
MegaCore Function User Guide

FIR Compiler

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Core Version: 2.6.1
Document Version: 2.6 rev. 2

Document Date: November 2002

http://www.altera.com

ii Altera Corporation

Copyright FIR Compiler MegaCore Function User Guide

Copyright © 2002 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo,
specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless
noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or
service names are the property of their respective holders. Altera products are protected under numerous U.S.
and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance
of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
reserves the right to make changes to any products and services at any time without notice. Altera assumes no
responsibility or liability arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the
latest version of device specifications before relying on any published information and before placing orders for
products or services.

UG-FIRCOMPILER-2.10

Altera Corporation
About this User Guide
This user guide provides comprehensive information about the Altera®
FIR Compiler MegaCore® function.

Table 1 shows the user guide revision history.

f Go to the following sources for more information:

■ See “New Features in Version 2.6.1” on page 9 for a complete list of
the core features, including new features in this release.

■ Refer to the FIR Compiler readme file for late-breaking information
that is not available in this user guide.

Table 1. User Guide Revision History

Date Description

November 2002,
v2.6.1

This version is a minor update to the core, and a minor update to the FIR Compiler Megacore
Function User Guide, v2.6.0.

October 2002,
v2.6.0 rev. 1

This version is an update to the core. Enhancements include support for the Cyclone™
device family ; this core uses Stratix Tri-Matrix Memory for all single-rate filters.

August 2002,
v2.5.2 rev. 1

This version is a minor update to the core. Enhancements: disabled the Signed Binary
Fraction Function for DSP Builder.

June 2002, v2.5.1
rev. 2

Updated the document for version 2.5.1 of the core. This version is a minor update, which
is compatible with DSP Builder 2.0 Modular IP installation.

May 2002, v2.5.0
rev. 2

Updated the document for version 2.5.0 of the core. Renamed the Waveforms section as
Timing Diagrams. Added information about the multi-cycle variable structure, modular
support for DSP Builder, and OpenCore Plus.

December 2001 Updated the features and made significant changes to the walkthrough. Updated the timing
diagrams and added them to a new Waveforms section. Updated parallel, serial, and multi-
bit serial signals.

August 2001, v2.4 Updated the symbol figure. Added a note about not adding extra carriage returns in the
coefficient text file. Updated the information for simulating using VHDL and Verilog HDL
models.

August 2001 Updated the document for core version 2.3.0. Described new pipelining support and the full
resolution calculation option. Updated the signal information and broke it into separate
tables for parallel, serial, and variable. Updated the organization of the document.

April 2001 Updated document for core version 2.2.0. Added information on the multi-bit serial option.
Updated signal names.

February 2001 Updated document for core version 2.1.0. Added multi-MAC architecture figure. Updated
signal names.
 iii

FIR Compiler MegaCore Function User Guide About this User Guide
How to Find
Information

■ The Adobe Acrobat Find feature allows you to search the contents of
a PDF file. Click on the binoculars icon in the top toolbar to open the
Find dialog box.

■ Bookmarks serve as an additional table of contents.
■ Thumbnail icons, which provide miniature previews of each page,

provide a link to the pages.
■ Numerous links, shown in green text, allow you to jump to related

information.

How to Contact
Altera

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at http://www.altera.com.

For technical support on this product, go to
http://www.altera.com/mysupport. For additional information about
Altera products, consult the sources shown in Table 2.

Note:
(1) You can also contact your local Altera sales office or sales representative.

Table 2. How to Contact Altera

Information Type USA & Canada All Other Locations

Technical support http://www.altera.com/mysupport/ http://www.altera.com/mysupport/

(800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

(408) 544-7000 (1)
(7:00 a.m. to 5:00 p.m.
Pacific Time)

Product literature http://www.altera.com http://www.altera.com

Altera literature services lit_req@altera.com (1) lit_req@altera.com (1)

Non-technical customer
service

(800) 767-3753 (408) 544-7000
(7:30 a.m. to 5:30 p.m.
Pacific Time)

FTP site ftp.altera.com ftp.altera.com
iv Altera Corporation

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:lit_req@altera.com
mailto:lit_req@altera.com
ftp.altera.com
ftp.altera.com

About this User Guide FIR Compiler MegaCore Function User Guide
Typographic
Conventions

The FIR Compiler MegaCore Function User Guide uses the typographic
conventions shown in Table 3.

Table 3. Conventions

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold type.
Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial
Capital Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type. Examples: tPIA, n + 1.
Variable names are enclosed in angle brackets (< >) and shown in italic type. Example:
<file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of online help topics are shown in
quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, tdi,
input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual
file, such as a Report File, references to parts of files (e.g., the AHDL keyword
SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.

1., 2., 3., and a., b., c.,... Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.
Altera Corporation v

Contents
About this User Guide ... iii
How to Find Information .. iv
How to Contact Altera .. iv
Typographic Conventions ..v

About this Core ..9
Release Information ...9
Introduction ..9
New Features in Version 2.6.1 ..9
Features ...10
General Description ...11

DSP Builder Support ...14
OpenCore & OpenCore Plus Hardware Evaluation ...15

Performance ..16

Getting Started ..17
Software Requirements ...17
FIR Compiler Design Flow ...17
Download & Install ..18

Obtaining the FIR Compiler MegaCore Function ...18
Installing the FIR Compiler Files ...18
FIR Compiler Directory Structure ...19

Set Up Licensing ...20
Append the License to Your license.dat File ..20
Specify the Core’s License File in the Quartus II Software ..21

FIR Compiler Tutorial ...21
Create a New Quartus II Project ..23
The MegaWizard Plug-In Manager ...24
Specify the Coefficients ...27
Analyze the Coefficients ...31
Specify the I/O Number Formats and Bit Widths ..33
Choose the Architecture ..36
Simulate the Filter ..39
View the Report File ..41

Simulate Using Various Models ..42
Compiling the VHDL Simulation Model in ModelSim ..42
Compiling the Verilog HDL Simulation Model in ModelSim ..43
Simulating in Verilog-XL ..43
Simulating in NCVerilog ..44
Simulating Using the Visual IP Model ...44

Compiling and Simulating in the Quartus II Software ..46
Synthesis, Compilation and Post-Place-&-Route Simulation ..46
Filter Design Tips ...48
Altera Corporation vii

Contents
Specifications ..49
Functional Description ..49

Number Systems and Fixed-Point Precision ...49
Generating or Importing Coefficients ...49
Structure Types ..53
Interpolation & Decimation ..57
Pipelining ..59
Simulation Output Files ..60
DSP Builder Feature & Simulation Support ..60
OpenCore Plus Time-Out Behavior ..61

Core Verification ..61
Signals ..61
Timing Diagrams ...64

Parallel Timing Diagrams ...64
Serial & Multi-Bit Serial Timing Diagrams ..66
Variable Timing Diagrams ...72
viii Altera Corporation

Altera Corporation

Abou

1

About this Core
t this Core
Release
Information

Table 1 provides information about this release of the Altera® FIR
Compiler MegaCore function.

Introduction The Altera FIR Compiler MegaCore function generates finite impulse
response (FIR) filters customized for Altera devices. You can use the FIR
Compiler wizard interface to implement a variety of filter architectures,
including fully parallel, serial, multi-bit serial fixed-coefficient, and multi-
cycle variable filters. The wizard also includes a coefficient generator to
help you create filter coefficients.

New Features
in Version
2.6.1

■ Uses Stratix Tri-Matrix Memory for all single-rate filters
– Takes advantage of M512, M4K, and M-RAM in Stratix families,

resulting in smaller FIR filters
■ Precision control of chip resource utilization

– Utilizes logic cells, M512, M4K or M-RAM for data storage
– Utilizes M512, M4K, or DSP Block for coefficient storage
– Choose among several pipeline levels
– Includes a resource estimator

■ Support for Cyclone™ device family
■ Information Box to assist in filter design techniques

– Shows tips and techniques, when appropriate
– Shows filter performance

■ Symmetry selection for fixed-coefficient FIR filters
■ Visual IP simulation models are provided
■ Support for ModelSim 5.6

Table 1. FIR Compiler Release Information

Item Description

Version 2.6.1

Release Date November 15, 2002

Ordering Code IP-FIR

Product ID(s) 0012

Vendor ID(s) 6AF8 (Standard)
6AF9 (Time-Limited)
 9

FIR Compiler MegaCore Function User Guide About this Core
Features ■ Over 250-MHz performance in Stratix™ devices
■ Symmetric variable FIR filter support
■ Supports OpenCore® and OpenCore Plus hardware evaluation
■ Has the DSP Builder Ready certification
■ Fully integrated FIR filter development environment
■ First system-level, programmable logic solution for DSP designs,

including automatic interpolation and decimation for all fixed FIR
filters

■ Highly optimized for Altera device architectures, including Cyclone,
Stratix, APEX, APEX II, Mercury, FLEX®, and ACEX® devices

■ Extended pipelining for all fixed FIR filters
■ Supports a variety of architectures:

– Fixed-coefficient filters
- Fully parallel
- Serial
- Multi-bit serial
- Supports interpolation and decimation

– Variable filters
- Multi-cycle (the user chooses the number of cycles)
- Supports loading, reloading, and multiple coefficient sets

■ Supports up to 2,047-tap filters
■ Coefficient generator:

– Includes a built-in coefficient generator
– Supports coefficient widths from 4 to 32 bits of precision
– Imports floating-point or integer coefficients from third-party

tools
– Supports multiple coefficient sets up to a total of 32 sets
– Provides several coefficient scaling algorithms
– Provides floating-point to fixed-point coefficient analysis

■ Includes impulse, step function, and random input testbeds
■ Supports signed or unsigned input data widths, from 4 to 32 bits wide
■ User-selectable output precision via rounding and saturation
■ Generates MATLAB simulation models
■ Creates VHDL and Verilog HDL simulation files for all structures
■ Generates Quartus® II and MAX+PLUS® II vector files
■ Generates a report file in HTML format containing information about

the filter created, and the generated synthesis and simulation files
10 Altera Corporation

About this Core FIR Compiler MegaCore Function User Guide

About this Core

1
General
Description

Many digital systems use signal filtering to remove unwanted noise, to
provide spectral shaping, or to perform signal detection or analysis. Two
types of filters that provide these functions are finite impulse response
(FIR) filters and infinite impulse response (IIR) filters. FIR filters are used
in systems that require linear phase and have an inherently stable
structure. IIR filters are used in systems that can tolerate phase distortion.
Typical filter applications include signal preconditioning, band selection,
and low-pass filtering.

In contrast to IIR filters, FIR filters have a linear phase and inherent
stability. This benefit makes FIR filters attractive enough to be designed
into a large number of systems. However, for a given frequency response,
FIR filters are a higher order than IIR filters, making FIR filters more
computationally expensive.

The structure of a FIR filter is a weighted, tapped delay line (see Figure 1).
The filter design process involves identifying coefficients that match the
frequency response specified for the system. The coefficients determine
the response of the filter. You can change which signal frequencies pass
through the filter by changing the coefficient values or adding more
coefficients.

Figure 1. Basic FIR Filter

Traditionally, designers have been forced to make a trade-off between the
flexibility of digital signal processors and the performance of ASICs and
application-specific standard product (ASSPs) digital signal processing
(DSP) solutions. The Altera DSP solution eliminates the need for this
trade-off by providing exceptional performance combined with the
flexibility of PLDs. See Figure 2.

xin

yout

Z -1 Z -1 Z -1 Z -1

C0 C1 C2 C3

Tapped
Delay Line

Coefficient
Multipliers

Adder Tree
Altera Corporation 11

FIR Compiler MegaCore Function User Guide About this Core
Figure 2. Comparison of DSP Throughput

Altera DSP solutions include MegaCore® functions developed and
supported by Altera, and Altera Megafunction Partners Program
(AMPPSM) functions. Additionally, many commonly used functions, such
as adders and multipliers, are available from the industry-standard
library of parameterized modules (LPM). Figure 3 shows a hypothetical
DSP system and highlights the functions that are available from Altera
and the LPM.

Figure 3. Hypothetical Modulator System

20 G

2 G

200 M

20 M

2 M

200 K

Function
Implementation

Building Block
Implementation

System
Implementation

MCU/MPU

DSP
Processor

PLDs

ASICs

Data
Throughput
in Megasamples
per Second (MSPS)

Function Complexity

HardCopy
PLD

FEC
Reed Solomon

Encoder

Convolutional
Encoder
(Viterbi)

Constellation
Mapper

Outer Encoding Layer

Output
Data

Input
Data

NCO
Compiler DAC

FIR Compiler

N
LPF

FIR Compiler

N
LPF

Convolutional
Interleaver

Inner Coding Layer

Altera MegaCore Functions

LPM Functions

I

Q

12 Altera Corporation

About this Core FIR Compiler MegaCore Function User Guide

About this Core

1
DSP processors have a limited number of multiply accumulators (MACs),
and require many clock cycles to compute each output value (The number
of cycles is directly related to the order of the filter.). A dedicated
hardware solution can achieve one output per clock cycle. A fully parallel,
pipelined FIR filter implemented in a programmable logic device (PLD)
can operate at very high data rates, making PLDs ideal for high-speed
filtering applications.

Table 2 compares the resource usage and performance for different
implementations of a 120-tap FIR filter with a 12-bit data input bus.

Note:
(1) If you use the FIR Compiler to create a filter, you can also implement a variable

filter in a PLD that uses from 1 to 120 MACs, and 120 to 1 clock cycles.

The FIR Compiler function speeds the design cycle by:

■ Finding the coefficients needed to design custom FIR filters.
■ Generating bit-accurate and clock-cycle-accurate FIR filter models

(also known as bit-true models) in the Verilog HDL and VHDL
languages, and for the MATLAB environment (Simulink Model Files
and M-Files).

■ Automatically generating the code required for the Quartus® II
software to synthesize high-speed, area-efficient FIR filters of various
architectures.

■ Creating Quartus II test vectors to test the FIR filter’s impulse
response.

Figure 4 compares the design cycle using the FIR Compiler MegaCore
function versus a traditional implementation.

Table 2. FIR Filter Implementation Comparison Note (1)

Device Implementation Clock Cycles to
Compute Result

DSP processor 1 MAC 120

PLD 1 serial filter 12

1 parallel filter 1
Altera Corporation 13

FIR Compiler MegaCore Function User Guide About this Core
Figure 4. Design Cycle Comparison

DSP Builder Support

DSP system design in Altera programmable logic devices requires both
high-level algorithms and HDL development tools. The Altera DSP
Builder, which you can purchase as a separate product, integrates the
algorithm development, simulation, and verification capabilities of The
MathWorks MATLAB and Simulink system-level design tools with
VHDL synthesis and simulation of Altera development tools.

DSP Builder allows system, algorithm, and hardware engineers to share a
common development platform. The DSP Builder shortens DSP design
cycles by helping you create the hardware representation of a DSP design
in an algorithm-friendly development environment. You can combine
existing MATLAB functions and Simulink blocks with Altera DSP Builder
blocks to link system-level design and implementation with DSP
algorithm development. The DSP Builder consists of libraries of blocks as
shown in Figure 5.

Define & Design Architectural
Blocks

Determine Behavioral
Characteristics of FIR Filter

Calculate Filter Coefficients
(MATLAB)

Determine Hardware Filter
Architecture

Design Structural or Synthesizable
FIR Filter

Simulate

Synthesize & Place & Route

Area/Speed Tradeoff

FIR Filter
Design
6 Weeks

Define & Design Architectural
Blocks

Simulate

Synthesize & Place & Route

Specify Filter Characteristics
to FIR Compiler Megafunction
(FIR Compiler Assists in Area/

Speed Tradeoff)

Traditional Flow FIR Compiler Flow
14 Altera Corporation

About this Core FIR Compiler MegaCore Function User Guide

About this Core

1
Figure 5. DSP Builder Blocks in Simulink Library Browser

DSP Builder version 2.1 and higher provides modular support for Altera
DSP cores, including the FIR Compiler. The MATLAB software
automatically detects cores that support DSP Builder and the cores appear
in the Simulink Library Browser.

f For more information on using DSP Builder with FIR Compiler, see “DSP
Builder Feature & Simulation Support” on page 60.

OpenCore & OpenCore Plus Hardware Evaluation

The OpenCore feature lets you test-drive Altera MegaCore functions for
free using the Quartus® II software. You can verify the functionality of a
MegaCore function quickly and easily, as well as evaluate its size and
speed, before making a purchase decision. However, you cannot generate
device programming files.
Altera Corporation 15

FIR Compiler MegaCore Function User Guide About this Core
The OpenCore Plus feature set supplements the OpenCore evaluation
flow by incorporating free hardware evaluation. The OpenCore Plus
hardware evaluation feature allows you to generate time-limited
programming files for designs that include Altera MegaCore functions.
You can use the OpenCore Plus hardware evaluation feature to perform
board-level design verification before deciding to purchase licenses for
the MegaCore functions. You only need to purchase a license when you
are completely satisfied with a core’s functionality and performance, and
would like to take your design to production.

1 If you are simulating a time-limited MegaCore function using
the DSP Builder and Simulink, i.e., in software, the core
operation does not time out and the done pin stays low.

f For more information on OpenCore Plus hardware evaluation using FIR
Compiler, see “OpenCore Plus Time-Out Behavior” on page 61 and
AN 176: OpenCore Plus Hardware Evaluation of MegaCore Functions.

Performance Table 3 shows the FIR Compiler function’s performance using the
Quartus II software, a FIR filter with 97 taps, 8-bit input data, and
14-bit coefficients.

Notes:
(1) GMAC = giga multiply accumulates per second; 1 GMAC = 1,000 million multiply accumulates per second

(MMACs).
(2) 18 × 18 bit multiplier.

Table 3. Performance

Device Filter Type Pipeline
Level

DSP
Blocks

M512 M4K Logic
Cells

Speed
(MHz)

Throughput
(MSPS)

Processing
Equivalent

(GMACs) (1)

Cyclone Parallel (M4K) 1 n/a n/a 45 2847 189 189 18.3

Stratix Serial (M4K,
M512)

1 0 6 9 348 291 36 3.5

Parallel (M512) 1 0 63 0 3257 205 205 19.9

Parallel (M4K) 1 0 0 45 2847 208 208 20.2

Parallel (LC) 2 0 0 0 7130 237 237 23.0

Multi-cycle
variable (4 cycle)

1 25(2) 25 25 772 192 48 4.7
16 Altera Corporation

Altera Corporation
Getting Started
G
etting Started

2

Software
Requirements

The FIR Compiler requires the following software:

■ A PC running the Windows 98/NT/2000 operating system

■ Quartus II version 2.1sp1 or higher

■ DSP Builder version 2.1 or higher (optional)

1 If you want to use the FIR Compiler function in the UNIX
environment, use the RealPC application by FWB Software
(http://www.fwb.com/) to emulate Windows and install the
FIR Compiler function as you would on a PC.

FIR Compiler
Design Flow

Once you have purchased a license for FIR Compiler, the design flow
involves the following steps:

1 If you have not purchased a license, you can test-drive the core
for free using the OpenCore or OpenCore Plus feature. Refer to
AN 176: OpenCore Plus Hardware Evaluation of MegaCore Functions
for more information on the OpenCore Plus feature.

1. Download and install the FIR Compiler function.

2. Set up licensing. This step is not required if you are test-driving the
core using the OpenCore feature, however, you do need to obtain
and install an OpenCore Plus license to test-drive the core using this
feature.

3. Generate the filter(s) for your system using the FIR Compiler wizard.

4. Implement the rest of your system using the Altera Hardware
Description Language (AHDL), VHDL, Verilog HDL, or schematic
entry.

5. Use the FIR Compiler wizard-generated VHDL or Verilog HDL
simulation models to confirm your system’s operation.

6. Compile your design and perform place-and-route.
 17

http://www.fwb.com/

FIR Compiler MegaCore Function User Guide Getting Started
7. Perform system verification.

8. License the FIR Compiler function to configure or program the
devices.

Download &
Install

Before you can start using Altera MegaCore functions, you must obtain
the MegaCore files and install them on your PC. The following
instructions describe this process.

Obtaining the FIR Compiler MegaCore Function

If you have Internet access, you can download MegaCore functions from
Altera’s web site at http://www.altera.com. Follow the instructions below
to obtain the MegaCore functions via the Internet. If you do not have
Internet access, you can obtain the MegaCore functions from your local
Altera representative.

1. Point your web browser to http://www.altera.com/IPmegastore.

2. Choose Megafunctions from the Product Type drop-down list box.

3. Choose Signal Processing (DSP) from the Technology drop-down
list box.

4. Type FIR in the Keyword Search box.

5. Click Submit.

6. Click the Try icon next to the Altera FIR Compiler MegaCore
function in the search results table.

7. Follow the online instructions to download the function and save it
to your hard disk.

Installing the FIR Compiler Files

For Windows, follow the instructions below:

1. Open the directory into which you downloaded the FIR Compiler
MegaCore function (in Step 7, above).

2. Double-click on the application icon labeled “fir_compiler-v2.6.1.”

3. Click OK. The FIR Compiler Installation dialog box appears.
Follow the online instructions to finish installation.
18 Altera Corporation

http://www.altera.com/IPmegastore
http://www.altera.com/IPmegastore

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

4. After you have finished installing the MegaCore files, you must
specify the directory in which you installed them (i.e.,
<path>\fir_compiler-v<version>\lib) as a user library in the Quartus
II software. Search for “User Libraries” in Quartus II Help for
instructions on how to add these libraries.

FIR Compiler Directory Structure

Figure 6 shows the directory structure for the FIR Compiler.

Figure 6. FIR Compiler Directory Structure

lib
Contains encrypted FIR Compiler files for Quartus II synthesis.

lib_time_limited
Library folder for time-limited (OpenCore Plus) version of the core for Quartus II
synthesis. You should indicate this folder as a user library in the Quartus II software
before attempting to use the time-limited version of the FIR Compiler.

demo
Contains the files needed to run the standalone FIR wizard demonstration.

doc
Contains the FIR Compiler user guide (this document) in Adobe Acrobat Portable Document
Format (.pdf), as well as other documentation in PDF and text files.

Misc.
Contains the coef_seq program, which re-orders the coefficients for multi-cycle variable
FIR filters (see page 54).
sim_lib
Contains the simulation library files.

 matlab
 Contains the MATLAB libraries for simulation.

 VHDL
 Contains the VHDL libraries for simulation in the ModelSim software.

 Verilog
 Contains the Verilog HDL libraries for simulation in the Verilog-XL or ModelSim software.

<path>\MegaCore\fir_compiler-v<version>

Visual_IP
Contains the Visual IP simulation models.
Altera Corporation 19

FIR Compiler MegaCore Function User Guide Getting Started
Set Up
Licensing

You can use Altera’s OpenCore feature to compile and simulate the FIR
Compiler MegaCore function, allowing you to evaluate it before
purchasing a license. You can simulate your design in the Quartus II
software using the OpenCore feature. However, you must obtain a license
from Altera before you can generate programming files or EDIF, VHDL,
or Verilog HDL gate-level netlist files for simulation in third-party EDA
tools.

After you purchase a license for the FIR Compiler, you can request a
license file from the Altera web site at http://www.altera.com/licensing
and install it on your PC. When you request a license file, Altera e-mails
you a license.dat file. If you do not have Internet access, contact your local
Altera representative.

1 If you want to use the OpenCore Plus feature, you must request
a license file from the licensing page of the Altera web site
(http://www.altera.com/licensing) to enable it. Your license file
is sent to you via e-mail; follow the instructions below to install
the license file.

To install your license, you can either append the license to your
license.dat file or you can specify the core’s license.dat file in the
Quartus II software.

1 Before you set up licensing for the FIR Compiler, you must
already have the Quartus II software installed on your PC with
licensing set up.

Append the License to Your license.dat File

To append the license, perform the following steps:

1. Close the following software if it is running on your PC:

– Quartus II
– MAX+PLUS II
– LeonardoSpectrum
– Synplify
– ModelSim

2. Open the FIR Compiler license file in a text editor. The file should
contain one FEATURE line, spanning 2 lines.

3. Open your Quartus II license.dat file in a text editor.
20 Altera Corporation

http://www.altera.com/licensing

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

4. Copy the FEATURE line from the FIR Compiler license file and paste
it into the Quartus II license file.

1 Do not delete any FEATURE lines from the Quartus II license
file.

5. Save the Quartus II license file.

1 When using editors such as Microsoft Word or Notepad,
ensure that the file does not have extra extensions appended
to it after you save (e.g., license.dat.txt or license.dat.doc).
Verify the filename in a DOS box or at a command prompt.

Specify the Core’s License File in the Quartus II Software

To specify the core’s license file, perform the following steps:

1. Create a text file with the FEATURE line and save it to your hard disk.

1 Altera recommends that you give the file a unique name,
e.g., <core name>_license.dat.

2. Run the Quartus II software.

3. Choose License Setup (Tools menu). The Options dialog box opens
to the License Setup page.

4. In the License file box, add a semicolon to the end of the existing
license path and filename.

5. Type the path and filename of the core license file after the
semicolon.

1 Do not include any spaces either around the semicolon or in
the path/filename.

6. Click OK to save your changes.

FIR Compiler
Tutorial

This tutorial explains how to create a basic parallel FIR filter using the
Altera FIR Compiler MegaWizard® Plug-In and the Quartus II software.
As you go through the wizard, each page is described in detail. When you
are finished generating the filter, you can incorporate it into your system
design.

1 You can also run the FIR Compiler wizard without installing the
Quartus II software. Execute the file demo_fir.bat, which is
located in the <path>\fir_compiler-v<version>\demo directory.
Altera Corporation 21

FIR Compiler MegaCore Function User Guide Getting Started
You can use Altera’s OpenCore evaluation feature to compile and
simulate the MegaCore functions, allowing you to evaluate the FIR
Compiler before deciding to purchase a license. However, you must
purchase a license before you can generate programming files or EDIF,
VHDL, or Verilog HDL gate-level netlist files for simulation in third-party
EDA tools.

This walkthrough consists of the following steps:

■ “Create a New Quartus II Project” on page 23
■ “The MegaWizard Plug-In Manager” on page 24
■ “Specify the Coefficients” on page 27
■ “Analyze the Coefficients” on page 31
■ “Specify the I/O Number Formats and Bit Widths” on page 33
■ “Choose the Architecture” on page 36
■ “Simulate the Filter” on page 39
■ “View the Report File” on page 41
22 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Create a New Quartus II Project

Before you begin creating a filter, you must create a new Quartus II
project. With the New Project Wizard, you specify the working directory
for the project, assign the project name, and designate the name of the top-
level design entity. You will also specify the FIR Compiler user library. To
create a new project, perform the following steps:

1. Choose Altera > Quartus II <version> (Windows Start menu) to run
the Quartus II software. You can also use the Quartus II Web Edition
software.

2. Choose File > New Project Wizard.

3. Click Next in the introduction (the introduction will not display if
you turned it off previously).

4. Specify the working directory for your project. This walkthrough
uses the directory c:\qdesigns\fir_compiler.

5. Specify the name of the project. This walkthrough uses fir_compiler.

6. Click Next.

7. Click User Library Pathnames.

8. Type <path>\fir_compiler-v<version>\lib\ (or
<path>\fir_compiler-v<version>\lib_time_limited,
to use the OpenCore Plus-capable version) into the Library name
box, where <path> is the directory in which you installed the FIR
Compiler. The default installation directory is c:\MegaCore.

9. Click Add.

10. Click OK.

11. Click Finish.

You have finished creating your new Quartus II project.
Altera Corporation 23

FIR Compiler MegaCore Function User Guide Getting Started
The MegaWizard Plug-In Manager

The MegaWizard Plug-In Manager allows you to run a wizard that helps
you easily specify options for the FIR Compiler. The wizard lets you
generate coefficients, make I/O settings, specify a filter architecture, etc.

You can launch the MegaWizard Plug-In Manager from within the
Quartus II software, or you can run it from the command line. The FIR
Compiler wizard generates an instance of the megafunction that you can
instantiate in your design. Table 4 highlights the main features of the
wizard.

Table 4. FIR Compiler Wizard Options (Part 1 of 2)

Option Wizard Page(s) Description

Coefficient
Specification

Start,
Coefficient Generator,
Generate Blank
Coefficient Set

The FIR Compiler can read filter coefficients that have been exported
from a third-party system-level application, generate coefficients using
a built-in coefficient generator. In both cases, you can scale the
coefficients and indicate the bits of precision. The wizard detects the
filter symmetry and displays it. The wizard can also generate a blank
set of coefficients.

The built-in coefficient generator lets you specify the sample rate
(either in Hertz or in relation to the Nyquist rate), the number of taps,
and cut-off frequencies. The function supports low-pass, high-pass,
band-pass, and band-reject filters. The supported filter windows
include rectangular, Hanning, Hamming, and Blackman. As you
change the coefficient settings, you can view the frequency and
response of the filter dynamically.

Multi-Rate
Filters

Coefficient Generator,
Coefficient Analysis

You can use the wizard to create multi-rate filters using interpolation
and decimation. You can specify the interpolation and decimation
factors, as well as a polyphase output enable.

Filter
Architecture

Architecture For variable filters, you can choose a multi-cycle filter, and specify the
number of cycles. The variable architecture supports pipelining, can
read coefficients stored off-chip (e.g., in a memory device), supports
one or more channels, supports pipelining, and supports multiple
coefficient sets.

For fixed filters, you can indicate whether the filter is parallel, serial, or
multi-bit serial, and the number of channels for the filter. For serial and
multi-bit serial filters, you can use either memory blocks or logic cells
to implement the filter data and/or coefficient storage. You can specify
whether or not to use pipelining.
24 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

When you finish going through the wizard, it generates the following files
based on your chosen options.

■ Text Design File (.tdf) used to instantiate an instance of the FIR filter
in your design

■ Quartus II Vector File (.vec) used for simulation within the Quartus II
environment

■ Symbol File (.sym) used to instantiate the filter into a schematic
design

■ MATLAB and Simulink files used for simulation in MATLAB
Simulink (.m and .mdl)

■ VHDL and Verilog HDL models used for simulation in other EDA
tools

1 Visual IP models are not generated, but are included in the
installation directory, as shown in Figure 6 on page 19.

Input and
Output Number
Format and Bit
Widths

I/O Specification You can specify the width of the input data bus and the number system
used. The wizard supports unsigned binary data, two’s complement
data, and signed binary fractional data (you can choose how many bits
to use on either side of the decimal point).

The FIR Compiler determines the output bit width for full precision
based on the actual coefficient values and the input bit width. These
two parameters define the maximum positive and negative output
values. The wizard extrapolates the number of bits required to
represent that range of values. For full precision, you must use this
number of bits in your system.

You can reduce the precision of your filter by removing bits from the
most significant bit (MSB) via truncation or saturation, or least
significant bit (LSB) via truncation or rounding.

Simulator and
Simulation File
Specification

Simulation Files The FIR Compiler generates several types of simulation files, including
Quartus II Vector Files (.vec), MATLAB M-Files (.m), Simulink Model
Files (.mdl), Verilog HDL models, and VHDL output files. You can
specify the clock frequency for the output files.

Table 4. FIR Compiler Wizard Options (Part 2 of 2)

Option Wizard Page(s) Description
Altera Corporation 25

FIR Compiler MegaCore Function User Guide Getting Started
Launch the MegaWizard Plug-In Manager

Perform the following steps to launch the wizard and begin generating a
filter.

1. Choose Tools > MegaWizard Plug-In Manager.

2. In Page 1 of the MegaWizard Plug-in Manager, select Create a new
custom megafunction variation (default).

3. Click Next.

4. In Page 2a of the MegaWizard Plug-in Manager, expand the Signal
Processing folder, under Installed Plug-Ins, by clicking the ‘+’ next
to the name.

5. In the same manner as Step 4, expand the Filters folder under Signal
Processing.

6. Select FIR Compiler or Time-Limited FIR Compiler.

7. Choose the output file type for your design; the wizard supports
AHDL, VHDL, and Verilog HDL. This tutorial uses Verilog HDL,
however, you can use any of the 3 languages.

8. In the “What name do you want for the output file?” field, type the
name of the output file. This tutorial uses fir_test. Figure 7 on
page 27 shows the wizard after you have made these settings.

9. Click Next.
26 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Figure 7. Choose FIR Compiler in the MegaWizard Plug-In Manager

You are now ready to set the options for your custom FIR filter.

Specify the Coefficients

A FIR filter is defined by its coefficients. The FIR Compiler has several
options for obtaining coefficients, as follows.

■ You can use the FIR Compiler wizard to generate coefficients. The
FIR Compiler coefficient generator supports a variety of filter types.

■ You can load coefficients from a file. For example, you can create the
coefficients in another application such as MATLAB, SPW, or a user-
created program, save them to a file, and import them into the FIR
Compiler wizard.

■ You can generate a blank set of coefficients (initialized to zero) if you
want to use a variable filter that has dynamically generated
coefficients. In this case, the coefficients are generated in another
application and are loaded into the filter.

Figure 8 shows the MegaWizard Plug-in Manager Start page (for the type
of compiler we have specified in this sample walktrough), in which you
choose how to obtain the coefficients. For this design walkthrough you
will generate coefficients using the wizard’s coefficient generator.
Altera Corporation 27

FIR Compiler MegaCore Function User Guide Getting Started
The sections of this chapter titled “Loading Coefficients from a File” and
“Creating a Blank Set of Coefficients”, both on page 30, describe the other
two options.

1 After you create a set of coefficients, if you click the MegaWizard
Plug-in Manager’s Back button, then navigate back to the page
shown in Figure 8 and make another selection, the wizard
creates a new set of coefficients. It does not overwrite the set you
made previously. To change a set of coefficients, select the
coefficient set and click RECREATE THIS Coefficient Set in the
coefficient analysis tool. See “Analyze the Coefficients” on
page 31, and Figure 11 on page 33, for more details.

Figure 8. Choose How to Obtain Coefficients

Using the FIR Compiler Coefficient Generator

Click Generate NEW Floating Point Coefficients to launch the coefficient
generator. You can specify a number of parameters for the coefficients,
including the filter type, window type, sample rate, excess bandwidth (for
use with cosine filters), etc.

To generate the coefficients for the simple parallel filter in this
walkthrough, make the following settings in the coefficient generator, as
shown on the completed wizard page in Figure 9.

■ Filter Type: Band Pass
■ Window Type: Hamming
■ Sample Rate: 50e+006
■ # of Coef: 77
■ Cutoff Freq (1): 5e+006
■ Cutoff Freq (2): 10e+006
28 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

After you choose your settings, click Apply (in the Filter Parameters
area). The wizard graphically displays the frequency response of the filter
in blue and the coefficient values in red. The wizard also lists the actual
coefficient values.

To quickly generate floating-point coefficients for multi-rate filters, use
the options under Multi-Rate Filter Settings. You can choose
Interpolation or Decimation and the Factor. When you click Auto
Generate Parameters, the wizard generates coefficients for a low-pass
filter with a cutoff frequency based on the same rate.

f Refer to “Interpolation & Decimation” on page 57 for an explanation of
interpolation and decimation.

Figure 9. Specify Parallel FIR Filter Coefficient Parameters

Click Next when you are finished making the parameter settings.

The Coefficient Analysis page is displayed, as shown in Figure 11.
Altera Corporation 29

FIR Compiler MegaCore Function User Guide Getting Started
Loading Coefficients from a File

To load a coefficient set from a file, click the Load NEW Coefficient Set
from File button (refer back to Figure 8 on page 28). Browse in the file
system for the file you want to use, and click Open.

Your coefficient file should have each coefficient on a separate line and
no carriage returns at the end of the file. You can use floating-point or
fixed-point numbers, as well as scientific notation.

1 Do not insert additional carriage returns at the end of the file.
The FIR compiler interprets each carriage return as an extra
coefficient with the value of the most recent past coefficient.

The file should have a minimum of five non-zero coefficients.

Creating a Blank Set of Coefficients

When you create a blank coefficient set, you specify the rough details
about the coefficients, such as how many coefficients and how many sets.
The FIR Compiler will generate a structure that supports the coefficients.

1 You cannot use the FIR Compiler coefficient analysis tool on
blank sets of coefficients.

To create a blank coefficient set, perform the following steps:

1. On the Start page, shown in Figure 8, click Create NEW Blank
Coefficient Set(s). The Generate Blank Coefficient Set window is
displayed, as shown in Figure 10.

2. Specify information about the blank set, such as the number of
coefficients, how many sets you want, and which number system to
use. See Figure 10 for an example.
30 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Figure 10. Generate a Blank Coefficient Set

3. Click Next after you make your selections.

The I/O Specifications window (Figure 12) is displayed.

Analyze the Coefficients

The FIR Compiler wizard contains a coefficient analysis tool, which you
can use to create sets of coefficients and perform actions on each set. Some
actions, such as scaling, apply to all sets. Other actions, such as recreating,
reloading, or deleting, apply to the set you are currently viewing. The
Coefficient Analysis tool is shown in Figure 11.

The FIR Compiler supports up to 32 sets of coefficients (multi-cycle
architecture only). You can toggle between sets using the Current Coef.
Set drop-down list box (the coefficient sets are numbered). When you
select a set, the wizard displays the frequency response of the fixed-point
coefficients in blue and the frequency response of the floating-point
coefficients in green. It also displays the actual coefficient values.
Altera Corporation 31

FIR Compiler MegaCore Function User Guide Getting Started
The FIR Compiler supports signed binary fractional notation, which
allows you to monitor which bits are preserved and which bits are
removed during filtering. A signed binary fractional number has the
format <sign> <integer bits>.<fractional bits>. A signed binary fractional
number is interpreted as shown below, and in the following equation.

where i = ceil(log2(number of coefficients)) + x1 + x2

If, for example, the number has 3 fractional bits and 4 integer bits plus a
sign bit, the entire 8-bit integer number is divided by 8, which yields a
number with a binary fractional component.

When converted to decimal numbers, certain fractions have an infinite
number of binary bits. For example, converting 1/3 to a decimal number
yields 0.333n with n representing an infinite number of 3s. Similarly,
numbers such as 1/10 cannot be represented in a finite number of binary
digits with full precision. If you use signed binary fractional notation, the
FIR compiler wizard uses the fractional number that most closely matches
the original number for the number of bits of precision you choose.

1 If you specify signed binary fractional in the coefficient analysis
tool (or in other wizard pages), Altera recommends that you
specify signed binary fractional in all wizard pages; however,
you are not required to do so.

When analyzing the coefficients, follow this design tip.

■ The coefficient analysis tool shows the filter’s symmetry. Symmetric
filters tend to use fewer resources than asymmetric ones.

For this walkthrough, make the following selections in the Coefficient
Analysis tool:

■ Scaling: Auto Scaling
■ Coefficient Bit Width: 12

Figure 11 shows the Coefficient Analysis tool after you have made these
selections. Note that the side lobes of the fixed-point frequency response
decrease when you change the bit width from 8 (the default) to 12.

<sign> <x1 integer bits> . <y1 fractional bits> Original input data

<sign> <x2 integer bits> . <y2 fractional bits> Original coefficient data

<sign> <i integer bits> . <y1 + y2 fractional bits> Full precision (after FIR calculations)

<sign> <x3 integer bits> . <y3 fractional bits> Output data (after limiting precision)
32 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Figure 11. Analyze the Coefficients

1. Click Next when you are finished making the parameter settings.

The I/O Specifications window (Figure 12) is displayed.

Specify the I/O Number Formats and Bit Widths

You can specify the number format for the inputs and the number of input
channels (i.e., how many data streams will generate an output for each
stream) in the I/O Specification window, shown in Figure 12.

1 If you specify signed binary fractional in this window, or in other
wizard pages, Altera recommends that you specify signed
binary fractional in all wizard pages. However, you are not
required to do so.
Altera Corporation 33

FIR Compiler MegaCore Function User Guide Getting Started
Figure 12. The I/O Specification window

The wizard calculates how many bits your filter requires for full
resolution using two methods: actual coefficients or the coefficient bit
widths. These two parameters define the maximum positive and negative
output values. Select which method you want in the Output Bit Width for
Full Resolution is Calculated Using drop-down list box. The wizard will
extrapolate the number of bits required to represent that range of values.
For full precision, you must use this number of bits in your system.

You can use full or limited precision for the filtered output (yout). To use
full precision, leave the Full Resolution option turned on (default). Turn
it off to limit the precision.

The wizard gives you the option of truncating or saturating the most
significant bit (MSB) and/or rounding or truncating the least significant
bit (LSB). Saturation, truncation, and rounding are non-linear operations.
Table 5 shows the options for limiting the precision of your filter.
34 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Figure 13 shows an example of removing bits from the MSB and LSB.

Figure 13. Removing Bits from the MSB and LSB

Instead of using the option shown in Table 5, you can use signed binary
fractional notation to limit the number of bits. The wizard displays how
many bits are removed.

When adjusting the I/O number formats and bit widths, follow these
design tips.

■ Truncating from the MSB reduces logic resources more than
saturation.

■ The Number of Input Channels option is useful for designs such as
modulators and demodulators, which have I and Q channels. If you
are designing this type of application, select 2 input channels.

Table 5. Options for Limiting Precision

Bit
Range

Option Result

MSB Truncate In truncation, the filter disregards specified bits. See
Figure 13.

Saturate In saturation, if the filtered output is greater than the
maximum positive or negative value able to be represented,
the output is forced (or saturated) to the maximum positive
or negative value.

LSB Truncate Same process as for MSB.

Round The output is rounded away from zero.

D15
D14
D13
D12
D11
D10
D9
D8
.
.
D0

D9
D8
.
.
D0

Bits Removed from MSB

Full
Precision

Limited
Precision

D15
D14
.
.
.
.
D4
D3
D2
D1
D0

D11
D10
.
.
.
D1
D0

Bits Removed from LSB

Full
Precision

Limited
Precision

D15
D14
D13
D12
.
.
.
D3
D2
D1
D0

D10
D9
.
.
.
D1
D0

Bits Removed from both MSB & LSB

Full
Precision

Limited
Precision
Altera Corporation 35

FIR Compiler MegaCore Function User Guide Getting Started
This walkthrough uses the following default settings, shown in the I/O
Specification window in Figure 12.

■ 8-bit signed binary inputs
■ Full resolution outputs

Click Next when you are finished making the parameter settings, and the
Architecture window is displayed.

Choose the Architecture

The FIR Compiler supports several filter structures, including:

■ Variable/fixed coefficient, multi-cycle
■ Fixed coefficient, fully serial
■ Fixed coefficient, multi-bit serial
■ Fixed coefficient, fully parallel

1 Only the multi-cycle architecture supports multiple coefficient
sets.

Table 6 describes three of the relative “trade-offs” for the different
architecture options.

f Refer to “Functional Description” on page 49 for a detailed explanation
about the filter architectures and how they operate. Also, see Figure 14.

Table 6. Architecture Trade-Offs

Option Area Speed (data throughput)

Parallel Large area Creates a fast filter: 140 to 250 MSPS
throughput with pipelining.

Serial Small area Requires multiple clock cycles for a
single computation.

Pipelining Creates a high-performance
filter with only an area
increase.

Increases throughput with additional
latency.
36 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

The wizard automatically calculates and displays the resources that the
filter will use in the Resource box at the lower-left corner of this window.
It provides the estimated size in embedded memory blocks, DSP blocks,
and logic cells. The Information box displays the number of clock cycles
required to compute the result, along with numerous design “tips.” The
latency (i.e., the number of clock cycles before the output is available) is
shown in the FIR Compiler Report File (<design name.htm>), as shown
in Figure 16 on page 41.

1 The resource usage estimate may differ from Quartus II resource
usage by +/- 30%, depending on which optimization method
you use in the Quartus II software. Additionally, the resource
estimator is less accurate for small filters (e.g., 500 logic cells or
less). For small filters, compile the design in the Quartus II
software to obtain the resource usage.

Refer to the following tips when you are choosing a structure. Also, see
Figure 14.

■ Choosing embedded memory blocks (M512, M4K/EAB/ESB,
M-RAM) for data storage will reduce the logic cell usage. Choosing
“Auto” in data storage will allow Quartus II to use memory blocks
instead of logic cells, when possible. This reduction in logic cell usage
may increase the speed of the filter.

■ Choosing M512 or M4K for coefficient storage, as compared to data
storage, will result in a smaller reduction in logic cell usage.

■ In the Stratix family, when you select the Multi-Cycle Variable
structure, selecting DSP Blocks in the Multiplier pull-down menu
will let the FIR Compiler use embedded DSP blocks for multipliers.
This will result in a smaller and faster design in a device with enough
DSP blocks for all multipliers.

■ If you need to switch between multiple coefficient sets, select the
Multi-Cycle Variable structure. If coefficients are stored in logic cells,
the compiler can update one coefficient set at the same time as
another set is being used for a calculation.

■ For maximum clock speed, choose the Fully Serial Filter structure. In
the Stratix family, M512 is faster than M4K and M-RAM. For
maximum throughput, choose a fully parallel filter.
Altera Corporation 37

FIR Compiler MegaCore Function User Guide Getting Started
38 Altera Corporation

■ In fully serial and multi-bit serial architectures, the structure
symmetry default selection in the Stratix and Cyclone families is
Force Non-symmetric Structure, even if your coefficients are
symmetrical. The reason for this is symmetrical algorithms require an
extra clock cycle per calculation cycle, which leads to lower
throughput.

■ Multi-Cycle Variable filters allow users to change coefficient values.
These filters may contain optimizations for symmetrical filters. If you
desire a filter which may need both symmetrical and non-
symmetrical filters, select Force Non-symmetrical Structures in the
Architecture page.

For this walkthrough, select a fully parallel structure with a pipeline level
of 3. These settings create a filter that uses a large amount of logic cells, but
only requires one clock cycle to compute the result. See Figure 14.

Figure 14. Specify the Filter Architecture

Click Next when you are finished making the parameter settings.

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Simulate the Filter

The FIR Compiler wizard includes a built-in simulation tool that has
controls like those of an oscilloscope. The simulation display shows a plot
of the bit-and cycle-accurate simulation of the filter response—the input
data is shown in red and the output data is shown in yellow. The
coefficient analysis tool only shows the effect of coefficient quantization.
The simulation display shows the effects of limiting the I/O bit widths
with truncation, saturation, and/or rounding.

The simulation display is like an oscilloscope. You can adjust the
simulator display’s Y gain to zoom in or out and use the up and down
arrows on your keyboard to adjust the display. Click the Auto Setup
button to go back to the default view.

You can simulate using impulse, step, or random data, and you can
specify the amplitude and simulation length. The simulation length
should be greater than the number of coefficients to show a response.
Using a longer simulation length gives you a more accurate display but
takes more time to compute. You can also use a delay to shift the display
for better viewing.

If your filter has multiple coefficient sets, you can view a plot for each set
by toggling between sets using the Coef. Set drop-down list box.

Figure 15 shows the simulation display.
Altera Corporation 39

FIR Compiler MegaCore Function User Guide Getting Started
Figure 15. Simulation Display

Under Simulation Models, you can specify which simulation files you
want to output. The wizard generates a variety of simulation files for use
with simulators such as MATLAB or ModelSim, and for simulation in the
Quartus II software.

Click Finish when you are finished making settings. The wizard generates
output files in your working project directory.

You are finished creating a FIR filter using the FIR Compiler wizard. Next,
you can view the FIR Compiler report file, simulate a model of the filter in
MATLAB/Simulink, perform VHDL or Verilog HDL simulation, or
simulation in the Quartus II software. The Quartus II vector file provides
a unit impulse response.
40 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

View the Report File

When it has finished generating output files, the FIR Compiler generates
a report file in HTML format that contains information about the filter you
created and a listing of simulation output files that were generated. This
tutorial uses the output file name fir_test, as shown in Figure 7,
therefore the name of the report file will be fir_test.htm. Figure 16
shows an example of a report file.

Figure 16. FIR Compiler Report File
Altera Corporation 41

FIR Compiler MegaCore Function User Guide Getting Started
Simulate Using
Various Models

The FIR Compiler supports the ModelSim simulator with precompiled
VHDL and Verilog models. The FIR compiler also supports the VerilogXL
and NCVerilog simulators with protected simulation models. All other
simulators are supported using pre-compiled Visual IP simulation
models.

1 If you use the simulation library in the ModelSim PE, SE, or EE
simulator, you must reinstall the FIR Compiler MegaCore
function before you can use the library in the ModelSim-Altera
simulator.

Compiling the VHDL Simulation Model in ModelSim

The FIR Compiler ships with a precompiled library for simulation in
ModelSim. To simulate the core, complete the following steps.

1. At the ModelSim command prompt in your working directory,
create a new library, leaf_lib, and map it to the FIR Compiler
simulation library using the following commands:

vmap -c

vmap leaf_lib <path>/fir_compiler-v<version>/sim_lib
/vhdl/modelsim/wfir

2. Create a new library, work,as follows:

vlib work

3. Update the precompiled libraries to be compatible with your version
of ModelSim using the refresh command:

vcom -work leaf_lib -refresh

4. Compile your design.

a. Open the FIR Compiler report file.

b. Note the names and location of the VHDL simulation files.

c. Compile all of the files using the vcom command in the order
that they are listed in the report file.
42 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

Compiling the Verilog HDL Simulation Model in ModelSim

The FIR Compiler ships with a precompiled library for simulation in the
ModelSim software. To simulate the core, you must complete the
following steps.

1. At the ModelSim command prompt in your working directory,
create a new library work, and map it to the FIR Compiler
simulation library using the following commands:

vmap -c

vmap work <path>/fir_compiler-v<version>/sim_lib
/verilog/modelsim/wfir

2. Update the precompiled libraries to be compatible with your version
of ModelSim using the refresh command:

vlog work -refresh

3. Compile your design.

a. Open the FIR Compiler report file.

b. Note the names and location of the Verilog HDL simulation files.

c. Compile all of the files using the vlog command in the order
that they are listed in the report file.

Simulating in Verilog-XL

You do not need to compile the models in Verilog-XL before simulating,
however, you do need to:

■ Copy the simulation files to your UNIX workstation (the files are
located in the following directory.

<path>/fir_compiler-v<version>/sim_lib
/Verilog/VerilogXL

■ Indicate the location of the FIR Compiler simulation library

1 You can use the RealPC application by FWB software
(http://www.fwb.com/) to emulate Windows and install the
FIR Compiler function as you would on a PC.
Altera Corporation 43

http://www.fwb.com/

FIR Compiler MegaCore Function User Guide Getting Started
After you have copied the files to your UNIX workstation, use the
following command to specify the library and start simulation:

verilog -v <path to FIR Compiler Verilog-XL simulation files> <FIR
Compiler-generated files>

Simulating in NCVerilog

You do not need to compile the models in NCVerilog before simulating,
however, you do need to:

■ Copy the simulation files to your UNIX workstation (the files are
located in the <path>/fir_compiler-v<version>/sim_lib
/Verilog/VerilogXL directory and are the same ones used for the
Verilog-XL simulator).

■ Indicate the location of the FIR Compiler simulation library.

1 You can use the RealPC application by FWB software
(http://www.fwb.com/) to emulate Windows and install the
FIR Compiler function as you would on a PC.

After you have copied the files to your UNIX workstation, use the
following command to specify the library and start simulation:

ncverilog -v <path to FIR Compiler NCVerilog simulation files>
<FIR Compiler-generated files>

Simulating Using the Visual IP Model

Follow the instructions below to obtain the Visual IP software via the
Internet. If you do not have Internet access, you can obtain the Visual IP
software from your local Altera representative, as follows.

1. Point your web browser to:
http://www.altera.com/products/ip/altera/visual_ip.html..

2. Follow the online instructions to download the function and save it
to your hard disk.

Follow the instructions below to use the Visual IP software.

1. Set up your system to use the Visual IP software, as detailed in the
Visual IP documentation (Simulating Visual IP Models with the
ModelSim Simulator for PCs White Paper, Simulating Visual IP Models
with theNC-Verilog, Verilog-XL, VCS, or ModelSim [UNIX] Simulators
White Paper).
44 Altera Corporation

http://www.fwb.com/
http://www.altera.com/IPmegastore

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

2. Ensure the appropriate ModelSim and Visual IP bin directories are in
the following path.

c:\modeltech\win32pe;c:\progra~1\visualIP\bin;

3. Set the VIP_MODELS_DIR environment variable to point to the
directory containing the Visual IP models, i.e.:

set VIP_MODELS_DIR =
<path>\fir_compiler-v<version>\sim_lib\visualIP\

4. Start the ModelSim simulation tool.

5. Select File > Change Directory, and change the directory to your
working directory for the simulator.

6. Create a new working library in this directory by selecting Design >
Create a New Library.

7. Select a new library and a logical mapping to it and type work in the
Library field.

8. Click OK.

9. The ModelSim software creates a settings file, modelsim.ini, in the
working directory. Open this file in a text editor and search for the
string veriuser. You should find the following line.

; Veriuser = veriuser.sl

Remove the semi-colon (otherwise the line is treated as a comment
and ignored), and change the directory name to where Visual IP is
installed, i.e.:

Veriuser = c:\progra~1\visualIP\bin\libplimtivip

Save the modelsim.ini file and return to the ModelSim software.

10. Restore the leaf nodes of the FIR compiler in the following directory.
<path>/fir_compiler-v<version>/sim_lib/VIP/fir_vip_files.tar.

11. Compile VIP wrappers of all leaf nodes.

The Verilog version of the wrapper is found in the
$VIP_MODELS_DIR\<leaf_node>\interface\pli directory.
The corresponding VHDL version is the $VIP_MODELS_DIR
\<leaf_node>\interface\mti directory. For example, to compile
Altera Corporation 45

FIR Compiler MegaCore Function User Guide Getting Started
the Verilog wrapper from the ModelSim command line, enter the
following command.
vlog {$VIP_MODELS_DIR/<leaf_node>/interface/pli/
<leaf_node>.v}

where <leaf_node> are the leaf nodes restored from Step 10.

For the Visual IP VHDL simulation, compile the
LEAF_NODES_PACK.VHD file, found at <path>/fir_compiler-
v<version>/sim_lib/VIP before you compile any other leaf nodes.

12. Compile all of the design files generated by the FIR compiler. For the
full set of file names, refer to the report file shown in Figure 16 on
page 41.

Compiling and
Simulating in
the Quartus II
Software

The following steps explain how to compile and simulate your design in
the Quartus II software, and how to use the test vector configuration file.

1. Click Start Compilation (Processing Menu) to compile your design.

2. Click Simulation Mode (Processing menu). Choose Simulator
Settings (Processing menu) and select the Time/Vectors tab.
Turn off Automatically Add Pin to Simulation Output Waveforms.
In the Source of Vector Stimuli box, select <output name>.vec, where
<output name> is the name you specified in the MegaWizard Plug-In.
Click OK.

3. Click Run Simulation (Processing menu) to begin simulation.

Synthesis,
Compilation
and Post-
Place-&-Route
Simulation

The Quartus II software works seamlessly with tools from all EDA
vendors, including Cadence, Exemplar Logic, Mentor Graphics,
Synopsys, Synplicity, and Viewlogic. After you have licensed the
MegaCore function, you can generate EDIF, VHDL, Verilog HDL, and
Standard Delay Output Files from the Quartus II software and use them
with your existing EDA tools to perform functional modeling and post-
place-and-route simulation of your design.

The following sections describe the design flow to compile and simulate
your custom MegaCore design with a third-party EDA tool. To synthesize
your design in a third-party EDA tool, and perform post-place-and-route
simulation, perform the following steps:

1. Create your custom design instantiating a FIR Compiler MegaCore
function.
46 Altera Corporation

Getting Started FIR Compiler MegaCore Function User Guide

G
etting Started

2

2. Synthesize the design using your third-party EDA tool. Your EDA
tool should treat the MegaCore instantiation as a black box by either
setting attributes or ignoring the instantiation.

1 For more information on setting compiler options in your
third-party EDA tool, refer to the Quartus II Nativelink
Guidelines.

3. After compilation, generate a hierarchical netlist file in your third-
party EDA tool.

4. Open your netlist file in the Quartus II software.

5. Select Compile mode (Processing Menu).

6. Specify the Compiler settings in the Compiler Settings dialog box
(Processing menu) or use the Compiler Settings wizard.

7. Specify the user libraries for the project and the order in which the
compiler searches the libraries.

8. Specify the input settings for the project. Choose EDA Tool Settings
(Project menu). Select Custom EDIF in the Design entry/synthesis
tool list. Click Settings. In the EDA Tool Input Settings dialog box,
make sure that the relevant tool name or option is selected in the
Design Entry/Synthesis Tool list.

9. Depending on the type of output file you want, specify Verilog HDL
output settings or VHDL output settings in the General Settings
dialog box (Project Menu). Use the 1993 VHDL language option.

10. Compile your design. The Quartus II Compiler synthesizes and
performs place-and-route on your design, and generates output and
programming files.

11. Import your Quartus II-generated output files (.edo, .vho, .vo, or
.sdo) into your third-party EDA tool for post-route, device-level, and
system-level simulation.
Altera Corporation 47

FIR Compiler MegaCore Function User Guide Getting Started
Filter Design
Tips

This section provides some tips for using the FIR Compiler.

■ To prevent high-pass filters from rolling off near Nyquist, choose an
odd number of taps.

■ You can import coefficients from the MATLAB software into the FIR
Compiler via a text file. Simply save your coefficients as fixed or
floating-point numbers to an ASCII file, one coefficient per line. See
Figure 17 on page 50 for a sample text file.

■ To make a quadrature phase shift keying (QPSK), quadrature
amplitude modulation (QAM), or phase shift keying (PSK)
modulator or demodulator using the FIR Compiler, create a multi-
channel filter by indicating two or more channels on page 7 of the
wizard.

■ A comb filter is a filter that has repetitive notches. You can make a
comb filter by first making a single-notch filter, and then using sub-
sampling. The process of sub-sampling reflects or mirrors the notches
in the frequency domain at all frequencies above Nyquist.

■ When importing floating-point coefficients, you should apply a
scaling factor to generate fixed-point integer numbers. If the scaling
(or gain) factor is too small, since coefficients are rounded towards
the nearest integer, they may be set to zero. Therefore, if you do not
scale the coefficients appropriately, you may have a filter with many
zeros.

■ The fastest filters are parallel filters with extended pipelining that
generate an output for every clock cycle.

■ In the Stratix and Cyclone families, we recommend that you use
memory blocks to reduce area.

■ In the APEX, Mercury, or FLEX families, it is recommended that you
use the Fast logic synthesis style to utilize the built-in “carry-and-
cascade” chain. Following these recommendations will result in a
smaller and faster filter.
48 Altera Corporation

Altera Corporation
Specifications
Specifications

3

Functional
Description

The FIR Compiler has an interactive wizard-driven interface that allows
you to create custom FIR filters easily. The wizard outputs simulation files
for use with third-party tools, including MATLAB. The FIR Compiler
supports up to 2047 taps.

Number Systems and Fixed-Point Precision

The FIR Compiler function supports signed or unsigned fixed-point
numbers from 4 to 32 bits wide using unsigned binary, two’s complement,
or signed binary fractional numbers (for the variable architecture), or
two’s complement numbers (fixed-coefficient architecture). The entire
filter operates in a single number system. The coefficient precision is
independent of input data width; you can specify the output precision.

Generating or Importing Coefficients

You can use the FIR Compiler function to create coefficients, or you can
create them using another application such as MATLAB, save them as an
ASCII file, and read them into the FIR Compiler. Coefficients can be
expressed as floating-point or integer numbers; each one must be listed on
a separate line. Figure 17 shows the contents of a sample coefficient text
file.

1 If you specify negative values for the coefficients, the FIR
Compiler generates a two’s complement signed number.
 49

FIR Compiler MegaCore Function User Guide Specifications
Figure 17. Sample Filter Coefficients

-3.09453e-005
-0.000772299
-0.00104106
-0.000257845
0.00150377
.
.
.
0.00163125
0.00278506
0.00150377
-0.000257845
-0.00104106
-0.000772299
-3.09453e-005

The FIR Compiler automatically creates coefficients (with a user-specified
number of taps) for the following filters:

■ Low-pass and high-pass
■ Band-pass and band-reject
■ Raised cosine and root raised cosine

You can adjust the number of taps, cut-off frequencies, sample rate, filter
type, and window method to build a custom frequency response. Each
time you apply the settings, the FIR Compiler calculates the coefficient
values and displays the frequency response on a logarithmic scale. These
coefficients are floating-point numbers and must be scaled. These values
are displayed in the Coefficient Values scroll-box, at the right side of the
Coefficient Generator page, as shown in Figure 9 on page 29.

When the FIR Compiler reads in the coefficients, it automatically
determines any symmetry. The filter gives you several scaling options,
e.g., scaling to a specified number of bits of precision or scaling by a user-
specified factor. The scaled coefficients are displayed in the Fixed Point
Coefficient Values scroll-box, at the right side of the Coefficient Analysis
page, as shown in Figure 11 on page 33.
50 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Coefficient Scaling

Coefficient values are often represented as floating-point numbers. To
convert these numbers to a fixed-point system, the coefficients must be
multiplied by a scaling factor and rounded. The FIR Compiler provides
four scaling options:

■ Scale to a specified number of precision bits—Because the coefficients are
represented by a certain number of bits, it is possible to apply
whatever gain factor is required such that the maximum coefficient
value equals the maximum possible value for a given number of bits.
This approach produces coefficient values with a maximum signal-
to-noise ratio.

■ Limit scaling factors to powers of 2—With this approach, the FIR
Compiler chooses the largest power of two scaling factor that can
represent the largest number within a particular number of bits of
resolution. Multiplying all of the coefficients by a particular gain
factor is the same as adding a gain factor before the FIR filter. In this
case, applying a power of two scaling factor makes it relatively easy
to remove the gain factor by shifting a binary decimal point.

■ Scale manually—The FIR Compiler lets you manually scale the
coefficient values by a specified gain factor.

■ Scale to a specified number of fractional bits—You can specify how many
digits to use on either side of the decimal point (supported in the
variable architecture only).

■ No scaling—The FIR Compiler can read in pre-scaled integer values
for the coefficients and not apply scaling factors.

Symmetrical Architecture Selection

Many FIR filters have symmetrical coefficient values. The FIR Compiler
examines the coefficients and automatically determines the filter
symmetry: even, odd, or none. After detecting symmetry, the wizard
chooses an optimum algorithm to minimize the amount of computation
needed. The FIR compiler determines coefficient symmetry after the
coefficients are rounded. If even symmetry is present, two data points are
added prior to the multiplication step, saving a multiplication operation
(taking advantage of filter symmetry reduces the number of multipliers
by about half). If the filter has odd symmetry, two data points are
subtracted prior to the multiplication step (again eliminating half of the
multipliers). Odd and even filter structures are shown in Figures 18 and
19.
Altera Corporation 51

FIR Compiler MegaCore Function User Guide Specifications
1 The wizard gives you the option to force non-symmetrical
structures.

Figure 18. 7-Tap Symmetrical FIR Filter

Symmetrical Serial

Symmetrical serial filters take an additional clock cycle to perform the FIR
computation (so the filter can compute the carry). Additional logic cells
are required for the symmetrical adder resources.

Since non-symmetrical serial FIR filters do not require this resource, non-
symmetrical filters may be smaller and/or faster. Use the Resource
window on the Architecture page, shown in Figure 14, to determine the
best solution.

Data In

Data Out

Z -1

C0

Z -1

C1 C2 C3

Z -1

Z -1

Z -1

Z -1

Z -1
52 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Figure 19. 6-Tap Symmetrical FIR Filter

Structure Types

The FIR Compiler wizard generates variable, parallel, serial, multi-
channel, and single and multi-cycle structures.

Multi-Cycle Variable Structures

Multi-cycle variable filters are optimized for high throughput. In a multi-
cycle variable structure, the designer specifies that the filter uses 1 to 16
clock cycles to compute a result (for any filter that fits into a single device).

The multi-cycle variable structure allows multiple coefficient sets, and the
filter can switch between coefficient sets dynamically. Additionally, while
the filter uses one coefficient set, you can update other sets. Therefore,
your filter can switch between an infinite number of coefficient sets.

1 To maximize silicon efficiency, the coefficients must be
reordered during reloading. With the FIR Compiler, Altera
provides source code for a C++ program that reorders the
coefficients. Additionally, Altera provides a precompiled
Windows executable that reorders the coefficients.

Data In

Data Out

Z -1

C0

Z -1

C1 C2

Z -1

Z -1

Z -1 Z -1
Altera Corporation 53

FIR Compiler MegaCore Function User Guide Specifications
54 Altera Corporation

This program is in <path>\fir_compiler-v<version>\misc. The C++ source
code is named coef_seq.cpp and the executable program is coef_seq.exe.
You can add source code to your coefficient generation program, or use
the executable file to re-order the coefficients.

The coef_seq.exe command is as follows.

coef_seq.exe <input coefficient file, with full path>
<output coefficient file, with full path> <number of cycles to compute>

Multi-Cycle Variable filters allow users to change coefficient values. These
filters may contain optimizations for symmetrical filters. If you desire a
filter which may need both symmetrical and non-symmetrical filters,
select Force Non-symmetrical Structures in the Architecture page.

If you need to switch between multiple-set coefficients, select the Multi-
Cycle Variable structure. If coefficients are stored in a logic cell, the
compiler can update other coefficient sets at the same time as one set is
being used for a calculation. If coefficients are stored in memory blocks,
the calculation must be halted while it is updating any set of coefficients.

In the Stratix family, when you select the Multi-Cycle Variable structure,
selecting DSP Blocks in the Multiplier pull-down menu will let the FIR
Compiler use embedded DSP blocks for multipliers. This will result in a
smaller and faster design in a device which contains enough DSP blocks
for all multipliers.

Parallel Structures

A parallel structure calculates the filter output in a single clock cycle.
Parallel filters provide the highest performance and consume the largest
area. Pipelining a parallel filter allows you to generate filters that run
between 120 and 300 MHz at the cost of pipeline latency. Refer to
Figure 27 on page 64 for a timing diagram of the parallel structure.
Figure 20 shows the parallel filter block diagram.

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Figure 20. Parallel Filter Block Diagram

Serial Structures

A serial structure trades off area for speed. The filter processes input data
one bit at-a-time per clock cycle. Therefore, serial structures require N clock
cycles (where N is the input data width) to calculate an output. In the Stratix
and Cyclone families, using memory blocks for data storage will result in a
significant reduction in area. Refer to Figure 33 on page 67 for a timing
diagram of the serial structure. Figure 21 shows the serial filter block
diagram.

Figure 21. Serial Filter Block Diagram

yout

Array Multiplier Array Multiplier

xin xoutD Q D Q D QD QD QD Q

yout

Bit Array Multiplier Bit Array Multiplier

xin

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Serial
Accumulator
Altera Corporation 55

FIR Compiler MegaCore Function User Guide Specifications
Multi-Bit Serial Structure

A multi-bit serial structure combines several small serial FIR filters in
parallel to generate the FIR result. This structure provides greater
throughput than a standard serial structure while using less area than a
fully parallel structure, allowing the designer to trade off area vs. speed.
Figure 22 shows the multi-bit serial structure.

Figure 22. Multi-Bit Serial Structure

Figure 23 shows the area/speed “trade-off” of fixed FIR filters.

Figure 23. Fixed FIR Filters: Area vs. Throughput

Serial
FIR

Filter

Serial
FIR

Filter

Serial
FIR

Filter

Input
Data

Filtered
Data

FIR Compiler
Created Glue

Logic

Multi-Bit
Serial

Throughput

Area

Serial

Parallel

With Extended
Pipelining

With Extended
Pipelining

With Extended
Pipelining
56 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Two serial filters operating in parallel compute the result at twice the rate
of a single serial filter. Three serial filters operate at triple the speed; 4
operate at four times the speed. For example, a 16-bit serial FIR filter
requires 16 clock cycles to complete a single FIR calculation. A multi-bit
serial FIR filter with 2 serial structures takes only 8 clock cycles to compute
the result. Using 4 serial structures, only 4 clock cycles are required to
perform the computation. Three serial structures cannot be used for a
16-bit serial structure, however, because 16 does not divide evenly by 3.

Multi-Channel Structures

When designing DSP systems, you may need to generate two FIR filters
that have the same coefficients. If high speed is not required, your design
can share one filter, which uses fewer resources than two individual
filters. For example, a two-channel parallel filter requires two clock cycles
to calculate two outputs. The resulting hardware would need to run at
twice the data rate of an individual filter.

1 For maximum area efficiency, use a distributed serial arithmetic
architecture, multiple channels, and memory blocks for data and
coefficient storage.

Interpolation & Decimation

You can use the FIR Compiler to interpolate or decimate a signal.
Interpolation generates extra points in between the original samples;
decimation removes redundant data points. Both operations change the
effective sample rate of a signal.

When a signal is interpolated, zeros are inserted between data points and
the data is filtered to remove spectral components that were not present
in the original signal. See Figure 24.

Figure 24. Signal Interpolation

N

Input
Data

After
Zero
Stuffing

After
Low-Pass
Filtering

LPF
Input Output
Altera Corporation 57

FIR Compiler MegaCore Function User Guide Specifications
To decimate a signal, a low-pass filter is applied, which removes spectral
components that are not present at the low sample rate. After filtering,
appropriate sample values are taken. See Figure 25.

Figure 25. Signal Decimation

The FIR Compiler automatically creates interpolation and decimation
filters using a polyphase decomposition. Polyphase decimation filters
provide speed optimization because each filter runs at the output data
rate. Polyphase interpolation filters provide the following benefits:

■ Speed optimization—Each of the polyphase filters runs at the input
data rate for maximum throughput.

■ Area optimization—The polyphase interpolator shares resources.

Figure 26 shows block diagrams for polyphase interpolation and
decimation.

M

Input
Data

Filtered
Data

Decimated
Data

LPF
Input Output
58 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Figure 26. Polyphase Interpolation & Decimation Block Diagrams

Pipelining

Pipelining is most effective for producing high-performance filters at the
cost of increased latency: the more pipeline stages you add, the faster the
filter becomes.

1 Pipelining breaks long carry chains into shorter lengths.
Therefore, if the carry chains in your design are already short,
adding pipelining may not speed your design.

The FIR Compiler let you select whether to add 1, 2, or 3 pipeline levels.

4xin youtPrototype Filter
C0, C1, C2, ...

xin yout
Polyphase Filter
C0, C4, C8, ...

Polyphase Filter
C1, C5, C9, ...

Polyphase Filter
C2, C6, C10, ...

Interpolation

Polyphase Interpolator

Polyphase Filter
C3, C7, C11, ...

xin

Polyphase Filter
C0, C4, C8, ...

Polyphase Filter
C1, C5, C9, ...

Polyphase Filter
C2, C6, C10, ...

Polyphase Decimator

Polyphase Filter
C3, C7, C11, ...

yout
Altera Corporation 59

FIR Compiler MegaCore Function User Guide Specifications
Simulation Output Files

The FIR Compiler generates several types of output files for use in system
simulation. After you have created a custom FIR filter, you can use the
output files with MATLAB, VHDL, or Visual IP simulation tools. You can
use the test vectors and MATLAB software to simulate your design.
Visual IP models can be used with the Visual IP software, and are
supported by other simulators. When you compile your FIR filter design,
the FIR Compiler wizard generates MATLAB Simulink-compatible
models for system verification.

The FIR Compiler includes a quick built-in simulator with impulse, step,
and random inputs. You can view the results in time and frequency. The
FIR wizard creates MATLAB M-Files, MATLAB Model Files, Altera
Vector Files, VHDL, and Visual IP simulation models.

DSP Builder Feature & Simulation Support

You can create Simulink Model Files (.mdl) using FIR Compiler and DSP
Builder blocks. DSP Builder supports the following FIR Compiler options:

■ Fully parallel filters
■ Fully serial filters

DSP Builder does not support the following FIR Compiler options:

■ Multi-bit serial filters
■ Multi-cycle variable filters

After you create your model, you can perform simulation. DSP Builder
supports the simulation types shown in Table 7 for FIR Compiler.

Table 7. FIR Compiler Simulation File Support in DSP Builder

Simulation Type Simulation Flow

Precompiled ModelSim model
for RTL functional simulation

The DSP Builder SignalCompiler block generates a ModelSIm Tcl script and a
VHDL testbench on-the-fly.

VHDL Output File (.vho) models
for timing simulation

You can generate a .vho after you have purchased a license for your
MegaCore function. Refer to the “VHDL Output File (.vho)“ topic in Quartus II
Help for more information.

Visual IP(VIP) Models The DSP Builder does not support generating scripts which use VIP models.
Simulations with these models may be run manually.

Quartus II simulation The DSP Builder SignalCompiler block generates a Quartus II simulation
vector file on-the-fly.
60 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

1 If you are using the time-limited version of the FIR Compiler in
your Model File, simulation does not time out in the Simulink
simulation environment. The core only times out if you are
performing hardware evaluation as described in “OpenCore
Plus Time-Out Behavior” on page 61.

f For more information on DSP Builder, see “DSP Builder Support” on
page 14. Also see the DSP Builder User Guide at
http://www.altera.com/products/software/system/products/dsp/
dsp-builder.html

OpenCore Plus Time-Out Behavior

The following events occur when the OpenCore Plus hardware evaluation
times out:

■ fir_result is driven low
■ timed_out is driven from low to high

A time-limited FIR Compiler runs for approximately 30 minutes for a
150 MHz clock (exactly 270,000,000,000 clock cycles).

f For more information on OpenCore Plus hardware evaluation, see
“OpenCore & OpenCore Plus Hardware Evaluation” on page 15 and
AN 176: OpenCore Plus Hardware Evaluation of MegaCore Functions.

Core
Verification

Before releasing a version of the FIR Compiler, Altera runs a
comprehensive regression test that executes the wizard to create the
instance files. Next, Verilog HDL and VHDL testbenches are created and
the results are compared to the MATLAB software using NC-Verilog and
ModelSim simulators to exercise the Verilog HDL and VHDL models.

The regression suite covers various parameters such as input and output
bit widths, varying numbers of coefficients, and relevant architecture
options.

Signals The FIR Compiler can generate three different FIR structures:

■ Parallel—Optimized for speed; provides one output per clock cycle.
■ Serial—Optimized for area; uses a small number of clock cycles per

output.
■ Variable—Designed for flexibility; the user specifies the number of

cycles (multi-cycle) that the filter uses.
Altera Corporation 61

FIR Compiler MegaCore Function User Guide Specifications
The FIR Compiler has the signals shown in Tables 8 through 11.

Note to Table 8:
(1) The timed_out signal is only generated if you are using the Open Core Plus version of the FIR Compiler.

NNote to Table 9:
(1) The timed_out signal is only generated if you are using the Open Core Plus version of the FIR Compiler.

Table 8. Parallel, Serial & Multi-Bit Serial Signals

Signal Direction Description

clk_en Input Active-high clock enable.

clock Input Input clock signal.

rst Input Active-high signal that resets the FIR filter.

data_in[data width-1..0] Input Input data to be filtered.

done Output Indicates that the FIR calculation is complete and that the
output is available.

rdy_to_ld Output Active-high signal that indicates the filter is ready to load new
data on the data input pin.

fir_result[FIR width-1..0] Output Result of filtering operation performed by data_in.

timed_out (1) Output Signal used for OpenCore Plus hardware evaluation.

Table 9. Multi-Cycle Variable Signals (One Coefficient Set)

Signal Direction Description

clock Input Input clock signal.

clk_en Input Clock enable.

coef_in[] Input New coefficients.

coef_we Input Active-high to enable coefficient updates.

data_in[] Input Input data to be filtered.

rst Input Active-high signal that resets the FIR filter.

done Output Indicates that the FIR calculation is complete and that the
output is available.

fir_result[FIR width-1..0] Output Result of filtering operation.

rdy_to_ld Output Active-high signal that indicates the filter is ready to load new
data on the data input pin.

timed_out (1) Output Signal used for OpenCore Plus hardware evaluation.
62 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Note to Table 10:
(1) The timed_out signal is only generated if you are using the Open Core Plus version of the FIR Compiler.

.

Note to Table 11:
(1) The timed_out signal is only generated if you are using the Open Core Plus version of the FIR Compiler.

Table 10. Multi-Cycle Variable Signals (Multiple Coefficient Sets; coefficients are stored in logic cells)

Signal Direction Description

clock Input Input clock signal.

clk_en Input Clock enable.

coef_set_n_in[] Input New coefficient value to overwrite coefficient set n. 0<=n<=q,
where q is the number of coefficient sets specified in the
Wizard.

coef_set_n_we[] Input Coefficient set n write enable (active high). 0<=n<=q, where q
is the number of coefficient sets specified in the Wizard.

coef_set[] Input Selects which coefficient set the filter uses for the calculation.

data_in[] Input Input data to be filtered.

rst Input Active-high signal that resets the FIR filter.

done Output Indicates that the FIR calculation is complete and that the
output is available.

fir_result[FIR width-1..0] Output Result of filtering operation.

rdy_to_ld Output Active-high signal that indicates the filter is ready to load new
data on the data input pin.

timed_out (1) Output Signal used for OpenCore Plus hardware evaluation.

Table 11. Multi-Cycle Variable Signals (Multiple Coefficient Sets; coefficients are stored in memory
blocks)

Signal Direction Description

clock Input Input clock signal.

rst Input Active-high signal that resets the FIR filter.

data_in[] Input Input data to be filtered.

clk_en Input Clock enable.

coef_set_in[] Input Selects which coefficient set to overwrite.

coef_set[] Input Selects which coefficient set the filter uses for the calculation.

coef_we[] Input Enable coefficient overwrite.

coef_in New coefficient value to overwrite the old coefficient.

timed_out (1) Output Signal used for OpenCore Plus hardware evaluation.
Altera Corporation 63

FIR Compiler MegaCore Function User Guide Specifications
Timing
Diagrams

This section provides the timing diagrams for various types of filters.

Parallel Timing Diagrams

Figure 27 shows the input requirements for a parallel filter with no
pipelining. Parallel filters generate an output every clock cycle.

Figure 27. Parallel Filter

Figure 28 shows the timing diagram for a parallel interpolation filter with
an interpolation factor of four. The filter has four polyphase outputs, each
running at the input data rate. There is a final multiplexer that switches
through all the filters. The input should be held until all output phases are
shifted out.

Figure 28. Parallel Interpolation Timing Diagram: Interpolation Factor = 4

The parallel case, which is the simplest for timing, illustrates the benefit of
a polyphase decomposition. This technique relaxes the timing
requirements on the FIR filter that is generated. If the input data rate is
50 MHz, and the interpolation factor is four, the polyphase filters must
run at the 50 MHz data rate. The multiplexer, which switches through all
the filters, will need to run at 200 MHz. Because the filter has fewer gates
toggling at a slower rate, the design also saves power. Finally, a polyphase
interpolation filter uses fewer resources than zero insertion followed by
filtering.

Figure 29 shows a parallel decimation timing diagram with a decimation
factor of four. The polyphase technique for decimation generates four
filters, each of which operates at the output rate. At every clock cycle, the
input data goes to the next polyphase. After four clock cycles, the outputs
from each polyphase are added together.

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 8 6 0 -7 -11 -8 0 10 16 12 0 -16

00 01 0

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

00 01 00

0 8 6 0 -7
64 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Figure 29. Parallel Decimation Filter: Decimation Factor = 4

The benefits of a polyphase decomposition for decimation are twofold.
Because the individual polyphase filters operate at the output clock rate,
the timing requirements for the polyphase filter are relaxed. For example,
a 4-to-1 decimation filter with an input data rate of 200 MSPS, would
require 4 polyphase filters, each of which operate at a data rate of 50
MSPS. Additionally, the input data is time division multiplexed across 4
different filters with a switch rate of 200 MHz. The total system
throughput is 200 MSPS (generated from 4 filters operating in parallel at
a 50 MSPS rate).

Figure 30 shows a multi-channel parallel timing diagram with 2 channels.

Figure 30. Multi-Channel Parallel Timing Diagram

Figure 31 shows a multi-channel parallel interpolation timing diagram.

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

00 01 02 03 04 00

0 22 524237 74

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

00 01 02 00

0 8 16 6 12 0 -7

Channel 1
Input

Channel 2
Input

Channel 1
Output

Channel 2
Output
Altera Corporation 65

FIR Compiler MegaCore Function User Guide Specifications
Figure 31. Multi-Channel Parallel Interpolation Timing Diagram

Figure 32 shows a multi-channel parallel decimation timing diagram.

Figure 32. Multi-Channel Parallel Decimation Timing Diagram

Serial & Multi-Bit Serial Timing Diagrams

This section provides timing diagrams and information on controlling the
rate of serial and multi-bit serial filters.

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

Channel 1 Input Phase 1

00 01 02 00

0 8 6 0 -7 16 12 0 -14 -11 -8 0 10

Channel 2 Input Phase 3

Phase 2 Phase 4

Phase 1 Phase 3

Phase 2 Phase 4
Channel 1
Output

Channel 2
Output

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

Channel 1
Input

Channel 1 Output

00 01 02 00

0 -7 14 10 20

Channel 2
Input

Channel 2 Output
66 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Serial Timing Diagrams

Figure 33 shows the input timing diagram for an 8-bit serial filter.

Figure 33. 8-Bit Serial Filter

Figure 34 shows the timing diagram for a serial interpolation filter in
which the interpolation factor is equal to the input data width (both have
a value of four). The filter has four polyphase outputs.

Figure 34. Interpolation Factor = Input Data Width

The structure runs at a 4× clock. The input data is held for 4 clock cycles,
and each polyphase is computed every 4 clocks. The interpolation scheme
switches through the four outputs every clock cycle to generate
fir_result (the final output). The FIR Compiler provides access to the
polyphase outputs, which allows you to multiplex through the outputs to
suit the needs of your application.

Figure 35 shows the timing diagram for a filter in which the interpolation
factor (six) is greater than the input data width (four). The filter has six
polyphase outputs.

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 8 6 0 -7 -11 -8

00 01 0

When rst goes high,
the system starts.

The FIR filter is ready to load
the next input data when
rdy_to_ld goes high.

The output is valid
when done goes high.

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 8 6 0 -7 -11

0 1 0
Altera Corporation 67

FIR Compiler MegaCore Function User Guide Specifications
Figure 35. Interpolation Factor > Input Data Width

The entire structure runs at a 6× clock. The input data is held for 6 clock
cycles. There are six serial filters, and each filter calculates a particular
phase. Each of the six serial filters requires 4 clock cycles to compute a
phase because there are 4 bits of input data. However, six clock cycles are
needed to switch through all the filters, so the entire design requires a 6×
clock.

Figure 36 shows the timing diagram for a filter in which the interpolation
factor (four) is less than the input data width (six). The filter has four
polyphase outputs.

Figure 36. Interpolation Factor < Input Data Width

For this filter, a 4× clock does not provide enough cycles to calculate an
individual polyphase output. To ensure a constant output data rate, the
FIR Compiler uses an 8× clock (or a clock rate of two times the
interpolation factor), switching between every polyphase output every
two clocks. The 8× clock provides sufficient clock cycles to perform the
serial calculation.

Figure 37 shows a serial decimation filter in which the decimation factor
(four) equals the input bit width (four).

Figure 37. Decimation Factor = Input Bit Width

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 8 6 0 -7 -11

0 1 0

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 8 6

00 01 00

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 8 -1 4 10 68

0 1 2 3 4 0
68 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

In this case, the FIR Compiler generates four serial filters because the
decimation factor is four. Each of the decimation filters requires four clock
cycles to generate an output. The decimation scheme switches through the
four filters individually and adds the result of four filters together to
generate a final decimated output.

Figure 38 shows a serial decimation filter in which the decimation factor
(six) is greater than the input data width (four).

Figure 38. Decimation Factor > Input Data Width

The entire structure operates with a 6× clock. The input data is held
constant while it is switched between the polyphase filter (in this case, for
six clock cycles). The structure has six serial filters, and each filter
calculates a particular phase. Each of the six serial filters requires four
clock cycles to compute a phase (because there are four bits of input data).
The entire computation requires the results from the six polyphase filters,
so a 6× clock relative to the output rate is sufficient.

Figure 39 shows a filter in which the decimation factor (four) is less than
the input data width (six).

Figure 39. Decimation Factor < Input Data Width

The FIR Compiler generates four polyphase filters. Each filter requires at
least 6 clock cycles to generate an output because they are serial filters
with input data widths of six bits. Therefore, a single 4× clock is not
sufficient to create the structure. By providing twice the clock rate (8×)
there are enough clock cycles to compute the polyphase result; i.e., the
input data is held for two clock cycles for each polyphase input. Eight
clock cycles total are required for the structure to operate. Additionally,
each of the polyphase outputs is available for use.

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 22 -93 34 1220

0 1 2 3 4 5 6 00

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

0 -10 -51

0 1 2 3 4 00
Altera Corporation 69

FIR Compiler MegaCore Function User Guide Specifications
Figure 40 shows a multi-channel serial timing diagram with 2 channels
and
8-bit input data.

Figure 40. Multi-Channel Serial Timing Diagram

Multi-Bit Serial Timing Diagrams

Figure 41 shows the timing diagram for a multi-bit serial filter. This multi-
bit serial filter has 2 serial units and the input data is 8 bits. A standard
serial structure requires 8 clock cycles to compute the result. In contrast,
the multi-bit serial structure requires 4 clock cycles. The disadvantage is
that the multi-bit serial implementation uses four times as many resources
(LEs and EABs/ESBs) than a serial filter to achieve this 4x improvement.
However, the multi-bit serial implementation still uses fewer resources
than the parallel implementation.

Figure 41. Multi-Bit Serial Timing Diagram

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

00 01 02 00

0 8 16 6 12 0

Channel 1
Input

Channel 2
Input

Channel 1
Output

Channel 2
Output

clock

rst

clk_en

data_in

fir_result

rdy_to_ld

done

00 01 00

0 8 6 0 -7
70 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Figure 42 shows the same filter with 8 bits on input data and 2 serial
channels implemented using 2 channels. One set of data feeds into the first
channel, and another feeds into the second channel. A serial filter would
take 8 clock cycles to compute a single channel. However, the multi-bit
serial filter only takes 4 cycles to compute a single channel. The channels
are time interleaved, and the filter generates a result for each channel 4
clock cycles apart.

Figure 42. Multi-Channel Multi-Bit Serial Timing Diagram

Figure 43 shows a multi-bit serial interpolation timing diagram with an
interpolation factor of 4, an 8-bit input width, and 2 serial structures. The
interpolation factor is equal to input data width divided by the number of
serial structures. This timing diagram is similar to the serial interpolation
timing diagram.

Figure 43. Multi-Bit Serial Interpolation Timing Diagram

Channel 1
Input Data Channel 1

Output Data

Channel 2
Input Data

Channel 2
Output Data

clock

rst

clk_en

data_in

fir_result

rdy_to_ld

done

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

00 01 00

0 8 6 0 -7 -11 -8
Altera Corporation 71

FIR Compiler MegaCore Function User Guide Specifications
Figure 44 shows a multi-bit serial decimation timing diagram with a
decimation factor of 4, an 8-bit input data width, and 2 serial structures.
The entire structure runs ar 4x the clock speed because the input data
width is broken down into the input data width divided by the number of
serial structures. This timing diagram is similar to the serial decimation
timing diagram.

Figure 44. Multi-Bit Serial Decimation Timing Diagram

Variable Timing Diagrams

This section provides timing diagrams of multi-cycle variable filters.

Multi-Cycle Variable Timing Diagrams

Figure 45 shows a multi-cycle FIR filter example with 4 cycles. The input
and output data is held for 4 clock cycles.

Figure 45. Multi-Cycle Variable with 1 Channel & 4 Cycles Timing Diagram

clock
rst
clk_en
data_in
fir_result
rdy_to_ld
done

00 01 02 03 04 00

0 -66 77 -134

clock
rst
clk_en
coef_we
coef_in
data_in
fir_result
done
rdy_to_ld

00

0 1 0

0 8 6 0 -7 -11 -8 0 10 16 12 0 -16 -26 -22 0 38 80 114 127 114 80 38 0 -22 -26 -16 0 12
72 Altera Corporation

Specifications FIR Compiler MegaCore Function User Guide

Specifications

3

Figure 46 shows a multi-cycle variable filter with 4 channels.

Figure 46. Multi-Cycle Variable with 4 Channels TIming Diagram

Figure 47 shows a multi-cycle variable timing diagram with 4 cycles and
2 coefficient sets. When the coefficient set switches from 0 to 1, the
calculation switches from using coefficient set 0 to coefficient set 1 (there
is a calculation latency).

Figure 47. Multi-Cycle Variable with 4 Cycles & 2 Coefficient Sets Timing Diagram

clock
rst
clk_en
coef_we
coef_in
data_in
fir_result
done
rdy_to_ld

00

00 01 02

0 8 16 24 32 6 12 18 24 0 -7 -14

03 04 00

Channel
1 Input

Channel
1 Output

Channel
2 Input

Channel
2 Output

Channel
3 Input

Channel
4 Input

Channel
3 Output

Channel
4 Output

clock
rst
clk_en
coef_set
coef_set_0_we
coef_set_0_in
coef_set_1_we
coef_set_1_in
data_in
fir_result
done
rdy_to_ld

00

0 0

0 1 0

0 1 2 3 4 5 6 7 -8 -9 -10 -11 -12 0

Switch from Coefficient
Set 0 to 1

The Output Switches from Coefficient Set
0 to Coefficient Set 1 (There are Some Delays
Caused by the Calculation)

Calculation Delay
Altera Corporation 73

FIR Compiler MegaCore Function User Guide Specifications
Figure 48 shows the timing for coefficient loading. When coefficient set 0
is in use, you can load coefficient set 1 by making coef_set_1_we go
high. The filter switches to using coefficient set 1 when loading completes.
Coefficient set 1 loads after sequence adjustment. The filter clocks in one
coefficient on each clock cycle. If the coefficients are symmetric and the
cycle is 1, the filter only needs to read in half of the coefficients.

Figure 48. Multi-Cycle Variable Coefficient Loading Timing Diagram

clock
rst
clk_en
coef_set
coef_set_0_we
coef_set_0_in
coef_set_1_we
coef_set_1_in
data_in
fir_result
done
rdy_to_ld

00

10

0 -12 -3 -6 -9 -11 -2 -5 -8 -10 -1 -4 -7

The Last Coefficient Input Data Should Be Aligned
to Clock In at the Rising Edge of the rd_to_ld Signal

0

74 Altera Corporation

	FIR Compiler Megacore Function User Guide, v2.6.1
	About this User Guide
	How to Find Information
	How to Contact Altera
	Typographic Conventions

	About this Core
	Release Information
	Introduction
	New Features in Version 2.6.1
	Features
	General Description
	DSP Builder Support
	OpenCore & OpenCore Plus Hardware Evaluation

	Performance

	Getting Started
	Software Requirements
	FIR Compiler Design Flow
	Download & Install
	Obtaining the FIR Compiler MegaCore Function
	Installing the FIR Compiler Files
	FIR Compiler Directory Structure

	Set Up Licensing
	Append the License to Your license.dat File
	Specify the Core’s License File in the Quartus II Software

	FIR Compiler Tutorial
	Create a New Quartus II Project
	The MegaWizard Plug-In Manager
	Specify the Coefficients
	Analyze the Coefficients
	Specify the I/O Number Formats and Bit Widths
	Choose the Architecture
	Simulate the Filter
	View the Report File

	Simulate Using Various Models
	Compiling the VHDL Simulation Model in ModelSim
	Compiling the Verilog HDL Simulation Model in ModelSim
	Simulating in Verilog-XL
	Simulating in NCVerilog
	Simulating Using the Visual IP Model

	Compiling and Simulating in the Quartus II Software
	Synthesis, Compilation and Post- Place-&-Route Simulation
	Filter Design Tips

	Specifications
	Functional Description
	Number Systems and Fixed-Point Precision
	Generating or Importing Coefficients
	Structure Types
	Interpolation & Decimation
	Pipelining
	Simulation Output Files
	DSP Builder Feature & Simulation Support
	OpenCore Plus Time-Out Behavior

	Core Verification
	Signals
	Timing Diagrams
	Parallel Timing Diagrams
	Serial & Multi-Bit Serial Timing Diagrams
	Variable Timing Diagrams

