Sensors I

prof. Ing. Ján Šaliga, PhD. KEMT FEI TU Košice 2017

Temperature

- Thermodynamic status quantity given by the mean kinetic energy of molecules movement.
- The basic unit: degree Kelvin [°K],
- Often used unit: degree Celsius [°C] □ 1°K=1 °C, 0 °K=cca.-273,15 °C

Temperature sensors

- Contacted measurement
 - □ Thermocouple (the most widely used)
 - Resistive
 - metal
 - Semiconductor without PN junction
 - PN junction (simple component, integrated circuit)
 - Contactless systems

 - Pyrometers
 Thermovision (the most complex device with the most complex infomation)

Thermocouple property

- Thermocouple always gives voltage expressing the difference of temperatures between the ends of thermocouple (the place with unknown measured temperature
- place with unknown measured temperatu and temperature of thermocouple terminals). The want to measure the temperature in degree Celsus, the hermocouple output must have the temperature a C (technology problem) σ_{P_N} [wro] is the relative Seebeckov coefficient of thermocouple, dependent from temperature (1) = relation between thermocouple output voltage and difference of temperatures is non-linear function function

e most common types			Co	ommor	n Thermocou	ple Type	5	_	_
Тур	e Me	tal _	Stand color +	lard code _	Ω/double foot 20 AWG	See coeff S(µV/'C	beck iclent) @ T('C)	'C standard wire error	NBS specifie materials rang ('C)
В	Platinum- 6% Rhodium	Platinum- 30% Rhodium	-		0.2	6	600	4.4 to 8.6	0 to 1820**
. E	Nickel- 10% Chromius	m Constantan	Violet	Red	0.71	58.5	0	1.7 to 4.4	-270 to 1000
• 1	Iron	Constantan	White	Red	0.36	50.2	0	1.1 to 2.9	-210 to 760
* K	Nickel- 10% Chromius	m Nickel	Yellow	Red	0.59	39.4	0	1.1 to 2.9	-270 to 1372
N (A	WG 14) Nicrosil	Nisil	-		-	39	600	-	0 to 1300
N (A	WG 28) Nicrosil	NIsi	-		-	26.2	0	-	-270 to 400
R	Platinum- 13% Rhodium	n Platinum	-		0.19	11.5	600	1.4 to 3.8	-50 to 1768
\$	Platinum- 10% Rhodium	n Platinum	-		0.19	10.3	600	1.4 to 3.8	-50 to 1768
* T	Copper	Constantan	Blue	Red	0.30	38	0	0.8 to 2.9	-270 to 40
W-R	e Tungsten-	Tungsten-	-		-	19.5	600	-	0 to 2320

Measurement by the thermocouple

Advantages:

- Wide range of temperatures Fast reaction (small size), resistance again mechanical vibration
- Simple construction, proper also for dangerous environment
- Disadvantages:

 - Small output voltage (disturbance, noise)
 Complex conversion from voltage to temperature (hardware or software compensation is needed
 Rusting (corrosion)

SW Compensation

- Software:
 Messurement of temperature of connector block
 Calculation of f5et voltage for the given TC
 Subtraction of the calculated offset from messured TC voltage
 Calculation temperature from the compensated voltage

RTD Principle

- Metal with positive temperature coefficient (resistance . is rising with temperature) Form: wire-wound or thin film .
- The most often material: platinum Resistance R_0 at 0°C: from 10 Ω up to 10k Ω
- $_{\mbox{\tiny D}}$ the most often type 100Ω

- .

- the most often type 1002 Resistance at a temperature t: $R(t) = R_0(1 + \alpha \Delta t + \beta \Delta t^2 + \gamma \Delta t^3 + \cdots) \equiv R_0(1 + \alpha \Delta t)$ $a=0.00385 \,\Omega \Omega' C$ for commercial platinum and 0.00392 $\Omega \Omega U' C$ for char-pure platinum. 100 Ω platinum RTD the slope of resistance change is 0.385 $\Omega' C$.

- Measurement Passing constant measurement current
- through RTD \Rightarrow voltage is equal to temperature Error is caused by connecting wires
- (resistance of wires is added to resistance of RTD \Rightarrow voltage drops on wires are added to voltage across the RTD) 4 wire connection
- Extra wires for passing current and extra wires for sensing voltage
 RTD is more linear than TC but with
- smaller range of measurement

- Semiconductor with positive (PTC) or negative (NTC) temperature coefficient Much more sensitive than RTD (5 - 50x) but nonlinear
- $R = R_0 e^{\beta \left(\frac{1}{T} \frac{1}{T_0}\right)}$ Linearization by complex connection of more thermistors in circuit
- Resistance R₀ ussualy at 25°C
- Steinhart-Hart equation: $T = [A + B. \ln R + C(\ln R)^3]^{-1}$
- . PTC is more often use as temperature fuse and not as
- temperature sensor

PN junction

- Voltage on PN junction of diode: $U_D = nU_T \ln \left(\frac{I_D}{I_S}\right), \quad U_T = \frac{kT}{q}$ • More-less linear dependence
- High sensitivity (about -2mV/ °C)

THERMOCOUPLE	RTD	THERMISTOR	SEMICONDUCTOR
Widest Range:	Range:	Range:	Range:
-184°C to +2300°C	-200°C to +850°C	0°C to +100°C	-55°C to +150°C
High Accuracy and	Fair Linearity	Poor Linearity	Linearity: 1°C
Repeatability			Accuracy: 1°C
Needs Cold Junction	Requires	Requires	Requires Excitation
Compensation	Excitation	Excitation	
Low-Voltage Output	Low Cost	High Sensitivity	10mV/K, 20mV/K,
			or 1µA/K Typical Output

Quartz thermometer	
Resonance frequency of quartz depend from temperature Measurement: comparison of two quartz oscillator frequencies Reference in thermostat Other in measured environmental	
■ Temperature range: from about -80-C up to +250-C with resolution up to 10 ⁴ °C	
1200000 1000000000000000000000000000000	

STRAIN MEASUREMENTS

Strain gage

- Resistive sensor to measure the strain
- Resistance is changed according to deformation (external force, pressure, tension, acceleration, etc.)
- Application: measurement of wage, position, movement, length, ...

Measurement Type	Quarter Bridge		Half-Bridge		Full-Bridge			
	Type I	Type II	Type I	Type II	Type I	Full-Bridge Type II No Yes Yes Yes	Type II	
Axial Strain	Yes	Yes	Yes	No	No	No	Yes	
Bending Strain	Yes	Yes	Yes	Yes	Yes	Yes	No	
Compensation								
Transverse Sensitivity	No	No	Yes	No	No	Yes	Yes	
Temperature	No	Yes	Yes	Yes	Yes	Yes	Yes	
Sensitivity								
Sensitivity at 1000 µɛ	~0.5 mV/V	~0.5 mV/V	~0.65 mV/V	~1.0 mV/V	~2.0 mV/V	~1.3 mV/V	~1.3 mV/	
Installation								
Number of Bonded Gages	1	1*	2	2	4	4	4	
Mounting Location	Single Side	Single Side	Single Side	Opposite Sides	Opposite Sides	Opposite Sides	Opposit Sides	
Number of Wires	2 or 3	3	3	3	4	4	4	
Bridge Completion Resistors	3	2	2	2	0	0	0	

ACCELEROMETERS

Acceleration is the measure of the change in velocity of an object with respect to time: a=dv/dt

Newton's law F=ma

- *ma* = *k*∆x
- a) Sp ation $a = \frac{k}{m}\Delta x$

ţ,

ţ. -<u>∆</u>-→

ass sy

- Standard SI unit meters per second per second or meters per second squared

- Often in g (earth gravity = 9,81m/s²) (1 100)
 Frequency band from DC up to tens kHz
 Very common in industry, components of machins, seismic measurements, ... tablet, cellular phone.

Passive Versus Active Passive

Advantages

- Variable signal rangeTemperatures up to 500°C
- Disadvantages
- Sensitive to noise
- External conditioning required
- Applications: Extreme temperatures Varying sensitivities

Advantages

- Noise immunity
- Built-in signal conditioning Disadvantages
- Fixed signal range
- Limited temperature range 120°C Applications:

Active

- Noisy environments
- Simpler systems

Accelerometer Errors

- Drift (DC systems)
- Low frequency roll-off (AC systems)
- Accelerometer non-linearities
- Current Source non-linearities (active sensors)
- External noise sources
- Ground loops

MEASUREMENT OF POSITION AND SIMILAR QAUNTITIES

LVDT

The sensitivity has a maximum for

$$f = \frac{1}{2\pi} \sqrt{\frac{R_1 R_2}{2L_1 L_2}}$$

At this frequency the input (primary) and the output (secondary) voltages are in phase or in opposition.

39

This is important for the synchronous detection.

LVDT properties

- High resolution: better than 0,1%
- It works with very low friction (no contact between the core and the coils)
- High mechanic lifetime
- Resistant to "over-displacements"
- Sensitivity on one direction
- High sensitivity (depends on the frequency)
- Reproducibility
- High dynamic response
- High linearity (0,05%)

LVDT examples of applications

- Measurement of displacement and position
- In zero-detectors, used in position feedback systems (aircrafts and submarines)
- In machine-tools, as positioning detectors

Magnetoresistor – its resistance depends not only on magnetic Magnetic field vector orientation

PRESSURE MEASUREMENT

What is presure

- http://www.ni.com/white-paper/13034/en/
- Pressure is defined as force per unit area that a fluid exerts on its surroundings.
 Pressure, P, is a function of force, F, and area, A: P = F/A
- Existujú 3 princípy merania

Capacitive and piezoelectric pressure sensors

- Capacitive sensor measured pressure changes the distance between electrodes – capacity of sensing capacitor
- Good linearity and long term stability
- Piezoelectric sensor the measured pressure deforms piezoelectric material – a electric charge is generated
- Charge sensitive amplifier is required
- Sensitive on hits and vibrations

Rear Cavity: Terminations, Etc.

Insulating Material