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Description methods and languages

Classical description tool of the designer: schematic 

diagram

• Uses logic gates or standard logic blocks

• Can contain several hierarchical levels: too complicated for 

complex digital systems

Description languages – textual tools offering:
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Description languages – textual tools offering:

• More flexibility

• Larger variety of description techniques

First languages - PALASM, ABEL - equation-based 

languages:

• Set of equations describing dependence of outputs on inputs of the 

block

• Sometimes supporting state machine design, too (ABEL)



Description methods and languages (cont.)

Second generation of description languages:

• Higher-level structures enabling description of the combinatorial and 

sequential systems using a behavioral approach (structures 

commonly used in scientific languages)

Example: ALTERA proprietary hardware description language 

(AHDL)
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Third generation of description languages - VHDL, Verilog

Two important evolutions:

• Technology-independent: used in multi-technology CAD systems 

(notion of retargeting and transportability)

• High abstraction level is especially well adapted to the design of 

complex digital systems

VHDL – VHSIC (Very High Speed Integrated Circuits) Hardware 

Description Language



Application of the system description 

using VHDL

Specification – specification of the system behavior

Modeling – functional verification by a simulation

Synthesis – physical realization in hardware

Specification
Synthesizable structures 
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Modeling

Synthesis

Synthesizable structures 

represent a subset of the VHDL 

language

Conclusion :

Structures that can be modeled 

(simulated) are not necessarily 

synthesizable!



Role of the simulation

With the evolution of the system complexity the design 

methods have changed:

• Hardware prototyping has been gradually replaced by the 

simulation - it enables to reduce the cost and the development 
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simulation - it enables to reduce the cost and the development 

delays and to design high-level digital systems

• Simulation is used in all development phases of the digital system 

(specification, design and verification)



Types of simulation

Functional simulation:

• Aim – formal functional verification of each element of the system

• Signal propagation delays are not considered, the simulated 

system is supposed to be perfect
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Timing (physical) simulation:

• Aim – to get simulation results as close to the reality (behavior of 

the physical system) as possible, so 

• Signal propagation delays are taken into account



Digital system design flow

Specification of the 
system

Hierarchical decomposition

to functional blocks

Behavioral description

in VHDL

Functional
Structural description

Functional

simulation

Testbench

for the simulation
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Logical synthesis 

and optimization

Placement & routing of primitives 

in the target device (ASIC or FPGA)

Production or programming/configuration

of the device

Timing

simulation

Target library 

of primitives

Functional

simulation

Structural description

in VHDL

Functional

simulation

Structural netlist (in VHDL)

Structural and behavioral netlist

(in VHDL)
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Foreword

Characteristics of the VHDL language:

• Rich vocabulary

• Different contexts of utilization (specification, modeling, synthesis)

Two important aspects of the VHDL language:

• VHDL – a description language aimed at description/simulation of 

logic systems, it is NOT a programming language
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logic systems, it is NOT a programming language

• Some elements of the language cannot be used in all application 

contexts

Note:

In the following sections, we’ll use a subset of the VHDL language –

basic structures used to synthesize digital systems!



VHDL design units

VHDL description is composed of design units. A design unit represents 

a subset of the logic structure that can be compiled separately, saved in 

an independent file or in a library. It can be situated in a:

• file *.vhd (also several units in one file)

• (working) directory in several files *.vhd

• library (packet)

Design units:
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Design units:

• entity – basic element (component, module) defined by:

– entity specification (= external interface ⇒ symbol)

– architecture (= internal structure ⇒ schematics)

• packet – grouping of elements defined by

– packet specification– list of objects belonging to the packet

– packet body – description (definition) of each object

• configuration – association of an architecture with an entity



Entity specification

Design entity – basic 

construction element:

• From an external point of view, it 

is specified by input/output 

signals

entity

declaration

design entity
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signals

• From an internal point of view, it 

is specified by the architecture

• One entity can have several 

architectures (several versions 

of the internal structure)

architecture 1

architecture 2

architecture 3



Entity declaration

Describes the name, the parameters and the interface 

(input/output signals) of the component

Entity name
Ports names

Ports types

Semicolon
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ENTITY and2_op IS

PORT(

a, b: IN STD_LOGIC;

z   : OUT STD_LOGIC

);

END and2_op;

Reserved words

Semicolon

Without semicolon

Ports modes (data flow directions)



Architecture description

Architecture - describes component implementation by a

• Data flow description model

• Structural description model

• Behavioral description model

Architecture name Entity name
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ARCHITECTUREdata_flow OF and2_op IS

BEGIN

z <= a AND b;

END data_flow;

Reserved words delimiting 

the architecture

Output signal 

assignment



Entity and architecture declaration

Complete description of the logic structure

LIBRARY ieee ;

USE ieee.std_logic_1164. ALL;

ENTITY and2_op IS
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PORT(

a, b: IN STD_LOGIC;

z   : OUT STD_LOGIC);

END and2_op;

ARCHITECTUREdata_flow OF and2_op IS

BEGIN

z <= a AND b;

END data_flow;



Port mode IN

A

Entity
Signal of the port 

in mode IN
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The signal is generated 

outside of the entity

Ex. :

C <= A;

Internal signal Input



Port mode OUT

Entity

Signal of the port in mode OUT

BInt_sig

Oct/Nov 2010 V. Fischer: VHDL Language 19

The signal is generated 

inside the entity

C

Problem: the signal in the mode OUT cannot be read (referenced) 

inside the entity (C cannot read B in mode OUT)

C <= B;

B <= Int_sig;

Internal signalOutput

Output signal
Internal signal



Port mode BUFFER

Entity

Signal of the port in mode BUFFER

BInt_sig
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The signal is generated 

inside the entity

The signal can be referenced 

inside the entityC

Problem: the output signal in the mode BUFFER cannot be 
connected to a port in the mode OUT in the higher 
hierarchical level

C <= B;

B <= Int_sig;



Entity
Signal of the port 

in mode BUFFER

B

Superior entity

D

Signal of the port 

in mode OUT

Port mode BUFFER (cont.)
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D <= B;
C

Solution: see the next slide



Port mode OUT with an internal signal

Entity

Signal of the port in 

mode OUTBInt

Additional internal signal

Int_sig
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The signal is generated 

Inside the entity

The signal Int can be referenced 

inside the entity

B <= Int;

C <= Int;

C

Int <= Int_sig;



Port mode INOUT (bi-directional)

EntitySignal of the port

A
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The signal can be generated 

inside or outside of the entity

The signal can be referenced 

inside the entity



Port modes - summary

Modes of the ports specify the direction of the data transfer 

(when looking from the component side)

• IN: input port – data coming to this port can be read inside the

component, the name of the port can be situated only on the right

side of the assignment expression

• OUT: output port – output data can only be updated (and not read)

inside the component, the name of the port can be situated only on
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inside the component, the name of the port can be situated only on

the left side of the assignment expression

• INOUT: input/output port – data can be updated and read inside the

component, the name of the port can be situated on the left or on

the right side of the assignment expression

• BUFFER: output port – output data can be read inside the component,

the name of the port can be situated on the left or on the right side

of the assignment expression, this mode should be avoided in

the hierarchical structures



Data types

Type – specifies the data format and the set of operations, 

which are allowed on these data

Two categories

• Scalar data types

• Integers

• Real numbers (floating point)
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• Real numbers (floating point)

• Physical data (measure units)

• Enumerated data (an explicit list of data)

• Composite data types

• Arrays (groups of objects of the same type)

• Records (aggregates of objects of different types)



Data types

Pre-defined types (library STD)

scalar types sim syn composite types (arrays) sim syn

character (enum) ���� ���� string ���� ����

bit (enum) ���� ���� bit_vector ���� ����

boolean (enum) ���� ����

real (float) ����

integer (integer) ���� ����
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Types defined in the IEEE library

User-defined types

Note: ulogic = unresolved logic (non-resolved multi-value signals = mono-source)

time (physical) ����

scalar types sim syn composite types (arrays) sim syn

std_ulogic ���� std_ulogic_vector ����

std_logic (signals) ���� ���� std_logic_vector (signal vectors) ���� ����



Unresolved versus resolved logic

Unresolved logic – std_ulogic

• Mono-source signals – only one driver can generate one signal

• Ensures that two different values will not be assigned to a signal on 

two different places

• Tri-state buses cannot be implemented (need two generators for the 

same signal)
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Resolved logic – std_logic

• Multi-source signals – several generators can generate one signal

• Used for implementation of bi-directional signals (e.g. buses)

• A conflict resolution table is given in the IEEE library

(ex. : '0'  and '1'  give 'X', 'Z'  and '1'  give '1', etc.)

Attention on multiple signal assignments when using resolved logic inside 

the same architecture – this error will not be signaled by the compiler (more 

than one generator is allowed)!



Type STD_LOGIC (multi-value, multi-source signals)

Value Meaning Simul. Synth.

‘U’ Unknown – non initialized �

‘X’ Forcing unknown – unknown level, strong forcing �

‘0’ Forcing 0 – level 0, strong forcing � �

‘1’ Forcing 1 – level 1, strong forcing � �
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‘Z’ High Impedance – high impedance � �

‘W’ Weak Unknown – unknown level, weak forcing �

‘L’ Weak 0 – level 0, weak forcing �

‘H’ Weak 1 – level 1, weak forcing �

‘-’ Don't Care – any level � �



Meaning of the STD_LOGIC levels

'U'

• Default signal value at the beginning of the simulation

• Value of signals, which are not generated (updated) during the 

simulation

'X'
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'X'

Logic contention 

on the bus!

'1'

'0'

'X'



Meaning of the STD_LOGIC levels (cont.)

Conflict resolving – tri-state logic - maximum one signal can be in 

a low impedance state, others has to be in high impedance

A B Bus Comment

Z Z Z Without conflict

Z 1 1 Without conflict
A

'Z'

Bus
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B

Z 1 1 Without conflict

Z 0 0 Without conflict

1 Z 1 Without conflict

0 Z 0 Without conflict

1 1 1 Weak (electr.) conflict

0 0 0 Weak (electr.) conflict

0 1 X Conflict on the bus!

1 0 X Conflict on the bus!

'0'

'0'

'1'
'Z'

'0'



Meaning of the STD_LOGIC levels (cont.)

VDDVDD

VDD

Other STD_LOGIC levels:  1', '0', 'H', 'L', 'W', 'Z'
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'H'

'0'

'1'

'L'

'W' 'Z'

(not connected)



Meaning of the STD_LOGIC levels (cont.)

‘-’

• Any level

• Can be assigned to the output if the corresponding signal does not 

depend on input signals (synthesis results can be significantly 

improved, logic area can be reduced)

• Pay attention:

‘1’ = ‘-’ is FALSE
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‘1’ = ‘-’ is FALSE



User-defined types

Enumerated types

• Used to describe state machines

• Ex. : 

TYPE state IS (wait, go, stop, error);

Arrays
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Arrays

• Ex. : 

TYPE my_array IS ARRAY(0 TO 2, 0 TO 7);

• Based on this array, an object can be declared:

decl_objet: objet my_array;

Object typeObject nameDeclaration 

reference



VHDL design models

structural

VHDL design models

data flow behavioral
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Components and

interconnections

structuraldata flow

Concurrent 

statements

• Registers

• State machines

• Testbenches

Sequential 

statements

Most appropriate 

for the synthesis

behavioral



Example : XOR3

a

b
c

result

ENTITY xor3 IS

U1
U2
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PORT(

a      : IN STD_LOGIC;

b      : IN STD_LOGIC;

c      : IN STD_LOGIC;

result : OUT STD_LOGIC

);

END xor3;



Dataflow architecture

a

b
c

result

u1_out

Architecture name Entity name

U1
U2
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ARCHITECTURExor3_dataflow OF xor3 IS

SIGNAL u1_out : STD_LOGIC;

BEGIN

u1_out <= a XOR b;

result  <= u1_out XOR c;

END xor3_dataflow;

Internal signal

declaration



Dataflow architecture (cont.)

Dataflow model describes relations between data inside the 

module.

It uses concurrent statements to realize the logic. 

Statements are evaluated simultaneously (in parallel), their 

order is therefore not important!
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order is therefore not important!

It is the most useful, if the logic can be represented using 

Boolean statements (combinatorial logic).



Signals and constants

Signal – simple wire interconnection

Two signal types

• Input/output signals (with direction)

• Internal signals (without direction)

Assignment of a value to a signal: operator  <=
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Note: Internal signals can be eliminated by the compiler during 

optimization phase of the logic synthesis

Internal signals declaration examples:

SIGNAL dff, reset      : std_logic;

SIGNAL internal_bus    : std_logic_vector(7 DOWNTO 0);

SIGNAL zero, carry_out : bit;

List of signals separated by a comma Signal types



Signals and constants (cont.)

Constant – associates a fixed value to a signal

Constants use the same data types as signals (bit, bit_vector, 

std_logic, std_logic_vector)

Constants enhance readability of the code

Assignment of a value: operator :=
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Constant declaration examples :

CONSTANT standby : bit_vector(1 DOWNTO 0) := "00";

CONSTANT odd: std_logic_vector(2 DOWNTO 0) := "--1";

CONSTANT hi_imp: std_logic_vector(0 TO 7) := "ZZZZZZZZ";

Another version of the last declaration:

CONSTANT hi_imp: std_logic_vector(0 TO 7) 

:= (OTHERS => 'Z');

Advantage : we do not need to know the number of vector elements



Structural model of the architecture 

i1

i2
y

Component declaration

(it is defined elsewhere)

Component instantiation

ARCHITECTURExor3_struct OF xor3 IS

SIGNAL u1_out : STD_LOGIC;
COMPONENT xor2

PORT(
i1 : IN STD_LOGIC;
i2 : IN STD_LOGIC;

y : OUT STD_LOGIC
);

Internal signal declaration
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i2

XOR2

XOR3

result
u1_outa

b c
u1 u2

);
END COMPONENT;

BEGIN
u1: xor2 PORT MAP (i1 => a,

i2 => b,
y => u1_out);

u2: xor2 PORT MAP (i1 => u1_out,
i2 => C,

Y => result);
END xor3_struct;



Structural model of the architecture (cont.)

It is easy to understand. It is close to schematics design: it 

uses simple blocks to create higher-level logic functions

Components can be interconnected in a hierarchical 

manner

In the structural model we can connect simple logic ports or 
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In the structural model we can connect simple logic ports or 

complex (and abstract) components

The structural model of the architecture is useful if the 

blocks can be interconnected in a natural way



Component declaration and instantiation

COMPONENT xor2 IS
PORT(

i1 : IN STD_LOGIC;
i2 : IN STD_LOGIC;

Assignment of interconnections by their names -

recommended

Component declaration
(in the  "declarations" part
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i2 : IN STD_LOGIC;
y  : OUT STD_LOGIC

);
END COMPONENT;

u1: xor2 PORT MAP (i1 => a,
i2 => b,
y  => u1_out);

Component instantiation
(in the architecture body)

(in the  "declarations" part

of the architecture)

Instantiation name Component name



Component declaration and instantiation (cont.)

COMPONENT xor2 IS
PORT(

i1 : IN STD_LOGIC;
i2 : IN STD_LOGIC;

Assignment of connections by their position -

not recommended!
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i2 : IN STD_LOGIC;
y : OUT STD_LOGIC

);
END COMPONENT;

u1: xor2 PORT MAP (a, b, u1_out);



Behavioral model of the architecture

ARCHITECTURExor3_behav OF xor3 IS
BEGIN

xor3_proc: PROCESS (a, b, c)
BEGIN

IF ((a XOR b XOR c) = '1') THEN
result <= '1';

ELSE
result <= '0';

END IF;
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END IF;
END PROCESSxor3_proc;

END xor3_behav;

Behavioral model describes what happens at the output of 
the module (depending on input) without specification of 
the internal structure of the block (black-box approach)

It uses a VHDL structure called Process

It is not recommended for combinatorial structures



Testbench

The Testbench applies the stimuli to the input of the 

component (Device Under Test – DUT) and (eventually) verifies 

the simulation results

The results can be observed in the simulator waveform 

window or they can be written to a file
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window or they can be written to a file

Since the Testbench is written in VHDL, it is not restricted to 

the use of a specific simulation tool (portability notion)

The same Testbench can be easily adapted to test different 

implementations (e. g. different architectures) of the same 

project 



Testbench (cont.)

Testbench -

Device management

- Device instantiation

- Stimuli generation

Verification flow in the Testbench

Testbench -

User interface management

Print simulation output 

values to the terminal
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- Stimuli generation

DUT 

(Design under test)

Print simulation output 

waveforms to the simulator  

window

Simulation verification 

(comparison with expected 

values specified in a file)



Testbench – example
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY tb_xor3 IS
END tb_xor3;

ARCHITECTURE structure OF tb_xor3 IS

COMPONENT xor3
PORT(

a:      IN  std_logic;
b:      IN  std_logic;
c:      IN  std_logic;
result: OUT std_logic

Testbench does not 

have ports!

DUT declaration
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c:      IN  std_logic;
result: OUT std_logic
);

END COMPONENT;

SIGNAL x1, x2, x3 : std_logic;
SIGNAL y          : std_logic;

BEGIN

u_xor3: xor3
port map (

a    => x1,
b    => x2,
c     => x3,
result => y

); 1

Declaration of 

internal signals

DUT instantiation

see next page F



Testbench – example (cont.)

stimuli: PROCESS
BEGIN

x1 <= '0';
x2 <= '0';
x3 <= '0';
WAIT FOR 10 ns;
x1 <= '1';
x2 <= '0';
x3 <= '0';
WAIT FOR 10 ns;
x1 <= '1';
x2 <= '1';
x3 <= '0';

Stimuli generation

Oct/Nov 2010 V. Fischer: VHDL Language 48

x2 <= '1';
x3 <= '0';
WAIT FOR 10 ns;
x1 <= '1';
x2 <= '1';
x3 <= '1';    
WAIT FOR 10 ns;
x1 <= 'X';
x2 <= 'X';
x3 <= '0';
WAIT FOR 30 ns;
x1 <= '1', '0' AFTER 10 ns, '1' AFTER 20 ns;
x2 <= '1', '0' AFTER 20 ns;
WAIT;                  -- stop the process

END PROCESS stimuli;
END structure;

2



Testbench – example (cont.)

Waveforms – simulation results:
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Concurrent structures 

Concurrent instructions

• Unconditional signal assignment

• signal <= expression (using signals);

• Conditional signal assignment

• signal <= expression1 WHEN condition ELSE expression2;

• Selective signal assignment

• WITH selector SELECT

signal <= expression1 WHEN selector_value, -;
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signal <= expression1 WHEN selector_value, -;

Component instantiation

Multiple assignments/component instantiations

• label: FOR loop_variable IN interval GENERATE

{concurrent instruction(s)}

END GENERATE label;

Conditional assignments/component instantiations

label: IF condition GENERATE

{concurrent instruction(s)}

END GENERATE label;



Concurrent instructions – example

ENTITY multiplexers IS
PORT (a, b, sel : IN bit;

x, y, z   : OUT bit);
END multiplexers;

ARCHITECTURE rtl OF multiplexers IS
BEGIN
-- unconditional assignment

x <= (a AND NOT sel) OR (b AND sel);

Architecture rtl

a

b

sel

x

a
y

a

x

Entity multiplexers
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x <= (a AND NOT sel) OR (b AND sel);

-- conditional assignment
y <= a WHEN sel='0' ELSE

b;
-- selective assignment

WITH sel SELECT
z <= a  WHEN '0',

b  WHEN '1',
'0' WHEN OTHERS;

END rtl;

a

b

sel

y

a

b

sel

z

b

sel

y

z



Concurrent instructions – example (cont.)

a

x

Since three instructions

describe the same logic 

structure, the architecture rtl will 
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b

sel

y

z

structure, the architecture rtl will 

be implemented in the hardware 

in a following way - two 

redundant structures will be 

deleted



Concurrent instructions (cont.)

Conditional signal assignment

• signal <= expression (with signals);

• Example : 

a <= b AND c;

(a takes the operation result value (b AND c))

Logical operators
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Logical operators

Relational operators

Priority of operators

and   or   nand   nor   xor   not   xnor

=     /=     <     <=    >     >=

not

=     /=     <     <=    >     >=

and   or   nand   nor   xor   xnor



Concurrent instructions (cont.)

Priority of operators – example:

Intended logic function:

x = ab + cd

Incorrect assignment:

x <= a AND b OR c AND d;
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x <= a AND b OR c AND d;

Equivalent to:

x <= ((a AND b) OR c) AND d;

Correct version:

x <= (a AND b) OR (c AND d);



Arithmetic operators

Additive operators

+ - addition
- - subtraction
& - concatenation of two vectors and not a logical AND!

Multiplicative operators  - limited use in synthesis

* - multiplication
/ - division
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/ - division
mod - modulo division
rem - remainder of the division

Other operators – shouldn’t be used for the synthesis

** - squaring
abs - absolute value

Additive operators + and – are defined only for integers and reals! For 

addition (subtraction) of bit (bit_vector) and std_logic (std_logic_vector) 

signals, it is necessary to use arithmetic library!!!



Concurrent instructions (cont.)

Signal vectors and their concatenation

SIGNAL a         : std_logic_vector(3 DOWNTO 0);

SIGNAL b         : std_logic_vector(3 DOWNTO 0);

SIGNAL c, d, e, f: std_logic_vector(7 DOWNTO 0);

a <= "0000"; 

b <= "1111";

Character strings (numbers) are 

delimited by quotation marks
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b <= "1111";

c <= a & b;                      -- c <= "00001111"

d <= '0' & "0001111";            -- d <= "00001111"

e <= '0' & '0' & '0' & '0' & '1' & '1' & '1' & '1';

-- e <= "00001111"

f <= "0000" & (OTHERS => '1');   -- f <= "00001111"

One character (number) is delimited by 

apostrophes



VHDL operators - summary

Operator type Operator name/symbol

Logical and or nand nor xor xnor

Relational =  /=  <  <=  >  >=
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Addition/subtraction +  - &

Sign +  -

Multiplication/division *  /  mod  rem

Miscellaneous **  abs not

Operators in gray are not always supported!



Concurrent instructions

Conditional assignment

target_signal <= value1 WHEN condition1 ELSE

value2 WHEN condition2 ELSE

.   .   .

valueN-1 WHEN conditionN-1 ELSE

valueN;
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Conclusion : caution – priority encoding!

target_signal

condition1

value1

condition2

value2

. . .

conditionN-1

valueN-1

valueN



sel1

sel2

a

Concurrent instructions (cont.)

-- conditional assignment
y <= a WHEN sel1 = '1' ELSE

b WHEN sel2 = '1‘ ELSE
c;

Selection of  signal a by 

Obtained logic
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a

b

c

y

q = (sel1 AND a) 
OR ((NOT sel1) AND sel2 AND b) 
OR ((NOT sel1) AND (NOT sel2) AND c)

Selection of  signal a by 

the signal sel1 has 

priority before b and c !



Concurrent instructions (cont.)

Selective assignment

WITH selector SELECT

target_signal <= value1 WHEN selector_value,

value2 WHEN selector_ value,

. . . 

valueN WHEN OTHERS;
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Application example: multiplexer

target_signal

selector

value2

value1

MUX
value3

value4



Concurrent instructions (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY multiplexer IS
PORT (a, b, c, d : IN std_logic;

sel        : IN std_logic_vector(1 DOWNTO 0);
y          : OUT std_logic);

END multiplexer;

ARCHITECTURE rtl OF multiplexer IS
BEGIN
-- selective assignment

WITH sel SELECT
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-- selective assignment
WITH sel SELECT

y <= a  WHEN "00",
b  WHEN "01",
c  WHEN "10",
d  WHEN OTHERS;

END rtl;

y = (a AND (NOT sel(1)) AND (NOT sel(0))) 
OR (b AND (NOT sel(1)) AND sel(0))
OR (c AND sel(1) AND (NOT sel(0)))
OR (d AND sel(1) AND sel(0))

Selection without priority!



Concurrent instructions (cont.)

Structure GENERATE for concurrent instructions

label: FOR loop_variable IN interval GENERATE

[declarations]

BEGIN

{concurrent assignment(s)}

END GENERATE label;

Optional
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Application example: parity generator

par_in(0)

par_outpar_in(1)
par_in(2)

par_in(3)
par_in(4)

par_in(5)
par_in(6)

par_in(7)



Concurrent instructions (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY parity IS
PORT (par_in : IN std_logic_vector(7 DOWNTO 0);

y      : OUT std_logic);
END parity;

ARCHITECTURE rtl OF parity IS
SIGNAL par_int : std_logic_vector(7 DOWNTO 0);
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BEGIN
par_int(0) <= par_in(0);
y <= par_int(7);

Calc_parity:
FOR i IN 1 TO 7 GENERATE

par_int(i) <= par_in(i) XOR par_int(i-1);
END GENERATE Calc_parity;

END rtl;

We can use the signal par_int(7) 

before a value is assigned to it 

(concurrent structure)

y = par_in(0) XOR par_in(1) XOR par_in(2) XOR par_in(3) 
XOR par_in(4) XOR par_in(5) XOR par_in(6) XOR par_in(7)
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Applications of concurrent structures

Implementation of combinatorial logic functions (CLF)

CLF - definition

• The output value of a CLF depends only on input signals values and (in 

contrast with a sequentional logic function) it does not depend on the 

function internal state

• Exemple : Y = f(A, B, C) = A + B + C

Combinatorial functional blocks
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Combinatorial functional blocks

Application examples:

• Simple combinatorial structures

• Multiplexers

• Parity generators

• Coders/decoders

• Comparators, arithmetic and logic unit

• Tri-state outputs

• Bi-directional inputs/outputs

• F



Applications of concurrent structures (cont.)

Arithmetic and logic unit

A
Op1 Op0 Operation

C_out
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A

B

R

Op1 Op0

0 0 R = A + B

0 1 R = A - B

1 0 R = A and B

1 1 R = A or B



Applications of concurrent structures (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY alu IS
PORT (a, b     : IN std_logic_vector(7 DOWNTO 0);

op1, op0 : IN std_logic;
r        : OUT std_logic_vector(7 DOWNTO 0);
c_out    : OUT std_logic);

END alu;

ARCHITECTURE rtl OF alu IS

Packet necessary for 

arithmetic operations
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ARCHITECTURE rtl OF alu IS
SIGNAL oper    : std_logic_vector(1 DOWNTO 0);
SIGNAL int     : std_logic_vector(8 DOWNTO 0);

BEGIN
oper   <= op1 & op0;  -- operation code
c_out  <= int(8);
r      <= int(7 DOWNTO 0);

WITH oper SELECT
int <= (('0'& a) + ('0'& b))  WHEN "00",

(('0'& a) - ('0'& b))  WHEN "01",
('0' & (a AND b))      WHEN "10",
('0' & (a OR b))       WHEN OTHERS;

END rtl;

Extension of a and b to 9 bits 

(the ninth bit will be the carry)



Applications of concurrent structures (cont.)

Tri-state outputs

a y

oe a oe y

0 0 Z

0 1 0

1 0 Z
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1 0 Z

1 1 1

-- conditional assignment
y <= a WHEN oe = '1' ELSE

'Z';

y has to be declared as a std_logic 

and not as a bit!



Applications of concurrent structures (cont.)

Open collector

y

oe oe y

0 Z

1 0
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-- conditional assignment
y <= '0' WHEN oe = '1' ELSE

'Z';

oe
y



Applications of concurrent structures (cont.)

Bi-directional input/output

a

oe

a oe a_out y

a_in

y_out

0 0 Z Z Z

0 1 0 0 Z

1 0 Z Z Z

1 1 1 1 Z

a_out y_out
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y

1 1 1 1 Z

0 0 Z 0 0

0 1 0 0 0

1 0 Z 0 0

1 1 1 X 0

0 0 Z 1 1

0 1 0 X 1

1 0 Z 1 1

1 1 1 1 1

a_in = y external

bus

a_out and a_in can have 

different values
(⇒⇒⇒⇒ two signals are necessary

for the simulation)

Bus contentions!



Applications of concurrent structures (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY io_bidir IS
PORT (y          : INOUT std_logic;

oe         : IN std_logic;
a_log2bus  : IN std_logic;
a_bus2log  : OUT std_logic);

END io_bidir;

ARCHITECTURE rtl OF io _bidir IS

a_log2bus y

a_bus2log

oe
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ARCHITECTURE rtl OF io _bidir IS
BEGIN

y <= a_log2bus  WHEN oe = '1' ELSE
'Z';

a_bus2log <= y;
END rtl;

Stimulator
Bus contentions

High 

impedance
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Basic sequential structures

Used only inside the PROCESS, FUNCTION and PROCEDURE!

Four basic structures:

• Unconditional assignment of a signal or variable

signal <= expression (with signals);

variable := expression (with variables);

• Conditional structure

Oct/Nov 2010 V. Fischer: VHDL Language 74

Optional 

parts

IF condition THEN

{sequential instruction(s)}

[ELSIF condition THEN

{sequential instruction(s)}]

[ELSE

{sequential instruction(s)}]

. . .

END IF;



Basic sequential structures (cont.)

• Selective structure

CASE selector IS

WHEN selector_value1 =>

{sequential instruction(s)}

WHEN selector_value2 =>

{sequential instruction(s)}

Oct/Nov 2010 V. Fischer: VHDL Language 75

{sequential instruction(s)}

WHEN selector_value3 =>

{sequential instruction(s)}

. . .

[WHEN OTHERS =>

{sequential instruction(s)}]

END CASE;

Optional, but 

recommended part



Basic sequential structures (cont.)

• Loop structures

• Three basic types

– Simple loops (without iteration scheme)

– FOR loops

– WHILE loops

• Used mostly in testbenches
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Optional

Syntax:

[label:] [iterative scheme] LOOP

{sequential instruction(s)}

END LOOP [label] ;



Basic sequential structures (cont.)

Optional

• Simple loop (infinite)

Syntax:

[label:] LOOP

{sequential instruction(s)}

END LOOP [label] ;
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• Exit from the loop by

EXIT [WHEN condition] ; unconditional exit from the loop

NEXT [WHEN condition] ; jump to the next iteration

RETURN F ; in a function



Basic sequential structures (cont.)

Optional

• Loop FOR

[label :] FOR loop_variable IN interval LOOP

{sequential instruction(s)}

END LOOP [label] ;

• Loop variable does not need to be declared!
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Optional

• Loop WHILE

[label :] WHILE condition LOOP

{sequential instruction(s)}

END LOOP [label] ;

• Loops while the condition is true.



PROCESS

Series of VHDL instructions with a sequential behavior

Instruction order - important!

Three phases of the PROCESS:

• Standby, Activation, Execution

Syntax:
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Optional

Optional

Syntax:

[label:] PROCESS [(sensitivity list)]

[declarative part ]

BEGIN

{sequential instruction(s)}

END PROCESS [label ];



Two activation possibilities:

• At any change of activating signals given in the sensitivity list 

(several activating signals can be used), this type of activation is 

used mostly to realize: 

• latches, 

• registers

Activation of the PROCESS 

and updating of the signal values
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• registers

• state machines

• Following a waiting period limited by an event (WAIT UNTIL) or by 

a period length (time) specification - WAIT FOR (only one of these 

parameters is allowed), this activation type is used mostly in:

• testbenches

The signals are evaluated during the PROCESS, but updated 

at the end of the PROCESS



a

b

sel

c

sensitivity list contains all signals 

referenced in the process

Two PROCESS interpretations

• Compiler infers a combinatorial structure

– Sensitive to all signals used in the 

combinatorial logic 

Example

PROCESS(a, b, sel)
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CLRN

ENA

D Qd

clk

clr

q

referenced in the process

sensitivity list does not contain input D, 

only clock and asynchronous control signals 

• Compiler infers a sequential structure

– Sensitive to the clock signal and to 

asynchr. control signals (reset, preset)

Example

PROCESS(clr, clk)



An architecture can contain several PROCESSes

They are executed in parallel, because they are situated in the 

concurrent  part of the architecture

Inside the PROCESS, the instructions are executed 

sequentially, the PROCESS is a sequential structure

Reduction of the number of processes increases readability

Implementation of several PROCESSes
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Reduction of the number of processes increases readability

Architecture

Process 1
.
.
.

Process 2

Concurrent 

structures
Signals

Order is not 

important



LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a,b : IN std_logic;

x : OUT std_logic);
END simp_prc;
ARCHITECTURE exam OF simp_prc IS

SIGNAL c : STD_LOGIC;

Example of two equivalent structures

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY simp IS
PORT(a, b : IN std_logic;

x : OUT std_logic);
END simp;
ARCHITECTURE exam OF simp IS

SIGNAL c : std_logic;
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BEGIN
process1: PROCESS(a, b)

BEGIN
c <= a and b;

END PROCESS process1;
process2: PROCESS(c)

BEGIN
x <= c;

END PROCESS process2;
END exam;c and x are updated in parallel 

at the end of the PROCESS

SIGNAL c : std_logic;

BEGIN

c <= a AND b;
x <= c;

END exam;



LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY simp_prc IS
PORT(a,b : IN std_logic;

x : OUT std_logic);
END simp_prc;
ARCHITECTURE exam OF simp_prc IS

SIGNAL c : STD_LOGIC;
BEGIN

Two structures that give the same result after the 

synthesis, but not in the functional simulation

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY simp IS
PORT(a, b : IN std_logic;

x : OUT std_logic);
END simp;
ARCHITECTURE exam OF simp IS

SIGNAL c : std_logic;
BEGIN

A
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BEGIN
PROCESS(a, b)

BEGIN
c <= a and b;
x <= c;

END PROCESS;
END exam;

BEGIN
c <= a AND b;
x <= c;

END exam;

a
b
c
x

a
b
c
x

A B
simulation before and 

after the synthesis of A

functional 

simulation of B

post-synthesis simulation of B



Two structures that give the same result after the 

synthesis, but not in the functional simulation (cont.)

Conclusions :

• Do not use PROCESS to implement combinatorial logic, if not, 

caution!

• Use the PROCESS to implement sequential logic (containing 
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• Use the PROCESS to implement sequential logic (containing 

storage elements)

• Latches

• Registers

• State machines

• Use the PROCESS freely to realize testbenches
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tri-state outputs, bi-directional inputs/outputs
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Sequential logic functions

Sequential logic function - definition

• The next output value of the function depends on the current 
inputs AND on the current state – this needs implicitely the use 
of a memory element

Two main types

• Asynchronous logic – state can change any time

• Synchronous logic – state can change only in pre-defined time 
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• Synchronous logic – state can change only in pre-defined time 
intervals – rising or falling edge of clock signals

Basis sequential functions

• Asynchronous flip-flops – RS, D latch

• Synchronous flip-flops - D, T, RS, JK

• Synchronous and asynchronous counters

• Registers and shift registers

• State machines



Basic sequential blocks

Asynchronous flip-flops

Flip-flop – bi-stable circuit, able to store one bit

• Storage element is often realized by a loop (the output of the function 
comes back to the input)

Asynchronous RS flip-flop – flip-flop serving as a building element 
for all other flip-flops (S = Set, R = Reset)

RS flip-flop with NAND gates
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RS flip-flop with NAND gates

S R Q+ nQ+ Next state

0 0 -Q -nQ Previous 

state

0 1 0 1 Reset

1 0 1 0 Set

1 1 Ambiguous Forbidden

S
Q

_

Q
R

Truth table



Basic sequential blocks

Asynchronous flip-flops (cont.)

RS flip-flop with locking

If input Ena = 0, the flip-flop is

locked Ena S R Q+ nQ+

0 0 0 -Q -nQ

Truth table
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0 0 1 -Q -nQ

0 1 0 -Q -nQ

0 1 1 -Q -nQ

1 0 0 -Q -nQ

1 0 1 0 1

1 1 0 1 0

1 1 1 Ambiguous

S

Q

_

Q
R

Ena

Locking



Basic sequential blocks

Asynchronous flip-flops (cont.)

D flip-flop with locking – D Latch

D
Q

_

Q
Truth table

Ena
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Q

Ena D Q+ nQ+

0 0 -Q -nQ

0 1 -Q -nQ

1 0 0 1

1 1 1 0

Truth table

D

Ena

Q

Locked Transpar. Locked Transpar.



Basic sequential blocks

Asynchronous flip-flops (cont.)

D latch using a data flow architecture

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY d_latch IS
PORT ( d   : IN std_logic;

ena : IN std_logic;
q : OUT std_logic

);
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);
END d_latch;

ARCHITECTURE data_flow OF d_latch IS
SIGNAL n_s, n_r       : std_logic;
SIGNAL q_int, n_q_int : std_logic;

BEGIN
n_s     <= NOT (d AND ena);
n_r     <= NOT ((NOT d) AND ena);
--
n_q_int <= NOT (q_int AND n_r);
q_int   <= NOT (n_q_int AND n_s);
--
q       <= q_int;

END data_flow;

Data flow 

architecture  based 

on the previous 

circuit diagram



Basic sequential blocks

Asynchronous flip-flops (cont.)

D latch using a behavioral description – VERY easy to read

and understand its behavior

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY d_latch IS
PORT ( d   : IN std_logic;

ena : IN std_logic;
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ena : IN std_logic;
q : OUT std_logic

);
END d_latch;

ARCHITECTURE behavior OF d_latch IS
BEGIN

PROCESS (ena, d)
BEGIN

IF ena = '1' THEN
q <= d;

END IF;
END PROCESS;

END behavior;

Sensitivity list contains both 

inputs

If ena = '0'? => Implicit memory!



Basic sequential blocks

Synchronous flip-flops

Synchronous flip-flop – bi-stable circuit, changing its state only on 

the rising (or falling) edge of a clock signal

Basic types

• D flip-flop

• JK flip-flop

• T flip-flop

• RS flip-flop
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• RS flip-flop

Besides synchronous inputs, one or two asynchronous control 

inputs can be employed

• Asynchronous reset

• Asynchronous preset

clock

data_in

data_out glitches

sampling instants

glitch-less output



Basic sequential blocks

Synchronous flip-flops (cont.)

Synchronous D flip-flop – the value present at the D input 

during the rising (or falling) edge of the clock signal is 

stored in the flip-flop until the next rising (or falling)

D

clk

Q
Truth table

_
Q
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clk D Q+ nQ+

0 x -Q -nQ

1 x -Q -nQ

↓ x -Q -nQ

↑ 0 0 1

↑ 1 1 0

Q

Sensitivity on the rising edge

D

clk

Q



D Flip - Flop using expression clk = '1'

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY dff IS
PORT ( d : IN std_logic;

clk : IN std_logic;
q : OUT std_logic
);

D Qd

clk

q
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sensitivity list contains 

activating signal

);
END dff;

ARCHITECTURE behav OF dff IS
BEGIN
PROCESS (clk)

BEGIN
IF clk = '1' THEN

q <= d;
END IF;

END PROCESS;
END behav;

clk = '1' means activation 

on the rising edge (?)  

- NOT for std_logic

Version to be avoided!



LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY wait_dff IS
PORT ( d, clk : IN std_logic;

q : OUT std_logic
);

END wait_dff;

D flip-flop implementation using expression Wait

D Qd

clk

q
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END wait_dff;

ARCHITECTURE behav OF wait_dff IS
BEGIN

PROCESS 
BEGIN

WAIT UNTIL clk = '1';
q <= d;

END PROCESS;
END behav;

Note: with WAIT, the sensitivity 

list cannot be used!

Asynchronous reset is impossible!

WAIT UNTIL – replaces the sensitivity list



ENTITY dff_a IS
PORT ( d : IN bit;

clk : IN bit;
q : OUT bit
);

END dff_a;

ARCHITECTURE behav OF dff_a IS

D flip-flop implementation – clk’event and clk = '1'

D Qd

clk

q
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ARCHITECTURE behav OF dff_a IS
BEGIN
PROCESS (clk) 

BEGIN
IF clk'event and clk = '1' THEN

q <= d;
END IF;

END PROCESS;
END behav;

clk’event and clk :

- clk – clock signal

- event – VHDL attribute 

- clk = ‘1’ – PROCESS

activation on the rising edge

of the clock signal

Recommended version for a bit-type signal! IEEE library is not needed.



LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY dff_b IS
PORT ( d : IN std_logic;

clk : IN std_logic;
q : OUT std_logic
);

D flip-flop implementation – rising_edge

D Qd

clk

q
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);
END dff_b;

ARCHITECTURE behav OF dff_b IS
BEGIN

PROCESS(clk)
BEGIN

IF rising_edge(clk) THEN
q <= d;

END IF;
END PROCESS;

END behav;

rising_edge :

- VHDL function defined in the

packet std_logic_1164

- specifies that the signal has

to pass from 0 to 1

- transition from X, Z to 1 is not

taken into account

Recommended version for 

std_logic-type signals, but it 

needs the packet std_logic_1164!



LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY dff_clr IS
PORT (  clr : IN std_logic;

d, clk : IN std_logic;
q : OUT std_logic

);
END dff_clr ;

D flip-flop with asynchronous reset

CLRN

D Qd

clk

clr

q

Oct/Nov 2010 V. Fischer: VHDL Language 99

END dff_clr ;

ARCHITECTURE behav OF dff_clr IS
BEGIN

PROCESS(clk, clrn)
BEGIN

IF clrn = '0' THEN
q <= '0';

ELSIF rising_edge(clk) THEN
q <= d;

END IF;
END PROCESS;

END behav;

clr

-Note: the condition concerning reset 

is before the condition rising_edge, 

it has PRIORITY

- clr = '0' does not depend on the 

clock - it implements an 

asynchronous reset



Basic sequential blocks

Synchronous flip-flops (cont.)

JK synchronous flip-flop – behaviour similar to that of the RS 

flip-flop (J input works as S and K input as R), except for the 

case when J and K were equal to one, in this case the output 

is inverted

J

clk

Q

clk J K Q+ nQ+ Next state

Truth table

_
Q
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clk J K Q nQ

0 x x -Q -nQ Previous state

1 x x -Q -nQ Previous state

↓ x x -Q -nQ Previous state

↑ 0 0 -Q -nQ Previous state

↑ 1 0 1 0 Set

↑ 0 1 0 1 Reset

↑ 1 1 -nQ -Q Inversion

Q
K

sensitivity on the rising edge

sensitivity on the falling edge



Basic sequential blocks

Synchronous flip-flops (cont.)

Synchronous JK flip-flop - behavioral description

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY jk_ff IS
PORT ( j, k, clk : IN std_logic;

q         : OUT std_logic
);

END jk_ff;
ARCHITECTURE behavior OF jk_ff IS

SIGNAL sel   : std_logic_vector(1 DOWNTO 0);
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SIGNAL sel   : std_logic_vector(1 DOWNTO 0);
SIGNAL q_int : std_logic;

BEGIN
sel <= j & k;

PROCESS (clk)
BEGIN

IF rising_edge(clk) THEN
CASE sel IS

WHEN "10"   => q_int <= '1';
WHEN "01"   => q_int <= '0';
WHEN "11"   => q_int <= NOT q_int;
WHEN OTHERS => q_int <= q_int;

END CASE;
END IF;

END PROCESS;
q <= q_int;

END behavior;

set

reset

inversion

storing



ENTITY reg1 IS
PORT ( d : IN bit;

clk : IN bit;
q : OUT bit);

END reg1;

ARCHITECTURE reg1_a OF reg1 IS
SIGNAL a, b : BIT;

How many registers ?
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SIGNAL a, b : BIT;
BEGIN

PROCESS (clk)
BEGIN

IF clk'event and clk = '1' THEN
a <= d;
b <= a;
q <= b;

END IF;
END PROCESS;

END reg1_a;



How many registers F (solution)

D Q qb
D QD Qd

a

Signal assignment inside the structure IF-THEN (which tests 

the clock signal) infers registers
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CLRN

clk

CLRN

clk

CLRN

clk



ENTITY reg1 IS
PORT ( d : IN bit;

clk : IN bit;
q : OUT bit);

END reg1;

ARCHITECTURE reg1_a OF reg1 IS
SIGNAL a, b : BIT;

BEGIN

How many registers?
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BEGIN
PROCESS (clk)
BEGIN

IF clk'event and clk = '1' THEN
a <= d;
b <= a;

END IF;
END PROCESS;
q <= b;

END reg1_a;

Signal assignment

is displaced



How many registers F (solution)

Assignment of b to q does not depend on the rising edge of 

the clock signal, because it is not inside the structure IF-

THEN that awaits the rising edge of the clock signal

qa
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q

CLRN

D Q

clk

CLRN

D Qd

clk

a



ENTITY reg1 IS
PORT ( d : IN bit;

clk : IN bit;
q : OUT bit);

END reg1;

ARCHITECTURE reg1_a OF reg1 IS
BEGIN

How many registers?
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BEGIN
PROCESS (clk)

VARIABLE a, b : BIT;
BEGIN

IF clk'event and clk = '1' THEN
a := d;
b := a;
q <= b;

END IF;
END PROCESS;

END reg1_a;

Signals modified to variables

Declaration of variables



How many registers F (solution)

Variable assignment is updated instantly

Signal assignment is updated on the rising edge of the clock 

signal

Conclusion : only one flip-flop will be implemented!
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CLRN

D Qd

clk

q



Variable assignment in the sequential logic

The variables represent temporary storage in the sequential 

structures – PROCESS, FUNCION, PROCEDURE – they are not 

visible outside these structures

Variable assignment inside the structure IF-THEN that test the 

clock signal phase, will not infer registers
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clock signal phase, will not infer registers

Variable assignment represent  temporary storage of some value  

without intention to be materialized

Variable assignment can be used in expressions to update 

immediately their value, the variable can then be assigned to a 

signal



q

clk

rst
CMPT

updn

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY count_a IS
PORT (clk, rst, updn : IN std_logic;

q : OUT std_logic_vector(15 DOWNTO 0));
END count_a;

ARCHITECTURE logic OF count_a IS 
BEGIN

PROCESS(rst, clk)

Up/down counter using a variable
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A variable assigned to a signal inside the  

structure IF-THEN that awaits the clock 

signal will infer registers

Arithmetic expressions

assigned to a variable

PROCESS(rst, clk)
VARIABLE tmp_q : std_logic_vector(15 DOWNTO 0);

BEGIN
IF rst = '0' THEN

q <= (OTHERS => '0');
ELSIF rising_edge(clk) THEN

IF updn = '1' THEN
tmp_q := tmp_q + 1;

ELSE
tmp_q := tmp_q - 1;

END IF;
q <= tmp_q;

END IF;
END PROCESS;

END logic;



LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY count_a IS
PORT (clk, rst, updn : IN std_logic;

q : OUT std_logic_vector(15 DOWNTO 0));
END count_a;

ARCHITECTURE logic OF count_a IS 
SIGNAL int_q : std_logic_vector(15 DOWNTO 0);

BEGIN
Internal signal declaration 

q

clk

rst
CMPT

updn

Up/down counter using a signal
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BEGIN
PROCESS(rst, clk)
BEGIN

IF rst = '0' THEN
int_q <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN
IF updn = '1' THEN

int_q <= int_q + 1;
ELSE

int_q <= int_q - 1;
END IF;

END IF;
END PROCESS;
q <= int_q;

END logic;

The signal value is stored until the 

next rising edge of the clock signal

Internal signal declaration 

(an output signal cannot be 

referenced  in the right-side 

expression)

Output signal assignment



q

clk

rst
CMPT

load

d

Loadable counter
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY load_cnt IS
PORT (clk, rst, load : IN std_logic;

d : IN std_logic_vector(15 DOWNTO 0);
q : OUT std_logic_vector(15 DOWNTO 0));

END load_cnt;

ARCHITECTURE logic OF load_cnt IS 
SIGNAL int_q : std_logic_vector(15 DOWNTO 0);

BEGIN
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Asynchronous branch (reset ) 

is situated before the structure 

sensitive to the clock signal

Synchronous branch: 

- loading

- incrementing

BEGIN
PROCESS(rst, clk)
BEGIN

IF rst = '0' THEN
int_q <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN
IF load = '1' THEN

int_q <= d;
ELSE

int_q <= int_q + 1;
END IF;

END IF;
END PROCESS;
q <= int_q;

END logic;



LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY load_cnt IS
PORT (clk, rst, load : IN std_logic;

d : IN std_logic_vector(15 DOWNTO 0);
q : OUT std_logic_vector(15 DOWNTO 0));

END load_cnt;

ARCHITECTURE logic OF load_cnt IS 
SIGNAL int_q : std_logic_vector (15 DOWNTO 0);

q

clk

rst
CMPT

load

d

en

Loadable counter with counter enable
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SIGNAL int_q : std_logic_vector (15 DOWNTO 0);
BEGIN

PROCESS(rst, clk)
BEGIN

IF rst = '0' THEN
int_q <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN
IF  load = '1' THEN int_q <= d;
ELSIF en = '1' THEN int_q <= int_q + 1;
END IF;

END IF;
END PROCESS;
q <= int_q;

END logic;

Missing ELSE causes an implicit 

storage of the signal int_q



Implicit storage in conditional structures

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ENTITY implic_mem IS
PORT (  a, b           : IN std_logic;

x1, y1, x2, y2 : OUT std_logic
);

END implic_mem;

ARCHITECTURE behav OF implic_mem IS
BEGIN

The branch ELSE is omitted –

implicit storage!
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BEGIN
x1 <= a WHEN b = '1';
y1 <= a WHEN b = '1' ELSE '0';
PROCESS(b)

BEGIN
IF b = '1' THEN

x2 <= a;
END IF;
IF b = '1' THEN

y2 <= a;
ELSE

y2 <= '0';
END IF;

END PROCESS;
END behav;

a

b

x1

y1

x2

y2

Attention to omissions!



Concurrent and sequential structures -

summary

Concurrent 

structures

Sequential 

structures

Unconditional assignment

F <= F 

Unconditional assignment

F <= F

Conditional assignment

F <= F WHEN F ELSE F

Conditional structure

IF F THEN F ELSE F END IF
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F <= F WHEN F ELSE F IF F THEN F ELSE F END IF

Selective assignment

WITH F SELECT 

F <= F WHEN F

Selective structure

CASE F IS 

WHEN F => F 

END CASE

Structures GENERATE

FOR F GENERATE F 

END GENERATE

Structures LOOP

FOR F LOOP F 

END LOOP



Contents

Introduction

VHDL basics

Concurrent structures

Applications of the concurrent structures

decoders, parity checkers, multiplexers, arithmetic logic units, 

comparators, tri-state outputs, bi-directional inputs/outputs
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comparators, tri-state outputs, bi-directional inputs/outputs

Sequential structures

Applications of the sequential structures

latches, registers, counters

State machines

Modularity and parameterization of modules

Testbenches



State machines

State machine – synchronous sequential system specified 

by:

• set of states

• set of transitions (oriented) between these states

• set of transition conditions (logic expressions based on state 

machine inputs)

• set of equations that specifies output values
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State machine transition diagram

reset = 1 (n_wr = 1) AND (n_rd = 0)

wri1

addr = 1

wr =1

(n_wr = 0) AND (n_rd = 1)

wri2

addr = 1

wr = 0

idle
addr = 0

rd = 0
wr = 0

read1

addr = 2

rd = 1

read2

addr = 2

rd = 0

Intputs:

- reset

- n_wr

- n_rd

Outputs:

- addr(1..0)

- rd

-wr

((n_wr = 1)

AND

(n_wr = 1))

OR

((n_wr = 0)

AND

(n_wr = 0))



State machine description in VHDL (1/4)

State machine states – enumerated data type:

TYPE rw_states IS (idle, wr1, wr2, read1, read2);

The current state is represented by a SIGNAL, values of this 

signal are enumerated – defined by the user, the name of this 

signal will represent the machine name

SIGNAL sm_rw : rw_states;
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SIGNAL sm_rw : rw_states;

To determine the next state, use the CASE structure 

(remember that the state machine is a sequential structure), 

which is inside the structure IF F THEN awaiting for the rising 

clock edge

To determine the outputs, use conditional assignments or 

selective assignments



State machine description in VHDL (2/4)

State machine states

wr1
addr = 1

wr =1

wr2
addr = 1

wr = 0

idle
addr = 0

rd = 0
wr = 0

read1
addr = 2

rd = 1

read2
addr = 2

rd = 0

reset = 1
(n_wr = 1) AND (n_rd = 0)

(n_wr = 0) AND (n_rd = 1)

((n_wr = 1) AND (n_wr = 1))

OR

((n_wr = 0) AND (n_wr = 0))
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1to be continued F

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY machine IS
PORT (clk, reset, n_rd, n_wr : IN std_logic;

addr : OUT std_logic_vector(1 DOWNTO 0);
rd, wr : OUT std_logic);

END machine;

ARCHITECTURE behav OF machine IS
TYPE rw_states IS (idle, wr1, wr2, read1, read2);
SIGNAL sm_rw : rw_states;

Enumerated type



BEGIN
PROCESS(reset, clk)
BEGIN

IF reset = '1' THEN
sm_rw <= idle;

ELSIF rising_edge(clk) THEN
CASE sm_rw IS

WHEN idle =>
IF n_wr = '0' AND n_rd = '1' THEN

sm_rw <= wr1;
ELSIF n_wr = '1' AND n_rd = '0' THEN

sm_rw <= read1;
END IF;

State machine description in VHDL (3/4)

Asynchronous 

reset

Specification of transitions -
inside the PROCESS
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sm_rw <= read1;
END IF;

WHEN wr1 =>
sm_rw <= wr2;

WHEN wr2 =>
sm_rw <= idle;

WHEN read1 =>
sm_rw <= read2;

WHEN read2 =>
sm_rw <= idle;

WHEN OTHERS =>
sm_rw <= idle;      

END CASE;
END IF;

END PROCESS;
2

to be continued F

wr1
addr = 1

wr =1

wr2
addr = 1

wr = 0

idle
addr = 0

rd = 0
wr = 0

read1
addr = 2

rd = 1

read2
addr = 2

rd = 0

(n_wr = 1) AND 

(n_rd = 0)
(n_wr = 0) AND 

(n_rd = 1)

((n_wr = 1) AND (n_wr = 1))

OR

((n_wr = 0) AND (n_wr = 0))

reset = 1



wr <= '1' WHEN sm_rw = wr1
ELSE '0';

rd <= '1' WHEN sm_rw = read1
ELSE '0';

WITH sm_rw SELECT

State machine description in VHDL (4/4)

Output specification 
(concurrent structures)

Conditional structures
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WITH sm_rw SELECT
addr <= "01" WHEN wr1,

"10" WHEN read1,
"00" WHEN OTHERS;

END behav;
3

wr1
addr = 1

wr =1

wr2
addr = 1

wr = 0

idle
addr = 0

rd = 0
wr = 0

read1
addr = 2

rd = 1

read2
addr = 2

rd = 0

Selective structure

reset = 1
(n_wr = 1) AND 

(n_rd = 0)(n_wr = 0) AND 

(n_rd = 1)

((n_wr = 1) AND (n_wr = 1))

OR

((n_wr = 0) AND (n_wr = 0))



q

DFF1

dComb

Next1

n_rd

n_wr

Comb

Out1

Comb

Out2

addr(1)

addr(0)

Critical path! Current state

State machine implementation in hardware (1/3)
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q

DFF2

d

q

reset

DFF3

d

clk

Comb

Next2

Comb

Next3

n_wr Out2

Comb

Out3

Comb

Out4

rd

wr

Next state 

logic

Outputs



State machine implementation in hardware(2/3)

If the critical path delay is longer than the clock period, the 

machine can enter into a undetermined state where it will 

stay blocked forever!

Solutions: 

• Reduce the clock frequency

• Simplify the combinatorial logic, which determines the next 

state (e. g. by using "one hot" coding style, see later)
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state (e. g. by using "one hot" coding style, see later)

The state machine can be also blocked if the input signals 

change near the rising edge of the clock signal (flip-flop 

Setup & Hold time violation)

Solution:

• Synchronize inputs with the clock signal using additional flip-

flop for each input – necessary!



q

DFF1

dComb

Next1

n_rd

n_wr

Comb

Out1

Comb

Out2

addr(1)

addr(0)

State machine implementation in hardware (3/3)

DFF

Synchronized inputs
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q

DFF2

d

q

reset
DFF3

d

clk

Comb

Next2

Comb

Next3

Out2

Comb

Out3

Comb

Out4

rd

wr

DFF



State machine coding styles

Machines with encoded states

Next state

logic

State 

registers
Output

logic

3

0
1

2

3

4 011

The state is encoded using 3 bits, since 23 ≥≥≥≥ 5
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Machines with decoded states ("one-hot" coding style)

Next state

logic

State

registers
Output

logic

5

0
1

2

3

4 01000

The state is encoded using 3 bits, since 2 ≥≥≥≥ 5

The state is encoded using 5 bits (one bit per state )



Machines with decoded states (one-hot style)

Disadvantage

• one register per state

• more registers are needed than for machines with 
encoded states

Advantages

• next state logic has less inputs (one bit per state)
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• less signals means easier routing

• combinatorial logic (next state logic and output logic) is
reduced

• reduction of the combinatorial logic shortens critical 
path and increases the machine speed

Note: The type of the state machine coding style is selected by a 
compiler parameter and not at the VHDL level



Moore state machine

Mealy state machine

Types of state machines

Next state

logic

State

registers
Output

logic

Current state

Next state

Inputs
Outputs
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RNS (registered next state )

state machine

Next state

logic

State

registers Output

logic

Inputs Outputs

Next state

logic

State

registers

Output

logic

Inputs

Output

registers

Outputs



Principle

• Outputs depend only on the current state

Advantages

• Easy to describe in VHDL (only one CASE structure needed) 

• Outputs are valid during the current state

• Output equations are simple, because they depend only on the 

Moore state machine
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• Output equations are simple, because they depend only on the 

current state

• Routing is simpler, because inputs have only one destination (the 

next state logic)

Disadvantage

• Combinatorial output signals can contain glitches



Example

Moore state machine (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY machine IS
PORT (clk, reset, n_rd, n_wr : IN std_logic;

addr : OUT std_logic_vector(1 DOWNTO 0);
rd, wr : OUT std_logic);

END machine;

ARCHITECTURE behav OF machine IS
TYPE rw_states IS (idle, wr1, wr2, read1, read2);
SIGNAL sm_rw : rw_states;

BEGIN
PROCESS(reset, clk)
BEGIN

IF r eset = '1' THEN

wr <= '1' WHEN sm_rw = wr1 ELSE
'0';

rd <= '1' WHEN sm_rw = read1 ELSE
'0';

WITH sm_rw SELECT
addr <= "01" WHEN wr1,

"01" WHEN wr2,
"10" WHEN read1,
"10" WHEN read2,
"00" WHEN OTHERS;

END behav;
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BEGIN
IF r eset = '1' THEN

sm_rw <= idle;
ELSIF rising_edge(clk) THEN

CASE sm_rw IS
WHEN idle =>

IF n_wr = '0' AND n_rd = '1' THEN
sm_rw <= wr1;

ELSIF n_wr = '1' AND n_rd = '0' THEN
sm_rw <= read1;

END IF;
WHEN wr1 =>

sm_rw <= wr2;
WHEN wr2 =>

sm_rw <= idle;
WHEN read1 =>

sm_rw <= read2;
WHEN read2 =>

sm_rw <= idle;
WHEN OTHERS =>

sm_rw <= idle;      
END CASE;

END IF;
END PROCESS;

clk

reset

n_rd

n_wr

sm_rw

addr

rd

wr

Glitches!
Outputs (slightly delayed) are 

related to the current state

read1 read2 idle wr1 wr2



Principle

• Outputs depend on the current state and on the inputs

Advantages

• Easy to describe in VHDL (only one CASE structure needed)

• Outputs respond faster to the input changes

• Less states are needed than for the Moore machine

Mealy state machine
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• Less states are needed than for the Moore machine

Disadvantages

• Output equations are more complex, because they depend on the 

current state and on the inputs

• Routing is more complex,  too, because input signals have two 

destinations (next state logic and output logic) 

• Combinatorial output signals can contain glitches



Example

Mealy state machine (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY machine IS
PORT (clk, reset, n_rd, n_wr : IN std_logic;

addr : OUT std_logic_vector(1 DOWNTO 0);
rd, wr : OUT std_logic);

END machine;

ARCHITECTURE behav OF machine IS
TYPE rw_states IS (idle, write, read);
SIGNAL sm_rw : rw_states;

BEGIN
PROCESS(reset, clk)
BEGIN

IF r eset = '1' THEN

wr <= '1' WHEN ((sm_rw = write) 
AND (n_wr = '0'))  ELSE

'0';

rd <= '1' WHEN ((sm_rw = read) 
AND (n_rd = '0')) ELSE

'0';

WITH sm_rw SELECT
addr <= "01" WHEN write,

"10" WHEN read,
"00" WHEN OTHERS;

END behav;
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BEGIN
IF r eset = '1' THEN

sm_rw <= idle;
ELSIF rising_edge(clk) THEN

CASE sm_rw IS
WHEN idle =>

IF n_wr = '0' AND n_rd = '1' THEN
sm_rw <= write;

END IF;
IF n_wr = '1' AND n_rd = '0' THEN

sm_rw <= read;
END IF;

WHEN write =>
sm_rw <= idle;

WHEN read =>
sm_rw <= idle;

WHEN OTHERS =>
sm_rw <= idle;      

END CASE;
END IF;

END PROCESS;

clk

reset

n_rd

n_wr

sm_rw

addr

rd

wr

The output signal changes 

before the state code changes Glitches!

read writeidle



Solution

• Registering of output signals

Disadvantage

• Outputs are delayed by one period of the clock signal

Elimination of glitches 

at the state machine output
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Example (based on the Moore state machine)

Next state

logic

State

registers
Output

logicInputs
OutputsOutput

registers



Example

Elimination of glitches at the output of the Moore 

and Mealy state machines (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY machine IS
PORT (clk, reset, n_rd, n_wr : IN std_logic;

addr : OUT std_logic_vector(1 DOWNTO 0);
rd, wr : OUT std_logic);

END machine;

ARCHITECTURE behav OF machine IS
TYPE rw_states IS (idle, wr1, wr2, read1, read2);
SIGNAL sm_rw : rw_states;

BEGIN
PROCESS(reset, clk) -- State machine
BEGIN

IF r eset = '1' THEN

IF rising_edge(clk) THEN
CASE sm_rw IS

WHEN wr1 =>
addr <= "01";

WHEN wr2 =>
addr <= "01";

WHEN read1 =>
addr <= "10";

WHEN read2 =>
addr <= "10";

WHEN OTHERS =>
addr <= "00";

END CASE;
IF sm_rw = wr1 THEN

wr <= '1';
ELSE

wr <= '0';
END IF;

Outputs are registered

here
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IF r eset = '1' THEN
sm_rw <= idle;

ELSIF rising_edge(clk) THEN
CASE sm_rw IS

WHEN idle =>
IF n_wr = '0' AND n_rd = '1' THEN

sm_rw <= wr1;
END IF;
IF n_wr = '1' AND n_rd = '0' THEN

sm_rw <= read1;
END IF;

WHEN wr1 =>
sm_rw <= wr2;

WHEN wr2 =>
sm_rw <= idle;

WHEN read1 =>
sm_rw <= read2;

WHEN read2 =>
sm_rw <= idle;

WHEN OTHERS =>
sm_rw <= idle;      

END CASE;
END IF;

END PROCESS;
PROCESS(clk) -- Output registers

BEGIN

wr <= '0';
END IF;
IF sm_rw = read1 THEN

rd <= '1';
ELSE

rd <= '0';
END IF;

END IF;
END PROCESS;

END behav;

clk

reset

n_rd

n_wr

my_m

addr

rd

wr

Outputs are delayed by one clock 

period, but without glitches!

read1 read2 idle wr1 wr2



Principle

• Outputs are decoded from the next state logic and, once decoded, 

they are registered

Advantages

• Easy to describe in VHDL (only one CASE structure needed)

• Glitches at the outputs are eliminated

• Outputs are not delayed in relationship to the current state (no 

RNS state machine
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• Outputs are not delayed in relationship to the current state (no 

latency)

• Less states are needed than for the Moore machine

Disadvantages

• The next state logic uses variables and not signals

• The same logic could necessitate more state bits (than for the Mealy 

machine)



Example

RNS state machine (cont.)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY machine IS
PORT (clk, reset, n_rd, n_wr : IN std_logic;

addr : OUT std_logic_vector(1 DOWNTO 0);
rd, wr : OUT std_logic);

END machine;

ARCHITECTURE behav OF machine IS
TYPE rw_states IS (idle, wr1, wr2, read1, read2);
SIGNAL current_state : rw_states;

BEGIN
PROCESS(reset, clk)
VARIABLE next _state : rw_ state s;
BEGIN

IF next_state = wr1 THEN
wr <= '1';

ELSE
wr <= '0';

END IF;
IF next_state = read1 THEN

rd <= '1';
ELSE

rd <= '0';
END IF;
CASE next_state IS

WHEN wr1 =>
addr <= "01";

WHEN wr2 =>
addr <= "01";

WHEN read1 =>
addr <= "10";

WHEN read 2 =>
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VARIABLE next _state : rw_ state s;
BEGIN

current_state <= next_state;
IF reset = '1' THEN

next_state := idle;
ELSIF (clk'event AND clk = '1') THEN

CASE current_state IS
WHEN idle =>

IF n_wr = '0' AND n_rd = '1' THEN
next_state := wr1;

END IF;
IF n_wr = '1' AND n_rd = '0' THEN

next_state := read1;
END IF;

WHEN ecr1 =>
next_state := wr2;

WHEN ecr2 =>
next_state := idle;

WHEN lec1 =>
next_state := read2;

WHEN lec2 =>
next_state := idle;

WHEN OTHERS =>
next_state := idle;      

END CASE; 

addr <= "10";
WHEN read 2 =>

addr <= "10";
WHEN OTHERS =>

addr <= "00";
END CASE;

END IF;
END PROCESS;

END behav;

clk

reset

n_rd

n_wr

sm_rw

addr

rd

wr

The output changes in the 

same time as the state and 

there are no glitches!

read1 read2 idle wr1 wr2
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Hierarchical design in VHDL

Needs declaration and instantiation of the components

Example :

top.vhd
entity-architecture “top”
component “middle_a”
component “middle_b”
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middle_a.vhd
entity-architecture “middle_a”
component “low_a”
component “low_b”

middle_b.vhd
entity-architecture “middle_b”
component “low_b”

low_a.vhd
entity-architecture “low_a”

low_b.vhd
entity-architecture “low_b”



Declaration and instantiation of the component

Semicolon

No semicolon

Component declaration

• It is used to declare the port types and data types of the lower level 

component

COMPONENT <low_level_component_name> IS

PORT  ( <port_name> :  <port_type> <data_type>;
.
.

( <port_name> :  <port_type> <data_type >

);

END COMPONENT;
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No comma

comma

END COMPONENT;

Component instantiation

• It is used to associate the lower-level component ports with current level 

signals

<instance_name> : <low_level_component_name>

PORT MAP (<low_level_port_name> =>  <current_level_signal_name>,
.
.

<low_level_port_name> =>  <current_level_signal_name>

);



Each team member can design modules (components) 
independently (in separated files)

The components can be reused later by other team members

Hierarchical design enhances modularity and portability of the 
projects

Advantages of the hierarchical design
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projects

Hierarchical design simplifies the possibility to implement and 
to test various versions of the same module

Compilation options can be applied globally or per component  
- the design can be locally optimized!

More hierarchical levels mean more flexibility!



Design modularity optimization for the placement and routing 
(P/R) - searching the optimum size of the module

• If the modules are too small, the placement and routing is not 
easier (it is the same as for the one-module design)

• If the modules are too big, the placement and routing can be even 
more difficult

Two modularity approaches
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• Optimum module size for the FPGAs : 40 – 60 Logic Cells

Design modularity optimization for the performance –
searching modules with optimal cost (area) and performance 
(speed)

• Area-critical and speed-critical modules can be separated and 
optimized independently



Component (module) parameterization

Default value

Enables to enhance the module portability (universality)

Brings huge flexibility to the component description

Constitutes the principle of the LPM library (Library of Parameterized 
Modules), which is used by vendors to propose hardware-optimized 
macrofunctions

The parameterization is realized by the GENERIC structure, example:
ENTITY multiplexer IS

GENERIC (WIDTH : integer := 4);
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Current value

GENERIC (WIDTH : integer := 4);
PORT(sel : IN bit;

a, b : IN bit_vector(WIDTH-1 DOWNTO 0);
c : OUT bit_vector(WIDTH -1 DOWNTO 0));

END multiplexer;
ARCHITECTURE a_mux OF multiplexer IS
BEGIN

c <= a WHEN sel = ‘0’ ELSE b;
END a_mux;

Component instantiation:
mux_inst: multiplexer GENERIC MAP (WIDTH => 8)

PORT MAP(sel => selh, a => ah, b => bh, c => ch);
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Enable optimization and automation of the component functionality 

verification

VHDL testbench structure:

• The entity does not contain input/outputs (however, the GENERIC 

structure can be used to define the clock signal period)

• The component to test (DUT – Design Under Test) is declared and 

Testbenches

Oct/Nov 2010 V. Fischer: VHDL Language 142

• The component to test (DUT – Design Under Test) is declared and 

instantiated in the testbench architecture

• Each component input signal is associated to a stimulator – an internal 

signal of the testbench architecture

• The stimuli are generated using the PROCESS

Testbenches use all the potential of the VHDL language!



In the declaration part of the architecture:

-- Clock period definition
CONSTANT ClockPeriod : TIME := 10 ns;

Method 1 of the clock signal generation:

-- Clock signal generation
clock <= NOT clock AFTER ClockPeriod / 2;

Clock signal generation
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clock <= NOT clock AFTER ClockPeriod / 2;

Method 2 of the clock signal generation :

-- Clock signal generation
clock <= NOT clock AFTER ClockPeriod / 2;
Clock_generator: PROCESS
BEGIN

WAIT FOR (ClockPeriod / 2)
clock <= ‘1’;

WAIT FOR (ClockPeriod / 2)
clock <= ‘0’;

END PROCESS;



Example:

stimuli : PROCESS
BEGIN

reset <= '1';
load  <= '0';
count_updn <= '0';
WAIT FOR 100 ns;
reset <= '0';

Stimuli generation in an absolute time scale
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reset <= '0';
WAIT FOR 30 ns;
load  <= '1';
WAIT FOR 20 ns;
count_updn <= '1';
WAIT;

END PROCESS;

The WAIT instruction (without FOR) permits to stop 

definitively the PROCESS execution, without this 

instruction, it would restart from the very beginning



Example:

stimulus1 : PROCESS (clk)
BEGIN

IF clk’event AND clk = '1' THEN
tb_count <= tb_count + 1;

END IF;
END PROCESS;
stimulus2 : PROCESS

Stimuli generation in a relative time scale
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stimulus2 : PROCESS
BEGIN

IF (tb_count <= 5) THEN
reset <= '1';
load  <= '0';
count_updn <= '0';

ELSE
reset <= '1';
load  <= '0';
count_updn <= '0';
report "Reset done!"

END IF;
END PROCESS;



Use the textio package of the VHDL language

Example:

Self-checking testbenches

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
LIBRARY ieee;
USE IEEE.std_logic_textio.all;
USE STD.textio.all;
ENTITY testbench IS
END testbench;
ARCHITECTURE testbench_arch OF testbench IS

COMPONENT stopwatch
PORT (

clk : IN std_logic;
reset : IN std_logic;
strtstop : IN std_logic;
tenthsout : OUT std_logic_vector (9 DOWNTO 0);

stimulus: PROCESS -- stimuli
BEGIN

reset <= ’1’;
strtstop <= ’1’;
WAIT FOR 240 ns;
reset <= ’0’;
strtstop <= ’0’;
WAIT FOR 5000 ns;
strtstop <= ’1’;
WAIT FOR 8125 ns;
strtstop <= ’0’;
WAIT FOR 500 ns;
strtstop <= ’1’;
WAIT FOR 875 ns;
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tenthsout : OUT std_logic_vector (9 DOWNTO 0);
onesout : OUT std_logic_vector (6 DOWNTO 0);
tensout : OUT std_logic_vector (6 DOWNTO 0)

);
END COMPONENT;
SIGNAL clk : std_logic;
SIGNAL reset : std_logic;
SIGNAL strtstop : std_logic;
SIGNAL tenthsout : std_logic_vector (9 DOWNTO 0);
SIGNAL onesout : std_logic_vector (6 DOWNTO 0);
SIGNAL tensout : std_logic_vector (6 DOWNTO 0);
CONSTANT ClockPeriod : Time := 60 ns;
FILE RESULTS: TEXT IS OUT "results.txt";
SIGNAL i: std_logic;

BEGIN
uut : stopwatch –- component instantiation

PORT MAP (
clk       => clk,
reset     => reset,
strtstop  => strtstop,
tenthsout => tenthsout,
onesout   => onesout,
tensout   => tensout
);

WAIT FOR 875 ns;
reset <= ’1’;
WAIT FOR 375 ns;
reset <= ’0’;
WAIT FOR 700 ns;
strtstop <= ’0’;
WAIT FOR 550 ns;
strtstop <= ’1’;

END PROCESS stimulus;

clock: PROCESS  -- clock signal
BEGIN

clk <= ’1’;
WAIT FOR 100 ns;
LOOP

WAIT FOR (ClockPeriod / 2);
clk <= NOT clk;

END LOOP;
END PROCESS clock;

à suivre F

Results will be written to this file



Example – cont.

Self-checking testbenches (cont.)

check_results : PROCESS -- verification of results
VARIABLE tmptenthsout: std_logic_vector(9 DOWNTO 0);
VARIABLE l: line;
VARIABLE good_val, good_number, errordet: boolean;
VARIABLE r : real;
VARIABLE vector_time: time;
VARIABLE space: character;
FILE vector_file: TEXT IS IN "values.txt";

BEGIN
WHILE NOT ENDfile(vector_file) LOOP

readline(vector_file, l);
read(l, r, good => good_number);
NEXT WHEN NOT good_number;
vector_time := r * 1 ns;
IF (now < vector_time) THEN

-- The file “values.txt” containing test vectors 
-- and results
0 1111111110

Warning

Reading the file

Input file specification
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IF (now < vector_time) THEN
WAIT FOR vector_time - now;

END IF;
read(l, space);
read(l, tmptenthsout, good_val);
ASSERT good_val REPORT "bad tenthsoutvalue";
WAIT FOR 10 ns;
IF (tmptenthsout /= tenthsout) THEN

ASSERT errordet REPORT "vector mismatch";
END IF;

END LOOP;
WAIT;

END PROCESS check_results;
END testbench_arch;

0 1111111110
340 1111111110
400 1111111101
460 1111111011
520 1111110111
580 1111101111
640 1111011111
700 1110111111
760 1101111111
820 1011111111
880 0111111111
940 1111111110
1000 1111111110
1060 1111111101
1120 1111111011
1180 1111110111
1240 1111101111
1300 1111011111
1360 1110111111
1420 1101111111
1480 1011111111
1540 0111111111
1600 1111111110
1660 1111111110
1720 1111111101
1780 1111111011

Error message


