

 by Tomas Hedqvist, IAR Systems

What is your application doing inside your
microcontroller? Debugging software applications
on ARM Cortex-M3 and Cortex-M4 devices

Hopefully you know perfectly well what the software in your microcontroller is supposed to do. However,
if you have been asking yourself why it doesn’t work as expected, and wondered what it is actually doing
in there, then trust me, you’re not alone.

Maybe you have written an asynchronous application that makes use of a multitasking operating system
and event driven interrupts. It will make debug methods such as printf instrumentation or setting
breakpoints and single stepping the application not only tiresome and ineffective, but also likely to miss
the most intricate timing issues as the core is constantly being halted.

If the device you have picked out for your next project is built on the ARM Cortex-M3 or -M4 core you
can relax since it incorporates some powerful debug logic. A capable debugger can make good use of
this logic, providing you with the capability to examine the application’s behavior from various angles.

ARM Cortex-M3 and Cortex-M4 debug architecture

The debug architecture consists of 5 main units as can be seen from Figure 1. Some of these, like the
embedded trace macrocell (ETM), are optional and implemented only in some devices. You may need
to check which have been implemented in yours. We will focus here on the instrumentation trace
macrocell (ITM), data watchpoint and trace (DWT) and ETM, and how a debugger can use them. First
we will briefly examine an important concept for all ARM Cortex-M debugging, namely serial wire debug
(SWD), one of the access ports available.

Figure 1. The debug architecture of the ARM Cortex-M3 and M4 devices

 Page 2

While the JTAG interface was originally designed for testing purposes, the SWD was designed from
scratch as a low-cost debug interface, replacing the former while providing better control and more
useful features to the user. SWD uses only two pins that are overlaid on the JTAG pins, so no extra pins
are needed on the chip to provide SWD access. This is a big advantage for devices with low pin counts.
An SWD debug probe is required to use this debug mode, but most JTAG probes for ARM cores handle
the SWD port as well.

Serial wire output (SWO) is a high speed channel that transmits packets from the ITM to the debugger
without stopping execution of the core. It uses either serial UART or Manchester encoding. As we shall
see, it provides some very useful functionality together with the ITM and DWT. SWO requires SWD as
debug mode. It cannot be used in JTAG mode.

Instrumentation Trace Macrocell

The Instrumentation Trace Macrocell (ITM) is a central part of the debug logic in the ARM Cortex-M3/M4
cores. It is a lightweight trace that provides selected trace data over a low speed access port. The good
thing is that you do not need a separate trace probe to use it, most SWD probes can handle the trace
functionality available in the ITM.

So, what do we mean by a lightweight trace? In itself, the ITM provides 32 channels for software trace
that can be used by the software to generate packets to the ITM for distribution to the debugger over
SWO. This can be used for instrumentation of the code with very little overhead as the core does not
need to stop to output the message or data. All that is needed is a single write operation to one of the 32
ITM stimulus registers.

The ITM also takes care of trace events triggered by another unit, the DWT. The role of the ITM in this
case is to format these events and packetize them. Optionally it can also timestamp each package it
sends away.

Data Watchpoint and Trace

The Data Watchpoint and Trace (DWT) provides a set of functions that collect information from the
system buses and generates events to the ITM for packetizing and time stamping and further
distribution on the SWO channel.

Watchpoints

First of all, there are four independent comparators or watchpoints in the DWT that can generate an
event on an address match or a data match. They can be used for various purposes, including triggering
the ETM, triggering an ITM package, or break the code at certain conditions.

One of the four watchpoints can also be used to trigger the ETM. This is useful when debugging
applications that run for a longer time, as it makes it possible to set not just plain trace start and stop
breakpoints that starts and stops the trace data collection at specified addresses, but also to set
complex trace start and stop conditions that for example could be based on when a variable reaches a
certain value.

Interrupt trace

The DWT also provides an interrupt trace function. When there is a change in interrupt activity, which is
the application entering into an interrupt state or leaving it, an event is triggered and an ITM packet is
generated. The packet is time stamped by the ITM and forwarded through the SWO to the debugger
that can log the events and display them in real time. This gives a fairly good overview of the interrupt
activity going on inside in the application.

The PC sampler

The DWT contains a PC sampler that samples the program counter register, PC, at regular intervals. As
the sampling is likely to miss most instructions that are executed, it will not be able to give a complete

 Page 3

view of the applications whereabouts, but it will be able to provide sufficient information about in which
functions the application has spent its time.

Embedded Trace Macrocell

The debug functionality accessed through the SWD is very useful and may be sufficient for most
embedded projects, but sometimes you will need an even more powerful debug mode to get down to the
most difficult problems. Then you need full instruction trace. The ETM unit provides full real-time
instruction trace over a 4-bit high speed trace bus. Of necessity, ETM trace data is compressed.

ETM is only implemented in the higher performance devices using these cores, so check if this is the
case with yours. Unlike the event trace provided by the DWT and ITM, the ETM will let you know what
your application was doing before it received an interrupt, what it is doing while the ISR is executing,
and what happens after it leaves the interrupt. It will tell you where the application has been and exactly
how it got there. In short, it will give you full insight to your applications behavior in real-time without
being intrusive.

The only real downside is that you will need a special trace debug probe to take advantage of the
capabilities. On the other hand, it is not nearly as expensive as a full in-circuit emulator system.

Some devices are fitted with an embedded trace buffer (ETB). This trace buffer is built into the
microcontroller, providing the same functionality as an external trace probe but with a smaller buffer.
When using the ETB, you need to take special care when setting the trace triggers, as you will not be
able to record as many instructions as if you had the buffer in an external probe. The advantage is that it
can be used with a low-cost standard JTAG probe and still provide sequences of full instruction trace.

Figure 2: The interrupt graph, call stack visualization, and plotting of variables in the timeline window in IAR
Embedded Workbench.

The captured trace data can be used to display the applications behavior in a multitude of views. For
example, IAR Embedded Workbench gives you a very useful overview of the call stack by plotting
nested function calls over time (see Figure 2).

Trace data can also be used when you are analyzing the application. For example, function profiling that
with SWD/SWO is done using statistic sampling of the PC is based on the full execution history when
you are using ETM, providing higher accuracy and avoiding systematic errors due to periodicity.

 Page 4

Conclusion

Devices built on ARM Cortex-M3 or –M4 cores provide very useful on-chip debug logic that together
with a powerful tool chain such as IAR Embedded Workbench can make debugging easier, faster and
more precise than has been common in embedded systems application development.

