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Abstract 
 
This paper describes a reduced pin-count debug interface, known as the Serial Wire 
Debug Interface, which has been developed as a 2-pin alternative to a traditional 
IEEE1149.1 compliant interface (JTAG). It provides the interface to debug and trace 
functionality on processor cores and System on Chip (SoC) devices, especially those 
that conform to the CoreSight debug and trace architecture1. This 2-pin interface has 
benefits for devices in severely pin-limited packages (e.g. microcontrollers, such as 
the ARM Cortex-M3) or in designs where few package pins are available for the 
debug interface. It is also suitable as a debug and trace interface on cost-sensitive 
packaged products (e.g. mobile phones), where the width of any external connectors 
must be kept to a minimum, while still providing performance as good as or better 
than traditional JTAG debug. The additional benefits that Serial Wire Debug 
provides, for all systems whether pin-limited or not, will be described in this paper: 
these apply not only for traditional software debug and trace but also for the debug 
and diagnosis of first silicon and complex hardware/software interactions. 
 
Serial Wire Debug 
 
When developing this alternative to JTAG as the interface for debug and trace, the 
opportunity was taken to analyse where the requirements for debug and trace differed 
from those for test and to design the protocol appropriately. In order to exploit the full 
power of this new interface standard, a packet-based protocol has been developed; 
this is in contrast to the scan in, scan out protocol of JTAG.  
 
The packet protocol is split into Header, Response and Data, with the data being 
skipped if the interface is not ready. 
 
Although the Serial Wire Debug protocol is not compatible directly with JTAG, it can 
be used to connect to legacy JTAG devices, giving additional benefits (e.g. clock and 
power isolation) over a direct, daisy-chained JTAG architecture. Furthermore, it is 
possible to connect a debug tool to both JTAG and Serial Wire Debug (SWD) devices 
over the same connector, by overlaying the SWD pins over existing JTAG pins and 
using a switching protocol to switch between JTAG and SWD. 
 
 



SWD Benefits 
 
In addition to the reduction in pin count on the interface, SWD has the following 
benefits: 
 

• Performance: SWD is able to make use of the full clock cycle for data 
transfer, from rising edge to rising edge of the Serial Wire clock. This is in 
contrast to JTAG where data is driven on the falling edge and sampled on 
the next rising edge, giving only one phase for the data to propagate. This 
has the effect of enabling SWD to be run at up to twice the frequency of 
JTAG in the same technology. Some efficiency is lost due to the packet-
based nature of the SWD protocol but this is minimal. In addition, SWD 
supports pushed operations – see below. Pushed operations can improve 
performance, for instance in situations where writes might be faster than 
reads. 

 
• Error detection: SWD provides some protection against errors. It 

implements simple parity checking and can also check for overrun, 
enabling blocks of commands to be sent on a high latency, high throughput 
connection. SWD also gives confirmation that the physical connection is 
OK, independent of system level operation. 

 
• Tools. It is possible to build low cost, lower performance tools very 

simply. 
 

• Migration. Overlaying SWD over JTAG provides a migration path that 
doesn’t force users to upgrade their test hardware. 

 
• Interface to debug and trace infrastructure: SWD provides full access 

to the debug and trace functionality on an SoC. It provides the 
communication channel, giving full access, via the internal debug bus (the 
DAP bus), to a CoreSight compliant system. 

 
Pushed Operations 
 
The SWD protocol is designed to make the use of pushed operations easy. For a 
pushed operation, the value written as an access port transaction is used at the debug 
port level to compare against a target read. As an example, in order to verify a 
memory image after transfer to the target, a block of data would normally be read by 
the debugger and compared with the original. The process of performing a read may 
involve several layers of handshaking between the read request being issued by the 
debugger, and valid data being returned through the debug interface. In a pushed 
operation, the two-way data flow becomes uni-directional. The reference values are 
transmitted to the target, which takes care of the read and compare. Once a block has 
been processed, the status (pass or the address of a failure) can be retrieved with a 
single read operation. 



SWD in a Bus-based Debug and Trace Environment  
 
In Figure 1, the combined Serial Wire and JTAG Debug Port (SWJ-DP) is shown as 
the debug interface to a SOC. 
 

 
 

Figure 1 - Serial Wire Debug as interface to a CoreSight Debug and Trace System 
 
Connecting through the DAP internal bus, SWJ-DP various slave devices: 

• legacy JTAG-equipped cores via the JTAG Access Port (JTAG-AP) 
• system memory via the AMBA High Performance Bus Access Port (AHB-AP) 
• bus-based debug functionality on the debug APB bus via the AMBA 

Peripheral Bus Access Port (APB-AP). 
• dedicated debug control devices (not shown in figure 1) 

 
 An APB mux is provided so that the CPU in the system can also access debug 
components. 
 
SWD in a Bus-based Debug and Trace Environment  
 
The move from using a JTAG scan interface to using a bus-based approach for debug 
control and access is the most significant change introduced with SWD. This 
approach acknowledges that modern silicon designs frequently contain multiple IP 
blocks, sometimes pre-hardened, often using multiple clock and power domains. The 
debug infrastructure is more modular and has removed the requirement for a 
traditional JTAG scan chain on chip. Consequently the Serial Wire Debug interface 
no longer needs to support this style of debug architecture directly; instead it provides 
a narrow channel to a fully bus-based debug and trace infrastructure. 
The bus based approach enables register-based access of debug configuration and 
status information: this provides a more consistent programmers’ model and eases 
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software development, as reflected in the ARM Debug Interface v5 for ARM Cortex 
cores. These same registers can also be accessed by the CPU itself, giving additional 
flexibility. With the debug channel being less tightly coupled to the internal debug 
infrastructure, it becomes easier to optimise the physical protocol to match the 
external interface as has been done for SWD. 
 
A bus-based debug architecture can also provide efficient access to design for debug 
features, meaning that the same paradigm can be used for both applications debug and 
silicon debug and diagnosis – and possibly also for repair in the future. As the debug 
infrastructure relies less on re-using the core functionality, difficult problems such as 
system lockup can be probed using the standard debug tools. 
 
This style of debug architecture has additional benefits: 
 

• It permits debug access while the CPU is running, possibly non-intrusively 
• Debug access is more abstract, less CPU-specific and more scalable 

 
The DAP supports true power and clock isolation which is becoming essential in most 
battery-powered applications, where it must be possible to power down individual 
blocks of logic or control the clocks independently, including when debugging.  
 
Devices that are intended for security applications might need special logic to enable 
unlocking of debug functionality, via the use of a Debug Authentication Module, 
which may be added to the DAP bus. Since the debug infrastructure is separated from 
the primary system function, it becomes simpler and less risky to mask debug access 
to individual parts of a system. Equally, it is now possible to access the debug 
infrastructure while all of the functional logic is powered down or held in reset. 
Making it easy to add vendor specific components such as a Debug Authentication 
Module helps vendors to protect their secure implementations. 
 
DAP Accesses 
 
Before explaining the Serial Wire protocol, it is necessary to first cover the format of 
an access to the debug port. As can be seen in Figure 1, the DAP bus has a single 
master (the DP – or Debug Port - which is the external facing part) and one or more 
slaves (the APs – or Access Ports) which are typically used to interface to the various 
on-chip bus standards, or to provide dedicated debug features. Each transaction sent 
from the external debugger is addressed to a single one of these components (the DP 
or an AP). 
 
AP Accesses 
 
Each AP provides up to 64 registers of 32 bits, arranged in 16 banks of 4, including 
one register which identifies the particular AP type. In the case of an AP which 
accesses a memory mapped part of the target system, a pair or registers are used as 
address and data, each access to the Data Read/Write register resulting in an access to 
the target system being performed. The AP can be designed to optimise common 
functions (for example an address incrementor allows a write to n addresses using 
only n+1 writes to the AP), and can also provide detailed status and control of the 
system segment to which it is attached. 



 
DP Accesses 
 
Registers in the DP are used to provide status and control of the external link (SWD), 
interface to power and reset controls and provide modifiers for accesses which are 
passed to the APs. The DP also has registers to select the current AP, and the register 
bank within that AP. The Control/Status register for SWJ-DP is shown in Figure 2 
below. 
 
 

 
 

Figure 2 – SW-DP CTL/STAT register 
 
The DP also provides functions which are designed to improve the performance of 
common debug operations. When the transfer count is set, the next AP access will be 
converted into a stream of accesses within the ASIC, independent of the clock 
frequency provided to the external interface. This can be used in conjunction with the 
Transfer Mode and Bit Mask, which allow the DP to perform a ‘read and compare’ 
operation. These functions together can be used for efficient block fill, memory 
verify, search for match, search for non-match – and at close to system speed when 
the data value is constant. 
 
Sticky Bits 
 
Having described the structure of the DAP, it is now possible to introduce the sticky 
bits, which play an important part in the Serial Wire Debug protocol. Transfers from 
the debugger can fail – either due to data corruption, or a system being unable to 
perform a requested access – or a pushed comparison (using the comparator in the 
DP) may be triggered. When these conditions occur, it is necessary for the debugger 
to recognise the fact, and to be able to recover to the point where the event occurred. 
Rather than requiring the external debugger to check for success after every single 
access, the DP has a number of sticky bits which can be set, and once these bits are 
set, most new transfers will be accepted, but ignored. Although the debugger is not 
required to respond immediately to the state of the sticky bits, the SWD protocol 
provides an indication of any of the ‘ERR’ or ‘STICKY’ bits from the status register 
in its handshake on every transfer. It is important to recognise that the status of the 
physical interface and the status of the debug port are isolated, if the link is broken 
then re-attached, the port will be found to have retained its state – even to the point of 
allowing a read which was in progress when the link was lost to be recovered without 
re-reading it from the system (since repeating that read is not always possible). 
 



SWD Protocol 
 
Each successful SWD transfer consists of 3 parts: 
 

• A header (always from the external debugger) 
• An acknowledgement from the target (provided it recognises the header) 
• A data payload, the direction of which is determined by the header. 

 
A write transfer is shown in Figure 3 below. 
 

 
Figure 3 - Successful SWD Write Transfer 

 
A start bit is used to enable the line to idle, a period when the clock can be stopped or 
free running (note that the clock also does not need to have a set frequency). 
One bit defines the transfer as an AP access or a DAP access, the direction of data on 
the SWD interface is provided, and 2 address bits are given. These address bits allow 
a sequence of AP accesses to use the 4 registers in a bank of a specific AP without 
having to change the AP select register in the DP. A parity bit and a stop bit are added 
to provide some tolerance to data corruption and hot plugging. The header ends by 
driving the line high, where it should be held by a pull-up. After the header, the target 
will respond (after a single cycle) giving an indication of the status of the interface, 
and if the acknowledgement matches the OK pattern, write data is sent with a parity 
bit. A successful read transfer is similar, as shown in Figure 4. 
 

Figure 4 - Successful SWD Read Transfer 
 
The turn-round cycle (TRN in the diagrams) is placed after the data phase for a read, 
as there is no change of direction between ACK and RDATA. For both reads and 
writes, the packet is 46 clock cycles, with a payload of 32 bits. In situations where the 
debugger hardware does not permit analysis and reaction to the ACK bits (for 
example an ASIC vector replay tester, or a simple device on a high latency interface), 
the packet timing can be fixed with these 46 cycle frames. Improved bandwidth 
efficiency can be obtained in the normal mode of operation, where the data phase is 
only present after an ‘OK’ acknowledge phase. This mode uses a shorter packet, as 
shown in Figure 5 below if the debug port is not yet ready to receive a new 
transaction. 



 
Figure 5 - SWD Wait response. 

 
This response indicates to the debugger that the debug port is still active, and that the 
communication link is operating, but there is an outstanding transfer which has not 
completed. This packet is 13 cycles long, and reduces the bandwidth penalty of 
performing debug accesses which are faster than the target is able to accept them. 
 
It is important to note that the protocol is optimised for performing blocks of 
transfers, and both read and write data are buffered. When a read transfer is issued on 
the SWD interface, the response will be the result from the previous read. Thus to 
read an ASIC memory location, typically 3 transfers are necessary: 
 

• Write to the AP’s Transfer Address Register with the target address 
• Read the AP’s Data Transfer Register to initiate the transaction. 
• Read a benign register (DP status for example) to return the required target 

data. 
 
Similarly, if it is necessary to determine that a write access to the system has 
completed, that write has to be followed by a DP access, which can return a WAIT 
response if the write is still in progress. 
 
SWD has a similar packet format which is used when a sticky bit is set. This uses the 
FAULT response as shown in Figure 6 below. 
 

 
Figure 6 - SWD FAULT response 

 
The FAULT response indicates that the link is still active, but the debug port will only 
respond to a read of its ID or Status registers, or a write to its ABORT register which 
is used to clear the state of any sticky bits once they have been read. 
Using these responses, the status of the debug interface and the status of the debug 
infrastructure are separated, making it possible for a debug session to remain 
connected when system clocks are stopped. If there is a fault and access via a system 
port becomes deadlocked, the active AP can be instructed to terminate its transaction 
on the DAP bus. In addition to allowing the AP to be interrogated and its state 
determined, this frees up any remaining debug infrastructure in the target device 
giving the possibility of probing the deadlock scenario, possibly giving valuable 
insight into the cause of the lockup. 



 
Conclusion 
 
The development of the Serial Wire Debug interface standard and protocol has 
provided a reduced pin count alternative to JTAG, which has the additional benefits of 
higher performance and error detection that a packet-based communication protocol 
can bring. Serial Wire Debug is an effective mechanism for accessing a modern bus-
based debug and trace design, the packet nature of the communication being well-
matched with this bus-based architecture.  
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