

MOTOROLA

X k() =

X∗ k–() x(
r 0=

N 1–

∑=

X∗ N k–() x∗
r 0=

N 1–

∑=

SECTION 6

Real-Valued Input
FFT Algorithm

“Data
acquisition on

the DSP96002 is
truly parallel

with CPU
instruction
execution.”

APR4SECTION6 Page 1 Friday, December 15, 1995 8:15 AM
A real-valued input FFT is a special case of the com-
plex FFT where all imaginary components in the input
are zero. Under this condition, input sequence is real,
and the time sequence has a symmetric Fourier trans-
form in the frequency domain. Only half of the
frequency sequence needs to be computed for real-
valued input FFTs or real FFTs. Recall the definition
of the DFT:

Eqn. 6-1

If x(r) is real,

Eqn. 6-2

and

Eqn. 6-3

x r()e
j 2πrk() N⁄–

 k

r 0

=

N 1

–

 ∑ 0 1 … N 1 – , , =

r)e
j 2πrk() N⁄

x r()e
j 2πrk() N⁄–

r 0=

N 1–

∑ X k()= =

r()e∗ j–() 2πr N k–()() N⁄
x r()e

j 2πrk() N⁄–

r 0=

N 1–

∑ X k()= =
6-1

6-2

APR4SECTION6 Page 2 Friday, December 15, 1995 8:15 AM
6.1 Real-Valued Input FFT
Algorithm 1

6.1.1 Bergland Algorithm
This algorithm was developed by Glenn D. Bergland
in 1968 (see reference 15). To derive this algorithm,
we assume that readers are familiar with the Cooly-
Tukey radix-2 DIT complex FFT shown in Figure 3-8.

Bergland’s algorithm is based on the observation of
the symmetry of the FFT to the real input,

. Calculating the second
half of the FFT is not necessary. By checking for re-
dundancy in the Cooly-Tukey radix-2 decimation in
time complex FFT when input is a real sequence,
one may discover that when the twiddle factors
equal , only a negation and a re-la-
beling need be performed. This so called re-
labeling simply exchanges real and imaginary data
indexed by address registers. All odd index outputs
in Figure 3-8 are the second half of the transform,
which can be obtained from the symmetry. Ber-
gland’s algorithm uses those memory locations for
storing imaginary values. A direct map from the
Cooly-Tukey algorithm to Bergland’s algorithm is di-
agrammatically shown in Figure 6-1. Note that all
inputs are real and all intermediate results are
stored in N and only N locations. The calculation
can be done in-place, however, the indices of each
butterfly outputs are not in bit-reversed order as in
the Cooly-Tukey algorithm. The following discus-
sion refers to this order as the Bergland order.

XN k)(XN∗ N(k)–=

W N 4⁄() j–=
MOTOROLA

ly-Tukey radix-2 DIT

A4(0)

A4(1)

A4(2)

iA4(2)

A4(4)

iA4(4)

A4(6)

iA4(6)

iA4(14)

A4(12)

A4(14)

iA4(8)

A4(8)

iA4(12)

A4(10)

iA4(10)

+

-

X(0)

X(8)

Xr(4)

Xi(4)

Xr(2)

Xi(2)

Xr(6)

Xi(6)

Xi(7)

Xr(3)

Xr(7)

Xi(1)

Xr(1)

Xi(3)

Xr(5)

Xi(5)

APR4SECTION6 Page 3 Friday, December 15, 1995 8:15 AM
Figure 6-1 Non-redundancy calculation of the Coo
FFT with real inputs

A0(0)

A0(1)

A0(2)

A0(3)

A0(4)

A0(5)

A0(6)

A0(7)

A0(11)

A0(12)

A0(10)

A0(9)

A0(8)

A0(13)

A0(14)

A0(15)

A1(0)

A1(1)

A1(2)

A1(3)

A1(4)

A1(5)

A1(6)

A1(7)

A1(11)

A1(12)

A1(10)

A1(9)

A1(8)

A1(13)

A1(14)

A1(15)

A2(0)

A2(1)

A2(2)

A2(3)

A2(4)

A2(5)

A2(6)

A2(7)

A2(11)

iA2(8)

A2(10)

A2(9)

A2(8)

iA2(9)

iA2(10)

iA2(11)

no
 o

pe
ra

tio
n

ne
ce

ss
ar

y

A3(0)

A3(1)

A3(2)

A3(3)

A3(4)

A3(5)

iA3(4)

iA3(5)

iA3(9)

A3(12)

iA3(8)

A3(9)

A3(8)

A3(13)

iA3(12)

iA3(13)

no
 o

pe
ra

tio
n

ne
ce

ss
ar

y

no
 o

p

MOTOROLA 6-3

6-4

APR4SECTION6 Page 4 Friday, December 15, 1995 8:15 AM
The twiddle factors appear to be in the Bergland or-
der also, as shown Figure 6-1, if more than 16 points
of real FFT are carried out. The next section explains
how to convert a normal order of twiddle factors to
the Bergland order and how to convert the Bergland
ordered outputs to normal order. The only operation
performed for multiplying by -j is a re-labeling of half
of the current outputs as imaginary inputs for the next
stage. Thus, in Figure 4-2 all butterflies, except one
with W0, have the crossed inputs to the butterfly,
even though the butterfly in each group is identical.
An additional benefit of ‘no operation’ is the reduc-
tion of the number of passes, log2(N)-1, except for
one addition and one subtraction. The final algo-
rithm is shown in Figure 6-2.

The Bergland butterfly differs from the Cooly-Tukey
butterfly simply in that the Bergland requires two more
conjugate operations, which are done by re-labeling
(see Figure 6-3). Essentially, the number of arithmetic
operations required by both algorithms is the same.
Although re-labeling can be implemented in parallel
with other arithmetic operations without consuming
instruction cycle time, it does require a data move.
This extra traffic may have an impact on the imple-
mentation later on. Figure 6-3 depicts the Bergland
butterfly. Butterfly (a) is a simplified version of (b)
since no complex multiplication is carried out when
w=1. Note that the inputs in (b) have been re-labeled
to reflect a multiplying -j operation. To calculate the
butterfly (a) two additions and two subtractions are
needed along with four real multiplications, three real
additions, and three real subtractions.
MOTOROLA

1 passes and one

)

)

)

)

)

)

+

-

X(0)

X(8)

Xr(4)

Xi(4)

Xr(2)

Xi(2)

Xr(6)

Xi(6)

Xi(7)

Xr(3)

Xr(7)

Xi(1)

Xr(1)

Xi(3)

Xr(5)

Xi(5)

APR4SECTION6 Page 5 Friday, December 15, 1995 8:15 AM
Figure 6-2 Bergland algorithm has only log2(N)-
more addition and subtraction

A0(0)

A0(1)

A0(2)

A0(3)

A0(4)

A0(5)

A0(6)

A0(7)

A0(11)

A0(12)

A0(10)

A0(9)

A0(8)

A0(13)

A0(14)

A0(15)

A1(0)

A1(1)

A1(2)

A1(3)

A1(4)

A1(5)

A1(6)

A1(7)

A1(11)

A1(12)

A1(10)

A1(9)

A1(8)

A1(13)

A1(14)

A1(15)

A2(0)

A2(1)

A2(2)

A2(3)

A2(4)

A2(5)

A2(6)

A2(7)

A2(11)

A2(12)

A2(10)

A2(9)

A2(8)

A2(13)

A2(14)

A2(15)

A3(0)

A3(1)

A3(2)

A3(3)

A3(4)

A3(5)

A3(6)

A3(7)

A3(11

A3(12

A3(10

A3(9)

A3(8)

A3(13

A3(14

A3(15

BB

BB

BB

BB

BB

BB

BB
MOTOROLA 6-5

6-6

Figure 6-3 (a) Butt
(b) Butt

X=A+jB

Y=C+jD

(a)

-

APR4SECTION6 Page 6 Friday, December 15, 1995 8:15 AM
6.1.2 Reordering
The output order of the Bergland algorithm is slight-
ly different than the bit-reversed order, and the
twiddle factor required in the calculation is also in
Bergland order. To get this special order, one may
use the following algorithm for doubling the length
of each number sequence:

1. Multiply the second entry of the sequence by
two, and make this product the second entry of
the new sequence

2. Subtract each nonzero entry of the sequence
from twice the product formed in step 1 (these
differences form the rest of the even entries of
the new sequence)

3. Take the odd entries of the new sequence as
the numbers of the original sequence

X=A+jC

Y=B+jD
W

X’=A+BWr+DWi
+j(C+DWr-BWi)

Y’=A-(BWr+DWi)
-j[C+(DWr-BWi)]

*
* -

* denotes conjugate

erfly of Bergland Algorithm with W = 1
erfly of Bergland Algorithm with W ≠ 1

X’=A+C+j(D+B)

Y’=A-C+j(D-B)

(b)

-

MOTOROLA

start */

by half */
e doubles*/

nd order tables

APR4SECTION6 Page 7 Friday, December 15, 1995 8:15 AM
The algorithm in Figure 6-3 can be translated to the
following C language code:

Also note that the size of the twiddle factors re-
quired in Bergland FFT is N/4, while the size of the
output data is N/2. Two tables must be generated
before the FFT computation.

6.1.3 Performance Estimation
For N=2m, it has been shown that the pass or
stage number in Bergland algorithm is log2(N)-
1=m-1. In each pass there is one (and only one)
type (a) butterfly group. The Bergland algorithm

void
bildberg(bergtabl,buf_size)
short *bergtabl,buf_size;

{
 register int i,j,k;
 i = buf_size / 4;
 k = 4;

 bergtabl[0] = 0; /* seed values for
 bergtabl[i] = 2;
 bergtabl[2*i] = 1;
 bergtabl[3*i] = 3;

while(i>1)
 {
 i = i/2; /* increments drop
 k = k*2; /* new sequence siz

 bergtabl[i] = k / 2;
 for (j=i+i; j<buf_size; j = j+i+i)
 bergtabl[j+i] = k - bergtabl[j];
}
}

Figure 6-4 C language code that generates Bergla
MOTOROLA 6-7

6-8

4 ×

APR4SECTION6 Page 8 Friday, December 15, 1995 8:15 AM
takes four points in and four points out. The number
of butterflies in each pass is N/4. Each butterfly
uses four multiplications, three additions, and three
subtractions, except that the type (a) butterfly uses
only two additions or two subtractions. For N=2m,
Bergland algorithm may need

Eqn. 6-4

instruction cycles to perform a N-point real FFT,
where BB is the number of instructions for the Ber-
gland butterfly. Theoretically, for the DSP96002
and the DSP56001, BB should be 4 and 6, respec-
tively. If the normal order output is desired, then
converting Bergland order data to the normal order
data must be included in the performance estima-
tion. At least two more instructions have to be
added to the last pass for accessing the Bergland
order table. The performance of the Bergland algo-
rithm including unscrambling could be:

Eqn. 6-5

Eventually, the real performance of an FFT is de-
termined by the architecture of the DSP on which
the FFT runs. As described in SECTION 4.4, the
actual performance of the FFT is determined by
the number of data paths, the number of registers,
the instruction type, the cycle time of DO loop, and
the memory organization. In other words, a good

N 4⁄ 4 BB 2
i 1–

1–()+[] N 2
i 1+()⁄

i 2=

m 1–

∑+

N 4 BB 2
i 1–

1–()+[] N 2
i 1+⁄()

i 2=

m 1–

∑ N 2⁄() 1–+ +
MOTOROLA

APR4SECTION6 Page 9 Friday, December 15, 1995 8:15 AM
or relatively low complexity algorithm may not gen-
erate good performance if the microprocessor’s
architecture does not provide hardware support for
that algorithm. Due to the memory structure and
instruction type, the number of instructions for a
Bergland butterfly, (BB), actually are 5 and 7 on
the DSP96002 and the DSP56001,respectively.
(See program RFFT96B.ASM and RFFT56B.ASM
in APPENDIX A.) Due to this compromise in the
implementation, the next algorithm may be prefer-
able because of the number of instructions.

6.2 Real-Valued Input FFT
Algorithm 2

The second algorithm treats an N real-valued input
array as an N/2 complex array, without extra zeros.
Then, an N/2 complex FFT is performed. The trick
is to separate the transformation of the complex se-
quence into two complex sequences, then to obtain
the transformation of the real-valued input array.

6.2.1 Separating Two Real FFT from
One Complex FFT

If a real-valued input array is z(n), its transform Z(k)
has an even real part and an odd imaginary part. If
z(n) is packed in such a way that all even index data
is in x(n) and all odd index data is in y(n), then,
MOTOROLA 6-9

6-10

Z N k–() =

DFT x n([

{=

DFT y n([

{=

APR4SECTION6 Page 10 Friday, December 15, 1995 8:15 AM

Eqn. 6-6

Eqn. 6-6 shows that the DFT of a complex time se-
quence z(n) can be represented by the DFTs of two
real time sequences x(n) and y(n), because the
DFT is a linear transform.

Also the second half of z(n) can be represented by
the DFT of x(n) and y(n)

Eqn. 6-7

The goal of the derivation is to find out how to con-
struct the DFT of two real time sequences from the
DFT of a complex sequence. By combining Eqn. 6-6
and Eqn. 6-7, it shows:

Eqn. 6-8

where: k = 0,1,...,N/2

Z k() DFT z n()[] DFT x n() jy n()+[]==

DFT x n()[] jDFT y n()[]+()=

Xr k) jXi k)(+(j Yr k() jYi k)(+[]+()=

Xr k) Yi k)(–([] j Xi k) Yr k)(+([]+()=

Xr k) Yi k)(+([] j– Xi k) Yr– k)(([]

)] Xr k) jXi k)(+(=

Zr k() Zr N k–)(+[] j Zi k) Zi N k–)(–([]+ } 2⁄

)] Yr k) jYi k)(+(=

Zi N k–() Zi k)(+[] j Zr N k–) Zr k)(–([]+ } 2⁄
MOTOROLA

APR4SECTION6 Page 11 Friday, December 15, 1995 8:15 AM
According to Eqn. 6-8, two DFTs of two real time se-
quences can be rebuilt from one complex DFT. This
split operation, which separates two DFTs from
one, paves the way for the calculation of N real in-
put DFTs done by an N/2 complex DFT.

6.2.2 Rebuilding the DFT of a Real
Sequence from Two DFTs

From the previous discussion, DFTs of two real se-
quences can be constructed from one complex
DFT. In this section, we investigate how to rebuild
the DFT of a real sequence from two DFTS. To un-
derstand this point, recall Eqn. 3-1. It can be
rewritten as:

Eqn. 6-9

where:

Note that X(k) is the DFT of the even index se-
quence and Y(k) is the DFT of the odd index
sequence. X(k) and Y(k) in Eqn. 6-9 can be deter-
mined from Eqn. 6-8. Furthermore, F(k), the DFT of

F k() X k() WN
k

Y k() k + 0 1 … N 1 – , , = =

X k() x 2r()W N 2⁄
rk

r 0=

N 2⁄ 1–

∑=

Y k() x 2r 1+()W N 2⁄
rk

r 0=

N 2⁄ 1–

∑=

MOTOROLA 6-11

6-12

F k() Z k() Z+[----------------------=

APR4SECTION6 Page 12 Friday, December 15, 1995 8:15 AM

a real sequence with

N

 points, can be found accord-
ing to Eqn. 6-9. Combining Eqn. 6-8 and Eqn. 6-9,
we obtain the final equation Eqn. 6-10.

Eqn. 6-10

where: k = 0,1,...(N/2)-1,
N = Number of real inputs

Notice that:

• Only 0 to N/2-1 points are saved by the
algorithm.

• The values F(0) and F(N/2) are real and
independent, to obtain entire spectrum, F(N/2)
in the imaginary part of F(0).

• The twiddle factors in the DFT and split complex
multiplication have different resolutions. In the
DFT, the period of W is N/2; in the split complex
multiplication, the period of W is N, though the
same number of points (N/2) are needed in both
cases. This means the algorithm may use more
memory space for twiddle factors.

Eqn. 6-10 can be decomposed further to a real mul-
tiplication format that can be implemented on
DSPs.

∗ N 2⁄ k–()]
2

------------------------------- j
Z k() Z∗– N 2⁄ k–()[]

2
--WN

rk–
MOTOROLA

APR4SECTION6 Page 13 Friday, December 15, 1995 8:15 AM
where:

and

6.2.3 Performance Estimation
In the following paragraph, we will discuss the com-
putational complexity of Eqn. 6-10 and the
implementation constraints on the architecture of
Motorola’s DSP. For detailed implementation,
please refer to the programs RFFT96.ASM and
RFFT56.ASM in APPENDIX A.

H1r Ar Br+() 2⁄=

H1i Ai Bi–() 2⁄=

H2r Ai Bi+() 2⁄=

H2i Br Ar–() 2⁄=

Ar
′

H1r WrH2r WiH2i–()+=

Br
′

H1r WrH2r Wi– H2i()–=

Ai
′

H1i WiH2r Wr– H2i()+=

Bi
′

H1i()– WiH2r Wr– H2i()+=

Eqn. 6-11

W r 2πk() N⁄()cos=

W i 2πk() N⁄()sin–=

Ar realZ k()=
Br realZ N k–()=
Ai imagZ k()=
Bi imagZ N k–()=

k=0,...(N/4-1)

k=0,...(N/4-1)

k=0,...(N/4-1)

k=0,...(N/4-1)
MOTOROLA 6-13

6-14

APR4SECTION6 Page 14 Friday, December 15, 1995 8:15 AM
Eight multiplications, five additions, and five sub-
tractions are needed to implement Eqn. 6-10. The
minimum requirement for this calculation is eight in-
structions if one multiplier and the MPY||ADD||SUB
is available on the given DSP. Note that there are
four special multiplications, and the multiplicands
are 1/2 in the calculations of H1r, H1i,H2r, and H2i.

On the DSP56001, the divide-by-2 operation can be
automatically implemented by a “scaling down”
mode when data moves from the ALU accumulator
(A or B) to the X or Y data bus occur. The cost of
implementing the division operation, of course, is
that one instruction has to be used to turn on the
scaling down bit in the Status Register. Apparently,
only four multiplications are needed on the
DSP56001. But one may find that when the scaling
down mode is on, all output data from the accumu-
lator (A or B) to X or Y memory is also divided by 2.
Thus, the scaling down mode has to be turned off
before data is output to the X or Y memory.

The scaling bit control instructions on the
DSP56001 do not allow parallel data moves or any
other operations. If the DSP is in the scaling mode,
a total of twelve instructions are needed: four MAC
instructions, two toggling scaling bit instructions,
and six more ADD or SUB instructions. In practice,
see program RFFT56.ASM in APPENDIX A, where
the scaling mode is never turned on because scal-
ing must be done if block floating point is not used.
Therefore, the output of the program RFFT56.ASM
MOTOROLA

APR4SECTION6 Page 15 Friday, December 15, 1995 8:15 AM
is twice as large as true values. Ten instruction cy-
cles is the minimum requirement. In practice, one
instruction in the loop for data saving is included.

On the DSP96002, since the FMPY||ADD||SUB in-
struction is available, eight instructions are enough
to perform a computation such as Eqn. 6-10. In AP-
PENDIX A more details about implementation such
as memory map, program length, twiddle factors,
and data size are presented.

The overall performance of the algorithm is deter-
mined by the time required to calculate an N/2
complex FFT plus the time for separating
manipulations.

Eqn. 6-12

where: S = 11 for the DSP56001
S = 8 for the DSP96002

6.3 Real-Valued Input FFT
Algorithm 3

In most practical situations, the data to be ana-
lyzed by the FFT is real and is usually obtained
from a single analog-to-digital (A/D) converter.This
knowledge can be exploited in several ways to in-
crease the speed of the FFT calculation even

CFFT N 2⁄() S N 4⁄×+
MOTOROLA 6-15

6-16

APR4SECTION6 Page 16 Friday, December 15, 1995 8:15 AM
further:

1. Since the input data is real, there is no need to
multiply, add, or subtract the imaginary parts.

2. Use can be made of symmetries within the FFT:

Eqn. 6-13

When x(nT) is real, * denotes complex conjugate.

Clearly, not all of the frequency points need to be cal-
culated, as many of them can be obtained by taking
a simple complex conjugate of other, previously
computed points. Taking a complex conjugate can
be easily achieved by moving the same values to dif-
ferent memory locations, after taking the negative of
the value which goes to Y memory (imaginary part).
Figure 6-5 shows the procedure for a 16-point, real
FFT in greater detail. A real-input FFT routine is
available for the DSP56001/2, which executes in
1.01 ms using a 40-MHz clock. This also includes the
amount of time necessary to bring in 1024 sampled
data points from an external A/D converter. Because
of the fast interrupt capability of the DSP56001/2,
data sampling creates very little overhead. As a re-
sult, the maximum sampling rate at which a 1024-
point real FFT can be executed equals:

Comparing this with the sampling rate of 3.3 kHz
mentioned in SECTION 3.1 Motivation, a more
than 300-fold improvement is obtained by carefully
optimizing the Fourier transform algorithm!

XN k)(XN∗ N(k)–=

Fsmax
1024

1.01 10
3–×

------------------------------ 1.014 MHz()= =
MOTOROLA

T

x FFT

T

puted Value

 Computed

plex Conjugate

APR4SECTION6 Page 17 Friday, December 15, 1995 8:15 AM
Figure 6-5 Computation of the Real-Input, DIT FF

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

2-pt. comple

4-pt. complex FF

Com

Not

Com

real-input

four-point

butterfly
MOTOROLA 6-17

6-18

APR4SECTION6 Page 18 Friday, December 15, 1995 8:15 AM
6.4 The Goertzel Algorithm
Previous FFT algorithms compute all or half of the
frequency points in the range equaling half of the
sampling rate. For some applications, such as sin-
gle frequency detection, only one or several
frequency points are of interest. Using FFT to find
these frequencies is no longer cost effective in the
sense of computational complexity.

The Goertzel algorithm (see reference 3) can be im-
plemented by a second order IIR filter for each DFT
coefficient. The transfer function for the IIR filter is:

Eqn. 6-14

where:

N = the length of input sequence, which
depends on the resolution of two

consecutive frequencies to be
detected

k = the index of DFT coefficient

Also note that only three real coefficients are re-
quired in the IIR filter. Naturally, the IIR filter
recursively works on input samples and output re-
sults, so no input data buffer is needed; and only
two memory locations are used for storing internal
states of the IIR filter. Figure 6-6 shows an imple-
mentation of the Goertzel algorithm by a second
order IIR filter. In contrast, an IIR filter calculates

Hk Z()
1 WN

k
Z

1–
–

1 2 2πk N⁄()cos Z
1–

– Z
2–

+
---=

W N
k

e
2πkj– N⁄

=

MOTOROLA

tes energy of DFT

ient

),a=x[i]/2
COEF,y1=I(n-1)
CEOF - I(n-2),b=I(n-1)

,x0=I(n)

)I(n-1)
ude of DFT

APR4SECTION6 Page 19 Friday, December 15, 1995 8:15 AM
every output corresponding to every input. In the
Goertzel algorithm, only one DFT coefficient X(k) is
needed, and X(k) = yk(N). In other words, the com-
plex multiplication is carried out only once in an
entire DFT calculation. In frequency detection, only
the power of magnitude of the DFT coefficient is
needed. This observation may simplify the compu-
tation even more.

From Figure 6-6, the last output of the IIR filter is:

Eqn. 6-15

Figure 6-6 DSP56001 assembly code that calcula
coefficients by single parameter

;Goertzel algorithm to calculate energy of DFT coeffic
;
;
;
data equ $100
COEF equ $123456
LOOP equ 256

 org p:$40
 move #data,r0 ;r0 -> input data
 clr a #0,b ;I(n-1)=0,I(n-2)=0
 move #COEF,y0 ;y0=cos(2pik/N)
 do #LOOP,_END_GOERT
 neg b y:(r0)+,a a,x1 ;x1=I(n-1),b=-I(n-2
 macr y0,x1,a x1,y1 ;a=x[i]/2 + I(n-1)*
 addl b,a x1,b ;a=x[i] + 2*I(n-1)*
_END_GOERT
 mpy -y0,x1,a a,x0 ;a=-con(2pik/N)I(n)
 mpy x1,y1,b ;b=I(n-1)^2
 mac x0,x0,b a,y0 ;b=I(n)^2+I(n-1)^2
 mpy x1,y0,a ;a= -con(2pik/N)I(n
 addl b,a ;a= power of magnit

yk N() I N() WN
k

I N 1–()–=
MOTOROLA 6-19

6-20

yk

APR4SECTION6 Page 20 Friday, December 15, 1995 8:15 AM
The power of magnitude of the DFT coefficient is
easy to show:

Eqn. 6-16

Hence, only one real coefficient is required to com-
pute the energy of the signal. Figure 6-6 shows the
DSP56001 assembly language code used to detect
the energy of a frequency specified by the Goertzel
algorithm. The recursive part of the IIR filter is effec-
tively implemented by three instructions. The total
instruction cycles for a N-point input sequence is
3N+8. Only one coefficient cos(2pk/N) is stored in
the on-chip memory and two more memory loca-
tions are used to store internal states I(N) and I(N-1).

6.5 Real-Time Data
Acquisition on
Motorola DSPs

A very important feature of a DSP is its capability to
carry data in and out in a deterministic amount of
time without interfering with the CPU core opera-
tions. “Real-time FFT” refers to the sampled data
from an A/D converter or other devices that is
stored in a buffer. Once this buffer is full, the DSP
starts the FFT program execution. In the mean
time, the DSP grabs the sampled data and puts it
into another buffer. Whichever finishes first, (the

N() 2
I
2

N() 2 2πk N⁄()I N()I N 1–()cos I
2

N 1–()+–=
MOTOROLA

APR4SECTION6 Page 21 Friday, December 15, 1995 8:15 AM
FFT program execution or data acquisition), has to
wait for the other one to finish its task. Thus, two
data buffers, plus synchronization between the pro-
gram execution and data acquisition is required to
implement the real-time FFT. This is also called
double buffering. The following sections present the
I/O peripherals on the DSP56001/2 and the
DSP96002, and show examples of how to set up
these peripherals for real-time data acquisition.

6.5.1 Fast Interrupt on DSP56001 for
Real-Time FFT Data Acquisition

Figure 6-7 shows a scheme for double buffering.
Two memory spaces are exclusively assigned to an
FFT program. The FFT program will not start until
one of two buffers is full. The loaded buffer will not
be loaded with data again unless the FFT has fin-
ished its execution on the buffer.

Y = imaginary dataP = program X = real data

Figure 6-7 Double buffering input data so that
data input can work with the FFT
program concurrently

Buffer 1

Buffer 2

Fast interrupt

FFT program
MOTOROLA 6-21

6-22

Figure 6-8 Block di
fast inter
gram. T
interrupt
the timer
buffer po

SSI

or

HI

APR4SECTION6 Page 22 Friday, December 15, 1995 8:15 AM
The double buffering is implemented by the fast in-
terrupt on the DSP56001/2 (see reference 1). The
data received by peripherals such as the SSI or
Host Interface (HI) on the DSP56001/2 will be
moved into the internal memory by the fast inter-
rupt. The fast interrupt needs only two instruction
cycles to move one received data word from a pe-
ripheral to a specified memory location without
changing the program flow in the CPU.

agram of the double buffering technique. SSI/HI
rupt has higher priority than the MAIN or FFT pro-
he pointer of buffer is checked by SCI timer
 which has highest interrupt priority. The interval of
 interrupt is set according to data length so that the
inter can be updated accordingly.

CPU

X-mem

Y-mem

Fast
 Interrupt

SCI
Timer

FFT
MOTOROLA

APR4SECTION6 Page 23 Friday, December 15, 1995 8:15 AM
The data generation rate is actually much slower than
the FFT speed. For example, to generate a set of
1024-point data at 44.1 kHz sampling rate could take
1/44100 x 1024 = 23.2(ms) while a 1024-point real
FFT only takes about 1ms at 40 MHz clock on the
DSP56001/2. For this reason, the SSI or HI interrupt
as shown in Figure 6-8 has been assigned higher pri-
ority than the FFT program so that every piece of data
received can be sent to internal memory via fast inter-
rupt on the DSP56001/2. The buffer pointer keeps
growing by SSI/HI data moves and is being checked
by the SCI timer interrupt. Once the buffer is full, the
FFT program starts and proceeds to move the buffer
pointer to the next buffer so that SSI/HI fast interrupt
works with the CPU concurrently.

6.5.2 Real-Time Data Acquisition
on DSP96002

The same double buffering technique used on the
DSP56001 for real-time data acquisition is also ap-
plicable on the DSP96002. Data acquisition on the
DSP96002 is truly parallel with CPU instruction ex-
ecution. Recall the DSP96002 architectural block
diagram in Figure 4-4. The double buffering tech-
nique guarantees that the two DMA channels
directly connected to the internal memory support
parallel data access without stretching an instruc-
tion cycle if the CPU core and the DMA controller
access different internal memory locations. ■
MOTOROLA 6-23

	Real-Valued Input FFT Algorithm
	6.1 Real-Valued Input FFT 6.1 Algorithm 1
	6.1.1 Bergland Algorithm
	Figure 6-1 Non-redundancy calculation of the Cooly...
	Figure 6-2 Bergland algorithm has only log2(N)-1 p...
	Figure 6-3 (a) Butterfly of Bergland Algorithm wit...

	6.1.2 Reordering
	1. Multiply the second entry of the sequence by 1....
	2. Subtract each nonzero entry of the sequence 2. ...
	3. Take the odd entries of the new sequence as 3. ...
	Figure 6-4 C language code that generates Bergland...

	6.1.3 Performance Estimation

	6.2 Real-Valued Input FFT 6.2 Algorithm 2
	6.2.1 Separating Two Real FFT from 6.2.1 One Compl...
	6.2.2 Rebuilding the DFT of a Real 6.2.2 Sequence ...
	6.2.3 Performance Estimation

	6.3 Real-Valued Input FFT 6.3 Algorithm 3
	1. Since the input data is real, there is no need ...
	2. Use can be made of symmetries within the FFT:
	Figure 6-5 Computation of the Real-Input, DIT FFT

	6.4 The Goertzel Algorithm
	Figure 6-6 DSP56001 assembly code that calculates ...

	6.5 Real-Time Data 6.5 Acquisition on 6.5 Motorola...
	6.5.1 Fast Interrupt on DSP56001 for 6.5.1 Real-Ti...
	Figure 6-7 Double buffering input data so that Fig...
	Figure 6-8 Block diagram of the double buffering t...

	6.5.2 Real-Time Data Acquisition 6.5.2 on DSP96002...

