
THE FINAL WORD ON THE 8051

Page 1

- Introduction

This is a book about the Intel 8051 microcontroller and its large family of descendants. It is intended to
give you, the reader, some new techniques for optimizing your 8051 projects and the development
process you use for those projects. It is not the purpose of this book to provide various recipes for
different types of embedded projects.

Wherever possible, I have included code examples to make the discussion clearer. There are points in
the book where projects are discussed as a means of illustrating the point of the given chapter. Much of
this code is available on the companion disk, to use it you will need to be familiar with C and 8051
assembler since this book is not intended to be a tutorial in C or 8051 assembler. There are many fine
books you can buy to learn about ANSI C. As for 8051 assembler, the best source is the Intel data book
which is free from your 8051 vendor or the manual that comes with your particular assembler.

The code on the companion diskette contains the code I wrote and compiled for the book you hold in
your hands. It is fully functional and has been tested. This is not to say that that the code on the diskette
is ready to go into your system and be delivered as part of your projects. Some of it will require change
before it can be integrated into your system.

This book will help you learn how to make the best out of the tools you have. If you only have an 8051
assembler, you can still learn from this book and use the examples, but you will have to decide for
yourself how to implement the C language examples in assembler. This is not a difficult task for anyone
who understands the basics of C and the 8051 assembler set.

If you have a C compiler for the 8051, then I congratulate you. You have made an excellent decision in
your use of C. You will find that your project development time using C is lower and that your
maintenance time using C is also lower. If you have the Keil C51 package, then you have made an
excellent decision in 8051 development tools. I have found that the Keil package for the 8051 provides
the best support. The code in this book directly supports the Keil C extensions. If you have one of the
other development packages such as Archimedes or Avocet, you will find that this book is still of great
service to you. The main thing to be aware of is that you may have to change some of the Keil specific
directives to the appropriate ones for your development tools.

In many places in this book are diagrams of the hardware on which the example code runs. These are
not intended to be full schematics, but are merely block diagrams that have enough information to allow
you to understand how the software must interface to the hardware.

You should look upon this book as a learning tool rather than a source of various system designs. This is
not an 8051 cookbook, but rather an exploration of the capabilities of the 8051 given proper hardware
and software design. I prefer to think that you will use this book as a source of ideas from which your
designs springboard and grow in a marvelous world of sunshine and roses! Seriously, though, I think you
will gain useful knowledge from this book that will help you greatly improve your designs and make you
look like your company’s 8051 guru.

CHAPTER 2 - THE HARDWARE

Page 2

- The Hardware

Overview
The 8051 family of micro controllers is based on an architecture which is highly optimized for embedded
control systems. It is used in a wide variety of applications from military equipment to automobiles to the
keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051
family of microcontrollers is available in a wide array of variations from manufacturers such as Intel,
Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051
such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs.
Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are
available. This wide range of parts based on one core makes the 8051 family an excellent choice as the
base architecture for a company's entire line of products since it can perform many functions and
developers will only have to learn this one platform.

The basic architecture consists of the following features:

One 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is
used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy
chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the
clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required
by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you
can compute the number of instructions per second by dividing this value by 12. This gives an
instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time
taken by each instruction cycle (1.085 microseconds).

• an eight bit ALU

• 32 descrete I/O pins (4 groups of 8) which can be individually accessed

• two 16 bit timer/counters

• full duplex UART

• 6 interrupt sources with 2 priority levels

• 128 bytes of on board RAM

• separate 64K byte address spaces for DATA and CODE memory

THE FINAL WORD ON THE 8051

Page 3

Memory Organization
The 8051 architecture provides the user with three physically distinct memory spaces which can be seen
in Figure A - 1. Each memory space consists of contiguous addresses from 0 to the maximum size, in
bytes, of the memory space. Address overlaps are resolved by utilizing instructions which refer
specifically to a given address space. The three memory spaces function as described below.

Figure A - 1 - 8051 Memory Architecture

The CODE Space
 The first memory space is the CODE segment in which the executable program resides. This segment
can be up to 64K (since it is addressed by 16 address lines) . The processor treats this segment as read
only and will generate signals appropriate to access a memory device such as an EPROM. However,
this does not mean that the CODE segment must be implemented using an EPROM. Many embedded
systems these days are using EEPROM which allows the memory to be overwritten either by the 8051
itself or by an external device. This makes upgrades to the product easy to do since new software can
be downloaded into the EEPROM rather than having to disassemble it and install a new EPROM.
Additionally, battery backed SRAMs can be used in place of an EPROM. This method offers the same
capability to upload new software to the unit as does an EEPROM, and does not have any sort of
read/write cycle limitations such as an EEPROM has. However, when the battery supplying the RAM
eventually dies, so does the software in it. Using an SRAM in place of an EPROM in development
systems allows for rapid downloading of new code into the target system. When this can be done, it
helps avoid the cycle of programming/testing/erasing with EPROMs, and can also help avoid hassles
over an in circuit emulator which is usually a rare commodity.

 In addition to executable code, it is common practice with the 8051 to store fixed lookup tables in the
CODE segment. To facilitate this, the 8051 provides instructions which allow rapid access to tables via
the data pointer (DPTR) or the program counter with an offset into the table optionally provided by the
accumulator. This means that oftentimes, a table's base address can be loaded in DPTR and the
element of the table to access can be held in the accumulator. The addition is performed by the 8051
during the execution of the instruction which can save many cycles depending on the situation. An
example of this is shown later in this chapter in

CHAPTER 2 - THE HARDWARE

Page 4

Listing A - 5.

THE FINAL WORD ON THE 8051

Page 5

The DATA Space
The second memory space is the 128 bytes of internal RAM on the 8051, or the first 128 bytes of internal
RAM on the 8052. This segment is typically referred to as the DATA segment. The RAM locations in
this segment are accessed in one or two cycles depending on the instruction. This access time is much
quicker than access to the XDATA segment because memory is addressed directly rather than via a
memory pointer such as DPTR which must first be initialized. Therefore, frequently used variables and
temporary scratch variables are usually assigned to the DATA segment. Such allocation must be done
with care, however, due to the limited amount of memory in this segment.

Variables stored in the DATA segment can also be accessed indirectly via R0 or R1. The register being
used as the memory pointer must contain the address of the byte to be retrieved or altered. These
instructions can take one or two processor cycles depending on the source/destination data byte.

The DATA segment contains two smaller segments of interest. The first subsegment consists of the four
sets of register banks which compose the first 32 bytes of RAM. The 8051 can use any of these four
groups of eight bytes as its default register bank. The selection of register banks is changeable at any
time via the RS1 and the RS0 bits in the Processor Status Word (PSW). These two bits combine into a
number from 0 to 3 (with RS1 being the most significant bit) which indicates the register bank to be used.
Register bank switching allows not only for quick parameter passing, but also opens the door for
simplifying task switching on the 8051.

The second sub-segment in the DATA space is a bit addressable segment in which each bit can be
individually accessed. This segment is referred to as the BDATA segment. The bit addressable
segment consists of 16 bytes (128 bits) above the four register banks in memory. The 8051 contains
several single bit instructions which are often very useful in control applications and aid in replacing
external combinatorial logic with software in the 8051 thus reducing parts count on the target system. It
should be noted that these 16 bytes can also be accessed on a "byte-wide" basis just like any other byte
in the DATA space.

Special Function Registers
Control registers for the interrupt system and the peripherals on the 8051 are contained in internal RAM
at locations 80 hex
and above. These
registers are
referred to as
special function
registers (or SFRs
for short). Many of
them are bit
addressable. The
bits in the bit
addressable SFRs
can either be
accessed by name,
index or bit address.
Thus, you can refer
to the EA bit of the
Interrupt Enable
SFR as EA, IE.7, or
0AFH. The SFRs
control things such
as the function of
the timer/counters,
the UART, and the

+ 0 1 2 3 4 5 6 7
F8
F0 B
E8
E0 ACC
D8
D0 PSW
C8 T2CON RCAP2L RCAP2H TL2 TH2
C0
B8 IP
B0 P3
A8 IE
A0 P2
98 SCON SBUF
90 P1
88 TCON TMOD TL0 TL1 TH0 TH1
80 P0 SP DPL DPH PCON

- Denotes bit addressable Special Function Registers in this table and all following diagrams

Table A - 1

CHAPTER 2 - THE HARDWARE

Page 6

interrupt sources as well as their priorities. These registers are accessed by the same set of instructions
as the bytes and bits in the DATA segment. A memory map of the SFRs indicating the registers which
are bit addressable is shown in Table A - 1.

The IDATA Space
Certain 8051 family members such as the 8052 contain an additional 128 bytes of internal RAM which
reside at RAM locations 80 hex and above. This segment of RAM is typically referred to as the IDATA
segment. Because the IDATA addresses and the SFR addresses overlap, address conflicts between
IDATA RAM and the SFRs are resolved by the type of memory access being performed, since the
IDATA segment can only be accessed via indirect addressing modes.

The XDATA Space
The final 8051 memory space is 64K in length and is addressed by the same 16 address lines as the
CODE segment. This space is typically referred to as the external data memory space (or the XDATA
segment for short). This segment usually consists of some sort of RAM (usually an SRAM) and the I/O
devices or external peripherals to which the 8051 must interface via its bus. Read or write operations to
this segment take a minimum of two processor cycles and are performed using either DPTR, R0, or R1.
In the case of DPTR, it usually takes two processor cycles or more to load the desired address in addition
to the two cycles required to perform the read or write operation. Similarly, loading R0 or R1 will take
minimum of one cycle in addition to the two cycles imposed by the memory access itself. Therefore, it is
easy to see that a typical operation with the XDATA segment will, in general, take a minimum of three
processor cycles. Because of this, the DATA segment is a very attractive place to store any frequently
used variables.

It is possible to fill this segment entirely with 64K of RAM if the 8051 does not need to perform any I/O
with devices in its bus or if the designer wishes to cycle the RAM on and off when I/O devices are being
accessed via the bus. Methods for performing this technique will be discussed in chapters later in this
book.

THE FINAL WORD ON THE 8051

Page 7

Bit processing and Boolean logic
The 8051 contains a single bit Boolean processor which can be used to perform logical operations on any
of the 128 addressable bits in the BIT segment, the 128 addressable bits in the SFRs, and any of the 32
I/O lines (port 0 through port 3). The 8051 can perform OR, AND, XOR, complement, set, and clear
operations on bits as well as moving bit values as one would normally move byte values.

Listing A - 1

MOV C, 22H ; move the bit value at address

; 22H to the carry bit

ORL C, 23H ; or the bit value at address

; 23H into the carry bit

ANL 24H, C ; and the carry bit into bit

; address 24H

There are also conditional branches which use addressed bits as the condition. One such branch which
is especially useful is the “jump if bit is set and clear bit” instruction. This "branch and clear" can be
performed in two processor cycles and saves a cycle or two over splitting the jump and the clear into two
separate op codes. As an example, suppose that you had to write a routine which waited for pin P0.0 to
set, but could not wait indefinitely. This routine would have to decrement a timeout value and exit the
polling loop when this timeout is exceeded. When pin P0.0 sets, the processor must force it back to 0
and exit the polling loop. With normal logic flow, the routine would look like the following.

Listing A - 2

MOV timeout, #TO_VAL ; set the timeout value

L2: JB P0.0, L1 ; check the bit

DJNZ timeout, L2 ; decrement the timeout counter

; and sample again

L1: CLR P0.0 ; force P0.0 to logic level 0

RET ; exit the routine

Using the JBC instruction, the same routine would be coded as follows.

Listing A - 3

MOV timeout, #TO_VAL ; set the timeout value

L2: JBC P0.0, L1 ; check the bit and force P0.0

; to logic level 0 if set

DJNZ timeout, L2 ; decrement the timeout counter

L1: RET ; exit the routine

While the second routine may not offer a huge amount of savings in the code, it does make the code a
little simpler and more elegant. There will be many situations in your use of assembly code on the 8051
controller where this instruction will come in handy.

CHAPTER 2 - THE HARDWARE

Page 8

Addressing Modes
The 8051 is capable of performing direct and indirect memory accesses on its various memory spaces.
These are the typical methods through which processor systems access memory. Direct accesses are
characterized by presence of the address of the accessed variable in the instruction itself. These
accesses can only be performed on the DATA segment and the SFRs. Examples of direct memory
accesses are shown below.

Listing A - 4

MOV A, 03H ; move the value at address 03H to

; the accumulator

MOV 43H, 22H ; move the value at address 22H to
; address 43H

MOV 02H, C ; move the value of the carry bit to
; bit address 02H

MOV 42H, #18 ; load address 42H with the value 18

MOV 09H, SBUF ; load the value in SBUF into
; address 09H

Indirect accesses involve another register (DPTR , PC, R0, or R1 on the 8051) which contains the
address of the variable to be accessed. The instruction then refers to the pointing register rather than the
address itself. This is how all accesses to CODE, IDATA, and XDATA segments are performed. The
DATA segment may also be accessed in this manner. Bits in the BDATA segment can only be accessed
directly.

Indirect memory accesses are quite useful when a block of data must be moved, altered or operated on
with a minimum amount of code since the pointer can be incremented through the memory area via a
looping mechanism. Indirect accesses to the CODE segment can have a base address in either the
DPTR or the PC register and an offset in the accumulator. This is useful for operations involving lookup
tables. Examples of indirect memory accesses are shown below.

THE FINAL WORD ON THE 8051

Page 9

Listing A - 5

DATA and IDATA accesses

MOV R1, #22H ; set R1 to point at DATA

; address 22H

MOV R0, #0A9H ; set R0 to point at IDATA

; address A9H

MOV A, @R1 ; read the value at DATA

; address 22H

; into the accumulator

MOV @R0, A ; write the value in the accumulator

; to IDATA address A9H

INC R0 ; set R0 to point at IDATA

; address AAH

INC R1 ; set R1 to point at DATA

; address 23H

MOV 34H, @R0 ; write the value at IDATA

; address AA

; to DATA address 34H

MOV @R1, #67H ; write 67H to DATA address 23H

XDATA accesses

MOV DPTR, #3048H ; set DPTR to point at XDATA

; address 3048H

MOVX A, @DPTR ; read the data at XDATA

; address 3048H

; into the accumulator

INC DPTR ; set DPTR to point at XDATA

; address 3049H

MOV A, #26H ; set the accumulator to 26H

MOVX @DPTR, A ; write 26H to XDATA address 3049H

MOV R0, #87H ; set R0 to point at XDATA

; address 87H

MOVX A, @R0 ; read the data at XDATA

; address 87H into the accumulator

CODE accesses

MOV DPTR, #TABLE_BASE ; set DPTR to point at the base

; of a lookup table

MOV A, index ; load the accumulator with an

; index into the table

MOVC A, @A+DPTR ; read the value from the table

; into the accumulator

CHAPTER 2 - THE HARDWARE

Page 10

Processor Status
Processor status is kept in a bit addressable SFR called PSW (Processor Status Word). This register
contains the carry bit, an auxiliary carry bit which is used with BCD operations, the Accumulator parity
flag and overflow flag, two general purpose flags, and two bits which select the register bank to use as
the default. As mentioned before, the register bank selection bits make a two bit number from 0 to 3
which indicates the bank to be used. Bank 0 begins at the base of the DATA segment (address 00H),
bank 1 begins at address 08H, bank 2 at address 10H and bank 3 at address 18H. Any of these memory
locations are always available for direct and indirect memory accesses via their addresses regardless of
the register bank selection. The layout of PSW is shown below.

Power Control
The CHMOS versions of the 8051 feature two power saving modes that can be activated by software:
idle mode and power down mode. These modes are accessed via the PCON (Power CONtrol) SFR
which is shown in Table A - 2. The idle mode is activated by setting the IDLE bit high. The idle mode
causes all program execution to stop. Internal RAM contents are preserved and the oscillator continues
to run but is blocked from the CPU. The timers and the UART continue to function as normal. Idle mode
is terminated by the activation of any interrupt. Upon completion of the interrupt service routine,
execution will continue from the instruction following the instruction which set the IDLE bit.

Processor Status Word (PSW) - Bit AddressableProcessor Status Word (PSW) - Bit Addressable
CY AC F0 RS1 RS0 OV USR P

CY Carry Flag
AC Auxiliary Carry Flag
F0 General Purpose Flag
RS1 Register Bank Selector 1. MSB of selector.
RS0 Register Bank Selector 0. LSB of selector.
OV Overflow Flag
USR User Definable Flag
P Accumulator Parity Flag

Table A - 2

The power down mode is activated by setting the PDWN bit high. In this mode, the on chip oscillator is
stopped. Thus, the timers and the UART as well as software execution are halted. As long as a
minimum of 2 volts are applied to the chip (assuming a five volt part) the contents of the internal RAM
will be preserved. The only way to force the processor out of power down mode is by applying a power
on reset.

The SMOD (Serial MODe) bit can be used to double the baud rates of the serial port whether generated
by the timer 1 overflow rate or the oscillator frequency. Setting SMOD high causes a doubling of the
baud rate for the UART when operated in mode 1, 2, or 3. When Timer 2 is used to generate baud rates,
the value of SMOD will have no effect on the UART.

THE FINAL WORD ON THE 8051

Page 11

Power Control Register (PCON) - Not Bit AddressablePower Control Register (PCON) - Not Bit Addressable
SMOD - - - GF1 GF0 PDWN IDLE

SMOD Serial baud rate generator mode. If SMOD=1 the baud rate of the UART is doubled.
- Reserved.
- Reserved.
- Reserved.
GF1 General Purpose flag.
GF0 General Purpose flag.
PDWN Power Down flag. Setting this bit causes activation of power down mode.
IDLE Idle flag. Setting this bit causes activation of idle mode.

Table A - 3

Interrupts on the 8051
The basic 8051 supports six interrupt sources: two external interrupts, two timer/counter interrupts, and a
serial byte in/out interrupt. These interrupt sources force the processor to vector to one of five locations
in the lowest part of the CODE address space (serial input and serial output interrupts share the same
vector). The interrupt service routine must either reside there or be branched to from there. A map of
the interrupt vector for the 8051/8052 is shown below in
Table A - 4.

The 8015 supports two interrupt priority levels: low and
high. The nature of the interrupt mechanism is very
standard and thus, a low level interrupt service routine can
only be interrupted by a high level interrupt and a high
level interrupt service routine cannot be interrupted.

Interrupt Priority Register
Each interrupt source can be individually set to one of two
priority levels by altering the value of the IP (Interrupt
Priority) SFR. If an interrupt source's corresponding bit in this register is set, it will have high priority.
Similarly, if the corresponding bit is cleared the interrupt will be of low priority and subject to being
interrupted by any high priority interrupts. If two levels of priority seems a little limited, hang on - later I'll
discuss how to raise the number of priority levels as high as you want. Table A - 5 shows the IP register
and its bit assignment. Note that this register is bit addressable.

Interrupt Priority Register (IP) - Bit AddressableInterrupt Priority Register (IP) - Bit Addressable
- - PT2 PS PT1 PX1 PT0 PX0

- Reserved
- Reserved
PT2 Timer 2 overflow interrupt priority level
PS Serial receive and transmit complete interrupt priority
PT1 Timer 1 overflow interrupt priority
PX1 External interrupt 1 priority
PT0 Timer 0 overflow interrupt priority
PX0 External interrupt 0 priority

Table A - 5

Interrupt SourceInterrupt Source Vector AddressVector Address
Power On Reset 0000H
External Interrupt 0 0003H
Timer 0 Overflow 000BH
External Interrupt 1 0013H
Timer 1 Overflow 001BH
Serial Receive/Transmit 0023H
Timer 2 Overflow 002BH

Table A - 4

CHAPTER 2 - THE HARDWARE

Page 12

Interrupt Enable Register
All interrupts are enabled or blocked by setting or clearing the EA bit (Enable All) of the IE (Interrupt Enable) register. Each
interrupt source can be individually enabled and disabled at any time by the software by altering the value of the corresponding
enable bit in the IE SFR. Table A - 6 shows the IE register and its bit assignment. Like the IP register, the IE SFR is bit
addressable.
Interrupt Enable Register (IE) - Bit AddressableInterrupt Enable Register (IE) - Bit Addressable

EA - ET2 ES ET1 EX1 ET0 EX0
EA Enable Flag. If EA=1, each interrupt can be enabled via its enable bit. If EA=0, no interrupts

are allowed.
- Reserved
ET2 Timer 2 overflow interrupt enable
ES Serial receive and transmit complete interrupt enable
ET1 Timer 1 overflow interrupt enable
EX1 External interrupt 1 enable
ET0 Timer 0 overflow interrupt enable
EX0 External interrupt 0 enable

Table A - 6

Interrupt Latency
The 8051 samples the interrupt flags once every processor cycle to determine if any interrupts are
pending. An interrupt is requested by the appropriate signal being set for the processor core to recognize
in its next sampling period. Thus, the time between an interrupt being requested and recognized by the
processor is one instruction cycle. At this point, the hardware will generate a call to the interrupt service
routine in the vector which takes two cycles. Thus, the overall process takes three cycles total. Under
ideal conditions (where nothing is blocking the interrupt call) and no instruction is in the works, an
interrupt will be responded to in three instruction cycles. This response time is excellent and provides
the user with very fast response time to system events.

There will inevitably be times that an interrupt is not responded to within the three cycles discussed
above. The most significant of these is when an interrupt of equal or higher priority is being serviced. In
this case, the latency to service the pending interrupt depends entirely on the ISR currently being
executed.

Another situation in which the latency will be more than three cycles occurs when the processor is
executing a multi-cycle instruction and detects a pending interrupt during this instruction. The pending
interrupt will not be serviced until the current instruction is completed. This situation will add a minimum
of one cycle to the latency (assuming that a two cycle instruction such as a MOVX is executing) to a
maximum of three cycles (assuming the interrupt is detected after the first cycle of a MUL). The
maximum condition gives a worst case latency of six instruction cycles (the three cycles due to the
architecture itself and the three cycles due to the completion of the instruction) when the pending
interrupt is not blocked by a currently executing interrupt.

The final case in which an interrupt will not be vectored to in three cycles is when the interrupt was
recognized during a write to IE, IP, or during a RETI (return from interrupt) instruction. This prevents
very odd real time conditions from occurring in your system unexpectedly.

THE FINAL WORD ON THE 8051

Page 13

External Interrupt Signals
The 8051 supports two external interrupt signals. These inputs allow external hardware devices to
request interrupts and thus some sort of service from the 8051. The external interrupts on the 8051 are
caused by either a low logic level on the interrupt pin (P3.2 for interrupt 0 and P3.3 for interrupt 1) or by a
high to low level transition in the interrupt pin. The mode of the interrupt (level triggered or edge
triggered) is selected by altering the ITx (interrupt type) bit corresponding to the interrupt in the TCON
(Timer CONtrol) register. The layout of the TCON register is shown below in Table A - 7.

In level mode, the interrupt will be fired any time the processor samples the input signal and sees a 0.
For the low to be detected, it must be held for at least one processor cycle (or 12 oscillator cycles) since
the processor samples the input signal once every instruction cycle. In edge mode, the interrupt is fired
when a one to zero transition is detected during back to back samples. Therefore, the zero state of the
input must be held for at least one processor cycle to ensure that it is sampled.

On-Board Timer/Counters
The standard 8051 has two timer/counters (other 8051 family members have varying amounts), each of
which is a full 16 bits. Each timer/counter can be function as a free running timer (in which case they
count processor cycles) or can be used to count falling edges on the signal applied to their respective I/O
pin (either T0 or T1). When used as a counter, the input signal must have a frequency equal to or lower
than the instruction cycle frequency divided by 2 (ie: the oscillator frequency /24) since the incoming
signal is sampled every instruction cycle, and the counter is incremented only when a 1 to 0 transition is
detected (which will require two samples). If desired, the timer/counters can force a software interrupt
when they overflow.

The TCON (Timer CONtrol) SFR is used to start or stop the timers as well as hold the overflow flags of
the timers. The TCON SFR is detailed below in Table A - 7. The timer/counters are started or stopped
by changing the timer run bits (TR0 and TR1) in TCON. The software can freeze the operation of either
timer as well as restart the timers simply by changing the TRx bit in the TCON register. The TCON
register also contains the overflow flags for the timers. When the timers overflow, they set their
respective flag (TF0 or TF1) in this register. When the processor detects a 0 to 1 transition in the flag,
an interrupt occurs if it is enabled. It should be noted that the software can set or clear this flag at any
time. Therefore, an interrupt can be prevented as well as forced by the software.

Timer Control Register (TCON) - Bit AddressableTimer Control Register (TCON) - Bit Addressable
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

TF1 Timer 1 overflow flag. Set when timer 1 overflows. Cleared by processor upon vectoring to
the interrupt service routine.

TR1 Timer 1 control bit. If TR1=1, timer 1 runs. If TR1=0, timer 1 stops.
TF0 Timer 0 overflow flag. Set when timer 0 overflows. Cleared by processor upon vectoring to

the interrupt service routine.
TR0 Timer 0 control bit. If TR0=1, timer 1 runs. If TR0=0, timer 1 stops.
IE1 External interrupt 1 edge flag. Set when a valid falling edge is detected at pin P3.3. Cleared

by hardware when the interrupt is serviced.
IT1 Interrupt 1 type control bit. If IT1=1, interrupt 1 is triggered by a falling edge on P3.3. If

IT1=0, interrupt 1 is triggered by a low logic level on P3.3
IE0 External interrupt 0 edge flag. Set when a valid falling edge is detected at pin P3.2. Cleared

by hardware when the interrupt is serviced.
IT0 Interrupt 0 type control bit. If IT0=1, interrupt 1 is triggered by a falling edge on P3.2. If

IT0=0, interrupt 0 is triggered by a low logic level on P3.2

Table A - 7

The timers are configured by altering the value in the TMOD (timer mode) SFR. By changing TMOD,
the software can control the mode of both timers as well as the source they use to count (the signal at
their I/O pin or the processor cycles). The upper nibble of TMOD controls the operation of timer 1 and
the low nibble controls the operation of timer 0. The layout of the TMOD register (which is not bit
addressable) is shown below.

CHAPTER 2 - THE HARDWARE

Page 14

Timer Mode Register (TMOD) - Not Bit AddressableTimer Mode Register (TMOD) - Not Bit Addressable
GATE C/T M1 M0 GATE C/T M1 M0

Timer One Timer Zero
GATE If GATE=1, timer x will run only when TRx=1 and INTx=1. If GATE=0, timer x will run

whenever TRx=1.
C/T Timer mode select. If C/T=1, timer x runs in counter mode taking its input from Tx pin. If

C/T=0, timer x runs in timer mode taking its input from the system clock.
M1 Mode selector bit 1. MSB of selector.
M0 Mode selector bit 0. LSB of selector.

Table A - 8

The source for the timer can be configured by altering the C/T bit in TMOD. Setting this bit to true will
force the timer to count pulses on the I/O pin assigned to it. Setting this bit false will force counting of
processor cycles. When a timer is forced to count processor cycles it can do this either under hardware
or software control. Software control is commanded by setting the GATE bit of TMOD to 0. In this case,
the timer will count any time its TRx bit in the TCON register is high. In the hardware control mode, both
the TRx bit and the INTx pin on the chip must be high for the timer to count. When a low is detected at
the INTx pin, the timer will stop. This is useful for measuring pulse widths of signals on the INTx pin if
one does not mind surrendering an external interrupt source to the incoming signal.

Timer Mode 0 and Mode 1
The timer/counters can be operated in one of four modes, under software control. In mode 0, the
timer/counter will behave like a 13 bit counter. When the counter overflows, the TF0 or TF1 (timer flag)
bit in the TCON (timer control) SFR is set. This will cause the appropriate timer interrupt (assuming it is
enabled). Both timer 0 and timer 1 operate in the same way for mode 0. The operation of the timers in
mode 1 is the same as it is for mode 0 with the exception that all sixteen bits of the timer are used
instead of only thirteen.

Timer Mode 2
In mode 2, the timer is set up as an eight bit counter which automatically reloads whenever an overflow
condition is detected. The low byte of the timer (TL0 or TL1) is used as the counter and the high byte of
the timer (TH0 or TH1) holds the reload value for the counter. When the timer/counter overflows, the
value in THx is loaded into TLx and the timer continues counting from the reload value. Both timer 0
and timer 1 function identically in mode 2. Timer 1 is often used in this mode to generate baud rates for
the UART.

Timer Mode 3
In mode 3, timer 0 becomes two eight bit counters which are implemented in TH0 and TL0. The counter
implemented in TL0 maintains control of all the timer 0 flags, but the counter in TH0 takes over the
control flags in TCON from timer 1. This implies that timer 1 can no longer force interrupts, however, it
can be used for any purpose which will not require the overflow interrupt such as a baud rate generator
for the UART, or as a timer/counter which is polled by the software. This is useful when an application
must use a UART mode which requires baud rate generation from timer 1 and also requires two
timer/counters. When timer 1 is placed in mode 3 it simply freezes.

Timer 2
Many 8051 family members, such as the 8052 also have a third on board timer referred to as timer 2.
Timer 2 is controlled through the T2CON (Timer 2 CONtrol) SFR. The T2CON SFR is bit addressable.
Its layout is shown below.

THE FINAL WORD ON THE 8051

Page 15

Timer 2 Control Register (T2CON) - Bit AddressableTimer 2 Control Register (T2CON) - Bit Addressable
TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2

TF2 Timer 2 overflow flag. Set when timer 2 overflows. Will not be set if RCLK=1 or TCLK=1.
EXF2 Timer 2 external flag. EXF2 is set when a falling edge is detected on T2EX and EXEN2=1.

This causes an interrupt, if the timer 2 interrupt is enabled.
RCLK Receive clock flag. When RCLK=1, the UART (if in mode 1 or 3) will use the timer 2

overflow frequency for the receive clock.
TCLK Transmit clock flag. When TCLK=1, the UART (if in mode 1 or 3) will use the timer 2

overflow frequency for the transmit clock.
EXEN2 External enable flag. If EXEN2=1, a capture or reload will be caused by a falling edge on

T2EX. If EXEN2=0, external events on T2EX are ignored.
TR2 Timer run control bit. If TR2=1, the timer will run. If TR2=0, the timer will stop.
C/T2 Timer mode select. If C/T2=1, timer 2 will act as an external event counter. If C/T2=0, timer

2 will count processor clock cycles.
CP/RL2 Capture/Reload flag. If CP/RL2=1, detection of a falling edge on T2EX causes a capture if

EXEN2=1. IF CP/RL2=0, detection of a falling edge on T2EX or an overflow causes a timer
reload if EXEN2=1.

Table A - 9

Via T2CON the software can configure timer/counter 2 to operate in one of three basic modes. The first
of these modes is referred to as Capture mode. In Capture Mode the timer can be operated just as timer
0 or timer 1 in the 16 bit timer/counter mode (mode 1). This operation is selected by clearing the EXEN2
bit. When the EXEN2 bit is set, the timer/counter will latch its current count in two other SFRs (RCAP2H
and RCAP2L) when the signal at P1.1 (referred to as T2EX) exhibits a 1 to 0 transition. This event can
also be linked to an interrupt from T2.

A second mode of timer 2 is called auto reload. In this mode there are also two sub functions which are
selected via the EXEN2 bit. When EXEN2 is cleared, the rollover of the 16 bit timer fires an interrupt
and loads the value set in RCAP2H and RCAP2L into the timer. When EXEN2 is set, the timer/counter
will react the same way to a rollover and in addition it will also reload the timer given a 1 to 0 transition at
the T2EX pin.

In its final mode, timer 2 can be used to generate a baud rate for the UART. This is done by setting
either RCLK or TCLK or both. In its baud rate generator mode, the timer increments once every other
oscillator cycle instead of once every 12th oscillator cycle as timer 0 and timer 1 do meaning that the
maximum UART baud rate is higher. Additionally, the entire 16 bits of the timer are reloaded from
RCAP2H and RCAP2L every overflow.

CHAPTER 2 - THE HARDWARE

Page 16

On-Board UART
The 8051 features an on board, full duplex UART which is under software control. The UART is
configured via the SCON (Serial CONtrol) SFR. The SCON register allows the user to select the UART
mode, enable reception, and check UART status. SCON is illustrated in Table A - 10.

Serial Control Register (SCON) - Bit AddressableSerial Control Register (SCON) - Bit Addressable
SM0 SM1 SM2 REN TB8 RB8 TI RI

SM0 Serial Port Mode Specifier 0. MSB
SM1 Serial Port Mode Specifier 1. LSB.
SM2 Multiprocessor Mode enable. In mode 0, this bit should be 0. In mode 1, if SM2=1, RI will

not be set unless a valid stop bit was received. In modes 2 and 3 if SM2=1, RI will not be set
unless the ninth data bit is 1.

REN Receive Enable Flag. Must be 1 to allow UART to receive data.
TB8 The ninth data bit that will be sent in mode 2 and 3.
RB8 In mode 0 this bit is unused. In mode 1 if SM2=0, RB8 is the stop bit that was received. In

modes 2 and 3 RB8 is the ninth data bit that was received.
TI Transmit interrupt flag. Must be cleared by software.
RI Receive interrupt flag. Must be cleared by software.

Table A - 10

The UART features a one byte buffer for incoming data so that another byte can be ringing into the
UART before the last byte has been read. However, after one byte time, the buffer will be overwritten as
the next incoming byte is completed. Therefore, the software must be capable of responding to an
incoming byte within one serial byte time. This is also true for outgoing data assuming that it is required
to be back to back.

The 8051 supports standard ten bit frames as well as an eleven bit frame designed for inter processor
communications and a high speed 8 bit shift register mode. The baud rate is variable for all modes
except the eight bit shift mode and one of the inter processor modes.

UART Mode 0
In mode 0 the UART acts as an eight bit shift register clocking data in and out at a baud rate of 1/12th of
the oscillator frequency. Data is sent LSB first and enters and exits the UART via the RXD pin.
Therefore mode 0 does not support full duplex since the RXD pin is used for all incoming and outgoing
data and the TXD pin is used to echo the shift clock. This mode is useful for situations in which the
micro controller is used to interface to a serial device such as an EEPROM which has a serial eight bit
interface format.

Transmission of a byte begins when the SBUF SFR is the destination register of a move instruction. At
this point, the eight bits are clocked out and the TI bit is set when the transmission of the eighth bit is
complete. Reception begins when the REN bit of the SCON register is set true. The RI bit is set when
the eighth bit is clocked in.

UART Mode 1
In mode 1 of the UART, 8 data bits are transmitted in a ten bit frame: one start bit, eight data bits, and
one stop bit. This mode is suitable for communications to most serial devices including personal
computers. The baud rate is variable and is controlled by the overflow rate of timer 1 in the auto reload
mode or, optionally, by timer 2 in the baud rate generating mode on an 8052. Overflow interrupts should
be disabled for the timer being used to generate the baud rate. The SMOD bit in the PCON (power
control) SFR can be set high to double the baud rate implemented by the UART.

The TI and RI interrupt signals are activated halfway through the transmission or reception of the stop
bit. Typically, this will allow the software time to respond to the interrupt and load SBUF with the next

THE FINAL WORD ON THE 8051

Page 17

byte in back to back during data block transfers. The amount of processing time available depends on
the baud rate in use and the oscillator frequency being used to drive the 8051.

If timer 1 is going to be used to generate the desired baud rate of the UART, you must compute the
reload value for TH1 using the following equation:

TH1=256-(K*OscFreq)/(384*BaudRate)

K=1 if SMOD=0

K=2 if SMOD=1

Any baud rate which does not give a positive reload value less than 256 can not be generated by the
8051 at the given clock frequency. Reload values which are not integers must be very close to the next
integer. Oftentimes the resultant baud rate may be close enough to allow the system to work. This
evaluation must be made by the developer.

Thus, if you have an 8051 which is using a 9.216MHz oscillator, and you want to generate a baud rate of
9600 baud you must go through these steps. First, run the equation for K=1 then later try it for K=2. For
K=1, the numerator becomes 9216000 and the denominator becomes 3686400. Dividing these two
values gives a result of 2.5. From this it is obvious that the reload value given by this function will not
be an integer. Rerunning the equation with K=2 gives a numerator of 18432000 and a denominator of
3686400. Dividing these two values gives an answer of 5 which you subtract from 256. This gives a
reload value of 251 or 0FBH for TH1.

For an 8052 using timer 2 to generate the baud rate, the reload value for RCAP2H and RCAP2L must be
computed. Again, you must start from the desired baud rate and solve the following equation to obtain
the reload values.

[RCAP2H, RCAP2L]=65536-OscFreq/(32*BaudRate)

Assume that you again have a system with an oscillator at 9.216MHz, and you want to generate a baud
rate of 9600 baud. For this to be possible, the resultant 16 bit answer of the above equation must be
both positive and “near integer.” You end up dividing 9216000 by 307200 and getting an intermediate
result of 30. Subtracting this from 65536 gives an answer of 65506 or FFE2H. You should then use a
reload value of 255 or FFH for RCAP2H and a reload value of 226 or E2H for RCAP2L.

UART Mode 2
Mode 2 of the UART causes and eleven bit frame to be transmitted: one start bit, eight data bits, a ninth
(or stick) bit, and one stop bit. The value of the ninth bit is determined by the TB8 bit of SCON for
transmissions and the RB8 bit of SCON for receptions. The ninth bit is typically used for inter processor
communications. To facilitate this, the UART can be initialized to fire a receive interrupt only when the
ninth bit (or stick bit) is set. This feature is referred to as the multiprocessor communication feature by
Intel and is controlled by the SM2 bit in the SCON register. When SM2 is set, the ninth data bit must be
set for the UART to fire an interrupt. When it is cleared, the UART will fire a receive interrupt whenever
a valid eleven bit frame rings in.

The stick bit is used to lower the amount of unnecessary interrupts during serial communications across
a multidrop serial bus. In such situations an address or command byte is sent first with the stick bit set.
All processors on the bus are interrupted and check the incoming byte to see if it is necessary for them to
receive the message. If it is, the SM2 bit is cleared to remove the restriction of having the stick bit set,
and the rest of the message is received. Otherwise, the SM2 bit is left set and the normal processing
continues without constantly being disturbed by a string of interrupts for the incoming byte stream.

CHAPTER 2 - THE HARDWARE

Page 18

The baud rate for mode two is 1/64th of the oscillator frequency when the SMOD bit is cleared and it is
1/32nd of the oscillator frequency when the SMOD bit is set. Therefore, very high baud rates (over 345K
baud) are achievable using this mode and a relatively common oscillator frequency such as 11.059MHz.
Mode 3 of the UART is exactly the same as mode two in terms of the data format and the use of the
ninth bit. However, the baud rates in mode 3 are variable and are controlled in the same manner as in
mode 1.

Other Peripherals
Many 8051 derivatives have additional devices integrated onto the chip to make them a more attractive
product for your embedded application. Some of the more common peripherals are discussed below.

I2C
A new form of inter-device communication becoming popular is the I2C (inter-integrated circuit)
interface created and popularized by Phillips. I2C is a serial format data link which uses two wires (one
for data and one for clock) and can have many drops to varying devices. Each device has its own ID on
the link to which it will respond, data transfers are bi-directional, and the bus can have more than one
master. Phillips has been a leader in adding I2C capability to the 8051. Hardware wise, two I/O pins are
taken from port 1 for the I2C interface and a set of SFRs are added to control the I2C and aid in
implementing the protocol of this interface. Specifics on the I2C interface can be obtained in the Phillips
8051 Family data book.

Analog to Digital Converters
Analog to digital converters are peripherals which are not available on every 8051 family member, but
are common enough that they were worth discussing in this overview. A/D converters are usually
controlled via some master register (usually called ADCON) which is given one of the empty locations in
the SFR memory segment. The ADCON register allows the user to select the channel to be used for A/D
conversion, to start a new conversion and to check the status of a current conversion. Typical A/D
converters are taking 40 instruction cycles or less to complete the conversion, and they can be
configured to fire an interrupt upon completion which causes the processor to vector to a location specific
for the A/D. The drawback to this is that often times the A/D conversion requires that the processor be
active rather than entering idle mode to wait for the completion interrupt. Results of a conversion are
read from another SFR or pair of SFRs depending on the resolution of the converter.

Watchdog Timers
Watchdog timers are available on an expanding group of 8051 family members. The purpose of a
watchdog timer is to reset the controller if the timer is not fed by a specific sequence of operations within
a specified amount of time. This prevents coincidental reloading of the watchdog by runaway software.
To use a watchdog, the timing in the software must be understood well enough for the designer to
determine where the calls to the feed routine should be placed in the system. If the watchdog is fed too
often, some amount of processing power is wasted. However, if the watchdog is not fed often enough, it
may reset the system even though the software is still functioning as expected.

In the 8051 family, the watchdog is usually implemented as another on board timer which scales the
system oscillator down and then counts the divided clock. When the timer rolls over, the system resets.
The watchdog can be configured for its rollover rate and often times can be used as another timer, albeit
a low resolution one.

THE FINAL WORD ON THE 8051

Page 19

Design Considerations
The 8051 family of processors contains a wide variety of members with a wide range of peripherals and
features and is suitable for a high amount of applications. Given such a multitude of choices, the
greatest difficulty in using this controller may just be selecting the appropriate derivative! When circuit
board space and cost are a consideration (as they often are) it will be desirable to keep the parts count
as low as possible. The 8051 family provides many options with controllers that have up to 512 bytes of
on board RAM and up to 32K bytes of on board EPROM. Often times a system can be done using just
the internal RAM and EPROM on the 8051. The advantages of this in terms of parts count are
significant. From the start, you eliminate the need for an EPROM (which is typically a 28 pin part), an
address latch for the lower eight bits of the bus (typically a 20 pin part), and an external RAM (which is
also a 28 pin part). In addition to these parts savings, you have increased the available I/O capability of
the 8051 by 16 pins (port 0 and port 2). This can be used to easily interface other devices to the 8051
without having any sort of bus interface for them which would typically involve a decoder and possibly
more data latches. When the extra I/O pins are not needed and the application code will be suitably
small, a 28 pin version of the 8051 can be used to save even more circuit board space. A drawback to
approaches like this is that there may not be sufficient program or RAM space for larger applications.
When this is the case, the designer has little choice but to go with the full 8051 core and whatever
support chips (SRAM, EPROM, etc) are required. Many components such as A/D, PWM, hardware
triggers and timers can be replaced by the correct 8051 family member and the appropriate software
control routines which will be discussed later.

Oftentimes power consumption of an embedded product is of great concern. It may be that the software
has so many chores to do that the processor does not get to spend much time in sleep or idle mode. In
these cases, the designer has the option of going to a low voltage (3.6 volts or below) system to reduce
power consumption. Additionally, if there is sufficient spare processing time available, the designer can
consider lowering the oscillator frequency which will provide small gains in power consumption.

The designer must carefully choose the oscillator frequency for applications that must communicate
serially at standard baud rates (1200, 4800, 9600, 19.2K, etc.). It is very be beneficial to generate tables
of the possible baud rates for readily available crystals and then select your frequency based upon
required baud rates, required processing power, and availability. Oftentimes crystal availability can be
given a much lower priority in this equation due to the fact that the set up cost to manufacture custom
crystals is usually not overwhelming. When selecting an oscillator frequency greater that 20MHz, the
designer must be careful to ensure that any parts placed in the bus of the 8051 can handle the access
times that will be required by the core. Typically, parts such as EPROMs and SRAMs which can handle
the access speeds are readily available. Address latches such as the 74C373 are also available in HC
versions that can support all 8051 frequencies. In addition, the designer must consider that as the crystal
frequency is increased, the power consumption of the system will also be increased. This trade off , as
discussed above, must be carefully considered for applications that must run off batteries for any length
of time.

CHAPTER 2 - THE HARDWARE

Page 20

Implementation Issues
After the appropriate 8051 family member is selected and the necessary peripherals are chosen, the next
issue to be decided is typically the memory map for system I/O. It is a given that the CODE space will
start at address 0 and will increase upward in a contiguous block. This could be altered, but in my
experience I have never seen a real need to justify it. The XDATA memory space is usually composed
of some combination of RAM and I/O devices. Again, the RAM is typically one contiguous block of
memory and starts at address 0000 or address 8000. It is oftentimes useful to put the SRAM at address
0000 and use A15 to enable the RAM in conjunction with the RD' and WR' signals generated by the
micro controller. This approach allows for a RAM of up to 32K to be used which is usually more than
sufficient for an embedded application. Additionally, 32K of address locations (from 8000 to FFFF) can
be given to external I/O devices. For the most part, the number of I/O devices present in an 8051
system is low, and therefore the higher order address lines can be run through a decoder to provide
enable signals for the peripherals. An example of a base core implementing such a memory map for its
system I/O is shown in Figure A - 2 - 8051 Bus I/O. As can easily be seen, this approach simplifies the
hardware by reducing the amount of address decoding required to access a given I/O device. It can also
simplify the software since it will not be necessary to load the lower half of DPTR when performing I/O
with these devices.

Figure A - 2 - 8051 Bus I/O

Sample accesses to the input and output latch for this circuit are shown below.

THE FINAL WORD ON THE 8051

Page 21

Listing A - 6

MOV DPTR, #09000H ; set DPTR to point at the input

; latch

MOVX A, @DPTR ; read the value of the latch

MOV DPH, #080H ; set DPTR to point at the output

; latch

MOVX @DPTR, A ; write the input value to the

; output latch

It can be seen that sequential I/O will be simplified by the architecture laid out in the above circuit since
the software does not need to concern itself with the lower half of the data pointer. The first instruction
could just as easily been "MOV DPH, #090H" since it does not matter what value is on the lower order 8
bits.

Conclusion
I hope that this brief review of 8051 basics has been enlightening. It is not intended to replace the data
book that the manufacturers of 8051 family members provide you with. These books are always an
invaluable source of information regarding chip specifics and operation details. They have a permanent
place on my desk. The next chapter will explore general software design issues for the 8051, including
the use of the C programming language.

CHAPTER 3 - USING C WITH THE 8051

Page 22

- Using C with the 8051

Why Use a High Level Language?
When designing software for a smaller embedded system with the 8051, it is very commonplace to
develop the entire product using assembly code. With many projects, this is a feasible approach since
the amount of code that must be generated is typically less than 8 kilobytes and is relatively simple in
nature. If a hardware engineer is tasked with designing both the hardware and the software, he or she
will frequently be tempted to write the software in assembly language. My experience has been that
hardware engineers are usually not familiar with a high level language like C nor do they care to be.

The trouble with projects done with assembly code can is that they can be difficult to read and maintain,
especially if they are not well commented. Additionally, the amount of code reusable from a typical
assembly language project is usually very low. Use of a higher level language like C can directly
address these issues.

A program written in C is easier to read than an assembly program. Since a C program possesses
greater structure, it is easier to understand and maintain. Because of its modularity, a C program can
better lend itself to reuse of code from project to project. The division of code into functions will force
better structure of the software and lead to functions that can be taken from one project and used in
another, thus reducing overall development time.

A high order language such as C allows a developer to write code which resembles a human's thought
process more closely than does the equivalent assembly code. The developer can focus more time on
designing the algorithms of the system rather than having to concentrate on their individual
implementation. This will greatly reduce development time and lower debugging time since the code is
more understandable.

By using a language like C, the programmer does not have to be intimately familiar with the architecture
of the processor. This means that a someone new to a given processor can get a project up and running
quicker, since the internals and organization of the target processor do not have to be learned.
Additionally, code developed in C will be more portable to other systems than code developed in
assembly. Many target processors have C compilers available which support ANSI C.

All of this is not to say that assembly language does not have its place. In fact, many embedded
systems (particularly real time systems) have a combination of C and assembly code. For time critical
operations, assembly code is frequently the only way to go. It has been my experience, however, that
the remainder of the project (including much of the hardware interface) can and should be developed in
C. One of the great things about the C language is that it allows you to perform low level manipulations
of the hardware if need be, yet provides you with the functionality and abstraction of a higher order
language.

Sticking Points with C
This text is not intended to teach you how to program using the C language. Numerous books are
available to help you learn the C language. The most widely regarded book is The C Programming
Language by Kernighan and Ritchie. Their book is generally considered to be the final authority on C.
Keil’s C51 fully supports the C standard set forth in the Kernighan and Ritchie book as well as many C
language extensions which are specifically designed to optimize use of the 8051’s architecture.

There are a few issues regarding the C language that many users of C still shy away from. Even though
this book is not a C tutorial, it is worth it to review the concepts of structures, unions, pointers and type
definitions. These three topics seem to cause the new and occasional C programmer the most grief.

THE FINAL WORD ON THE 8051

Page 23

Structures
A structure is a user defined type in C which allows the programmer to group together several variables
into a single collection. This feature is very handy when you have variables which are closely related.
For example, assume that you have a set of variables which keep track of the time of day. To do this,
you have defined an hour, minute, and second variable to hold each portion of the time as follows.

unsigned char hour, min, sec;

This set of variables is further augmented by a variable which keeps track of the current day of the year
(from 0 to 364). This variable is defined as follows.

unsigned int days;

Taken together, you have four variables which together hold the time of the day. This is certainly
workable, but can be written to be much cleaner using a structure. The structure will allow you to group
together these four variables and give them a common name. The syntax for declaring the structure is
as follows.

struct time_str {

 unsigned char hour, min, sec;

 unsigned int days;

} time_of_day;

This code tells the compiler to define a structure type called time_str and create a variable called
time_of_day of this type. The members of time_of_day are accessed by using the variable name
(time_of_day) followed by a ‘.’ and then the member variable name:

time_of_day.hour=XBYTE[HOURS];

time_of_day.days=XBYTE[DAYS];

time_of_day.min=time_of_day.sec;

curdays=time_of_day.days;

The members of the structure are treated as any other variable with the exception that they must have
the parent name of the structure in front of them. The nice thing about structures is that you can create
as many of them as you need, since the compiler treats it as a new type. For example, you could have
the following definition later in your code:

struct time_str oldtime, newtime;

This creates two new structures called “oldtime” and “newtime.” These new structures are independent of
any of the other instances of the type “struct time_str” just like multiple copies of an “int” variable are.

Structures of the same type can be copied easily using the C assignment operator:

oldtime=time_of_day;

This makes the code very easy to read and saves you from typing several lines of code to copy the four
variables. Of course, individual members of a structure can be copied to another structure simply by
using the assignment operator:

oldtime.hour=newtime.hour;

oldtime.days=newtime.days-1;

CHAPTER 3 - USING C WITH THE 8051

Page 24

In Keil C (and most other C compilers) the structure is implemented as a contiguous block of memory
and the member names serve as indices into that block for the compiler. Thus, the time_str would be
implemented as a block of memory consisting of five bytes.
The order in which the members are declared in the structure
is the order in which they are placed in the block of memory.
Therefore, an instance of time_str would have the map shown
in Table 0-1.

Once you have created a structure type, it can be treated just
like any other C variable type. For example, you can have an
array of structures, a structure as a member of another
structure and pointers to structures.

Unions
A C union is very similar to s structure in that it is a collection of related variables, each of which is a
member of the union. However, the union can only hold one of the members at a time. The members of
a union can be of any valid type in the program. This includes all built in C types such as char, int or
float as well as user defined types such as structures and other unions. An example of a definition of a
union is shown below.

union time_type {

 unsigned long secs_in_year;

 struct time_str time;

} mytime;

In this case a long is defined to hold the number of seconds since the start of the year and as an
alternative format of determining how far into the current year time has gone is the time_str from the
above discussion.

Any member field of the union can be accessed at any time no matter what the contents of the union are.
As an illustration, consider the following code:

mytime.secs_in_year=JUNE1ST;

mytime.time.hour=5;

curdays=mytime.time.days;

While the data may not make sense to be used in the format you’re requesting of the union, C let’s you
perform the access anyway.

A union is implemented as a contiguous block of memory just as a structure was. However, the block of
memory is only as large as the largest member of the union. Thus, the above union has the following
memory map.

OffsetOffset MemberMember BytesBytes
0 secs_in_year 4
0 mytime 5

Table 0-2

Since the largest member (mytime) is allocated a total of five bytes, the structure size becomes five
bytes. When the union holds the secs_in_year, the fifth byte is unused.

OffsetOffset MemberMember BytesBytes
0 hour 1
1 min 1
2 sec 1
3 days 2

Table 0-1

THE FINAL WORD ON THE 8051

Page 25

Oftentimes, a union is used to provide a program with differing views of the same data. For example,
suppose you had a variable defined as an unsigned long which really held the value of four hardware
registers. You could give your program two simple views of this data (on a per byte basis and an all-at-
once basis) by combining an array of bytes and an unsigned long in a union.

union status_type {

 unsigned char status[4];

 unsigned long status_val;

} io_status;

io_status.status_val=0x12345678;

if (io_status.status[2] & 0x10) {

 ...

}

Pointers
A pointer is a variable which contains a certain memory address. Typically, the address in a pointer is
the base address of another variable. Since the address of some other variable is stored in the pointer,
the pointer can be used to indirectly access the variable to which it points, just like one of the 8051
registers can be used to access another address in the DATA segment or like the DPTR is used to
access external memory spaces. Pointers are very convenient to use because they are easily moved
from one variable to the next and thus can allow you to write very generic routines which operate on a
variety of different variables.

A pointer is defined to point at objects of a certain type. For example, if you define a pointer with the
long keyword, C treats the memory location being pointed at by the pointer as the base address of a
variable of type long. This is not to say that the pointer can not be coerced to point at another type, it
just implies that C believes there be a long at the location pointed at. Some sample pointer definitions
are shown below.

unsigned char *my_ptr, *another_ptr;

unsigned int *int_ptr;

float *float_ptr;

time_str *time_ptr;

Pointers can be assigned to any variable or memory location that you have defined in your system.

my_ptr=&char_val;

int_ptr=&int_array[10];

time_ptr=&oldtime;

Pointers can be incremented and decremented to allow them to move through memory as well as being
assigned to a given location. This is especially useful when a pointer is being used to pass through an
array. When C increments a pointer, it adds the size of the type being pointed at to the pointer.
Consider the following code as an example.

time_ptr=(time str *) (0x10000L); // set pointer to address 0

timeptr++; // pointer now aims at

// address 5

CHAPTER 3 - USING C WITH THE 8051

Page 26

Pointers can be assigned to each other just like any other variable. The object that a pointer is aimed at
can be assigned to also by dereferencing the pointer.

time_ptr=oldtime_ptr; // make time_ptr and

// oldtime_ptr point to the

// same thing

*int_ptr=0x4500; // assign 0x4500 to the

// variable pointed at by

// int_ptr

When a pointer is used to access the members of a structure or union the dot notation is no longer used.
Instead an arrow is used to reference the members of a structure or a union. However, if the pointer is
dereferenced the standard structure/union syntax can be used.

time_ptr->days=234;

*time_ptr.hour=12;

One of the places in which pointers are very heavily used is dynamic data structures such as linked lists
and trees. For example, suppose that you needed to create a data structure in which you could insert
names and then later check to see if a given name is valid. One of the simplest ways to implement this
efficiently is to use a binary search tree. You could then declare a node of the tree as follows.

struct bst_node {

 unsigned char name[20]; // storage for the name

 struct bst_node *left, *right; // a pointer to the left

// and right subtrees

};

The binary search tree can shrink and grow as needed by allocating new nodes and assigning their
addresses to the left or right pointer of the correct node. The pointers greatly add to the ability to treat
the binary search tree in a generic manner.

Type Definitions
A type definition (or typedef) in C is nothing more than a way to create a synonym for a given type. In
other words, its a way to avoid some typing when more complex types are involved. For example, you
could create a synonym for the time_str as follows.

typedef struct time_str {

 unsigned char hour, min, sec;

 unsigned int days;

} time_type;

A variable of type “time_type” can then be defined just like any other variable.

time_type time, *time_ptr, time_array[10];

THE FINAL WORD ON THE 8051

Page 27

Type definitions can also be used to rename standard types in C and also make definitions using
standard types simpler to read and type.

typedef unsigned char UBYTE;

typedef char * STRPTR;

UBYTE status[4];

STRPTR name;

Remember, the main point behind using a typedef is to make your code easier to read and save you a
little bit of typing. However, you should make sure that you do not go overboard with typedef’s and make
your code unreadable. Many programmers tend to use a lot of typedef’s to rename unsigned char,
unsigned int, etc into names that mean something to them. However, when someone else picks up this
code the names chosen to do not mean a thing and this makes the code harder to deal with.

Keil C versus ANSI C
This section will present the key features of Keil C and its differences from ANSI C. Additionally, it will
provide some hints for effectively using this package on the 8051.

The Keil compiler provides the user with a superset of ANSI C with a few key differences. For the most
part these differences allow the user to take advantage of the architecture of the 8051. Additional
differences are due to limitations of the 8051.

Data Types
Keil C has all the standard data types available in ANSI C plus a couple of specific data types which help
maximize your use of the 8051’s architecture. The following table shows the standard data types and the
number of bytes they take on the 8051. It should be noted that integers and longs are stored with the
most significant byte in the lower address (MSB first).

In addition to these standard data types the compiler supports
a bit data type. A variable of type 'bit' is allocated from the bit
addressable segment of internal RAM and can have a value of
either one or zero. Bit scalars can be operated on in a manner
similar to other data types. Their type is promoted for
operations with higher data types such as char or int. Arrays
of bits and pointers to bit variables are not allowed.

Special Function Registers
The special function registers of the 8051 are declared using the type specifier 'sfr' for an eight bit
register or 'sfr16' for a 16 bit register such as DPTR. In these declarations, the name and the address of
the SFR is provided in the code. The address must be greater than 80 hex. Bits of the bit addressable
SFRs can be declared by using the 'sbit' type. This type cannot be applied to any SFR which is not
normally bit addressable. Examples of SFR declarations are shown in Listing 0-1. For most of the 8051
family members, Keil provides a header file which defines all the SFRs and their bits. Headers for new
derivatives can easily be created by using one of the existing header files as a model.

Data TypeData Type SizeSize
char / unsigned char 8 bits
int / unsigned int 16 bits
long / unsigned long 32 bits
float / double 32 bits
generic pointer 24 bits

Table 0-3

CHAPTER 3 - USING C WITH THE 8051

Page 28

Listing 0-1

sfr SCON = 0x98; // declare SCON

sbit SM0 = 0x9F; // declare sbit members of SCON

sbit SM1 = 0x9E;

sbit SM2 = 0x9D;

sbit REN = 0x9C;

sbit TB8 = 0x9B;

sbit RB8 = 0x9A;

sbit TI = 0x99;

sbit RI = 0x98;

Memory Types
Keil C allows the user to specify the memory area that will be used to hold program variables. This
allows for user control over the utilization of certain memory areas. The compiler recognizes the
following memory areas.

Memory AreaMemory Area DescriptionDescription
DATA The lower 128 bytes of internal RAM. All locations can be accessed directly and

within one processor cycle.
BDATA The 16 bytes of bit addressable locations in the DATA segment.
IDATA The upper 128 bytes of internal RAM available on devices such as the 8052. All

locations in this segment must be accessed indirectly.
PDATA The 256 bytes of external memory which are accessed by an address placed on

P0. Any access to this segment takes two cycles and is done via a MOVX @Rn
command.

XDATA External memory which must be accessed via the DPTR.
CODE Program memory which must be accessed via the DPTR.

Table 0-4

DATA Segment
The DATA segment will provide the most efficient access to user variables and for this reason should be
used to hold frequently accessed data. This segment must be used sparingly because of the limited
amount of space. The 128 bytes of the DATA segment hold your program variables as well as other key
information such as the processor stack and the register banks. Examples of data declarations are
shown in Listing 0-2.

Listing 0-2

unsigned char data system_status=0;

unsigned int data unit_id[2];

char data inp_string[16];

float data outp_value;

mytype data new_var;

You should note that an object of any basic type or any user defined type can be declared in the DATA
segment as long as the size of the type does not exceed the maximum available block size in the DATA
segment. Since C51 uses the default register bank for parameter passing, you will lose at least eight
bytes of the DATA segment. Additionally, sufficient space must be allowed for the processor's stack.
The stack size will peak when your program is at the deepest point in its function calling tree, including

THE FINAL WORD ON THE 8051

Page 29

any and all interrupt routines that can be active at that time. If you overflow the internal stack, you will
notice that your program mysteriously restarts itself. The real problem is that the 8051 family of
microcontrollers does not have any sort of hardware error reporting mechanism and thus any errors that
crop up, such as stack overflow manifest themselves in odd ways.

BDATA Segment
The BDATA segment allows you declare a variable that will be placed in the bit addressable segment of
DATA memory. Following such a declaration, the variable becomes bit addressable and bit variables
can be declared which point directly into it. This is particularly useful for things such as status registers
where use of individual bits of a variable will be necessary. Additionally, the bits of the variable can be
accessed without using previously declared bit names. The following listing shows sample declarations
with the bdata keyword and accesses into bits of a BDATA object.

Listing 0-3

unsigned char bdata status_byte;

unsigned int bdata status_word;

unsigned long bdata status_dword

sbit stat_flag = status_byte^4;

if (status_word^15) {

 ...

}

stat_flag = 1;

You should note that the compiler will not allow you declare a variable of type float or double to exist in
the BDATA segment. If you want to access a float bit by bit, one trick that can be done is to declare a
union of a float and a long and place that in the BDATA segment as follows.

Listing 0-4

typedef union { // create a type for the union

unsigned long lvalue; // the long value in the union

// (32 bits)

float fvalue; // the float in the union

// (also 32 bits)

} bit_float; // name the type 'bit_float'

bit_float bdata myfloat; // declare the union in bit

// addressable memory

sbit float_ld = myfloat^31; // give the most significant bit

// a name

The following code compares accesses of a specific bit within a status register. As a baseline, the code
to access a byte declared in DATA memory is shown and is compared to code to access the same bit in
a bit addressable byte via a bit name and via a bit number. Note that the assembly code generated for
an access to a bit in this variable is better than the code generated to check a bit in a status byte
declared as just DATA memory. One interesting thing to keep in mind about the bit addressable
variables is that if you specify a bit offset into a BDATA object in your code instead of using a

CHAPTER 3 - USING C WITH THE 8051

Page 30

predeclared bit name, the code emitted will be worse. In the following example observe that the
assembly code for 'use_bitnum_status' is larger than the code for 'use_byte_status.'

Listing 0-5

 1 // declare a byte wide status register

 2 unsigned char data byte_status=0x43;

 3

 4 // declare a bit addressable status register

 5 unsigned char bdata bit_status=0x43;

 6 // set a bit variable to use bit 3 of bit_status

 7 sbit status_3=bit_status^3;

 8

 9 bit use_bit_status(void);

 10

 11 bit use_bitnum_status(void);

 12

 13 bit use_byte_status(void);

 14

 15 void main(void) {

 16 1 unsigned char temp=0;

 17 1 if (use_bit_status()) { // if third bit is set

 18 2 temp++; // increment temp

 19 2 }

 20 1 if (use_byte_status()) { // if third bit is set

 21 2 temp++; // increment temp again

 22 2 }

 23 1 if (use_bitnum_status()) { // if third bit is set

 24 2 temp++; // increment temp again

 25 2 }

 26 1 }

 27

 28 bit use_bit_status(void) {

 29 1 return (bit) (status_3);

 30 1 }

 31

 32 bit use_bitnum_status(void) {

 33 1 return (bit) (bit_status^3);

 34 1 }

 35

 36 bit use_byte_status(void) {

 37 1 return byte_status&0x04;

 38 1 }

 39

THE FINAL WORD ON THE 8051

Page 31

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)

 ; SOURCE LINE # 15

 ; SOURCE LINE # 16

0000 E4 CLR A

0001 F500 R MOV temp,A

 ; SOURCE LINE # 17

0003 120000 R LCALL use_bit_status

0006 5002 JNC ?C0001

 ; SOURCE LINE # 18

0008 0500 R INC temp

 ; SOURCE LINE # 19

000A ?C0001:

 ; SOURCE LINE # 20

000A 120000 R LCALL use_byte_status

000D 5002 JNC ?C0002

 ; SOURCE LINE # 21

000F 0500 R INC temp

 ; SOURCE LINE # 22

0011 ?C0002:

 ; SOURCE LINE # 23

0011 120000 R LCALL use_bitnum_status

0014 5002 JNC ?C0004

 ; SOURCE LINE # 24

0016 0500 R INC temp

 ; SOURCE LINE # 25

 ; SOURCE LINE # 26

0018 ?C0004:

0018 22 RET

 ; FUNCTION main (END)

 ; FUNCTION use_bit_status (BEGIN)

 ; SOURCE LINE # 28

 ; SOURCE LINE # 29

0000 A200 R MOV C,status_3

 ; SOURCE LINE # 30

0002 ?C0005:

0002 22 RET

 ; FUNCTION use_bit_status (END)

 ; FUNCTION use_bitnum_status (BEGIN)

CHAPTER 3 - USING C WITH THE 8051

Page 32

The compiler obtains the desired bit by using the entire byte instead of using
a bit address.

 ; SOURCE LINE # 32

 ; SOURCE LINE # 33

0000 E500 R MOV A,bit_status

0002 6403 XRL A,#03H

0004 24FF ADD A,#0FFH

 ; SOURCE LINE # 34

0006 ?C0006:

0006 22 RET

 ; FUNCTION use_bitnum_status (END)

 ; FUNCTION use_byte_status (BEGIN)

 ; SOURCE LINE # 36

 ; SOURCE LINE # 37

0000 E500 R MOV A,byte_status

0002 A2E2 MOV C,ACC.2

 ; SOURCE LINE # 38

0004 ?C0007:

0004 22 RET

 ; FUNCTION use_byte_status (END)

You should bear this example in mind when you are dealing with the bit addressable variables. Declare
bit names into the BDATA object you wish to use instead of accessing them by number.

IDATA Segment
The IDATA segment is the next most popular segment for frequently used variables since it is accessed
by using a register as the pointer. Setting an eight bit address in a register and then doing an indirect
move is more attractive in terms of processor cycles and code size when compared with doing any sort
of access to external memory.

unsigned char idata system_status=0;

unsigned int idata unit_id[2];

char idata inp_string[16];

float idata outp_value;

THE FINAL WORD ON THE 8051

Page 33

PDATA and XDATA Segments
Declarations of variables in either of these two segments follows the same syntax as the other memory
segments did. You will be limited to 256 bytes of allocation in the PDATA segment, but you will not
reach the limits of the XDATA segment until you have declared 65536 bytes worth of variables! Some
sample declarations are shown below.

unsigned char xdata system_status=0;

unsigned int pdata unit_id[2];

char xdata inp_string[16];

float pdata outp_value;

The PDATA and XDATA segments provide similar performance. If you can use PDATA accesses to
external data, do it because the setup of the eight bit address is shorter than the setup of a sixteen bit
address required for variables declared to be xdata. Both accesses will be implemented using a MOVX
op code which will consume two processor cycles.

CHAPTER 3 - USING C WITH THE 8051

Page 34

Listing 0-6 shows some sample code in which an access to PDATA is compared to an access to XDATA.

THE FINAL WORD ON THE 8051

Page 35

Listing 0-6

 1 #include <reg51.h>

 2

 3 unsigned char pdata inp_reg1;

 4

 5 unsigned char xdata inp_reg2;

 6

 7 void main(void) {

 8 1 inp_reg1=P1;

 9 1 inp_reg2=P3;

 10 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)

 ; SOURCE LINE # 7

 ; SOURCE LINE # 8

Note that the assignment 'inp_reg1=P1' takes 4 processor cycles

0000 7800 R MOV R0,#inp_reg1

0002 E590 MOV A,P1

0004 F2 MOVX @R0,A

 ; SOURCE LINE # 9

Note that the assignment 'inp_reg2=P3' takes 5 processor cycles

0005 900000 R MOV DPTR,#inp_reg2

0008 E5B0 MOV A,P3

000A F0 MOVX @DPTR,A

 ; SOURCE LINE # 10

000B 22 RET

 ; FUNCTION main (END)

Oftentimes, the external memory segment will contain a combination of variables and input/output
devices. Accesses to I/O devices can be done by casting addresses into void pointers or using macros
provided by the C51 package. I prefer to use the macros provided for memory accesses because they
are easier to read. These macros make any memory segment look as if it is an array of type char or int.
Some sample absolute memory accesses are shown below.

CHAPTER 3 - USING C WITH THE 8051

Page 36

Listing 0-7

inp_byte=XBYTE[0x8500]; // read a byte from address 8500H

inp_word=XWORD[0x4000]; // read a word from address 2000H

// and 2001H

c=*((char xdata *) 0x0000); // read a byte from address

// 0000H

XBYTE[0x7500]=out_val; // write out_val to address 7500H

Absolute accesses as shown above can take place to and from any memory segment other than the
BDATA and BIT segments. The macros are be defined in the system include file "absacc.h" into your
program.

CODE Segment
The CODE segment should only be used for data which will not change, since the 8051 does not have
the capability to write to the CODE segment. Typically the CODE segment is used for lookup tables,
jump vectors, and state tables. An access into this segment will take a comparable amount of time to an
XDATA access. Objects declared in the CODE segment must be initialized at compile time, otherwise
they will not have the value you desire when you go to use them. Examples of CODE declarations are
shown below.

unsigned int code unit_id[2]=1234;

unsigned char hex2bcd[16]={

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,

0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15

};

Pointers
C51 implements generic memory pointers as a structure of three bytes. The first of these bytes is a
selector which indicates the memory space the pointer refers to. The remaining two bytes of the pointer
hold a sixteen bit offset into the memory space. In cases such as the DATA, IDATA, and PDATA
segments, only eight address bits are needed and thus part of the pointer is doing nothing but taking up
space.

To enhance the pointer support provided by C51, Keil allows the user
to specify which memory segment a given pointer will deal with.
Such a pointer is called a memory specific pointer. Part of the
advantage to a memory specific pointer is the reduced amount of
storage required (see Table 0-5). Additionally, the compiler does not
have to generate code to use the selector and determine the correct
op code for memory access. This will make your code that much
smaller and more efficient. The limitation to this, of course, is that
you must guarantee that a memory specific pointer will never be used
to access a space other than the one declared. Such an access will
fail, and may prove to be very difficult to debug.

The following example demonstrates the efficiency gained by using a memory specific pointer to move
through a string rather than using a generic pointer. The first while loop using the generic pointer takes a
total of 378 processor cycles as compared to a total of 151 processor cycles for the second while loop
which uses a memory specific pointer.

Pointer TypePointer Type SizeSize
generic pointer 3 bytes
XDATA pointer 2 bytes
CODE pointer 2 bytes
DATA pointer 1 byte
IDATA pointer 1 byte
PDATA pointer 1 byte

Table 0-5

THE FINAL WORD ON THE 8051

Page 37

Listing 0-8

 1 #include <absacc.h>

 2

 3 char *generic_ptr;

 4

 5 char data *xd_ptr;

 6

 7 char mystring[]="Test output";

 8

 9 main() {

 10 1 generic_ptr=mystring;

 11 1 while (*generic_ptr) {

 12 2 XBYTE[0x0000]=*generic_ptr;

 13 2 generic_ptr++;

 14 2 }

 15 1

 16 1 xd_ptr=mystring;

 17 1 while (*xd_ptr) {

 18 2 XBYTE[0x0000]=*xd_ptr;

 19 2 xd_ptr++;

 20 2 }

 21 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION main (BEGIN)

 ; SOURCE LINE # 9

 ; SOURCE LINE # 10

0000 750004 R MOV generic_ptr,#04H

0003 750000 R MOV generic_ptr+01H,#HIGH mystring

0006 750000 R MOV generic_ptr+02H,#LOW mystring

0009 ?C0001:

 ; SOURCE LINE # 11

0009 AB00 R MOV R3,generic_ptr

000B AA00 R MOV R2,generic_ptr+01H

000D A900 R MOV R1,generic_ptr+02H

000F 120000 E LCALL ?C_CLDPTR

0012 FF MOV R7,A

0013 6011 JZ ?C0002

 ; SOURCE LINE # 12

0015 900000 MOV DPTR,#00H

0018 F0 MOVX @DPTR,A

 ; SOURCE LINE # 13

0019 7401 MOV A,#01H

001B 2500 R ADD A,generic_ptr+02H

CHAPTER 3 - USING C WITH THE 8051

Page 38

001D F500 R MOV generic_ptr+02H,A

001F E4 CLR A

0020 3500 R ADDC A,generic_ptr+01H

0022 F500 R MOV generic_ptr+01H,A

 ; SOURCE LINE # 14

0024 80E3 SJMP ?C0001

0026 ?C0002:

 ; SOURCE LINE # 16

0026 750000 R MOV xd_ptr,#LOW mystring

0029 ?C0003:

 ; SOURCE LINE # 17

0029 A800 R MOV R0,xd_ptr

002B E6 MOV A,@R0

002C FF MOV R7,A

002D 6008 JZ ?C0005

 ; SOURCE LINE # 18

002F 900000 MOV DPTR,#00H

0032 F0 MOVX @DPTR,A

 ; SOURCE LINE # 19

0033 0500 R INC xd_ptr

 ; SOURCE LINE # 20

0035 80F2 SJMP ?C0003

 ; SOURCE LINE # 21

0037 ?C0005:

0037 22 RET

 ; FUNCTION main (END)

Anytime I can get a 2:1 improvement in execution time by being a little more careful with how I use my
pointers, I will be sure to take advantage of it.

Interrupt Routines
Most 8051 projects are interrupt driven which places emphasis on the interrupt service routines. The
C51 compiler allows you to declare and code interrupt routines completely in C (as well as using
assembly if you desire...more on that later). An interrupt procedure is declared by using the 'interrupt'
keyword with the interrupt number (0 to 31) in
the function declaration. The interrupt
numbers indicate to the compiler where in the
interrupt vector the ISRs address belongs.
The numbers directly correspond to the
enable bit number of the source in the IE
SFR. In other words, bit 0 of the IE register
enables external interrupt zero. Accordingly,
the interrupt number for external interrupt zero
is 0. Table 0-6 illustrates the correlation
between the IE bits and the interrupt numbers.

IE Bit Number and CIE Bit Number and C
Interrupt NumberInterrupt Number

Interrupt SourceInterrupt Source

0 External Interrupt 0
1 Timer 0 Overflow
2 External Interrupt 1
3 Timer 1 Overflow
4 Serial Port Interrupt
5 Timer 2 Overflow

Table 0-6

THE FINAL WORD ON THE 8051

Page 39

An interrupt routine must not take any parameters, and can have no return value. Given these
constraints, the compiler does not have to worry about use of the register bank for parameters and writes
your interrupt routine to push the accumulator, the processor status word, the B register, the data pointer
and the default registers onto the stack only if they are used in the ISR. At the end of the routine, the
compiler pops whatever registers it pushed in the processor stack at the start and inserts a RETI op code
just as you would do in assembly. The address of the ISR is placed in the interrupt vector by the
compiler. The C51 supports all five standard 8051/8052 interrupts (which are numbered 0 to 4), as well
as up to 27 more interrupt sources which may be used on later 8051 derivatives. A sample ISR is shown
below.

CHAPTER 3 - USING C WITH THE 8051

Page 40

Listing 0-9

 1 #include <reg51.h>

 2 #include <stdio.h>

 3

 4 #define RELOADVALH 0x3C

 5 #define RELOADVALL 0xB0

 6

 7 extern unsigned int tick_count;

 8

 9 void timer0(void) interrupt 1 {

 10 1 TR0=0; // stop T0 while it is reloaded

 11 1 TH0=RELOADVALH; // set T0 to overflow in 50ms

 12 1 TL0=RELOADVALL; // given a 12MHz clock

 13 1 TR0=1; // restart T0

 14 1 tick_count++; // increment a time counter

 15 1 printf("tick_count=%05u\n", tick_count);

 16 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION timer0 (BEGIN)

0000 C0E0 PUSH ACC

0002 C0F0 PUSH B

0004 C083 PUSH DPH

0006 C082 PUSH DPL

0008 C0D0 PUSH PSW

000A C000 PUSH AR0

000C C001 PUSH AR1

000E C002 PUSH AR2

0010 C003 PUSH AR3

0012 C004 PUSH AR4

0014 C005 PUSH AR5

0016 C006 PUSH AR6

0018 C007 PUSH AR7

 ; SOURCE LINE # 9

 ; SOURCE LINE # 10

001A C28C CLR TR0

 ; SOURCE LINE # 11

001C 758C3C MOV TH0,#03CH

 ; SOURCE LINE # 12

001F 758AB0 MOV TL0,#0B0H

 ; SOURCE LINE # 13

0022 D28C SETB TR0

 ; SOURCE LINE # 14

THE FINAL WORD ON THE 8051

Page 41

0024 900000 E MOV DPTR,#tick_count+01H

0027 E0 MOVX A,@DPTR

0028 04 INC A

0029 F0 MOVX @DPTR,A

002A 7006 JNZ ?C0002

002C 900000 E MOV DPTR,#tick_count

002F E0 MOVX A,@DPTR

0030 04 INC A

0031 F0 MOVX @DPTR,A

0032 ?C0002:

 ; SOURCE LINE # 15

0032 7B05 MOV R3,#05H

0034 7A00 R MOV R2,#HIGH ?SC_0

0036 7900 R MOV R1,#LOW ?SC_0

0038 900000 E MOV DPTR,#tick_count

003B E0 MOVX A,@DPTR

003C FF MOV R7,A

003D A3 INC DPTR

003E E0 MOVX A,@DPTR

003F 900000 E MOV DPTR,#?_printf?BYTE+03H

0042 CF XCH A,R7

0043 F0 MOVX @DPTR,A

0044 A3 INC DPTR

0045 EF MOV A,R7

0046 F0 MOVX @DPTR,A

0047 120000 E LCALL _printf

 ; SOURCE LINE # 16

004A D007 POP AR7

004C D006 POP AR6

004E D005 POP AR5

0050 D004 POP AR4

0052 D003 POP AR3

0054 D002 POP AR2

0056 D001 POP AR1

0058 D000 POP AR0

005A D0D0 POP PSW

005C D082 POP DPL

005E D083 POP DPH

0060 D0F0 POP B

0062 D0E0 POP ACC

0064 32 RETI

 ; FUNCTION timer0 (END)

CHAPTER 3 - USING C WITH THE 8051

Page 42

In the above example, the call to 'printf' forces the compiler to save all the registers since the call itself
uses the register bank and the non-reentrant function 'printf' uses several of the other registers. If the
function is rewritten to remove the call to 'printf' the code emitted for the ISR is reduced because less
registers will be saved to the stack.

Listing 0-10

 1 #include <reg51.h>

 2

 3 #define RELOADVALH 0x3C

 4 #define RELOADVALL 0xB0

 5

 6 extern unsigned int tick_count;

 7

 8 void timer0(void) interrupt 1 using 0 {

 9 1 TR0=0; // stop T0 while it is reloaded

 10 1 TH0=RELOADVALH; // set T0 to overflow in 50ms

 11 1 TL0=RELOADVALL; // given a 12MHz clock

 12 1 TR0=1; // restart T0

 13 1 tick_count++; // increment a time counter

 14 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION timer0 (BEGIN)

0000 C0E0 PUSH ACC

Push and pop of register bank 0 and the B register is eliminated because printf was using
the registers for parameters and using B internally.

0002 C083 PUSH DPH

0004 C082 PUSH DPL

 ; SOURCE LINE # 8

 ; SOURCE LINE # 9

0006 C28C CLR TR0

 ; SOURCE LINE # 10

0008 758C3C MOV TH0,#03CH

 ; SOURCE LINE # 11

000B 758AB0 MOV TL0,#0B0H

 ; SOURCE LINE # 12

000E D28C SETB TR0

 ; SOURCE LINE # 13

0010 900000 E MOV DPTR,#tick_count+01H

0013 E0 MOVX A,@DPTR

0014 04 INC A

0015 F0 MOVX @DPTR,A

THE FINAL WORD ON THE 8051

Page 43

0016 7006 JNZ ?C0002

0018 900000 E MOV DPTR,#tick_count

001B E0 MOVX A,@DPTR

001C 04 INC A

001D F0 MOVX @DPTR,A

001E ?C0002:

 ; SOURCE LINE # 14

001E D082 POP DPL

0020 D083 POP DPH

0022 D0E0 POP ACC

0024 32 RETI

 ; FUNCTION timer0 (END)

Specifying the ISR Register Bank
Some of the overhead associated with pushing and popping the SFRs saved by C51 can be avoided by
declaring that the ISR will use a given register bank. This is done with the 'using' keyword and a number
from 0 to 3 to indicate the register bank desired. When a register bank is specified the default register
bank will not be pushed onto the stack. This will result in a savings of 32 cycles in the ISR since each
push takes two processor cycles and each pop takes two cycles. The drawback to specifying a register
bank for you ISR is that any function called by the ISR must use this same register bank, or erroneous
parameters and return values will result. The listing below shows the sample ISR for timer 0, but this
time I have told the compiler that this ISR will use register bank 0.

CHAPTER 3 - USING C WITH THE 8051

Page 44

Listing 0-11

 1 #include <reg51.h>

 2 #include <stdio.h>

 3

 4 #define RELOADVALH 0x3C

 5 #define RELOADVALL 0xB0

 6

 7 extern unsigned int tick_count;

 8

 9 void timer0(void) interrupt 1 using 0 {

 10 1 TR0=0; // stop T0 while it is reloaded

 11 1 TH0=RELOADVALH; // set T0 to overflow in 50ms

 12 1 TL0=RELOADVALL; // given a 12MHz clock

 13 1 TR0=1; // restart T0

 14 1 tick_count++; // increment a time counter

 15 1 printf("tick_count=%05u\n", tick_count);

 16 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION timer0 (BEGIN)

0000 C0E0 PUSH ACC

0002 C0F0 PUSH B

Push and pop of register bank 0 has been eliminated because the compiler assumes that this
ISR 'owns' RB0.

0004 C083 PUSH DPH

0006 C082 PUSH DPL

0008 C0D0 PUSH PSW

000A 75D000 MOV PSW,#00H

 ; SOURCE LINE # 9

 ; SOURCE LINE # 10

000D C28C CLR TR0

 ; SOURCE LINE # 11

000F 758C3C MOV TH0,#03CH

 ; SOURCE LINE # 12

0012 758AB0 MOV TL0,#0B0H

 ; SOURCE LINE # 13

0015 D28C SETB TR0

 ; SOURCE LINE # 14

0017 900000 E MOV DPTR,#tick_count+01H

001A E0 MOVX A,@DPTR

001B 04 INC A

THE FINAL WORD ON THE 8051

Page 45

001C F0 MOVX @DPTR,A

001D 7006 JNZ ?C0002

001F 900000 E MOV DPTR,#tick_count

0022 E0 MOVX A,@DPTR

0023 04 INC A

0024 F0 MOVX @DPTR,A

0025 ?C0002:

 ; SOURCE LINE # 15

0025 7B05 MOV R3,#05H

0027 7A00 R MOV R2,#HIGH ?SC_0

0029 7900 R MOV R1,#LOW ?SC_0

002B 900000 E MOV DPTR,#tick_count

002E E0 MOVX A,@DPTR

002F FF MOV R7,A

0030 A3 INC DPTR

0031 E0 MOVX A,@DPTR

0032 900000 E MOV DPTR,#?_printf?BYTE+03H

0035 CF XCH A,R7

0036 F0 MOVX @DPTR,A

0037 A3 INC DPTR

0038 EF MOV A,R7

0039 F0 MOVX @DPTR,A

003A 120000 E LCALL _printf

 ; SOURCE LINE # 16

003D D0D0 POP PSW

003F D082 POP DPL

0041 D083 POP DPH

0043 D0F0 POP B

0045 D0E0 POP ACC

0047 32 RETI

 ; FUNCTION timer0 (END)

Reentrant Functions
Due to the limited amount of internal stack space available to the 8051, the C51 package does not
implement a calling stack in the sense that we are used to on larger systems. Normally, each function
call in a C program causes a "frame" to be pushed onto a stack which contains the function's parameters
and allocation for the locals of the current invocation of the function. For efficiency's sake, the C51
compiler does not provide such a stack. Instead, a "compiled stack" is used. In this block of memory, a
function is given space for its local variables and the function is coded by the compiler to assume that its
locals are at a fixed address in the compiled stack. Thus, recursive calls to a function will cause the data
in the local variables to be corrupted.

In certain real time applications, non-reentrancy is not acceptable because a function call may be
interrupted by an ISR which in turn calls that same function. For cases like this, C51 allows a function to
be declared as reentrant. A reentrant function has a stack implemented in the classic sense. It can be
called recursively or called by multiple processes without fear of locals being clobbered because a
separate copy of the locals exists for each function invocation. Because the stack is simulated, reentrant
functions are often larger and slower than their normal counterparts. Thus, you should use them with

CHAPTER 3 - USING C WITH THE 8051

Page 46

care. The simulated stack also requires you to eliminate any bit parameters, locals and return values
from reentrant functions.

Things to do and things to avoid with Keil C
The Keil compiler has the capability to take your C source code and produce highly optimized object
code from it. However, there are things that you, as the designer, can do to help the compiler generate
better code. This section will discuss some of these tips and tricks to help you get the most of using C on
the 8051.

Downsizing Your Variables
One of the most basic things you can do to improve your code is pay careful attention to the size of your
variables. For anyone used to coding in C on a machine such as a mainframe or a PC, it is very
commonplace to declare things like loop counters as integers, even for variables whose values will never
exceed 255. On an eight bit machine like the 8051, wide use of data types whose size is greater than
eight bits will be a large waste of processing power andf memory. You must carefully consider the
potential range of values for any variable that you declare, and then choose the smallest type that will
meet these needs. Obviously, the most preferred type for variables will be unsigned char since it only
uses one byte.

Use Unsigned Types
At this point, you may be wondering why I specified the preferred type above to be unsigned char instead
of char. The reasoning behind this is that the 8051 does not support signed arithmetic, and the extra
code required by a signed value as opposed to an unsigned value will take away from your overall
processor resources. Thus, in addition to choosing variable types according to range of value, you must
also consider if the variable will be used for any operation which will require negative numbers. If not,
then make sure that you specify that the variable is to be unsigned. If you can eliminate negative
numbers from a function or entirely from your application, your project will be that much leaner for it.

Stay Away from Floating Point
Along the same vein, you should avoid floating point math like the plague. Performing floating point
operations on 32 bit values with an eight bit controller is like mowing your lawn with a pair of hedge
clippers. You may be able to do it, but it will waste a hell of a lot of time. Any time you are using floating
point in an application you should ask yourself if it is absolutely necessary. Many times, floating point
numbers can be eliminated by promoting all the values by a couple of orders of magnitude and using
integer arithmetic. You will be much better off dealing with ints and longs than you will be with doubles
and floats. Your code will execute faster, and the floating point routines will not be linked into your
application. Additionally, if you must use floating point, you should consider using an 8051 derivative
which is optimized for math operations such as the Siemens 80517, 80537 or the Dallas Semiconductor
80320.

There may be times when you are forced to incorporate the use of floating point numbers into your
system. You have already read of the disadvantages in code size and speed you face. Additionally, you
should be aware that if you use floating point math in a routine which can be interrupted you must either
ensure that the interrupting routine does not use floating point math anywhere in its calling tree, or save
the state of the floating point system at the beginning of the ISR using 'fpsave' put it back to its original
state at the end of the ISR using 'fprestore'. Another approach is to wrap your calls to floating point
routines such as sin() with a function which disables interrupts before the call to the math function and
reenables them after the call.

THE FINAL WORD ON THE 8051

Page 47

Listing 0-12

#include <math.h>

void timer0_isr(void) interrupt 1 {

 struct FPBUF fpstate;

 ... // any initialization code or

// non-floating point code

 fpsave(&fpstate); // save floating point system

// state

 ... // any ISR code, including ALL

// floating point code

 fprestore(&fpstate); // restore floating point

// system state

... // any non-floating point

// ISR code

}

float my_sin(float arg) {

 float retval;

 bit old_ea;

 old_ea=EA; // save current interrupt state

 EA=0; // kill interrupts

 retval=sin(arg); // make the floating point call

 EA=old_ea; // put the interrupt state back

 return retval;

}

If you must use floating point in your program, then you should go to every effort to determine the maximum
precision that you need. Once you have computed the maxium number of bits of precision needed in your floating
point computations, enter the number in the workbench compiler options dialog box under the “Bits to round for
float compare” control. This will allow the floating point routines to limit the amount of work they do to only the
degree of precision that is meaningful to your system.

Make Use of bit Variables
When you are using flags which will only contain a one or a zero, use the bit type instead of an unsigned
char. This will help make your memory reserves go farther, since you will not be wasting seven bits.
Additionally, bit variables are always in internal RAM and therefore will be accessed in one cycle.

CHAPTER 3 - USING C WITH THE 8051

Page 48

Use Locals instead of Globals
Variables which are declared to be global data will be less efficient than use of local variables. The
reason for this is that the compiler will attempt to assign any local variables to internal registers. In
comparison, global data may or may not be in internal data depending on your declaration. In cases
where the globals are assigned to XDATA by default (such as large memory model programs) you have
given up speedy access. Another reason to avoid globals is that you have to coordinate access to such
variables between processes in your system. This will become a problem in interrupt systems or
multitasking systems where it is possible that more than one process will be attempting to use the global.
If you can avoid the globals and use locals, the compiler can manage that most efficiently for you.

Use Internal Memory for Variables
Globals and locals can be forced into any memory area you wish. Given the previous discussions of the
tradeoffs between the segments, it shoudl be apparent that you can optimize the speed of your program
by placing the most frequently accessed variables in internal RAM. Additionally, your code will be
smaller since it takes less instructions and setup to access variables in internal RAM than it does to
access variables in external RAM. In terms of speeding up your program, you will want to fill the
memory segments in the following order: DATA, IDATA, PDATA, XDATA. Again, be careful to leave
enough space in the DATA segment for the processor's internal stack.

Use Memory Specific Pointers
If your program is using pointers for any sort of operations, you may want to examine their usage and
confine them to a specific memory area such as the XDATA or CODE space. If you can do this, you can
then use memory specific pointers. As discussed previously, the memory specific pointers will not
require a selector and code which uses them will be tighter because the compiler can write it to assume a
reference to a given memory segment rather than having to determine to which segment the pointer
aims.

Use Intrinsics
For simple functions such as bit-wise rotation of variables, the compiler provides you with intrinsic
functions which can be called. Many of the intrinsics correspond directly to assembler instructions while
others are more involved and provide ANSI compatibility. All of the intrinsic functions are reentrant, and
thus can be safely called from anywhere in your code.

For rotation operations on a single byte the intrinsic functions _crol_ (rotate left) and _cror_ (rotate right)
directly correspond to the assembly instructions 'RL A' and 'RR A.' If you wish to perform a bit-wise
rotation on larger objects such as an integer or a long, the intrinsic will be more complicated and will
therefore take longer. These rotations can be called using the _irol_, _iror_ intrinsics for integers and
lrol, _lror_ intrinsics for longs.

The "jump and clear bit if set" (JBC) op code from Chapter 2 is also implemented as an intrinsic for use
in C. It is called by _testbit_. This intrinsic returns true if the parameter bit was set and false otherwise.
This is frequently useful for checking flags such as RI, TI, or the timer overflow flags, and results in more
readable C code. The function directly translates to a JBC instruction.

THE FINAL WORD ON THE 8051

Page 49

Listing 0-13

#include <instrins.h>

void serial_intr(void) interrupt 4 {

 if (!_testbit_(TI)) { // if this is a transmit interrupt

 P0=1; // toggle P0.0

 nop(); // wait one cycle

 P0=0;

 ... // do any other TI things...

 }

 if (!_testbit_(RI)) {

 test=_cror_(SBUF, 1); // rotate the value in SBUF

// right one bit

 ... // do any other RI things

 }

}

Use Macros Instead of Functions
In addition to using intrinsics, you can also make your code more readable by implementing small
operations such as a read from a latch or code to enable a certain circuit as macros. Instead of
duplicating one or two lines of code all over the place, you can isolate duplicate code into a macro which
will then look like a function call. The compiler will place the code inline when it emits object code and
will not generate a call. The code will be much easier to read and maintain since the macro can be given
a name which describes its operation. When this operation needs to change because of some system
change or hardware flaw (both are inevitable in most projects), you only need to change the software in
one place, rather than hunting through your code and making the same change in many places.

Listing 0-14

#define led_on() {\

led_state=LED_ON; \

XBYTE[LED_CNTRL] = 0x01;}

#define led_off() {\

led_state=LED_OFF; \

XBYTE[LED_CNTRL] = 0x00;}

#define checkvalue(val) \

((val < MINVAL || val > MAXVAL) ? 0 : 1)

Macros will also make code which must access many levels into structures or arrays easier to deal with.
Oftentimes, you can implement complex accesses which occur frequently as macros to simplify your job
of typing in the code, and later, reading and maintain the code.

CHAPTER 3 - USING C WITH THE 8051

Page 50

Memory Models
The C51 package implements three basic memory models for storage of variables, parameter passing,
and stack for reentrant functions. You should always use the small memory model. There are very few
systems which require use of other memory models such as systems with large reentrant stacks. In
general, a system which uses less than the amount of internal RAM available will always be compiled
with the small memory model. In this model, the DATA segment is the default segment for location of
any global and local variables. All parameter passing occurs in the DATA segment as well and if any
functions are declared to be reentrant, the compiler will attempt to implement the invocation stack in
internal RAM. The advantage to this model is that all data will be accessed as quickly as possible.
However, the disadvantage to this is that you will only have 120 bytes to work with (128 bytes total space
minus 8 bytes for the default register bank). You will also have to allocate some of this space to the
8051's calling stack. The space allocated must be equal to the deepest branch of your calling tree at the
worst case nesting of interrupts.

If your system has 256 bytes of external RAM or less, you can use the compact memory model. By
default, variables will be allocated to the PDATA segment unless you declare them to be in another
memory segment. This memory model will expand the amount of RAM you can use, and will still
provide improvement in access time over allocating variables out of the XDATA memory segment.
Parameters to variables will be passed via internal RAM unless you have more parameters than can be
passed in one register bank, and thus function invocations will still be quick. In addition to the rules
which applied to the DATA segment for the small memory model, the compact memory model allows for
allocation of the 256 bytes of PDATA to user variables. The PDATA segment will be accessed indirectly
via R0 and R1 and thus accesses will be somewhat shorter than they are for XDATA.

In the large memory model, all variables default to the XDATA segment. Keil C will attempt to pass
parameters in internal RAM using the default register bank. The rules for the number of parameters
which can be passed in the register bank are the same as they are for the compact memory model. If
any functions are declared as reentrant, the invocation stack will be allocated from the XDATA segment.
Access to XDATA variables will be the slowest, and thus the large memory model will require good
justification for use and careful analysis of variable placement during use to assure that your systems
average access time to its data is optimized.

Mixed Memory Models
The Keil compiler allows you to mix and match the memory models within a single program to help you
optimize your use of memory. I have found this feature to be most useful in large memory model
systems. In the case of a large memory model program, I will declare functions which must deliver the
utmost in speed as small memory model segments. This forces the compiler to generate code for the
function which places its locals in internal RAM and guarantees that all parameters are passed via
internal RAM. While this may not seem like a huge gain in performance, when one compares the size of
the code generated for a function which must frequently access its locals which are in XDATA to the size
of the code for the same function using locals in DATA memory, you will agree that it is worth the effort
to mix the models this way.

Just as you can declare functions to be small within a program which is compiled as large, you can
declare a small program's functions to be large or compact. Typically this is done with functions that are
using a large amount of local storage such as a buffer or computation table. In this case, the function
can be compiled as compact or large, and the locals will be allocated out of an external RAM. However,
you can also compile the function using the small memory model but force the large local variables to
the XDATA segment in their definition.

THE FINAL WORD ON THE 8051

Page 51

Run time Library
The run time routines provided with the Keil C51 package offer both high performance and small code
size. You will have no problem using these routines, and in most cases will have a difficult time writing a
better routine yourself. The main thing to be warned about is that some of the functions in the library are
not reentrant. Thus, if you call such a function and are then interrupted by an ISR that calls the same
function, the first call will invariably
generate unexpected results and will be a
bug that is very difficult to find. Table 0-7
shows the library functions which are not
reentrant. My suggestion for dealing with
these routines is to block any interrupt that
can call the library routine you are about to
call during its execution.

Dynamic Memory Allocation
The Keil C compiler includes the capability
to perform dynamic memory allocation via
the standard C functions ‘malloc’ and
‘free’. For most applications, it is better to
determine how much memory will be
needed and perform as much of the
allocation at compile time as is possible.
However, for applications which utilize
dynamic structures such as trees and linked lists, this is not usually practical. For these situations, the
Keil run time routines provide the necessary support.

The dynamic allocation routines given require that the user declare a byte array to be used as the heap.
Selection of the size of this array will depend upon the estimated usage of dynamic memory by the
application. The array declared for the heap must reside in the XDATA segment since the library
routines use memory specific pointers to access this memory. Besides, it does not make much sense to
dynamically allocate memory out of the DATA segment, since there is such a small amount of memory
there to work with.

Once the XDATA memory block has been declared, a pointer to this block and its size must be given to
an initialization routine (init_mempool) which will set some internally owned variables and prepare the
block for use as the heap as well as initializing allocatable memory. Once this function is complete, the
dynamic memory allocation routines can be called as they would be in any other system. Support
routines for dynamic memory allocation include malloc (which takes an unsigned integer size argument
and returns a pointer to the block), calloc (which takes an unsigned integer to indicate the number of
items, and an unsigned integer size argument and returns a pointer to the block), realloc (which takes a
pointer to a block and an unsigned integer argument indicating the new size and returns a pointer to the
object with a new size specified by the size argument), and free (which takes a pointer to block and adds
it back into the heap as unallocated memory). All functions which return a pointer to a block of memory
will return NULL if the allocation operation requested fails.

An example of using the dynamic memory allocation routines is given in Listing 0-15.

Listing 0-15

#include <stdio.h>

#include <stdlib.h>

// this code uses memory specific pointers for improved efficiency

typedef struct entry_str { // define a queue entry type

 struct entry_str xdata *next; // pointer to the next element

gets atof atan2
printf atol cosh
sprintf atoi sinh
scanf exp tanh
sscanf log calloc
memccpy log10 free
strcat sqrt init_mempool
strncat srand malloc
strncmp cos realloc
strncpy sin ceil
strspn tan floor
strcspn acos modf
strpbrk asin pow
strrpbrk atan

Table 0-7

CHAPTER 3 - USING C WITH THE 8051

Page 52

 char text[33]; // string to place in queue

} entry;

void init_queue(void);

void insert_queue(entry xdata *);

void display_queue(entry xdata *);

void free_queue(void);

entry xdata *pop_queue(void);

entry xdata *root=NULL; // set the queue to empty

void main(void) {

 entry xdata *newptr;

 init_queue(); // set up the queue

 ...

 newptr=malloc(sizeof(entry)); // allocate a queue entry

 sprintf(newptr->text, "entry number one");

 insert_queue(newptr); // put it in the queue

 ...

 newptr=malloc(sizeof(entry));

 sprintf(newptr->text, "entry number two");

 insert_queue(newptr); // insert another entry in

// the queue

 ...

 display_queue(root); // traverse the queue

 ...

 newptr=pop_queue(); // pop the leading entry

 printf("%s\n", newptr->text);

 free(newptr); // deallocate it

 ...

 free_queue(); // free the entire queue

}

void init_queue(void) {

 static unsigned char memblk[1000]; // this block of memory

// will be used as the heap

 init_mempool(memblk, sizeof(memblk));// run the routine to set

// up the heap

}

void insert_queue(entry xdata *ptr) { // add an entry to the tail

entry xdata *fptr, *tptr;

 if (root==NULL) {

THE FINAL WORD ON THE 8051

Page 53

 root=ptr;

 } else {

 fptr=tptr=root;

 while (fptr!=NULL) {

 tptr=fptr;

 fptr=fptr->next;

 }

 tptr->next=ptr;

 }

 ptr->next=NULL;

}

void display_queue(entry xdata *ptr) {// traverse the queue

 entry xdata *fptr;

 fptr=ptr;

 while (fptr!=NULL) {

 printf("%s\n", fptr->text);

 fptr=fptr->next;

 }

}

void free_queue(void) { // free all queue entries

 entry xdata *temp;

 while (root!=NULL) {

 temp=root;

 root=root->next;

 free(temp);

 }

}

entry xdata *pop_queue(void) { // remove the top queue entry

 entry xdata *temp;

 if (root==NULL) {

 return NULL;

 }

 temp=root;

 root=root->next;

 temp->next=NULL;

 return temp;

}

Note that the usage of the dynamic memory allocation routines looks just like the usage of these same
routines in ANSI C. Thus, there should be no difficulty in learning to use the Keil functions in your code.

CHAPTER 3 - USING C WITH THE 8051

Page 54

Conclusion
Use of C on the 8051 will make development of your project speedier and more enjoyable. You will find
that using C does not inhibit your ability to control the hardware at a low level and does not add a high
amount of unwanted overhead. If you follow good design practices and the tips given in this chapter, you
will have an efficient system with a fair amount of reusable code. Additionally, you will find that your
project is easier to maintain over the long haul.

THE FINAL WORD ON THE 8051

Page 55

- Using Software to Complement the Hardware

Introduction
This chapter will present several ways in which you can improve your overall system by using software
techniques. Through these techniques you will see how to easily implement a user interface, time
system events, and eliminate hardware components using software. A simple clock based on the 8051
processor will be developed as an example of these concepts. The clock will display the time of day
using a standard 2 by 16 character LCD display which will be mapped to port one. A simple interface of
two buttons will allow the user to set the time of day indicated by the clock. Pressing the first button will
activate set mode and place the cursor under the current field. Pressing the second button during set
mode will increment the selected field. If no buttons are pressed during set mode, the clock will return to
normal mode in 15 seconds.

Since one of the goals of the clock project is to produce it as inexpensively as possible, the processor will
be used to emulate a real time clock chip and the LCD panel will be directly connected to port one of the
processor. By having software perform the function of the RTC and directly controlling the interface lines
of the LCD panel, the need for an address decoder, and an RTC chip is eliminated. To further reduce
parts count, the clock will use only internal memory, eliminating the need for an external RAM. To do
this, the project must use no more than 128 bytes of RAM for the stack space and all necessary
variables.

Once the software has
been designed the internal
RAM usage will be
analyzed to ensure that the
space available there will
be sufficient. The system
as described above is
shown in Figure 0-1. This
project will also use an
8051 with internal EPROM
to eliminate the external
EPROM and the 74373
that is used to interface to
it. However, ports zero
and two will be left open in
case the system memory
will later have to be
expanded to include an
external EPROM.

For comparison, the
following block diagram of
the system in Figure 0-2
assumes that a
conventional design
approach is taken to the
system architecture. This
design puts the display
and the RTC chip in the system memory map. These changes require that an address decoder be
inserted into the system as well as a NAND gate and an inverter. Additionally, an external SRAM has
been designed in. Note the difference in parts count between the two block diagrams.

Figure 0-1 - The Clock Circuit

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 56

Using the Small Memory Model
To accomplish the elimination of the static RAM, the clock project will have to use the small memory
model. It will be limited to 128 bytes of total RAM usage including the processor's internal stack, the
compiled stack, and all variables used by the program and the library routines that get invoked.

Because the linker should have the ability to optimize RAM usage by overlaying the locations, as many
of the variables as possible be locals. Using overlay analysis, the linker will decide which variables need
to be allocated together and which ones do not exist at the same time. This analysis will tell L51 how to
use the memory locations. Many times, one memory location will be used to hold different locals
depending on the calling tree. Therefore, it is beneficial to have most variables be local to the function
which uses them, if possible. There will naturally be a couple of variables that will have to be globals,
such as some "in use" flags, and a structure which keeps track of the time of day. It is possible to make
such variables static to a given function, but the compiler will implement these the same as it would a
global declaration.

Figure 0-2 - The Extended Clock Circuit

To help minimize RAM usage, calls to the run time library routines will be kept to a minimum. Many of
the larger routines use a fair amount of RAM (when one considers that the clock only has 128 bytes) and
may be more general in scope and function than is required. One such function to keep a close eye on
is the ‘printf’ function. Initially, the clock will use the ‘printf’ function to format and output a string for the
display. The ‘printf’ function includes a lot of formatting capabilities that the clock won't need or use.
Once the initial version of the project is completed, it will be run with the standard ‘printf’ and will be

THE FINAL WORD ON THE 8051

Page 57

analyzed to determine if it will be worth it to write a complete replacement for this function. Initially, it will
be a lot simpler to use printf and hope that it does not consume too many system resources.

Using the LCD panel
The LCD panel chosen for the clock project is a Stanley GMD16202 display. It has 2 rows of 16
characters each. The interface to this display is simple; it has a small set of commands as shown in
Table 0-1. Upon power on, the display must be put through an initialization routine in which it is told the
width of its data bus, the number of lines it has, its entry mode, etc. In between each command, the
software must sample the display's status register so it can determine when the display is ready for the
next command. The display typically takes about 40 microseconds to execute each command, although
some may take as long as 1.64 milliseconds to execute.

InstructionInstruction DescriptionDescription RSRS R/R/
WW

D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 D1D1 D0D0

Clear display Clears entire display and sets
DD RAM address 0 in address
counter

0 0 0 0 0 0 0 0 0 1

Return home Sets DD RAM address 0 in
address counter. Returns
display from shifted to original
position. DD RAM contents
remain unchanged.

0 0 0 0 0 0 0 0 1 *

Entry mode set Sets cursor move direction (I/D)
and specifies shift of display (S).
These operations are performed
during data write and data read.

0 0 0 0 0 0 0 1 I/D S

Display on/off Sets on/off of entire display (D),
cursor on/off (C), and blink of
cursor position character (B).

0 0 0 0 0 0 1 D C B

Cursor/display
shift

Moves cursor and shifts display
without changing DD RAM
contents.

0 0 0 0 0 1 S/C R/L * *

Function set Sets interface data length (DL),
number of display lines (N), and
character font (F).

0 0 0 0 1 DL N F * *

Set CG RAM
address

Sets CG RAM address. CG
RAM data are sent and received
after this setting.

0 0 0 1 ACG

Set DD RAM
address

Sets DD RAM address. DD
RAM data are sent and received
after this setting.

0 0 1 ADD

Read busy flag
and address

Reads busy flag (BF) indicating
internal operation and reads
address counter contents.

0 1 BF AC

Write data to
CG of DD RAM

Writes data into DD RAM or CG
RAM.

1 0 Write data

Read data from
CG or DD RAM

Reads data from DD RAM or CG
RAM.

1 1 Read data

I/D: 1 = Increment, 0 = Decrement
S: 1 = Accompanies display shift
S/C: 1 = Display shift, 0 = Cursor move
R/L: 1 = Shift to the right, 0 = Shift to the left
DL: 1 = 8 bits, 0 =4 bits
N: 1 = 2 lines, 0 = 1 line
F: 1 = 5 x 10 dots, 0 = 5 x 7 dots
BF: 1 = Internally operating, 0 = Ready for next instruction

Table 0-1

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 58

Interfacing to the LCD Panel
One of the main design goals of the clock project is to eliminate as many parts as possible in an effort to
reduce overall cost of the project. This approach is strongly evident in the interface to the LCD panel. In
this case, the panel has an 8 bit 'bus' set up between itself and port 1 of the 8051. The software will be
responsible for correctly controlling the display and generating the correct sequence of enable signals to
latch data in and out of the display. In a typical system, the LCD panel would be interfaced via the
8051’s bus and the software would have to do nothing but an XBYTE[] call to access the display.
However, by shifting some of the work into the software, the clock will eliminate an address decoder and
several support parts while trading off system speed. Since the software will now have to perform more
work to move data between the 8051 and the LCD panel, the code size and the execution time will
naturally increase. In the clock project, there will be plenty of spare EPROM space left over, so the
increased amount of executable code will not be an issue. The increase in execution time will also not
be an issue as will be seen later when the performance of the system is analyzed.

The low level I/O
routines for the
display are simple
to write once one
understands the
signals and timing
required by the
LCD panel.
Examining the
data sheets for the
panel reveals that
there are only
three basic
functions required
of the software:
write a command
to the display,
write the next
character to the
display, and read
the status register
of the display.
The timing
relationships for
these operations is
shown below in
Figure 0-3 and
Figure 0-4.

Since the display
panel will accept
long delays in the
relationship of the
above signals, it
will be safe to
have these signals go active or inactive on a microsecond type time base instead of the nanosecond
type time base we would see in the system bus. Given this, the display I/O functions simply follow the
timing diagrams shown above to perform their operation with the display.

Figure 0-3 - LCD Read

Figure 0-4 - LCD Write

THE FINAL WORD ON THE 8051

Page 59

Listing 0-1

void disp_write(unsigned char value) {

 DISPDATA=value; // latch the data

 REGSEL=1; // select the data register

 RDWR=0; // select write mode

 ENABLE=1; // latch the data into the

// LCD panel

 ENABLE=0;

}

The responsibility of the ‘disp_write’ function is to send the next character to the LCD panel for
displaying. It enforces the above signal relationships and returns to the caller. It is the caller's
responsibility to check if the display is busy before sending the next character or command to the
display.

Listing 0-2

void disp_cmd(unsigned char cmd) {

 DISPDATA=cmd; // latch the command

 REGSEL=0; // select the command register

 RDWR=0; // select write mode

 ENABLE=1; // latch the command into the

// LCD panel

 ENABLE=0;

 TH1=0; // start a timer for 85ms

 TL1=0;

 TF1=0;

 TR1=1;

 while (!TF1 && disp_read() & DISP_BUSY);// wait for the display

// finish the command

 TR1=0;

}

The ‘disp_cmd’ function enforces the same timing relationships as the ‘disp_write’ routine. However, the
‘disp_cmd’ routine will not return until the display panel is ready for the next command. There is no time-
out used for waiting for the display panel in this project because if the display fails, the entire product is
no good anyway!

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 60

 Listing 0-3

unsigned char disp_read(void) {

 unsigned char value;

 DISPDATA=0xFF; // set the port for all inputs

 REGSEL=0; // select the command register

 RDWR=1; // select read mode

 ENABLE=1; // enable the LCD output

 value=DISPDATA; // read in the data

 ENABLE=0; // disable the LCD output

 return(value);

}

The job of the ‘disp_read’ routine is to latch in the value currently held in the status register of the display
panel. Again, the code enforces the signal timing relationships shown above and reads P1 at the correct
time. The value read is saved and returned as the result of the function. Listing 0-3shows this function.

As you can see, it is a simple matter to control the display directly from the port of the processor instead
of using the system bus. The drawback is that it will take longer to access the display using this method
than it would to access it through the bus. Additionally, the amount of code required for this method is
larger than the amount of code it takes to interface to the display via the system bus. These things must
be traded off with decreased parts count and product cost in the long run to determine which approach
will be better suited to your application.

Writing Data to the Display
Once the initialization sequence has been executed, the display is ready for use. To write a character to
the display is a simple matter. The display is told what address it should be reading characters for, and
the character is then sent to the display. The display will automatically increment the address to the next
character cell, so that every character does not need to be preceded by an address specifier.

To properly display messages and interact with the user, the clock project will need a function that is
capable of performing the tasks listed above and perhaps clearing the display panel on command. The
‘putchar’ function will be redefined to output characters to the LCD panel. As such it must understand
how to write a character to the display using the low level I/O routines defined above. In addition to
writing its argument to the LCD panel, a couple of other changes have been made to ‘putchar’. When
the routine sees character 255, it issues a command to the display to clear itself and return to the home
position. Additionally, ‘putchar’ keeps track of the number of characters written to the display since the
last home command so that it knows when it should start writing characters on the second line of the
display. Listing 0-4 shows the ‘putchar’ routine as it will be used in this project.

Listing 0-4

char putchar(char c) {

 static unsigned char flag=0;

 if (!flag || c==255) { // check if the display

 // should be moved to home

 disp_cmd(DISP_HOME);

 flag=0;

 if (c==255) {

 return c;

 }

THE FINAL WORD ON THE 8051

Page 61

 }

 if (flag==16) { // check if its time to use

 // the next display line

 disp_cmd(DISP_POS | DISP_LINE2); // move the display to ln 2

 }

 disp_write(c); // write the character to

// the display

 while (disp_read() & DISP_BUSY); // wait for the display

 flag++; // increment the line flag

 if (flag>=32) { flag=0; } // when the whole display is

 // written, clear it

 return(c); // for compatibility

}

As you can see, the replacement for the ‘putchar’ routine ends up to be fairly simple. It calls some low-
level I/O routines written to pass data back and forth with the display, but other than that there is no great
trick to it. If it is successful, ‘putchar’ returns the character it was passed. In this case, it is assumed that
the display is there and functional, and therefore the character that was written is always returned.

Customizing 'printf' to suit your needs
The C51 run time library support includes a fully functioning ‘printf’ routine. The ‘printf’ function formats
strings and outputs them to the standard output device. In the case of a PC this would be your display, in
the case of the 8051 it is the serial port. However, in this project, there is only a display. Internally, the
‘printf’ function calls putchar to output the string character by character. Therefore, by redefining
‘putchar’, such as has already been done above, the output from ‘printf’ can be redirected in any manner
needed. When the project is linked together, the linker will use the ‘putchar’ routine in the clock source
code, instead of the one in the run time library. The following function will be responsible for calling
‘printf’ to format the time string and send it to the display panel.

Listing 0-5

void disp_time(void) {

 // use the holder to display the current time.

 // note that the holder use flag is not cleared until we

 // are finished with the holder's contents. this will

 // prevent the contents from changing in the middle of use

 printf("\xFFTIME OF DAY IS: %B02u:%B02u:%B02u ",

timeholder.hour, timeholder.min, timeholder.sec);

 disp_update=0; // clear the display update flag

}

Using the Timer/Counters as a System Tick
Many embedded systems, particularly those which have small size or low cost as a goal do not have
parts such as real time clocks or multivibrators to provide any sort of timing tick to them. Yet, many of
these same systems have tasks which must occur on a periodic time schedule or in a specific amount of
time from some system event. These tasks may vary from controlling a display which must present new
data at a rate a human can deal with to polling a certain input at a given frequency. Many times, the
person designing the system will use a timing loop to perform all the system timing. This loop usually
consists of a given number of cycles which will cause the processor to waste one second, for example.
The drawback to such a system is that the system often ends up having several of these loops to allow

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 62

for different time delays needed by the system. Additionally, a lot of processor time is wasted simply
executing NOP and DJNZ instructions. In situations where the embedded system must run off a battery,
this will severely limit the life of the battery which is powering the system.

A much better approach is to dedicate one of the on board timers as a system tick generator. The timer
is reloaded with a value that will cause an overflow interrupt in a given amount of time, for example 50
milliseconds. An interrupt service routine is then written which maintains the timer and reloads it for the
next tick as well as dispatching any scheduled events and executing any processes that should occur.
The advantages to this sort of a system are manifold. In the first place, the processor no longer has to
execute timing loops. It can now spend any time between tick interrupts in idle mode or executing
background type tasks. Secondly, all the control for the timing becomes centrally located in one ISR.
Therefore, if the crystal speed changes or if the resolution of the tick needs to be changed, the software
only has to change in one place in the code. Thirdly, the entire timing code can be written in C. If you
desire, you can find out the exact code delay from the time the timer overflows to the time your ISR
reloads the timer and restarts it by examining the assembly code emitted by the compiler. The
computed code delay can then be taken into account when you calculate the reload value for the timer.

Any embedded system I have written that requires any sort of systematic timing but does not have an
external tick interrupt has used this approach to system timing. This section will show you how to
develop a tick which occurs every 50 milliseconds. This routine will later be put to use in the clock
project. When writing a tick routine for the 8051, the first thing you must know is your required
resolution. If the fastest you must perform any task is once every 3 milliseconds, then pick this time to
be your tick. Things that must occur at much slower rates can simply divide down the ticks to obtain the
correct resolution. If this method prevents you from accurately timing the slow events, then choose the
lowest common denominator between the fastest task and the other tasks and make that your tick rate.
If you find that your system times are completely incompatible, you may want to consider using two
timers for system ticks and dividing the work between them.

Once you have determined the resolution of your system tick, you must then figure out the timer reload
value that will generate a tick at the desired frequency. To do this, you must take your oscillator
frequency and use it to obtain the time it takes for each processor cycle since the timer will be counting
these cycles. Assuming that you want to generate a 50 millisecond tick, and that your system is running
at 12 MHz, you get the following answers. First, divide the 12MHz by 12 to obtain the instruction cycle
frequency. Doing this yields 1MHz. Inverting this number gives you 1 microsecond per instruction cycle.

Now that you have this number, you must calculate the number of instruction cycles per system tick. In
this case, the tick is to be every 50ms and the instruction cycle takes 1µs. This means that it will take
50000 instruction cycles to obtain a tick rate of 50ms. Since the timer counts upward from 0 to 10000
hex, you must subtract the 50000 cycles from 65536 (10000 hex) to get the initial value for the timer.
Performing this subtraction yields a result of 15536 (3CB0) for the reload value. If you do not care about
losing a few microseconds every tick, you can simply insert this value into your ISR and be done with
the timing. For right now, that is how the example will be coded. Later, this timing error will be
corrected.

Now that the reload value is known, the skeleton tick ISR can be written. In the following example, timer
0 is used as the system tick timer which leaves timer 1 to function as the baud rate divisor for the on
board UART or as any other sort of timing/counting function required.

THE FINAL WORD ON THE 8051

Page 63

Listing 0-6

#define RELOAD_HIGH 0x3C

#define RELOAD_LOW 0xB0

void system_tick(void) interrupt 1 {

 TR0=0; // temporarily stop timer 0

 TH0=RELOAD_HIGH; // set the reload value

 TL0=RELOAD_LOW;

 TR0=1; // restart the timer

 // perform system tick operations here.

}

The above routine will serve as the basic structure for this ISR. Once the timer is reset and sent on its
way, the ISR performs system tick operations such as maintenance of tick counters, execution of events,
and setting of flags. You must ensure that these operations do not take longer than the tick rate, or you
will find yourself losing ticks. Later, this section will discuss ways to handle this situation.

Once you have gotten to this point, you have a routine to which you can add tick counters and such as
need be. You can typically use this as an easy way to force the system to take some action a specified
amount of ticks later. This is done by setting a variable to the number of ticks you wish to delay. This
global variable will be decremented by the tick routine. When it has a value of zero, the action
associated with this variable will be taken. For example, if you have an LED attached to a pin you have
called ‘LED’ that you want to stay on for two seconds and then turn off, at the point you enable the LED
set the associated tick counter to 40 (40 * 50ms = 2 s). The code in the tick routine will look like this:

if (led_timer) { // if the LED timer is active

led_timer--; // decrement its count

 if (!led_timer) { // if the LED on time has

// expired...

 LED=OFF; // turn off the LED

 }

}

While the above segment of code may seem simple, it will serve the purpose for most embedded
systems. In cases where more complex functions must be performed, the code can be placed in a
function and then called from the tick routine. All system functions that use the tick can be placed in this
ISR in sequential fashion. Thus, after one timer is checked, the ISR will continue to check the next timer
and perform the appropriate functions until it has completed the routine. Any timers which share a
common rate of division of the tick can be placed in an area that is only executed when the tick has been
divided by a specific amount.

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 64

Suppose that you needed to perform several actions on at resolutions which are never less than one
second, and that you are using the tick routine shown above. In this case, you maintain a counter (most
likely in the DATA segment) that divides the ticks for you and only look at the timers which are based on
seconds when the dividing counter reaches zero. This will save the system from wasting a lot of time
looking at counters which do not require 50ms resolution.

second_cnt--; // decrement the tick divisor

if (!second_cnt) { // if one second has passed...

 ... // check all second based timers

 second_cnt=20; // reset the tick divisor to

// one second

}

You must pay careful attention to the amount of time your ISR is taking to execute. If the execution time
becomes greater than the time between ticks you will find that you being to lose system ticks, and your
timing will be off. In this situation, you can typically take things out of the tick routine and execute them
from the main loop. The tick routine tells the main loop that it must execute the associated actions by
setting a flag. The actions which are removed from the tick routine must be ones that you are willing to
give up some accuracy on. The actions that must still have the accuracy should stay in the ISR where
their frequency of execution can be assured.

This tick routine developed above will serve as the engine of the clock. In here, it will keep track of the
time of day and set a request flag when the display panel must be updated. A part of the main loop (or
background process) will monitor this flag and update the display with the new time of day whenever it is
set. Sections of the timer 0 interrupt will be responsible for timing the switch delays to make the user
interface more usable.

Using the system tick for the user interface
The user interface for this product is relatively simple, but this does not mean that the concepts used
here can not be applied to much larger systems. The SET switch is used to activate the set mode in
which the user can change the current time of day in the clock. Once the clock is in set mode, the SET
switch will increment the field under which the cursor is. The SELECT switch will advance the cursor to
the next position. Once the cursor is advanced past the final field (seconds) the set mode is ended.
Each time SET or SELECT is active, the set mode timer is reset to the maximum value. This timer is
decremented each system tick. When it reaches zero, set mode is terminated.

The interface implemented here will poll the two user switches once every 50ms in the tick routine. This
sampling rate will be more than sufficient for humans. It has been my experience that a human will be
happy with a user interface that samples switches and knobs as slowly as once every .2 seconds!
Compared to an 8051, a human is a slow I/O device. When the tick routine notes that a switch has been
depressed, it will set a counter to a debounce value. This counter will be decremented in the tick routine
which will not sample the switches again until the timer has reached zero.

When set mode is active, the software must control the position of the cursor on the display panel to aid
the user in knowing which field is being set. The current field is pointed to by the ‘cur_field’ variable.
The ‘set_cursor’ function will turn the cursor on or off and move it to the location currently being altered.
To simplify the user's job of setting and possibly synchronizing the clock, the section of the system tick
which is responsible for computing the time of day is halted when set mode is active. This will also
prevent the main loop from trying to use ‘printf’ to update the display at the same time the interrupt
routine is using it to update the display. To further guarantee that this will not happen the set mode
cannot be activated during a display update by the main routine. Again, this will prevent the ‘printf’
routine from being called by more than one interrupt level at a time.

THE FINAL WORD ON THE 8051

Page 65

The ‘system_tick’ routine as it currently exists is shown below. For most systems, this routine will be
more than sufficient. It can easily be used as a model for system tick routines in your projects.

Listing 0-7

void system_tick(void) interrupt 1 {

 static unsigned char second_cnt=20; // counter to divide system

// ticks into one second

 TR0=0; // temporarily stop timer 0

 TH0=RELOAD_HIGH; // set the reload value

 TL0=RELOAD_LOW;

 TR0=1; // restart the timer

 if (switch_debounce) { // debounce user switches

 switch_debounce--;

 }

 if (!switch_debounce) {

 if (!SET) { // if set switch is pressed...

 switch_debounce=DB_VAL; // set switch debounce

 if (!set_mode && !disp_update) {// if the clock is not

// in set mode

set_mode=1; // enter set mode

set_mode_to=TIMEOUT; // set the idle timeout value

cur_field=HOUR; // select the first field

set_cursor(ON, HOUR); // enable the cursor

 } else {

cur_field++; // advance the current field

if (cur_field>SEC) { // if its greater than SEC

// then set mode is complete

 set_mode=0; // exit set mode

 set_mode_to=0;

 set_cursor(OFF, HOME); // disable the cursor

} else {

 set_cursor(ON, cur_field); // move the cursor to the next field

 set_mode_to=TIMEOUT;

}

 }

 }

 if (set_mode && !SELECT) { // if the select switch is pressed

 set_mode_to=TIMEOUT;

 incr_field(); // increment selected field

 disp_time(); // display the updated time

 }

 }

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 66

 if (!set_mode) { // when in set mode, stop the clock

 second_cnt--; // decrement the tick divider

 if (!second_cnt) { // if one second has passed...

 second_cnt=20; // reset the divider

 second_tick(); // perform the functions

// which take place every second

 }

 }

}

Improving the Clock Software
At this point, you can take action to eliminate the error in the system tick. As you will remember the error
is due to the code delays involved from the time the timer overflows to the time the tick routine reloads
and restarts the timer. To eliminate the error, simply compile this routine using the C51 ‘code’ option
(this is done by selecting the “Include assembly assembly code” checkbox in the “C51 Compiler Options”
dialog box of the workbench) and then count the cycles that the ISR takes to restart the timer. Once you
get this count, you must add in two cycles for the processor to vector to your ISR. You could argue that
the processor could have taken up to three more cycles to recognize the interrupt if it were in the middle
of a DIV or MUL operation, but it is usually safe to assume that it has entered this point in the code from
idle mode. There is no quick and reliable way to determine the exact latency for the processor to
recognize the interrupt. Compiling the existing system tick routine with the ‘code’ option yields the
following output fragment to which I have added an instruction count.

Listing 0-8

 ; FUNCTION system_tick (BEGIN)

0000 C0E0 PUSH ACC 2, 2

0002 C0F0 PUSH B 2, 4

0004 C083 PUSH DPH 2, 6

0006 C082 PUSH DPL 2, 8

0008 C0D0 PUSH PSW 2, 10

000A C000 PUSH AR0 2, 12

000C C001 PUSH AR1 2, 14

000E C002 PUSH AR2 2, 16

0010 C003 PUSH AR3 2, 18

0012 C004 PUSH AR4 2, 20

0014 C005 PUSH AR5 2, 22

0016 C006 PUSH AR6 2, 24

0018 C007 PUSH AR7 2, 26

 ; SOURCE LINE # 332

 ; SOURCE LINE # 335

001A C28C CLR TR0 1, 27

 ; SOURCE LINE # 336

001C 758C3C MOV TH0,#03CH 2, 29

 ; SOURCE LINE # 337

001F 758AAF MOV TL0,#0AFH 2, 31

 ; SOURCE LINE # 338

THE FINAL WORD ON THE 8051

Page 67

0022 D28C SETB TR0 1, 32

 ; SOURCE LINE # 340

According to the instruction count, reload value of the timer must be altered by 34 (32 + 2) cycles to
allow for all the calculable loss in the system. It is interesting to note that the greatest amount of loss is
due to all the pushing to the stack. Since each of these operations must have a corresponding pop, this
ISR will spend 52 cycles working with the stack. A big part of this is because the compiler is attempting
to save the code from any damage that called functions may cause. This source of waste can be
eliminated by specifying the register bank for the ISR.

Another source of processing waste is the ‘printf’ function. Simulation runs show that it will take 6039
cycles to print the entire time string to the display when the time is 00:00:00. This simulation was done
assuming that the display panel indicates immediately that it is ready for the next command. We can
therefore conclude that the 6039 cycles is due entirely to the ‘printf’ and ‘putchar’ routines. The 6039
cycles will amount to the processor working 6.039 milliseconds in between executions of the system tick
routine. It is a safe assumption that this amount of processor usage will not cause any harm to system
stability. Just to make sure of this, another simulation was run to determine the total execution time of
the ‘system_tick’ routine when the time structure must be incremented from 23:59:59 to 00:00:00. This
should represent the worst case execution time for this routine when the system is not in set mode. The
total number of cycles taken by the system_tick routine under this condition is 207. This means that the
worst case execution for a non-set mode system_tick will be .207 milliseconds. For cases where no time
increment is performed, the ISR will take 76 cycles of .076 milliseconds.

In the case of the clock, this is all a mute point since the system tick is set at 50 milliseconds. This
means that the clock can update the time structure, and update the LCD panel every system tick and
still spend 43.754 milliseconds (or 87.508% of the time) in idle mode before it has to deal with the next
system tick interrupt. However, let's assume that you want to get all the performance out of this product
that you can. Perhaps it will be a battery powered product that must conserve the power cell supplying it
as much as possible. The best bet to lower execution time for the processor is to replace the ‘printf’
routine with a more specific and smaller routine.

Since you know that this system does not need to display any messages other than the time message
you can greatly simplify the ‘printf’ routine. It does not need to deal with string formatting, character
formatting, any kind of integers, longs, or floats. You can also assume that only fixed locations in the
string will be changing. The remainder of the locations will not change at all. The replacement for ‘printf’
will deal with a buffer that has the fixed text already preformatted and will simply insert the right
characters to represent the time in the correct locations. To speed execution of this routine, the
characters will be obtained by using the magnitude of the time field in use to access a lookup table. This
is a trade off of execution time for EPROM space. Since this program is relatively small so far (less than
2000 bytes), there is plenty of EPROM space to use. If you were in the opposite position, you should
force the ‘system_tick’ routine to keep the time in BCD with an ASCII bias. Therefore, when the system
is ready to display the time, the structure which holds it is already be in character representation. This
approach would certainly cause the ‘system_tick’ ISR to take more than its current average execution
time of 76 cycles.

The ‘disp_time’ function itself becomes the replacement for the ‘printf’ routine. Instead of calling ‘printf’
with a format string and the three bytes as parameters, it will now build up the string itself in a local buffer
and pass the whole thing to ‘putchar’ one byte at a time. The complexity of the user generated code has
increased, but the overall size of the system has decreased from 1951 bytes to 1189 bytes even though
a 120 byte table has been added to the EPROM. The ‘printf’ routine was taking 811 total bytes and the
new ‘disp_time’ now takes 105 bytes. Listing 0-9 shows the new ‘disp_time’ routine.

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 68

Listing 0-9

void disp_time(void) {

 // use the holder to display the current time.

 // note that the holder use flag is not cleared until we

 // are finished with the holder's contents. this will

 // prevent the contents from changing in the middle of use

 static char time_str[32]="TIME OF DAY IS: XX:XX:XX ";

 unsigned char I;

 time_str[T_HOURT]=bcdmap[timeholder.hour][0];

 time_str[T_HOUR]=bcdmap[timeholder.hour][1];

 time_str[T_MINT]=bcdmap[timeholder.min][0];

 time_str[T_MIN]=bcdmap[timeholder.min][1];

 time_str[T_SECT]=bcdmap[timeholder.sec][0];

 time_str[T_SEC]=bcdmap[timeholder.sec][1];

 putchar(0xFF);

 for (i=0; i<32; i++) {

 putchar(time_str[i]);

 }

 disp_update=0; // clear the display update lag

}

The new ‘disp_time’ routine takes a total of 2238 processor cycles or 2.238 milliseconds on a 12MHz
system. Note again that the times presented do not allow for the delays caused by the display processor,
for which there is nothing we can do. The worst case latency for the display will be one delay of 1.64
milliseconds to clear it and a total delay of 1.280 milliseconds to write 32 characters to the display panel.
The total delay due to the LCD panel is thus 2.920 milliseconds per refresh. Assuming that the display
panel is refreshed every second, the processor is executing 6.866 milliseconds out of every second.
This was obtained by taking the non-set mode time of system tick (76 cycles) and multiplying it by 19,
since there will be 19 ticks like this per second. 207 cycles were added to allow for the one system tick
per second in which the time structure is updated. 2238 cycles were added to allow for the time it takes
the disp_time routine to function, and 2920 cycles were added to allow for the time it takes the LCD
panel to receive and display 32 characters. As you can see, this system will be spending most of its time
in idle mode and will be very easy on its power supply.

THE FINAL WORD ON THE 8051

Page 69

Optimizing the Internal RAM Usage
One drawback to the clock software that has not been discussed is that it does not effectively use its
internal RAM. The DATA segment memory map from the M51 file shows this:

TYPE BASE LENGTH RELOCATION SEGMENT NAME

* * * * * * * D A T A M E M O R Y * * * * * * *

REG 0000H 0008H ABSOLUTE "REG BANK 0"

DATA 0008H 0002H UNIT "DATA_GROUP"

 000AH 0016H *** GAP ***

BIT 0020H.0 0000H.2 UNIT ?BI?CH4CLOCK

BIT 0020H.2 0000H.1 UNIT "BIT_GROUP"

 0020H.3 0000H.5 *** GAP ***

DATA 0021H 002BH UNIT ?DT?CH4CLOCK

IDATA 004CH 0001H UNIT ?STACK

 While not immediately obvious, the problem is that there is a 22 byte gap in the DATA segment between
address 0A and the start of the bit addressable segment (address 20). This is because the linker could
not fit the DATA segment for the CH4CLOCK module in this area, and thus left a gap. The effects of the
gap are that it leaves some amount of the DATA segment unused, and pushes the base of the stack
closer to the start of the ISR segment, meaning that the system is that much closer to overflowing the
stack and having a mysterious reset problem.

 This has happened because the clock code defined all its variables in one file, ch4clock.c. The easiest
way to correct this problem is to use the precede directive with the linker when you link your modules.
The precede directive will allow you specify which data segments of your program are stored at the
bottom of the DATA segment. The easiest solution is to use this command and tell the linker that the
data variables of the clock’s code be placed at the bottom of the DATA segment. This is done by
entering the linker options dialog box in the workbench, selecting the “Segments” tab and filling in the
“Precede” edit control with the following string.

?DT?ch4clock

This will work great as long as the data usage of the module(s) you specify does not exceed the space
between the highest used register bank and the top of the bit addressable segment assuming that you
have bit variables. Once you exceed this memory limitation, you will find that your BIT segment
disappears and you get linker warnings and errors. The way around this is to move a group of internal
data variables to another file. This will create two smaller data segments and allow you to properly use
the precede directive. By moving the correct amount of allocation to another file, you can completely
eliminate the gap.

The extra file is compiled separately and linked together with the main file (or files). In this case, 22 bytes
worth of variables need to move to another file. The clock program, being a small system has only nine
bytes which can be moved to another file. Performing this operation and re linking yields the following
result.

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 70

TYPE BASE LENGTH RELOCATION SEGMENT NAME

* * * * * * * D A T A M E M O R Y * * * * * * *

REG 0000H 0008H ABSOLUTE "REG BANK 0"

DATA 0008H 0022H UNIT ?DT?CH4NEW

BIT 002AH.0 0000H.2 UNIT ?BI?CH4NEW

BIT 002AH.2 0000H.1 UNIT _BIT_GROUP_

 002AH.3 0000H.5 *** GAP ***

DATA 002BH 0009H UNIT ?DT?VARS

DATA 0034H 0004H UNIT _DATA_GROUP_

IDATA 0038H 0001H UNIT ?STACK

According to the above table, the linker has left the project with 72 bytes of stack space (80 hex - 38 hex)
and that unsightly gap is gone. You must now make sure that 72 bytes will be enough stack space for
the program at the deepest point in the calling tree. It turns out that this point is during the ‘disp_time’
call in the system tick ISR. From earlier discussions, you know that the ISR is pushing 13 bytes worth of
registers onto the stack. The processor pushes the PC on the stack when the interrupt is caused and the
call to the ISR takes two more bytes. This means that the total is 17 bytes. The ‘disp_time’ call will take
two more bytes on the stack for the PC as will its calls to ‘putchar’. This brings us to 21 bytes. ‘putchar’
calls ‘disp_cmd’ which in turn will call ‘disp_read’. This adds four more bytes of data from the PC to bring
the total to 25 bytes. This is the deepest the stack will grow, and there are still 47 bytes of stack space
free. It is safe to assume that this program will not exceed the stack space that the linker has given to it.

Ship it!
The clock project is complete at this point. The software timing has been checked and there is a
substantial amount of processor bandwidth left. The design goals of eliminating most of the hardware
using software routines was realized and the system is basically down to an 8751 and an LCD panel.
The software as it stands at this point is shown in Listing 0-10. The following sections will present some
other ways to improve your system using software techniques.

Listing 0-10

#include <reg51.h>

#include <stdio.h>

// define the reload values to generate a 50ms tick in timer 0

#define RELOAD_HIGH 0x3C

#define RELOAD_LOW 0xD2

// define the switch debounce time value

#define DB_VAL 6

// define the time period of maximum inactivity in set mode

// before set mode is terminated

#define TIMEOUT 200

// define constants for cur_field

#define HOME 0

#define HOUR 1

THE FINAL WORD ON THE 8051

Page 71

#define MIN 2

#define SEC 3

// define constants for the cursor state

#define OFF 0

#define ON 1

// define constants for the display commands

#define DISP_BUSY 0x80

#define DISP_FUNC 0x38

#define DISP_ENTRY 0x06

#define DISP_CNTL 0x08

#define DISP_ON 0x04

#define DISP_CURSOR 0x02

#define DISP_CLEAR 0x01

#define DISP_HOME 0x02

#define DISP_POS 0x80

#define DISP_LINE2 0x40

sbit SET = P3^4; // set switch input pin

sbit SELECT = P3^5; // select switch input pin

sbit ENABLE = P3^1; // display enable output

sbit REGSEL = P3^7; // display register select output

sbit RDWR = P3^6; // display access mode output

sfr DISPDATA = 0x90; // eight bit data bus to the

// display panel

typedef struct { // define a type to hold

 unsigned char hour, min, sec; // the time of day

} timestruct;

bit set_mode=0, // set if we are in set mode

disp_update=0; // set when the display

// needs refreshing

unsigned char set_mode_to=0, // timer used to count time

// from last user operation

// to the termination of set mode

switch_debounce=0, // switch debounce timer

cur_field=HOME; // currently selected field

// for set mode

timestruct curtime, // holds the current time

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 72

timeholder; // holds the time to go on

// the display panel

unsigned char code fieldpos[3]={ // tells set_cursor what

// physical position the

// field argument refers to

DISP_LINE2 | 0x01,

DISP_LINE2 | 0x04,

DISP_LINE2 | 0x07

};

#define T_HOURT 16

#define T_HOUR 17

#define T_MINT 19

#define T_MIN 20

#define T_SECT 22

#define T_SEC 23

char code bcdmap[60][2]={

 "00", "01", "02", "03", "04", "05", "06", "07", "08", "09",

 "10", "11", "12", "13", "14", "15", "16", "17", "18", "19",

 "20", "21", "22", "23", "24", "25", "26", "27", "28", "29",

 "30", "31", "32", "33", "34", "35", "36", "37", "38", "39",

 "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",

 "50", "51", "52", "53", "54", "55", "56", "57", "58", "59"

};

// declarations of program functions

void disp_cmd(unsigned char);

void disp_init(void);

unsigned char disp_read(void);

void disp_time(void);

void disp_write(unsigned char);

void incr_field(void);

void second_tick(void);

void set_cursor(bit, unsigned char);

/***

 Function: main

 Description: This is the entry point of the program. This
function initializes the 8051, enables the correct

interrupt source and enters idle mode. The idle mode loop checks
after each interrupt to see if the LCD panel must be updated.

 Parameters: None.

 Returns: Nothing.

THE FINAL WORD ON THE 8051

Page 73

***/

void main(void) {

 disp_init(); // set up display

 TMOD=0x11; // set both timers in 16 bit mode

 TCON=0x15; // start timer 0. both ext

// ints are edge

 IE=0x82; // enable the timer 0 int

 for (;;) {

 if (disp_update) {

 disp_time(); // display new time;

 }

 PCON=0x01; // enter idle mode

 }

}

/***

 Function: disp_cmd

 Description: This routine writes a given command to the LCD

panel and waits to assure that the command was
completed by the panel.

 Parameters: cmd - unsigned char. Holds the command to be written
to the display.

 Returns: Nothing.

***/

void disp_cmd(unsigned char cmd) {

 DISPDATA=cmd; // latch the command

 REGSEL=0; // select the command reg

 RDWR=0; // select write mode

 ENABLE=1; // latch the command into

// the LCD panel

 ENABLE=0;

 TH1=0; // start a timer for 85ms

 TL1=0;

 TF1=0;

 TR1=1;

 while (!TF1 && disp_read() & DISP_BUSY); // wait for the display
// to finish the command

 TR1=0;

}

/***

 Function: disp_init

 Description: Sends the correct data sequence to the display to
initialize it for use.

 Parameters: None.

 Returns: Nothing.

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 74

***/

void disp_init(void) {

 TH1=0; // start a timer for 85ms

 TL1=0;

 TF1=0;

 TR1=1;

 while (!TF1 && disp_read() & DISP_BUSY);// wait for the display
// to finish the command

 TR1=0;

 disp_cmd(DISP_FUNC); // set the display for an 8

// bit bus, 2 display lines,

// and a 5x7 dot font

 disp_cmd(DISP_ENTRY); // set the character entry

// mode to increment display

// address for each

// character, but not to scroll

 disp_cmd(DISP_CNTL | DISP_ON); // turn the display on, cursor off

 disp_cmd(DISP_CLEAR); // clear the display

}

/***

 Function: disp_read

 Description: This routine reads from the LCD panel status
register.

 Parameters: None.

 Returns: The value read from the LCD panel.

***/

unsigned char disp_read(void) {

 unsigned char value;

 DISPDATA=0xFF; // set the port for all inputs

 REGSEL=0; // select the command reg

 RDWR=1; // select read mode

 ENABLE=1; // enable the LCD output

 value=DISPDATA; // read in the data

 ENABLE=0; // disable the LCD output

 return(value);

}

/***

 Function: disp_time

 Description: This routine takes the time in the holder buffer and
formats it for display on the LCD panel. No

consideration is given to the position of the cursor.

 Parameters: None.

 Returns: Nothing.

***/

THE FINAL WORD ON THE 8051

Page 75

void disp_time(void) {

 // use the holder to display the current time.

 // note that the holder use flag is not cleared until we

 // are finished with the holder's contents. this will

 // prevent the contents from changing in the middle of use

 static char time_str[32]="TIME OF DAY IS: XX:XX:XX ";

 unsigned char i;

 time_str[T_HOURT]=bcdmap[timeholder.hour][0];

 time_str[T_HOUR]=bcdmap[timeholder.hour][1];

 time_str[T_MINT]=bcdmap[timeholder.min][0];

 time_str[T_MIN]=bcdmap[timeholder.min][1];

 time_str[T_SECT]=bcdmap[timeholder.sec][0];

 time_str[T_SEC]=bcdmap[timeholder.sec][1];

 putchar(0xFF);

 for (i=0; i<32; i++) {

 putchar(time_str[i]);

 }

 disp_update=0; // clear the display update flag

}

/***

 Function: disp_write

 Description: This routine writes a data byte to the LCD panel.

 Parameters: value - unsigned char. Holds the data byte to be

written to the display.

 Returns: Nothing.

***/

void disp_write(unsigned char value) {

 DISPDATA=value; // latch the data

 REGSEL=1; // select the data reg

 RDWR=0; // select write mode

 ENABLE=1; // latch the data into the

// LCD panel

 ENABLE=0;

}

/***

 Function: incr_field

 Description: This routine increments the time field indicated by
cur_field. No rollover from seconds to minutes or minutes to
hours is performed.

 Parameters: None.

 Returns: Nothing.

***/

void incr_field(void) {

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 76

 if (cur_field==SEC) {

 curtime.sec++;

 if (curtime.sec>59) {

 curtime.sec=0;

 }

 }

 if (cur_field==MIN) {

 curtime.min++;

 if (curtime.min>59) {

 curtime.min=0;

 }

 }

 if (cur_field==HOUR) {

 curtime.hour++;

 if (curtime.hour>23) {

 curtime.hour=0;

 }

 }

}

/***

 Function: putchar

 Description: This routine replaces the standard putchar
function. Its job is to redirect output to the LCD panel.

 Parameters: c - char. This is h\next character to write to the
display.

 Returns: The character just written.

***/

char putchar(char c) {

 static unsigned char flag=0;

 if (!flag || c==255) { // check if the display

// should be moved to home

 disp_cmd(DISP_HOME);

 flag=0;

 if (c==255) {

 return c;

 }

 }

 if (flag==16) { // check if its time to use

 // the next display line

 disp_cmd(DISP_POS | DISP_LINE2); // move the display to ln 2

 }

 disp_write(c); // write the character to

 // the display

 while (disp_read() & DISP_BUSY); // wait for the display

THE FINAL WORD ON THE 8051

Page 77

 flag++; // increment the line flag

 if (flag>=32) { flag=0; } // when the whole display is

 // written, clear it

 return(c); // for compatibility

}

/***

 Function: second_tick

 Description: This function performs all functions which must be done
every second. In this system that involves incrementing the time
by one second and requesting a display panel refresh.

 Parameters: None.

 Returns: Nothing.

***/

void second_tick(void) {

 curtime.sec++; // advance the seconds

 if (curtime.sec>59) { // check for rollover

 curtime.sec=0;

 curtime.min++; // advance the minutes

 if (curtime.min>59) { // check for rollover

 curtime.min=0;

 curtime.hour++; // advance the hours

 if (curtime.hour>23) { // check for rollover

curtime.hour=0;

 }

 }

 }

 if (!disp_update) { // make sure the holder

// isn't in use

 timeholder=curtime; // set the new time in the holder

 disp_update=1; // the time will change, so

// update the LCD panel

 }

}

/***

 Function: set_cursor

 Description: This routine enables or clears the cursor and moves
it to a specified point.

 Parameters: new_mode - bit. Set if the cursor should be
visible.

field - unsigned char. Indicates the field to move
the cursor to.

 Returns: Nothing.

***/

void set_cursor(bit new_mode, unsigned char field) {

 unsigned char mask;

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 78

 mask=DISP_CNTL | DISP_ON;

 if (new_mode) {

 mask|=DISP_CURSOR;

 }

 disp_cmd(mask);

 if (field==HOME) {

 mask=DISP_HOME;

 } else {

 mask=DISP_POS | fieldpos[field-1];

 }

 disp_cmd(mask);

}

/***

 Function: system_tick

 Description: This is the ISR for timer 0 overflows. It
maintains the timer and reloads it with the correct value

for a 50ms tick. The time is counted in this routine and
the user interface is maintained.

 Parameters: None.

 Returns: Nothing.

***/

void system_tick(void) interrupt 1 {

 static unsigned char second_cnt=20; // counter to divide system

// ticks into one second

 TR0=0; // temporarily stop timer 0

 TH0=RELOAD_HIGH; // set the reload value

 TL0=RELOAD_LOW;

 TR0=1; // restart the timer

 if (switch_debounce) { // debounce user switches

 switch_debounce--;

 }

 if (!switch_debounce) {

 if (!SET) { // if set switch is pressed...

 switch_debounce=DB_VAL; // set switch debounce

 if (!set_mode && !disp_update) {// if the clock is not in set mode

set_mode=1; // enter set mode

set_mode_to=TIMEOUT; // set the idle timeout value

cur_field=HOUR; // select the first field

set_cursor(ON, HOUR); // enable the cursor

 } else {

cur_field++; // advance the current field

if (cur_field>SEC) { // if its greater than SEC

// then set mode is complete

 set_mode=0; // exit set mode

THE FINAL WORD ON THE 8051

Page 79

 set_mode_to=0;

 set_cursor(OFF, HOME); // disable the cursor

} else {

 set_cursor(ON, cur_field); // move the cursor to the

// next field

 set_mode_to=TIMEOUT;

}

 }

 }

 if (set_mode && !SELECT) { // if the select switch is pressed

 set_mode_to=TIMEOUT;

 incr_field(); // increment selected field

 disp_time(); // display the updated time

 }

 }

 if (!set_mode) { // when in set mode, stop the clock

 second_cnt--; // decrement the tick divider

 if (!second_cnt) { // if one second has passed...

 second_cnt=20; // reset the divider

 second_tick(); // perform the functions which

// take place every second

 }

 }

}

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 80

Using a watchdog timer
Many embedded systems perform tasks which involve waiting for a certain device or spending a lot of
time in loops processing data. It is crucial for a system to consistently be available to perform the
function it was designed for. This means that an embedded system should never find itself in an infinite
loop which is preventing it from carrying out its job. Infinite loops in an embedded system may be due to
the failure of an I/O device, the reception of unexpected or bad input, or a software bug. Whatever the
source, they will pop up at the worst times and will make your product look unreliable and poorly
designed no matter how well the system functions otherwise.

As a protection against such infinite loops or system tie ups, many designers use a watchdog timer. The
timer counts from a specific value and must be reloaded by the software within a specific amount of
time. If the timer overflows, the system is reset on the assumption that since the software did not reload
the timer, it must be hung up in a loop or unexpected condition. Presumably, resetting the system is
better than having it lock up in some unknown state. The software engineer must deal with the watchdog
timer by writing a function which reloads the watchdog and calling this function at a rate faster than the
overflow rate of the timer. For most watchdog timers this routine is relatively simple to write. Usually
there is some basic order of operations that must be observed to reload the timer. This is done to
prevent accidental reloads by runaway programs. An initialize function and a reload function for the
watchdog timer used on the Philips 80C550 are shown in Listing 0-11.

Listing 0-11

void wd_init(unsigned char prescale) {

 WDL=0xFF; // set watchdog reload value to

// the maximum

 WDCON=(prescale & 0xE0) | 0x05; // set the prescale value of the

// timer to the slowest count

// rate and start the watchdog

 wd_reload(); // feed the watchdog

}

void wd_reload(void) {

 EA=0; // block any interrupts

 WFEED1=0xA5; // first step of feed sequence

 WFEED2=0x5A; // second step of feed sequence

 EA=1; // allow interrupts now

}

Typically, you can place the reload function in your main loop in systems which have a periodic interrupt
such as a system tick from a timer or from an RTC. This approach will work fine unless you have a
system which also receives interrupts from another source which can fire many interrupts in a row and
thus prevent the processor from executing the main loop often enough to reload the timer. In this case,
you can put the reload function call in both the main loop and the ISR which is being executed so
frequently. However, the reload call in the ISR is not made every interrupt. Instead, the number of
interrupts are counted and the reload call is only made when the count reaches a certain value.
Assuming that a system used this approach, the main routine and the ISR would have code fragments as
such:

THE FINAL WORD ON THE 8051

Page 81

Listing 0-12

void main(void) {

 ... // system initialization

 for (;;) { // main loop to wait for and

// service interrupts

 ... // any background code needed

 wd_reload(); // feed the watchdog timer

 PCON=0x80; // enter idle mode and wait for

// next interrupt

 }

}

void my_ISR(void) interrupt 0 {

 static unsigned char int_count=0; // the interrupt count divider

 int_count++; // increment the interrupt

// counter

 if (int_count > MAXINTS) { // if the max threshold is

// broken...

 int_count=0; // reset the counter

 wd_reload(); // and feed the watchdog

 }

 ... // the rest of the ISR

}

The reset by the watchdog timer is indiscernible from a normal power on reset to the software. Thus, if
your system has any data that is learned or programmed in during the execution of the software, you
may want to save a backup copy of that data in external RAM or make sure that you don't initialize it at
the beginning of every execution run of the system. To do this means that the system will need to
understand how and when to prevent itself from clobbering data from the previous run that is still good.

Saving system data
Your embedded system may need to treat resets differently depending on the previous status of the unit.
For example, if your system had already been executing properly, but was reset by a watchdog timer or a
user pressing a reset switch, you may want to take different initialization actions than you would if your
system had just been powered on. Typically, situations like the watchdog reset and user reset are
referred to as warm boots. In 8051 systems which do not have any sort of battery backup for the internal
and external RAM, these warm boots are easily detected by using a flag.

When the system first starts executing the code, this flag is checked for a specific value. If the value is
not good, the power on initialization continues as if the unit is being cold started. If the value is good, the
cold start specific code is by passed and only necessary initialization code is executed. Once the system
is initialized, the warm boot flag is set to the value desired. The value chosen should be one that will not
typically occur in the RAM should all power be lost. This will prevent a cold start from looking like a
warm boot. Therefore values such as 00 and FF should be avoided. A value like AA or CC which has a
definite pattern to it is a good choice. For systems which must keep data in the internal RAM from
restart to restart, the boot flag must be checked in the startup code of the compiler. This means you will
have to modify startup.a51. For systems which keep learned data in the external RAM or only need to
perform different actions on a warm boot, the flag can be checked in the main routine assuming that the
flag is not kept in internal RAM. This is because the default startup code for the compiler zeroes out all
the memory locations in the internal RAM of the 8051 but will not zero the external memory spaces

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 82

unless you change startup.a51 to do so. Thus, if your boot flag is kept in internal RAM and not checked
before the RAM is zeroed, your system will always believe it should cold boot.

As an example, consider the following main routine which checks the boot flag and performs extra
initialization functions if the flag does not hold a good value.

Listing 0-13

unsigned char xdata bootflag;

void main(void) {

 ...

 if (bootflag!=0xAA) { // if the system is being cold

// started...

 init_lcd(); // initialize the display panel

 init_rtc(); // initialize the RTC

 setup_hw(); // setup I/O ports

 reset_queue(); // reset data structures

 bootflag=0xAA; // set the bootflag to a good

// value

 } else {

 clear_lcd(); // clear the message from the

// display panel

 }

 ...

}

A user who must maintain the data in internal RAM in the case of a warm boot must alter the startup.a51
file and ensure that the code only clears those areas of the RAM which will be used by the compiler and
which do not have to be remembered by the system. Such a modified startup.a51 will look like the one
below.

Listing 0-14

;---

; This file is part of the C-51 Compiler package

; Copyright (c) KEIL ELEKTRONIK GmbH and Keil Software, Inc.,

; 1990-1992

;---; STARTUP.A51: This
code is executed after processor reset.

;

; To translate this file use A51 with the following invocation:

;

; A51 STARTUP.A51

;

; To link the modified STARTUP.OBJ file to your application use

; the following L51 invocation:

THE FINAL WORD ON THE 8051

Page 83

;

; L51 <your object file list>, STARTUP.OBJ <controls>

;

;---

;

; User-defined Power-On Initialization of Memory

;

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

;

EXTRN DATA (bootflag)

;

; the absolute start-address of IDATA memory is always 0

IDATALEN EQU 80H ; the length of IDATA memory in bytes.

;

XDATASTART EQU 0H ; the absolute start-address of XDATA

 ; memory

XDATALEN EQU 0H ; the length of XDATA memory in bytes.

;

PDATASTART EQU 0H ; the absolute start-address of PDATA

 ; memory

PDATALEN EQU 0H ; the length of PDATA memory in bytes.

;

; Notes: The IDATA space overlaps physically the DATA and BIT

; areas of the 8051 CPU. At minimum the memory space

; occupied from the C-51 run-time routines must be set

; to zero.

;---

;

; Reentrant Stack Initilization

;

; The following EQU statements define the stack pointer for

; reentrant functions and initialized it:

;

; Stack Space for reentrant functions in the SMALL model.

IBPSTACK EQU 0 ; set to 1 if small reentrant is used.

IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.

;

; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU 0 ; set to 1 if large reentrant is used.

XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.

;

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 84

; Stack Space for reentrant functions in the COMPACT model.

PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.

PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.

;

;---

;

; Page Definition for Using the Compact Model with 64 KByte xdata

; RAM

;

; The following EQU statements define the xdata page used for

; pdata variables. The EQU PPAGE must conform with the PPAGE

; control used in the linker invocation.

;

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.

PPAGE EQU 0 ; define PPAGE number.

;

;---

NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE

?STACK SEGMENT IDATA

RSEG ?STACK

DS 1

EXTRN CODE (?C_START)

PUBLIC ?C_STARTUP

CSEG AT 0

?C_STARTUP: LJMP STARTUP1

 RSEG ?C_C51STARTUP

STARTUP1:

MOV A, bootflag ; check if RAM is good

CJNE A, #0AAH, CLRMEM

SJMP CLRCOMP ; RAM is good, clear only

; compiler owned locations

CLRMEM: ; RAM was not good,

; zero it all

IF IDATALEN <> 0

THE FINAL WORD ON THE 8051

Page 85

MOV R0,#IDATALEN - 1

CLR A

IDATALOOP: MOV @R0,A

DJNZ R0,IDATALOOP

JMP CLRXDATA

ENDIF

CLRCOMP: CLR A ; zero out compiler owned

; areas

MOV 20H, A

MOV R0, #3EH

L1: MOV @R0, A

INC R0

CJNE R0, #76H, L1

CLRXDATA:

IF XDATALEN <> 0

MOV DPTR,#XDATASTART

MOV R7,#LOW (XDATALEN)

 IF (LOW (XDATALEN)) <> 0

MOV R6,#(HIGH XDATALEN) +1

 ELSE

MOV R6,#HIGH (XDATALEN)

 ENDIF

CLR A

XDATALOOP: MOVX @DPTR,A

INC DPTR

DJNZ R7,XDATALOOP

DJNZ R6,XDATALOOP

ENDIF

IF PDATALEN <> 0

MOV R0,#PDATASTART

MOV R7,LOW (PDATALEN)

CLR A

PDATALOOP: MOVX @R0,A

INC R0

DJNZ R7,PDATALOOP

ENDIF

IF IBPSTACK <> 0

EXTRN DATA (?C_IBP)

MOV ?C_IBP,#LOW IBPSTACKTOP

CHAPTER 4 - USING SOFTWARE TO COMPLEMENT THE HARDWARE

Page 86

ENDIF

IF XBPSTACK <> 0

EXTRN DATA (?C_XBP)

MOV ?C_XBP,#HIGH XBPSTACKTOP

MOV ?C_XBP+1,#LOW XBPSTACKTOP

ENDIF

IF PBPSTACK <> 0

EXTRN DATA (?C_PBP)

MOV ?C_PBP,#LOW PBPSTACKTOP

ENDIF

IF PPAGEENABLE <> 0

MOV P2,#PPAGE

ENDIF

MOV SP,#?STACK-1

LJMP ?C_START

END

This routine checks the boot flag and if it is good, clears only the addresses used by the compiler's run
time routines. All program owned locations must be explicitly handled in the user generated code. The
addresses of the library routines were determined by examining the linker output file and clearing those
segments of memory. As you can see, the bit variable at address 20H and the block from 3EH to 75H
must be zeroed. The linker output file used with the above startup.a51 is shown below.

THE FINAL WORD ON THE 8051

Page 87

TYPE BASE LENGTH RELOCATION SEGMENT NAME

* * * * * * * D A T A M E M O R Y * * * * * * *

REG 0000H 0008H ABSOLUTE "REG BANK 0"

DATA 0008H 0012H UNIT ?DT?VARS

DATA 001AH 0001H UNIT ?DT?PUTCHAR

 001BH 0005H *** GAP ***

DATA 0020H 0001H BIT_ADDR ?C_LIB_DBIT

BIT 0021H.0 0000H.5 UNIT ?BI?COINOP

BIT 0021H.5 0001H.2 UNIT "BIT_GROUP"

 0022H.7 0000H.1 *** GAP ***

DATA 0023H 001BH UNIT ?DT?COINOP

DATA 003EH 000FH UNIT ?C_LIB_DATA

DATA 004DH 0029H UNIT "DATA_GROUP"

IDATA 0076H 001EH UNIT ?ID?COINOP

IDATA 0094H 0001H UNIT ?STACK

Another way to save your internal data variables without going to the hassle of having to determine the
addresses which are safe and unsafe to zero out is to store them in external RAM. This of course
assumes that you have an external RAM that is battery backed up. If you don't, an EEPROM or flash
memory can be used in its place and will be more reliable. Most of my systems use the RAM method
because it is quicker to write data to an SRAM than it is to write it to an EEPROM. The reason this
matters is that the system saves all the valid internal variables to a block of external RAM when the
processor receives a shut down interrupt. Once this interrupt is activated, the system has plenty of time
to write data to the SRAM and put itself in power down mode. However, EEPROM's are much slower
devices and could not be accessed quickly enough for this purpose. If the data you need to save is not
frequently changed, then a back up copy of it could be saved in non-volatile storage. The back up must
then be refreshed each time the main copy of the data is altered. If the data is altered in many places in
the program the added work and code of this method may prove to be prohibitive.

Regardless of the data backup method employed, when the system is re powered, a data valid byte
(much like the boot flag discussed above) is checked. If it shows that the data is good, the internal
variables are restored from the data in the non-volatile storage. This is done during system initialization
in an if loop much like the one used with the boot flag.

Conclusion
This chapter has presented ways to eliminate hardware components and ease the job of the hardware in
your systems. The methods discussed here are not the only methods available, they are meant to show
you techniques that you can learn and build upon. Obviously, there will be many more situations in
which software can assume some hardware functions and make the hardware design simpler. To cover
them all would take a lifetime. Use the tools that have been presented here to build new tools and
improve each project that you undertake.

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 88

- Assembly and C on the 8051

Introduction
At some point in your embedded systems career you will be forced to leave the cozy world of high level
language development and use assembly language in your system. For the most part, you will find that
the portions of the program which must be done in assembly can be easily integrated with the remainder
of the program which should be written in C. This chapter will present methods to help you integrate your
assembly segments into your C program. In addition, it will discuss ways in which you can alter the
assembly code emitted by the compiler and control time critical sections accurately.

Creating Segments and Local Variables
To link them into your C code you should design your assembler functions to closely resemble the design
of C functions. That is, you will want them to have clearly defined boundaries, parameters, return values
and local variables as is the case with C functions.

Often times assembler routines are written to pass parameters in a wide array of registers usually
dependent upon which locations are available the first place the function is called. This leads to a
tangled mess of parameter passing methods amongst the functions in an assembler program which
quickly becomes difficult to maintain. Designing your assembler functions to look like C functions and
adhere to the C51 conventions of passing data between modules will make your projects which are
purely in assembler easier to read and maintain. Later, you will see that the code you write in assembler
following such guidelines will be easy to interface to C code. If you generate your functions in the same
style as the C compiler, you will reap another benefit: the linker will be able to perform overlay analysis
on your DATA segments and will be able to link your segments together in the code space in the best
manner.

In assembler, each of your functions can exist in its own segment in the code memory space. If you
have local variables, then they can exist in a segment in the appropriate memory space (DATA, XDATA,
etc.). For example, if you used some local variables that you needed quick access to, you could declare
a DATA segment containing these variables. Similarly, if you have a lookup table that only this function
needs access to, you could declare it in the function's CODE segment. The point is that only the current
segment should have visibility to the temporary variables it uses as locals. In the following example, a
function is defined which has several local variables allocated in the DATA memory space.

THE FINAL WORD ON THE 8051

Page 89

Listing 0-1

; declare the code segment for the function

?PR?IDCNTL?IDCNTL SEGMENT CODE

; declare the data segment for local storage

; this segment is overlayable for linker optimization

; of memory usage

?DT?IDCNTL?IDCNTL SEGMENT DATA OVERLAYABLE

PUBLIC idcntl

PUBLIC ?idcntl?BYTE

; define the layout of the local data segment

RSEG ?DT?IDCNTL?IDCNTL

?idcntl?BYTE:

TEMP: DS 1

COUTNT: DS 1

VAL1: DS 2

VAL2: DS 2

RSEG ?PR?IDCNTL?IDCNTL

idcntl: ... ; function code begins here

RET

The labels assigned to the DATA segment for the function are used just like any other variable is in
assembler. The linker will assign them physical addresses during the link phase. The overlayable
attribute on the segment will allow the linker to perform overlay analysis on the internal memory with this
segment. Without this attribute, the variables in the ?idcntl?BYTE segment will always be allocated, i.e:
they will act like C static variables. This is not efficient usage of critical data memory unless the
variables do not need to be statics.

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 90

Setting the Address of a Variable
Sometimes, it is desirable to fix a variable at a certain location in memory. This is especially useful in
systems where an SRAM is initialized by a master device before the slave 8051 system is allowed to
execute. In this case, both systems must agree upon a memory map and adhere to it or else mayhem
will result when the 8051 attempts to use the initialized data improperly. Thus, the 8051 must assume
that its variables are mapped to the correct locations. Keil C51 provides you with the capability to set the
address of any variable in the system provided that you do not want to initialize the variable at compile
time. For example, if you wanted to define an integer variable and initialize it with the value 0x4050 then
you would not be able to force this variable to a certain location using C. Additionally, you cannot force
bit variables which return a bit to a predetermined address. However, for variables which you do not
need to initialize at definition time you can use the’_at_’ keyword to specify the address of the variable.

The syntax for using the ‘_at_’ keyword in C adds on to the existing syntax for declaring a C variable:

type [memory_space] variable_name _at_ constant;

As is normal for Keil C, if the memory space specifier is missing the default memory space as
determined by the selected memory model is used. Thus if you are compiling using the small memory
model the variable will be allocated in the DATA segment. An example of a C51 declaration using the
at keyword is shown below.

unsigned char data byteval _at_ 0x32;

One of the nice things about the _at_ keyword is that you can assign a variable name to your hardware
input / output devices by setting the variable name at the address of your i/o device. For example,
suppose that you had an input register at address 0x4500 in the XDATA segment. You could declare a
variable name for it using the following statement in your C source code.

unsigned char xdata inpreg _at_ 0x4500;

Reading the input register is then a simple matter of using ‘inpreg’ in a C statement as usual. Of course,
you can still access the input register using the memory access macros provided by Keil. An example is
shown in Listing 0-2.

When you want to force the address of a variable that has to be initialized, you can use more traditional
methods in assembler code. Many times, you have a lookup table for which you can optimize the
accesses by fixing the base location of the table to some address but which is initialized at compile time
because it is in the CODE segment. For example, if you had a table of 256 bytes and wanted to access
it quickly, you could fix the base address of the table to a multiple of 256 and then load DPH with the
high byte of this address and DPL with the index of the desired element. This eliminates adding a base
address to an offset and dealing with carry from the lower eight bits to the upper eight bits. Such an
access can be seen in Listing 0-2

void myfunc(void) {

 unsigned char inpval;

 inpval=inpreg; // this line and the next do

 inpval=XBYTE[0x4500]; // the same thing

 ...

 if (inpreg & 0x40) { // make a decision based on

 ... // the value of inpreg

 }

}

Listing 0-3.

THE FINAL WORD ON THE 8051

Page 91

Listing 0-2

void myfunc(void) {

 unsigned char inpval;

 inpval=inpreg; // this line and the next do

 inpval=XBYTE[0x4500]; // the same thing

 ...

 if (inpreg & 0x40) { // make a decision based on

 ... // the value of inpreg

 }

}

Listing 0-3

; get the high order byte of the table's

; base address

MOV DPH, #HIGH mytable

MOV DPL, index ; add in the index

CLR A

MOVC A, @A+DPTR ; read in the byte

Fixing a variable's address in a given segment is a simple matter of defining a segment which can not be
relocated by the linker and specifying its starting address. The table referenced in the above code
example can be forced to address 8000H by the following code. Additionally, an example of fixing a
variable in the DATA space is shown.

Listing 0-4

; define this to be a code segment

CSEG AT 8000H

mytable: DB 1, 2, 3, 4, 5, 6, 7, 8

... ; remainder of table definition

DSEG AT 70H

cur_field: DS 1

...

END ; end of file

With this type of setup, a variable can be forced to any address by changing the CSEG keyword to the
correct one for the memory space in which you wish to allocate your variable. These variables will be
completely accessible by any C code you link with it provided that you give the correct ‘extern’
declaration in your C code. Given this information, the linker can correctly patch in the address of the
variable.

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 92

This same sort of scheme is used to install interrupt service routines in the interrupt vector. An absolute
segment can be used to place one function in the vector or place them all in it. Thus, if most of your
code and ISRs are written in C, but you have one ISR that must be in assembler, it is a simple matter to
force this ISR into the vector at the correct location. Listing 0-5 shows that the method to do this is very
similar to assigning a variable to a fixed address location.

Listing 0-5

CSEG AT 023H

LJMP serial_intr

The ISR called from the vector is then defined to exist in a CODE segment just as any other function
would be:

Listing 0-6

; define a relocatable segment

RSEG ?PR?serial_intr?SERIAL

USING 0 ; specify register bank

; 0 as active

serial_intr: PUSH ACC ; start ISR

... ; ISR code

RETI ; exit interrupt

Integrating C and Assembly Together
Let's assume that you have a project which has to perform an operation which does not easily lend itself
to coding in C. It may be that this function must use packed BCD numbers efficiently and you feel that
you can get more performance out of it by coding the function in assembly; or it may be that the function
is time critical and you do not trust that you can time your C code properly. You decide that this function
must be coded in assembly, however, you do not want to write the entire application in assembly just
because one function must be coded in assembler. The answer to this is to code the one function in
assembler and link it into the rest of your application just like you would do with any C function.

The assembler function should be given a segment name and definition which will make it compatible
with the segments defined for the C functions. If you expect to pass data in and out of this function then
you will have to ensure that the memory space used by your assembler function for receiving and
returning values matches the space that the compiler and linker expect to use. A typical assembler
function which can be called from C with no parameters has the following general format.

THE FINAL WORD ON THE 8051

Page 93

Listing 0-7

; declare a segment in the code space

?PR?clrmem?LOWLVL SEGMENT CODE

; export the name of the function

PUBLIC clrmem

; this segment can be placed by the linker wherever it wants

RSEG ?PR?clrmem?LOWLVL

;***

; Function: CLRMEM

; Description: This routine will clear memory of the internal

; RAM

; Parameters: none

; Returns: nothing.

; Side Effects: none.

;***

clrmem: MOV R0,#7FH

CLR A

IDATALOOP: MOV @R0,A

DJNZ R0,IDATALOOP

RET

END

The format of the assembler file is very simple. The segment which will contain the function is given a
name. Since the segment will be in the CODE memory space, the convention used by the compiler is to
have the name begin with ?PR. These first two characters maintain compatibility with the internal
naming convention established by the C51
compiler. This convention is shown in Table 0-1.

The segment name is given the RSEG attribute.
This means that the segment is relocatable which
allows the linker to assign it to any physical
address it needs to in the CODE memory space.
Once the segment name is defined, the file must
declare any public symbols and then define the
function with the code. This is all that is involved
with writing a simple assembly language function.

Functions which receive parameters from the caller or return a value to the caller must observe certain
rules for the passing of these values. For the most part Keil C passes parameters in internal RAM using
the current register bank. This is also true of return values. When you write a function which receives
more than three parameters, however, it is guaranteed that another segment in the default memory
space must be created to pass the remainder of the parameters. Register assignment for the incoming
parameters adheres to the rules in the following table.

Memory SpaceMemory Space Naming ConventionNaming Convention
CODE ?PR, ?CO
XDATA ?XD
DATA ?DT
BIT ?BI
PDATA ?PD

Table 0-1

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 94

Parameter TypeParameter Type
Parameter #Parameter # char, 1 byte ptr int, 2 byte ptr long, float generic ptr

1 R7 R6, R7 R4...R7 R1, R2, R3
2 R5 R4, R5 R4...R7 R1, R2, R3
3 R3 R2, R3 N/A R1, R2, R3

Table 0-2

The assembly function simply accesses these registers when it needs to use the value of the parameter.
If these values are used and saved elsewhere or no longer needed, the register locations used to pass
them to the function can be used as general purpose storage locations by the function. An example of a
function invocation in C and the code which implements the function in assembler is shown below. You
should note that functions which pass parameters via internal RAM have an understrike placed before
their name by the compiler. Assembler functions should be named accordingly. Functions which take
more than three parameters have some of the paramters passed to them in a parameter block defined in
the default memory segment.

Listing 0-8

C code

// C declaration of the assembly function

bit devwait(unsigned char ticks, unsigned char xdata *buf);

// invocation of assembly function

if (devwait(5, &outbuf)) {

 bytes_out++;

}

Listing 0-9

Assembler code

; declare a segment in the code space

?PR?_devwait?LOWLVL SEGMENT CODE

; export the name of the function

PUBLIC _devwait

; this segment can be placed by the linker wherever it wants

RSEG ?PR?_devwait?LOWLVL

;***

; Function: _devwait

; Description: This function waits a specified amount of timer 0

; overflows for an external device to signal that

; the data at P1 is valid. If the timeout is not

; reached the data is written to a specified XDATA

; location.

THE FINAL WORD ON THE 8051

Page 95

; Parameters: R7 - holds the number of ticks to wait.

; R4|R5 - holds the XDATA address to write to.

; Returns: 1 if the read was successful, 0 if it timed out.

; Side Effects: none.

;***

_devwait: CLR TR0 ; set up timer 0

CLR TF0

MOV TH0, #00

MOV TL0, #00

SETB TR0

JBC TF0, L1 ; check for a timer tick

JB T1, L2 ; check if the data

; is ready

L1: DJNZ R7, _devwait ; decrement the tick counter

CLR C ; the unit timed out,

; clear the return bit

CLR TR0 ; stop timer 0

RET

L2: MOV DPH, R4 ; read the output

; address and put it in

; the DPTR

MOV DPL, R5

PUSH ACC ; save A from corruption

MOV A, P1 ; get the input data

MOVX @DPTR, A ; write it out

POP ACC ; restore A

CLR TR0 ; stop timer 0

SETB C ; set the return bit

RET

END

The above code does something we have not discussed yet - it returns a value. In this case, the function
returns a bit value based on the timeout. If the hardware timed out, the operation is considered to be a
failure, and the value 0 is returned. If it did not, the input byte is written out to the specified address and
the value 1 is returned.

When returning values from a function, C51 uses
internal memory by convention, much in the way
that function parameters were passed. The
compiler will always use the current register bank
to return data from a function to the caller. The
C51 convention for returning data to a caller is
specified in Table 0-3.

Return TypeReturn Type Register(s) UsedRegister(s) Used
bit carry flag
(unsigned) char R7
(unsigned) int R6...R7
(unsigned) long R4...R7
float R4...R7
pointer R1...R3

Table 0-3

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 96

Functions which return these types can be written to use the return locations as local variables until they
must be set with the return value at the time of the function exit. Thus, if you have a function that must
return a long value, you can feel free to use R4 through R7 for any sort of temporary usage that you may
see a need for in your function. In this way, you do not have to declare segments in memory to hold your
locals, and memory usage is that much more optimized. Your functions should not assume that they can
use any of thedefault registers that are not used to pass parameters in or out of your function however.

Inline Assembly Code
Occasionally, you will have situations in which you want or need to code part of a function in assembler
but you don’t want to code the entire function in assembler or have to call a new smaller function coded
in assembler. Typical situations are hardware control operations which require very specific operations
or some dead time that can’t be controlled using C. When you run into these situations, you can use the
‘asm’ pragma to insert the assembly code you want into the C code you are running through the
compiler. Take the following function as an example:

Listing 0-10

#include <reg51.h>

extern unsigned char code newval[256];

void func1(unsigned char param) {

 unsigned char temp;

 temp=newval[param];

 temp*=2;

 temp/=3;

#pragma asm

MOV P1, R7 ; write the value of temp out

NOP ; allow for hardware delay

NOP

NOP

MOV P1, #0 ; clear P1

#pragma endasm

}

The code inside the ‘asm’ / ‘endasm’ pragma pair will be copied into the output .SRC file when the
compiler is invoked with the ‘src’ option on its command line. If you do not specify the ‘src’ option, the
compiler will simply ignore the text inside the the ‘asm’ / ‘endasm’ pair. It is important to note that the
compiler will not assemble your code and put it in the object file that it emits, you will have to take the
.SRC file and run it through the assembler to get the final .OBJ file. Running the above code through the
compiler yields the following .SRC file.

THE FINAL WORD ON THE 8051

Page 97

Listing 0-11

; ASMEXAM.SRC generated from: ASMEXAM.C

$NOMOD51

NAME ASMEXAM

P0 DATA 080H

P1 DATA 090H

P2 DATA 0A0H

P3 DATA 0B0H

T0 BIT 0B0H.4

AC BIT 0D0H.6

T1 BIT 0B0H.5

EA BIT 0A8H.7

IE DATA 0A8H

RD BIT 0B0H.7

ES BIT 0A8H.4

IP DATA 0B8H

RI BIT 098H.0

INT0 BIT 0B0H.2

CY BIT 0D0H.7

TI BIT 098H.1

INT1 BIT 0B0H.3

PS BIT 0B8H.4

SP DATA 081H

OV BIT 0D0H.2

WR BIT 0B0H.6

SBUF DATA 099H

PCON DATA 087H

SCON DATA 098H

TMOD DATA 089H

TCON DATA 088H

IE0 BIT 088H.1

IE1 BIT 088H.3

B DATA 0F0H

ACC DATA 0E0H

ET0 BIT 0A8H.1

ET1 BIT 0A8H.3

TF0 BIT 088H.5

TF1 BIT 088H.7

RB8 BIT 098H.2

TH0 DATA 08CH

EX0 BIT 0A8H.0

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 98

IT0 BIT 088H.0

TH1 DATA 08DH

TB8 BIT 098H.3

EX1 BIT 0A8H.2

IT1 BIT 088H.2

P BIT 0D0H.0

SM0 BIT 098H.7

TL0 DATA 08AH

SM1 BIT 098H.6

TL1 DATA 08BH

SM2 BIT 098H.5

PT0 BIT 0B8H.1

PT1 BIT 0B8H.3

RS0 BIT 0D0H.3

TR0 BIT 088H.4

RS1 BIT 0D0H.4

TR1 BIT 088H.6

PX0 BIT 0B8H.0

PX1 BIT 0B8H.2

DPH DATA 083H

DPL DATA 082H

REN BIT 098H.4

RXD BIT 0B0H.0

TXD BIT 0B0H.1

F0 BIT 0D0H.5

PSW DATA 0D0H

?PR?_func1?ASMEXAM SEGMENT CODE

EXTRN CODE (newval)

PUBLIC _func1

;

; #include <reg51.h>

;

; extern unsigned char code newval[256];

;

; void func1(unsigned char param) {

RSEG ?PR?_func1?ASMEXAM

USING 0

_func1:

;---- Variable 'param?00' assigned to Register 'R7' ----

; SOURCE LINE # 6

; unsigned char temp;

;

; temp=newval[param];

THE FINAL WORD ON THE 8051

Page 99

; SOURCE LINE # 9

MOV A,R7

MOV DPTR,#newval

MOVC A,@A+DPTR

MOV R7,A

;---- Variable 'temp?01' assigned to Register 'R7' ----

; temp*=2;

; SOURCE LINE # 10

ADD A,ACC

MOV R7,A

; temp/=3;

; SOURCE LINE # 11

MOV B,#03H

DIV AB

MOV R7,A

;

; #pragma asm

 MOV P1, R7 ; write the value of temp out

 NOP ; allow for hardware delay

 NOP

 NOP

 MOV P1, #0 ; clear P1

; #pragma endasm

; }

; SOURCE LINE # 20

RET

; END OF _func1

END

As you can see, the text in the ‘asm’ section of the function was literally copied into the file. This file now
must be assembled and then linked with the other object files to produce the final executable.

Improving the Assembly Generated by the Compiler
Many software designers who come from the "old school" of embedded systems design believe that the
assembler code they generate is far superior to the code that any compiler emits and therefore feel that
their project is much better off if they avoid development in higher order languages and stick to their
trustworthy assembler. For these engineers, the efficiency they believe they are gaining by using
assembler far outweighs the reasons to switch to C which we discussed earlier. It is my belief that if
these engineers wrote their code both in C and assembler code and compared the output of the compiler
to their own assembler code they would be very surprised. There is no doubt that a good assembly
coder will be able to outperform a compiler for minimal algorithms and other small pieces of code,
however, the speed and efficiency at which a project can be developed in a higher order language far
outstrips the speed of assembler code development.

For those of you who are wavering on the fence between C and assembler, let me offer you an option.
The Keil C compiler features a compile time switch which forces the emission of an assembler code file
which can be run through the A51 assembler and then linked with the other modules. This path is
equivalent to using the object file generated directly by the compiler. The advantage to this option is that

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 100

you can edit the assembler file from the compiler and perform any and all of the code tweaks you want to
improve code size and efficiency and then use this modified assembler file to link in with your project.

For the most part, you will not want to alter the assembler produced by the compiler, since it is well
optimized. However, there are cases that can be improved. One of the above examples showed you
how to force a lookup table to a certain location in the CODE memory. This was done so that when the
table must be indexed into, only the low order byte of the DPTR has to be calculated. Let's consider the
following table access from the clock project of the previous chapter.

Listing 0-12

char code bcdmap[60][2]={

 "00", "01", "02", "03", "04", "05", "06", "07", "08", "09",

 "10", "11", "12", "13", "14", "15", "16", "17", "18", "19",

 "20", "21", "22", "23", "24", "25", "26", "27", "28", "29",

 "30", "31", "32", "33", "34", "35", "36", "37", "38", "39",

 "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",

 "50", "51", "52", "53", "54", "55", "56", "57", "58", "59"

};

void disp_time(void) {

 static char time_str[32]="TIME OF DAY IS: XX:XX:XX ";

 unsigned char i;

 time_str[T_HOURT]=bcdmap[timeholder.hour][0];

 time_str[T_HOUR]=bcdmap[timeholder.hour][1];

 time_str[T_MINT]=bcdmap[timeholder.min][0];

 time_str[T_MIN]=bcdmap[timeholder.min][1];

 time_str[T_SECT]=bcdmap[timeholder.sec][0];

 time_str[T_SEC]=bcdmap[timeholder.sec][1];

 putchar(0xFF);

 for (i=0; i<32; i++) {

 putchar(time_str[i]);

 }

 disp_update=0; // clear the display update flag

}

As you can see, ‘bcdmap’ consists of only 240 bytes and therefore can be accessed using a single byte
as an offset from the base address. In the clock project, the address of ‘bcdmap’ was not fixed at a 256
boundary and thus the compiler could not make any assumptions about accessing the table and had to
deal with the entire base address plus the index into the table. The assembler code for the table access
as written by the compiler is shown in

THE FINAL WORD ON THE 8051

Page 101

Listing 0-13.

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 102

Listing 0-13

; time_str[T_HOURT]=bcdmap[timeholder.hour][0];

; SOURCE LINE # 214

MOV A,timeholder

ADD A,ACC

ADD A,#LOW bcdmap

MOV DPL,A

CLR A

ADDC A,#HIGH bcdmap

MOV DPH,A

CLR A

MOVC A,@A+DPTR

MOV time_str?42+010H,A

This same piece of code is repeated for all six accesses into the lookup table. As you can see, the
compiler emits code to add the offset into the base address of ‘bcdmap’ and builds up the new address of
the desired byte in the DPTR register pair. A simple way to improve this code is to force the address of
‘bcdmap’ to a fixed location on a 256 byte boundary in the CODE segment. The access into the table
will then need only concern itself with the lower 8 bits of the address into the table. This change is done
by generating a simple assembler code file as shown in Listing 0-14 and linking it with the object file
obtained from the existing C code. The initialization of the table must be removed from the C file since it
is done here. The C file will now contain an extern declaration of bcdmap. The definition is filled in by
the assembler file.

Listing 0-14

CSEG AT 0400H

bcdmap: DB '0' ,'0'

DB '0' ,'1'

DB '0' ,'2'

...

DB '5' ,'7'

DB '5' ,'8'

DB '5' ,'9'

END

The assembler code emitted by the compiler can then be improved to utilize the new method for
accessing the bcdmap lookup table. The new code is shown in Listing 0-15.

THE FINAL WORD ON THE 8051

Page 103

Listing 0-15

; time_str[T_HOURT]=bcdmap[timeholder.hour][0];

; SOURCE LINE # 214

MOV A,timeholder

ADD A,ACC

MOV DPL,A

MOV DPH,#HIGH bcdmap

MOVC A,@A+DPTR

MOV time_str?42+010H,A

The method of table access used by the compiler took 11 processor cycles and 17 bytes of CODE space.
In comparison, the new method takes 8 processor cycles and 12 bytes of CODE space. There is a fair
amount of improvement here given the fact that only ten lines of assembler code have been touched. If
your goal in this design is to optimize speed, then the job has been done on this section of code.
However, if the goal is to optimize CODE space usage then the code which is repeated for all six
‘bcdmap’ accesses can be written into a single function which is called six times. This greatly reduces
the amount of CODE space used by the ‘disp_time’ function. The function as coded in assembler is
shown in Listing 0-16 along with the new code for source line number 214.

Listing 0-16

getbcd: ADD A,ACC

MOV DPL,A

MOV DPH,#HIGH bcdmap

MOVC A,@A+DPTR

RET

; time_str[T_HOURT]=bcdmap[timeholder.hour][0];

; SOURCE LINE # 214

MOV A,timeholder

LCALL getbcd

MOV time_str?42+010H,A

The ‘getbcd’ function ends up in the CODE segment for the ‘disp_time’ function since it is the only
function calling it. In this way, only the ‘disp_time’ has any knowledge of the ‘getbcd’ function.

In addition to performing optimization tricks that a compiler will ignore, such as the table access above,
you can alter the compiler's output to eliminate unnecessary calls to low level service functions inserted
by the C51 system. Once again recall the clock project from Chapter Four. That project contained a
section of code which updated the current time of day and copied it to a buffer location for display. The
structure which held the time of day had the following type definition.

typedef struct { // define a type to hold

 unsigned char hour, min, sec; // the time of day

} timestruct;

As you can see the number of bytes in a structure of this type is only three. Consider this section of code
emitted by the compiler to copy the data in one of these structures into another.

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 104

Listing 0-17

; timeholder=curtime;

; SOURCE LINE # 327

MOV R0,#LOW timeholder

MOV R4,#HIGH timeholder

MOV R5,#04H

MOV R3,#04H

MOV R2,#HIGH curtime

MOV R1,#LOW curtime

MOV R6,#00H

MOV R7,#03H

LCALL ?C_COPY

This code takes 16 cycles and 11 bytes just to get to the call to copy one structure into another. The call
to C_COPY takes another 70 processor cycles to complete its work. Since the amount of bytes to be
copied is so small, the most logical optimization to perform here is to copy the structures by hand, byte
by byte. Doing this yields the following code which is a substantial improvement over the above code.

Listing 0-18

; timeholder=curtime;

; SOURCE LINE # 327

MOV timeholder, curtime

MOV timeholder+1, curtime+1

MOV timeholder+2, curtime+2

This code fragment does the same amount of work without calling any "helper" functions. It consumes
six processor cycles and six bytes of CODE space.

Editing the assembler code emitted by the compiler may not always give such favorable results as the
ones documented here, but it bears repeating that it is a way to ensure that you get the speed and ease
of development in C, but the tight and efficient code generated by an expert assembly coder.

THE FINAL WORD ON THE 8051

Page 105

Simulating Multiple Interrupt Levels
Many times throughout my experience with the 8051 I have found myself wishing that the processor
supported more than 2 levels of priority. It is frequently the case that an embedded system will have one
interrupt such as a power off interrupt that must always be serviced, no matter what else the system is
doing. This interrupt invariably ends up being set to high priority. Therefore, every other interrupt ends
up sharing the low priority level even though they should also have some level of prioritization. The Intel
8051 data book gives an example of a simple method by which assembler can be used to implement a
system trick which will simulate a third level of interrupt priority. The Intel scheme requires that the first
two levels of interrupt priority be done via the normal interrupt structure of the 8051. Those interrupts
which are to have the highest level of priority are assigned to priority one and later reenabled during the
ISRs of other priority one interrupts. A sample segment of code to implement this is shown in Listing 0-
19.

Listing 0-19

PUSH IE ; save the current IE value

MOV IE, #LVL2INTS ; enable only priority 2 ints

CALL DUMMY_LBL ; call a bogus RETI

... ; ISR code goes here

POP IE ; restore IE

RET

DUMMY_LBL: RETI ; the false exit interrupt

The theory behind this code is simple. It saves the existing state of the interrupt system by pushing IE
onto the stack. Only desired priority level 2 interrupts are allowed by changing the value assigned to IE.
A false return from interrupt is then called to allow the hardware to generate more priority level one
interrupts. Of course the only interrupts that are now allowed are those that have been given "level two"
status.

This implementation allows you to extend the capabilities of the 8051 without any changes to the
hardware system such as addition of PICs (Programmable Interrupt Controllers) and such. The
additional software has a minimal effect on the capability of the ISR to respond to the interrupt. The
overhead involved is 10 processor cycles per interrupt. Most systems will be able to withstand the added
latency. The approach of simulating a third interrupt priority level in software is easily extended to allow
each interrupt to be given its own level of priority if so desired. All that is involved is to place this code at
the beginning of each ISR and ensure that the mask written to IE in the ISR allows only the desired
interrupts to occur and strips out the remaining interrupts.

Suppose that you have a system that for one reason or
another has to have each of the ossible interrupt sources
have its own level of priority. Thus, your system will need
five different levels of interrupt priority! Assume that the
interrupt sources are assigned to the priority levels as
shown in Table 0-4.

Implementation of this scheme will follow along the lines
of the above example. In this case, you must carefully
choose the mask values that you use for IE in each ISR
to allow only higher priority interrupts. In other words, the value used in the serial interrupt ISR should
only allow timer one and external one interrupts - it can not allow any other sources to be serviced. One
simplifying fact in this scheme is that you do not have to deal with the added code for the timer zero
interrupt since it is the lowest priority, and the external interrupt 0 since it is the highest priority.

LevelLevel SourceSource
0 (lowest) Timer 0
1 External Interrupt 1
2 Serial Interrupts
3 Timer 1
4 (highest) External Interrupt 0

Table 0-4

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 106

The initialization code of this project must set the timer 0 interrupt to priority level zero in the IP register.
All the remaining interrupt sources must be set to priority level one. For interrupt level one through
interrupt level three you must establish the mask to be set into the IE register. These are shown in
Listing 0-20.

Listing 0-20

EX1_MASK EQU 99H ; allow serial, timer 1 and ext 0 intrs

SER_MASK EQU 89H ; allow timer 1 and ext 0 intrs

T1_MASK EQU 81H ; allow ext interrupt 0

At this point, the priority level simulation code can be included at the beginning of each ISR in the
system. The following listing shows the assembly language prologue of each of the ISRs. The timer 0
interrupt and the external interrupt 0 ISRs are written entirely in C since they do not require any sort of
trickery to execute properly with the rest of the system.

Listing 0-21

?PR?EXT1?LOWLVL SEGMENT CODE

EXT1: PUSH IE ; save the current IE value

MOV IE, #EX1_MASK ; enable only priority 2 ints

CALL DUMMY_EX1 ; call a bogus RETI

LCALL ex1_isr ; ISR function in C

POP IE ; restore IE

RET

DUMMY_EX1: RETI ; the false exit interrupt

?PR?SINTR?LOWLVL SEGMENT CODE

SINTR: PUSH IE ; save the current IE value

MOV IE, #SER_MASK ; enable only priority 2 ints

CALL DUMMY_SER ; call a bogus RETI

LCALL ser_isr ; ISR function in C

POP IE ; restore IE

RET

DUMMY_SER: RETI ; the false exit interrupt

?PR?TMR1?LOWLVL SEGMENT CODE

TMR1: PUSH IE ; save the current IE value

MOV IE, #T1_MASK ; enable only priority 2 ints

CALL DUMMY_T1 ; call a bogus RETI

LCALL tmr1_isr ; ISR function in C

POP IE ; restore IE

RET

THE FINAL WORD ON THE 8051

Page 107

DUMMY_T1: RETI ; the false exit interrupt

With a small amount of assembler code, the system now has functionality far beyond that which the
hardware provides. The best part of this design is that the majority of the system can still be coded in C.
As always, the code for any ISR can be done in assembler and inserted in the above skeleton in place of
the long call to the C routine.

Low Level Timing Issues
Many times you will have portions of assembler code which must perform tasks that require specific
timing. If the timing required is sufficiently tight, these routines have to coded in assembler. Quite
frequently, such timing will have to be accurate to one or two processor cycles. In cases like this the
simplest way to ensure your assembler code is correctly timed is to maintain a processor cycle count in
the comment section. In this way, the code is easier to design and the count necessary is documented
along with the code. When the code changes, the effects of the change on the timing are immediately
seen and can be taken into account for.

As an example, suppose that you had to clock out a train of bits serially on pin T1. Another system is
monitoring the output and sampling it at a rate of 100kHz. Each bit value must be prefaced by a high-
low transition of 2µs and then the bit value must be presented for 3µs. The remainder of the time T1
should be held low. The timing diagram for this is shown in Figure 0-1.

The software executes on a system using a clock rate of 12MHz and thus has an instruction cycle time of
1µs. It would be difficult to guarantee such timing constraints using a C function, so the routine must be
written in assembler. As its parameter it will receive the byte to ring out (MSB first) on pin T1 when
called. The function is shown in Listing 0-22 below.

Figure 0-1 - Signal Timing

Listing 0-22

; this function has the following C declaration:

; void sendbyte(unsigned char);

?PR?_sendbyte?SYS_IO SEGMENT CODE

?DT?_sendbyte?SYS_IO SEGMENT DATA OVERLAYABLE

PUBLIC _sendbyte

PUBLIC ?_sendbyte?BYTE

RSEG ?DT?_sendbyte?SYS_IO

?_sendbyte?BYTE:

BITCNT: DS 1

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 108

RSEG ?PR?_sendbyte?SYS_IO

_sendbyte: PUSH ACC ; save the accumulator

MOV BITCNT, #8 ; set to ring out 8 bits

MOV A, R7 ; get the output pattern

RLC A ; get the first bit in C

LOOPSTRT: JC SETHIGH ; 2, 9 check the output value

SETB T1 ; 1, 0 set the preface

CLR T1 ; 1, 1 clear the preface

 RLC A ; 1, 2 get ready for the next bit

NOP ; 1, 4 burn extra time

NOP ; 1, 5

NOP ; 1, 6

DJNZ BITCNT, LOOPSTRT; 2, 7 check if we're done

SETHIGH: SETB T1 ; 1, 0 set the preface

CLR T1 ; 1, 1 clear the preface

SETB T1 ; 1, 2 set the data bit

 RLC A ; 1, 3 get ready for the next bit

NOP ; 1, 4

CLR T1 ; 1, 5 clear the output

DJNZ BITCNT, LOOPSTRT; 2, 7 check if we're done

POP ACC ; restore the accumulator

RET

END

As you can see, the timing comment for each line consists of the number of cycles taken to execute that
line of code followed by the total number of cycles used. Since this system is based on a ten cycle loop
(because each bit time is ten cycles), the cycle count ends up being modulo 10 (i.e.: it counts from 0 to
9). It does not matter which instruction you choose to be the reference (count == 0) instruction as long
as you are consistent in using that point in the timing everywhere. In this case I have chosen my
reference instruction to be that point in the code where the preface bit is pulled high. You will notice that
the count for both of these places in the code is set to 0. It is critical that if you have two paths through a
timed loop such as this one that you make sure that both paths take an equal amount of time to execute
- thus, one of the paths above contains more NOPs than does the other path to balance the number of
cycles.

The above example code works great as long as there is no change in the oscillator frequency of the
system it executes on or in any of the hardware which must monitor this system. For the most part it is
safe to assume that the oscillator frequency will not be changing. However, let's assume that you are not
producing the equipment which monitors the output of T1. Instead, some other company of “geniuses”
has been contracted to this. They seem to be having some trouble getting their system to work at the
100kHz rate chosen. Due to design flaws "beyond their control" they correctly see the preface bit, but
can not get their system to sample the signal in time to read the data bit that follows it. Their request is

THE FINAL WORD ON THE 8051

Page 109

that you hold the data bit longer so that they may have a chance to sample it. In this case, you know that
the other engineers will probably want to change the hold time more than once. To avoid having to
retime the assembler code each time they call with a new hold duration, you should rewrite the function
to allow the caller specify the number of processor cycles the data bit should be held.

While this will make future changes a lot easier to do, it will certainly complicate matters for the
assembler function. What this means is that the function which is called will have to have some way to
kill a varying amount of time to allow for the varying hold time of the data bit. The function has now
been changed to use a delay loop to kill the required amount of cycles between clocking the data bit out
and freeing the signal.

Listing 0-23

?PR?_sendbyte?SYS_IO SEGMENT CODE

?DT?_sendbyte?SYS_IO SEGMENT DATA OVERLAYABLE

?BI?_sendbyte?SYS_IO SEGMENT BIT OVERLAYABLE

PUBLIC _sendbyte

PUBLIC ?_sendbyte?BYTE

PUBLIC ?_sendbyte?BIT

RSEG ?DT?_sendbyte?SYS_IO

?_sendbyte?BYTE:

BITCNT: DS 1

DELVAL: DS 1

RSEG ?BI?_sendbyte?SYS_IO

?_sendbyte?BIT:

ODD: DBIT 1

RSEG ?PR?_sendbyte?SYS_IO

_sendbyte: PUSH ACC ; save the accumulator

MOV BITCNT, #8 ; set to ring out 8 bits

CLR C

MOV A, R5 ; get the number of cycles

; to delay

CLR ODD ; assume that delay is even

JNB ACC.0, P_EVEN

SETB ODD ; delay turned out to be even

DEC ACC ; for odd numbers of delay,

; remove one cycle to account

; for the extra NOP

P_EVEN: SUBB A, #4 ; subtract out the overhead

; of the delay loop

RR A ; divide by 2 to get the number

; of extra DJNZs to execute

MOV DELVAL, A

CHAPTER 5 - ASSEMBLY AND C ON THE 8051

Page 110

MOV R5, A

JNB ODD, SEND_EVEN

SEND_ODD: MOV A, R7 ; get the output pattern

RLC A ; get the first bit in C

LOOP_ODD: JC SETHIGH_O ; 2, 9 check the output value

SETB T1 ; 1, 0 set the preface

CLR T1 ; 1, 1 clear the preface

 RLC A ; 1, 2 get ready for the next bit

NOP ; 1, 3

NOP ; 1, 4

MOV R5, DELVAL ; 2, 6

DJNZ R5, $; 2, 8

NOP ; 1, 9

DJNZ BITCNT, LOOP_ODD ; 2, 11 check if we're done

SETHIGH_O: SETB T1 ; 1, 0 set the preface

CLR T1 ; 1, 1 clear the preface

SETB T1 ; 1, 2 set the data bit

 RLC A ; 1, 3 get ready for the next bit

NOP ; 1, 4

MOV R5, DELVAL ; 2, 6

DJNZ R5, $; 2, 8

CLR T1 ; 1, 9 clear the output

DJNZ BITCNT, LOOP_ODD ; 2, 11 check if we're done

POP ACC ; restore the accumulator

RET

SEND_EVEN: MOV A, R7 ; get the output pattern

RLC A ; get the first bit in C

LOOP_EVEN: JC SETHIGH_E ; 2, 9 check the output value

SETB T1 ; 1, 0 set the preface

CLR T1 ; 1, 1 clear the preface

 RLC A ; 1, 2 get ready for the next bit

MOV R5, DELVAL ; 2, 4

DJNZ R5, $; 2, 6

NOP ; 1, 7

THE FINAL WORD ON THE 8051

Page 111

NOP ; 1, 8

DJNZ BITCNT, LOOP_EVEN ; 2, 10 check if we're done

SETHIGH_E: SETB T1 ; 1, 0 set the preface

CLR T1 ; 1, 1 clear the preface

SETB T1 ; 1, 2 set the data bit

 RLC A ; 1, 3 get ready for the next bit

MOV R5, DELVAL ; 2, 5

DJNZ R5, $; 2, 7

CLR T1 ; 1, 8 clear the output

DJNZ BITCNT, LOOP_EVEN ; 2, 10 check if we're done

POP ACC ; restore the accumulator

RET

END

 The function first records whether the required delay will be odd or even. It then must determine the
amount of iterations of a DJNZ loop it needs to execute to kill the requested delay. To do this, the
minimum overhead of the delay loop (4 cycles for even delays and 5 cycles for odd delays) is subtracted
out of the total delay. The remaining number is then divided by two to get the number of DJNZ
instructions to run. The divide by two is done because the DJNZ instruction takes two cycles each.
Since the minimum delay in the signal is now six cycles, the calling function must take this into account.

You now have a function which will meet the ever changing requirements of the other project. The code
is easier to update since the program only has to be changed in the C code and not retimed in the
assembler code. If this were really an advanced project, the delay would be received from the part of the
project that monitors the output signal on pin T1. When changing the delay value, you must bear in mind
that increasing this number will lower the amount of data that can be transferred by this system per unit
time.

Conclusion
In general you can make the number of times you must code in assembler far and few between, but just
because you are using C does not mean that you do not have the option of using assembler with it when
required. The whole point of this chapter has been to demonstrate to you that assembler still has its
definite place in systems development. The high level language is there for you to use as a tool to
quickly and reliably develop your product. When you need to fine tune it or squeeze out that extra little
bit, look to the tools and concepts discussed here to help you along.

CHAPTER 6 - SYSTEM DEBUGGING

Page 112

- System Debugging

Introduction
Contrary to what many engineers would like to believe, there is not a set way to debug an embedded
system. The complexity added by hardware interfaces and time constraints makes embedded systems
far more complex than their PC or mainframe application counterparts. These systems can easily be run
in a debugger or software probe type of environment and can easily be single stepped at the user's own
pace. On the contrary, embedded systems often have to be run on the target hardware at full speed to
complete their debugging. This means that the closest you can get to a debugger is an ICE. You will not
be able to single step your way through the time critical portions of your code because the single
stepping will mess up all the timing of the code. Systems which depend on a periodic tick for their timing
or use a watchdog timer to reset the system are even more difficult to debug.

Because of the complexities in embedded systems, many debugging approaches exist. This chapter will
explore some of these approaches and should be used not as a handbook to system debugging but as a
starting point to give you ideas upon which to build when designing and debugging your own systems.

Designing the System to Aid Debugging
The success of your integration and debugging efforts can often be enhanced by designing in the
appropriate features during the design phase. It is useful to have a spare serial port to dump debug
information out of. Short of this, it is also useful to have a set of I/O pins that can be changed to reflect
program state or variable state during different points of the program. The trouble with such approaches
is that it often adds hardware to the system that would not normally be there. The argument for it
however, is that there will be room to expand the capabilities of the system later if need be. In cases
where neither of these options has been available to me, I have either dumped debug information to a
display panel or recorded it in memory and downloaded it after the program had completed whatever test
was in progress.

Regardless of the method you choose to debug your system, it will pay off big dividends to allow for
some I/O capability as spare or for debugging use. During initial phases of hardware design you should
ensure that a wire wrap board is built with these extended I/O capabilities and do as much of the
integration and final testing of the system as you can at that point in the project. Obviously, you will
have to perform more integration and testing once PCBs are made and, at this point your debug ports
may be gone, but at least you will have eliminated most of the major problems in the system. Once you
get to the point of debugging with a PCB you will find yourself using such tools as an oscilloscope and a
logic analyzer to debug your system. You should not become attached to using the ICE. While the ICE
is the most convenient way to debug your system, there is not always one available. I have worked in
situations where there was no ICE at the entire company. At other times, there was only one ICE that
everyone fought over. Rather than wait in a queue for the in circuit emulator to come free from another
project, I learned to debug my systems without the aid of such luxurious tools.

Debugging without an ICE quickly makes you adept at using a digital storage scope. While this skill
alone will not help you debug and understand your system, it will get you on the way. If you have a fairly
good idea of what your system should be doing to and with the hardware at certain points, you can use a
scope to determine where in the code the processor is at any given point or where in the code the
processor went into la-la land or executed your logic error. Once you can determine these points, you
can use techniques like inserting debugging statements to dump data to a display, serial port or I/O pin to
help pin point the problem. At this point you can also fall back on the trusty simulator.

THE FINAL WORD ON THE 8051

Page 113

Using a Debug Port
One of the most basic approaches to getting inside your executing embedded system without an ICE is
to dump data from a debug port. Typically, such data would include system events, debug statements
indicating that the program had reached a certain point in the program, values of variables, etc. The
debug port is typically a serial port that is either dedicated to debug information or is multiplexed in
function between debug data and normal interface data for the system. The trouble with an 8051 based
system is that there is typically just one serial port available for use which means that the port will have
to be multiplexed. If you have the luxury of using one of the derivatives with two serial ports, take
advantage of it and you will not have to worry about any of your debug data affecting the normal data
flowing through the serial port.

A serial debug port begins to run into trouble when you wish to dump data to a PC using 10 bit frames,
but your system normally uses the serial port in another mode or at a non-standard data rate. In this
case, you will find that a debug port may be too obtrusive to the system when compared with the insight
that it provides. Additionally, the extra overhead of dumping data out of a serial port may affect the
timing of your system internally and cause bugs that would not normally be there or, even worse, mask
bugs that would normally be there.

Debug ports are best suited in systems which do not place the highest premium on processing time and
which have a spare serial port. However, this should be obvious to you from this discussion. The real
time clock example from Chapter 4 would be a prime candidate for this type of debugging namely
because of its spare serial port and bounty of spare processing time. If you were to use a debug port
type of system with this example, the code would be interrupt driven and output debug data from a ring
buffer. An example of a driver to do just that is shown in Listing 0-1.

Listing 0-1

#include <reg51.h>

#include <intrins.h>

#ifndef NULL

#define NULL ((void *) 0L)

#endif

#define DB_MAXSIZE 0x20

unsigned char db_head, db_tail, db_buffer[DB_MAXSIZE];

/***

 Function: debug_init

 Description: Sets the serial port up for debug use and resets

 the ring buffer pointers to 0.

 Parameters: None.

 Returns: Nothing.

***/

void debug_init(void) {

 SCON=0x90; // use serial mode 2 and dump to

 // another 8051 at high speed

 db_head=db_tail=0; // set the head and tail to the

 // base of the ring buffer

CHAPTER 6 - SYSTEM DEBUGGING

Page 114

 ES=1; // allow the serial interrupt

}

/***

 Function: debug_insert

 Description: Copies the contents of the memory block pointed to

 by the first argument into the ring buffer.

 Parameters: base - pointer. Indicates the point in memory from

 which to copy data into the ring buffer.

 size - unsigned char. Indicates the number of

 bytes to be copied from the memory block.

 Returns: Nothing.

***/

void debug_insert(unsigned char data *base, unsigned char size) {

 bit sendit=0; // flag to indicate if a serial

// transmission must be

// initiated

 unsigned char i=0;

 if (!size || base==NULL) { return; }// check for NULL buffer

 if (db_tail==db_head) { // if these two are equal before

// insertion, the ring buffer is

// empty

 sendit=1;

 }

 while (db_tail!=db_head && i<size) { // copy bytes while the

// buffer has space and the

// block has data

 db_buffer[db_tail]=base[i]; // copy the current byte

 i++;

 db_tail++; // move the pointer

 if (db_tail==DB_MAXSIZE) { // check for pointer rollover

 db_tail=0;

 }

 }

 if (sendit) { // if a byte needs to be sent,

 SBUF=db_buffer[db_head]; // do it

 }

}

/***

 Function: debug_output

 Description: ISR for the serial port. Increments the ring

 buffer head pointer and sends out the next byte if

THE FINAL WORD ON THE 8051

Page 115

 the pointer has not caught the tail pointer.

 Parameters: None.

 Returns: Nothing.

***/

void debug_output(void) interrupt 4 {

 RI=0; // clear RI no matter what

 if (_testbit_(TI)) { // check and clear TI

 db_head++; // advance the head pointer

 if (db_head==DB_MAXSIZE) { // watch out for rollover

 db_head=0;

 }

 if (db_head!=db_tail) { // check for more data in the

// buffer

 SBUF=db_buffer[db_head]; // send the next byte

 }

 }

}

You can see that data blocks are inserted into the ring buffer by calling a manager function which takes a
pointer to a memory block holding outgoing data and a count which indicates the number of bytes that
are in this block. The data is then copied into the ring buffer and the tail pointer of the buffer is updated
accordingly. You can vary the size of the ring buffer depending upon the amount of RAM you have to
work with and the amount of debug data you are dumping from the program. The RTC program from
Chapter 4 does not have an external RAM and thus must implement the ring buffer in internal RAM.
This severely limits the amount of data that can be queued up at one time. Fortunately, the program is
relatively small and does not execute at blinding rates. Therefore, the ring buffer should be of sufficient
size for this application.

Using Monitor-51
If you have some flexibility in the design of the development board for your system, you might want to
request that it be designed such that you can perform both read and writes to the CODE memory space.
This means that the system will have to tricked into believing that it now has only one memory space
instead of two. In other words, the system will be Von Neumann wired to allow this. The advantage to
this is that you can download your code to the memory using a simple driver program on the 8051. This
will get you out of the painful cycle of making a code change, compiling it, burning it on a EPROM,
testing it and repeating.

If your system can be set up to write to the CODE space, you should consider using the Monitor-51
program that comes with the Keil C51 package. This program will allow you to run your code on the
target and perform many of the debugging functions that an ICE would let you do. This package requires
that you load a communications and control module into the CODE space with your software. This
module will communicate via your 8051's serial port to a PC. On the PC you run another Keil program
called MON51.EXE. This program acts as an interface between you and your target system. Its
character based approach to the interface is not the prettiest thing in the world, but it effectively gets the
job done. If you are looking for a poor man's emulator, look no farther than the Keil Monitor package.

The Monitor program will let you view various memory segments and alter their contents. You can check
the values in the SFRs, disassemble your code, and add new code using an in-line assembler. You can
also set execution break points, and run the program in real time to these points. Once the system is
halted, you can single step through your assembler code instruction by instruction. You should note that
many of these features require that your system be able to read and write to the CODE memory
segment.

CHAPTER 6 - SYSTEM DEBUGGING

Page 116

Monitor can be configured to run on systems which do not have an SRAM in the CODE memory space,
but you will lose the capability to set break points, single step the program and change the contents of
the CODE memory space. Monitor-51 will need to take over control of your serial port and one of your
timers (unless you have an 80515 or 80517 controller). However, these are probably the most serious of
its requirements. Otherwise, you will have to give up 2816 bytes of the CODE space and 256 bytes of
the XDATA space, but neither of these amounts is high at all.

You will have to adjust the Monitor-51 install.a51 file to suit your systems needs. It comes set up to use
the serial port at 9600 baud if you have an 11.059MHz system. Additionally, it will want to push all of
your interrupt vector above address 8000H. If this is not what you want, there is a constant at the
beginning of install.a51 that you can change. All of this, and the operation of the control interface on the
PC is well documented in the Keil Software manuals, and thus will not be repeated here. If your
company can not afford an emulator, I strongly suggest that you look into using the Monitor package to
aid you in testing and debugging your system.

Using I/O Ports for Debug
If you are not fortunate enough to be able to use the serial port as a debug port, another popular method
to gain insight into an embedded system is to use discrete I/O lines. These can be anything from the
port pins of the 8051 (for example port 1) to a 74373 data latch mapped in the external memory space.
At the very least you should be able to find a few spare pins to use to indicate the internal execution
point of your system. Obviously, the best thing for you as a system integrator is to have eight pins that
you can use to show one byte at a time. It is nice to be able to connect these pins to LEDs and such so
you can get a visual indication of the state of the lines, but you can also use an oscilloscope, if you are
stuck using the more painful route.

Most of the systems I have had to integrate have been done using output pins to indicate the state of
something. Oftentimes, one pin is used to indicate that the system is actually executing. To do this the
pin is toggled at some set frequency, and all you have to do is check the pin for a given period of time to
know that the system is still running and is fairly stable. Other pins are used to indicate that the program
has passed some point in the code or is in a given state waiting for input for example. You can also latch
the value of a register to these output pins and then stop the program waiting for an outward indication
that it is okay to proceed. The main point is that there is no set way to use the output pins to debug the
system. You will have to determine the usage for each pin at each stage of your debugging process.
One thing that usually happens is that you end up debugging the system piece by piece. What I mean to
say by this is that you will only be able to see enough information to debug one problem at a time. This
is contrasted by a serial debug port which will allow you dump a fair amount of data and gather
information on many portions of the program.

If you are lucky enough to have access to a logic analyzer you can run the outputs you are using to
debug the system into the analyzer and have it record what it sees. In this way you will be able to dump
more information to the port than you could if you had to monitor the entire system using an oscilloscope.
If you end up using just a scope and your wits to debug the system, take heart because it can be done.
In fact, most the projects I have worked on have not had any tools other than a scope to use in the
debugging cycle. This just makes those projects with an ICE all the more pleasurable!

THE FINAL WORD ON THE 8051

Page 117

Using the ICE
This section can not and will not provide a discussion of how to operate the various in circuit emulators
available for the 8051. There are too many varieties and too many updates to the user interface coming
out for a book like this to handle. Furthermore, any operational issues regarding the ICE you have or are
evaluating should be covered by operational manuals and technical support personnel. This section will,
however, give you a few pointers on the use of the ICE.

The first and most obvious point is to prepare your code for debugging in the ICE by recompiling all
source files (including assembler files) using the ‘debug’ option. For C files which are using structures or
arrays that you will wish to access, alter or examine by index compile them with the ‘objectextend’
switch. This will force the system to place all the necessary debug information in the object files
produces and ultimately in the executable file produced. This may sound like an intuitively obvious
point, but you would be surprised to find out how many new comers dump their code into the ICE without
debug information and are shocked when their C code does not appear but is instead replaced by
assembly code lacking any symbols at all.

When installing the ICE into your system you should pay careful attention to the settings of the ICE pod.
Many of these pods allow you run the ICE off of your system's clock or a built in clock. If you have code
that is at all dependent upon the frequency of the oscillator, it is necessary that you make the ICE use
your system's oscillator otherwise you will find that your code does not exhibit the behavior that you
expected at all. Any sort of timer generated system ticks will occur at the wrong rate, and if you use the
serial you will find that your receiving system gets nothing but garbage because of baud rate errors.

Similarly, you should force the pod to run off of your system’s power and reset signals. This way, any
external watchdog timers or glitches in the system hardware will affect the ICE and you will get warning
of these occurrences so they can be handled properly. Additionally, using the hardware's power supply
to run the pod will allow you to test that much more of the hardware.

When debugging systems that have a watchdog or periodic system tick (whether from a timer or external
source) keep in mind that single stepping the system or employing breakpoints will not stop these timers.
They will keep running while you are examining code or data and once the program is single stepped
again, their interrupt will be fired. Oftentimes this provides a source of great inconvenience. Usually it is
helpful to disable watchdog timers until the final stages of testing. As for system ticks, a good practice is
to disable their interrupt as soon as code execution is halted. This way, you won't have to run through
your tick ISR every time you want to single step code in another section of the program.

If you are evaluating ICE's for purchase, I strongly suggest that you buy one with a trace buffer. Many
products offer trace buffers from 16K all the way up to 128K frames. These buffers store the instruction
executed, the value of the instruction pointer, the port pins, and can also store the value of other
input/output pins that you connect to the pod. The trace buffer will more than pay for itself the first time
you use it to find the source of a system crash. Using a trace buffer, this can usually be done in a
fraction of the time taken by other methods. The ability of many emulators to record the values of data
lines that you specify or connect to the pod will give you some of the capability of a logic analyzer
without the extreme cost of one.

CHAPTER 6 - SYSTEM DEBUGGING

Page 118

Conclusion
If you can get regular use of an ICE, it will prove to be a very powerful and valuable tool in your system
testing and integration efforts. However, it is important that you not become completely dependent upon
the ICE for debugging the system. Eventually, you will face the situation where there is no ICE or the
ICE is of little use in debugging the system. Such is often the case in systems which must control
hardware components like EEPROMs or custom hardware interfaces and the signal timing is critical. In
these cases you will have to be able to use a scope or some other tool to instrument your system.

This brief chapter should have provided you some insight into the other tools available for your use in
debugging your projects. It is important to reiterate that the methods for debugging a real time system,
or any system for that matter, are not learned from a book. They are learned by experience. Books can
only point you in certain directions which may or may not be useful to you. The purpose of this chapter
has been to provide you with some tools and concepts that you can apply in the different situations you
face.

THE FINAL WORD ON THE 8051

Page 119

- Interrupt System Issues

Introduction
This chapter will discuss several system design issues that you should be aware of when designing a real
time system. Many of these issues will deal with software design only, but others will have a bearing on
hardware design. The main hardware focus in this chapter will be in the area of system interrupts. That
is, it will discuss the main differences between using an interrupt to trigger some action and using a
polling method to trigger some action. Software design issues will focus on program structure and
foundation. With no further ado, let's get into it.

Interrupt Driven Systems vs. Polled Systems
During the design of an embedded system which does a large amount of processing based on input
signals you will find yourself trying to decide if a given signal should be polled or if it should trigger a
system interrupt. The answer to this question is fairly straightforward. A good approach involves
examining two aspects of the system. First, consider how fast the system must respond to a state
transition of the input signal. If the maximum response time is very low, then the signal must be allowed
to generate an interrupt in stead of being polled. No matter how well your system polls an input, its
average response time will always be slower than an interrupt driven system. Second,I consider how
quickly you expect the input signal to change state. If it is a signal that will toggle at a frequency that
approaches 1/10th of the instruction cycle frequency, then you should look to have the 8051's interrupt
system monitor the signal because of the tight polling loop that is otherwise required.

Obviously, there will be exceptions to the above two cases. Most notably are systems where there are
many input sources each of which seems to require an interrupt. In these cases you must either work out
a scheme to share the interrupts amongst the input sources or relegate some of them to being polled. In
other words, there must be some sort of ranking by importance established for the input signals. For
example, if you have an engine management system which must monitor the sensor signals coming
from the engine as well as respond to status requests from a master CPU you would most certainly rate
the sensor inputs above the status request. Missing a status request would probably not be catastrophic
whereas missing a change in input state from a critical sensor may prove to be very costly to the engine.
There is no way for anyone to tell you how to determine the importance of your input signals, only you
and your design team can decide such things. These decisions must be based on analysis from a
systems standpoint, not just a software or hardware point of view.

Once you have established the ranking amongst your system inputs, you must determine the points at
which you will bring these inputs into the processor. When you are dealing with polled inputs, the ones
which require quick access should obviously be brought directly to the processor via one of its port pins
(usually port one). This will allow for minimum access times to the signal since the port pins can be read
in one instruction cycle. Signals which do not require such speedy access can be interfaced to the
processor via an input latch through the system bus. From earlier discussions, you should remember
that this will take two processor cycles once you have the DPTR set to the correct address. When
deciding upon the placement of these signals, you may also want to consider the frequency of access to
them. If you have a signal that you will be polling 10000 times a second and one that you will be polling
once every other second, it will not make sense to interface the first signal to the system via the bus
while the second input is attached to one of the port pins due to the total amount of time that will spent
monitoring each signal. In general, you must sample your signal at a rate that is twice your expected
frequency if you expect to respond to any changes in signal state.

The method you use to poll your input signals varies based upon the signal and the actions associated
with its state changes. If you have inputs which relate to a human interface then it will suffice to poll
them at a rate of 10Hz. A human is a relatively slow I/O device, and you will find that when they are
using things like switches and buttons to interact with your system they do not notice the difference
between polling at 10Hz or polling at some faster rate. A user interface signal can thus be polled in a tick

CHAPTER 7 - INTERRUPT SYSTEM ISSUES

Page 120

interrupt or response section to a tick in the main loop. Examples of such approaches were discussed in
Chapter 4.
When you are dealing with signals that change state at a very fast rate or which are of high importance
you have two approaches. You can still use a software tick routine to poll the signal, however, you will
need to cause the tick interrupt to occur at a much higher frequency. Otherwise you can make the
processor constantly sample the signal when it is not performing any other tasks. The drawback to both
of these approaches it that they both use up more of the available processing power of the system.
Increasing the tick rate does this because the system must process more interrupts. Constantly polling
the signal does this because any spare processing time is now tied up in monitoring inputs manually. If
you are designing a system which must run off of battery power and places a premium on battery life,
neither of these approaches are very attractive. In these cases, you must look at your inputs and rank
them in order of importance. The higher speed, more critical inputs should be interfaced to the
processor via the external interrupts, the remainder of the signals can be polled.
The main purpose behind this is to allow you to establish an internal priority scheme between the
interrupts and the actions triggered by the polled inputs. I typically put my most important interrupt
signals on the INT0 and INT1 pins in order of significance. There is no specific reason for this other than
simple convention. If you need more than these two distinct external interrupt sources, there are ways to
expand the number of external interrupt using other port pins of the 8051 or sharing the two external
interrupts that exist. These topics will be discussed later in this chapter. For now, you should remember
that your signals which will require immediate reaction by your system should be given the ability to fire
an interrupt in the processor. You have seen in previous chapters that the 8051's interrupt latency is
very low for ISRs is written in C or assembly. Similarly the inputs which will not be in an active state for
very long are better served by interfacing them to the processor via an interrupt. This will eliminate the
need for a sampling routine which is triggered periodically at a rate dictated by the nature of the signal.

Level vs. Edge Triggered Interrupts
There are two interrupt triggering methods supported for external interrupts on the 8051 - level and edge
triggered interrupts. There are trade offs between these two types of interrupts and certain signal types
will dictate the interrupt triggering type that should be used.

Level Triggered Interrupts
Level triggered interrupts are the easiest to understand. The processor merely samples the input signal
every instruction cycle and if it sees a logic level 0 on the input, it fires an interrupt in the system. Thus,
as long as the given input is low, the processor will keep signaling that there is an interrupt. Conversely,
if you have a signal which goes low for one cycle and then returns to a logic level one the interrupt will
not be cleared. The 8051 will hold the interrupt signal until the routine can be vectored to and is
completed as signaled by the execution of a RETI instruction. If, however, your input signal goes low
and fires an interrupt, but does not return high after your ISR for that interrupt is complete, the processor
will immediately request another interrupt for the same source. As long as the signal is low, the interrupt
signal will be held active by the processor. This may not be desired in situations in which the input signal
is not freed by the hardware device requesting the interrupt until some time after you service the
interrupt. If this is the case, you will find that your system executes the ISR for that input many more
times than is required. In such a case, it makes sense to avoid level triggered interrupts and change
over to a system which uses edge triggered interrupts.

Edge Triggered Interrupts
An edge triggered interrupt is caused by a high to low transition in the input signal. As was the case with
level triggered interrupts, the input signal is sampled once every instruction cycle. However, in the edge
triggered method, an interrupt is caused by a sample in which the signal is a high immediately followed
by a sample in which the signal is a low. Once this transition is detected, an interrupt will be signaled by
the processor. As was stated above, such a method is useful for devices which will not pull the signal
back to a logic level one immediately upon being serviced. This is because only the falling edge of the
signal will cause the interrupt, not the logic level zero state of the input signal. This means that

THE FINAL WORD ON THE 8051

Page 121

eventually your input signal must return to a logic level one if it is to ever cause another interrupt in the
system.

When designing your interrupt structure you need to keep the above discussion in mind. You will find
that edge triggering works well for devices that do not make an explicit interrupt request and therefore do
not typically require software service to clear their interrupt signal. The most common example of this is
a system tick. Such signals are usually generated by an RTC or multivibrator circuit. These devices
often provide an input signal with a fixed duty cycle (such as 50%) meaning that for a certain portion of
their cycle they are held high and then they are held low for the remaining portion of their cycle. The
problem with using a level triggered interrupt is that the entire portion of the cycle that the signal is low
will cause a big burst of interrupt activity which, if it does not mess up the timing and function of the
software, will at the least prove to be a big waste of system resources.

Other systems that fall into this same category are signal decoders. As an example, consider a system
which converts serial data to parallel by sampling an input signal and running the sample through a
decoder circuit. This circuit generates an interrupt each time the signal meets certain criterion. The
trouble is that the signal meets the criterion for a fixed duration and this time period can be sufficiently
long to cause more than one interrupt if the system is set to level triggering.

Level triggered interrupts are most useful in situations where a device may be requesting interrupts very
frequently. For example, if you have a device which periodically has high bursts of service requests, it
may want to trigger another interrupt before you can service the previous request, and thus will not pull
the request line back high. In an edge triggered setup, you will never receive another interrupt from this
device because the request line will always be held low and thus the processor will not see any more
high to low transitions in the state of the signal. A level triggered interrupt will not have this problem.

Level triggered interrupts will also come in handy in situations where multiple devices are requesting
service from the processor via the same input (i.e.: the interrupt request line is being shared). In this
case, your code may service one interrupt request and while this is occurring, but before the input line
was pulled back high, another device requests service by holding the line low. In an edge triggered
system no more interrupts will occur because the line is held low and will not transition again. It is easy
to see that this situation and the one discussed above are corrected by using level triggered interrupts.
Since the input line is held in the low state, another interrupt will be caused as soon as the ISR finishes
its first run. This will force the software to provide whatever service is being requested via that interrupt
signal. This process will repeat until the software has serviced all the devices.

Invariably you will have systems which have more interrupt signals than there are interrupt pins. These
situations will occur regardless of the tricks you use to extend the number of external interrupts. In these
cases you will have to utilize some method which will allow you to share the interrupt pin amongst more
than one possible interrupt source. The way in which you do this will depend upon the number of
sources that must share the interrupt, the speed in which you must determine which source fired the
interrupt and the number of parts you can add to your system.

Sharing Interrupts
When you must multiplex an interrupt line among several inputs there are at least three approaches
which can be taken, each of which incrementally raises the number of hardware components that must
be added to the system.

Assume that you have two input signals from devices which indicate that they require service by pulling a
signal low and holding it low until the service request is fulfilled. The architecture of the system you are
designing dictates that these two signals share the INT1 pin of the 8051. In terms of parts count, the best
way to do this is to AND the two signals together and attach the output of the AND gate to INT1. Both
signals can then be routed to spare input port pins of the controller to allow the processor to determine
which source is causing the interrupt. In the following example, you will see that I have chosen to use
P1.0 and P1.1 as the input pins.

CHAPTER 7 - INTERRUPT SYSTEM ISSUES

Page 122

In this case, the hardware is assuming that the device requesting service will pull its request line low and
not release it until the service is no longer required (i.e.: until the service is performed or the request
times out). Because the second device can request service while the first slave has its request line
asserted, the software should either set INT1 to be level triggered or ensure that the ISR for INT1 checks
both service request lines at P1.0 and P1.1 before exiting. Ideally, both of these actions would be
performed. If you choose to make INT1 edge triggered, most of the time the system will function
normally. You will run into trouble in situations when one slave asserts its service request line and
before it is cleared, the second slave asserts its request line. In this case, the service interrupt will never
occur again if the software does not check both service lines before exiting the ISR because only the first
device will be serviced.

Figure 0-1 - Interrupt 1 Shared

For cases like the above, set the interrupt mode to level triggered, if the constraints of the input signals
will allow it. The ISR for the interrupt architecture above is shown in

THE FINAL WORD ON THE 8051

Page 123

Listing 0-1. Note how the ISR can be structured to give priority to one of the inputs over the other simply
by changing the order in which the inputs are checked. Additionally, the ISR checks the lower "priority"
input for a service request once it has completed the initial service. If the higher "priority" input is
asserted during this final check, it will still be caught by the system since the interrupt mechanism for
INT1 was chosen to be level triggered. Thus, as long as a service request exists, the controller will fire
Interrupt One.

CHAPTER 7 - INTERRUPT SYSTEM ISSUES

Page 124

Listing 0-1

sbit SLAVE1 = P1^0; // name the input signals

sbit SLAVE2 = P1^1;

void int1_isr(void) interrupt 2 {

 if (!SLAVE1) { // check slave one first

 slave1_service();

 }

 if (!SLAVE2) { // now check slave two

 slave2_service();

 }

}

This routine could be changed to not exit the ISR while one of the inputs was asserted by simply adding
a ‘do...while’ loop. However, this may result in the system infinitely being caught in this ISR thus
preventing other system activities. The hardware system as a whole must be designed to keep the
slaves requesting service reasonably well behaved so that they do not take up all of the controller's time
with their requests for service if the system must perform other functions.

The above system of interrupt sharing can be extended to include as many interrupt sources you want on
a given pin. To do this, all you have to do is AND the new sources with the rest of the inputs and
interface the new input to the controller at a another port pin. Eventually, you will run out of pins. When
you hit this point, you will want to put these inputs in a data latch and trigger the interrupt in the manner it
was triggered before. This makes for a more complex system in terms of parts count and software
operation to run it. However, the increase in complexity from the preceding method to the new one is not
very great. The main difference between the two methods is that the inputs now must be read from the
bus via a data latch.

The advantage of the latch is that it usually allows you to add a few more hardware parts that will let you
use signals which are not constantly asserted to cause an interrupt. The signal causing the interrupt is
marked by the hardware and it is this mark that is read by the software from the data latch. An example
of such a system is shown above. The interrupt triggering scheme used before the data latch is left to
your own design and will change depending on the type of inputs you are trying to combine into one
interrupt.

THE FINAL WORD ON THE 8051

Page 125

Figure 0-2 - Extended Interrupt Sharing

In this architecture, the ISR for Interrupt One will be responsible for reading the input latch at address
8000H to determine which circuits are requesting service from the 8051. Again, these inputs can be
polled in any order you like to allow your system to get to one interrupt request faster than the rest of
them. A sample ISR is shown in Listing 0-2.

Listing 0-2

#define INTREG 0x8000

unsigned char bdata intmask; // declare a bit addressable

// variable to hold the

// interrupt request mask

sbit signal0 = intmask^0; // set bit variables to access

sbit signal1 = intmask^1; // the bit addressable mask

sbit signal2 = intmask^2;

sbit signal3 = intmask^3;

CHAPTER 7 - INTERRUPT SYSTEM ISSUES

Page 126

sbit signal4 = intmask^4;

sbit signal5 = intmask^5;

sbit signal6 = intmask^6;

sbit signal7 = intmask^7;

void int1_isr(void) interrupt 2 {

 intmask=XBYTE[INTREG]; // read the latch to determine

// the cause of this interrupt

 if (signal0) { // check all the causes in a

// non-specific order

 signal0_isr();

 }

 ...

 if (signal7) {

 signal7_isr();

 }

 reset_int(); // perform any reset functions

// required by the interrupt

// logic

}

The hardware in the interrupt logic box will depend on the requirements of your system. For example,
you may have some signals which are asserted and held until service is performed as was the case in
the above example. However, other signals may only pulse to the active state to indicate that the
corresponding subsystem is requesting service. In this case the logic needs to latch the falling edge of
the signal and generate an interrupt request based on this. The software will have to forcibly clear the
interrupt signal within the interrupt logic circuit once the required service has been performed.
Additionally, the interrupt logic will keep the IRQ line asserted until all of the interrupt requests have been
serviced and the corresponding signals are cleared. Thus, INT1 should once again be set to level
triggered to ensure that all interrupts are responded to.

The implementation of the interrupt logic in the above example becomes very much like some of the
commercially available interrupt controllers. The main difference is that the above logic array would
most likely be designed so that the interrupt triggering method of each specific input signal is not
changeable. That is, if you later decided that signal number 3 had to use edge triggering instead of level
triggering, this would require a hardware change. Use of a prepackaged interrupt system or design of a
good one in house would include the capability to change the type of triggering associated with each
signal much like the 8051 itself allows you reconfigure the trigger type of INT0 and INT1.

An interrupt controller allows each input to be individually enabled or disabled by hardware mechanism.
Thus, if you wish to shut off a given interrupt, you do not have to block it in software or tie up outputs and
add gates to block it in hardware. The capability already exists in the interrupt controller. A system
using such a part will have to interface to it via the system bus, so one of the drawbacks you will want to
consider when designing a system to use an interrupt controller is that it will take slightly longer to
determine the cause of an interrupt and thus response latency will be added to your system. Therefore,
highly time critical inputs should still be interfaced directly to the processor if at all possible.

THE FINAL WORD ON THE 8051

Page 127

Expanding the Number of External Interrupts
Even though Intel decided some time ago that the number of external interrupts on the 8051 would not
exceed two, there are certain tricks you can employ to expand this number to five. There are two simple
tricks to do this: the first is to turn the timer/counters into external interrupts and the second is to trick the
serial port into being another interrupt. Obviously, if you need to use any of these peripherals for their
normal function then you will not be able to use them as extra external interrupt sources. Thus, if you
needed one timer and the serial port, you will have to live with using only the other timer as your extra
external interrupt source. Because of this, you should keep the above discussion about sharing
interrupts in mind when you design your system.

The simplest way to expand the number of external interrupts in your system is to use the timer/counters
in count mode and hook the signal to be monitored to the appropriate pin (T0 or T1). In the software
design, you must be willing to give up use of the associated timer, and run it in counter mode. To allow
the signal to cause an interrupt on its next high to low transition, you set the counter to eight bit auto
reload mode. The reload value must be set to FFH. The next time the counter sees a falling edge in the
signal, it will increment and overflow to 100H. This will cause the counter to request an interrupt and
voila! There you are, one more external interrupt. The code to set all of this up is very simple and can
be seen in Listing 0-3.

Listing 0-3

#include <reg51.h>

void main(void) {

 ...

 TMOD=0x66; // use both counters in 8 bit

// mode

 TH1=0xFF; // set the reload value

 TH0=0xFF;

 TL0=0xFF;

 TL1=0xFF;

 TCON=0x50; // start both counters

 IE=0x9F; // enable the interrupts

 ...

}

/***

 The timer 0 interrupt service routine is written to assume that

 the interrupt will clear itself once the software has performed

 its service.

***/

void timer0_int(void) interrupt 1 {

 ... // simply service interrupt, hardware will

CHAPTER 7 - INTERRUPT SYSTEM ISSUES

Page 128

// reload the timer for us

}

/***

 The timer 1 interrupt service routine is written to assume that

 the interrupt is not serviced until the T1 line is pulled back

 high.

***/

void timer1_int(void) interrupt 3 {

 while (!T1) { // ensure that the interrupt clears

 ... // perform functions to clear

// interrupt

 }

}

Before you get too excited about all of this you should recognize that there are certain limitations to this
approach. Number one on the list is the fact that your extra interrupt is an edge triggered device only.
So if you are looking for another level triggered interrupt, keep looking or be prepared to sit in an ISR
sampling the T0 or T1 line until it is pulled back high. The second point is that you will lose one cycle
between the time the edge is detected and the time the interrupt is fired by the counter. This is because
the value in the counter is not incremented until the cycle after the cycle in which the falling edge was
detected. So if you need extra fast response to your signal's falling edge, you will want to keep this fact
in mind when you do your timing budget on interrupt response.

If you have an 8052 device or other 8051 family member which has more timers that use an external pin,
you can use this same approach to increase the number of edge triggered external interrupts in your
system. It bears repeating however, that any timer you use for this purpose will not be available for other
purposes unless your software multiplexes the function of the peripheral.

Using the serial port for another external interrupt is not as straightforward as using the timers for the
same purpose. The RXD pin of the processor will become the input signal, and must exhibit a high to
low transition, just as the other external interrupts require. You must alter SCON to place the UART in
mode 2, which is the 9 bit UART mode with a baud rate derived from the frequency of the oscillator (see
Chapter Two). Once the high to low transition in the input signal is detected, the UART will generate an
interrupt eight serial bit times later. Once the interrupt occurs, the RI bit must be cleared by the software
to clear the interrupt from the system. The following code shows how to set up the UART and how to
structure your ISR.

THE FINAL WORD ON THE 8051

Page 129

Listing 0-4

#include <reg51.h>

void main(void) {

 ...

 SCON=0x90; // mode 2 with reception enabled

 IE=0x9F; // enable the interrupts

 ...

}

void serial_int(void) interrupt 4 {

 if (!_testbit_(RI)) {

 ... // perform service here

 }

}

As with the timer system, there are drawbacks to using the serial port as another interrupt. First, the
interrupt can only be edge triggered. We have discussed this situation already. Secondly, the input
signal must be held low for at least 5/8 of a bit time if the low level is to be recognized. This time period
is dictated by the UART since it is sampling the line looking for a start bit, and must believe that the input
signal going low is a start bit. Third, the interrupt will not be fired until the "eighth" bit time which is when
the UART would normally request an interrupt. Additionally, the signal should not remain low for more
than nine bit times for this scheme to work. Since this scheme depends on tricking the UART into
believing that it is seeing a valid incoming serial byte at the RXD pin, the timing limitations of the UART
are imposed on the signal. These limitations will depend on the oscillator frequency of your system since
the UART will be deriving its baud rate from that frequency. Different timing constraints could be
established by changing the mode of the UART and using one of the internal timers. However, the
required timing and the interrupt latency will only lengthen, not shorten.

CHAPTER 7 - INTERRUPT SYSTEM ISSUES

Page 130

What to Put in Your ISRs
Many new designers of embedded systems get quite confused when it comes to the issue of structuring
their ISRs. The main problem that people seem to run into is how to decide what functions should be
carried out in the ISR and what functions should be left to the main level of the application. The answer
to this is straightforward, but the implementation of it is not. In general, only the bare minimum
processing should be done in the ISR itself. You should always strive to keep the amount of work done
in your ISRs to a minimum. Attaining this goal will provide a couple of benefits. First, you will have a
system that makes itself available to respond to system interrupts a larger percentage of the time. In
systems where missing an interrupt or responding slowly to an interrupt is disastrous, the extra time will
be of immeasurable value. Second, it will keep your ISRs simple in structure, with less things to go
wrong in them. The more you try to pack into your ISRs the more likely they will be to step all over each
others’ functionality and data structures. Minimizing your ISRs means that you have more critical code
sections in your software, but these can all be compacted into one area of the code - the main execution
loop. The design of the ISRs in your system can be most critical to the success or failure of the product.
You should give careful thought to the timing of the interrupts with respect to each other and the amount
of time each ISR will take. Any ISRs which will operate on the same data structures in the software
should be given careful attention. A couple of examples will help punctuate some of the points made
above.

Suppose you have a system which receives a stream of serial data via the internal UART and must find
the correct messages in this stream and respond to them. This system should have an ISR associated
with the serial interrupt that mainly reads the data from SBUF and puts it in a circular queue. The main
level of the application will then be responsible for checking this queue for data, popping the data and
parsing it into a message. When a complete message is received, it is handled accordingly. In such a
situation it would also be acceptable to parse the incoming serial stream into valid messages and push
these messages into a queue for the main loop to handle. The main point of the example is that the ISR
should not be responsible for responding to the incoming messages because this will be a time
consuming process. For the most part, you can execute responses from the bottom interrupt level.

There are some cases in which the actions associated with the interrupt can not be separated from the
ISR because of time constraints or relationships of the actions to other interrupt actions. For example, if
you had a system with a peripheral that requested an interrupt when it had clocked in valid data and
began to present this data to your processor at the rate of one data unit per 20 microseconds, you would
more than likely be forced to remain in the ISR and receive all the data because if you exited the ISR
after one data unit and some other interrupt were fired before the next data unit fired an interrupt you
would probably lose the next incoming data unit. Such a situation can often be solved by using the
priority scheme of the 8051, but in more complex systems, this option does not exist.

Another example of code you would want to leave in an ISR are functions which modify shared data
structures. Take for example a system which has several interrupts. Two of these interrupts are of the
same priority and operate on the same data structure. One of the interrupts is fired when an A/D
sampling unit completes a conversion. This occurs once every 10ms. The system must record these
conversions and send them out serially in real time. The other interrupt is a system tick which is
checking the shared data structure (a queue) for the presence of new conversions. When a new
conversion is available, its job is to package it in a serial message and initiate a serial transfer. You can
easily see that it is desirable for these two ISRs to not try to access the queue simultaneously. We have
all chased down bugs in systems wherecritical data corruption occurs. In this case, it makes a lot of
sense for the input ISR to read in the data and complete the operation of queuing it before the ISR is
exited. Likewise, the system tick should complete the operation of dequeuing the data, building the
message, and initiating the serial transfer before it exists.

THE FINAL WORD ON THE 8051

Page 131

Conclusion
This chapter has focused on ways to enhance the interrupt system of the 8051. Using these techniques
in conjunction with earlier discussions, such as simulating extra interrupt priority levels in hardware will
give you better flexibility and capability than the designers of the 8051 imagined. You should note that
when you design the interrupt portion of your system, you must give careful attention to the matching of
input signals to interrupt lines/sources on the 8051. Additionally, the same care should be applied to the
design of the software interrupt system. This means that the selection of priority levels, and
structure/functions of the ISRs must be well thought out. For best results, the hardware and software
portions of the interrupt system should be designed in conjunction with each other. If they are not
designed in parallel, you should at least be willing to go through a certain amount of iterations to refine
the design. Above all, keep in mind that the interrupt system is the most critical part of any real time
embedded system.

CHAPTER 8 - THE SERIAL PORT

Page 132

- The Serial Port

Introduction
The main communication port of a typical 8051 system is not some form of parallel transfer or shared
memory, it is the serial port that is built into the 8051. As we saw in Chapter Two, the on board UART is
very flexible and can be set up to communicate with other systems at high speeds. This chapter will
present software designs to transfer data back and forth between systems effectively.

Slow Speed Serial I/O - Interfacing to a PC
In many embedded applications with the 8051, the processor reports back events and other data to some
master system, often times a PC. Usually, the master also issues commands over the serial link
between the two systems. Frequently, a voltage standard (and often times a handshaking standard)
such as RS-232 is used to allow the 8051 based system to communicate with a wide range of common
systems such as PCs. If the length of the communication link is not too great, then the 8051 does not
require an RS-232 line driver to support RS-232 type communications. A simple circuit will allow the
processor to receive the input bytes and transmit data back out to a PC. Most PC systems do not require
that the transmissions to them fully adhere to the RS-232 voltage standards. As you can see in the
schematic shown below, this makes for a very simple circuit when interfacing to a PC. The 12 volt
output of the PC in to the 8051’s serial in line is handled by passing it through a voltage divider which
limits the maximum voltage that can be seen to 5 volts.

Once this simple serial interface is designed, you need some code to go along with it to control all data
coming in and out of the UART. The simplest approach for handling incoming data is to allow the first
byte to cause a serial interrupt and then poll for the remaining bytes in the input stream, assuming that
your message protocol allows you to predict the number of bytes in a message. Output data is handled
in a similar manner, except that there is no “first interrupt.” When it is time to start transmitting, the
software forces a byte into SBUF and polls the SCON register to see when the next byte can be sent.
When all the bytes have been sent, this cycle is terminated.

The above software design will work for systems which have little else to do in real time, except for deal
with the serial port. Using such an approach will also simplify the software and allow you to get
communications up and running that much quicker. However, for more complex systems the "polling"
approach will not suffice. A better design is as follows. For incoming data, each input byte fires a serial
interrupt. The ISR for the UART is responsible for reading the contents of SBUF and deciding if it is part
of a valid message. An FSA (Finite State Automaton) is used to parse the incoming byte stream into a
valid message. When a valid message is received, it is pushed into a queue and acted upon by the
main loop processing level. Output data is handled in a reverse, yet similar method. A message is built
and loaded into a queue. The first byte of this message is sent, causing a transmit interrupt from the
UART. The ISR for the UART then reads one byte from the output queue and writes it to SBUF as long
as there are bytes in the queue.

THE FINAL WORD ON THE 8051

Page 133

Figure 0-1 - Interfacing to PC

This system allows the processor to spend a fair amount of its time working on tasks other than serial
communications. In general, a serial port is a slow device compared to other peripherals. As long as the
baud rate is not an especially fast one, such as 300K baud, there will be plenty of time in between bytes
to perform other tasks. At this point, an example of the serial system as described above will be helpful.

 Imagine that the clock project from Chapter Four is incorporated into a monitoring system in which it is
polled serially by a PC which also has the task of polling several other monitoring devices over a shared
serial link. A simple system diagram is shown in Figure 0-2. The functions of the other devices (1
through n) in the system do not matter - for now, we are only concerned with the clock.

CHAPTER 8 - THE SERIAL PORT

Page 134

Figure 0-2 - Master / Slave Serial Network

For its new application in this monitoring system the clock has been slightly altered. The most significant
change allows for serial communications with the PC via standard RS-232 voltage level signals. The
clock now has the design shown in Figure 0-3.

The PC in this design executes a program which has the capability to request the current time from the
clock, set the current time to be used in the clock, reset the time to all zeroes, and place a 32 character
text message on the display. Remember that the serial input to the clock will not always be directed to
the clock itself and the devices on the serial link must have some ways of distinguishing their messages
from the rest of the data in the incoming stream. Therefore, the messages must have a structure which
allows the receiver to do this. Each message will begin with a sync byte and will contain the address of
the unit being addressed. The clock's address will be 43H. The message will also contain the command
being issued, the size of the optional data block, the data itself, and a single byte checksum. The format
of a typical message is shown below.

THE FINAL WORD ON THE 8051

Page 135

Figure 0-3 - Clock Project as a Serial Slave

FieldField DescriptionDescription
Synchronization Byte Must be set to 33H
Unit Address Address of destination unit. The clock's address == 43H, the PC's address

== 01H.
Command Indicates the message being sent.
Data Size Indicates number of bytes in following data block (0 to 255 bytes). If no

extra data is required with this message, this byte will be 00H.
Data Block Extra data required with this message. The number of bytes must equal

the value of the Data Size field.
Checksum Single byte addition of all previous bytes in the message (including the

Synchronization Byte) ignoring rollover.

Table 0-1

For all command messages from the PC, the responding unit must send an acknowledge back. The
clock will also have to be responsible for the four messages listed above (time request, time set, time
reset, text display). The format of these messages follows.

CHAPTER 8 - THE SERIAL PORT

Page 136

Message: Message: Reset time to zero. Command 01H. This command resets the time to 00:00:00.
FieldField ValueValue
Synchronization Byte 33H
Unit Address 43H
Command 01H
Data Size 00H
Checksum 77H

Table 0-2

Message: Message: Time Set. Command 02H. This command sets the time to the values provided.
FieldField ValueValue
Synchronization Byte 33H
Unit Address 43H
Command 02H
Data Size 03H
Hours Indicates current hours, must be 0 to 23.
Minutes Indicates current minutes, must be 0 to 59.
Seconds Indicates current seconds, must be 0 to 59.
Checksum 7BH + Hours + Minutes + Seconds

Table 0-3

Message: Message: Time Request. Command 03H. This command requests the current time. Direction is from
the PC to the clock.
FieldField ValueValue
Synchronization Byte 33H
Unit Address 43H
Command 03H
Data Size 00H
Checksum 79H

Table 0-4

Message: Message: Time Request. Command 03H. This command reports current time. Direction is from the
clock to the PC.
FieldField ValueValue
Synchronization Byte 33H
Unit Address 43H
Command 03H
Data Size 03H
Hours Indicates current hours, must be 0 to 23.
Minutes Indicates current minutes, must be 0 to 59.
Seconds Indicates current seconds, must be 0 to 59.
Checksum 7CH + Hours + Minutes + Seconds

Table 0-5

THE FINAL WORD ON THE 8051

Page 137

Message: Message: Text Display. Command 04H. This command specifies a 32 character text message to
display on the LCD panel.
FieldField ValueValue
Synchronization Byte 33H
Unit Address 43H
Command 04H
Data Size 20H
Text 32 ASCII characters for display. Must be space padded.
Checksum 9AH + ∑ (Text field bytes)

Table 0-6

Message: Message: Acknowledge. Command FFH. This command is sent following receipt of any valid
command which does not require a return of data to the PC.
FieldField ValueValue
Synchronization Byte 33H
Unit Address 43H
Command FFH
Data Size 01H
Return Command number of the message being acknowledged
Checksum 76H + Return

Table 0-7

Now that you understand the incoming byte stream and the responsibilities of the clock processor a little
better, the ISR for incoming serial bytes can be designed. The first thing to keep in mind is that the ISR
will be responsible for parsing the byte stream. This means that a simple finite state automaton can be
used for this task. For those of you who don't know, an FSA is essentially a software machine which will
move from one state to another based on input that it receives. The FSA will have an initial state in
which it is looking for the sync byte, and several intermediate states which correlate to the next expected
part of the message. The final state will read the checksum byte and verify it. If at any point, a byte is
received which does not conform to the structure of a valid message, the FSA returns to the initial state
and begins looking for another sync byte.

The theory behind this type of serial receiver is very simple to implement. If you are writing the ISR for
the incoming data in C the most common thing to do is declare a variable which will keep track of the
current state of the system. This is done by giving each possible state a number and storing this number
in the variable. When an input byte fires an interrupt, the C routine does a ‘switch’ on the state variable
to determine the next action of the FSA. Since the clock has only a small number of states on an eight
bit machine, the state variable will be declared as an ‘unsigned char’. If you were writing the system in
assembler, the ‘switch’ statement could be replaced by a more efficient jump table arrangement. You
will find that the gains in size and speed to be had by coding the ISR in assembler are not significant
when compared to the output of the C51 compiler unless you are dealing with a high speed serial
system.

CHAPTER 8 - THE SERIAL PORT

Page 138

Figure 0-4 - Receive FSA

In this case the clock is only transmitting data at 9600 baud which takes roughly 1.042 ms per byte. The
crystal frequency of the clock will be changed to 11.059 MHz to allow the system to easily generate 9600
baud. This will change the time of one instruction cycle to 1.085 microseconds. Dividing this into the
byte time reveals that there will be 960 instruction cycles between back to back serial input interrupts,
which should be more than enough time to maintain the input FSA. The initial code structure for the
serial ISR is shown in Listing 0-1.

Listing 0-1

// define constants for the FSA states

#define FSA_INIT 0

#define FSA_ADDRESS 1

#define FSA_COMMAND 2

#define FSA_DATASIZE 3

#define FSA_DATA 4

#define FSA_CHKSUM 5

// define constants for message parsing

#define SYNC 0x33

#define CLOCK_ADDR 0x43

// define constants for the input commands

#define CMD_RESET 0x01

#define CMD_TIMESYNC 0x02

#define CMD_TIMEREQ 0x03

#define CMD_DISPLAY 0x04

#define CMD_ACK 0xFF

THE FINAL WORD ON THE 8051

Page 139

#define RECV_TIMEOUT 10 /* define the interbyte timeout */

unsigned char

recv_state=FSA_INIT, // indicates the current

// serial state

recv_timer=0, // counts down the interbyte

// timeout

recv_chksum, // holds the current checksum

// value of the incoming

// message

recv_size, // index into the receive

// buffer for incoming data

// block

recv_buf[35]; // holds the incoming message

unsigned char code valid_cmd[256]={ // This array determines if

// the current command byte is

// valid. If the corresponding

// entry is 1 the command

// ID is valid.

 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00 - 0F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10 - 1F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20 - 2F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30 - 3F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40 - 4F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50 - 5F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60 - 6F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70 - 7F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80 - 8F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90 - 9F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0 - AF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B0 - BF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // C0 - CF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0 - DF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // E0 - EF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // F0 - FF

};

CHAPTER 8 - THE SERIAL PORT

Page 140

/***

 Function: serial_int

 Description: Runs the serial port FSAs.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void serial_int(void) interrupt 4 {

 unsigned char data c;

 if (_testbit_(TI)) {

 // handle transmit duties

 }

 if (_testbit_(RI)) {

 c=SBUF;

 switch (recv_state) {

 case FSA_INIT: // looking for sync byte

 if (c==SYNC) { // check for sync byte

 recv_state=FSA_ADDRESS; // move to next state

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 recv_chksum=SYNC; // set initial checksum value

 }

 break;

 case FSA_ADDRESS: // looking for unit ID

 if (c==CLOCK_ADDR) { // make sure the message is

// for the clock

 recv_state=FSA_COMMAND; // set next FSA state

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 recv_chksum+=c; // maintain checksum

 } else { // message is not for the

// clock

 recv_state=FSA_INIT; // return to initial state

 recv_timer=0; // clear interbyte timeout

 }

 break;

 case FSA_COMMAND: // looking for cmd id

 if (!valid_cmd[c]) { // make sure command is good

 recv_state=FSA_INIT; // reset FSA

 recv_timer=0;

 } else {

 recv_state=FSA_DATASIZE; // move to next FSA state

 recv_chksum+=c; // update checksum

 recv_buf[0]=c; // save command ID

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 }

THE FINAL WORD ON THE 8051

Page 141

 break; case FSA_DATASIZE: // looking for length byte

 recv_chksum+=c; // update checksum

 recv_buf[1]=c; // save data block size

 if (c) { // see if there is a data

// block

 recv_ctr=2; // set indexing byte

 recv_state=FSA_DATA; // move to next FSA state

 } else {

 recv_state=FSA_CHKSUM; // message done, get checksum

 }

 recv_timer=RECV_TIMEOUT;

 break;

 case FSA_DATA: // reading in data block

 recv_chksum+=c; // update checksum

 recv_buf[recv_ctr]=c; // save data byte

 recv_ctr++; // update count of data block

 if ((recv_ctr-2)==recv_buf[1]) { // see if receive data

// block counter minus the

// offset into the receive

 // buffer == the data block

// size

 recv_state=FSA_CHECKSUM; // done receiving data block

 }

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 break;

 case FSA_CHECKSUM: // reading in checksum

 if (recv_chksum==c) { // verify checksum

 c=1; // use c to indicate if an

// ack message should be built

 switch (recv_buf[1]) { // act upon the command

 case CMD_RESET: // reset the clock to 0

 break;

 case CMD_TIMESYNC: // set the clock

 break;

 case CMD_TIMEREQ: // report system time

 break;

 case CMD_DISPLAY: // display ASCII message

 break;

 }

 if (c) {

 // build ack message

 }

 }

 d

CHAPTER 8 - THE SERIAL PORT

Page 142

efault:

 recv_timer=0; // reset the FSA

 recv_state=FSA_INIT;

 break;

 }

 }

}

The code that runs the FSA directly represents the model that was shown in Figure 0-4Figure . The ISR
shown here is not fully fleshed out and is intended to show you the way the receive code will be
structured. Obviously there will be more design issues such as the way to transmit out data and the
execution of the commands received from the serial input stream.

Transmitting data back to the PC is a very simple matter and is handled by the serial ISR once an initial
byte transmission kicks off the whole thing. The clock project will make the simple minded assumption
that the PC will only issue one valid command at a time to it, and thus will not attempt to maintain a
queue of outgoing messages. This assumption is made to simplify the example so that we don’t get
bogged down worrying about a lot of data queues and critical code section issues in this chapter. When
a section of code needs to transmit out a message, it simply builds the message into a transmit buffer,
and sets a variable which indicates the number of bytes in the buffer. The first byte must then be written
to SBUF and the checksum byte set. Writing the first byte is like priming a pump: it causes the first
transmit interrupt. Once the first interrupt is fired, the serial interrupt routine can complete the business
of sending out the data by itself. The code structure as designed for the serial interrupt is shown in
Listing 0-2.

Listing 0-2

// define constants for message parsing

#define SYNC 0x33

#define CLOCK_ADDR 0x43

unsigned char

trans_buf[7], // holds the outgoing message

trans_ctr, // index into trans_buf

trans_size, // holds the total number of

// bytes to send

trans_chksum; // computes the output checksum

/***

 Function: serial_int

 Description: Runs the serial port FSAs.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void serial_int(void) interrupt 4 {

 unsigned char data c;

 if (_testbit_(TI)) { // check for transmit

// interrupt

THE FINAL WORD ON THE 8051

Page 143

 trans_ctr++; // move the output index up

 if (trans_ctr<trans_size) { // see if all data is output

 if (trans_ctr==(trans_size-1)) { // send checksum as last

// byte

 SBUF=trans_chksum;

 } else {

 SBUF=trans_buf[trans_ctr]; // send current byte

 trans_chksum+=trans_buf[trans_ctr]; // update checksum

 }

 }

 }

 if (_testbit_(RI)) {

 c=SBUF;

 switch (recv_state) {

 // run the receive FSA

 case FSA_CHECKSUM: // reading in checksum

 if (recv_chksum==c) { // verify checksum

 c=1; // use c to indicate if an

// ack message should be built

 switch (recv_buf[1]) { // act upon the command

 case CMD_RESET: // reset the clock to 0

 break;

 case CMD_TIMESYNC: // set the clock

 break;

 case CMD_TIMEREQ: // report system time

 c=0;

 break;

 case CMD_DISPLAY: // display ASCII message

 break;

 }

 if (c) { // build ack if necessary

 trans_buf[0]=SYNC; // set up header

 trans_buf[1]=CLOCK_ADDR;

 trans_buf[2]=CMD_ACK;

 trans_buf[3]=1;

 trans_buf[4]=recv_buf[1]; // put in command being ack'ed

 trans_ctr=0; // set buffer pointer to first

// byte

 trans_size=6; // six bytes total

 SBUF=SYNC; // send first byte

 trans_chksum=SYNC; // initialize checksum

 }

CHAPTER 8 - THE SERIAL PORT

Page 144

 }

 default:

 recv_timer=0;

 recv_state=FSA_INIT;

 break;

 }

 }

}

As you can see, the ISR code for the output data is very simple to write and takes very little CODE space
as well as little memory space. As was the case with the receive logic, the checksum for the message is
built concurrently with the transmission of the message itself.

The ISR as designed will function without a hitch within the confines of the clock project. Taking care of
the command actions within the serial interrupt routine will allow the system to avoid many critical
problems in design. Most notable among these is that the serial ISR has the capability to modify the
time structure, as does the system tick interrupt. The clock software can be designed such that the serial
interrupt and the timer interrupt have the same priority level. Once this is set up, either ISR can modify
the time structure at will without fear that the other is doing so at the same time. This is not the case
when the messages are handled from the main loop. However, the execution of the command actions
does not really belong in the ISR, because it forces the system to spend too much time in the interrupt
routine and possibly miss other interrupts. For example, it is reasonable to assume that if the PC
decided to send a long series of display commands back to back, that the clock could eventually miss a
system tick or two because of the extended amount of time it spent in the serial ISR writing data to the
LCD panel. In a more complicated system, the incoming messages should be placed in a queue and
executed by the main loop. In the clock project, let’s continue to assume that the PC will not send
another valid message to the clock until it has acknowledged the current message. This will allow the
queue to be simply a buffer for the current message.

The new design of the ISR will be very much like the other, except that when a complete and valid
message is received, it will be pushed into a secondary buffer and a buffer valid flag will be set. The
code to execute commands which previously resided in the ISR will be moved to a new function which is
called when the main loop detects that there is something in the secondary buffer. The new ISR code is
shown in its entirety below in Listing 0-3.

Listing 0-3

// define constants for the FSA states

#define FSA_INIT 0

#define FSA_ADDRESS 1

#define FSA_COMMAND 2

#define FSA_DATASIZE 3

#define FSA_DATA 4

#define FSA_CHKSUM 5

// define constants for message parsing

#define SYNC 0x33

#define CLOCK_ADDR 0x43

// define constants for the input commands

#define CMD_RESET 0x01

THE FINAL WORD ON THE 8051

Page 145

#define CMD_TIMESYNC 0x02

#define CMD_TIMEREQ 0x03

#define CMD_DISPLAY 0x04

#define CMD_ACK 0xFF

#define RECV_TIMEOUT 10 /* define the interbyte timeout */

unsigned char

recv_state=FSA_INIT, // indicates the current

// serial state

recv_timer=0, // counts down the interbyte

// timeout

recv_chksum, // holds the current checksum

// value of the incoming message

recv_size, // index into the receive

// buffer for incoming data

// block

recv_buf[35]; // holds the incoming message

unsigned char

trans_buf[7], // holds the outgoing message

trans_ctr, // index into trans_buf

trans_size, // holds the total number of

// bytes to send

trans_chksum; // computes the output

// checksum

unsigned char code valid_cmd[256]={ // This array determines if

// the current command byte is

// valid. If the corresponding

// entry is 1 the command ID

// is valid.

 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00 - 0F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10 - 1F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20 - 2F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30 - 3F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40 - 4F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50 - 5F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60 - 6F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70 - 7F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80 - 8F

CHAPTER 8 - THE SERIAL PORT

Page 146

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90 - 9F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0 - AF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B0 - BF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // C0 - CF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0 - DF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // E0 - EF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // F0 - FF

};

/***

 Function: serial_int

 Description: Runs the serial port FSAs.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void serial_int(void) interrupt 4 {

 unsigned char data c;

 if (_testbit_(TI)) { // check for transmit

// interrupt

 trans_ctr++; // move the output index up

 if (trans_ctr<trans_size) { // see if all data is output

 if (trans_ctr==(trans_size-1)) { // send checksum as last

// byte

 SBUF=trans_chksum;

 } else {

 SBUF=trans_buf[trans_ctr]; // send current byte

 trans_chksum+=trans_buf[trans_ctr]; // update checksum

 }

 }

 }

 if (_testbit_(RI)) {

 c=SBUF;

 switch (recv_state) {

 case FSA_INIT: // looking for sync byte

 if (c==SYNC) { // check for sync byte

 recv_state=FSA_ADDRESS; // move to next state

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 recv_chksum=SYNC; // set initial checksum value

 }

 break;

 case FSA_ADDRESS: // looking for unit ID

 if (c==CLOCK_ADDR) { // make sure the message is

THE FINAL WORD ON THE 8051

Page 147

// for the clock

 recv_state=FSA_COMMAND; // set next FSA state

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 recv_chksum+=c; // maintain checksum

 } else { // message is not for the

// clock

 recv_state=FSA_INIT; // return to initial state

 recv_timer=0; // clear interbyte timeout

 }

 break;

 case FSA_COMMAND: // looking for cmd id

 if (!valid_cmd[c]) { // make sure command is good

 recv_state=FSA_INIT; // reset FSA

 recv_timer=0;

 } else {

 recv_state=FSA_DATASIZE; // move to next FSA state

 recv_chksum+=c; // update checksum

 recv_buf[0]=c; // save command ID

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 }

 break;

 case FSA_DATASIZE: // looking for length byte

 recv_chksum+=c; // update checksum

 recv_buf[1]=c; // save data block size

 if (c) { // see if there is a data

// block

 recv_ctr=2; // set indexing byte

 recv_state=FSA_DATA; // move to next FSA state

 } else {

 recv_state=FSA_CHKSUM; // message done, get checksum

 }

 recv_timer=RECV_TIMEOUT;

 break;

 case FSA_DATA: // reading in data block

 recv_chksum+=c; // update checksum

 recv_buf[recv_ctr]=c; // save data byte

 recv_ctr++; // update count of data block

 if ((recv_ctr-2)==recv_buf[1]) { // see if receive data

// block counter

// minus the offset into the

// receive buffer == the data

// block size

 recv_state=FSA_CHECKSUM; // done receiving data block

 }

CHAPTER 8 - THE SERIAL PORT

Page 148

 recv_timer=RECV_TIMEOUT; // set interbyte timeout

 break;

 case FSA_CHECKSUM: // reading in checksum

 if (recv_chksum==c) { // verify checksum

 // save the message, if good

 memcpy(msg_buf, recv_buf, recv_buf[1]+2);

 msg_buf_valid=1;

 }

 default: // reset the FSA after

// checksum byte or in case of

// erroneous state

 recv_timer=0;

 recv_state=FSA_INIT;

 break;

 }

 }

}

The ISR now is only responsible for knowing how to parse incoming serial messages and how to transmit
data out of a buffer. The smarts relating to actions associated with incoming serial messages are now
contained in a function which is called by the main loop when it detects that there is data in the
secondary message buffer. The code which executes the command in the message and the new main
loop are shown below.

Listing 0-4

/***

 Function: execute_cmd

 Description: Executes the actions associated with a serial

 command.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void execute_cmd(void) {

 bit need_ack=1;

 switch (recv_buf[1]) { // act upon the command

 case CMD_RESET: // reset the clock to 0

 EA=0; // stop interrupts while the

// time structure is used

 curtime.sec=curtime.min=curtime.hour=0;

 timeholder=curtime;

 EA=1; // allow interrupts now

 break;

 case CMD_TIMESYNC: // set the clock

 EA=0; // stop interrupts while the

THE FINAL WORD ON THE 8051

Page 149

// time structure is used

 curtime.hour=recv_buf[3];

 curtime.min=recv_buf[4];

 curtime.sec=recv_buf[5];

 timeholder=curtime;

 EA=1; // allow interrupts now

 break;

 case CMD_TIMEREQ: // report system time

 trans_buf[0]=SYNC; // set up header

 trans_buf[1]=CLOCK_ADDR;

 trans_buf[2]=CMD_TIMEREQ; // sending current time

 trans_buf[3]=3;

 EA=0; // stop interrupts while the

// time structure is used

 trans_buf[4]=curtime.hour; // put current time in the data

// block

 trans_buf[5]=curtime.min;

 trans_buf[6]=curtime.sec;

 EA=1; // allow interrupts now

 trans_ctr=0; // set buffer pointer to first

// byte

 trans_size=8; // eight bytes total

 need_ack=0;

 break;

 case CMD_DISPLAY: // display ASCII message

 recv_buf[34]=0; // set a null terminator at the

// end of the string

 printf("\xFF%s", &recv_buf[2]); // display the string

 display_time=100; // set timeout to 5 seconds

 break;

 }

 if (need_ack) { // build ack if necessary

 trans_buf[0]=SYNC; // set up header

 trans_buf[1]=CLOCK_ADDR;

 trans_buf[2]=CMD_ACK;

 trans_buf[3]=1;

 trans_buf[4]=recv_buf[1]; // put in command being ack'ed

 trans_ctr=0; // set buffer pointer to first

// byte

 trans_size=6; // six bytes total

 }

 SBUF=SYNC; // send first byte

 trans_chksum=SYNC; // initialize checksum

}

CHAPTER 8 - THE SERIAL PORT

Page 150

/***

 Function: main

 Description: This is the entry point of the program. This

 function initializes the 8051, enables the correct

 interrupt source and enters idle mode. The idle

 mode loop checks after each interrupt to see if

 the LCD panel must be updated.

 Parameters: None.

 Returns: Nothing.

***/

void main(void) {

 disp_init(); // set up display

 TMOD=0x21; // set timer 0 in 16 bit mode

// timer 1 is a baud rate

// generator

 TCON=0x55; // start both timers

// both external ints

// are edge triggered

 TH1=0xFD; // set timer 1 reload for 9600

// baud

 SCON=0x50; // serial port mode one

 IE=0x92; // enable the timer 0 interrupt

 for (;;) {

 if (_testbit_(msg_buf_valid)) { // check for a new serial

// message

 execute_cmd(); // execute the command

 }

 if (disp_update) {

 disp_time(); // display new time;

 }

 PCON=0x01; // enter idle mode

 }

}

This method of dealing with the messages in the main loop is simple to implement and becomes
important to do in systems which perform a lot of interrupt driven input and output. Since the interface to
the PC is relatively slow, there is plenty of time in between bytes to perform other tasks such as
responding to the system tick. Undoubtedly, a real world system will have more interrupts happening
than does the clock...this is just a simplified example to help illustrate the principles of serial I/O on the
8051. The next section will discuss handling serial input and output in a high speed application.

High Speed Serial I/O
The discussions earlier in this chapter centered around a system which used the clock project as a timer
that was periodically polled. The serial messages came from a PC at 9600 baud and were not always
intended for the clock itself since there were other devices on the serial line. Let's suppose that the
designers of this system decided that the PC was too busy running a user interface and crunching data

THE FINAL WORD ON THE 8051

Page 151

and thus it was communicating to all the devices too slowly. To correct these issues a simple system is
designed which is based on the 8051. The job of this circuit will be to replace the PC as the master of
the serial link and perform all the polling and computation that the PC software was doing. This new
device will be called the System Monitor. The system diagram is now slightly more complex, but as far
as the clock is concerned it has remained unchanged.

Figure 0-5 - New Serial Network

The polling will still be performed via a serial link, however, the baud rate will now be much higher.
Since all the devices in this system are using an 8051 running at 11.059MHz, the serial ports can be
hooked up directly to each other. This means that the voltage divider and the inverters that were used
when interfacing to a PC are no longer needed. The new schematic for the circuit is shown in Figure 0-6.

CHAPTER 8 - THE SERIAL PORT

Page 152

Figure 0-6 - 8051 as a High Speed Slave

Since it is now connected to other 8051’s, the UART will be run in mode 2 which will yield a baud rate of
345593.75 baud. The new time in between bytes will be 31.829 µs (or just less than 30 instruction
cycles) instead of the 1.04 ms realized at 9600 baud. Due to the lack of time between bytes, the serial
interface format will be changed slightly to accommodate the various devices which must send and
receive messages. The UART on the 8051 now must be initialized to mode 2. This mode uses one start
bit, eight data bits, a stick bit, and a stop bit. The stick bit will be used to interrupt the processor when
the beginning of a serial message is being received. Thus, any device sending out a message should
still adhere to the message format, but must add the following conditions. First, the stick bit must be set
to one for the sync byte of every message. Second, the stick bit must be cleared for all other bytes in a
message. All devices receiving these messages will now set the UART to fire an interrupt only when a
byte with the stick bit set is received.

To accommodate the dramatic increase in speed of the serial link, the serial receive routine in the clock
must be rewritten so that it will be able to keep up with the incoming stream of bytes. This means that
once the ISR is called by a byte with the stick bit set, the remainder of the message will be polled for in
the serial routine. The completed message will then be pushed into a message queue, just the same as
before.

The code for ‘main’ for the clock function must be changed to adapt to the new UART mode. Note that
timer one is no longer needed for a baud rate generator and is now free for whatever uses come up for it.
In the case of the clock, it will be used as an interbyte time-out in the ISR during reception to ensure that
the clock does not infinitely wait for a serial byte that is not coming.

Listing 0-5

// define constants for message parsing

#define SYNC 0x33

#define CLOCK_ADDR 0x43

THE FINAL WORD ON THE 8051

Page 153

// define constants for the input commands

#define CMD_RESET 0x01

#define CMD_TIMESYNC 0x02

#define CMD_TIMEREQ 0x03

#define CMD_DISPLAY 0x04

#define CMD_ACK 0xFF

// set interbyte timeout to 128 instruction cycles

#define TO_VAL 0x80

unsigned char data recv_chksum, // holds the current checksum

// value of the incoming

// message

recv_buf[35]; // holds the incoming message

unsigned char trans_buf[7], // holds the outgoing message

trans_ctr, // index into trans_buf

trans_size, // holds the total number of

// bytes to send

trans_chksum; // computes the output

// checksum

unsigned char code valid_cmd[256]={ // This array determines if

// the current command byte is

// valid. If the corresponding

// entry is 1 the command ID is

// valid.

 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00 - 0F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10 - 1F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20 - 2F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30 - 3F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40 - 4F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50 - 5F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60 - 6F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70 - 7F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80 - 8F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90 - 9F

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0 - AF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B0 - BF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // C0 - CF

CHAPTER 8 - THE SERIAL PORT

Page 154

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0 - DF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // E0 - EF

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // F0 - FF

};

/***

 Function: ser_xmit

 Description: Handles a serial transmit interrupt.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_xmit(void) {

 trans_ctr++; // move the output index up

 if (trans_ctr<trans_size) { // see if all data is output

 if (trans_ctr==(trans_size-1)) { // send checksum as last byte

 SBUF=trans_chksum;

 } else {

 SBUF=trans_buf[trans_ctr]; // send current byte

 trans_chksum+=trans_buf[trans_ctr]; // update checksum

 }

 }

}

/***

 Function: push_msg

 Description: Puts the current message in the serial message

 queue.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void push_msg(void) {

 memcpy(msg_buf, recv_buf, recv_buf[1]+2);

 msg_buf_valid=1; // indicate that buffer is good

 recv_chksum=SYNC+CLOCK_ADDR; // set checksum to value of

// first two message bytes.

// This makes the assembly

 // code a little faster and

// easier

}

/***

 Function: execute_cmd

THE FINAL WORD ON THE 8051

Page 155

 Description: Executes the actions associated with a serial

 command.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void execute_cmd(void) {

 bit need_ack=1;

 switch (recv_buf[1]) { // act upon the command

 case CMD_RESET: // reset the clock to 0

 EA=0; // stop interrupts while the

// time structure is used

 curtime.sec=curtime.min=curtime.hour=0;

 timeholder=curtime;

 EA=1; // allow interrupts now

 break;

 case CMD_TIMESYNC: // set the clock

 EA=0; // stop interrupts while the

// time structure is used

 curtime.hour=recv_buf[3];

 curtime.min=recv_buf[4];

 curtime.sec=recv_buf[5];

 timeholder=curtime;

 EA=1; // allow interrupts now

 break;

 case CMD_TIMEREQ: // report system time

 trans_buf[0]=SYNC; // set up header

 trans_buf[1]=CLOCK_ADDR;

 trans_buf[2]=CMD_TIMEREQ; // sending current time

 trans_buf[3]=3;

 EA=0; // stop interrupts while the

// time structure is used

 trans_buf[4]=curtime.hour; // put current time in the

// data block

 trans_buf[5]=curtime.min;

 trans_buf[6]=curtime.sec;

 EA=1; // allow interrupts now

 trans_ctr=0; // set buffer pointer to first

// byte

 trans_size=8; // eight bytes total

 need_ack=0;

 break;

 case CMD_DISPLAY: // display ASCII message

 recv_buf[34]=0; // set a null terminator at

CHAPTER 8 - THE SERIAL PORT

Page 156

// the end of the string

 printf("\xFF%s", &recv_buf[2]); // display the string

 display_time=100; // set timeout to 5 seconds

 break;

 }

 if (need_ack) { // build ack if necessary

 trans_buf[0]=SYNC; // set up header

 trans_buf[1]=CLOCK_ADDR;

 trans_buf[2]=CMD_ACK;

 trans_buf[3]=1;

 trans_buf[4]=recv_buf[1]; // put in command being ack'ed

 trans_ctr=0; // set buffer pointer to first

// byte

 trans_size=6; // six bytes total

 }

 SBUF=SYNC; // send first byte

 trans_chksum=SYNC; // initialize checksum

}

/**

 Function: main

 Description: This is the entry point of the program. This

 function initializes the 8051, enables the correct

 interrupt source and enters idle mode. The idle

 mode loop checks after each interrupt to see if

 the LCD panel must be updated.

 Parameters: None.

 Returns: Nothing.

**/

void main(void) {

 disp_init(); // set up display

 TH1=TO_VAL; // set reload for timer 1 to

 // the interbyte timeout

// period

 TMOD=0x21; // set timer 1 to 8 bit mode

 // and timer 0 to 16 bit mode

 TCON=0x15; // start timer 0. both

// external ints are edge

 SCON=0xB0; // set the UART to mode 2 and

 // require that the stick bit

 // is high for an interrupt

 IE=0x92; // enable the serial and TF0

// interrupts

 for (;;) {

THE FINAL WORD ON THE 8051

Page 157

 if (_testbit_(msg_buf_valid)) { // check for a new serial message

 execute_cmd(); // execute the command

 }

 if (disp_update) {

 disp_time(); // display new time;

 }

 PCON=0x01; // enter idle mode

 }

}

Figure 0-7 - New Receive FSA

The changes to ‘main’ are relatively simple and straightforward. Additionally, the code for handling serial
transmit interrupts has been given its own function which will be called from the new serial ISR. Another
function called ‘push_message’ has been added to help the serial ISR. It will simply copy the current
message into the serial message queue for handling later. While these changes are all simple to
implement, the changes to the serial interrupt service routine will not be so simple. The serial ISR now
must be coded in assembler. When TI is the cause of the interrupt, the new C routine (‘ser_xmit’) will be
called to handle transmission of the next byte. However, the portion of the interrupt routine which
services receive interrupts will remain in assembler because of the short amount of processing time
available between bytes.

Following is a listing of the new ISR, as coded in assembler. Note again that timer one is now used as
an interbyte time-out counter while the ISR polls for the next incoming byte. If this time-out expires, the
current message is terminated and the FSA returns to its original state. The new FSA is shown in Figure
0-7. The only change to it is the interbyte time-out that prevents the software from infinitely waiting for a
serial byte that may never arrive.

The source code for the ISR simply implements the new FSA. The code is now written in assembly so
that it can guarantee that no byte will be missed due to excessive code delays. In mode two of the
UART, time is short in between bytes (slightly less than 30 instruction cycles). This means that if you
waste more than 30 cycles before retrieving a byte from SBUF that you may have lost a byte. Thirty

CHAPTER 8 - THE SERIAL PORT

Page 158

cycles is not a lot of time, and thus each instruction cycle is at a premium. The code for the new
assembly ISR in Listing 0-6 was written with this in mind.

Listing 0-6

EXTRN DATA (recv_chksum) ; used to calculate the

; checksum of the incoming message

EXTRN DATA (recv_buf) ; holds incoming message

EXTRN CODE (ser_xmit) ; handles serial transmit interrupts

EXTRN CODE (valid_cmd) ; table which decides if a

; command byte is valid

EXTRN CODE (push_msg) ; puts a complete message in

; the message queue

SYNC EQU 33H ; constant indicating the sync

; byte

CLK_ADDR EQU 43H ; constant indicating this

; unit's address

CSEG AT 23H

ORG 23H

LJMP SER_INTR ; install ser_intr in the vector

PUBLIC SER_INTR

?PR?SER_INTR?SER_INTR SEGMENT CODE

RSEG ?PR?SER_INTR?SER_INTR

;***

; Function: readnext

; Description: Reads in one byte from the serial port and

; returns. Sets the carry flag if a timeout occurs.

; Parameters: none.

; Returns: the byte read in the location pointed to by R0

; Side Effects: none.

;***

readnext: CLR C ; clear the return flag

MOV TL1, TH1 ; use T1 as a timeout counter

SETB TR1 ; start T1

RN_WAIT: JBC RI, RN_EXIT ; if RI is set, a byte has rung in

JBC TF1, RN_TO ; see if the byte has timed out

RN_TO: SETB C ; interbyte time exceeded,

; return error

CLR TR1 ; stop the timer

RET

THE FINAL WORD ON THE 8051

Page 159

RN_EXIT: MOV A, SBUF ; write the byte to R0's point

CLR TR1 ; stop the timer

RET

;***

; Function: SER_INTR

; Description: This is the ISR for the 8051's UART. It is called

; automatically by the hardware for both transmit

; and receive interrupts.

; Parameters: none.

; Returns: nothing.

; Side Effects: none.

;***

SER_INTR: JBC RI, RECV_INT ; check for receive interrupt

CHK_XMIT: JBC TI, XMIT_INT ; finally check for transmit

; interrupt

RETI

XMIT_INT: LCALL ser_xmit ; transmit interrupt - call

; handler for it

RETI

; the following code block is

; jumped into depending on how

; many variables have been

; pushed on the stack

CHK_XMIT3: POP DPL

POP DPH

CHK_XMIT2: POP 00H

CHK_XMIT1: POP ACC

SETB SM2 ; ensure that the stick bit

; requirement is restored

JMP CHK_XMIT ; after restoring stack, check

; for transmit interrupt

RECV_INT: PUSH ACC ; will be using ACC - save it

MOV A, SBUF ; save the incoming byte

CJNE A, #SYNC, CHK_XMIT1 ; if it isn't a sync

; byte get out

CLR SM2 ; remove the stick bit

; requirement now

PUSH 00H ; save R0 before use

MOV R0, #recv_buf ; get the base address of

CHAPTER 8 - THE SERIAL PORT

Page 160

; recv_buf in R0

CALL readnext ; read in the next byte

JC CHK_XMIT2 ; timeout - exit

CJNE A, #CLK_ADDR, CHK_XMIT2 ; this byte must be the

; clock's address

CALL readnext ; get the next byte

JC CHK_XMIT3 ; timeout - exit

PUSH DPH ; save the DPTR

PUSH DPL

MOV DPTR, #valid_cmd ; prepare to validate the

; command byte

MOVC A, @A+DPTR ; use the command byte as an

; offfset into the validation

; table

JZ CHK_XMIT3 ; if the value in the table is

; 1, this is a valid command

MOV @R0, A ; save the command byte

ADD A, recv_chksum ; update the checksum

MOV recv_chksum, A

INC R0 ; move the buffer pointer

CALL readnext ; get the size byte

JC CHK_XMIT3 ; timeout - exit

MOV @R0, A ; save the size byte

ADD A, recv_chksum ; update the checksum

MOV recv_chksum, A

MOV A, @R0 ; if the size byte is 0, go on

; to the checksum

JZ RECV_CHK

MOV DPL, A ; save the size byte as a counter

RECV_DATA: INC R0 ; move the buffer pointer

CALL readnext ; get the next data block byte

JC CHK_XMIT3 ; timeout - exit

ADD A, recv_chksum ; update the checksum

MOV recv_chksum, A

DJNZ DPL, RECV_DATA ; see if there are any more

; bytes to receive

RECV_CHK: CALL readnext ; read in the checksum byte

JC CHK_XMIT3 ; timeout - exit

THE FINAL WORD ON THE 8051

Page 161

CJNE A, recv_chksum, CHK_XMIT3 ; validate it

; push_msg should set the chksum var to the unit address plus the

; sync byte

LCALL push_msg ; good message, push it in the

; receive queue

JMP CHK_XMIT3

END

The above code listing is small. This is good because of two things. First, there is not much time
between bytes to be messing around, so the fewer cycles wasted, the better. Second, the code remains
simple and easy to maintain. You will note that the logic to poll and receive a byte, plus the time-out
logic is all embedded in one function - ‘readnext’. This function simply waits for the next byte and returns
with the carry set if the time-out period elapses before the next byte rings in. The calling function
expects to receive the next byte in the accumulator. It only has to check the value of the carry bit to
determine if the contents of the accumulator are good or not. In the case of this ISR, when the ‘readnext’
function returns the error code the current message parsing is aborted. Using the accumulator to hold
the return value allows the calling function to perform a lot of checks on the value of the incoming byte
without having to perform any extra move operations. Additionally, when the byte must be stored
somewhere, it usually saves one instruction cycle by having to move the byte from the accumulator
instead of some other location.

Essentially, the serial scheme as implemented is a master - slave system in which the clock project
functions as a slave. Managing access to the shared serial line is simple for the slaves, since all the
control resides in the maser device. Even the control in the master device is simple because it knows
that no device will talk unless it is told to do so. Thus, there are no collisions. The next chapter will
discuss ways to avoid collisions in serial systems where there is not a master.

Conclusion
This chapter presented methods for simple serial connections between your 8051 project and other
devices such as a PC and other 8051’s. The PC interface presented was simple, but got the job done. If
you wanted a more complete RS-232 driver there are many commercially available UARTs from
companies such as National Semiconductor that you can incorporate into your design. The parts will
then be external UARTs that must be interfaced to the 8051 via its bus. You can also use an RS-232
line driver chip which will convert the 8051’s zero to five volt serial signals to the correct RS-232 voltage
levels. This approach allows you to use the UART on board the 8051 for serial communications. The
next chapter will discuss the use of the UART in the context of network schemes more complex than was
done in this chapter. This will be of interest to anyone who has a project that must do a large amount of
communications.

CHAPTER 9 - NETWORKING WITH THE 8051

Page 162

- Networking with the 8051

Multiplexing the Serial Port
Suppose that the master in Chapter Eight’s serial system must still convey all the slave’s data to a
monitoring station. Because of some design issues, such as a more complex user interface, the
monitoring station is a PC. This PC will periodically send data and commands to the serial master
(which will be called the System Monitor) and expect that the System Monitor will respond back with the
necessary data. The link between the PC and the System Monitor will be identical to the link between
the System Monitor and the slaves, except for two things. First, the PC will initiate all serial
conversations in the same way that the System Monitor initiated all conversations with the slave devices
hooked to its serial line. Second, the PC will use standard RS-232 format serial data. This means that
the System Monitor must expect the PC to send 10 bit frames at 9600 baud to it at any time. For the
System Monitor, this poses something of a challenge. It must always be capable of responding to serial
interrupts from the PC in addition to performing its polling duties with its slave devices.

There are a couple of design approaches that can be taken with the System Monitor. The first approach
is to add an RS-232 type UART to the core hardware which consists of an 8051. This external UART will
fire an interrupt to the 8051 whenever a byte has rung in or out of the device. The second approach is to
“multiplex” the serial port that already exists on the 8051. This means that it will be used to service both
the PC messages and the shared serial line with the slaves. Since this device is being designed by
people who believe that cheaper is better and that lower parts counts means cheaper, they opt to go with
the second design. After all, it eliminates the need for an external UART and a 12 volt supply to go with
it to handle the RS-232 stuff.

Thus, the software for the System Monitor has been greatly complicated. However, the task is “do-able”
and once again software saves the day! The software solution will not be the overall best since there will
be times that the serial port on the System Monitor is communicating with the slave devices and will be
unavailable to receive messages from the PC. To correct for this, the PC will have to be able to
recognize situations in which the System Monitor has failed to receive a message. This will be handled
by requiring the sender to retry the same message. Similarly, the serial port control logic in the System
Monitor must be written to assume that the PC has the highest priority on the serial channel. What this
means is that whenever the UART is not being used to communicate with slave devices it is set up to
receive serial input from the PC. In addition to changing the mode and the baud rate of the UART to
communicate with both the PC and the slaves, the hardware design of the System Monitor will allow the
input to the UART to be gated so that one of the serial “channels” can be rejected while the other one is
in use. The hardware design of the System Monitor is shown in Figure 0-1.

THE FINAL WORD ON THE 8051

Page 163

Figure 0-1 - Mulitplexing the Serial Port

The System Monitor software will be fairly straightforward to write. The serial ISR will be written to
assume that 9600 baud data is coming into the UART from the PC. This means that the ISR from
Chapter Eight’s first version of the clock project can be used. For simplicity’s sake, assume that the
interface between the System Monitor and the PC has the same message format as was described in
Chapter Eight. Thus, the states of the receive FSA do not have to be changed to adjust for a new
format.

The serial interrupt routine has been written with efficiency in mind. Those of you who read Chapter
Eight will find that both ISR implementations are needed in the serial receive section of the Serial
Monitor. When the UART is set to run at 9600 baud, the it is completely interrupt driven. A piece of
assembly code responds to the UART interrupt and checks a flag to determine which receive handler to
call. When the flag indicates that the UART is running at 9600 baud, the receive FSA as written in C is
executed. This allows the system to spend more time in idle mode waiting for interrupts. When the
UART is set to run at 300K baud, the assembly ISR is executed.

As you recall, this ISR polls the serial port for the incoming message since the time between bytes is less
than 30 instruction cycles. This allows the UART to be shared easily without having to make any
compromises. The 9600 baud messages can still be interrupt driven because of the relatively long time
between bytes, and when the efficiency is needed to receive a high speed message, the capability is
provided by the assembly code. The serial ISR is shown in Listing 0-1.

CHAPTER 9 - NETWORKING WITH THE 8051

Page 164

Listing 0-1

/***

 Function: ser_9600

 Description: Dispatches UART interrupts to the correct routine.

 Used only when the UART is at 9600 baud.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_9600(void) {

 if (_testbit_(TI)) { // call the transmit handler

 ser_xmit();

 }

 if (_testbit_(RI)) { // call the receive handler

 ser_recv();

 }

}

/***

 Function: ser_recv

 Description: Handles a serial receive interrupt when the system

 is run at 9600 baud.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_recv(void) {

 unsigned char c, temp;

 c=SBUF;

 switch (recv_state) {

 case FSA_INIT: // looking for sync byte

 if (c==SYNC) { // check for sync byte

 recv_state=FSA_ADDRESS; // move to next state

 recv_timeout=RECV_TIMEOUT; // set interbyte timeout

 recv_chksum=SYNC; // set initial checksum value

 }

 break;

 case FSA_ADDRESS: // looking for unit ID

 if (c==SM_ADDR) { // make sure the message is

 // for the clock

 recv_state=FSA_COMMAND; // set next FSA state

 recv_timeout=RECV_TIMEOUT; // set interbyte timeout

 recv_chksum+=c; // maintain checksum

 } else { // message is not for the clock

THE FINAL WORD ON THE 8051

Page 165

 recv_state=FSA_INIT; // return to initial state

 recv_timeout=0; // clear interbyte timeout

 }

 break;

 case FSA_COMMAND: // looking for cmd id

 if (!valid_cmd[c]) { // make sure command is good

 recv_state=FSA_INIT; // reset FSA

 recv_timeout=0;

 } else {

 recv_state=FSA_DATASIZE; // move to next FSA state

 recv_chksum+=c; // update checksum

 recv_buf[0]=c; // save command ID

 recv_timeout=RECV_TIMEOUT; // set interbyte timeout

 }

 break;

 case FSA_DATASIZE: // looking for length byte

 recv_chksum+=c; // update checksum

 recv_buf[1]=c; // save data block size

 if (c) { // see if there is a data block

 recv_ctr=2; // set indexing byte

 recv_state=FSA_DATA; // move to next FSA state

 } else {

 recv_state=FSA_CHKSUM; // message done, get checksum

 }

 recv_timeout=RECV_TIMEOUT;

 break;

 case FSA_DATA: // reading in data block

 recv_chksum+=c; // update checksum

 recv_buf[recv_ctr]=c; // save data byte

 recv_ctr++; // update count of data block

 if ((recv_ctr-2)==recv_buf[1]) { // see if receive data block

// counter minus the offset into

// the receive buffer == the

// data block size

 recv_state=FSA_CHKSUM; // done receiving data block

 }

 recv_timeout=RECV_TIMEOUT; // set interbyte timeout

 break;

 case FSA_CHKSUM: // reading in checksum

 if (recv_chksum==c) { // verify checksum

 push_msg();

 }

 default:

 recv_timeout=0;

CHAPTER 9 - NETWORKING WITH THE 8051

Page 166

 recv_state=FSA_INIT;

 break;

 }

}

/***

 Function: ser_xmit

 Description: Handles a serial transmit interrupt.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_xmit(void) {

 trans_ctr++; // move the output index up

 // see if all data is output

 if (trans_ctr < ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].size) {
// send checksum as last byte

 if (trans_ctr == (ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .size-1)) {

 SBUF=trans_chksum;

 } else {

 // send current byte

 SBUF=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].buf[trans_ctr];

 // update checksum

 trans_chksum+=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .buf[trans_ctr];

 }

 } else { // the current message is done

// sending

 // if no reply is required...

 if (!ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].retries) {

 if (queue_pop(XMIT_QUEUE)) { // get out the next message

 check_stat(); // see if the pending message

// can go

 }

 } else {

 xmit_timeout=XMIT_TIMEOUT; // set reply timeout counter

 }

 }

}

THE FINAL WORD ON THE 8051

Page 167

The source listing for the assembly code routine to handle the high speed serial I/O is shown below.

Listing 0-2

; FILE NAME: SERINTR.A51

EXTRN DATA (uart_mode) ; holds the value to write into SCON

EXTRN BIT (baud_9600) ; set when the baud rate is 9600

EXTRN DATA (recv_chksum) ; used to calculate the

; checksum of the incoming message

EXTRN DATA (recv_buf) ; holds incoming message

EXTRN CODE (ser_xmit) ; handles serial transmit interrupts

EXTRN CODE (valid_cmd) ; table which decides if a command

; byte is valid

EXTRN CODE (push_msg) ; puts a complete message in the

; message queue

EXTRN CODE (ser_9600) ; handler for slow serial comm

SYNC EQU 33H ; constant indicating the sync byte

SM_ADDR EQU 40H ; constant indicating this unit's

; address

CSEG AT 23H

ORG 23H

LJMP SER_INTR ; install ser_intr in the vector

PUBLIC SER_INTR

?PR?SER_INTR?SER_INTR SEGMENT CODE

RSEG ?PR?SER_INTR?SER_INTR

;***

; Function: readnext

; Description: Reads in one byte from the serial port and

; returns. Sets the carry flag if a timeout occurs.

; Parameters: none.

; Returns: the byte read in the location pointed to by R0

; Side Effects: none.

;***

readnext: CLR C ; clear the return flag

MOV TL1, TH1 ; use T1 as a timeout counter

SETB TR1 ; start T1

RN_WAIT: JBC RI, RN_EXIT ; if RI is set, a byte has rung in

JBC TF1, RN_TO ; see if the byte has timed out

RN_TO: SETB C ; interbyte time exceeded, return

; error

CLR TR1 ; stop the timer

CHAPTER 9 - NETWORKING WITH THE 8051

Page 168

RET

RN_EXIT: MOV A, SBUF ; write the byte to R0's point

CLR TR1 ; stop the timer

RET

;***

; Function: SER_INTR

; Description: This is the ISR for the 8051's UART. It is called

; automatically by the hardware for both transmit

; and receive interrupts.

; Parameters: none.

; Returns: nothing.

; Side Effects: none.

;***

SER_INTR: JNB baud_9600, FAST_ISR ; make sure the right

; handler gets called

LCALL ser_9600

RETI

FAST_ISR: JBC RI, RECV_INT ; check for receive interrupt

CHK_XMIT: JBC TI, XMIT_INT ; finally, check for transmit

; interrupt

RETI

XMIT_INT: LCALL ser_xmit ; transmit interrupt - call handler

; for it

RETI

; the following code block is jumped

; into depending on how many

; variables have been pushed

CHK_XMIT3: POP DPL

POP DPH

CHK_XMIT2: POP 00H

CHK_XMIT1: POP ACC

MOV SCON, uart_mode ; ensure that the stick bit

; requirement is restored

JMP CHK_XMIT ; after restoring stack, check for

; transmit interrupt

RECV_INT: PUSH ACC ; will be using the accumulator -

; save it

MOV A, SBUF ; save the incoming byte

CJNE A, #SYNC, CHK_XMIT1 ; if it isn't a sync byte

; get out

THE FINAL WORD ON THE 8051

Page 169

PUSH 00H ; save R0 before use

MOV R0, #recv_buf ; get the base address of recv_buf

; in R0

CALL readnext ; read in the next byte

CJNE A, #SM_ADDR, CHK_XMIT2 ; this byte must be the

; clock's address

CLR SM2 ; remove the stick bit requirement

CALL readnext ; get the next byte

PUSH DPH ; save the DPTR

PUSH DPL

MOV DPTR, #valid_cmd ; prepare to validate the

; command byte

MOVC A, @A+DPTR ; use the command byte as an offfset

; into the validation table

JZ CHK_XMIT3 ; if the value in the table is 0,

; this is a valid command

MOV @R0, A ; save the command byte

ADD A, recv_chksum ; update the checksum

MOV recv_chksum, A

INC R0 ; move the buffer pointer

CALL readnext ; get the size byte

MOV @R0, A ; save the size byte

ADD A, recv_chksum ; update the checksum

MOV recv_chksum, A

MOV A, @R0 ; if the size byte is 0, go on to

; the checksum

JZ RECV_CHK

MOV DPL, A ; save the size byte as a counter

RECV_DATA: INC R0 ; move the buffer pointer

CALL readnext ; get the next data block byte

ADD A, recv_chksum ; update the checksum

MOV recv_chksum, A

DJNZ DPL, RECV_DATA ; see if there are any more bytes

; to receive

RECV_CHK: CALL readnext ; read in the checksum byte

CJNE A, recv_chksum, CHK_XMIT3 ; validate it

; push_msg should set the chksum var to the unit address plus the

CHAPTER 9 - NETWORKING WITH THE 8051

Page 170

; sync byte

LCALL push_msg ; good message, push it in the queue

JMP CHK_XMIT3

END

The System Monitor software will use the basic tick routine from the clock project. In the System
Monitor, the tick will merely count down the time until the System Monitor must next poll the slave
devices. Once this time has expired, the tick will initiate a transfer to the first slave if the serial port is
available for use at the higher baud rate. If the serial port is not available, the messages will be pushed
into a message queue where messages wait to have the serial port given to them.

Listing 0-3

/**

 Function: system_tick

 Description: This is the ISR for timer 0 overflows. It

 maintains the timer and reloads it with the

 correct value for a 50ms tick. The time is counted

 in this routine for any functions that require a

 timeout.

 Parameters: None.

 Returns: Nothing.

***/

void system_tick(void) interrupt 1 {

 TR0=0; // temporarily stop timer 0

 TH0=RELOAD_HIGH; // set the reload value

 TL0=RELOAD_LOW;

 TR0=1; // restart the timer

 if (poll_time) { // see if it's time for another

// slave polling sequence

 poll_time--;

 if (!poll_time) {

 poll_time=POLL_RATE;

 start_poll(); // push the set of polling

// messages

 }

 }

 if (xmit_timeout) { // see if the message at the

// head of the transmit queue

// has not received its response

 xmit_timeout--;

 if (!xmit_timeout) { // it has...check for message

// retries

THE FINAL WORD ON THE 8051

Page 171

 ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].retries--;

 if (ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].retries) {

// another retry - start the

// message transmission

 SCON=uart_mode=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .uart_mode;

 ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .status=STAT_SENDING;

 SBUF=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].buf[0];

 trans_ctr=0; // set buffer pointer to first

// byte set size indicator

 trans_size=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].size;

// set message checksum

 trans_chksum=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .buf[0];

 } else { // no more retries...this

// message is done

 if (queue_pop(XMIT_QUEUE)) { // get rid of it and see if

// there are any pending

// messages make sure the new

// message can use the serial

// port now. it can if the

// current UART mode is the same
// as its UART mode or

// if the receive FSA is idle

 check_stat(); // start the next message

// transmitting

 } else { // ensure that the UART is set

// to receive from the PC

 TH1=TO9600_VAL; // set reload for timer 1 to

// the interbyte timeout period

 TR1=0;

 TL1=TH1; // force reload the timer so

// that the UART immediately has

// the right baud rate

 TF1=0;

 TR1=1;

CHAPTER 9 - NETWORKING WITH THE 8051

Page 172

 baud_9600=1;

 P1=0x09; // allow PC I/O

 }

 }

 }

 }

 if (recv_timeout) { // check the receive interbyte

// timeout

 recv_timeout--;

 if (!recv_timeout) { // if it has expired...

 recv_state=FSA_INIT; // reset the FSA

 check_stat();

 }

 }

}

/***

 Function: start_poll

 Description: This function loads the transmit queue with the

 required polling messages for the system slaves.

 Parameters: None.

 Returns: Nothing.

***/

void start_poll(void) {

 unsigned char i, temp;

// push one message for each slave

 for (i=0; i<NUM_SLAVES; i++) {

 temp=queue_push(XMIT_QUEUE); // get a queue entry

 if (temp!=0xFF) { // make sure its valid

// copy the message to the entry

 memcpy(ser_queue[XMIT_QUEUE].entry[temp].buf,

 slave_buf[i],

 slave_buf[i][3]+4);

// set the message size byte

 ser_queue[XMIT_QUEUE].entry[temp].size=slave_buf[i][3]+5;

// set the message retries to 3

 ser_queue[XMIT_QUEUE].entry[temp].retries=3;

// set the pending message UART

// mode

 ser_queue[XMIT_QUEUE].entry[temp].uart_mode=BAUD_300K;

// set the message status

 ser_queue[XMIT_QUEUE].entry[temp].status=STAT_WAITING;

 }

THE FINAL WORD ON THE 8051

Page 173

 }

 check_stat(); // see if the next message can

// begin use of the UART

}

You will note that timer one is used in both serial modes. In the 9600 baud mode it serves as the baud
rate generator for the UART. Interbyte time-outs are provided by the system tick being generated by
timer zero. In the 300K baud mode, timer one serves as the interbyte time-out mechanism. The
multiplexing of timer one means that when the UART mode is changed, the software must be careful to
also change the reload value of the timer. One important thing when changing the timer and UART to
operate at 9600 baud is that the low byte of timer one should be force fed the reload value in TH1
immediately after the mode is changed. Otherwise, the first timer one overflow will not occur at the right
time and you will not immediately get 9600 baud. This is a minor detail but if overlooked can hose up
the first byte of an outgoing message.

The serial port will be treated as a system resource which each outgoing message must wait its turn for.
The outgoing queue functions as the staging area where the messages await their turn to use the serial
port. The message at the head of the queue will be given the use of the serial port only under certain
conditions: a message may use the serial port whenever it is idle, i.e.: if both the transmit and the
receive FSAs are in the idle state. A message may also use the serial port if the transmit FSA is idle, the
serial port is set to the correct baud rate for the message and an incoming message is being received.

The message at the head of the transmit queue is checked every time a receive message is pushed into
the queue (since the receive FSA is then idle), every time a receive message is popped (since it may be
a response for a message in the transmit queue thus clearing it), and whenever the message time-out
timer expires. This ensures that the UART is passed from message to message in a timely manner. The
function performing this task is shown in Listing 0-4.

Listing 0-4

/***

 Function: check_stat

 Description: Checks the transmit queue to see if the head

 message is waiting for the serial port and if it

 can be started. If it can begin transmission, it

 is assigned use of the UART and transmission is

 begun.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void check_stat(void) {

 if (ser_queue[XMIT_QUEUE].head!=UNUSED) {// if there is a

// message waiting...

 // check its status

 if (ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .status == STAT_WAITING) {

 // the next message is waiting,

// so check the UART availability

CHAPTER 9 - NETWORKING WITH THE 8051

Page 174

 if (recv_state==FSA_INIT ||

 (uart_mode == ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .uart_mode)) {

// start the message

 SCON=uart_mode=ser_queue[XMIT_QUEUE]

.entry[ser_queue[XMIT_QUEUE].head]

.uart_mode;

 if (uart_mode==BAUD_300K) { // make sure T1 has the right

// reload value

 TH1=TO300K_VAL;

 baud_9600=0;

 P1=0x06; // allow slave I/O

 } else {

 TH1=TO9600_VAL; // set reload for timer 1 to

 // the interbyte timeout period

 TR1=0;

 TL1=TH1; // force reload the timer so

// that the UART immediately has

// the right baud rate

 TF1=0;

 TR1=1;

 baud_9600=1;

 P1=0x09; // allow PC I/O

 }

 ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head]

 .status=STAT_SENDING;

 SBUF=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].buf[0];

 trans_ctr=0; // set buffer pointer to first

// byte

 trans_size=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].size;

 trans_chksum=ser_queue[XMIT_QUEUE]

 .entry[ser_queue[XMIT_QUEUE].head].buf[0];

 }

 }

 }

}

All incoming messages are pushed into a receive queue upon successful receipt. The main loop then
checks the receive queue to see if there are any pending receive messages. If there are, a function is
called to execute the actions associated with the message at the head of the queue. For the most part
commands from the PC will cause the Serial Monitor to take some action, such as passing data to a

THE FINAL WORD ON THE 8051

Page 175

slave, and then send an acknowledge message to the PC. These response messages will be built in the
receive executive and pushed into the transmit queue. If the message is an acknowledge or data report
from either the PC or a slave, the executive checks to see if the message satisfies the message at the
head of the serial transmit queue. If it does, the transmit queue head is popped and the next message
begins transmission assuming the necessary conditions are met. The basic structure of this function is
shown in Listing 0-5.

Listing 0-5

/***

 Function: push_msg

 Description: Puts the current message in the serial message

 queue, ensures that the baud rate is 9600, and

 that T1 is back to auto reload mode.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void push_msg() {

 unsigned char temp;

 temp=queue_push(RECV_QUEUE); // get a queue entry

 if (temp!=0xFF) { // make sure its valid

 // copy the data into the buffer

 memcpy(ser_queue[RECV_QUEUE].entry[temp].buf, recv_buf,

recv_buf[1]+2);

 // set the message size

 ser_queue[RECV_QUEUE].entry[temp].size=recv_buf[1]+2;

 // set the message status

 ser_queue[RECV_QUEUE].entry[temp].status=STAT_IDLE;

 // ensure that retries is null

 ser_queue[RECV_QUEUE].entry[temp].retries=0;

 // record current UART mode

 ser_queue[RECV_QUEUE].entry[temp].uart_mode=uart_mode;

 }

 recv_chksum=SYNC+SM_ADDR; // set checksum to value of

// first two message bytes.

// This makes the assembly code

// a little faster and easier

 recv_state=FSA_INIT; // set the FSA to idle mode

 check_stat(); // see if the next outbound

// message can go

}

/***

 Function: ser_exec

 Description: This function handles all incoming messages.

CHAPTER 9 - NETWORKING WITH THE 8051

Page 176

 Parameters: None.

 Returns: Nothing.

***/

void ser_exec() {

#ifdef USEEXEC

 do {

 switch (ser_queue[RECV_QUEUE].entry[head].buf[1]) {

 ...

 }

 } while (ser_queue(RECV_QUEUE)); // keep going until all

// messages are handled

#endif

 check_stat(); // see if the head of the

// transmit queue should be

// started

}

Queue Implementation
Because the Serial Monitor project must be able to process the incoming and outgoing messages
quickly, the message queues are built around arrays of “entries.” Each entry has storage for one
message, a byte indicating the size of the message, the number of times to re-send the message if it is
not acknowledged, the mode of the UART required and its associated state. The state variable is used
to determine when the message can have use of the UART and when it must release use of the UART in
the transmit mode. In the receive mode, the status byte means little. The array of these message
entries is fixed in size and the normal head and tail pointers associated with a queue are implemented as
indices into this array. This allows the compiler to implement everything by allocating one byte to the
head and tail and avoiding all pointer arithmetic.

THE FINAL WORD ON THE 8051

Page 177

Listing 0-6

typedef struct { // define a queue entry

 unsigned char buf[MSG_SIZE]; // message data

 unsigned char size, // message size

 retries, // number of retries

 uart_mode, // SCON mask

 status; // current message status

} entry_type;

typedef struct { // define a queue

 unsigned char head, // head of the queue

 tail; // tail of the queue

 entry_type entry[QUEUE_SIZE]; // array of messages for queue

// use

} queue_type;

extern queue_type ser_queue[2]; // need a transmit and receive

// queue

Normally, a data structure such as a queue would be implemented by dynamically allocating memory
from a heap whenever a new entry is needed and freeing the allocated memory when the data is popped
from the queue. Keil does provide dynamic memory allocation routines with the C-51 package, but they
should not be used for high performance systems if it can at all be avoided.

Because the queues are nothing but fixed size arrays, the push and pop operations become simple to
implement. In these queues all pointers are implemented as indices into the array. Messages are
popped from the head of the queue and are pushed into the tail of the queue. Some simple checks
prevent overflow of the queue.

Listing 0-7

/***

 Function: queue_push

 Description: Assigns the next queue entry in the circular queue

 specified to the caller.

 Parameters: queue - unsigned char. Must indicate the queue to

 use.

 Returns: The index of the allocated entry or 0xFF if there

 are no available queue entries.

 Side Effects: none.

***/

unsigned char queue_push(unsigned char queue) {

 unsigned char temp;

 if (ser_queue[queue].head==UNUSED) {// if the queue is empty...

// allocate entry 0

 ser_queue[queue].head=ser_queue[queue].tail=0;

 return 0;

CHAPTER 9 - NETWORKING WITH THE 8051

Page 178

 }

 temp=ser_queue[queue].tail; // save the tail value

 // increment the tail

 ser_queue[queue].tail=(ser_queue[queue].tail+1) % QUEUE_SIZE;

 // ensure that the tail does not

 // lap the head

 if (ser_queue[queue].head == ser_queue[queue].tail) {

 ser_queue[queue].tail=temp; // there are no available entries

 return 0xFF;

 }

 return ser_queue[queue].tail; // return the allocated entry

}

/***

 Function: queue_pop

 Description: Pops the entry of the circular queue specified.

 Parameters: queue - unsigned char. Must indicate the queue to

 use.

 Returns: 0 if the queue is now empty, 1 if the queue still

 holds data.

 Side Effects: none.

***/

bit queue_pop(unsigned char queue) {

// increment the head

 ser_queue[queue].head=(ser_queue[queue].head+1) % QUEUE_SIZE;

 // if the head has caught the

 // tail, the queue is empty

 if (((ser_queue[queue].head-ser_queue[queue].tail)==1) ||

 (!ser_queue[queue].head &&

 (ser_queue[queue].tail==QUEUE_SIZE-1))) {

 ser_queue[queue].head=ser_queue[queue].tail=UNUSED;

 return 0;

 }

 return 1;

}

You will note that the code which responds to incoming messages is left up to your own design. Rather
than make up several meaningless messages, I have left it to you, the reader, to fill in the details of your
own project. You must note that each incoming message should be compared to the message at the
head of the transmit queue (if that message is waiting for a response). If the current receive message
satisfies the transmit queue head, then the transmit queue should be popped so the next message can
take possession of the UART.

Messages in the receive queue will not always be in response to the message at the head of the transmit
queue; instead they will be commands from the PC. In this case, the slaves may need to be sent some
data and the PC will definitely require a response. These messages should be built into transmit queue
entries and queued up for transmission.

THE FINAL WORD ON THE 8051

Page 179

TDMA Control Using the On-Board Timers
Many communications systems can not use a method as simple minded as the polling scheme used by
the System Monitor and its associated slaves. The trouble with a polling scheme is that more and more
time will be wasted by polling overhead as more devices are added to the network. Eventually, the time
between polls for each unit will become unacceptably long and the amount of data that must be passed
from the system master to the slaves becomes overwhelming. When slaves must talk amongst
themselves, all the data must pass through the master. This section will present a simple solution to
these problems and take our serial network design in a new direction.

Imagine that you still have the same network of devices as in the previous section. The main difference
now is that they can all talk and listen to each other. Instead of only hearing what the System Monitor
says and sending data only to the system Monitor, all messages that pass across the network can be
monitored by all devices. This will affect the design of the slave devices in two significant ways: first,
their capability to communicate will be greatly enhanced since one slave can now directly communicate
with the other slave without having to use the System Monitor as a go-between; second - the number of
serial interrupts on each devices will be greatly increased be cause of the higher amount of potential
traffic on the COM lines. The network topography for connecting the slave devices is shown in Figure 0-
2.

Figure 0-2 - Network Topology

When comparing this to the previous network topology, you will notice that the system Monitor is gone,
and the PC is again in the network. The PC will now be responsible for pulling in all the data it needs
from the network of 8051’s. The baud rate of this network will be 9600 for the convenience of the PC. In
the new network scheme, a device on the network may speak to any other device any time its “turn” has
come up.

Turns are assigned in sequential fashion. Thus, node one has the first slot, node number two the
second, and so on. After each node has had a turn, the first node gets another turn. This sequence
continues on infinitely. Thus, during its turn a node owns the network and can talk to whoever it pleases
at will. When its turn (or time slot) is up, it must relinquish control of the network. This is the basic
concept behind a Time Division - Multiple Access (TDMA) network.

In this design, each device is assigned a slot number, told the total number of slots, and is coded to
assume that a slot is a fixed amount of time (this information is given to simplify this example). The size
of a slot is usually selected according to the type and size of messages you will be sending out over the
network. In this case let’s arbitrarily designate a slot as 50ms. Given the knowledge of its slot number,
the total number of slots and slot size, it is a simple matter for the software to keep track of each slot and
count when the correct slot to talk in is coming up. This section will present a design for implementing
this simple TDMA network using an 8051 family member. We will make the simple minded assumption
that all devices are started at the same time and thus have synchronized themselves at power on of the

CHAPTER 9 - NETWORKING WITH THE 8051

Page 180

system. In the real world this is not practical, and there are many ways to synchronize the system which
depend on system design.

The basic hardware design for a node on the TDMA network is very simple. In this example, a bank of
eight DIP switches is connected to port one. The lower nibble of port one will determine a unit’s slot
number, the upper nibble of port one will determine the number of devices in the network. As stated
above, the communications layer of each node will be coded assuming that the TDMA slot width is
50ms.

A “conversation” between two devices on the network is very simple. Assume that slave one wanted to
request some data from slave two. In its time slot, slave one would send the data request message to
slave two. Slave two will receive and parse the message from slave one. Once it is decoded and
determined to be good, slave two pushes it in its receive queue for handling. The message is handled by
slave two’s executive code which generates the necessary response. This response is pushed into the
transmit queue on slave two, and it is sent the next time slave two’s slot comes up on the network.
Meanwhile, slave one is maintaining a message time-out counter similar to the one used in the System
Monitor. This counter allows slave one to decide that slave two is not going to respond to his message
for some reason and retry sending the message to slave two.

When a network node’s slot comes up on the network, it should look to send as many messages as
possible. For example, if there are five messages pending in the transmit queue of the slave, it should
not send only one message, but as many as will fit in the 50ms slot. If this means that if three of the
messages can be sent, then so be it. The other two messages will remain queued up and will be sent
during the node’s next TDMA slot.

The structure of the communications layer of a network node is straightforward and will be derived from
the code written for the System Monitor. The main loop which performs the system initialization is very
similar.

Listing 0-8

/***

 Function: main

 Description: This is the entry point of the program. This

 function initializes the 8051, enables the correct

 interrupt source and enters idle mode.

 Parameters: None.

 Returns: Nothing.

***/

void main(void) {

 slotnum=P1 & 0x0F; // get this node's slot number

 slottot=P1 / 16; // get the total number of nodes

 TH1=TO9600_VAL; // set reload for timer 1 to

// the interbyte timeout period

 TH0=RELHI_50MS; // set the rel value of Timer 0

 TL0=RELLO_50MS;

 TMOD=0x21; // timer 0 = 16 bit

// timer 1 = 8 bit auto reload

 TCON=0x55; // start timers. both external

// ints are edge

 SCON=BAUD_9600; // UART mode 2

 IE=0x92; // enable the timer 0 interrupt

THE FINAL WORD ON THE 8051

Page 181

// and the serial interrupt

 init_queue(); // set all queues to empty

 for (;;) {

 if (tick_flag) { // check for system tick

 system_tick();

 }

 if (rcv_queue.head!=UNUSED) { // if there is something in the

// receive queue

 ser_exec(); // handle it

 }

 PCON=0x01; // enter idle mode

 }

}

You will note that the ‘system_tick’ function is called from the main loop now whenever a flag has been
set true by the timer 0 ISR. The tick functions are no longer performed by the timer 0 ISR because the
slave cannot afford to miss a timer 0 interrupt due to the fact that it is now responsible for counting the
system slots and must be very accurate to prevent drift in slot boundaries. The timer 0 routine is now
written in assembler and an instruction count is maintained to ensure that every cycle between the 50ms
interrupt is accounted for. This is the same technique that was used in the Clock project in Chapter Four.

Listing 0-9

EXTRN BIT (tick_flag) ; set to indicate to main loop that

; a tick has occurred

EXTRN CODE (start_xmitt) ; this node's slot is here...

EXTRN XDATA (curslot) ; keeps track of the current slot

; timer 0 reload value for 50ms based on an 11.059MHz clock. Note

; that the code delay of 9 cycles has been taken out of the reload

; value.

REL_HI EQU 04CH

REL_LOW EQU 007H

SEG AT 0BH

ORG 0BH

LJMP T0_INTR ; install T0_intr in the vector

PUBLIC T0_INTR

?PR?T0_INTR?T0INT SEGMENT CODE

RSEG ?PR?T0_INTR?T0INT

;***

; Function: T0_INTR

CHAPTER 9 - NETWORKING WITH THE 8051

Page 182

; Description: This is the ISR for the system tick generated by

; Timer 0. It reloads the timer with the value for

; 50ms minus the code overhead and checks to see if

; this node's slot has come up.

; Parameters: none.

; Returns: nothing.

; Side Effects: none.

;***

T0_INTR: CLR TR0 ; 1, 3 reset timer 0

MOV TH0, #REL_HI ; 2, 5

MOV TL0, #REL_LOW ; 2, 7

CLR TF0 ; 1, 8

SETB TR0 ; 1, 9

SETB tickflag ; tell main that a tick has occurred

LCALL check_slot ; see if our slot has come up

PUSH ACC

PUSH B

PUSH DPH

PUSH DPL

MOV DPTR, #curslot ; read the current slot count

; into the accumulator

MOVX A, @DPTR

INC A ; increment the current slot

MOV B, A

MOV A, P1 ; read in the total number of

; slots

SWAP A

ANL A, #00FH

XCH A, B

CLR C

SUBB A, B ; see if the current slot number

; is >= the total number of slots

JC L1

CLR A ; it is, clear curslot

MOVX @DPTR, A

L1: MOVX A, @DPTR ; read in current slot number

MOV B, A

MOV A, P1 ; read in this node's slot number

ANL A, #00FH

CLR C

SUBB A, B ; see if curslot==slotnum

THE FINAL WORD ON THE 8051

Page 183

JNZ L2 ; it is not

LCALL start_xmit ; curslot==slotnum, start xmission

L2: POP DPL

POP DPH

POP B

POP ACC

RETI

END

The standard tick work for the system timer has been moved to a new C function.

Listing 0-10

/***

 Function: system_tick

 Description: This is the ISR for timer 0 overflows. It

 maintains the timer and reloads it with the

 correct value for a 50ms tick. The time is counted

 in this routine for any functions that require a

 timeout.

 Parameters: None.

 Returns: Nothing.

***/

void system_tick(void) {

 unsigned char i;

 tick_flag=0; // clear the tick flag

 for (i=0; i<MAX_MSG; i++) {

 if (xmit_timeout[i][0]) { // see if the msg timed out

 xmit_timeout[i][0]--;

 if (!xmit_timeout[i][0]) { // if so, check retries

 check_msg(xmit_timeout[i][1]);

 }

 }

 }

 if (recv_timeout) { // check the receive interbyte

// timeout

 recv_timeout--;

 if (!recv_timeout) { // if it has expired...

 recv_state=FSA_INIT;

 check_stat();

 }

CHAPTER 9 - NETWORKING WITH THE 8051

Page 184

 }

}

The ‘system_tick’ function has many of the same functions it had in the System Monitor project but more
closely resembles the tick function in the Clock project in the way that it is invoked from the main loop.
The main task of this ‘system_tick’ function is to maintain message timers to allow the node to recover
from network communications errors.

You will note that the timer 0 ISR keeps track of system slots and when it determines that the node’s slot
has come up calls a function to start transmission of any pending messages. The function which does
this is responsible for building a buffer for transmission from as many of the queued messages as it can.
The serial interrupt routine for transmit interrupts then sends the data out of this buffer. When replies are
received it is the responsibility of the serial messages executive code to determine if a transmit message
has been satisfied and can be removed from the queue. Those messages which have not received
replies are handled in the time-out code called by the ‘system_tick’ function. The serial port ISR code
from the System Monitor remains unchanged except for the code to transmit data. In this function, the
structure is the same, the only difference is that the data is sent out of a new buffer instead of directly out
of the transmit queue’s head.

Listing 0-11

/***

 Function: start_xmit

 Description: Fills the trans_buf with as many pending messages

 as possible. The first message is then started.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void start_xmit(void) {

 unsigned char maxbytes=45, // total number of bytes to be

 // sent in one slot time

 msgnum=0, // total number of messages put

 // in trans_buf

 i;

 if (tq_head == UNUSED) { // don't waste time if the queue

 // is empty

 return;

 }

 while (maxbytes) { // while there is space in the

// buffer

 if (maxbytes>=tq[temp].size) { // make sure the next message fits

 // copy it in and build a checksum

 for (i=0, chksum=0, trans_size=0;

i<tq[temp].size;

i++, trans_size++) {

 trans_buf[trans_size]=tq[temp].buf[i];

 chksum+=tq[temp].buf[i];

THE FINAL WORD ON THE 8051

Page 185

 }

 trans_buf[trans_size]=chksum; // save the checksum

 xmit_timeout[msgnum][0]=MSG_TIMEOUT; // save the timeout info

 xmit_timeout[msgnum][1]=tq[temp].retries;

 msgnum++; // increment the number of

 // messages in the buffer

 maxbytes-=tq[temp].size+1; // reduce amount remaining by

// amount used

 temp=tq[temp].next;

 } else {

 maxbytes=0; // get out of this loop

 }

 }

}

/***

 Function: ser_xmit

 Description: Handles a serial transmit interrupt.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_xmit(void) {

 trans_ctr++; // move the output index up

 // see if all data is output

 if (trans_ctr < trans_size) {

 // send checksum as last byte

 if (trans_ctr==trans_size-1)) {

 SBUF=trans_chksum;

 } else {

 // send current byte

 SBUF=trans_buf[trans_ctr];

 // update checksum

 trans_chksum+=trans_buf[trans_ctr];

 }

 }

}

The transmit queue must now have a different structure than the receive queue since the head of the
queue will not necessarily have been responded to. Thus, if the first three messages are sent out during
the node’s slot and only the second and third messages are responded to, the queue must still hold the
first message, and the second and third messages should be removed. The current queue structure
does not allow for this and the new queue must be slightly more complicated.

The transmit queue will still use a fixed amount of possible entries, but instead of assuming that entry
one always follows entry zero in the queue order, there must be some sort of link in each entry to

CHAPTER 9 - NETWORKING WITH THE 8051

Page 186

establish the relationship between one entry and the entry that follows it since they entries may not
always be in order. The array of entries will now hold two linked lists - a used list and an unused list.
When a new entry is required it is unlinked from the free list, filled in, and linked into the used list.
Likewise, when an entry is no longer needed it is unlinked from the used list and inserted back into the
free list. The source code for the new transmit queue is shown below in Listing 0-12.

Listing 0-12

/***

 Function: tq_init

 Description: Sets up the free and used lists for the transmit

 queue.

 Parameters: none.

 Returns: Nothing.

 Side Effects: none.

***/

void tq_init(void) {

 tq_head=tq_tail=UNUSED; // set head and tail pointers to

// empty

 tq_free=0; // initialize free list

 for (i=0; i<QUEUE_SIZE; i++) {

 tq[i].next=i+1;

 }

 tq[QUEUE_SIZE-1].next=UNUSED; // make sure last free list

// entry is grounded

 }

/***

 Function: tq_push

 Description: Assigns the next free queue entry in the transmit

 queue to the caller.

 Parameters: none.

 Returns: The index of the allocated entry or 0xFF if there

 are no available queue entries.

 Side Effects: none.

***/

unsigned char tq_push(void) {

 unsigned char temp;

 if (tq_free==UNUSED) { // if there are no free entries...

 return UNUSED; // tell the caller

 }

 temp=tq_free; // get the first free entry

 tq_free=tq[tq_free].next; // point the head of the free

// list at the next free entry

 tq[temp].next=UNUSED; // this entry will be the last

 // entry in the used list

THE FINAL WORD ON THE 8051

Page 187

 tq[tq_tail].next=temp; // point the current used tail

// to the new entry

 tq_tail=temp;

 return temp; // return the index of the new

// entry

}

/***

 Function: tq_pop

 Description: Pops the specified entry of the transmit queue.

 Parameters: entry - unsigned char. Must indicate the entry to

 pop.

 Returns: 0 if the queue is now empty, 1 if the queue still

 holds data.

 Side Effects: none.

***/

bit tq_pop(unsigned char entry) {

 unsigned char temp, trail;

 if (tq_head==UNUSED || entry>(QUEUE_SIZE-1)) { // don't bother

// if the queue is empty or the

 // entry is invalid

 return (tq_head==UNUSED) ? 0 : 1;

 }

 if (entry==tq_head) { // special handling for when the

 // head is popped

 temp=tq_head;

 tq_head=tq[tq_head].next; // move the head pointer

 tq[temp].next=tq_free; // put the old head in the free

// list

 tq_free=temp;

 } else {

 temp=trail=tq_head; // set up tracking pointers

 while (temp!=entry && temp!=UNUSED) { // look until the list

// is exhausted

 // or the entry is found

 trail=temp;

 temp=tq[temp].next;

 }

 if (temp!=UNUSED) { // if the list was not

// exhausted...

 tq[trail].next=tq[temp].next; // link around the entry

 tq[temp].next=tq_free; // put the entry in the free list

 tq_free=temp;

CHAPTER 9 - NETWORKING WITH THE 8051

Page 188

 if (temp==tq_tail) {

 tq_tail=trail;

 }

 }

 }

 return (tq_head==UNUSED) ? 0 : 1;

}

Keeping the Slots Synchronized
As you can see, the code for managing the network is relatively simple. The slotted approach to dividing
access to the network assures each node if getting a fair and equal shot at transmitting data on the
network. As was mentioned before, however, this simple design does not allow for synchronizing the
nodes when they are not all reset at exactly the same time. The easiest way to ensure that the nodes
are synchronized between each other is to give them some sort of signal that they can all synchronize
from.

Thus, a new approach is designed for the network. In this case, the PC will generate a low going pulse
whenever the beginning of the slot cycle is reached. Thus, the falling edge of this signal will indicate to
all nodes that slot zero has just begun. The code in each node now must include another ISR to handle
this incoming signal. In this case, assume that it is connected to the INT0 pin of the 8051. The
responsibility of this ISR is simply to reload and start timer 0 which will no longer be started by the
initialization code in ‘main’. Timer 0 will then handle all the rest of the timing that is required and stop
itself when all the slots have gone by. The slot sequence will begin again when the PC generates
another falling edge on the synchronization signal.

Listing 0-13

/***

 Function: start_tdma

 Description: This ISR responds to the signal from the network

 master to being counting slots. Timer 0 is started

 to perform this work.

 Parameters: None.

 Returns: Nothing.

***/

void start_tdma(void) interrupt 0 {

 TH0=RELHI_50MS; // set timer 0 to the right value

 TL0=RELLO_50MS;

 TF0=0;

 TR0=1;

 curslot=0xFF; // ensure that the first timer 0

 // interrupt causes slot 0 to

// start

}

The beauty of this approach is twofold. First, as was mentioned above, it is easy for all the nodes to stay
synchronized to each other since they are all referencing the same signal. Secondly, it gives the PC the
capability to be the master of the communications network. If you alter the code in timer 0 to stop
counting slots as soon as the node’s slot is up, that node will never transmit again until the beginning of
slot zero is indicated again by the PC. This allows the PC to stop access to the network by all nodes and
perform any sort of overhead function that it has to. For example, if it must send a long series of

THE FINAL WORD ON THE 8051

Page 189

commands to the other nodes but does not want to wait for several slot periods to do it, the PC can stop
the network and send out all the data that it has to in one big burst, then restart the normal network
functions.

Another minor change that can be made to the network protocol is to allow the PC the capability to send
messages to the node which are responded to immediately. In other words, the PC sends a command to
the node which instead of building a response and queuing it for its next slot builds the response and
begins immediate transmission of it. This in effect makes the network a hybrid of a TDMA system and a
polling system. If the master of the network is intelligently coded, this type of scheme will maximize
information transfer from the slave nodes to the PC.

CSMA With the 8051
The above TDMA network design allows for great flexibility and efficiency in data transfer under the
condition that most nodes on the network will need to use most of their slot a large amount of the time.
When this condition is met, the TDMA network achieves near full utilization and is a good and simple
solution for network communication.

However, many systems do not meet the above condition. Consider the case where a given node has
very little to say except for brief periods. In this case, the slot assigned to that node will remain unused
for most of the time while there may be other nodes on the network that need to send more data than is
allowable for every one of their slots. Obviously in such a case the TDMA approach is not appropriate.

One answer to this problem is to allow a network node to speak on the communication medium any time
it needs to. The trouble with this solution is that there will inevitably be times when two devices decide
that they want to talk at the same time. The result will be that neither device will be able to transmit its
data reliably since the data from the other node will be colliding with it on the network. To solve this
problem, the nodes need some way of detecting when the network is in use as well as detecting
collisions with their own transmissions. A network which handles the sort of scheme addressed above is
called a Carrier Sense - Multiple Access (CSMA) network. The focus of this section is a set of low level
routines that will allow the 8051 to participate in a CSMA network without the collision problems.

To interface the 8051 to a CSMA network, the network node hardware must be such that it allows the on
board UART of the 8051 to receive data being transmitted by all nodes including itself. Secondly, the
processor type will be changed from an 8051 to an 8052 to give the system another on board timer to
play with. The approach to this new type of network access will be simple. First, the system tick function
now performed by timer 0 in a TDMA node will be moved, unchanged, to timer 2 in the new node design.
Secondly, timer 0 will be used to keep track of a byte time-out period from receipt of the last serial byte.
Each time RI fires an interrupt, timer 0 will be loaded with this time-out value and started. At the same
time, a flag which indicates that the network is busy will be set. Once the timer overflows and timer 0’s
interrupt routine is executed, the timer will be stopped and the network busy flag will be cleared. The
code which starts transmission of a serial message will have to check this flag to see if the network is in
use before it starts sending data out of the serial port.

The timer 0 routine again will serve as the heart of the design for the implementation of the CSMA
network. This timer is reloaded every time a byte is received from the network. Additionally, this timer
will be used to execute the random back off delay required when a collision between two (or more) nodes
on the network is detected. To allow it to perform both functions, a flag will be set to true whenever the
random hold off value has been loaded into timer 0. When timer 0 overflows under this condition it will
be responsible for restarting transmission of the message in the transmit buffer (if the network is free)
and will have to set the message time-out to the correct value since the message has been restarted.
The code for the timer 0 interrupt is shown in Listing 0-14.

CHAPTER 9 - NETWORKING WITH THE 8051

Page 190

Listing 0-14

/**

 Function: network_timer

 Description: This interrupt is fired by timer 0 when either a

 network hold off period has expired or the

 interbyte timeout has expired.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void network_timer(void) interrupt 1 {

 TR0=0; // stop the timer

 if (delay_wait) { // if we’re waiting because of a

// network collision...

 delay_wait=0; // clear that flag

 trans_restart(); // restart the transmission

 }

 network_busy=0; // the network is no longer busy

 check_status(); // see if a message should be

// started

}

/***

 Function: trans_restart

 Description: This function begins transmission of the message

 held in trans_buf. It assumes that the message is

 good and that the retries and size variables are

 already set.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void trans_restart(void) {

 SBUF=trans_buf[0]; // write out the first byte

 last_out=trans_buf[0]; // save it for collision

// detection

 trans_ctr=0; // set buffer pointer to first byte

 trans_chksum=trans_buf[0]; // set the checksum

}

Each byte that is written to SBUF will be stored in a temporary location and compared with the value of
SBUF when a serial receive interrupt is activated. If the value of SBUF and the temporary do not agree,
then the software assumes that there has been some sort of collision during its message transfer. The
node will then stop transmitting data for a random period of time and once this time period is over will

THE FINAL WORD ON THE 8051

Page 191

again attempt to send the pending message. The code for receive and transmit interrupts on the serial
port and the hold off code is shown in Listing 0-15.

Listing 0-15

/***

 Function: ser_xmit

 Description: Handles a serial transmit interrupt.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_xmit(void) {

 trans_ctr++; // move the output index up

 // see if all data is output

 if (trans_ctr < trans_size) {

 // send checksum as last byte

 if (trans_ctr==trans_size-1)) {

 SBUF=trans_chksum;

 last_out=trans_chksum;

 } else {

 // send current byte

 SBUF=trans_buf[trans_ctr];

 last_out=trans_buf[trans_ctr];

 // update checksum

 trans_chksum+=trans_buf[trans_ctr];

 }

 }

}

/***

 Function: ser_recv

 Description: Handles a serial receive interrupt when the system

 run at 9600 baud.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void ser_recv(void) {

 unsigned char c, temp;

 c=SBUF;

 if (TH0 > NET_DELAY_HI) { // don’t allow the byte timeout

// to shorten any holdoff time

 TR0=0; // set the timeout delay in timer 0

CHAPTER 9 - NETWORKING WITH THE 8051

Page 192

 TH0=NET_DELAY_HI;

 TL0=NET_DELAY_LO;

 TR0=1;

 }

 if (transmitting) { // if a message is being sent by

// this node...

 if (c!=last_out) { // the current byte in should be

// the same as the last byte

// written to SBUF

 trans_hold(); // it's not - there has been a

// network error

 }

 } else {

 switch (recv_state) {

 ... // parse incoming message

 }

 }

}

/***

 Function: trans_hold

 Description: This function sets a random hold off time in the

 range of 2.00 ms to 11.76 ms.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

void trans_hold(void) {

 unsigned int holdoff;

 trans_chksum=trans_ctr=0; // reset the transmit counters

 holdoff=(unsigned int) rand(); // get a random number

 holdoff/=3; // scale the number down to the

// desired range

 holdoff+=TWO_MS; // add a constant to the hold

 // off to ensure that the delay

// is at least 2 ms

 holdoff=(0xFFFF-holdoff)+1; // convert holdoff to a reload

// value for timer 0

 TR0=0; // restart the timer

 TL0=(unsigned char) (holdoff & 0x00FF);

 TH0=(unsigned char) (holdoff / 256);

 delay_wait=1; // indicate that this node is

// waiting due to a network

THE FINAL WORD ON THE 8051

Page 193

// collision

 TR0=1;

}

You will note that the code to handle transmit interrupts is essentially the same as it has been all along.
The biggest difference here is that the ‘last_out’ variable must be set with the value that was last written
to SBUF. Remember, that this value is expected to come into the serial port as the next complete byte.
If it does not, there has been some sort of network error.

The remainder of the code for the CSMA version of our network node looks very much like the code in
the System Monitor. It is assumed that each time a message is placed on the network, it will either be a
command or request to another node, in which case a response is expected, or it will be a reply to some
other node, in which case no response will be expected. Thus, the same queue structure and serial
command executive code can be reused from the System Monitor with slight modifications. The
changes to the code are very simple and are dependent upon your own implementation.

CHAPTER 9 - NETWORKING WITH THE 8051

Page 194

Conclusion
This chapter has presented several networking methods for use with the 8051 family of microcontrollers.
These, however, are not the only types of networks that can be implemented with the 8051. This text is
not intended to be a lesson on network theories for you, and if you need more information on network
design and analysis, I recommend that you seek out other texts to help you with this.

THE FINAL WORD ON THE 8051

Page 195

- Controlling the Compiler and Linker

Porting Your Existing C Code to Keil C
Whether you have existing code that you are porting from another processor to the 8051, or 8051 based
code that you are changing over for use with the Keil development tools, you have made a wise choice
to use Keil tools on the 8051. As has been discussed throughout this book, the 8051 family of
microcontrollers and the Keil package of tools are a powerful combination that will help you accomplish
almost any task. Porting your existing C code to Keil C is an easy task since the C51 compiler fully
implements the ANSI standard for the C language. So as long as you have not written code that uses
language extensions that are not ANSI compliant, you will have no trouble compiling your code with the
C51 compiler.

When you do begin your code changeover, there are several things you will want to keep in mind at each
stage of the process. When porting code to the 8051, begin by examining the code and determining
what sort of changes to variable declarations and code structure should be made to help it run better on
the 8051. Following this, examine the design of the software and ensure that it will correctly translate
into the 8051’s architecture.

If your project was previously hosted on another microcontroller, you should pay close attention to the
tips that were given for optimizing your code in Chapter Three. These tips all apply here. The main
thing to keep in mind is that you are running your code on an eight bit machine and you should thus try to
keep all variables and other data elements within the eight bit boundary. The gains to be had by
accomplishing this cannot be stressed enough. Any variables that are simply performing the function of
a flag (i.e.: they only have two values) should be declared as bit variables. Along this same vein, if you
have a variable in which you frequently access a single bit at a time, consider declaring it as bdata.

Another thing to keep a close eye on when first changing porting your code to the 8051 is the usage of
pointers. This again was discussed in Chapter Three, but it bears repeating. You can save a fair amount
of code size and execution time if you can limit your pointers to a certain memory space and specify this
to the C51 compiler using the C language extensions it provides. This will allow the compiler to write
much better code for your source that uses these pointers.

Once you have made an initial pass at optimizing your code for the eight bit world, you need to examine
the structure of the software and decide which parts of the code will be your interrupt routines and which
will be called from ‘main’. Once you establish the functions that will respond to processor interrupts you
should run the code through the compiler and linker and let the linker generate warnings to you for
functions that are called from multiple interrupt calling trees. These warnings will immediately lead you
to those functions which are potential critical code sections. These are sections which may be called
more than once at a time either via recursion or the interrupt mechanism. The C51 compiler does not
automatically generate code to handle recursion or multiple calls to functions from separate calling trees
because of the 8051’s architecture. If you were dealing with a processor that had full stack capabilities
like an 80x86 processor, then a calling frame could be built and pushed onto the stack for each function
invocation. However, you are not dealing with an 80x86, and you should know by now that the internal
stack space of the 8051 is not sufficiently large to support calling frames for more than a few functions.
For functions that must be called recursively, the C51 compiler gives you the capability of declaring them
as ‘reentrant’. In such cases, the C51 compiler will simulate a stack in the default memory area. This is
a time and memory consuming process and thus the ‘reentrant’ key word should be used sparingly.

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 196

Not all linker warnings are cause for alarm. There will be times when the linker warns you that a function
is being called from multiple interrupt paths when, in fact, the call is not physically possible. For
example, you may have a function which is called by both the ISRs for timer 0 and external interrupt 1,
but these interrupts have been set to the same priority. Given that they are the same priority and are the
only calling trees that can invoke this function, it is very safe to assume that there is not a problem
because an interrupt of a given priority cannot interrupt an ISR of like priority. One way to get rid of the
linker warning is to delete the reference from one of the calling trees. This frees you from having the
compiler generate that unwanted reentrant stack. This issue will be discussed in more detail later in this
chapter.

Once you have adapted your code to an eight bit machine and established your interrupt functions and
reentrant functions, you will want to consider the manner in which you access external memory. Many C
programmers set a pointer at whatever physical address they wish to access and then perform all
operations on that location using the pointer. This method will still work in C51, but you can make your
code look a little neater by using the CBYTE, CWORD, XBYTE, XWORD, DBYTE, DWORD, PBYTE,
PWORD macros provided in absacc.h. These macros allow you to treat external memory as one big
array (of char, int, and long) thus making your code more readable. Additionally, if your hardware
architecture changes to something odd, and accessing a device is no longer a simple matter of a MOVX,
you can rewrite the macro to implement your hardware’s new memory accessing scheme.

If you are porting code from another compiler package such as Archimedes or Avocet, you must keep in
mind the above discussion and take care to change over their keywords to the correct Keil ones. Since
the other packages do not support all the features that the Keil compiler supports (such as bdata
variables, reentrant functions, and specification of function register bank) you will want to examine your
code to ensure that you take advantage of all the things that Keil supports. On one project that was
ported over from Archimedes C to Keil C51, we avoided all of the quirky bugs that Archimedes had,
gained extra space in our CODE and XDATA segments, and had to change certain parts of the code to
slow it down because the extra speed gained had shown that the host hardware was a little slower than
originally thought! The moral of the story is that if you use the C51 package well, there are great gains in
efficiency to be made.

Porting Your Assembly Code to Keil Assembly
There really are not too many issues for you to be concerned with when changing an assembly project
from one assembler to the Keil assembler. The main thing to remind you of is to change the names of
your segments to be compatible with the Keil naming conventions. This will make things easier for you
in the future and will allow you to interface your code with Keil C easier. Of course, if your project is a
combination of C and assembly then you will want to make the changes to the segment names. Refer to
Chapter Three for some guidance on interfacing your C code and your assembly code.

I have never encountered many problems in reassembling code with the Keil assembler. In fact, the only
thing I have ever HAD to change in code that I was reassembling was to delete a line which defined the
PCON register when changing programs from the old Avocet assembler. The reason was that the
Avocet assembler was so old, it was done before the power saving modes were added to the 8051 family
and thus it had to have an explicit definition of the address of the PCON SFR.

THE FINAL WORD ON THE 8051

Page 197

Use of the ‘using’ Keyword
You will recall that the Intel 8051 family of controllers has four register banks with each bank having eight
registers. These thirty two bytes reside in the bottom of the DATA memory area. Each register bank is
referred to by its number (zero through three). By default, the 8051 sets itself up to use register bank
zero by clearing the RS0 and RS1 bits in the PSW SFR, however, the software is able to change the
default register bank of the controller at any time to any one of the four register banks. Part of the
discussion in Chapter Three revolved around the register banks and their usage in interrupt functions.
That chapter showed you the assembly code emitted by the compiler for an interrupt function compiled
without any extra keywords and compared it to an interrupt function which specified register bank zero as
the default bank. The difference was that the registers in the second version of the function were not
pushed. This section will discuss how to put this fact to use.

Chapter Three pointed out that there are thirty two processor cycles to be saved every interrupt
invocation by assigning a specific register bank to an interrupt routine. To take advantage of this, the
people at Keil recommend that you assign a separate register bank to each “interrupt level” in your
program. For example, the main loop and the initialization code would have no specific assignment and
thus would be compiled to use register bank zero. Each interrupt routine which responded to a priority
zero interrupt would be coded to use register bank one, and each interrupt routine which responded to a
priority one interrupt would be coded to use register bank two. Any functions that are called by the ISRs
must either use the same register bank as the caller or must be compiled using a compiler directive
(‘NOAREGS’) which ensures immunity from the current register bank. The following piece of code
illustrates this basic design approach for selecting register banks for the ISRs.

Listing 0-1

void main(void) {

 IP=0x11; // serial intr and ext intr 0

// have high priority

 IE=0x97; // enable serial, external 1,

// timer 0 and external 0

// interrupts

 init_system();

 ...

 for (;;) {

 PCON=0x81; // enter idle mode

 }

}

void serial_intr(void) interrupt 4 using 2 {

// serial interrupt has high

// priority and thus will use

// register bank 2

 if (_testbit_(RI)) {

 recv_fsa();

 }

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 198

 if (_testbit_(TI)) {

 xmit_fsa();

 }

}

void recv_fsa(void) using 2 { // recv_fsa must use the same

// register bank as serial_intr

// since serial_intr calls it

 ...

}

void xmit_fsa(void) using 2 { // xmit_fsa must use the same

// register bank as serial_intr

// since serial_intr calls it

 ...

}

void intr_0(void) interrupt 0 using 2 {

// high priority interrupt - use

// register bank 2

 handle_io();

 ...

}

void handle_io(void) using 2 { // called by an ISR using RB2

// must use RB2 also

 ...

}

void timer_0(void) interrupt 1 using 1 {

// low priority interrupt - use

// register bank 1

 ...

}

void intr_1(void) interrupt 2 using 1 {

// low priority interrupt - use

// register bank 1

 ...

}

Note that the register bank is specified for each ISR as well as the functions called by the ISR. Any
functions called by the main routine will not need a register bank definition since C51 will automatically

THE FINAL WORD ON THE 8051

Page 199

assume that they are to use register bank zero. The calling tree for this simple project is shown below.
The separate paths do not cross.

Figure 0-1 - Simple Calling Tree

Most real time systems do not have a calling tree as simple as the one shown above. Usually there are
at least a couple of utility type functions that are called by more than one interrupt routine in addition to
the main loop. Take, for example, the following code listing. This program is the same as the one
above, except now it has a new function called display that is executed by both of the possible interrupt
levels and the main loop level.

Listing 0-2

void main(void) {

 IP=0x11; // serial intr and ext intr 0

// have high priority

 IE=0x97; // enable serial, external 1,

// timer 0 and external 0

// interrupts

 init_system();

 ...

 display(); // write a message to a display

// panel

 for (;;) {

 PCON=0x81; // enter idle mode

 }

}

void serial_intr(void) interrupt 4 using 2 {

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 200

// serial interrupt has high

// priority and thus will use

// register bank 2

 if (_testbit_(RI)) {

 recv_fsa();

 }

 if (_testbit_(TI)) {

 xmit_fsa();

 }

}

void recv_fsa(void) using 2 { // recv_fsa must use the same

// register bank as serial_intr

// since serial_intr calls it

 ...

 display(); // write FSA status to the

// display panel

}

void xmit_fsa(void) using 2 { // xmit_fsa must use the same

// register bank as serial_intr

// since serial_intr calls it

 ...

}

void intr_0(void) interrupt 0 using 2 {

// high priority interrupt - use

// register bank 2

 handle_io();

 ...

}

void handle_io(void) using 2 { // called by an ISR using RB2

// must use RB2 also

 ...

}

void timer_0(void) interrupt 1 using 1 {

// low priority interrupt - use

// register bank 1

 ...

THE FINAL WORD ON THE 8051

Page 201

 display(); // write a timeout message to

// the display panel

}void intr_1(void) interrupt 2 using 1 {

// low priority interrupt - use

// register bank 1

 ...

}

void display(void) {

 ...

}

Now there is a function, ‘display’, which is called by every execution level of the 8051. This means that it
is possible for the ‘display’ function to be interrupted by an interrupt which will in turn call the ‘display’
function. Remember that each ISR has specified its own register bank and thus is not saving any of the
data in the current register bank. By default, the compiler will code the ‘display’ function to use absolute
register addressing for register bank zero. This means that instead of generating R0..R7 type references
to the registers, C51 will instead generate absolute addresses. In the case of the ‘display’ function as
specified, the compiler will generate 00..07 for the register addresses since it assumes register bank zero
to be the active register bank.

This will cause a problem for any code that was using register bank 0 when the display function is called
from an interrupt routine because the data in the registers will be corrupted. If the display function were
only called by one interrupt level, the default register bank could be specified for the function and the
problem would be solved. However, this will not work in this case since the function is called by more
than one interrupt level as you can see in the calling diagram shown below.

The calls to ‘display’ from multiple levels in the code will also cause the linker to generate several
warnings which we will deal with later. For right now, the important thing is to tell the compiler how to
deal with ‘display’ so that register corruption does not occur when the code executes. The solution is to
make ‘display’ compile so that it uses the current register bank when it performs register access rather
than assuming that register bank zero is active. This is done by using the Keil pragma ‘NOAREGS’
around the display function. The code for display will be emitted to use R0..R7 type references for the
registers rather than absolute addresses. The ‘display’ function will remain unchanged but will have the
‘NOAREGS’ pragma before it to make it insensitive to register bank changes and the ‘AREGS’ pragma
after it to allow any remaining functions in the file to compile using the C51 defaults.

#pragma NOAREGS

void display(void) {

 ...

}

#pragma AREGS

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 202

Figure 0-2 - Calling Tree with Calls from Multiple Interrupt Levels

Another problem with the ‘display’ function still exists. Assume that ‘display’ uses several local variables
to perform its work. By default, the C51 compiler allocates a block of memory for storage of the local
variables in a “compiled stack.” This storage may be in the default memory segment or may be
optimized into a register depending upon the results of the compiler’s optimizations. Nevertheless, each
invocation of the display function will use exactly the same memory locations for the local variables no
matter where in the calling tree it is invoked from. This is because there is no function stack in the 8051
in the sense of a stack in an 80x86 or 680x0 type processor as was discussed before. Normally, this is
not a problem, but when a function must be called recursively or in a reentrant manner then there will
inevitably be corruption of the data in the local variables.

Consider the case where the ‘timer_0’ ISR calls ‘display’. During the execution of ‘display’, a serial
interrupt occurs and because it is an incoming byte, ‘recv_fsa’ is eventually called by the serial ISR.
‘recv_fsa’ is in a state which requires it to call ‘display’. The execution of ‘display’ completes and the
values of all of the local variables are changed. Any locals that were optimized into registers will be okay
because of the register bank switching, but any locals which could not be so optimized have been
corrupted by ‘recv_fsa’’s call to ‘display’. Eventually, the serial ISR is completed and control of the 8051
is returned to the ‘timer_0’ ISR which was in the middle of a call to ‘display’. Any local variables that
were allocated in the default memory segment for the ‘display’ function have now been corrupted and we
can not predict the results of the ‘display’ function.

THE FINAL WORD ON THE 8051

Page 203

To correct this problem, Keil C51 allows you to optionally generate code which will simulate a stack for
functions such as ‘display’ by declaring them as reentrant. Once this keyword is applied to the ‘display’
function, it will be compiled to allocate all of its locals off of a function invocation stack which is kept in
the default memory segment. Thus, each invocation of ‘display’ will have its own set of addresses for its
local variables. After correcting the reentrancy problem, the ‘display’ function will now look like this.

#pragma NOAREGS

void display(void) reentrant {

 ...

}

#pragma AREGS

You should be aware that declaring functions to be reentrant adds a considerable amount of overhead to
them, and thus should be used sparingly. Additionally, the amount of space taken by the reentrancy
stack can only be predicted by computing the worst case number of reentrant function invocations that
can be active at a time. The C51 package leaves it up to you to ensure that you have enough memory
in the default memory space to handle the reentrant stack. The stack is designed to start at the top of
the default memory segment (for example, 0FFFFH in the XDATA segment) and grow downwards
towards your variables (which begin allocation at the bottom of the memory segment). Once you have
compiled and linked your application you should carefully examine the ‘.M51’ file that is generated by the
linker to assure that there is sufficient space for the reentrant stack.

Controlling The Linker’s Overlay Process
You will have many applications in which you have functions that are called from more than one calling
tree, but because of C51’s lack of a real stack, are not possible. This type of situation was discussed
above. Consider the case in which the ‘display’ function is used as shown in Listing 0-3.

Listing 0-3

void main(void) {

 IP=0x00; // all ints have the same priority

 init_system();

 ...

 display(0);

 IE=0x8A; // enable timer 0, and external

// 0 interrupts

 for (;;) {

 PCON=0x81; // enter idle mode

 }

}

void timer_0(void) interrupt 1 using 1 {

// low priority interrupt - use

// register bank 1

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 204

 ...

 display(1);

}

void intr_1(void) interrupt 2 using 1 {

// low priority interrupt - use

// register bank 1

 ...

 display(2);

}

void display(unsigned char x) {

 ...

}

According to the linker, this code contains a conflict in its calling trees because the ‘display’ function can
be called from the main calling tree as well as the timer 0 ISR and the external interrupt 1 ISR. Because
of the conflict, the linker will emit the following warnings.

*** WARNING 15: MULTIPLE CALL TO SEGMENT

 SEGMENT: ?PR?_DISPLAY?INTEXAM

 CALLER1: ?PR?TIMER_0?INTEXAM

 CALLER2: ?PR?INTR_1?INTEXAM

*** WARNING 15: MULTIPLE CALL TO SEGMENT

 SEGMENT: ?PR?_DISPLAY?INTEXAM

 CALLER1: ?PR?INTR_1?INTEXAM

 CALLER2: ?C_C51STARTUP

The linker is warning you that a call to ‘display’ may be interrupted by an ISR which can also call
‘display’, thus causing corruption of ‘display’’s local variables. The first warning tells us that a call to
‘display’ exists in both the timer 0 calling tree and the interrupt 1 calling tree; the second warning tells us
that there is also a conflict between the interrupt 1 calling tree and the main calling tree. Note also that
the same conflict exists between the calling tree for main and for timer 0. Careful examination of the
code structure shows that the “reentrant” call to ‘display’ is not a problem.

The timer 0 and the external interrupt 1 interrupts have been assigned the same priority in the software
and thus could not cause any sort of conflicting calls to ‘display’. Thus, there is no software design
concern arising from the first warning. The second warning is telling us that the ‘main’ routine’s call to
‘display’ may get interrupted by interrupt one’s call to ‘display’. Again, this is not a problem since the
interrupts aren’t even enabled when the main routine calls ‘display’, and thus the call to ‘display’ could
not get interrupted by anything. Both warnings have proven to be unfounded. This is not to say that the
linker did not function properly. In fact the linker has done its job in giving these warnings. Its job (in
addition to normal linker functions) is to look for these possible reentrant situations and warn you about
them when they have not been handled by declaring the function to be reentrant. It is not the linker’s job

THE FINAL WORD ON THE 8051

Page 205

to perform any sort of analysis on the code and determine which interrupts can occur and when. This is
the job of the engineer.

Now that it has been determined that the warnings are not meaningful to the code, what should be done
about them? The first inclination is to simply ignore them, but this will affect the way in which the linker
resolves references between modules and assigns addresses to relocatable objects. Thus, while the
linker may still output a fully functional executable, it will not take fullest advantage of the memory
spaces it has to work with because the linker will not be able to correctly perform overlay analysis. In
fact, there will be situations in which the program emitted by the linker will not function properly. The
moral is that the linker warnings should not be ignored.

In this case, there are two ways in which the warnings can be eliminated. The first way is to tell the linker
not to perform any sort of overlay analysis. This will lead to code that uses an unnecessarily large
amount of DATA space, but is the easiest to implement. The second way is to help the linker’s overlay
analysis by forcing it to ignore certain references from the calling trees to the ‘display’ function. Once
you have told it to delete all but one tree’s reference, the code will link without any warnings and overlay
analysis will be properly performed. The second approach is clearly the more desirable, while you may
elect to take the first approach if you are short of time and long on memory.

The above code was linked by invoking L51 with the following command line.

L51 example.obj

The first method of eliminating the multiple call warnings stated that you should simply tell the linker not
to perform overlay analysis. Implementing this requires that you clear the “Enable variable overlaying”
checkbox in the linker options dialog box in the workbench.

The second method is somewhat more complex but the rewards for its implementation are higher.
Method number two requires that you delete calling references from two of the three functions which call
‘display’. This will be done using the overlay option on the command line. Remember that the ‘display’
function is called by ‘main’, ‘timer_0’, and ‘intr_1’, and you must choose two of these functions to delete
the call to ‘display’ from. In such a situation, try to leave the call to the function in question in the calling
tree which will be calling the function the most. In this case, let’s assume that interrupt 1 occurs rarely
and that timer 0 is the system tick and thus occurs more frequently. Given this situation, you would
delete the call to ‘display’ from ‘main’ and from ‘intr_1’, leaving it in the calling tree of ‘timer_0’. The new
L51 command line looks like this. The “overlay” section of the command line should be entered in the
“Additional” tab of the linker configuration dialog box in the Workbench.

L51 example.obj overlay(main ~ _display, intr_1 ~ _display)

Most of your projects will initially have a fairly good sized list of multiple call warnings when you first run
them through the linker. Proper attention to the above discussion of deleting references from the calling
trees and correctly using the reentrant keyword will eliminate the warnings. Remember that you will
probably not eliminate all linker warnings in a single pass - it is an iterative process and thus will take
several steps, but make sure that you do eliminate all linker warnings.

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 206

Using 64K (and more) of RAM
If you are developing complex systems with the 8051, you may eventually run into a situation in which
you have device that needs 64K bytes of RAM, but also must perform memory mapped I/O functions. In
applications such as this you are forced to overlap the RAM addresses with the addresses of the I/O
devices. The RAM is then enabled and disabled using either one of the port 1 pins or a pin from a data
latch. An example of such a design is shown in Figure 0-3.

Figure 0-3 - Overlapping RAM and I/O

The software accesses the RAM by holding the P1.0 pin high and then performing the desired access.
The logic level one was chosen to enable the RAM so that it would automatically be enabled by the 8051
when the processor is reset. When the software wants to access an I/O device via its bus, it simply pulls
P1.0 low to disable the RAM and enable the address decoder and then performs the device access.

During normal program operation, the RAM is left enabled so the software does not have to spend time
concerning itself with the state of the enable signal. When the software must access an external I/O
device via the bus a special routine is called which disables the RAM and performs the necessary access
passing data in and out of the internal RAM. Once this process is complete, the RAM is re enabled and
software execution continues as normal. The necessary routines to perform the system I/O are shown in
Listing 0-4. Note that the parameters to this function will be passed via internal RAM and the return
values will also be passed via internal RAM. Thus, there is no need for the SRAM to be enabled during
the actual access of the peripheral.

THE FINAL WORD ON THE 8051

Page 207

Listing 0-4

#include <reg51.h>

#include <absacc.h>

sbit SRAM_ON = P1^0;

/***

 Function: output

 Description: Writes a specified value to a specified XDATA

 address.

 Parameters: address - unsigned int. Indicates address to write

 data to.

 value - unsigned char. Holds the data to write

 out.

 Returns: nothing.

 Side Effects: The external RAM is disabled and thus an interrupt

 routine should not be invoked during this time. To

 help compensate for this, the interrupt system is

 temporarily halted.

***/

void output(unsigned int address, unsigned char value) {

 EA=0; // block all interrupts

 SRAM_ON=0; // disable the RAM

 XBYTE[address]=value; // write value to the address

 SRAM_ON=1; // enable the RAM

 EA=1; // allow interrupts again

}

/***

 Function: input

 Description: Reads the value at the specified XDATA address.

 Parameters: address - unsigned int. Indicates address to read

 from.

 Returns: The value read at the specified address.

 Side Effects: The external RAM is disabled and thus an interrupt

 routine should not be invoked during this time. To

 help compensate for this, the interrupt system is

 temporarily halted.

***/

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 208

unsigned char input(unsigned int address) {

 unsigned char data value;

 EA=0; // block all interrupts

 SRAM_ON=0; // disable the RAM

 value=XBYTE[address]; // read in the data

 SRAM_ON=1; // enable the RAM

 EA=1; // allow interrupts again

 return value;

}

The concept of enabling and disabling the RAM can be extended to allow you to access more than 64K
of system RAM. If you're thinking that 64K of RAM is more than enough for an 8051 based system, you
would be correct most of the time. However, systems that do a lot of instrumentation or have large
amounts of data stored in tables may exceed 64K of RAM usage. In these cases, it is useful to run the
extra address lines from the RAM to either port 1 or a 74HC373 and select the active page of the RAM
via software. In such applications, page 0 is left enabled most the time, and the other pages are
accessed much in the same way as the I/O devices were accessed in the system described above. In
this design, RAM page 0 will be used for program variables, parameter passing, compiled stacks, etc.
The other RAM pages will hold such things as system event tables, lookup tables, and other data that will
not typically have a high amount of accesses performed on it. This approach treats the other pages of
the RAM as if they were a mass storage device. A sample circuit for this system is shown in Figure 0-4.
The only real change from the previous schematic is that the P1.1 and P1.2 lines are now used to control
the upper two address lines of a 256Kb RAM.

The input and output devices connected to the bus of this processor are accessed in the same manner
as they were in the previous example. The new thing about this circuit is the way in which the pages of
the SRAM are accessed. Let me start out by saying again that the default state of this system is to have
the SRAM enabled by pulling P1.0 high and to have RAM page 0 selected by pulling P1.1 and P1.2 low.
If you like you can add an inverter to each of the two extra address select lines so that the processor
selects RAM page 0 automatically upon power up. Otherwise, if you stay with this design you will have
to ensure that you add a line of code to the startup.a51 file to clear P1.1 and P1.2 if you have XDATA
variables which are initialized at compile time.

THE FINAL WORD ON THE 8051

Page 209

Figure 0-4 - Paging the RAM

Writing data to and reading data from the other pages of RAM is done in block fashion. This means that
the RAM page access function will take a RAM page, and the number of bytes to read or write as
arguments and do all data transfers using a buffer in internal RAM. This prevents the routine from
having to constantly switch from the page being accessed to RAM page 0 to write a byte of data. Thus,
the execution time of accesses are smaller, but only at the cost of a chunk of internal data and a limit on
the maximum number of bytes that may be transferred at a time. The source code in Listing 0-5 shows
the necessary functions and definitions required to implement this RAM paging scheme.

Listing 0-5

#include <reg51.h>

#include <absacc.h>

sbit SRAM_ON = P1^0;

unsigned char data xfer_buf[32];

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 210

/***

 Function: page_out

 Description: Writes a specified value to a specified XDATA

 address.

 Parameters: address - unsigned int. Indicates address to write

 data to.

 page - unsigned char. Indicates the RAM page to

 use.

 num - unsigned char. Indicates the number of bytes

 to write.

 Returns: nothing.

 Side Effects: The external RAM is disabled and thus an interrupt

 routine should not be invoked during this time. To

 help compensate for this, the interrupt system is

 temporarily halted.

***/

void page_out(unsigned int address, unsigned char page,

 unsigned char num) {

 unsigned char data i;

 unsigned int data mem_ptr; // declared so that no XDATA

// access will be generated by

// the compiler to move a

// pointer through the

// referenced RAM page

 mem_ptr=address;

 num&=0x1F; // limit number of bytes to 32

 page&=0x03; // limit page select to 0..3

 page<<=1;

 page|=0x01; // make sure RAM stays selected

 EA=0; // block all interrupts

 P1=page; // select new page

 for (i=0; i<num; i++) {

 XBYTE[mem_ptr]=xfer_buf[i]; // write value to the address

 mem_ptr++;

 }

 P1=1; // select page 0

 EA=1; // allow interrupts again

}

/***

 Function: page_in

 Description: Reads the specified number of bytes from the

 address on the RAM page specified.

THE FINAL WORD ON THE 8051

Page 211

 Parameters: address - unsigned int. Indicates address to read

 from.

 page - unsigned char. Indicates the RAM page to

 use.

 num - unsigned char. Indicates the number of bytes

 to read.

 Returns: nothing.

 Side Effects: The external RAM is disabled and thus an interrupt

 routine should not be invoked during this time. To

 help compensate for this, the interrupt system is

 temporarily halted.

***/

void page_input(unsigned int address, unsigned char page,

 unsigned char num) {

 unsigned char data i;

 unsigned int data mem_ptr; // declared so that no XDATA

// access will be generated by

// the compiler to move a

// pointer through the

// referenced RAM page

 mem_ptr=address;

 num&=0x1F; // limit number of bytes to 32

 page&=0x03; // limit page select to 0..3

 page<<=1;

 page|=0x01; // make sure RAM stays selected

 EA=0; // block all interrupts

 P1=page; // select new page

 for (i=0; i<num; i++) {

 xfer_buf[i]=XBYTE[mem_ptr]; // read next address

 mem_ptr++;

 }

 P1=1; // select page 0

 EA=1; // allow interrupts again

}

Note that the way the compiler generates code forced me to use the local variable ‘mem_ptr’. The
original design of the ‘for’ loop called for incrementing address each iteration. However, the compiler
then chooses to allocate an integer in XDATA to use to hold the ever changing value of address.
Declaring a temporary variable (in this case ‘mem_ptr’) to hold this value eliminates the XDATA
accesses in the compiler’s code.

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 212

The RAM page functions shown above work for most situations. However, some programmers may want
to have a set of memory manipulation functions which look much like those provided with the C51
library, such as the ‘memcpy’ function. For some amount of work, you can develop a set of functions
which closely resemble the library functions, but accept the generic memory pointers which now can
reference a RAM page. Recall that a generic pointer in Keil C consists of three bytes: a two byte
address and a one byte selector which determines the memory space referenced by the pointer. The
selector has a range of values from one to five depending upon the memory space being referenced.
Thus, the leading nibble of the selector byte is unused and will now be used to indicate the RAM page
being referenced by the pointer when the selector indicates that the referenced memory segment is the
XDATA area. This simple modification to the function interface will allow the new RAM page library
functions to look almost exactly like their standard counter parts. This section will present sample code
for the ‘memcpy’ function, and leave the other functions to you to implement. The C declaration to the
‘page_memcpy’ function is shown below.

void * page_memcpy(void *dest, void *source, int num);

Because the function will end up switching between memory pages quite frequently, it will be coded in
assembler. The code listing, as coded for the large memory model, is shown below.

Listing 0-6

?PR?PAGE_MEMCPY?PAGE_IO SEGMENT CODE

?XD?PAGE_MEMCPY?PAGE_IO SEGMENT XDATA OVERLAYABLE

PUBLIC _page_memcpy, ?_page_memcpy?BYTE

RSEG ?XD?PAGE_MEMCPY?PAGE_IO

?_page_memcpy?BYTE:

dest: DS 3

src: DS 3

num: DS 2

;***

; Function: _page_memcpy

; Description: Copies the number of bytes specified from the

; source pointer to the destination pointer. Allows

; xdata pointers to specify the RAM page using the

; leading nibble of the selector byte.

; Parameters: dest - generic pointer with optional RAM page

; specifier. This parameter is passed in R1..R3. It

; indicates the starting address to copy data to.

; src - generic pointer with optional RAM page

; specifier. Indicates the starting address to copy

; data from.

; num - unsigned integer. Indicates the number of

; bytes to copy.

; Returns: the dest address

; Side Effects: none.

THE FINAL WORD ON THE 8051

Page 213

;***

RSEG ?PR?PAGE_MEMCPY?PAGE_IO

_page_memcpy: PUSH 07 ; save used regs

PUSH 06

PUSH 02

PUSH 01

PUSH 00

PUSH ACC

PUSH B

MOV DPTR, #?_page_memcpy?BYTE+6

MOVX A, @DPTR ; read in num

MOV 06, A

INC DPTR

MOVX A, @DPTR

MOV 07, A

ORL A, 06

JZ GTFO ; if (!num) { return }

MOV DPTR, #?_page_memcpy?BYTE

MOV A, 03 ; load dest pointer

MOVX @DPTR, A

INC DPTR

MOV A, 02

MOVX @DPTR, A

INC DPTR

MOV A, 01

MOVX @DPTR, A

L1: LCALL GETSRC ; get next source byte

LCALL PUTDEST ; write next byte to dest

MOV A, 07 ; num--

CLR C

SUBB A, #1

MOV 07, A

MOV A, 06

SUBB A, #0

MOV 06, A

ORL A, 07

JZ GTFO ; if (!num) { return }

JMP L1

GTFO: POP B ; restore all regs

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 214

POP ACC

POP 00

POP 01

POP 02

POP 06

POP 07

RET

;***

; Function: GETSRC

; Description: Reads the byte referenced by the pointer in src,

; increments src and returns the data read.

; Parameters: none.

; Returns: the data read in A.

; Side Effects: none.

;***

GETSRC: MOV DPTR, #?_page_memcpy?BYTE+3

MOVX A, @DPTR ; get source selector

MOV B, A ; save it

DEC A ; scale selector to 0..4

ANL A, #00FH ; get rid of RAM page

MOV DPTR, #SEL_TABLE1

RL A

JMP @A+DPTR ; switch on selector

SEL_TABLE1: AJMP SEL_IDATA1 ; idata

AJMP SEL_XDATA1 ; xdata

AJMP SEL_PDATA1 ; pdata

AJMP SEL_DATA1 ; data or bdata

AJMP SEL_CODE1 ; code

SEL_PDATA1: MOV 00, #00 ; for pdata, leading byte

; of address must be 00

MOV DPTR, #?_page_memcpy?BYTE+5

JMP L2

SEL_XDATA1: MOV DPTR, #?_page_memcpy?BYTE+4

MOVX A, @DPTR ; read in address

MOV 00, A

INC DPTR

L2: MOVX A, @DPTR

MOV DPH, 00 ; set DPTR to XDATA address

MOV DPL, A

MOV A, B ; get correct RAM page

ANL A, #0F0H

THE FINAL WORD ON THE 8051

Page 215

SWAP A

RL A

ORL A, #01H

MOV P1, A ; select RAM page

MOVX A, @DPTR ; read in byte

MOV 01, A ; save it

MOV P1, #01H ; restore RAM page

INC DPTR ; advance source address

MOV 00, DPL

MOV A, DPH

; save new source address

MOV DPTR, #?_page_memcpy?BYTE+4

MOVX @DPTR, A

INC DPTR

MOV A, 00

MOVX @DPTR, A

MOV A, 01 ; return the byte in A

RET

SEL_CODE1: MOV DPTR, #?_page_memcpy?BYTE+4

MOVX A, @DPTR ; get current source address

MOV 00, A

INC DPTR

MOVX A, @DPTR

MOV DPH, 00 ; set DPTR with current

; address

MOV DPL, A

CLR A

MOVC A, @A+DPTR ; read in byte

MOV 01, A

INC DPTR ; advance source pointer

MOV 00, DPL

MOV A, DPH

MOV DPTR, #?_page_memcpy?BYTE+4

MOVX @DPTR, A ; save source pointer

INC DPTR

MOV A, 00

MOVX @DPTR, A

MOV A, 01 ; return the byte in A

RET

SEL_IDATA1:

SEL_DATA1: MOV DPTR, #?_page_memcpy?BYTE+5

MOVX A, @DPTR ; get the one byte address

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 216

MOV 00, A

MOV A, @R0 ; access data and idata

; indirectly

INC R0 ; advance source pointer

XCH A, 00

MOVX @DPTR, A ; save source pointer

XCH A, 00 ; return the byte in A

RET

;***

; Function: PUTDEST

; Description: Writes the byte in A to the address referenced

; by the pointer in dest. dest is then incremented.

; Parameters: none.

; Returns: nothing.

; Side Effects: none.

;***

PUTDEST: MOV 02, A ; save output byte

MOV DPTR, #?_page_memcpy?BYTE

MOVX A, @DPTR ; get dest selector

MOV B, A ; save selector

DEC A ; scale selector to 0..4

ANL A, #00FH

MOV DPTR, #SEL_TABLE2

RL A

JMP @A+DPTR ; switch on selector

SEL_TABLE2: AJMP SEL_IDATA2 ; idata

AJMP SEL_XDATA2 ; xdata

AJMP SEL_PDATA2 ; pdata

AJMP SEL_DATA2 ; data or bdata

AJMP SEL_CODE2 ; code

SEL_PDATA2: MOV 00, #00 ; for pdata leading byte of

; address must be 0

MOV DPTR, #?_page_memcpy?BYTE+2

JMP L4

SEL_XDATA2: MOV DPTR, #?_page_memcpy?BYTE+1

MOVX A, @DPTR ; read in address

MOV 00, A

INC DPTR

L4: MOVX A, @DPTR

MOV DPH, 00 ; set DPTR to XDATA address

MOV DPL, A

MOV A, B ; get correct RAM page

THE FINAL WORD ON THE 8051

Page 217

ANL A, #0F0H

SWAP A

RL A

ORL A, #01H

MOV P1, A ; select RAM page

MOV A, 02

MOVX @DPTR, A ; write out byte

MOV 01, A ; save it

MOV P1, #01H ; restore RAM page

INC DPTR ; advance dest address

MOV 00, DPL

MOV A, DPH

; save new dest address

MOV DPTR, #?_page_memcpy?BYTE+1

MOVX @DPTR, A

INC DPTR

MOV A, 00

MOVX @DPTR, A

RET

SEL_CODE2: RET ; can't write to code memory

SEL_IDATA2:

SEL_DATA2: MOV DPTR, #?_page_memcpy?BYTE+2

MOVX A, @DPTR ; get the one byte address

MOV 00, A

MOV @R0, 02 ; indirectly access internal

; RAM

INC R0 ; advance the dest pointer

XCH A, 00

MOVX @DPTR, A ; save dest pointer

RET

END

Changing the memory model of the above function is a simple matter of changing the code which
accesses the arguments. Additionally, the other memory operator functions can be easily created using
this function as a template.

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 218

Using More than 64K of CODE Space
In 8051 applications which have survived several product cycles or which are very complex, the amount
of software often increases greatly due to added features and enhancements to existing features. As
these improvements are made, the size of the executable code continually increases. When the CODE
space already consumes 64K this becomes a very big problem. You are faced with a critical decision
with several options.

The first option is that you can refuse to implement the enhancement on the grounds that there is no
more CODE space for it. This will not go over well with upper management and/or marketing. The
second option is to delete other features from the application to fit in this new one. However, marketing
rarely wants to take a step backwards in features to add a new one. Thirdly, you can try to optimize your
code to squeeze out that extra amount of space to fit in the feature, but you will find this task increasingly
difficult to do particularly if you have been generating efficient code. This option is only a short term
option if it is plausible at all. Your fourth option is to redesign the system and go to a new controller
which can support a larger CODE space. This means new hardware, new software, and new
development tools - a really bad idea to present to management. Finally, you can change your hardware
slightly and increase the size of the EPROM in the system from 64K to something larger. At this point
you’re probably wondering how that helps you since the 8051 can only address 64K of CODE. The
answer is that Keil delivers the capability to bank switch the EPROM with their development package -
this ability gives you up to 1MB of CODE space!

Using the banked linker (BL51) from Keil, the CODE space can be increased by utilizing a method
similar to the one discussed above for paging the RAM. In this design, the EPROM is broken into many
CODE pages. The size of each page and the method in which the pages are switched is dependent
upon your application. However, in all designs, there must be a common area which is available to the
microcontroller at all times. This common area contains the interrupt vector, the interrupt functions
(which may call code in any EPROM page), the C51 library functions, the code to switch EPROM pages,
and constants which are used by more than one CODE page. The common area can be implemented by
mapping a small EPROM to address 0 and having larger EPROMs mapped above it, or by duplicating
the common area in the bottom of all pages of the CODE space. Each approach is equally viable,
however, I prefer to copy the common area into all pages of the CODE space since this allows for
maximum flexibility in the common area’s size and the usage of the rest of the page.

THE FINAL WORD ON THE 8051

Page 219

Figure 0-5 - Paging the EPROM

For example, if you need 20K for the common area, you still have 44K left over on each page for your
own use. However, if you have chosen to use a single EPROM for the common area, it must be a 32K
part, which leaves 12K of it unused, and only 32K maximum available on each CODE page.

The paging is performed by connecting address/enable lines on the EPROMs to either port 1 lines or pins
from a data latch which is mapped into the XDATA segment, much as in the RAM paging scheme. A
sample circuit is shown in Figure 0-5. Note that this circuit uses a 512K byte EPROM instead of eight
64K EPROMs. The only additional hardware required to add the extra CODE space is the larger
EPROM which is simply a matter of changing EPROM sockets and having your circuit board laid out for
the new address lines.

Utilizing the increased CODE memory is very simple. You simply write and compile your code as
normal, however you will want to keep related functions together in a file so that they load into the same
EPROM page when the linker resolves addresses. This will help minimize the number of bank switches
that are necessary at run time. The more bank switches you can avoid, the more processing time you
will have to perform other tasks. Additionally, you should limit the use of any constants or variables that
are kept in the CODE space to a single file. This will help keep the size of the common area down and
allow you to have more space per CODE page.

The best way to analyze your program to make the above decisions on function grouping and the like, is
to first build your calling trees for each interrupt. In this way you can see what functions should be in the
same CODE bank to avoid unnecessary bank switches. Then build another list in which you note

CHAPTER 10 - CONTROLLING THE COMPILER AND LINKER

Page 220

functions access which variables and constants stored in the CODE memory segment. Any constants
which are accessed by a group of functions should be put in a file with that group if it is possible so that
the functions and the constants will be written to the same CODE page. As you decide which functions
and constants to group together you will find that you have to make trade offs between the size of the
common area in each bank and the number of bank switches that will occur at run time. If you feel you
have plenty of memory available, go for decreasing the number of bank switches by optimizing the
grouping of functions. If you are still short of memory in spite of bank switching, then attempt to
minimize widespread constant and code based variable accesses.

Once you have finished your code and arranged the functions and modules, you will need to modify the
L51_BANK.A51 file. This configures the code which performs the bank switching by informing it as to
the number of banks, and the method to use to switch the banks. You can read more about this file in
the Keil manuals. Only made two changes in the configuration section need to be made to
L51_BANK.A51. These changes are shown in Listing 0-7.

Listing 0-7

$NOCOND DEBUGPUBLICS

;--

; This file is part of the BL51 Banked Linker/Locater package

; Copyright (c) KEIL ELEKTRONIK and Keil Software GmbH 1989-1994

; Version 1.2

;--

;********************** Configuration Section ***************************

change one - ensure that the proper number of code banks is set

?B_NBANKS EQU 8 ; Define max. Number of Banks *

; *

?B_MODE EQU 0 ; 0 for Bank-Switching via 8051 Port *

; ; 1 for Bank-Switching via XDATA Port *

; *

IF ?B_MODE = 0; *

;---*

; if ?BANK?MODE is 0 define the following values *

; For Bank-Switching via 8051 Port define Port Address / Bits *

?B_PORT EQU P1 ; default is P1 *

change two - set the bank switching LSB

?B_FIRSTBIT EQU 0 ; default is Bit 3 *

;---*

ENDIF;

The object files generated from your source are then linked with the object file generated from compiling
your customized version of l51_bank.a51. The linking process, however, is not performed with L51, but
instead it is performed with BL51 which is Keil’s enhanced linker with the capability to handle multiple
CODE banks as well as the real time operating system that is available from Keil.

THE FINAL WORD ON THE 8051

Page 221

BL51 accepts all the same commands as L51 so you will be able to control it using your existing link file
(if you have one). You will have to add some extra commands to the BL51 command file to specify how
you want it to arrange your modules and segments amongst the CODE banks. This is where you
discover how important it is to intelligently arrange your functions.

When you run BL51, you will have to provide some more data to allow it to correctly resolve addresses
for all relocatable segments in your project. The first of the BL51 directives you will need to use is the
‘BANKAREA’ directive. ‘BANKAREA’ tells BL51 where you have physically mapped the CODE pages.
In the case of the example circuit in this section, each CODE page is mapped to 0000H - FFFFH. You
will also need to tell BL51 which modules and functions to load into the common area and into each
bank. You can specifically place functions, segments, and entire modules in the common area by using
the ‘COMMON’ directive which is defined for you in the BL51 manual. You also control the placement of
functions, segments, and entire modules into CODE banks by using the ‘BANKx’ directive where x is a
number from 0 to 15 corresponding to the bank you are working with. In the case of the circuit in this
section, the following BL51 invocation would be appropriate.

BL51 COMMON{C_ROOT.OBJ}, &

BANK0{BANK0.OBJ}, &

BANK1{BANK1.OBJ}, &

BANK2{BANK2.OBJ}, &

BANK3{BANK3A.OBJ,BANK3B.OBJ}, &

BANK4{BANK4.OBJ}, &

BANK5{?PR?MYFUNC?MISC, BANK5.OBJ}, &

BANK6{TABLES.OBJ,BANK6.OBJ}, &

BANK7{BANK7.OBJ,MISC.OBJ} &

BANKAREA(0000H,0FFFFH)

Note that you can include more than one module in a bank and that you can specify that only certain
segments from a module be included in a bank by the linker. This is also true for the common area.
One final point is that the linker will assign addresses to the segments in each bank in the order that they
are listed. So, if for some reason you want a function to be at the lower addresses of a CODE bank,
place its name first in the ‘BANKx’ directive for that bank.

Conclusion
This chapter has discussed ways for you to improve your programs by utilizing the features afforded to
you with the Keil 8051 development package. By properly assigning register banks to your ISRs and
controlling the linker’s overlay process you can create very high performance code for the 8051. It has
also discussed memory expansion techniques for both the RAM and the ROM of your system. I hope
that you have found these discussions helpful and will be able to put the information here to full use in
the near future. The next chapter will discuss a design technique that some believe is the wave of the
future. However, it is here now and you can implement it on the 8051.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 222

- Bumpin’ Fuzzies with the 8051

Introduction
It seems that the world of software development is subject to waves and fads just like normal society is.
These days, the concepts of object oriented design and code portability are vogue just like grunge music
and environmentalism. In the area of embedded systems, particularly control systems, the latest fad is
fuzzy logic. Now that American engineers have finally given up laughing at the name “fuzzy logic” they
are beginning to examine the concepts behind it and are finding out that fuzzy logic can be a very
valuable tool for solving certain problems. However, there are people out there who would have you
believe that fuzzy logic is the “Silver Bullet” of embedded systems. They will tell you that fuzzy logic will
solve all your embedded systems problems if you’ll just buy and use their fuzzy logic development
package. Well, you should be aware that fuzzy logic can be an excellent design approach for many
embedded systems, but that there are many more embedded systems which will not benefit from fuzzy
logic. This chapter will show you that you don’t need to buy alot of research material to learn about fuzzy
logic and an expensive development environment and code generator to run fuzzy logic on the 8051;
instead there is a simple and efficient approach to embedded fuzzy on the 8051. However, before you
can implement it, you need to know what the heck fuzzy logic is.

What is Fuzzy Logic?
In the world of crisp logic (logic as we generally know it), something is either true or false - it cannot be
both at the same time. For example, the statement that the number five is less than the number ten is
always true. This form of logic models some situations (such as linear problems) very well, and has to
be massaged for other situations in which the solution space is curve. The good thing about crisp logic is
that it works very well on a binary machine such as a computer since something will either be true (1) or
false (0). The bad thing about crisp logic is that it does not work so well for situations which have gray
areas or gradients of truth.

In the real world, we know that most things will
have some degree of truth and some degree of
falsehood to them. In fuzzy logic, the concept that
something can be partially true and partially false
at the same time is fundamental. Typically, the
way fuzzy logic expresses this is by specifying a
degree of membership for a data point in a given
set. A value of one indicates that the data point is
fully within the given set. A value of zero indicates
that it is not within the set at all. Between one and zero there are an infinite amount of degrees of
membership (such as .25, .5, .75, etc.).

For example, if it is 90 degrees outside you may say that this temperature corresponds to various
descriptions of the type of day as follows.

In this case, each type of day listed can be thought of as a set in which the data point (90 degrees) has
some degree of membership. In fuzzy logic systems, the degree of membership (denoted as µ) is
determined by a membership function which you must specify for each fuzzy set you wish to define. A
membership function is strictly a mapping from the input value to µ. The point on the y axis at which the
input value intersects the plot of the membership function indicates the value of µ for that data point.
Consider the following of membership functions (Cold, Chilly, Mild, Warm, and Hot) for the type of day
discussed above.

Type of DayType of Day Degree of MembershipDegree of Membership
Cold 0.00
Chilly 0.00
Mild 0.00

Warm 0.25
Hot 1.00

Table 0-1

THE FINAL WORD ON THE 8051

Page 223

Figure 0-1 - Sample Membership Functions for Temperature

You can see that the value 90 degrees intersects two membership functions - Warm and Hot. Thus, 90
degrees has a non zero µ value for the Warm and Hot fuzzy sets. The remainder of the membership
functions are not intersected and thus 90 degrees has a µ of 0 for those fuzzy sets. The value of y where
90 degrees intersects the Warm membership function in 0.25 and this becomes the value of µ for this
set. Similarly, Hot is intersected at a point at which y is 1.00, thus 90 degrees lies completely within the
Hot set.

The shape of the membership function can be anything that you desire, however, trapezoidal is
the most common choice since other shapes can be easily derived from a trapezoidal representation.
Some of the possible fuzzy membership functions are shown below.

Figure 0-2 - Sample Membership Function Types

The first two curve types (singleton and crisp) allow fuzzy logic to include basic crisp logic since a data
point is either a member of these sets (µ = 1.00) or it is not (µ = 0.00). The remaining curves all have
various degrees of membership depending upon the data point selected. Note also that by modifying the
inflection points of the trapezoidal curve you can obtain a singleton, crisp set, or triangular set. Thus,
you can use one type of curve modeling (trapezoidal) to represent four types of fuzzy sets (trapezoidal,

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 224

triangular, crisp, and singleton). The other two types of membership functions are harder to represent
because of their curves, but they can be represented.

Membership in a set is the basis for fuzzy analysis. A fuzzy system is composed of rules which make
statements about an input’s relationship to a fuzzy set and an associated action. For example, a fuzzy
system which controlls an exhaust fan’s speed based on temperature might have rule which says “if the
temperature is Hot then the fan speed is High.” A fuzzy system will examine this and determine to what
degree the temperature is hot. This degree of membership will yield a truth value for the rule which is
then compared to truth values for the other rules in the system. The inter-rule comparison yields a
decision on the value of fan speed.

In general, a fuzzy logic rule consists of an “if” part (the antecedent) and a “then” part (the consequence).
A rule may have more than one antecedent in the “if” part and more than one consequence in the “then”
part. Antecedents and consequences can be combined using logic operators such as AND, OR, and
NOT. There are other fuzzy operators, but these three are the most commonly used. The mathematical
implementation of the three common fuzzy operators is illustrated in Table 0-2. Note that each is a
simple mathematical operation.

A fuzzy logic system consists of a set of rules which are
composed using the above operators. As was said before,
each rule must have a series of antecedents and
consequences. The number of each can be anywhere
from one to n where n is determined by your system
limitations. This set of rules is typically called a rule base.
In addition, you may choose to implement a fuzzy system
which assigns a weight to the rule. In most fuzzy systems the weight of each rule is set to one to indicate
that each rule is just as important as the next. However, you may end up with a system in which you
believe a certain rule carries more importance than the rest. In this case you can assign a weight to this
rule which is greater than the weight given to all the other rules. This can be done by giving the
important rule a weight of one and making the rest of the rules have a lesser weight or by leaving the
other rules’ weight at one and raising the weight of the more important rule. If sticking with convention is
important to you, you will designate your most important rule as weight one, and lower the weights of all
the remaining rules, since fuzzy logic usually deals in values from 0 to 1.

Your rule base size will depend upon the problem you are solving. Most fuzzy logic systems have a
small rule base (15 rules or so); more complex systems have more rules, but usually the number of rules
even for very large systems is less than 60. Keep in mind that the more rules you have, the longer your
fuzzy system will take to make decisions. Usually you will not have to implement every possible rule in a
system to get it to function the way you want. There is a smaller subset of rules which will properly
govern the operation of the system, however, more rules will help to make the system a little more
stable. One of the nice things about fuzzy logic systems is that they are extremely tolerant of input
signals going bad. This property has to do with the way a rule base covers the control surface.

OperatorOperator ImplementationImplementation
µ(a AND b) min(µa, µb)
µ(a OR b) max(µa, µb)
µ(NOT a) 1-µa

Table 0-2

THE FINAL WORD ON THE 8051

Page 225

The Structure of a Fuzzy System
A fuzzy logic system requires three stages of operation to be implemented: input preprocessing, fuzzy
inference, and defuzzification. The relationship of these stages is shown in Figure 0-3.

Figure 0-3 - Fuzzy System Structure

The preprocessing stage is used to prepare the inputs for evaluation with the fuzzy rules. This usually
entails scaling the input to the range of values expected by your set membership functions. It may also
involve computing some inputs. For example, if you have a fuzzy system for a car that uses
acceleration as one of its inputs, you may have to compute this input by using velocity samples over a
given time period (assuming that you don’t have an accelerometer).

The fuzzy inference stage evaluates each fuzzy rule and computes its effect on the outputs specified in
the consequences of the rules. The rules are evaluated using the methods described above for
implementing the fuzzy operators. The value of µ for the antecedents becomes the degree to which
each of the consequences is true. When a rule has a value of µ which is greater than zero, it is said to
have “fired.”

Each consequence of a rule refers to an output and a fuzzy set. The inference stage stores the
maximum value of µ for each fuzzy output in each of its possible sets. Using the above example of “if
the temperature is Hot then fan speed is High” and using 90 degrees as the input for temperature, the
value of µ for the antecedents will be 1.00 since we already established that 90 degrees lied completely
within the Hot fuzzy set. Thus, the degree of truth for the consequence “fan speed is High” is 1.00 since
this was the value of µ for the antecedents. If the current degree of truth for fan speed in the set High is
0.00, it will now become 1.00. However, just because the fuzzy rule base has decided that fan speed
has a degree of membership in the set “High” of 1.00 this does not mean that the fan speed will be set to
High. This will depend on fan speed’s degree of membership in its other output fuzzy sets.

The defuzzification stage takes the output membership values for the various sets and uses a
mathematical method to compute the final values for the system outputs. There are a few common
methods for performing defuzzification. The most simplistic is the maximizer method. This method
dictates that the highest value of µ for a given output becomes the action associated with the output. For
example, if the output fan speed has been given these degrees of truth:

µlow = 0.00

µmedium = 0.57

µhigh = 1.00

Then the fan speed will be set to High since this set has the highest degree of membership associated
with it. This method is very simple to implement but it misses the subtleties that give fuzzy logic its
power: the ability of a data point to be in more than one set at the same time.

The most common method of defuzzification is the center of gravity method. In this method, each output
membership function is clipped by its degree of truth and the center of the area under the resulting curve
is computed. This result is then used as the fuzzy output. Consider the following output membership
functions for fan speed. The value computed for the center of gravity will be the output of the
defuzzification process. As in the previous method of defuzzification, this value is applied to the system

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 226

as necessary. The center of gravity method probably yields the best results, but it is computationally
intensive to determine the center of gravity of the shaded areas.

Figure 0-4 - Defuzzification

A simplification of the center of gravity method is to specify the output sets as singletons. This allows
the defuzzification method to be reduced to a single loop with a multiply and divide operation. In general
the formula for this method is stated as follows:

(*)Vi Ui

Ui

i

n

i

n
=

=

∑

∑
0

0

where n is the number of sets for the output, Vi is the value of the singleton defining the output set and Ui

is the degree of truth assigned to the current output set. This function is easier to implement in software
than the center of gravity equations, and yields very similar results.

THE FINAL WORD ON THE 8051

Page 227

Where to Use Fuzzy Logic
At this point you are probably wondering which applications will be suitable for fuzzy logic and which
ones will not. A general rule of thumb for application of fuzzy logic is that if you already have a precise
mathematical model of your system which has a relatively good order of efficiency when coded in
conventional logic it should not be implemented in fuzzy logic. Applications in which fuzzy logic will
usually excel are problems in which you do not have a precise idea of what is happening but you have a
sort of “seat of the pants” idea of how to control the system. This is frequently the case in complex non-
linear applications. Usually, you can consult some expert on the system and determine a set of rules by
which the system operates. Fuzzy logic will be able to process these rules to obtain reasonable outputs
even when one or more of the inputs fails.

One of the strong points of fuzzy logic is that you can express the solution to the problem you are solving
in linguistic terms. This makes the solution more accessible to humans, since they deal in linguistics, not
numerics. Additionally, the behavior of a fuzzy logic system is easily altered by changing input rules and
membership functions. One drawback to a fuzzy logic implementation is that you will have to verify that
your fuzzy logic solution handles all points of the desired control surface by performing simulation. In
other words, you will not be able to mathematically prove that your solution works for all inputs as you
may be able to do for conventional control systems.

Getting Fuzzy
Now that we’ve gone over some of the basics of fuzzy logic, let’s run through a small design example
through which you can learn the approach to designing a fuzzy logic system. The way to start a fuzzy
design is to understand the system to be modeled in simple linguistic terms. This means that you should
gain an understanding of what inputs and outputs you have as well as the classifications they can fall
into.

Assume that you have to design a system which controls a self powered vehicle that is programmed
with a point at which it must stop. To allow it to do this it will use the distance from its location to the
point and current velocity as its inputs. As an output, it will specify an amount of braking to use to slow
the vehicle. The vehicle has a drive system which can be overcome by a light amount of braking when
the it is at very low speeds or stopped.

Given the above description of the system, the inputs have been identified as the distance to the
stopping point and the current vehicle velocity. The output of the system has been identified as the level
of braking to be used. The next task is to define fuzzy sets for the inputs and the output. At first, you do
this in very basic terms without concerning yourself with mathematical values at all.

You come up with the linguistic terms based on the intuitive knowledge you have of the system. Such
knowledge may be derived from your own expertise or through investigation into the system either by
studying it or by interviewing with an expert. For example, if the vehicle in the example had formerly
been operated by a driver who held that job for twenty years, you could speak with that person (who you
are putting out of a job) and find the parameters he used to operate the vehicle. Since there is no expert
in this case, let’s just wing it, basing the information on the common experience of driving a car.

The first input to consider is the distance to the stopping point. This system will not begin activation until
the stopping point is close enough to be concerned with. In other words, if you were driving a car and
you saw that one half of a mile away was a stop sign, you would not concern yourself with slowing for the
stop sign until a few hundred feet before it. It is the position at which you would begin to slow for the stop
sign that the fuzzy system kicks in. Given this information, the distance to the stopping point (hereafter
given the linguistic label DISTANCE) can be broken into the following categories: FAR, NEAR, CLOSE,
VCLOSE (for very close). For right now, don’t concern yourself with the membership functions of these
sets other than the fact that the VCLOSE set will include the notion that the stopping point has been
reached and that the FAR set will include distances beyond which the fuzzy stopping system was
activated.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 228

The second input to the system is the velocity of the vehicle (hereafter given the linguistic label
VELOCITY). This input is also broken into categories (as was DISTANCE) but the categories are not the
same. VELOCITY has been assigned the following categories: VFAST (not the 28.8k baud standard!),
FAST, MEDIUM, SLOW, VSLOW. Similar to the first input, you should note that the VSLOW set
includes the notion that the vehicle has stopped.

The output of the system was defined as the amount of braking to be used to slow the vehicle. This
output will be given the label BRAKE. As was the case with the two inputs, BRAKE is divided into the
following categories: NONE, LIGHT, MEDIUM, HARD, VHARD. The mathematical meaning of these
sets will be defined later.

Now that the inputs and outputs have been defined, the next step is to make an initial cut at the rules
which will be needed in the system. Some fuzzy designers state that the membership functions for the
fuzzy sets should be defined before the rules, but this is just a matter of preference. My reasoning for
defining an initial cut at the rule base first is to solidify general understanding of the system before
mathematical definitions of the system are made. In this way, the rough draft of the rule base can be
used to prove the design concept before it has gone too far.

The simplest way to define your rule base is to generate a matrix of your inputs and then fill in the matrix
with the output type you want to occur. Thus, instead of writing out a bunch of rules of the form “if x and
y then z” you can fill in a matrix. This makes the system easier to visualize. Keep in mind that the
matrix is really only appropriate when you are using the AND operator. In our example, there will not be
a need to perform any operation other than AND. Table 0-3 shows the rule matrix for the VELOCITY
and DISTANCE inputs before it has been filled in.

DISTANCEDISTANCE
FARFAR NEARNEAR CLOSECLOSE VCLOSEVCLOSE

VFASTVFAST
VELOCITYVELOCITY FASTFAST

MEDIUMMEDIUM
SLOWSLOW
VSLOWVSLOW

Table 0-3

Once you have structured your matrix as shown above, you simply treat it like a truth table and fill it in
with the linguistics. The upper left square in the matrix should contain the consequence of the
antecedent “if VELOCITY is VFAST and DISTANCE is FAR.” Since you are filling the table in for the first
time, don’t worry about being exact, just get a rough idea of what’s going on. The filled in table is shown
in Table 0-4.

DISTANCEDISTANCE
FARFAR NEARNEAR CLOSECLOSE VCLOSEVCLOSE

VFASTVFAST MEDIUM HARD VHARD VHARD
VELOCITYVELOCITY FASTFAST MEDIUM HARD VHARD VHARD

MEDIUMMEDIUM LIGHT MEDIUM HARD HARD
SLOWSLOW NONE NONE LIGHT MEDIUM
VSLOWVSLOW NONE NONE NONE LIGHT

Table 0-4

THE FINAL WORD ON THE 8051

Page 229

As was said before, the matrix is just a starting point for your rule base. It may be that you need to
implement all the rules in the matrix, but usually, a fuzzy logic system functions with a subset of the rules
in the matrix. Unfortunately, there is no theorem for eliminating unneeded rules, the only common
method is trial and error. In some cases, however, a set of rules can be simplified into one rule. For
example, if the rule “if VELOCITY is VSLOW and DISTANCE is VCLOSE then BRAKE is LIGHT” had a
consequence of “BRAKE is NONE” instead, the bottom row of the matrix could be replaced by the rule “if
VELOCITY is VSLOW then BRAKE is NONE.”

Now that the initial system rules have been established, the membership functions for each fuzzy set
specified can be established. To perform this function, you need to know the possible range of values
for each input you are dealing with. For example, to establish the fuzzy set membership functions for
VELOCITY, you would need to know that the VELOCITY can range from 0 MPH to 25 MPH and base
your fuzzy sets upon this. For this example, let’s use the above range for velocity and define the fuzzy
membership functions.

Figure 0-5 - Membership Functions for Velocity

The membership functions drawn above are according to my definition of the term in the context of the
problem to be solved. Someone else may have slightly differing membership functions. You should
note that there are no specific requirements as to how the membership functions interrelate. Thus, it is
not a rule that you have to include every point on the X axis in a fuzzy set. It is also not a rule that a
given point on the X axis could not be completely in two sets at the same time, or have a nonzero value
of µ for three or more sets. Remember, the definition of the membership functions is dependent upon
the context of the problem you are solving, not some predefined theoretical rules. The membership
functions for both the DISTANCE input and the BRAKE output have been defined using the range
indicated in the plots.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 230

Figure 0-6 - Membership Functions for Distance

Figure 0-7 - Membership Functions for Brake Pressure

Now that the rules and the membership functions have been established, all the pieces of the fuzzy logic
system design are in place. All that is needed now is the software implementation of a fuzzy logic engine
to run the rules and give us outputs.

THE FINAL WORD ON THE 8051

Page 231

Starting the Engine
Implementing fuzzy logic for an eight bit controller is actually a straightforward job. Once you have an
engine written that runs in a reasonable amount of time, the only work you will have to do to set up a new
fuzzy application will be to define the rules and membership functions. This can easily be done by hand
or by using one of the many commercially available tools. Personally, I do the work by hand, but that
does not mean that manually is the best way to go.

When designing the fuzzy logic engine for an eight bit system, the first thing to consider is how you will
represent the rules in the system. Since the 8051 does best with dealing with eight bits at a time, you
can make certain limitations to the fuzzy logic to allow the antecedents and consequences to be
represented in eight bit chunks. Thus, the fuzzy logic system will not currently support rule weights or
use of parenthesis to force a certain order of operation in a evaluation of the antecedents. These types
of changes are easily made and are left up to your own design. The fuzzy logic implementation
discussed here does support both the AND and OR operators as well as up to eight inputs and eight
outputs each of which can have up to eight fuzzy sets associated with them.

The fuzzy rule base is kept in an array that is stored in the CODE space. Each element of the array is
one byte and holds a clause of a fuzzy rule. This byte indicates the input or output referenced, the fuzzy
set referenced, whether the clause is an antecedent or a consequence as well as the fuzzy operator to
use with the clause if it is an antecedent. This information is packed into a single byte to save space on
the EPROM at the expense of some processing time during execution; however, if you are long on
storage space, you could just as easily put all of this data into a structure which would take more storage,
but would allow you to get to the information about the clause quicker. Table 0-5 shows the arrangement
of the data in a clause byte.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 = antecedent
1 = consequence

membership function for input or
output used

0 = AND
1 = OR

input or output number to use

Table 0-5

When bit 7 of a clause is cleared, the fuzzy engine assumes that the clause is an antecedent and thus,
the value in bit 2 to bit 0 must indicate an input. The value in bit 6 to bit 4 refers to the fuzzy set to use
with that input. Bit 3 is also examined to determine if the value of µ for this clause should be ANDed or
ORed with the µ value computed thus far for the rule.

When bit 7 of the clause is set, the fuzzy engine assumes that the clause is a consequence and that the
value in bit 2 to bit 0 refers to an output. When bit 7 is set, the value of bit 3 has no bearing on the
resulting analysis.

Given the internal representation of a clause, rules are very simple to form. Continuing our example of
the moving vehicle, let’s assign input number zero to velocity and input number one to distance. Since
there is only one output (brake pressure), it will be assigned number zero. The membership functions
are also assigned indices in order from 0 to n. In the case of this example, the highest value of n is five
since there are five membership functions for the velocity input. Once these assignments have been
made, you can create a section of code which defines constants for each of the possible clauses you
may want to use. For example, a clause which says “VELOCITY is VFAST” would be translated into a
constant named “VEL_VFAST.” Do this for every possible combination of input or output and
membership label. That way, if you later decide you want to use a clause you haven’t used before, there
is already a constant defined for it. In the case of the vehicle example, the constants defined are shown
in Listing 0-1.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 232

Listing 0-1

// define constants for the velocity input

#define VEL_VSLOW 0x00

#define VEL_SLOW 0x10

#define VEL_MEDIUM 0x20

#define VEL_FAST 0x30

#define VEL_VFAST 0x40

// define constants for the distance input

#define DIST_VCLOSE 0x01

#define DIST_CLOSE 0x11

#define DIST_NEAR 0x21

#define DIST_FAR 0x31

// define constants for the brake output

#define BRAKE_NONE 0x80

#define BRAKE_LIGHT 0x90

#define BRAKE_MEDIUM 0xA0

#define BRAKE_HARD 0xB0

#define BRAKE_VHARD 0xC0

The above constants allow rules to take a very simple format in the rule base. For the most part simple
systems such as the vehicle system will have rules of the form “if input x1 is label y1 and input x2 is label
y2 then output x3 is label y3.” You can, however, have any combination of AND and OR you want just by
arranging the clauses in the right order to build the rule you want. Thus, if you wanted to say “if velocity
is fast or velocity is slow and distance is far then brake is none” it would be represented with the following
line of constants:

VEL_FAST, VEL_SLOW | 0x08, DIST_FAR, BRAKE_NONE

Rules are built out of clause strings like the one above and are packed back to back into an array stored
in the CODE memory space. In the vehicle example, I have coded every possible rule and put it in the
rule base array as shown in Listing 0-2. You would not necessarily have to represent every rule in the
rule base, the fuzzy system will probably function just as well without them all, but I have done it to make
the example a little easier to follow.

THE FINAL WORD ON THE 8051

Page 233

Listing 0-2

unsigned char code rules[RULE_TOT]={ // fuzzy system rules

// if... and... then...

 VEL_VSLOW, DIST_VCLOSE, BRAKE_LIGHT,

 VEL_VSLOW, DIST_CLOSE, BRAKE_NONE,

 VEL_VSLOW, DIST_NEAR, BRAKE_NONE,

 VEL_VSLOW, DIST_FAR, BRAKE_NONE,

 VEL_SLOW, DIST_VCLOSE, BRAKE_MEDIUM,

 VEL_SLOW, DIST_CLOSE, BRAKE_LIGHT,

 VEL_SLOW, DIST_NEAR, BRAKE_NONE,

 VEL_SLOW, DIST_FAR, BRAKE_NONE,

 VEL_MEDIUM, DIST_VCLOSE, BRAKE_HARD,

 VEL_MEDIUM, DIST_CLOSE, BRAKE_HARD,

 VEL_MEDIUM, DIST_NEAR, BRAKE_MEDIUM,

 VEL_MEDIUM, DIST_FAR, BRAKE_LIGHT,

 VEL_FAST, DIST_VCLOSE, BRAKE_VHARD,

 VEL_FAST, DIST_CLOSE, BRAKE_VHARD,

 VEL_FAST, DIST_NEAR, BRAKE_HARD,

 VEL_FAST, DIST_FAR, BRAKE_MEDIUM,

 VEL_VFAST, DIST_VCLOSE, BRAKE_VHARD,

 VEL_VFAST, DIST_CLOSE, BRAKE_VHARD,

 VEL_VFAST, DIST_NEAR, BRAKE_HARD,

 VEL_VFAST, DIST_FAR, BRAKE_MEDIUM

};

Now that the implementation of the rules is complete, the next thing that needs to be defined is the
implementation of the fuzzy membership functions. The fuzzy engine for the 8051 assumes that your
membership functions will have a shape that is either trapezoidal or can be derived from a trapezoid.
Thus, you can also have a crisp set, triangular set or a singleton. In fact, outputs will be made singletons
to simplify the defuzzification process.

Storing the input membership functions as trapezoids will allow the software to represent your
membership area by using just four bytes per function. This is done by looking at the trapezoid as a
clipped triangle. The software then represents the larger triangle by storing the inflection points of the
triangle and the slope of the two vectors that define the triangle. An illustration of this is shown in Figure
0-8.

Inflection point 1 and inflection point 3 are stored as part of the membership function as are the values of
slope 1 and slope 2. Using these four values the software can determine the y value along the correct
vector and thus obtain a value for µ. µ is represented as an unsigned char with the value FFH indicating
complete membership and 00H indicating lack of membership. The computation of µ for a given
membership function is done with integers in case the y value exceeds FFH or goes negative. In either
of these cases, µ is clipped back into the legal range (00H to FFH). The values for the membership
functions are stored in a three dimensional array which allows for up to eight different inputs each having
eight different membership functions. This table is shown in Listing 0-3.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 234

Figure 0-8 - Trapezoid Inflection Points

Listing 0-3

unsigned char code input_memf[INPUT_TOT][MF_TOT][4]={

// input membership functions in point slope form. The first

// dimension is the input number, the second dimension is

// the label number and the third dimension refers to the

// point/slope data

 // membership functions for velocity

 {

 { 0x00, 0x00, 0x1E, 0x09 }, // VSLOW

 { 0x1E, 0x0D, 0x50, 0x09 }, // SLOW

 { 0x50, 0x0D, 0x96, 0x0D }, // MEDIUM

 { 0x8C, 0x06, 0xC8, 0x09 }, // FAST

 { 0xC8, 0x0D, 0xFF, 0x00 } // VFAST

 },

 // membership functions for distance

 {

 { 0x00, 0x00, 0x2B, 0x0A }, // VCLOSE

 { 0x33, 0x08, 0x80, 0x0A }, // CLOSE

 { 0x6E, 0x07, 0xC7, 0x08 }, // NEAR

 { 0xC7, 0x0A, 0xFF, 0x00 } // FAR

 }

};

The hex values in this table are derived from the membership functions you design. For example, once
you have created membership functions that make sense to you and have drawn them out using the
actual range of values you expect, simply convert the range into a new range from 0 to FFH. Then
convert the values of the four inflection points by scaling the values from the original scale you used to
the new scale of 00H to FFH. Once you have this amount of information, you can enter it into the simple
program shown below which will take as input the four inflection points and return as output the fuzzy
representation of the membership function (point 1, slope 1, point 3, slope 2). The listing for this
program is shown in Listing 0-4.

THE FINAL WORD ON THE 8051

Page 235

Listing 0-4

#include <stdio.h>

void main(void) {

 unsigned char val[4], output[4], ans, flag;

 do {

 printf("\n\nenter 4 hex points: ");

 scanf(" %x %x %x %x", &val[0], &val[1], &val[2], &val[3]);

 output[0]=val[0];

 output[2]=val[2];

 if (val[1]-val[0]) {

 output[1]=(0xFF+((val[1]-val[0])/2))/(val[1]-val[0]);

 } else {

 output[1]=0;

 }

 if (val[3]-val[2]) {

 output[3]=(0xFF+((val[3]-val[2])/2))/(val[3]-val[2]);

 } else {

 output[3]=0x00;

 }

 printf("\nThe point-slope values are: %02X %02X %02X

%02X\n\n",output[0], output[1], output[2], output[3]);

 do {

 flag=1;

 printf("run another set of numbers? ");

 while (!kbhit());

 ans=getch();

 if (ans!='y' && ans!='Y' && ans!='n' && ans!='N') {

flag=0;

printf("\nhuh?\n");

 }

 } while (!flag);

 } while (ans=='y' || ans=='Y');

 printf("\nlater, hosehead!\n");

}

This simple little tool will allow you to complete development of your membership functions for the
system inputs. Once you have established the input membership functions, you need to come up with
singleton values for the output membership functions. You can do this by selecting the point in the
middle of the mass of the output membership function. The singletons are used for the outputs instead
of membership functions because they greatly simplify the math required in the defuzzification phase
and the results obtained from using singletons are almost the same as the results obtained from using
full membership functions. Figure 0-9 shows the output membership functions for the automated vehicle
and the lines at which I chose to draw the singletons.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 236

Figure 0-9 - Output Membership Function Singletons

The singleton values for the outputs are then stored in a table which is kept on the EPROM. The listing
for this table is shown below.

Listing 0-5

unsigned char code output_memf[OUTPUT_TOT][MF_TOT]={

// output membership singletons

// The first dimension is the output number, the second is

// the label number

 { 15, 67, 165, 220, 255, 0, 0, 0 } // braking force singletons:

// NONE, LIGHT, MEDIUM, HARD,

// VHARD

};

The fuzzy logic engine performs evaluation of the rule base by looping through the rule base array one
element at a time. While it is analyzing antecedents it keeps track of the current value of µ for the rule in
a variable called ‘if_val’. Once the antecedents have been completed and the consequences are
examined, the fuzzy engine evaluates the consequences by checking ‘if_val’ against the current µ values
for the output and label specified in the clause. If the magnitude of ‘if_val’ is greater than the previous µ
for the output, ‘if_val’ becomes the new µ. Once the consequences have all been analyzed and a new
rule begins, the value of ‘if_val’ is reset.

The source code for the fuzzy engine function is shown in Listing 0-6. Note that the current clause under
evaluation is stored in the bit addressable segment and that a couple of other bit variables have been
assigned to point into this value. This arrangement speeds up access to the information in the clause.

THE FINAL WORD ON THE 8051

Page 237

Listing 0-6

/***

 Function: fuzzy_engine

 Description: Executes the rules in the fuzzy rule base.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

unsigned char bdata clause_val; // fast access storage for the

// current clause

sbit operator = clause_val^3; // this bit indicates fuzzy

// operator to use

sbit clause_type = clause_val^7; // this bit indicates if the

// clause is an antecedent

// or a consequence

void fuzzy_engine(void) {

 bit then; // set true when consequences

// are being analyzed

 unsigned char if_val, // holds the mu value for

// antecedents in the current rule

clause, // indicates the current

// clause in the rule base

mu, // holds the mu value of the

// current clause

inp_num, // indicates the input used by

// the antecedent

label; // indicates the membership

// function used by the

// antecedent

 then=0; // assume that the first

// clause is an antecedent

 if_val=MU_MAX; // max out mu for the first rule

 for (clause=0; clause<RULE_TOT; clause++) { // loop through

// all the rules

 clause_val=rules[clause]; // reads the current clause

// into bdata

 if (!clause_type) { // if the current clause is an

// antecedent...

 if (then) { // if a then part was being run...

 then=0; // change back to if

 if_val=MU_MAX; // and reset mu for the rule

 }

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 238

 inp_num=clause_val & IO_NUM; // get the referenced input number

 label=(clause_val & LABEL_NUM) / 16; // get the referenced

// membership function

 mu=compute_memval(inp_num, label);// get value of mu for

// this clause

 if (operator) { // if this is an OR

// operation...

 if (mu > if_val) { // implement the MAX function

 if_val=mu;

 }

 } else { // if this is an AND operation

 if (mu < if_val) { // implement the MIN function

 if_val=mu;

 }

 }

 } else { // the current clause is a

// consequence

 then=1; // ensure that the engine

// knows it is running

// consequences

 // if the current rule's mu is higher than the referenced

 // output value then store if_val as the new fuzzy output

 // value

 if (outputs[clause_val & IO_NUM]

 [(clause_val & LABEL_NUM) / 16] < if_val) {

 outputs[clause_val & IO_NUM]

 [(clause_val & LABEL_NUM) / 16]=if_val;

 }

 }

 }

 defuzzify(); // compute the fuzzy outputs

// using the COG method and

// defuzzify the outputs

}

It is the responsibility of the code calling this function to ensure that the system inputs have been
fuzzified (i.e.: converted to a scale from 00H to FFH to match the membership functions).

Evaluation of each clause takes place in a function called ‘compute_memval’. The job of this function is
to determine the value of µ for the clause given the input to use and the fuzzy set within that input to
evaluate. Keeping this code in a single function allows it to be easily replaced with other code should the
implementation of the membership functions need to change.

THE FINAL WORD ON THE 8051

Page 239

Listing 0-7

/***

 Function: compute_memval

 Description: Calculates mu for a given antecedent assuming that

 the membership functions are stored in point slope

 format.

 Parameters: inp_num - unsigned char. The input number to use.

 label - unsigned char. The membership function for

 that input to use.

 Returns: unsigned char. The computed value for mu.

 Side Effects: none.

***/

unsigned char compute_memval(unsigned char inp_num,

 unsigned char label) {

 int data temp;

 if (input[inp_num] < input_memf[inp_num][label][0]) {

 // if the input is not

// under the curve, mu is 0

 return 0;

 } else {

 if (input[inp_num] < input_memf[inp_num][label][2]) {

 // the input falls under

// the first vector

 temp=input[inp_num]; // use point-slope math to

// compute mu

 temp-=input_memf[inp_num][label][0];

 if (!input_memf[inp_num][label][1]) {

 temp=MU_MAX;

 } else {

 temp*=input_memf[inp_num][label][1];

 }

 if (temp < 0x100) { // if mu did not exceed 1

 return temp; // return the computed value

 } else {

 return MU_MAX; // make sure that mu stays in range

 }

 } else { // the input falls under the

 // second vector

 temp=input[inp_num]; // use point-slope math to

// compute mu

 temp-=input_memf[inp_num][label][2];

 temp*=input_memf[inp_num][label][3];

 temp=MU_MAX-temp;

 if (temp < 0) { // make sure that mu is not

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 240

// less than 0

 return 0;

 } else {

 return temp; // mu was positive - return

// its value

 }

 }

 }

 return 0;

}

On completion of the iterations through the rule base, the fuzzy engine calls the defuzzify function to
convert the µ values held in memory to COG outputs which will be usable by the system. This function
implements the mathematical calculation which was discussed before. It is the defuzzification portion of
the fuzzy engine which takes the largest amount of time because of the math involved. The code for the
defuzzify function is shown in

THE FINAL WORD ON THE 8051

Page 241

Listing 0-8.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 242

Listing 0-8

/***

 Function: defuzzify

 Description: Computes the center of gravity of the fuzzy

 outputs and calls a function to convert the fuzzy

 COGs to outputs usable by the system.

 Parameters: none.

 Returns: nothing.

 Side Effects: The outputs[][] array is cleared.

***/

void defuzzify(void) {

 unsigned long numerator, denominator;

 unsigned char i, j;

 for (i=0; i<OUTPUT_TOT; i++) { // for all outputs...

 numerator=0; // reset the summation values

 denominator=0;

 for (j=0; j<MF_TOT; j++) { // compute the summation values

 numerator+=(outputs[i][j]*output_memf[i][j]);

 denominator+=outputs[i][j];

 outputs[i][j]=0; // clear the output as its used

 }

 if (denominator) { // make sure that a divide by

// 0 does not occur

 fuzzy_out[i]=numerator/denominator; // finalize the COG

 } else {

 fuzzy_out[i]=DEFAULT_VALUE; // no rules fired for this

// output - set a default value

 }

 }

 normalize(); // change fuzzy output to

// normal output

}

THE FINAL WORD ON THE 8051

Page 243

Tuning the Engine
The fuzzy logic engine as described above consumes a relatively low amount of memory. I compiled the
engine without regard for any optimization of memory space in the input membership function and output
membership function arrays and discovered that it only used 3 bytes of internal RAM, 80 bytes of
external RAM, and 1290 bytes of CODE memory (380 bytes of which were used by arrays). This is a
relatively small amount of memory when you consider the power that a fuzzy logic engine can bring to a
system. The performance of the system was also quite reasonable. I ran the system with sample inputs
and obtained the following results for
processor usage.

While not oppressively slow, the
above performance numbers are
probably not as good as they could
be. At this point, there is a trade off to
be made. Using the vehicle example
as the case study, if you needed more
EPROM space, you could optimize
the allocation of the membership
function tables to give yourself a
couple hundred more bytes of storage
and live with the performance
limitations of the system. In fact, for many embedded systems, an average time of less than 33000
processor cycles may be more than fast enough. However, if you find that this is too slow for your
system, you can speed up the fuzzy engine at the expense of some system memory.

The quickest way to improve the system is to change the implementation of the fuzzy membership
functions. The point-slope storage format is great for applications that don’t have a lot of space, but it
also costs a fair amount of processing time. If you are willing to give up some EPROM space you can
store the membership value for each of the 256 points along the input range and avoid computation of µ
at run time. In the case of the vehicle example it will take 2304 bytes of EPROM space to represent the
fuzzy membership functions. In addition to this change, it makes sense to limit the table dimensions of
the input and output arrays to reflect the problem being solved. Thus, the arrays in the vehicle fuzzy
logic system have been limited to one output, two inputs and five membership functions. This change
will allow the defuzzify function to execute in less time since there will be less passes through the output
loop. Additionally, the time to execute µ will be greatly reduced because the ‘compute_memval’ function
has been replaced by the following line of code.

// get value of mu for this clause

mu=input_memf[inp_num][label][input[inp_num]];

Once the changes described above have been made, the new fuzzy logic system has the following
amazing stats.

By simply adapting the general
fuzzy engine to the vehicle
example the performance of the
system has improved by well over
four times. The execution time of
7500 cycles is now far more
acceptable for any system than
was the execution time of 33000
cycles. The new system uses one
byte of internal RAM, 8 bytes of
external RAM, and 3010 bytes of
EPROM of which 2625 bytes are
tables for the membership functions.

Fuzzy VelocityFuzzy Velocity
(hex)(hex)

Fuzzy DistanceFuzzy Distance
(hex)(hex)

Processor Cycles to RunProcessor Cycles to Run
Fuzzy EngineFuzzy Engine

00 00 29576
12 35 31115
57 29 31714
80 43 33167
D0 D0 37112
FF 00 33283

Average processor cyclesAverage processor cycles 32661

Table 0-6

Fuzzy VelocityFuzzy Velocity
(hex)(hex)

Fuzzy DistanceFuzzy Distance
(hex)(hex)

Processor Cycles to RunProcessor Cycles to Run
Fuzzy EngineFuzzy Engine

00 00 7506
12 35 7549
57 29 7579
80 43 7549
D0 D0 7568
FF 00 7561

Average processor cyclesAverage processor cycles 7552

Table 0-7

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 244

This engine can be fine tuned to deliver even more performance. Since the vehicle example does not
need to use the OR operator, this section of the code can be eliminated. By definition of the AND
operator, once an antecedent has been given a value of 0.00 for µ the remainder of the rule can be
skipped. This change has been made to the code and has resulted in the following numbers. The code
now uses one byte of internal RAM, 8 bytes of external RAM, and 3031 bytes of EPROM of which 2625
are consumed by tables. The biggest
change comes in the performance of
the system.

The fuzzy logic engine as it exists for
the vehicle system is shown in Listing
0-9. The entire engine is kept in one
file and should have a header file
defined for it to allow easy integration
with the rest of a system.

Listing 0-9

#define OUTPUT_TOT 1

#define MF_TOT 5

#define INPUT_TOT 2

#define MU_MAX 0xFF

#define IO_NUM 0x07

#define LABEL_NUM 0x70

#define DEFAULT_VALUE 0x80

unsigned char outputs[MF_TOT], // fuzzy output mu values

fuzzy_out; // fuzzy engine outputs

unsigned char input[INPUT_TOT] ={ // fuzzified inputs

 0, 0

};

unsigned char code input_memf[INPUT_TOT][MF_TOT][256]={

// input membership functions

{

 { // velocity: VSLOW

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xF6,

 0xED, 0xE4, 0xDB, 0xD2, 0xC9, 0xC0, 0xB7, 0xAE, 0xA5, 0x9C, 0x93, 0x8A, 0x81, 0x78,
0x6F, 0x66,

 0x5D, 0x54, 0x4B, 0x42, 0x39, 0x30, 0x27, 0x1E, 0x15, 0x0C, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

Fuzzy VelocityFuzzy Velocity
(hex)(hex)

Fuzzy DistanceFuzzy Distance
(hex)(hex)

Processor Cycles to RunProcessor Cycles to Run
Fuzzy EngineFuzzy Engine

00 00 5684
12 35 5750
57 29 6076
80 43 5750
D0 D0 6118
FF 00 5739

Average processor cyclesAverage processor cycles 5853

Table 0-8

THE FINAL WORD ON THE 8051

Page 245

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

 { // velocity: SLOW

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x0D,

 0x1A, 0x27, 0x34, 0x41, 0x4E, 0x5B, 0x68, 0x75, 0x82, 0x8F, 0x9C, 0xA9, 0xB6, 0xC3,
0xD0, 0xDD,

 0xEA, 0xF7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xF6, 0xED, 0xE4, 0xDB, 0xD2, 0xC9, 0xC0, 0xB7, 0xAE, 0xA5, 0x9C, 0x93, 0x8A,
0x81, 0x78,

 0x6F, 0x66, 0x5D, 0x54, 0x4B, 0x42, 0x39, 0x30, 0x27, 0x1E, 0x15, 0x0C, 0x03, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 246

 { // velocity: MEDIUM

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x0D, 0x1A, 0x27, 0x34, 0x41, 0x4E, 0x5B, 0x68, 0x75, 0x82, 0x8F, 0x9C, 0xA9,
0xB6, 0xC3,

 0xD0, 0xDD, 0xEA, 0xF7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF2, 0xE5, 0xD8, 0xCB, 0xBE, 0xB1, 0xA4,
0x97, 0x8A,

 0x7D, 0x70, 0x63, 0x56, 0x49, 0x3C, 0x2F, 0x22, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

 { // velocity: FAST

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06,
0x0C, 0x12,

 0x18, 0x1E, 0x24, 0x2A, 0x30, 0x36, 0x3C, 0x42, 0x48, 0x4E, 0x54, 0x5A, 0x60, 0x66,
0x6C, 0x72,

THE FINAL WORD ON THE 8051

Page 247

 0x78, 0x7E, 0x84, 0x8A, 0x90, 0x96, 0x9C, 0xA2, 0xA8, 0xAE, 0xB4, 0xBA, 0xC0, 0xC6,
0xCC, 0xD2,

 0xD8, 0xDE, 0xE4, 0xEA, 0xF0, 0xF6, 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF6, 0xED, 0xE4, 0xDB, 0xD2,
0xC9, 0xC0,

 0xB7, 0xAE, 0xA5, 0x9C, 0x93, 0x8A, 0x81, 0x78, 0x6F, 0x66, 0x5D, 0x54, 0x4B, 0x42,
0x39, 0x30,

 0x27, 0x1E, 0x15, 0x0C, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

 { // velocity: VFAST

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0D, 0x1A, 0x27, 0x34, 0x41,
0x4E, 0x5B,

 0x68, 0x75, 0x82, 0x8F, 0x9C, 0xA9, 0xB6, 0xC3, 0xD0, 0xDD, 0xEA, 0xF7, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF

 }

},

{

 { // distance: VCLOSE

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 248

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF5, 0xEB,
0xE1, 0xD7,

 0xCD, 0xC3, 0xB9, 0xAF, 0xA5, 0x9B, 0x91, 0x87, 0x7D, 0x73, 0x69, 0x5F, 0x55, 0x4B,
0x41, 0x37,

 0x2D, 0x23, 0x19, 0x0F, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

 { // distance: CLOSE

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x08, 0x10, 0x18, 0x20, 0x28, 0x30, 0x38, 0x40, 0x48, 0x50,
0x58, 0x60,

 0x68, 0x70, 0x78, 0x80, 0x88, 0x90, 0x98, 0xA0, 0xA8, 0xB0, 0xB8, 0xC0, 0xC8, 0xD0,
0xD8, 0xE0,

 0xE8, 0xF0, 0xF8, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xF5, 0xEB, 0xE1, 0xD7, 0xCD, 0xC3, 0xB9, 0xAF, 0xA5, 0x9B, 0x91, 0x87, 0x7D,
0x73, 0x69,

 0x5F, 0x55, 0x4B, 0x41, 0x37, 0x2D, 0x23, 0x19, 0x0F, 0x05, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

THE FINAL WORD ON THE 8051

Page 249

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

 { // distance: NEAR

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x07,

 0x0E, 0x15, 0x1C, 0x23, 0x2A, 0x31, 0x38, 0x3F, 0x46, 0x4D, 0x54, 0x5B, 0x62, 0x69,
0x70, 0x77,

 0x7E, 0x85, 0x8C, 0x93, 0x9A, 0xA1, 0xA8, 0xAF, 0xB6, 0xBD, 0xC4, 0xCB, 0xD2, 0xD9,
0xE0, 0xE7,

 0xEE, 0xF5, 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xF7, 0xEF, 0xE7, 0xDF, 0xD7, 0xCF,
0xC7, 0xBF,

 0xB7, 0xAF, 0xA7, 0x9F, 0x97, 0x8F, 0x87, 0x7F, 0x77, 0x6F, 0x67, 0x5F, 0x57, 0x4F,
0x47, 0x3F,

 0x37, 0x2F, 0x27, 0x1F, 0x17, 0x0F, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00

 },

 { // distance: FAR

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 250

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x14, 0x1E, 0x28, 0x32, 0x3C,
0x46, 0x50,

 0x5A, 0x64, 0x6E, 0x78, 0x82, 0x8C, 0x96, 0xA0, 0xAA, 0xB4, 0xBE, 0xC8, 0xD2, 0xDC,
0xE6, 0xF0,

 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF

 }

}

};

unsigned char code output_memf[MF_TOT]={

15, 67, 165, 220, 255 // braking force singletons:

// NONE, LIGHT, MEDIUM, HARD,

// VHARD

};

//***

// The rule base is defined below. Each clause can be an

// antecedent or a consequence depending upon the value of bit 7.

// If bit 7==0 then the clause is an antecedent; if bit 7==1 then

// the clause is a consequence. Bits 6 through 4 identify the

// label number referred to by the rule. Bit 3 indicates the

// operator to use if the rule is an antecedent. If bit 3==0, the

// AND operator should be used. If bit 3==1, the OR operator

// should be used. Bits 2 through 0 identify the input or output

// referred to by the clause.

//**

// define constants for the velocity input

#define VEL_VSLOW 0x00

#define VEL_SLOW 0x10

#define VEL_MEDIUM 0x20

#define VEL_FAST 0x30

THE FINAL WORD ON THE 8051

Page 251

#define VEL_VFAST 0x40

// define constants for the distance input

#define DIST_VCLOSE 0x01

#define DIST_CLOSE 0x11

#define DIST_NEAR 0x21

#define DIST_FAR 0x31

// define constants for the brake output

#define BRAKE_NONE 0x80

#define BRAKE_LIGHT 0x81

#define BRAKE_MEDIUM 0x82

#define BRAKE_HARD 0x83

#define BRAKE_VHARD 0x84

#define RULE_TOT 60

unsigned char code rules[RULE_TOT]={ // fuzzy system rules

// if... and... then...

 VEL_VSLOW, DIST_VCLOSE, BRAKE_LIGHT,

 VEL_VSLOW, DIST_CLOSE, BRAKE_NONE,

 VEL_VSLOW, DIST_NEAR, BRAKE_NONE,

 VEL_VSLOW, DIST_FAR, BRAKE_NONE,

 VEL_SLOW, DIST_VCLOSE, BRAKE_MEDIUM,

 VEL_SLOW, DIST_CLOSE, BRAKE_LIGHT,

 VEL_SLOW, DIST_NEAR, BRAKE_NONE,

 VEL_SLOW, DIST_FAR, BRAKE_NONE,

 VEL_MEDIUM, DIST_VCLOSE, BRAKE_HARD,

 VEL_MEDIUM, DIST_CLOSE, BRAKE_HARD,

 VEL_MEDIUM, DIST_NEAR, BRAKE_MEDIUM,

 VEL_MEDIUM, DIST_FAR, BRAKE_LIGHT,

 VEL_FAST, DIST_VCLOSE, BRAKE_VHARD,

 VEL_FAST, DIST_CLOSE, BRAKE_VHARD,

 VEL_FAST, DIST_NEAR, BRAKE_HARD,

 VEL_FAST, DIST_FAR, BRAKE_MEDIUM,

 VEL_VFAST, DIST_VCLOSE, BRAKE_VHARD,

 VEL_VFAST, DIST_CLOSE, BRAKE_VHARD,

 VEL_VFAST, DIST_NEAR, BRAKE_HARD,

 VEL_VFAST, DIST_FAR, BRAKE_MEDIUM

};

/***

 Function: defuzzify

 Description: Computes the center of gravity of the fuzzy

 outputs and calls a function to convert the fuzzy

 COGs to outputs usable by the system.

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 252

 Parameters: none.

 Returns: nothing.

 Side Effects: The outputs[] array is cleared.

***/

void defuzzify() {

 unsigned long numerator, denominator;

 unsigned char j;

 numerator=0; // reset the summation values

 denominator=0;

 for (j=0; j<MF_TOT; j++) { // compute the summation values

 numerator+=(outputs[j]*output_memf[j]);

 denominator+=outputs[j];

 outputs[j]=0; // clear the output as its used

 }

 if (denominator) { // make sure that a divide by

// 0 does not occur

 fuzzy_out=numerator/denominator; // finalize the COG

 } else {

 fuzzy_out=DEFAULT_VALUE; // no rules fired for this

// output - set a default value

 }

 normalize(); // change fuzzy output to

// normal output

}

/***

 Function: fuzzy_engine

 Description: Executes the rules in the fuzzy rule base.

 Parameters: none.

 Returns: nothing.

 Side Effects: none.

***/

unsigned char bdata clause_val; // fast access storage for the

// current clause

sbit operator = clause_val^3; // this bit indicates fuzzy

// operator to use

sbit clause_type = clause_val^7; // this bit indicates if the

// clause is an antecedent

// or a consequence

void fuzzy_engine() {

 bit then; // set true when consequences

// are being analyzed

THE FINAL WORD ON THE 8051

Page 253

 unsigned char if_val, // holds the mu value for

// antecedents in the current rule

clause, // indicates the current

// clause in the rule base

mu, // holds the mu value of the

// current clause

inp_num, // indicates the input used by

// the antecedent

label; // indicates the membership

// function used by the

// antecedent

 then=0; // assume that the first

// clause is an antecedent

 if_val=MU_MAX; // max out mu for the first rule

 for (clause=0; clause<RULE_TOT; clause++) { // loop through all

// the rules

 clause_val=rules[clause]; // reads the current clause

// into bdata

 if (!clause_type) { // if the current clause is an

// antecedent...

 if (then) { // if a then part was being run...

 then=0; // change back to if

 if_val=MU_MAX; // and reset mu for the rule

 }

 inp_num=clause_val & IO_NUM; // get the referenced input number

 label=(clause_val & LABEL_NUM) / 16; // get the referenced

// membership function

 mu=input_memf[inp_num][label][input[inp_num]];// get value

// of mu for this clause

 if (!mu) { // this rule will not fire

 do { // skip the antecedents

 clause++;

 } while (clause<RULE_TOT && !(rules[clause]&0x80));

// skip the consequences

 while (clause+1<RULE_TOT && (rules[clause+1]&0x80)) {

 clause++;

 }

 if_val=MU_MAX; // set up for the next rule

 } else {

 if (mu < if_val) { // implement the MIN function

 if_val=mu;

CHAPTER 11 - BUMPIN’ FUZZIES WITH THE 8051

Page 254

 }

 }

 } else { // the current clause is a

// consequence

 then=1; // ensure that the engine

// knows it is running

// consequences

// if the current rule's mu is higher than the referenced

// output value then store if_val as the new fuzzy output

 // value

 if (outputs[clause_val & 0x07] < if_val) {

 outputs[clause_val & 0x07]=if_val;

 }

 }

 }

 defuzzify(); // compute the fuzzy outputs

// using the COG method and

// defuzzify the outputs

}

Conclusion
Fuzzy logic is a new way of looking at old problems. It will not be the solution to the world’s problems,
but it will help you solve many problems in a more efficient manner than you could before. You must
keep in mind that you do not need any fancy tools to develop a fuzzy logic application. In fact, you now
have all the tools you need. Once you get a few fuzzy logic projects under your belt, you may wish to
invest in some of the tools that are out there to help you design membership functions and rule bases.
Some of these tools will also help you simulate and test your fuzzy logic system on a PC. These tools
are fine to use once you have some experience with fuzzy logic and are sure that it will apply to your
systems, but don’t get suckered into buying an expensive package to generate fuzzy logic applications
for you until you have done a few applications on your own.

THE FINAL WORD ON THE 8051

Page 255 © Matthew Chapman 1994

- Conclusion
This book has presented many concepts for you to use in your 8051 projects. Hopefully, you have
gained a fair amount of knowledge and expertise with the 8051 from reading and using this book. If you
have not already purchased a C compiler for the 8051 I urge you to do so. Using C with your 8051
projects will make your life and the lives of the people who must maintain your projects much easier.

I have covered many topics in this book from optimizing your C and assembly to networking the 8051 to
using fuzzy logic. It is my hope that you will be able to use the information presented here to improve
the products you develop.

