTE2 ...91
BYTE3 ...91

446 Index

CODE... 90
CONST .. 90
DATA .. 90
DWORD 90
EBIT .. 90
ECODE .. 90
ECONST...................................... 90
EDATA.. 90
EQ .. 89
FAR.. 90
GT .. 89
GTE.. 89
HCONST 90
HDATA.. 90
HIGH ... 91
IDATA... 90
LOW .. 91
LT .. 89
LTE .. 89
MBYTE 91
MOD .. 88
NE .. 89
NEAR... 90
NOT ... 88
OR.. 88
SHL.. 88
SHR.. 88
WORD ... 90
WORD0 91
WORD2 91
XDATA.. 90
XOR... 88

Operators used in macros................. 149
Optimum Program Structure

with Bank Switching 294
Optional items, notational

conventions 4
OR, operator 88
ORG, directive................................. 133
Output File 269
Output File Controls 321
Output files 197
OVERLAY 354

Disable 283
Usage ... 282

OVERLAYABLE, relocation
type..108

Overlaying Data Memory.................261

P
PAGE, allocation type......................109
PAGELENGTH314
PAGELENGTH, control220
PAGEWIDTH..................................314
PAGEWIDTH, control.....................220
parameter, defined............................431
Parameters in macros141
PATH ...195
PC..316,343
PC, register...75
PDATA ..342
Philips 80C51MX32
Philips 80C51MX

Assembler Example410
C Compiler Example411
Extended SFR space116

Physical Memory..............................273
PL, control..220
PL/M-51

Defined431
Pointer to Function

Arrays or Tables286
as Function Argument.................284

pointers, defined...............................431
PR, control221
PR0, register.......................................75
PR1, register.......................................75
pragma..157
pragma, defined................................431
PRECEDE..343
Precedence of operators92
Predefined C Macro Constants.........160

_ _A51_ _160
_ _DATE_ _160
_ _FILE_ _160
_ _KEIL_ _.................................160
_ _LINE_ _.................................160
_ _STDC_ _................................160
_ _TIME_ _160

Predefined Constants........................230

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 447

_ _INTR4_ _.............................. 230
Predefined Macro Constants

_ _MODBIN_ _ 230
_ _MODSRC_ _ 230

Preprocessor directives
define ... 157
elif.. 157
else ... 157
endif ... 157
error ... 157
if 157
ifdef.. 157
ifndef.. 157
include 157
line ... 157
pragma 157
undef .. 157

preprocessor, defined....................... 431
PRINT ... 315
PRINT, control 221
PRINTCONTROLS 316
Printed text, notational

conventions....................................... 4
PROC, directive............................... 127
Procedure Declaration 127
Program Code in Bank and

Common Code Areas.................... 295
Program Linkage 130
Program Status Word 39
Program Template 23
PSW... 39
PU.. 317
Public Symbols in

L51_BANK.A51........................... 298
PUBLIC, directive........................... 130
PURGE.............................. 316,317,330
PW, control...................................... 220

R
R0, register .. 75
R1, register .. 75
R2, register .. 75
R3, register .. 75
R4, register .. 75
R5, register .. 75

R6, register...75
R7, register...75
RAMSIZE..344
RB, control.......................................222
RE ..345
RECURSIONS.................................356
Recursive macros148
REGFILE...357
Register names75
REGISTERBANK, control..............222
REGUSE, control.............................223
Relational operators89
Relative jumps82
relocatable, defined..........................431
Relocation Type...............................108
Relocation types

AT ..108
BITADDRESSABLE.................108
INBLOCK..................................108
INPAGE.....................................108
INSEG..108
OFFS ..108
OVERLAYABLE108

REPEAT Function181
Repeating blocks..............................144
Replace command

library manager379
RESERVE..345
RESET, control................................232
Resolving External References261
RESTORE, control224
RS ..344
RS, control224
RSEG, directive110
RTX251265,358
RTX251 Full, defined432
RTX51265,358
RTX51 Full, defined432
RTX51 Tiny.....................................265
RTX51 Tiny, defined432
RTX51TINY....................................358
RU, control223
Running Ax51196
run-time libraries..............................352

448 Index

S
SA, control....................................... 224
sans serif typeface, use of 4
SAVE, control.................................. 224
SB, control 218
sbit, directive 116
scalar types, defined......................... 432
scope, defined 432
SE .. 346
SEG, allocation type 109
Segment Controls

Location Counter........................ 102
Segment Directives 102
Segment Location Controls.............. 331
Segment Naming Conventions......... 258
Segment types

BIT... 107
CODE... 107
CONST 107
DATA .. 107
EBIT .. 107
ECODE 107
ECONST.................................... 107
EDATA...................................... 107
HCONST 107
HDATA...................................... 107
IDATA....................................... 107
XDATA...................................... 107

SEGMENT, directive 106
Segments

absolute 105
default .. 105
generic.. 103
stack ... 104

SEGMENTS 346
Segments in Bank Areas 296
Segments of Functions 281
SEGSIZE ... 348
semicolon character 71
SET Function................................... 177
SET, control..................................... 231
sfr, directive 116
sfr16, directive 116
SHL, operator 88
SHR, operator 88

SJMP..82
SL, control..225
source file, defined432
Special Function Register (SFR),

defined...432
SPEEDOVL359
SS ...348
ST...349
STACK...349
stack, defined....................................432
Statements ..69

Controls ..70
Directives......................................70
Instructions70

static, defined432
stream functions, defined..................432
string literal, defined432
string, defined...................................432
Stringize Operator157
Strings ..87
structure member, defined433
structure, defined..............................433
Symbol Definition113
Symbol Names72
Symbols..72
SYMLIST, control225

T
TEMPLATE.A51...............................23
TITLE, control226
TMP ...195
token, defined...................................433
Token-Pasting Operator159
Transfer command

library manager...........................379
TT, control226
two’s complement, defined...............433
type cast, defined..............................433
Type operators....................................90
type, defined.....................................433

U
Unary -, operator88
Unary +, operator88

Keil Software — A51/AX51/A251 Macro Assembler and Utilities 449

undef.. 157
Using OC51..................................... 392
Using OHx51................................... 388
USING, directive............................. 134

V
Variables, notational

conventions....................................... 4
Version Differences......................... 162
vertical bar, use of 4

W
Warning detection 318
WARNINGLEVEL 318
Warnings ... 360
WHILE Function 181
whitespace character, defined.......... 433
wild card, defined 433

WL...318
WORD, allocation type....................109
WORD, operator................................90
WORD0, operator..............................91
WORD2, operator..............................91

X
XD ...350
XDATA80,350
XDATA, directive............................114
XDATA, external symbol

segment type..................................131
XDATA, operator90
XDATA, segment type.....................107
XOR, operator....................................88
XR, control227
XREF, control..................................227
XSEG, directive111

	Chapter 1. Introduction
	How to Develop A Program
	What is an Assembler?
	Modular Programming

	Modular Program Development Process
	Segments, Modules, and Programs
	Translate and Link Process
	Filename Extensions

	Program Template File

	Chapter 2. Architecture Overview
	Memory Classes and Memory Layout
	Classic 8051
	Extended 8051 Variants
	Philips 80C51MX
	Intel/Atmel WM 251

	CPU Registers
	CPU Registers of the 8051 Variants
	CPU Registers of the Intel/Atmel WM 251
	Program Status Word (PSW)

	Instruction Sets
	Opcode Map
	8051 Instructions
	Additional 251 Instructions
	Additional 80C51MX Instructions via Prefix A5

	Chapter 3. Writing Assembly Programs
	Assembly Statements
	Directives
	Controls
	Instructions

	Comments
	Symbols
	Symbol Names

	Labels
	Operands
	Special Assembler Symbols
	Immediate Data
	Memory Access
	Program Addresses

	Expressions and Operators
	Numbers
	Characters
	Character Strings
	Location Counter
	Operators
	Expressions

	Chapter 4. Assembler Directives
	Introduction
	Segment Directives
	Location Counter
	Generic Segments
	Stack Segment
	Absolute Segments
	Default Segment
	SEGMENT
	RSEG
	BSEG, CSEG, DSEG, ISEG, XSEG

	Symbol Definition
	EQU, SET
	CODE, DATA, IDATA, XDATA
	esfr, sfr, sfr16, sbit
	LIT (AX51 & A251 only)

	Memory Initialization
	DB
	DW
	DD (AX51 & A251 only)

	Reserving Memory
	DBIT
	DS
	DSB (AX51 & A251 only)
	DSW (AX51 & A251 only)
	DSD (AX51 & A251 only)

	Procedure Declaration (AX51 & A251 only)
	PROC / ENDP (AX51 & A251 only)
	LABEL (AX51 and A251 only)

	Program Linkage
	PUBLIC
	EXTRN / EXTERN
	NAME

	Address Control
	ORG
	EVEN (AX51 and A251 only)
	USING

	Other Directives
	END
	_ _ERROR_ _

	Chapter 5. Assembler Macros
	Standard Macro Directives
	Defining a Macro
	Parameters
	Labels
	Repeating Blocks
	REPT
	IRP
	IRPC
	Nested Definitions
	Nested Repeating Blocks
	Recursive Macros

	Operators
	NUL Operator
	& Operator
	< and > Operators
	% Operator
	;; Operator
	! Operator

	Invoking a Macro
	C Macros
	C Macro Preprocessor Directives
	Stringize Operator
	Token˚pasting Operator
	Predefined C Macro Constants
	Examples with C Macros
	C Preprocessor Side Effects

	Chapter 6. Macro Processing Language
	Overview
	Creating and Calling MPL Macros
	Creating Parameterless Macros
	MPL Macros with Parameters
	Local Symbols List
	Macro Processor Language Functions
	Comment Function
	Escape Function
	Bracket Function
	METACHAR Function
	Numbers and Expressions
	Numbers
	Character Strings
	SET Function
	EVAL Function
	Logical Expressions and String Comparison

	Conditional MPL Processing
	IF Function
	WHILE Function
	REPEAT Function
	EXIT Function

	String Manipulation Functions
	LEN Function
	SUBSTR Function
	MATCH Function

	Console I/O Functions
	Advanced Macro Processing
	Literal Delimiters
	Blank Delimiters
	Identifier Delimiters
	Literal and Normal Mode

	MACRO Errors

	Chapter 7. Invocation and Controls
	Environment Settings
	Running Ax51
	ERRORLEVEL
	Output Files

	Assembler Controls
	Controls for Conditional Assembly
	Conditional Assembly Controls

	Chapter 8. Error Messages
	Fatal Errors
	Non–Fatal Errors

	Chapter 9. Linker/Locator
	Overview
	Combining Program Modules
	Segment Naming Conventions
	Combining Segments
	Locating Segments
	Overlaying Data Memory
	Resolving External References
	Absolute Address Calculation
	Generating an Absolute Object File
	Generating a Listing File
	Bank Switching
	Using RTX51, RTX251, and RTX51 Tiny

	Linking Programs
	Command Line Examples
	Control Linker Input with µVision2
	ERRORLEVEL
	Output File
	Linker/Locater Controls

	Locating Programs to Physical Memory
	Classic 8051
	Extended 8051 Variants
	Philips 80C51MX
	Intel/Atmel WM 251

	Data Overlaying
	Program and Data Segments of Functions
	Using the Overlay Control

	Tips and Tricks for Program Locating
	Locate Segments with Wildcards
	Special ROM Handling (LX51 & L251 only)

	Bank Switching
	Common Code Area
	Code Bank Areas
	Bank Switching Configuration
	Configuration Examples

	Control Summary
	Listing File Controls
	Output File Controls
	Segment and Memory Location Controls
	High-Level Language Controls

	Error Messages
	Warnings
	Non-Fatal Errors
	Fatal Errors
	Exceptions

	Chapter 10. Library Manager
	Using LIBx51
	Interactive Mode
	Create Library within µVision2

	Command Summary
	Creating a Library
	Adding or Replacing Object Modules
	Removing Object Modules
	Extracting Object Modules
	Listing Library Contents

	Error Messages
	Fatal Errors
	Errors

	Chapter 11. Object-Hex Converter
	Using OHx51
	OHx51 Command Line Examples
	Creating HEX Files for Banked Applications
	OHx51 Error Messages

	Using OC51
	OC51 Error Messages

	Intel HEX File Format
	Record Format
	Data Record
	End˚of˚File (EOF) Record
	Extended 8086 Segment Record
	Extended Linear Address Record
	Example Intel HEX File

	Appendix A. Application Examples
	ASM – Assembler Example
	Using A51 and BL51
	Using AX51 and LX51
	Using A251 and L251

	CSAMPLE – C Compiler Example
	Using C51 and BL51
	Using C51 and LX51
	Using C251 and L251

	BANK_EX1 – Code Banking with C51
	Using C51 and BL51
	Using C51 and LX51

	BANK_EX2 – Banking with Constants
	Using C51 and BL51
	Using C51 and LX51

	BANK_EX3 – Code Banking with PL/M˚51
	Using BL51
	Using C51 and LX51

	Philips 80C51MX – Assembler Example
	Philips 80C51MX – C Compiler Example

	Appendix B. Reserved Symbols
	Appendix C. Listing File Format
	Assembler Listing File Format
	Listing File Heading
	Source Listing
	Macro / Include File / Save Stack Format
	Symbol Table
	Listing File Trailer

	Appendix D. Assembler Differences
	Differences Between A51 and A251/AX51
	Differences between A51 and ASM51
	Differences between A251/AX51 & ASM51

	Glossary
	Index

