SECTION 5

Optimizing
Performance of
the FFT

5.1 Optimization

“Optimization Judging the performance of any program requires
saves ...2067 the consideration of both its time and space complex-
instruction ity. There is always a trade off between these two
cycles which aspects. Time complexity indicates how fast an algo-
equals about rithm can be implemented on a specified
10% cycle time microprocessor, while space complexity tells how
of the optimized much memory may be required. Optimization can ei-
code’ ther reduce memory requirement or minimize run-
time of an algorithm. Since memory costs are contin-
ually decreasing, time optimization becomes more
and more important.

One way to evaluate the time complexity of an algo-
rithm is to compare its theoretical complexity, ideal
implementation complexity, and practical complexity.
Theoretical complexity refers to the number of addi-
tions and multiplications required by the given
algorithm, independent of the microprocessor’s archi-
tectures. This type of evaluating is only good for high-
level comparison among algorithms and does not re-
flect the real performance of the algorithm on a given
microprocessor. Not surprisingly, an algorithm that re-
tains a lower theoretical complexity has a higher ideal

MOTOROLA 5-1

implementation complexity. Ideal implementation
complexity considers only the implementation of the
core algorithm by the given microprocessor’s in-
struction capabilities, such as available instruction
type, addressing mode, parallel data move, etc.
Ideal implementation complexity indicates the non-
overhead performance of a given algorithm on a mi-
croprocessor, and always provides an optimistic
estimation of an algorithm’s performance. Practical
complexity denotes the ideal implementation com-
plexity plus the structure overhead of the
microprocessor. (Structure overhead includes all
required instructions not associated with the core
algorithm.) Moving pointers, setting up DO loops,
jumps to subroutines, and conditional jumps are
typical structure overhead in microprocessors.

By distinguishing the different complexities, one
can easily determine which microprocessor is com-
petent for each aspect, and which instruction or
address mode is critical to the specific algorithms.
Also, chip designers may derive clues from the
complexity analysis for determining which instruc-
tion or address mode should be added to the next
revision. For example, the DSP96002 supports
FMPY||ADD||SUB — an instruction with two parallel
moves. The theoretical complexity of a radix-2 but-
terfly is four real multiplications and six additions or
subtractions. Thus, the ideal implementation com-
plexity of a radix-2 FFT on the DSP96002 is four
instruction cycles. If each butterfly needs an aver-
age of 0.25 instructions to set up a pointer or DO
loop, etc., the practical complexity of radix-2 is 4.25
instructions. The ratio of ideal implementation com-

5-2 MOTOROLA

plexity to practical complexity reflects the efficiency
of a microprocessor to perform a specific function.
For example, the efficiency of the DSP96002 per-
forming a radix-2 complex FFT could be:

ideal implementation complexity - _4

efficiency =
practical complexity 4.25

Eqgn. 5-1
In other words, the structure overhead for this par-
ticular example is about 6%. For FFTs implemented
on programmable DSPs, the structure overhead
should be between 3% and 15%. If a DSP has
structure overhead higher than 15%, it can not be
called a DSP. If one claims a structure overhead
lower than 3%, it is probably an application specific
integrated circuit (ASIC).

5.1.1 Minimum Memory Requirement —
In-Place Calculation

Although each radix-2 butterfly has two complex in-
put data and two complex output data, calculation
of the butterfly can be done by using only one mem-
ory set called in-place calculation. Memory
requirements may be minimized by:

* Reordering data into bit-reversed order.
This can be done in-place since data is
interchanged by pairs, as seen in Figure 4-9.
Thus, only 2N real data locations are
required.

MOTOROLA 5-3

W

N

¢ Reducing the size of the twiddle factor

table from N real locations to N/2 real
locations for normal order input DIT FFT
(see reference 8). Notice that in normal
order input DIT FFT the order that accesses
the twiddle factor table is bit-reversal, i.e.

(N/2)-1 VVN/4 WN/8 W(SN)/S . W(N/4)—1

UINCYN YN e N

N/2 complex numbers can be combined in
pai\rls/ of two, which differ by a factor
Wy =4 . 1In other words, the second
twiddle factor in the pair can be obtained by
multiplying -j with the first twiddle factor. In
fact, this optimization can be implemented
with a minor modification to the previous
butterfly core. All odd indexed groups will use
negated, real and imaginary exchanged
twiddle factors from the previous even
indexed groups. Therefore, the number of
groups in a pass is reduced to half of the
previous one and the access time of twiddle
factors is also reduced to half of the previous
one.

e Using a triple-nested DO-loop FFT to

minimize the program memory space (as
seen in Figure 4-5). Items 1 and 2 above
save data memory space for the FFT
calculation only.

5-4

MOTOROLA

5.1.2 Optimization for Faster

Execution
Although the previously discussed program exe-
cutes very efficiently, some applications may impose
less stringent requirements on program memory
size, but demand even faster execution. Faster exe-
cution can be obtained by further optimizing the
previous algorithm. The following pages present sev-
eral steps to achieve this optimization.
1. Since the first and second passes have trivial

twiddle factors:
0 _ N/4 _ .
WN = 1, and WN = -

it is common to combine the first and second
passes as one radix-4 pass by calculating N/4
butterflies in the following equations.

Ar' = Ar+ Cr + Br + Dr

Br' = Ar+ Cr—(Br+Dr)

Cr = Ar—Cr+ (Bi—Di)

Dr' = Ar—Cr—(Bi—Di) Eqn. 5-2

Bi' = Ai+Ci—(Bi+Di)

Ci" = Ai—Ci—(Br—Dnr)

Ai"’ = Ai+ Ci+Bi+Di

DI’ = Ai—Ci+ (Br—Dr)
Notice that there are eight additions and eight
subtractions in . A DSP that has a multiplication
and accumulation instruction with one or two
parallel moves (type A DSP) may take at least

sixteen instructions to do . A DSP that has a
FMPY||ADD||SUB instruction with two parallel

MOTOROLA 5-5

data moves (type B DSP) can do in eight
instructions. After combining the first two trivial
passes as a radix-4 pass, the number of
instructions required in the radix-2 DIT complex
FFT becomes:

(TRIVXN/4)+[(m—2) X N/2 X BFLY]

where: TRIV is the number of instructions
necessary to perform a trivial butterfly

Theoretically, for the DSP56001/2, the
DSP96002, and the DSP56156, TRIV may be
16, 8, and 16 instruction cycles, respectively.
Therefore, a 1024-point complex FFT on the
DSP96002 can be done in (8 x 256) + (8 x 512
x 4) = 18,432 instruction cycles. This is a lower
boundary of the radix-2 complex FFT. In fact,
TRIV is 17, 8, and 22 on the DSP56001, the
DSP96002, and the DSP56156, respectively.
Cycle time of the FFT can be reduced further by
exploring the simple relations among the
remaining passes.

Trivial twiddle factors exist in the remaining
passes as well. Special butterflies can take
advantage of those simple relations. There are
two types of trivial twiddle factors:

Type | W% = 1,Wm/4 =
Typell wi'® = w8 - 0707 -j0.707

Type | trivial factors don’t involve multiplications
as already shown in Egn. 5-2. To utilize these
simple relations in the remaining passes,
different butterflies must be inserted in one

5-6

MOTOROLA

pass. This change results in longer program
code and some structure overhead, such as
updating address registers, different DO loops,
and modulo addressing.

Type |l trivial factors are not really trivial for
either type A or type B DSPs. Type |l trivial
factors reduce the theoretical complexity of a
radix-2 butterfly to two real multiplications and
six real additions or subtractions. With only one
adder on type A DSPs, six instructions are
required as before. The ideal implementation
complexity could be 3 for type B DSPs, but
unfortunately each radix-2 butterfly deals with
four real inputs and four real outputs. Type B
DSPs have only two parallel data moves, and
each radix-2 butterfly still takes at least four
instruction cycles for type Il trivial factors. The
type |l trivial factor issue is addressed here
because this is probably the last chance for
further optimizing radix-2 FFTSs.

Each group in the last pass consisted of a
single butterfly. A triple nested DO loop is thus
no longer required in this pass: it can be split
and handled by a single DO loop.

3. Another alternative is to combine the last two
passes into one radix-4 pass. Since each
butterfly in the last pass requires a different
twiddle factor, one instruction to fetch a twiddle
factor must be appended in the butterfly core.
The same fetch occurred in the second to last
pass in every two butterflies. Combining four
radix-2 butterflies into one radix-4 butterfly may
save four multiplications but a special twiddle

MOTOROLA 5-7

factor table has to be created for the radix-4
butterfly.

4. Forlonger FFTs (>256 points), internal memory
in the DSP56001/DSP56002 is not sufficient to
contain the complete data set. Consequently,
the butterflies execute more slowly when the
processor needs to fetch a data value in
external X and in external Y memory in the
same instruction cycle. This causes the
instruction cycle to be “stretched”, resulting in
slower execution time. Through intelligent
memory usage, however, this effect can be
minimized. In a further optimized routine (see
Appendix A), the first two passes are
combined into a single pass. Next, separate
256-point FFTs are computed, whereby the
data is moved into internal memory, and the
results are not moved to external memory until
the final pass. This process avoids the
stretching of the instruction cycle on the middle
passes, and makes optimal use of the available
internal memory.

With these optimizations, a significantly faster rou-
tine is obtained. For instance, a 1024-point
optimized complex FFT routine is available for
DSP96002 which executes in 0.94 ms at 40MHz
clock (see Fully Optimized Complex FFT in Appen-
dix A). A fully optimized complex FFT routine for
DSP56001/2 is also listed in Appendix A
(CFFT56.ASM). 0.704ms is needed to calculate a
512-point complex FFT at 40 MHz clock, which is
8.7% faster than an optimized complex FFT. For
more benchmarks see SECTION 8. Note, however,
that “straight-line” code always results in longer
programs.

5-8

MOTOROLA

5.2 Example of Optimization

5.2.1 Fully Optimized Complex FFT
for the DSP56001/2

Program CFFT56.ASM in Appendix A is a good ex-
ample of optimizing complex FFTs on the
DSP56001/2 for fast execution time. Figure 5-1
shows passes, groups and butterflies for a 512-point
complex FFT. There is a total of 9 passes. The num-
ber of groups in each pass doubles from pass to
pass, while the number of butterflies in each group
halves from pass to pass. Each pass has the same
number of butterflies,.i.e. N/2=256 butterflies.

CFFT56.ASM takes advantage of the trivial twiddle
factors in all the passes. Note that pass 0 and 1 can
be done by simple radix-4 butterflies. A radix-4 but-
terfly has been coded by 17 instructions, which is
the best case on the DSP56001/2. The parallel data
move in this radix-4 butterfly has been deliberately
arranged to avoid a dual data move involving exter-
nal memory, although the first and next to last
instruction may result in cycle stretch in some cas-
es. Since half of the 512 data are in external
memory, one instruction cycle is stretched, and 18
instruction cycles are used for a 512-point complex
FFT. This equals 4.5 instruction cycles per radix-2
butterfly. The same radix-4 butterflies are also ap-
plied to passes 2, 3, 4, and 5. Note that in Figure 5-1,
the groups highlighted by cross lines are trivial butter-
flies too, and are not covered by the simple radix-4
butterflies. These data points are calculated by 5-in-
struction radix-2 butterflies. As shown in Figure 5-1,

MOTOROLA 5-9

each pass has 256 radix-2 butterflies and the first
seven passes have 860 trivial butterflies. 772 of
these radix-2 butterflies require 4.5 instruction cycles
(simple radix-4 butterflies) while 88 of them require 5
instruction cycles. Therefore, the total cycle time for
trivial butterflies is 772 x 4.5 + 88 x 5 = 3,914 which
means a savings of 860 x 6 - 3914 = 1,246 cycles
when compared to a non-optimization case. For
program simplicity, the above calculation does not
utilize the trivial butterflies in passes 7 and 8.

CFFT56.ASM uses N/2 real twiddle factors. This
scheme reduces the data memory requirement and
also reduces the structure overhead on group DO
loops, because the group number in each pass
changes to half of the previous scheme.

CFFT56.ASM fully utilizes internal memory to avoid
cycle stretch when the DSP56001/2 accesses two
data. A 512-point complex FFT is divided into two
256-point parts. The first 256-point part remains in
internal memory until the last pass. The second
256-point data loads into internal memory after the
first pass and stays there until the last pass.

The last two passes are implemented by two sepa-
rate single loops to avoid the penalty of DO loop
set-up. Each group has four radix-2 butterflies in the
next-to-last pass, and two in the last pass. If group
DO loop is still used, then each butterfly may take
6.75 and 7.5 cycles in the next-to-last pass and the
last pass, respectively. The cycles saved from the
separated DO loops are 256 x 6.75 + 256 x 7.5 -
512 x 6 = 576.

5-10

MOTOROLA

Pass0 1 2 3 4 5 6 7 8

] w=ao

I:I W =(0,)
calculated by R4 butterfly

I:I W =(0,))
calculated by R2 butterfly

Figure 5-1 Trivial twiddle factors in a 12-point complex radix-2 DIT
FFT. The butterflies in highlighted groups can be calculat-
ed without multiplications. A, B, C, and D are radix-4
butterfly pointers.

MOTOROLA 5-11

5.2.2 Fully Optimized Complex FFT
for the DSP96002

APPENDIX A presents a fully optimized program
for 1024-point complex input FFT for the
DSP96002. Like the fully optimized program for the
DSP56001/2, this program takes advantage of triv-
ial twiddle factors in all of the passes as follows:

* Naturally, the first and second passes are
combined into a radix-4 pass with each
radix-4 butterfly requiring 8 instruction
cycles. This is equal to 2 instruction cycles
per radix-2 butterfly.

All trivial butterflies in the middle passes
are calculated by a separate routine.

» Each pass is written in a separate section
to reduce the DO loop overhead. To reduce
the program length, the special radix-4 and
normal radix-2 butterflies are programmed
in subroutines. Only two-nested DO loops
are used for each pass.

» The last two passes are also combined into
a radix-4 pass. After the combination, the
number of instruction cycles per radix-2
butterfly is decreased from 5 to 4.25
instruction cycles. Because radix-4
butterflies are used in the last two passes,
an extra set of 256 complex twiddle factors
must be present in the external memory.
These twiddle factors are generated off-line
by MATHLAB software.

5-12 MOTOROLA

The fully optimized 1024-point complex FFT uses
18891 instruction cycles; while the optimized 1024-
point complex FFT program (seen on the Motorola
DSP bulletin board; Dr. BuB) uses 20958 instruction
cycles. Optimization saves 20,958-18,891=2,067 in-
struction cycles which equals about 10% cycle time
of the optimized code. Also note that the fully opti-
mized code only works with fixed data length. |

MOTOROLA 5-13

	5.1 Optimization
	5.1.1 Minimum Memory Requirement — 5.1.1 In-Place ...
	5.1.2 Optimization for Faster 5.1.2 Execution
	1. Since the first and second passes have trivial ...
	2. Trivial twiddle factors exist in the remaining ...
	3. Another alternative is to combine the last two ...
	4. For longer FFTs (>256 points), internal memory ...

	5.2 Example of Optimization
	5.2.1 Fully Optimized Complex FFT 5.2.1 for the DS...
	Figure 5-1 Trivial twiddle factors in a 12-point c...

	5.2.2 Fully Optimized Complex FFT 5.2.2 for the DS...

	Optimizing Performance of the FFT

