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4.1  Required Hardware 
Support for FFT 
Calculation

The basic building block of the DIT FFT routine is the
butterfly computation shown in Figure 3-6. Conse-
quently, the architecture and instruction set of a DSP
device should allow efficient computation of this basic
butterfly. Since the butterfly consists of additions and
multiplications, a hardware adder/subtracter and mul-
tiplier is crucial. The DSP56001/2 and the DSP56156
provide a multiplication and addition instruction, or
MAC, which is beneficial to most DSP applications in-
cluding FFT, with no increase in silicon cost. The
DSP96002 supports FFT calculation capability by
adding subtraction to the MAC function, which pro-
vides the multiplication, addition and subtraction
instruction, FMPY||ADD||SUB. 

Since the butterfly calculation requires complex da-
ta, the architecture must easily support complex
arithmetic. The input and output data to the butter-
flies are moved between the processor's arithmetic
unit and memory. Consequently, efficient moves are
needed. 
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DSP56001/2 and DSP96002 hardware feature two
data memory modules; X and Y. The real compo-
nent and imaginary component of a complex
number can be stored in the X and Y memory mod-
ules respectively. Also, the DSP56001/2 and the
DSP96002 can perform dual reads and dual writes
in one instruction cycle. In contrast, the DSP56156
has only one data memory module, X, where both
real and imaginary components of the complex data
are stored. To support complex number fetch, the
DSP56156 provides dual memory read, where in
one instruction, it reads the X memory twice if the
specified address registers are used. 

The overall FFT algorithm is an array of many such
butterflies, and the size of the array depends upon the
number of points (N) in the FFT. In order to write gen-
eral FFT routines (for any N of the power of 2), efficient
implementation of the repetitive execution of the basic
butterfly element is important. Although FFTs may be
calculated on general-purpose microprocessors, typi-
cally, a great deal of software overhead is involved. A
hardware solution, using hardware designed to effi-
ciently implement the calculation of FFTs, would be
generally preferred in a real-time system.The
DSP56001/2, DSP96002, and DSP56156 feature a
zero-overhead DO loop instruction. After the loop is
set up (three instruction cycle time), each iteration
takes no additional cost in overhead.

In real-life applications, time as well as frequency data
is used in normal order, even though the diagram of
Figure 3-7 delivers the frequency data in bit-reversed
order. Thus, an efficient method for bit-reversed ad-
dressing is needed while avoiding time-consuming
MOTOROLA
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software solutions that modify the addressing order.
The DSP56001/2, DSP96002, and DSP56156 all fea-
ture a bit-reversed addressing mode.

Some FFT algorithms, (for example, radix-4 FFT)
require several registers to hold immediate results.
The number of registers available on the DSPs is
critical for computation intensive applications since
storing and restoring intermediate results to and
from memory will take more processing time than if
the results are available in on-chip registers.

The input data (time samples) of the FFT is usually
obtained from an external source such as an A/D
converter. This data collection must occur in parallel
with the FFT computation to make real-time perfor-
mance possible. Consequently, a DSP device must
provide easy interface with a variety of A/D convert-
ers, and must support low-overhead interrupt
schemes which can load data from an external de-
vice with minimal impact on the FFT computation.
The DSP56001/2, DSP96002, and DSP56156 all
feature a variety of peripherals on chip. More details
about real-time data acquisition are discussed in
SECTION 7.

The key points to implementing efficient FFT calcu-
lation using programmable DSPs are summarized
below. 

FFT calculation requires:

1. MAC or, ideally, FMPY||ADD||SUB instruction

2. Dual memory read and write in one instruction
cycle

3. Zero-overhead loop instruction
MOTOROLA 4-3
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4. Bit-reversed addressing mode 

5. Sufficient number of registers

6. Fast I/O to provide real time data (in real-time
applications)

4.2  Radix-2 DIT and 
DIF Butterflies

Theoretically, radix-2 decimation in time (DIT) butter-
flies and decimation in frequency (DIF) butterflies have
the same computational complexity: three additions,
three subtractions, and four multiplications. Since most
DSPs have only one hardware multiplier, the minimum
cycle time for multiplication for one DIT or DIF butterfly
is four instruction cycles. However, on the DSP56001,
a MAC instruction can implement one multiplication
and one addition in parallel in a single instruction cycle.
Four of the six additions or subtractions in a DIT butter-
fly can be executed in parallel with four multiplications,
and two more additions are required to finish the DIT
butterfly calculation. Due to data dependence, a DIF
butterfly can implement only two additions in parallel
with two multiplications. Thus, one DIF butterfly calcu-
lation requires four multiplications plus four additions
(see Figure 4-3).

The DSP96002 features a special instruction,
FMAY||ADD||SUB, which can implement either a DIT
or a DIF butterfly in four instruction cycles. Although
the DSP56156 has a MAC instruction, the lack of a
dual memory write operation plus constraints on ad-
MOTOROLA
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dress pointer updates in dual memory read operations,
causes the DIT butterfly and the DIF butterfly to both
take eight instruction cycles. 

In short, the Motorola DSP architecture implements
the more efficient DIT butterfly, since it generates
shorter cycle time than the DIF. The following discus-
sions assume a radix-2 DIT, extending to radix-4 DIT
in later sections. 
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4.3  Complexity of a Radix-2 
DIT FFT

The number of instructions required in a radix-2 DIT
FFT is determined by the number of instructions in
the butterfly core and the structural overhead of the
DSP. If only arithmetic operations are counted in
term of the multiplications and additions, a triple-
nested implementation of the FFT (see next sec-
tions) requires the following number of instruction
cycles for : 

Eqn. 4-1

where BFLY is number of instructions for calculating
a complex input butterfly. For the DSP56001/2, the
DSP96002 and the DSP56156, BFLY is 6, 4, and 8
respectively. On the DSP96002, for example, a
1024-point complex FFT needs 10 x 512 x 4 =
20,480 instruction cycles. 

4.4  Implementation on 
Motorola's DSP56001

4.4.1 DSP56001 Architecture

The DSP56001 (see Reference 4) was the first mem-
ber of the Motorola Digital Signal Processor line. It
features 16.5 million instructions per second (MIPS)
with a 33 MHz clock. 

N 2
m

=

m N/2 BFLY××
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Figure 4-2  DSP56001 Architecture Block Diagram
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The data paths are 24 bits wide, thereby providing

144 dB of dynamic range. More importantly, interme-

diate results are held by a 56-bit accumulator which

gives more accuracy in noise sensitive applications.

The data ALU, address arithmetic units, and program

controller operate in parallel so that an instruction pre-

fetch, a 24x24-bit multiplication, a 56-bit addition, two

data moves, and two address pointer updates using

one of three types of arithmetic (linear, modulo, or bit-

reversed) can be executed in one instruction. Three

on-chip peripherals (Serial Communication Interface,

Synchronous Serial Interface and Host interface), a

clock generator and seven buses (three address, four

data) make the overall system functionally complete

and powerful. The architecture of DSP56001 is

shown in Figure 4-2.

Figure 4-3  A radix-2 DIT butterfly needing less
instruction cycles than a radix-2 DIF 
butterfly

W - W-
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B’ B’

A’A

B

DIT Butterfly DIF Butterfly

A=Ar+jAi W=Wr-jWi B=Br+jBi

Ar’=Ar+Br (ADD)

T1=Ar-Br (SUB)

Ai’=Ai+Bi (ADD)

T2=Ai-Bi (SUB)

T3=T1Wr (MPY)

Br’=T3+T2Wi (MAC)

T4=T2Wr (MPY)

T1=Ar+BrWr (MAC)

Ar’=T1+BiWi (MAC)

Br’=2Ar-Ar’ (SUBL)

T2=Ai-BrWi (MAC)

Ai’=T2+BiWr (MAC)

Bi”=2Ai-Ai” (SUBL)
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rWi + BiWr➧ b,Ai ➧ a
b ➧ a,Ar ➧ b
rWr ➧ b,Ar ➧ a
rWr + BiWi ➧ b,Br ➧ x1
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4.4.2 DIT Butterfly Kernel on DSP56001
The parallel architecture and the instruction set of
Motorola's DSP56001/2 lend themselves particular-
ly well to the radix-2 DIT FFT computation.The DIT
butterfly equations are programmed on Motorola's
DSP56001/2 as given below:

A’r = Ar + Br Wr + Bi Wi Eqn. 4-2

A’i = Ai+ Bi Wr- Br Wi

B’r = 2Ar - A’r
B’i = 2Ai - A’i

where: i represents an imaginary component
r represents a real component
‘ symbolizes output items

The basic butterfly “core” is implemented by assem-
bly language in Figure 4-4. Note that the previous
DSP56001/2 equations are written in this particular
form such that the instruction to shift left and sub-
tract accumulators (SUBL) can be used. This SUBL
instruction allows efficient implementation of the
DIT butterfly in a two-accumulator ALU.

;r0 ➧ A
;r1 ➧ B
;r4 ➧ C
;r5 ➧ D

mac x1,y0,b y:(r1)+,y1 ;Ai - B
macr -x0,y1,b a,x:(r5)+ y:(r0),a ;Ai - B
subl b,a x: (r0),b b,y:(r4) ;2Ai - 
mac -x1,x0,b x: (r0)+,a a,y:(r5) ;Ar + B
macr -y1,y0,b x: (r1),x1 ;Ar + B
subl b,a b,x:(r4)+ y:(r0),b ;2Ar -

Figure 4-4  The radix-2, DIT butterfly kernel on the 
MOTOROLA 4-9
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The kernel shown in Figure 4-4 executes in six in-
struction cycles, or a total of 12 clock cycles. This is
made possible because of the parallel architecture of
the DSP56001/2, which allows up to two data ALU
operations (multiply/accumulate) in parallel with two
data moves to/from memory and two pointer updates
in a single instruction cycle. The dual data spaces X
and Y with the appropriate X and Y buses are ideally
suited for complex arithmetic; the real components
are stored in X memory and the imaginary compo-
nents are stored in Y memory.

The simplest way of combining all of the butterflies
into a complete program is shown in Figure 4-1. The
FFT diagram is first divided into FFT passes. On each
pass, the data is fetched from memory, the butterfly
calculations are done, and the results are moved
back out to memory. It is easily shown that there are
log2N passes. Within each pass, the butterflies clus-
ter in groups. From one pass to the next, the number
of groups doubles, while the number of butterflies per
group is divided by two. Note that the twiddle factors
are the same for all butterflies within each group, and
that the order of the twiddle factors from one group to
the next is bit-reversed. This is easily implemented on
the DSP56001/2 by setting the appropriate modifier
register (m6) equal to zero and the offset register (n6)
equal to N/4 (= coefficient table size/2), such that the
twiddle factors are addressed in bit-reversed manner. 

This gives rise to the simple, triple-nested DO loop
program shown in Figure 4-5. The outer DO loop
steps through passes, the middle loop goes through
all of the groups within a pass, and the inner loop cy-
cles through all of the butterflies inside a group. The
MOTOROLA
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DSP56001/2 is particularly well suited for looped program ex-

ecution because it has hardware DO-loop capability. Once a

loop is entered through the DO instruction, this loop is execut-

ed without any time penalty. The resulting program takes 40

words in program memory. This is the most compact imple-

mentation of the radix-2 DIT FFT. A 1024-point complex FFT

using this code executes in 4.72 ms when using a 27-MHz

clock.

Figure 4-5  A Simple, Triple-Nested DO Loop Radix-2 DIT
on DSP56001/2 (sheet 1 

;This program originally available on the Motorola DSP bulletin board.

;It is provided under a DISCLAIMER OF WARRANTY available from 

;Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

;
;Radix 2, In-Place, Decimation-In-Time FFT (smallest code size).
;
;Last Update 30 Sept. 86 Version 1.1
;
fftr2a macro points, data, coef
fftr2a ident 1,1
;
;Radix 2 Decimation in Time In-Place Fast Fourier Transform Routine
; Complex input and output data
; Real data in X memory
; Imaginary data in Y memory
; Normally ordered input data
; Bit reversed output data
; Coefficient lookup table
; -Cosine values in X memory
; -Sine values in Y memory
;
;Macro Call - fftr2a points,data,coef
;
; points number of points (2-32768, power of 2)
; data start of data buffer
; coef start of sine/cosine table
;
;Alters Data ALU Registers 
; x1 x0 y1 y0
; a2 a1 a0 a
; b2 b1 b0 b
;
;Alters Address Registers
; r0 n0 m0
; r1 n1 m1
; n2
;
; r4 n4 m4
; r5 n6 m5
; r6 n6 m6
;

MOTOROLA 4-11
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;Alters Program Control 
; pc sr
;Uses 6 locations or Sys
;Latest Revision Sept
;r0 points to A
;r1 points to B
;r4 points to C
;r5 points to D
;r6 points to twiddle fa
# points/2,n0;initialize

move # 1,
move # po
move #-1,
move m0,m
move m0,m
move m0,m
move #0,m

;
;Perform all FFT passes 
;

d0 #(αcvi(αlog
move #data,r0

r0,r4 ;initialize A ou
(r0)+n0,r1[;initialize B
#coef,r6;initialize C in

lua (r1)-,r5
move n0,n1

n0,n4
move n0,n5
d0 n2,_end_grp
move x:(r1),x1y:(

move x:(r5),a
move x:(r6)+n6,x0

do n0,_end_bfy
mac x1,y0,b

macr -x0,y1,b
subl b,a
mac -x1,x0,b
macr -y1,y0,b
subl b,a

_end_bfy
move a,x:(r5)+n5
move x:(r0)+0,x1

_end_grp
move n0,b1
lsr b
lsl a
move a1,n2

 _end_pass
endm

Figure 4-5  A Simple, T
on DSP560

APR4SECTION4  Page 12  Friday, December 15, 1995  8:29 AM
Registers

tem Stack
ember 30, 1986

ctor move
 butterflies per group
n2 ;initialize groups per pass
ints/4,n6 ;initialize C pointer offset
mo ;initialize A and B address modifiers
1 ;for linear addressing
4
5
6 ;initialize C address modifier for

;reverse carry (bit-reversed) addressing

with triple nested DO loop 

(points)/(αlog(2)+0.5)_end_pass
;initialize A input pointer move

tput pointer lua
 input pointer move
put pointer 

;initialize B output pointer
;initialize pointer offsets move

r6),y0 ;lookup -sine and 
;-cosine values

y:(r0),b ;preload data
;update C pointer

y:(r1)+,y1 ;Radix 2 DIT
;butterfly kernel

a,x:(r5)+ y:(r0),a
x:(r0),b b,y:(r4)
x:(r0)+,a a,y:(r5)
tx:(r1),x1
b,x:(r4)+ y:(r0),b

y:(r1)+n1,y1 ;update A and B pointers
y:(r4)+4,y1

n2,a1 ;divide butterflies per group by two
b1,n0 ;multiply groups per pass by two

riple-Nested DO Loop Radix-2 DIT FFT 
01/2 (sheet 2 of 2)
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4.5  Implementation on 
Motorola's DSP96002

4.5.1 DSP96002 Architecture
DSP96002 is a 32-bit floating-point digital signal pro-
cessor with 20 million instructions execution per
second using a 40 MHz clock. The data ALU provides
full conformance with the IEEE 754-1985 Standard for
Single Precision Binary Floating-Point Arithmetic. Sin-
gle Extended precision with a 32-bit mantissa and 11-
bit exponent is also implemented. The data ALU, AGU,
and program controller operate in parallel within the
CPU so that an instruction pre-fetch, up to three float-
ing point operations, two data moves, and four address
pointer updates using one of three types of arithmetic
(linear, modulo, and reverse carry) can all be executed
in one instruction cycle. 

Also, an on-chip dual channel DMA controller gener-
ates two addresses, using one of the three types of
address update arithmetic so that a memory-to-mem-
ory or memory-to-peripheral transfer can occur in
parallel with the CPU operation during each instruction
cycle. Host interface circuitry on each port provides a
flexible slave interface to external processors and/or
DMA controllers for easy design of a multi-master sys-
tem. Designed primarily for image processing, real-
time data acquisition, sonar signal processing, radar
signal processing, medical image analysis, and video
compression, the DSP96002 has the widest data
bandwidth of any DSP currently on the market. A spe-
cial FMAY||ADD||SUB instruction makes FFT
calculations extremely fast on the DSP96002. 
MOTOROLA 4-13
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4.5.2 DIT Butterfly Kernel on DSP96002
The butterfly equations implemented in the radix-2,
DIT FFT on DSP96002 are the following:

A’r = Ar + Br Wr + Bi Wi

A’i = Ai+ Bi Wr- Br Wi Eqn. 4-3

B’r = Ar - (Br Wr + Bi Wi)

B’i = Ai - (Bi Wr- Br Wi)

where:  i represents an imaginary component

r represents a real component

‘ symbolizes output items

The implementation of this basic butterfly in
DSP96002 assembly language code is shown in
Figure 4-7. The kernel in Eqn. 4-3 executes in four
instruction cycles, or eight clock cycles. Since four
real multiplications are needed, and only one real
multiplier is available, this is the most efficient im-
plementation possible. In addition to the features
available on the DSP56001/2, this efficient execu-
tion is obtained by the FADDSUB instruction which
delivers the sum and the difference of two oper-
ands, in parallel with a multiplication and two data
moves. With this feature, a total of three floating-
point operations can be executed in one instruction
cycle, resulting in a peak performance of 60 million
floating-point operations per second (MFLOPS)
with a 40-MHz clock.

The triple-nested DO loop routine, which computes the
radix-2, DIT FFT on the DSP96002 takes only 30 words
in program memory. A 1024-point complex FFT is exe-
cuted in only 2.31 ms, assuming a 27-MHz clock.
MOTOROLA 4-15
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;r0 ➨ A
;r1 ➨ B
;r4 ➨ C
;r5 ➨ D

fmpy d8,d6,d fadd.s 

fmpy d8,d7,d3 faddsub.s

fmpy d9,d6,d0 fsub.sd1,

fmpy d9,d7,d1 faddsub.s

Figure 4-7  The Rad
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d3,d0 x:(r0),d4.s d2.s,y:(r5)+ ;Br*sin ➨ d2
;Bj*sin + Br*cos ➨ d0
;Ar ➨ d4,Dj ➨ mem.

d4,d0 x:(r1)+,d6.s d5.s,y:(r4)+ ;Bj*sin ➨ d3
;Ar + Br1 ➨ d0
;Ar - Br1➨ d4
;Br ➨d6
;Cj ➨ mem.

d2 d0.s,x:(r4) y:(r0) + d5.s ;Br*cos ➨ d0
;Br*sin - Bj*cos ➨ d2
;Cr ➨ mem.
;Aj ➨ d5

d5,d2 d4.s,x:(r5) y:(r1),d7.s ;Bj*cos ➨ d1
;Aj + Bj1 ➨ d2
;Aj - Bj1 ➨ d5
;Dr ➨mem.
;Bj ➨ d7

ix-2, DIT FFT Butterfly Kernel on the DSP96002
MOTOROLA
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4.6  Implementation on 
Motorola’s DSP56156

4.6.1 DSP56156 Architecture

The DSP56156 is the most recent addition to the Mo-
torola DSP line. This 16-bit fixed-point number DSP is
designed primarily for speech coding and telecom-
munication. The on-chip sigma-delta codec functions
as a bridge between the analog and digital world. The
on-chip phase-locked-loop (PLL) reduces clock noise
to a minimum. Operating at 60 MHz, the DSP56156
can execute 30 million instructions per second with
two kilowords (2k) on-chip data RAM (which is four
times larger than DSP56001’s) and four address reg-
isters. Since the DSP56156 is designed for the digital
cellular phone, its limited instruction operation codes
must focus on telecommunication capability, and
some of its advanced addressing modes and instruc-
tions that accelerates FFT calculation must be
compromised due to the smaller instruction words. 

Although only one memory module can be accessed
in a single instruction cycle, the DSP56156 does sup-
port dual memory reads. However, it does not
support dual memory writes in a single instruction cy-
cle. Four address registers and a single write per
instruction may slow down FFT performance on
DSP56156, but having 2k on-chip data memory may
compensate for a portion of the performance loss, i.e.
dual on-chip memory reads may save time equivalent
to four instruction cycles if the number of data points
is between 256 and 1024 points.
MOTOROLA 4-17
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v. Bi’,r2 -> Br 
r 
Ar’
save Ar’, r0 pt to Ai 
save Br’, r2 pt to Bi
Ai, x0=next Br
Ai’, x1=next Bi 
save Ai’, r0-> next Ar 

otice that a single
uction always occu-

APR4SECTION4  Page 19  Friday, December 15, 1995  8:29 AM
4.6.2 DIT Butterfly Kernel on DSP56156

The butterfly equation for the DSP56156 is the same
as the DIT butterfly equation for the DSP56001/2 as
shown in Eqn. 4-2. However, two more instructions
are required in the DSP56156 butterfly than the
DSP56001/2 because of its lack of a dual-write op-
eration and its constraints on the address register
mode. Figure 4-9 shows the DSP56156 assembly
language code of the butterfly core.

4.7  Scaling for Fixed-Point 
Processors
(DSP56001/2 and DSP56156)

Whenever mathematical algorithms are implement-
ed in digital hardware, note that results are obtained
with finite precision. The precision is generally limit-
ed by the number of bits used in the number
representation, and depends on how the arithmetic

mpy x0,y0,b a,x:(r2)+    ;b=WrBr,save pre
macr x1,y1,b x:(r0)+n0,a ;b=WrBr+WiBi,a=A
add a,b          ;b=Ar+WrBr+WiBi=
subl b,a b,x:(r0)+ ;a=2Ar-Ar’=Br’, 
mpy -y1,x0,b a,x:(r2)+ ;b=-WiBr,       
macr y0,x1,b x:(r0)+n0,a x:(r3)+,x0 ;b=-WiBr+WrBi,a=
add a,b             x:(r3)+,x1 ;b=Ai-WiBr+WrBi=
subl b,a       b,x:(r0)+     ;a=2Ai-Ai’=Bi’, 

Figure 4-9  The butterfly core of the DSP56156. N
write operation paralleling with an instr
pies a whole data move field.
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limits its results to those bits. The user must use
care to prevent overflows in the FFT outputs of
fixed-point DSPs. Scaling via shifting or dividing
can keep input data or intermediate results within
the correct range, while maintaining maximum pre-
cision on the outputs.

4.7.1 Scaling at the Input – Guard Bits

Since data length grows with each pass, overflow
can occur at any pass if there is no scaling in the in-
put of a fixed point number DSP. The magnitude of
the output by the DIT butterfly defined in Eqn. 4-2 will
grow an average of one bit on the output in each
pass. This is based on the observation that output A’
(a complex output) can be rewritten as A’ = A+ B x W
where A’, A, B, and W are complex numbers. Since
W = e-jθ, it has a unit magnitude. 

The complex operation B x W simply rotates B ac-
cording to θ and causes no magnitude growth.
Complex addition is the only chance in a single but-
terfly calculation to make the output magnitude grow
larger than a value of one. One addition can cause
growth of one bit. Therefore, for N = 2m points of the
FFT, m passes are required, i.e., m times a potential
worst case magnitude doubling. However, the twid-
dle factor will reach its maximum magnitude when

. For this case, the maximum magnitude
growth is 2.4 bits on real and imaginary compo-
nents. Fortunately, only two groups of butterflies in
each pass will use the maximum twiddle factors. No
butterflies use the maximum twiddle factors twice

θ π 4⁄=
MOTOROLA
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within an entire FFT calculation. This mutually exclu-
sive characteristic is the base upon which block
floating point arithmetic is designed.

To prevent overflows in the FFT calculations, the in-
put data should keep m zeros in the significant part so
that growth bits will not get lost during the overflow.
The m zeros are called “guard bits”. To obtain suffi-
cient guard bits, divide the input data words by N. For
example, if the DSP56001 is implementing a 1024-
point complex FFT, 10 guard bits are inserted into
the most significant bits of the 24-bit data word, re-
sulting in 14 bits of actual information. But on the 16-
bit DSP56156, only 6 bits contain actual information
after 10 guard bits are inserted. This may make the
signal-to-noise ratio unacceptably low. This method
of scaling the input data is simple and effective on a
smaller FFT or on a large data word processor like
the DSP56001. For a larger FFT or a small data
word processor, an alternative method discussed in
the next subsection may result in improved signal-
to-noise ratio with some trade-offs.

4.7.2 Scaling During the Passes – 
Auto-Scaling and 
Block Floating-Point

Scaling in the input truncates valuable information
contained in data words by shifting input data right
by m-bits. 6.02 x m dB have already been lost before
the start of the FFT calculations. As indicated in the
last subsection, an average of one bit word growth
occurs in each pass. Another way to prevent over-
MOTOROLA 4-21
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flow in the FFT calculation is to scale down the

output of the butterfly by two at each pass, regard-

less of whether or not an overflow occurs. Since the

scaling down at the output is automatically carried

out to the next pass, the amount of scaling down is

known before hand. To obtain the true FFT output,

simply multiply each output by N. This method is

simple and has better signal-to-noise ratio than the

scaling in the input method. But some passes may

not have bit growth or overflows, so excessive scal-

ing may occur, and automatic scaling may cause

some information to be lost.

A more aggressive method treats one pass as one

block of data, and assigns an exponent for each

block. If bit growth occurs, the method scales down

the output by one bit and increases the exponent by

one. At the end of the FFT, the same number of scal-

ing up operations must be carried out. In the

DSP56156/DSP56002, the scaling bit (bit 7 in the

status register) eases implementation of this meth-

od. The scaling bit is referred to as a “sticky” bit

because once set, it retains its status until the next

read of the status register. Five more instructions are

added to the end of each pass to check the scaling

bit in the DSP56002 and DSP56156, and to update

the exponent of the complex FFT. (See program

FFTBF.asm on the Motorola DSP bulletin board; Dr.

BuB.) Among the methods discussed here, the sticky

bit method gives the best signal-to-noise ratio.
MOTOROLA
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4.8  Twiddle Factors and 
On-Chip ROM

4.8.1 Twiddle Factors for 
Decimation-in-Time 

Twiddle factors, , are coefficients
used in FFT calculations. For normal order input ra-
dix-2 decimation-in-time FFT, the twiddle factors
are always fetched in bit-reversed order, i.e.

Note that for an N point radix-2 FFT, two input data
words share one twiddle factor, and the bit-re-
versed order of the twiddle factor is based on N/2
points. 

4.8.2 Sine Table on the DSP56001/2
When the data-ROM-enable (DE) bit in the OMR
register of the DSP56001/2 is set, the Y memory
from $100 to $1FF contains a 256-point full cycle
sine-wave, and each data entry has 24-bit accura-
cy. As mentioned in the last subsection, for an N
point FFT, N/2 complex coefficient twiddle factors
are required, and these N/2 twiddle factors are a
half cycle of the sine and cosine waveforms. Since
only a 256-point full cycle sine-wave is stored in the
DSP56001/2 data ROM, the maximum FFT length
utilizing only internal twiddle factors is one full cycle

WN
k e j2πk N⁄–=

WN
0

WN
N 2⁄( ) 1–

, WN
N 4⁄

, ,WN
N 8⁄

WN
3N( ) 8⁄ … WN

N(
, , ,
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of the sine table, 256 points. However, a FFT larger
than 256 points can still be implemented utilizing the
on-chip sine table by calling this internal ROM dur-
ing the first several passes and the first several
groups in the last pass. Because DIT and normal in-
put order FFT require bit-reversed sine and cosine
tables, the DSP must be in the bit-reversed address-
ing mode when the on-chip sine table is invoked. A
common set up for addressing this table is:

To address the cosine table in the FFT calculation, the
following relation between sine and cosine is utilized:

Eqn. 4-4

Another address pointer, for example, r2 is used to
point to the correct location.

This set-up can be applied for all FFTs up to 256
points with length equaling a power of two, 2N.

4.8.3 Sine and Cosine Tables on the 
DSP96002

The on-chip ROM of the DSP96002 features sine
and cosine tables. When the DE bit is set to 1, X
and Y memory from $400 to $7FF contain 512-point
cosine and sine tables respectively. Therefore, the

r6 $100=
n6 $40=
m6 0=

x( )cos x π 2⁄+( )sin=

m0 0=

n2 $40=

r2 $140=
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maximum data length of the FFT without utilizing
external twiddle factors is 512 points. The address-
ing set-up is similar to that of the DSP56001:

Only one set of address registers is required on the
DSP96002 to access both sine and cosine values.

4.9  Bit-Reversed 
Addressing

All Motorola DSPs feature a bit-reversed or inverse-
carry addressing mode to accelerate FFT calcula-
tions. When bit-reversed addressing is enabled, an
additional temporary data buffer is required to hold
normal order outputs since bit-reversing on the fly is
not an in-place method of FFT calculation. In some
situations, the memory space used is more critical
than the time used. To reduce the requirement for
space in the second buffer, an in-place bit-reversed
method is preferred. However, there is a time pen-
alty for space-saving since the in-place bit-reversal
must be carried out after the FFT is done. Program
BITREVTWD56.asm on the Motorola DSP bulletin
board (Dr. BuB) presents an example of in-place
bit-reverse for DSP56001/2. The algorithm that per-
forms conversion from bit-reversed order to normal
order addressing is presented in Figure 4-10.

m6 0=

n6 $100=
r6 $400=
MOTOROLA 4-25



4-26

Figure 4-10  In-place

normal_order=outpu
bitrev_order=data_
for (i=0;i<N;i++){

normal_orde
bitrev_orde
\* suppose
if (normal
data[normal

}
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4.10  Implementation of a
Radix-4 DIT FFT 
on DSP96002

In general, doubling the points in butterflies of FFT
reduces the number of groups in each pass and the
number of passes. A radix-4 butterfly accepts four
complex inputs, thus, the number of butterflies in a
pass is N/4, and the number of passes is log4(N).
However, the number of instructions required in the
radix-4 butterfly is three times that of the radix-2
butterfly. If the number of the instructions used in a
radix-4 butterfly is four or more times than that of
the radix-2’s on a processor, there is really no ad-
vantage to adapting the radix-4 FFT on such a
processor. Because the outputs or inputs of a radix-
4 FFT might be digit-reversed order which is not be-
ing supported by any DSPs in the market. A
software routine has to be used for converting digit-
reversed order data to the normal one.

 bit-reversed to normal order conversion

t_pointer;
buffer;

r+;
r+=N/2; 
 bit reverse address available *\
_order< bitrev_order)
_order]=data[bitrev_order]
MOTOROLA
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4.10.1 Radix-4 DIT Butterfly Core

The butterfly equations for a radix-4 DIT FFT can be
derived directly from two stages of radix-2 DIT but-
terflies, which are plotted in Figure 4-11. There are
four butterflies with four twiddle factors involved in
the calculation. In the first pass, pass x, two butter-
flies are in the same group (the twiddle factors for a
group are identical). In the second pass, pass x+1,
two adjacent butterflies share one twiddle factor but
differ by -j. (See SECTION 5.1 Optimization). 

There are four complex multiplications required
which can be reduced to three by combining them
into a radix-4 butterfly.  Eqn. 4-5 shows two-stage
radix-2 butterfly calculations.

A

B

C

D

Wc

W

-jW

Pass X+1Pass x

Wc
b

b

Figure 4-11  A flow diagram of two stages in a radix-2
complex multiplications are involved in 
MOTOROLA 4-27
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Eqn. 4-5

Let WbWc = Wd, which gives us  Eqn. 4-6. A new
flow diagram for radix-4 DIT FFT results as shown
in Figure 4-12. Three twiddle factors are needed.
Wa and Wb originally come from the radix-2 DIT
FFT; Wc is new for the radix-4 FFT. Note that the ra-
dix-4 DIT butterfly accesses 1/3 more twiddle
factors than the radix-2 does.

Eqn. 4-6

Since each butterfly takes four complex inputs and
generates four complex outputs, the number of
groups in a pass is reduced to N/4. Also, the num-
ber of passes is reduced to log4(N). Theoretically,
the lower boundary for radix-4 DIT FFT is:

 

Twelve multiplications, fourteen additions, and eight
subtractions are required for a radix-4 DIT butterfly,
as Eqn. 4-7 illustrates.

A ′ A CWc BWb DWcWb
+( )+ +=

B ′ A CWc BWb DWcWb
+( )–+=

C ′ A C– Wc j BWb D– WcWb( )–=

D ′ A C– Wc j BWb D– WcWb( )+=

A ′ A CWc BWb DWd
+( )+ +=

B ′ A CWc BWb DWd
+( )–+=

C ′ A C– Wc j BWb D– Wd( )–=

D ′ A C– Wc j BWb D– Wd( )+=

TRIV N 4⁄× l( og4 N( ) 1 ) N 4 BFLY×⁄×–+
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Eqn. 4-7

A

B

C

D

At

Bt

Ct

Dt

Wb

W

W

c

d

Figure 4-12  A flow diagram of a Radix-4 DIT butterf
and 22 additions or subtractions are re

Bti BrWi
b DrWi

d BiWr
b DWr

d
+ + +=

Ctr Ar CrWr
c– CiWi

c+=

Cti Ar CiWr
c– CrWi

c–=

Dtr BrWr
b DrWr

d– BiWi
b– DiWi

d+=

Dti BrWi
b DrWi

d– BiWr
b D– iWr

d+=

Ar ′ Atr Btr+=

Ai ′ Ati Bti+=

Br ′ Atr B– tr=

Bi ′ Ati Bti–=

Cr ′ Ctr Dti+=

Ci ′ Cti Dtr–=

Dr ′ Ctr D– ti=

Di ′ Cti Dtr+=

Btr BrWr
b DrWr

d BiWi
b– DiWi

d–+=

Ati Ai CrWi
c CiWr

c+ +=

Atr Ar CrWr
c C– iWi

c+=
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;r0->A,r4->B, r1->C
;r1->A’, r3->B’, r5
;n0=n4=4,n4=2;
;n2=n3=n5=n7=N/8.

do #N/4,_end_

fmpy.s d6,d9,d5 
fmpy d7,d8,d3 
fmpy d6,d8,d1 
fmpy.s d7,d9,d5 

fmpy.s d6,d9,d1
fmpy d7,d8,d2 
fmpy d6,d8,d0 
fmpy d7,d9,d2 
fmpy d6,d9,d0 
fmpy d7,d8,d3 
fmpy d7,d9,d1 
fmpy d6,d8,d3 

_end_r4

Figure 4-13  Radix-4
DSP96
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, r6->D;
->C’, r7’->D’;

move x:(r4)+n4,d3.s y:,d5.s
move x:(r4)+n4,d1.s y:,d2.s
faddsub.s d1,d3 x:(r0),d7.s
faddsub.s d5,d2 x:(r1),d0.s d1.s,y:(r7)
faddsub.s d7,d0 d3.s,d4.s y:(r1)+n1,d1.s
faddsub.s d7,d5 x:(r4),d6.s y:(r0)+n0,d3.s
faddsub.s d0,d4 d7.s,x:(r3) y:(r4)+n4,d7.s

r4
faddsub.s d3,d1 x:(r6)+,d9.sy:,d8.s
 d5.s,x:(r7)
faddsub.s d1,d2 d4.s,x:(r5) d3.s,d4.s
fadd.s d5,d3 d0.s,x:(r2)+n2 d1.s,y:

x:(r6)+,d9.s y:,d8.s
fsub.s d1,d5 x:(r4)+n4,d6.s y:,d7.s

y:(r7),d0.s
faddsub.s d4,d0 d2.s,y:(r5)+n5
fadd.s d2,d1 x:(r1),d6.s d0.s,y:(r7)+n7
faddsub.s d1,d3 x:(r6)+,d9.s y:,d8.s
fsub.s d0,d2 y:(r1)+n1,d7.s
faddsub.s d5,d2 d3.s,d4.s d4.s,y:(r3)+n3
fadd.s d3,d0 x:(r0),d7.s d1.s,y:(r7)
faddsub.s d7,d0
faddsub.s d7,d5
faddsub.s d0,d4 d7.s,x:(r3) y:(r4),d7.s
fsub.s d3,d1 x:(r4)+n4,d6.sy:(r0)+n0,d3.s

faddsub.s d3,d1 d5.s,x:(r7)
faddsub.s d1,d2 y:(r7),d6.s
move d0.s,x:(r2) d1.s,y:
faddsub.s d3,d6 d4.s,x:(r5) d2.s,y:
move d6.s,y:(r7)
move d3.s,y:(r3)

 DIT Butterfly takes 17 instructions on the
002
MOTOROLA
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For example, if there are 1024-point complex in-
puts, 8 x 256 + 4 x 256 x 14 =16,384 instructions
may be required to improve performance by 11% if
compared with 1024-point radix-2 DIT FFT. Here
assume, TRIV = 8 and BFLY = 14 since eight
ADD||SUB and six ADD instructions are theoretical-
ly required for such a butterfly calculation. One
important fact is that BFLY, (the number of instruc-
tion cycles for butterfly calculation) in a radix-4 DIT
FFT must be less than 16, otherwise, there is no ad-
vantage for using radix-4 over radix-2. Due to an
insufficient number of operations code, FMPY//
ADD//SUB instruction only works with destination
registers D0 to D3 on the DSP96002. 

4.10.2 Radix-4 DIF Butterfly Core
Using the same derivation, a radix-4 DIF butterfly
can be obtained. Although the number of multiplica-
tions and additions is the same as the radix-4 DIT
butterfly, the sequence of data appears differently.
Eqn. 4-9 shows an expanded form of the radix-4 DIF
butterfly. Eighteen instructions are used to code the
radix-4 DIF butterfly. 
MOTOROLA 4-31
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Ci ′ ([=

Dr ′ ([=

Bi ′ ([=

Br ′ ([=

Ci ′ ([=

Cr ′ ([=

Ai ′ A=

Ar ′ A=
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Eqn. 4-8

4.11  Inverse FFT
The Inverse Fast Fourier Transform (IFFT) is de-
fined in Eqn. 4-9

Eqn. 4-9

The differences between inverse FFTs and forward
FFTs are in the scaling factor, N, and the conjugat-
ed twiddle factors. A common method of
implementing the IFFT is to change the sign of the
sine table values and use the FFT subroutine to get
the IFFT. Alternatively, one can swap real and
imaginary parts, use swapped inputs to the regular

Ai Br+ ) Di Cr+( )– ] Wr
d

Ar Bi–( ) Di Ci–( )+[ ] Wi
d

–

Ar Bi– ) Di Cr–( )+ ] Wr
d

Ai Bi+( ) Dr Ci+( )–[ ] Wi
d

+

Ai Br– ) Dr Ci–( )+ ] Wr
b

Ar Bi+( ) Di Cr+( )–[ ]– Wi
b

Ar Bi+ ) Di Cr+( )– ] Wr
b

Ai Br–( ) Dr Ci–( )+[ ] Wi
b

+

Ai Bi– ) Di Ci–( )– ] Wr
c

Ar Br–( ) Dr Cr–( )–[ ]– Wi
c

Ar Br– ) Dr Cr–( )– ] Wr
c

Ai Bi–( ) Di Ci–( )–[ ] Wi
c

+

i Bi Di Ci+( )+ +

r Br Dr Cr+( )+ +

x n( ) 1
N
--- X

k 0=

N 1–

∑ k( )ej2πkn N⁄=
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FFT program, and then divide every real and imag-
inary output by N. Eqn. 4-10 and Eqn. 4-11 show
the equality. Eqn. 4-10 shows the inverse FFT.

Eqn. 4-10

When swapping real and imaginary parts at the in-
put and using forward FFT twiddle factors, we have
the relation shown in Eqn. 4-11.

Eqn. 4-11

Eqn. 4-11 shows that the real part of the IFFT is in
the space used for imaginary memory in the for-
ward FFT and the imaginary part of the IFFT is in
the real part of the forward FFT. ■

Ar jAi+( ) Wr jWi+( ) ArWr AiWi–( ) j AiWr ArW+(+=

Ai jAr+( ) Wr j– Wi( ) j ArWr AiWi–( ) AiWr ArWi+(+=
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