

© 2011 Berkeley Design Technology, Inc. Page 1

An Independent Analysis
of

Altera’s FPGA Floating-point DSP Design Flow

By the staff of

Berkeley Design Technology, Inc.

OVERVIEW

FPGAs are increasingly used as parallel processing engines for demanding digital
signal processing applications. Benchmark results show that on highly parallelizable
workloads, FPGAs can achieve higher performance and superior cost/performance
compared to digital signal processors (DSPs) and general-purpose CPUs. However, to
date, FPGAs have been used almost exclusively for fixed-point DSP designs. FPGAs
have not been viewed as an effective platform for applications requiring high-performance
floating-point computations. FPGA floating-point efficiency and performance has been
limited due to long processing latencies and routing congestion. In addition, the traditional
FPGA design flow, based on writing register-transfer-level hardware descriptions in
Verilog or VHDL, is not well suited to implementing complex floating-point algorithms.

Altera has developed a new floating-point design flow intended to streamline the
process of implementing floating-point digital signal processing algorithms on Altera
FPGAs, and to enable those designs to achieve higher performance and efficiency than
previously possible. Rather than building a datapath consisting of elementary floating-
point operators (for example, multiplication followed by addition followed by squaring), the
floating-point compiler generates a fused datapath that combines elementary operators
into a single function or datapath. In doing so, it eliminates the redundancies present in
traditional floating-point FPGA designs. In addition, the Altera design flow is a high-level
model-based flow using Altera’s DSP Builder Advanced Blockset and the MathWorks’
MATLAB and Simulink tools. Altera hopes that by working at a high level, FPGA
designers will be able to implement and verify complex floating-point algorithms more
quickly than would be possible with traditional HDL-based design.

BDTI performed an independent analysis of Altera’s floating-point DSP design
flow. BDTI’s objective was to assess the performance that can be obtained on Altera
FPGAs for demanding floating-point DSP applications, and to evaluate the ease-of-use of
Altera’s floating-point DSP design flow. This paper presents BDTI’s findings, along with
background and methodology details.

saadams
Typewritten Text
WP-01166-1.0 September 2011

© 2011 Berkeley Design Technology, Inc. Page 2

Contents

1. Introduction ... 2
2. Implementation ... 3
3. Design Flow and Tool Chain 5
4. Performance Results ... 7
5. Conclusions .. 10
6. References .. 10

1. Introduction

A Floating-point Design Example
Advances in digital chips are enabling complex

algorithms that were previously limited to research
environments to move into the realm of everyday
embedded computing applications. For example, for a
long time, linear algebra (and specifically solving for
systems with a large set of simultaneous linear
equations) has been used mainly in research
environments, where large-scale compute resources are
available and real-time computation is usually not
required. Solving for large systems involves either
matrix inversion or some kind of matrix
decomposition. In addition to being very
computationally demanding, these techniques can
suffer from numeric instability if sufficiently high
dynamic range is not used. Therefore, efficient and
accurate implementation of such algorithms is only
practical in floating-point devices.

Altera recently introduced floating-point capability
in the DSP Builder Advanced Blockset tool chain to
simplify implementation of floating-point DSP
algorithms on Altera FPGAs, while improving
performance and efficiency of floating-point designs
compared to traditional FPGA design techniques. In
order to evaluate the effectiveness of Altera’s approach,
BDTI focused on a large matrix inversion problem
implemented using the Cholesky matrix decomposition
algorithm combined with forward and backward
substitution. These three processes combined
constitute a Cholesky solver which finds the inverse of
a Hermitian positive definite matrix to solve for the
vector x in a simultaneous set of linear equations of the
form Ax = B.

The Cholesky solver is an important algorithm due
to its increasing use in military radar applications such
as Space-Time Adaptive Processing (or STAP). In
addition, the Cholesky decomposition itself, which is
the core of the solver, is used in many estimation and
optimization problems where covariance matrices are
found. The Cholesky decomposition is a very
computationally demanding algorithm and requires
high data precision, so floating-point math is necessary.
In addition to being an important problem in many
applications, matrix inversion can serve as an example
of a wide range of floating-point DSP algorithms. For
example, the Cholesky decomposition uses vector dot
products and nested loops that are found in a range of

digital signal processing applications involving linear
algebra and finite impulse response (FIR) filters.

Using the Cholesky solver, as described in Section
4, an Altera Stratix IV FPGA is capable of performing
3,204 matrix inversions per second on matrices of size
240×240, running at a clock speed of 200 MHz and at
an accuracy that exceeds that of the single-precision
IEEE Standard for Floating-Point Arithmetic (IEEE
754) number representation.

The Cholesky solver example evaluated in this
paper is available at www.altera.com/floatingpoint and
will be made available by Altera as a design example
packaged with the DSP Builder Advanced Blockset
tool chain starting with tool version 11.1.

Floating-point Design Flow
Traditionally, FPGAs have not been the platform

of choice for demanding floating-point applications.
Although FPGA vendors have offered floating-point
primitive libraries, the performance of FPGAs in
floating-point applications has been very limited. The
inefficiency of traditional floating-point FPGA designs
is partially due to the deeply pipelined nature and wide
arithmetic structures of the floating-point operators
that create large datapath latencies and routing
congestion. In turn, the latencies create hard-to-manage
problems in designs with high data dependencies. The
final result is often a design with a low operating
frequency.

The Altera DSP Builder Advanced Blockset tool
flow attacks these issues at both the architectural level
and the system design level. The Altera floating-point
compiler fuses large portions of the datapath into a
single floating-point function instead of building them
up by composition of elemental floating-point

NOTATION AND DEFINITIONS
M Bold capital letter denotes a matrix.

z Bold small letter denotes a vector.

L
*
 The conjugate transpose of matrix L.

l
*
 The conjugate transpose of element l.

Hermitian Matrix A square matrix with complex

entries that is equal to its own conjugate transpose.

This is the complex extension to a real symmetric

matrix.

Positive Definite Matrix A Hermitian matrix M is

positive definite if z*Mz > 0 for all non-zero complex

vectors z. The quantity z*Mz is always real because M

is a Hermitian matrix for the purposes of this paper.

Cholesky Decomposition A factorization of a

Hermitian positive definite matrix M into a lower

triangular matrix L and its conjugate transpose L* such

that M = LL*.

Fmax The maximum frequency of an FPGA design.

http://www.altera.com/floatingpoint

© 2011 Berkeley Design Technology, Inc. Page 3

operators. It does this by analyzing the bit growth in
the datapath and appropriately choosing the optimum
input normalization to allocate enough precision
through the datapath in order to eliminate as many
normalization and denormalization steps as possible.
The IEEE 754 format is only used at datapaths
boundaries; within datapaths, larger mantissa widths are
used to increase the dynamic range and reduce the need
for denormalization and normalization functions
between successive operators. Normalization and
denormalization functions use barrel shifters of up to
48-bit range for a single precision floating-point
number. This consumes significant amount of logic and
routing resources and is the main reason why floating-
point implementations on FPGAs are not efficient.
The fused datapath methodology eliminates a significant
number of these barrel shifters. Multiplications
involving the larger precision mantissas use Altera’s
36×36 multiplier mode in Stratix IV and Arria II
devices. Figure 1(b) shows the fused datapath
methodology for the simple case of a two adder chain
as compared to the traditional implementation shown
in Figure 1(a). The fused datapath in Figure 1(b)
eliminates the inter-operator redundancy by removing
the need to denormalize the output of the first adder
and to normalize the input of the second adder. The
elimination of the extra logic and routing and the use of
hard multipliers make timing and latency across
complex datapaths predictable. Both single- and
double- precision IEEE 754 floating-point algorithms

are implemented with reduced logic and higher
performance. Altera claims that a fused datapath
contains 50% less logic and 50% less latency than the
equivalent datapath constructed out of elementary
operators [1]. As a result of the wider internal data
representation, on the average, the overall data accuracy
is higher than that achieved using a library with
elementary IEEE 754 floating-point operators.

The Altera floating-point DSP design flow
incorporates the Altera DSP Builder Advanced
Blockset, Altera’s Quartus II RTL tool chain,
ModelSim simulator, as well as MathWorks’ MATLAB
and Simulink tools. The Simulink environment allows
the designer to operate at the algorithmic behavioral
level to describe, debug, and verify complex systems.
Simulink features such as data type propagation and
vector data processing are incorporated in the DSP
Builder Advanced Blockset, enabling a designer to
perform quick algorithmic design space exploration.

In the evaluation described in this white paper,
BDTI used the Altera DSP Builder Advanced Blockset
tool flow to validate a complex data-type floating-point
Cholesky solver design example and evaluate the
efficiency and performance of Altera’s floating-point
design flow. Section 2 of the paper describes the
implementation of the Cholesky solver. Section 3
presents BDTI’s experience with the design flow and
tool chain. Section 4 presents the performance of the
implementation on two different Altera FPGAs: the
high-end Stratix IV EP4SE360H29C2 device and the
mid-range Arria II EP2AGX125DF25I3 device.
Finally, Section 5 presents BDTI’s conclusions.

2. Implementation

Background
Sets of linear equations of the form Ax = b arise in

many applications. Whether it is an optimization
problem involving linear least squares, a Kalman filter
for a prediction problem, or MIMO channel
estimation, the problem remains one of finding a
numerical solution for a set of linear equations of the
form Ax = b. When matrix A is symmetric and positive
definite, which is true for the covariance matrices used
in these problems, the Cholesky decomposition and
solver are commonly used. The algorithm finds the
inverse of matrix A thus solving for vector x in

 . The Cholesky decomposition is at least twice
as efficient as other methods such as the LU or QR
decompositions. Since all these decomposition
algorithms are recursive in nature and involve division,
a large numeric dynamic range becomes a necessity as
the matrix size increases. Most implementations, even
for matrix sizes as small as 4×4 in MIMO channel
estimation for example, are performed using floating-
point operations. For larger systems requiring high
throughput, such as the ones found in military
applications, the required floating-point operation rate

Figure 1 (a) Traditional floating-point implementation
(b) Fused datapath implementation

Normalize

Normalize

Denormalize

Denormalize

Adder
 1

Adder
2

In 1 In 2

In 3

Out

(a)

IEEE 754

IEEE 754

Normalize

Denormalize

Adder
1

Adder
2

In 1 In 2 In 3

Out

(b)

Modified
format

IEEE 754

© 2011 Berkeley Design Technology, Inc. Page 4

has typically been prohibitive for embedded systems.
Frequently, designers either abandon the whole
algorithm for a sub-optimum solution or resort to

using multiple high-performance floating-point
processors, raising cost and design effort.

Architectural Overview
In our design example, the Cholesky solver is

implemented in the FPGA as two subsystems operating
in parallel in a pipelined fashion. The first subsystem
executes the Cholesky decomposition and forward
substitution—steps 1 and 2 in the sidebar titled The
Algorithm. The second subsystem executes the
backward substitution—step 3 in the sidebar. Since the
input matrix is Hermitian and the decomposition
generates complex conjugate transposed triangular
matrices, memory utilization is optimized by loading
only half of the input matrix A and generating only the
lower triangular matrix, which overwrites A as the latter
is being consumed. Both subsystems are pipelined,
utilizing an input stage and a processing stage to allow
processing to occur in one area of a memory while the
other half is used for loading new data. The output of
the decomposition and forward substitution pipeline
stages go into the input stages of the backward
substitution, as shown in Figure 2.

In mathematical terms, the forward substitution of
equation (6) can be considered a subset of the
decomposition equation (3) except for the conjugation

of

, and thus in the implementation, they are

combined in a single process by appending the
transpose of vector b to the last row of matrix A
without incurring any significant latency in processing.

The core of the decomposition is the complex
vector dot product engine (also referred to as the
vector multiplier) in equations (3) and (4). For the
Stratix IV SE360 device, a vector size (VS) of up to 60
complex elements is possible, limited by the number of
available DSP elements in the device, whereas for the
Arria II GX125 device, a vector size of up to 30
elements may be implemented. The vector size also
corresponds to the number of parallel memory reads
needed to supply the dot product engine with a new set
of data every clock cycle and thus determines the width
and partitioning of the dual-port memory used
internally. For implementation reasons, the memory of
a matrix of a given size is partitioned into ceil(N/VS)
banks, where ceil() is the ceiling function and N is the
size of the matrix. The largest matrix used in this
evaluation is a Hermitian matrix of size 240×240. The
size of the matrix is limited by the available memory in
the device.

The decomposition is performed one element at a
time, column-wise, starting from the top left corner,
proceeding in a vertical zigzag fashion, and ending at
the bottom right corner. The diagonal element of each
column is calculated first, followed by all the non-
diagonal elements below it in the same column before
moving to the diagonal element at the top of the next
column to the right. The schedule of events and
iterations is controlled with a three-level nested for

THE ALGORITHM
The recursive Cholesky algorithm to solve for vector x in

Ax = b has three steps:

Step 1. Decomposition, i.e. finding the lower triangular

matrix L, where A = LL*

𝑙 = 𝑎 (1)

For i = 2 to n,

𝑙𝑖 =
𝑎𝑖

𝑙
 (2)

For j = 2 to (i-1),

𝑙𝑖𝑗 = (𝑎𝑖𝑗 − 𝑙𝑖𝑘
𝑗
𝑘= × 𝑙𝑗𝑘

) 𝑙𝑗𝑗 (3)

end

𝑙𝑖𝑖 = 𝑎𝑖𝑖 − (𝑙𝑖𝑘
𝑖
𝑘= × 𝑙𝑖𝑘

) (4)

end

Note the dependencies in the equations above. The

diagonal elements in eq. (4) depend only on elements to

their left in the same row. Non-diagonal elements depend

on elements to their left in the same row, and on the

elements to the left of the corresponding diagonal element

above them.

Step 2. Forward substitution, i.e. solving for y in the

equation Ly = b,

𝑦 = 𝑏 𝑙 (5)

For i = 2 to n,

𝑦𝑖 = (𝑏𝑖 − 𝑦𝑘
𝑖
𝑘= × 𝑙𝑖𝑘) 𝑙𝑖𝑖 (6)

end

Step 3. Backward substitution, i.e. solving for x in the

equation L* x = y,

𝑥𝑛 = 𝑦𝑛 𝑙𝑛𝑛
 (7)

For i = n-1 to 1,

𝑥𝑖 = (𝑦𝑖 − 𝑥𝑘
𝑛
𝑘=𝑖+ × 𝑙𝑖𝑘

)/𝑙𝑖𝑖
 (8)

end

where,

n = the dimension of matrix A
lij = element at row i column j of matrix L
aij = element at row i column j of matrix A
yi = element at row i of vector y
bi = element at row i of vector b
xi = element at row i of vector x

The output of step 1 is the Cholesky decomposition, and

the output of step 3 is the solution x of the linear equation

Ax = b. Note that the algorithm indirectly finds the inverse

of matrix A to solve for x = A-1 b.

© 2011 Berkeley Design Technology, Inc. Page 5

loop. The “For Loop” block in the DSP Builder
Advanced Blockset is perfect for implementing iterative
loops. This block abstracts away the intricate control
signals that would have been necessary in a hand-
written RTL implementation, allowing the designer to
focus on the algorithm itself. The outermost loop
implements the column-wise processing for j = 1 to N;
the middle loop implements the bank-wise processing
for bank = 1 to ceil(N/VS); and the innermost loop
processes the row elements for i = 1 to N. The
processing sequence is shown in Figure 3(a).

The dot product engine operates on the rows of the
matrix and calculates up to vector size multiplications
in the summation term of equations (3), (4), and (6)
simultaneously in one cycle. For vector dot products
shorter than vector size, unused terms are masked out
and are not included in the summation. For dot
products longer than vector size, partial sums of
products are calculated and saved at bank boundaries
until the output of all banks for a given element in that
row are available for a final summation. The
summation of the bank outputs is performed in a single
accumulator loop using the floating-point adder block
from the DSP Builder Advanced Blockset. This
feedback loop has a latency of 13 cycles. In order to
avoid this significant stall while waiting for the
accumulator to finish, the middle loop in the three-level
nested loop is the “for Banks” loop rather than the “for
Rows” loop as one would traditionally have in a
software implementation. By performing this swap, the
floating-point accumulator latency is hidden and
hardware utilization improved. Currently, the DSP
Builder Advanced Blockset does not automatically add
loop delay elements to address this type of latency. This
is because adding a delay element may unintentionally
change the functionality of a digital signal processing
feedback loop. Hence, it is the designer’s responsibility
to specify this value. However, DSP Builder will
generate an error message indicating to the designer a
deficiency in the delay value. The designer may
experiment to find the exact value needed. Figure 3(b)
shows the computation of the diagonal element eij. The
dot product that generates this element spans over two

full-length banks of vector size plus a third partial bank.
Since the for Banks loop is the middle loop, the full
value of the eij element is only available after all the
partial sum-of-products at j=VS and at j=2*VS
boundaries for all the rows below it are processed.
These partial sum-of-products are stored temporarily in
an internal FIFO.

The choice of the vector size affects the hardware
efficiency and system latency. If vector size is large
relative to the matrix size, many terms in the dot
product are not used until column indices greater than
vector size are reached thus reducing hardware
efficiency. Refer to Section 4 for a more detailed
analysis of the implications of matrix-to-vector size
choices on latency and hardware utilization.

The second subsystem performs backward
substitution. This subsystem has its own input and
output memory blocks. Like the Cholesky/forward
substitution subsystem, it is pipelined into an input
stage and a processing stage. Since the complexity of
the backward substitution is on the order of N2
compared to N3 for the decomposition, vector
processing for the dot product is not employed.
Instead, a single complex multiplier is used for the dot
product which is enough to keep pace with the
Cholesky decomposition and the forward substitution
subsystem.

3. Design Flow and Tool Chain
For this evaluation, Altera provided BDTI with an

implementation of the Cholesky solver created using
the DSP Builder Advanced Blockset. BDTI engineers
installed the Altera and MATLAB tools necessary for
the evaluation, and took a short training class to
familiarize themselves with the design flow. BDTI
engineers then examined the Altera design, simulated it,
synthesized it, and ran ModelSim RTL simulations, all
under the Simulink environment. In the process, BDTI
evaluated the Altera design flow and the performance
of the Cholesky solver example. Installation of the tool
chain was straightforward and painless.

Figure 2 Process pipelining and memory reuse

Input

Input

Decomposition/Forward

Decomposition/Forward

Input

Pipelining in the upper triangular memory space

Pipelining in the

lower triangular

memory space

Decomposition / Forward Substitution Subsystem

Backward

Backward

Backward Substitution Subsystem

Pipelining in the lower triangular

memory space

Pipelining in the upper triangular

memory space

Time

Input

Input

…

…

…

Input

…

© 2011 Berkeley Design Technology, Inc. Page 6

Simulink is built upon and requires the MATLAB
framework. The input stimuli for the Cholesky model
are generated via a MATLAB m-file script. The input
matrix is synthetically generated to guarantee Hermitian
positive definiteness. The two main input parameters
are the matrix size and the vector size. The vector size
is a design parameter that determines the size of the
vector dot product engine and the maximum allowable
matrix size in the synthesized design. In this
implementation, the maximum matrix size is set to be
four times the vector size. The input parameter matrix
size is a user variable and may be of any size equal to or
smaller than the maximum-allowed matrix size.

The MATLAB m-file script saves the synthetically
generated L and x, and the calculated vector y in
double-precision floating-point format as reference to
measure the error performance of the Simulink model
and the synthesized RTL design.

In the Simulink environment, the Cholesky solver
design uses blocks from the Altera DSP Builder
Advanced Blockset, which is a separate Blockset from
the standard DSP Builder library. The DSP Builder
Advanced Blockset is geared towards block-based
design of DSP algorithms and datapaths and uses a
higher level of abstraction than the standard DSP
Builder library, which uses more general and elemental
functional blocks. The library contains over 50
common trigonometric, arithmetic, and Boolean
functions in addition to the more complex fast Fourier
transform (FFT) and FIR filter building blocks.
Elements from the DSP Builder standard Blockset and
the DSP Builder Advanced Blockset cannot be mixed
in a datapath structure at the same hierarchy level; only
blocks from the DSP Builder Advanced Blockset
support the floating-point compiler. Blocks from the
standard Blockset are not optimized for floating-point
processing. In addition, although importing of hand-
coded HDL is available for the standard Blockset, it is
not available in the Advanced Blockset since the tool
cannot perform optimizations at the HDL level. In

general, the block-based design-entry approach is well
suited for DSP algorithms, however a text-based
approach is still more intuitive for designs that are
control based and involve state machines.

Starting a simulation in Simulink compiles the
model, generates HDL code and constraints for the
Altera Quartus II environment, builds a test bench and
script files for the ModelSim environment, and runs the
Simulink model simulation. The time required to run
the simulation for a single Cholesky solver ranged from
6 minutes to less than 1 minute depending on the
matrix size. The Simulink simulation generates detailed
resource utilization estimates without the need to run a
Quartus II compile, thus helping the designer to
quickly determine the device size needed for various
algorithmic modifications.

Experiments were performed on the model to
evaluate the ease of algorithm exploration and the
corresponding HDL generation. Input parameters
such as vector dot product size, matrix size, and data
type were changed in the stimulus block and
simulations run. In all cases, the correct RTL code was
generated within minutes and simulation outputs
matched the saved MATLAB reference.

The higher abstraction level of development allows
faster algorithm space exploration, simulation, and time
optimized RTL generation. However, the flexibility
afforded by this new approach requires a lot of
forethought into the structure of the model before
starting the high-level block-based design. There is a
design methodology that needs to be understood and
followed to support the flexibility of exploring the
design space with input parameters such as the vector
size and the matrix size for this example. An
understanding of some hardware design is still required
to achieve good throughput rates and resource
utilization as exemplified in the floating-point
accumulator section of this model.

Seven configurations of vector and matrix sizes
were evaluated for FPGA resource utilization,

Figure 3 (a) Processing sequence (b) Computation of diagonal element eij includes two partial sum-of-products at j=VS
and j=2*VS, plus the last remaining partial dot product section

 VS
.
.
.

VS

Bank boundaries at multiples of
vector size (VS). Partial sum of

products are generated at these

points and saved until all rows
below are processed (for bank

loop).

e
ij

j

.

.

.

i

… …

Last

First

(a) (b)

© 2011 Berkeley Design Technology, Inc. Page 7

maximum achievable clock rate, throughput, and
functional correctness. FPGA design constraints such
as clock rate, device selection, and speed grade are
specified in the Simulink environment.

All configurations were synthesized using the
Quartus II development software, which may be
launched directly from the Simulink environment. The
results reported by the Quartus II software for a single
routing run achieve clock rates of 154 MHz to 203
MHz depending on the configuration. The Design
Space Explorer tool was used to achieve higher clock
rates. Available as part of the Quartus II software,
Design Space Explorer automatically runs multiple
router passes using a different seed for each pass. The
route with the best clock rate is saved. This is an
automatic process requiring no user intervention and
took 4 to 6 hours to converge on an optimized
implementation for the Cholesky solver design. The
improvement achieved ranged from 8% to 23%
depending on the matrix size and the vector size used.
For example, a matrix size of 60×60 with a vector size
of 60 achieved 202 MHz using Design Space Explorer
compared to a single routing fit of 154 MHz.

The FPGA resource utilization is consistent with
expectations for such a design: memory use is
proportional to the square of the matrix size, and
multiplier usage increases linearly with the vector size.
Due to the memory granularity in an FPGA, it is
generally difficult to accurately determine memory
requirements. For example, a synthesis tool may
choose to use memory blocks to accommodate for
signal delays. However, in this example, the majority of
the memory is consumed by matrix data storage. The
multiplier utilization is more predicable: the vector
multiplier requires sixteen 18×18 DSP elements per
complex valued floating-point multiplication. Given a
vector size of 60 complex floating-point values, 960
18×18 DSP elements are required for the vector dot
product engine. Refer to Section 4 for a breakdown of
the resource requirements for each of the seven
configurations.

Throughput and performance were evaluated at the
RTL level using a modified version of the design. A
counter that is enabled by the vector multiplier active
signal was added to the design in the Simulink
schematic capture environment to determine the
processing efficiency. The actual processing time of the
Cholesky solver was determined by measurement in the
ModelSim simulation environment. For all
configurations, the Simulink processing time
calculations matched the ModelSim measurements.

The performance results listed in Section 4 were
achieved with the Design Space Explorer tool; no hand
optimization or floor planning was performed. Upon a
closer analysis, BDTI found that the worst case delays

in the design are due to routing rather than chains of
logic, which indicates that the tool has efficiently
pipelined the datapath. The tool chain achieved usable
speeds and resource utilization without any low level
design modifications or floor planning.

A post-simulation script calculates the difference
between the Simulink IEEE 754 single-precision
floating-point output and the synthetically generated
MATLAB double-precision floating-point reference.
Similarly, the script calculates the difference between
the output of the ModelSim simulation of the single-
precision floating-point synthesized RTL created using
DSP Builder Advanced Blockset and that of the
synthetically generated MATLAB double-precision
floating-point reference. Refer to Section 4 for the
error performance results.

Training for the DSP Builder Advanced Blockset
design flow entails a 4-hour class by Altera and
approximately 10 hours of on-line tutorials and demos.
In addition, BDTI spent close to 90 hours exploring
the Cholesky solver model and making modifications
for a hands-on experience. The time and effort
required to get up to speed with the tool chain will
depend on the skills and background of the designer. A
seasoned engineer with both Simulink block-based
design and FPGA hardware design experience will
likely find the DSP Builder Advanced Blockset
approach efficient and easy to use. For an FPGA
designer with little or no knowledge of MATLAB and
Simulink, designing at a higher level of abstraction may
represent a new way of thinking and thus an initial
challenge, entailing a significant learning curve. Once
the methodology is mastered, the designer can achieve
significantly faster design cycles than an HDL
approach. One can focus on implementing the
algorithm and not worry about hardware design details
such as pipelining. Simulation time is significantly
reduced as a full functional simulation in ModelSim can
be done once the majority of functional verification has
been completed first in the Simulink environment.

The learning curve may be less steep for an
engineer with system-level design background who has
little or no skills in hardware design. Although the tool
chain integrates hardware compilation, synthesis,
routing, and automatic script generation within the
Simulink environment and abstracts away many
complex design concepts such as pipelining and signal
vectorizing, some knowledge of hardware design is still
needed to complete an implementation.

4. Performance Results
This section presents the results of BDTI’s

independent evaluation of the Altera Cholesky solver
floating-point implementation example.

© 2011 Berkeley Design Technology, Inc. Page 8

All designs used Altera’s DSP Builder Advanced
Blockset 11.0, implemented using MathWorks’
MATLAB 7.10, Simulink 7.5, and built with Quartus II
design software version 11.0. The RTL simulations
were done using Altera ModelSim 6.6d. The designs
were built for two Altera 40-nm FPGAs: the high-end
Stratix IV EP4SE360H29C2 device with -2 speed
grade, and the mid-range Arria II EP2AGX125DF25I3
with -3 speed grade. (These are the fastest grades for
each device.) In all cases, Design Space Explorer was
employed to optimize the clock rate (Fmax).

A total of seven cases were simulated and built:
four matrix sizes with a vector size of 60, and three
matrix sizes with a vector size of 30. Resource
utilization, performance, and accuracy results were
recorded for each case. Table 1 lists the resource
utilization and clock speed achieved for each
configuration.

The Cholesky solver design provides a matrix size
parameter. At runtime, matrix sizes smaller than the
maximum design size may be used. For the resource

utilization results presented in Table 1, each
configuration was synthesized with the maximum
matrix size parameter equal to the matrix size under
evaluation in order to get the actual resources
consumed by the tested matrix size.

It should be noted that a very simple design
consisting of a single or a few floating-point operators
may run much faster than the clock rates achieved in
the Cholesky solver example shown in Table 1. This,
however, is not a particularly meaningful comparison
because routing congestion tends to severely limit
performance as floating-point designs get more
complex.

Table 2 shows the performance of the Cholesky
solver implementation for the seven configurations.
The vector multiplier utilization percentages were
calculated by dividing the vector multiplier active cycles
by the total cycles consumed by the Cholesky solver,
both of which were reported by Simulink. Note that
this utilization does not take into account the non-valid
terms in the dot product engine due to the triangular

Device Configuration
(Matrix Size/
Vector Size

Logic
Elements

Used
(LEs /

% of Total)

DSP Blocks
Used (18x18
Multipliers /
% of Total)

Memory
(Size / % Total)

Clock
Rate
(Fmax,
MHz)

M144K
(Blocks)

M9K
(Blocks)

MLAB
(64-bit

Blocks)

S
tr

a
ti

x
 I

V

E
P

4
S

E
3
6
0
H

2
9
C

2

240×240 / 60 162K / 57% 1,014 / 98% 0 / 0%
899 /
72%

13.4K /
9%

218

180×180 / 60 133K / 47% 1,014 / 98% 0 / 0%
771 /
60%

4.7K /
3%

224

120×120 / 60 131K / 46% 1,014 / 98% 0 / 0%
276 /
60%

4.6K /
3%

225

60×60 / 60 143K / 50% 1,014 / 98% 0 / 0%
66 /
5%

8.1K /
6%

202

A
rr

ia
 I

I

E
P

2
A

G
X

12
5

D
F

2
5
I3

 120×120 / 30 63K / 64% 534 / 93% N/A
440 /
60%

1.3K /
3%

214

60×60 / 30 64K / 65% 534 / 93% N/A
284 /
39%

1.2K /
3%

228

30×30 / 30 67K / 68% 534 / 93% N/A
226 /
31%

3.0K /
6%

207

Table 1 Resource utilization and clock speed

Configuration
(Matrix Size/
Vector Size

Throughput
Reported by

Simulink
(Matrices/sec)

Throughput
Reported by
ModelSim

(Matrices/sec)

Vector Multiplier Utilization

Reported by
Simulink

Reported by
ModelSim

240×240 / 60 3,204 3,204 88% 88%

180×180 / 60 6,113 6,113 78% 78%

120×120 / 60 12,680 12,680 58% 58%

60×60 / 60 28,998 28,998 27% 27%

120×120 / 30 9,921 9,921 69% 69%

60×60 / 30 27,886 27,886 33% 33%

30×30 / 30 59,665 59,665 14% 14%

 Table 2 Performance of the Cholesky solver

© 2011 Berkeley Design Technology, Inc. Page 9

nature of the input matrix. It indicates the utilization of
the dot product engine as a single working unit. The
performance is given for a 200-MHz clock rate. As the
table shows, the Simulink and ModelSim calculations
match. The throughput is calculated by dividing 200
MHz by the cycles consumed per Cholesky solver
execution. Since the backward substitution subsystem
executes in parallel and with lower latency than the
Cholesky decomposition, the overall throughput is not
affected by the backward substitution subsystem. The
latency for each case is the inverse of the throughput.
The dot product engine in the Cholesky decomposition
and forward substitution is the core of the algorithm
and its utilization percentage in Table 2 is a good
measure of the efficiency of the implementation. Note
how the efficiency goes down as the ratio of matrix size
to vector size approaches 1:1. Hypothetically speaking,
for smaller covariance matrices, the decomposition of
multiple matrices can be interleaved and computed by

the same datapath. This time division multiplexing
increases the efficiency as long as the numerical value
of the number of matrices times the matrix size is
larger than the latency of a single decomposition.

The choice of vector size relative to matrix size is a
compromise and is application dependent. If the vector
size is much smaller than the matrix size, the design will
be resource efficient at the expense of latency. On the
other hand, if the vector size is close or equal to the
matrix size then the latency will be shorter at the
expense of resource utilization. In general, a vector size
equal to a quarter of the matrix size is a good
compromise. Figure 4 and Figure 5 show the effect of
various vector sizes and matrix sizes on resource
utilization, throughput, and latency.

 Table 3 shows the error performance of the
Cholesky solver for both the Simulink simulation and
the RTL implementation using single-precision
floating-point operations. The error is calculated by
comparing the output of each of the Simulink and

Table 3 Error performance of the Simulink model and the synthesized RTL

Matrix Size
/Vector Size

Function
MathWorks Simulink

IEEE 754 Floating Point
Single Precision

(Norm / Max Error)

Altera’s DSP Builder Synthesized
RTL Floating Point

Single Precision

(With Fused Datapath Methodology)
(Norm / Max Error)

2
4
0
×

2
4
0

/
 6

0
 Cholesky decomposition 3.53e-5 / 2.84e-6 2.01e-5 / 2.71e-6

Forward substitution 5.06e-4 / 9.44e-5 1.87e-4 / 2.88e-5

Backward substitution 2.29e-5 / 3.74e-6 1.04e-5 / 1.27e-6

6
0
×

6
0

/
 6

0
 Cholesky decomposition 8.89e-6 / 1.28e-6 3.97e-6 / 6.20e-7

Forward substitution 9.35e-5 / 3.41e-5 2.26e-5 / 5.70e-6

Backward substitution 1.98e-5 / 6.18e-6 4.13e-6 / 1.15e-6

12
0
×

12
0

/
 3

0
 Cholesky decomposition 1.38e-5 / 1.20e-6 8.70e-6 / 1.41e-6

Forward substitution 1.26e-4 / 2.65e-5 5.95e-5 / 1.21e-5

Backward substitution 1.17e-5 / 2.65e-6 5.80e-6 / 1.07e-6

3
0
×

3
0

/
 3

0
 Cholesky decomposition 3.33e-6 / 7.68e-7 1.80e-6 / 3.37e-7

Forward substitution 2.20e-5 / 9.44e-6 6.90e-6 / 2.24e-6

Backward substitution 8.59e-6 / 4.09e-6 2.62e-6 / 1.09e-6

Figure 4 Effect of vector size

Vector dot product engine utilization vs. vector size

Throughput vs. vector size

Latency vs. vector size

Vector size

U
ti

liz
a

ti
o

n
 (

%
)

M
at

ri
ce

s
/

se
c

La
te

n
cy

 (
u

s)

Matrix size = 128

Matrix size = 128

Matrix size = 128

Figure 5 Effect of matrix size

Vector dot product engine utilization vs. matrix size

Throughput vs. matrix size

Matrix size

U
ti

liz
a

ti
o

n
 (

%
)

M
at

ri
ce

s
/

se
c

La
te

n
cy

 (
u

s)

Vector size = 30

Vector size = 30

Vector size = 30

Latency vs. matrix size

© 2011 Berkeley Design Technology, Inc. Page 10

ModelSim RTL simulations with the synthetically
generated double-precision floating-point references L,
x, and y. On average, the RTL implementation benefits
from the fused datapath methodology and achieves
higher precision than the standard IEEE 754 single-
precision implementation as demonstrated by
comparing the Norm in columns (3) and (4) in Table 3.
We use the Frobenius Norm to get a measure of the
overall error magnitude in the resultant matrix (or
vector); it is calculated by:

‖ ‖ = √∑∑| |

 =

 =

Where,
N is the size of the matrix,
i,j are the row and column indices of the matrix
respectively, and
eij is the error in the matrix element (i,j).

The Frobenius Norm for a vector is similar to that
of a matrix but summation is only performed in one
dimension. The maximum error is the maximum
absolute error over all the elements eij in a matrix, or
over all the elements ei in a column vector.

5. Conclusions
In this paper, we evaluated a new approach to

implementation of floating-point DSP algorithms on
FPGAs using Altera’s DSP Builder Advanced Blockset
design flow. This approach allows the designer to work
at the algorithmic behavioral level in the Simulink
environment. The tool chain combines and integrates
the algorithm modeling and simulation, RTL
generation, synthesis, place and route, and design
verification stages within the Simulink environment.
This integration enables quick development and rapid
design space exploration both at the algorithmic level
and at the FPGA level, and ultimately reduces overall
design effort. Once the algorithm is modeled and
debugged at a high level, the design can be synthesized,
and targeted to an Altera FPGA.

 For the purpose of this evaluation, the design
example was a single-precision complex-data IEEE 754
floating-point Cholesky solver modeled in Simulink
using the Altera DSP Builder Advanced Blockset. The
design achieved a performance of 3,204 complex
floating-point Cholesky solver executions per second
with a matrix of size 240×240 at 200 MHz on a Stratix
IV S360 FPGA device. This performance was achieved
using the Altera DSP Builder Advanced Blockset tool
flow (including Quartus II software and the Design
Space Explorer tool) with no hand optimization or
floor planning. Starting from a high-level block-based
design in Simulink, the tool chain automatically
pipelined, time optimized, and synthesized the design
to achieve usable speeds and resource utilization.

The Altera floating-point DSP design flow
incorporates the Altera DSP Builder Advanced

Blockset, Altera’s Quartus II RTL tool chain, and
ModelSim simulator, as well as MathWorks’ MATLAB
and Simulink tools. The Simulink environment allows
the designer to operate at the algorithmic behavioral
level to describe, debug, and verify complex systems.
Simulink features such as data type propagation and
vector data processing are incorporated in the DSP
Builder Advanced Blockset to enable a designer to
perform quick algorithmic design space exploration.

The Altera floating-point design flow simplifies the
process of implementing complex floating-point DSP
algorithms on an FPGA by streamlining the tools
under a single platform. With its fused datapath
methodology, complex floating-point datapaths are
implemented with higher performance and efficiency
than previously possible.

However, this new approach also entails a
significant learning curve for using the DSP Builder
Advanced Blockset. This is especially true for a
designer not familiar with MATLAB and Simulink. The
block-based design-entry approach may present an
initial challenge for a traditional hardware designer. In
addition, there is a design methodology that should be
understood and followed to support the flexibility
afforded by Simulink. Careful forethought is necessary
to create a design structure that allows for algorithm
space exploration, such as that performed with matrix
and vector sizes in the example presented in this paper.

Currently, designs using the DSP Builder Advanced
Blockset are limited to the elements provided by the
blockset to achieve optimized performance. Elements
from the standard DSP Builder Blockset are not
optimized with the floating-point compiler nor can be
mixed with the Advanced Blockset at the same
hierarchy level. Hand coded HDL blocks may only be
imported into the Standard Blockset. Additionally, the
DSP Builder Advanced Blockset is geared towards DSP
implementations and may have limited use for designs
involving heavy control and state machines.

Currently sampling, the next-generation 28-nm
Stratix V and Arria V FPGAs contain a significantly
larger number of multipliers and memory capacity.
With the new variable-precision DSP block, and the
higher precision 27×27 multiplier mode, a floating-
point multiplication will require fewer resources than it
currently does in the Stratix IV and Arria II devices.
These enhancements and the potentially greater
floating-point performance will further enable the use
of floating-point designs on next-generation FPGAs.

6. References
[1] S.S. Demirsoy, M. Langhammer, 2009. “Fused
datapath floating point implementation of Cholesky
decomposition.” FPGA ’09, February, 2009.

