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10.110.110.110.110.1 OVERVIEWOVERVIEWOVERVIEWOVERVIEWOVERVIEW
The linear predictive method of speech analysis approximates the basic
parameters of speech. This method is based on the assumption that a
speech sample can be approximated as a linear combination of previous
speech samples. The application of linear predictive analysis to estimate
speech parameters is often called linear predictive coding (LPC).

The LPC method models the production of speech as shown in Figure
10.1. The time-varying digital filter has coefficients that represent the
vocal tract parameters. This filter is driven by a function e(t). For voiced
speech (sounds created by the vibration of the vocal folds), e(t) is a train of
unit impulses at the pitch (fundamental) frequency. For unvoiced speech
(sounds generated by the lips, tongue, etc., without vocal-fold vibration),
e(t) is random noise with a flat spectrum.
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Figure 10.1  Model of Speech ProductionFigure 10.1  Model of Speech ProductionFigure 10.1  Model of Speech ProductionFigure 10.1  Model of Speech ProductionFigure 10.1  Model of Speech Production

The LPC method can be used to create a voice coding system for low-bit-
rate transmission. Figure 10.2, on the next page, shows a block diagram of
this system. The speech signal is input to the coding system, which
derives a set of filter coefficients for the signal and determines whether the
signal is voiced. For a voiced signal, the pitch is also calculated. The pitch
and filter coefficients are transmitted to a receiving system. This system
synthesizes the voice signal by creating a digital filter with the given
coefficients and driving the filter with either a train of impulses at the
given pitch (for voiced sounds) or a random noise sequence (for unvoiced
sounds). The driving function is multiplied by a gain factor, G. For
simplicity, in this example we assume unity gain.
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The coding system predicts the value of an input signal based on the
weighted values of the previous P input samples; P is the number of filter
coefficients (the order of the synthesis filter). The difference between the
actual input and the predicted value is the prediction error. The problem
of linear prediction is to determine a set of P coefficients that minimizes
the average squared prediction error (E) over a short segment (window) of
the input signal. The routines in this chapter are based on a 20-millisecond
window, which at a 12-KHz sampling rate yields 240 input samples.

The most efficient method for finding the coefficients is the Levinson-
Durbin recursion, which is described by the four equations below. Note
that the prime symbol (´ ) indicates the value to be used in the next pass of
the recursion; e.g., E´ is the next value of E.

i–1

ki´ = [rs(i) – ∑  aj rs(i–j)] ÷ E
j=1

ai´ = ki´

a
j
´ = a

j 
– k

i
´

 
a

i–j
      j = 1 to i–1

E´ = (1–(kí )2) E
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where

k
i

The negatives of the reflection coefficients used in the LPC synthesis
filter (an all-pole lattice filter)

ai The coefficients used to predict the value of the next input sample
rs(i) The autocorrelation function of the input signal
E The average squared error between the actual input and predicted

input

The autocorrelation function, which is explained further in the next
section, is defined as

+∞
r(k) =  ∑  s(m) s(m+k)

m=–∞

The autocorrelation function of the input signal s(n) is therefore

N–1–k

rs(k) = ∑  s(m) s(m+k)
m=0

To find the LPC coefficients (k-values), E is initialized to rs(0). Then the
four equations are solved recursively for i = 1 to P. On each pass of the
recursion, the first two equations yield another k-value and a-value. In the
third equation, all previously calculated a-values are recalculated using
the new k-value. The last equation produces a new value for E.

Once all of the k-values have been determined, we can determine whether
the input sample is voiced, and if so, what the pitch is. We use the
modified autocorrelation analysis algorithm to calculate the pitch using
the autocorrelation sequence of the predicted input signal, re(k), which can
be expressed in terms of the autocorrelation sequence of the actual input
and the autocorrelation sequence of the prediction coefficients, ai.

 P

re(k) = ∑  ra(j) rs(k–j)
j=1
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The autocorrelation function for ai is defined as

 P

ra(j) = ∑  ai ai+j
i=1

The pitch is detected by finding the peak of the normalized
autocorrelation sequence (re(n)/re(0)) in the time interval that corresponds
to 3 to 15 milliseconds inside the 20-millisecond sampling window. If the
value of this peak is at least 0.25, the window is considered voiced with a
pitch equal to the value of n at the peak (the pitch period, np) divided by
the sampling frequency (fs). If the peak value is less than 0.25, the frame is
considered unvoiced and the pitch is zero.

The values of the LPC coefficients (k-values) and the pitch period are
transmitted from the coding system to the receiving system. The
synthesizer is a lattice filter with coefficients that are the negatives of the
calculated k-values. This filter is excited by a signal that is a train of
impulses at the pitch frequency. If the pitch is zero, the excitation signal is
random noise with a flat spectrum. The excitation function is scaled by the
gain value, which is assumed to be one in this example.

The subroutines in this chapter implement linear predictive speech
coding. We first present the correlate subroutine, which we use whenever a
correlation operation (described in the next section) is needed. The
l_p_analysis subroutine calculates the k-values and the pitch in three main
steps. First, the correlation subroutine autocorrelates the input signal using
the correlate subroutine. Next, the levinson subroutine finds the k-values
using Levinson-Durbin recursion. Last, the pitch_decision subroutine
determines whether the frame is voiced and computes the pitch period if
it is. The l_p_synthesis routine, presented at the end of this chapter,
generates speech output using the parameters calculated by the
l_p_analysis routine and the all-pole lattice filter routine presented in
Chapter 5.

10.210.210.210.210.2 CORRELATIONCORRELATIONCORRELATIONCORRELATIONCORRELATION
Correlation is an operation performed on two functions of the same
variable that are both measures of the same property (voltage, for
example). There are two types of correlation functions: cross-correlation
and autocorrelation. The cross-correlation of two signals is the sum of the
scalar products of the signals in which the signals are displaced in time
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with respect to one another. The displacement is the independent variable
of the cross-correlation function. Cross-correlation is a measure of the
similarity between two signals; it is used to detect time-shifted or periodic
similarities. Autocorrelation is the cross-correlation of a signal with a copy
of the same signal. It compares the signal with itself, providing
information about the time variation of the signal.

The cross-correlation of x(n) with y(n) is described by the equation below.
L is the number of samples used for both inputs and L–k–1 is number of
“overlapping” samples at the displacement k.

L–k–1

R(k) =  ∑ (x(n) × y(n+k))
n=0

In autocorrelation, x(n) and y(n) are the same signal.

Correlation is required three times in the computation of the linear
prediction coefficients and pitch. First, the input signal must be
autocorrelated to determine rs(k). The first P (= number of k-values)
values of rs(k) are used in the Levinson-Durbin recursion and the rest are
used in the pitch determination. Next, the a-values calculated in the
Levinson-Durbin recursion are autocorrelated to yield ra(k). The ra(k)
sequence is then cross-correlated with the autocorrelation sequence of the
original input signal, rs(k), to yield re(k), which is used to determine the
pitch.

Listing 10.1 shows a correlation routine developed for the ADSP-2100.
Before the routine is called, one of the input sequences must be stored in a
program memory buffer whose starting address is in register I5. The other
input sequence must be stored in a data memory buffer whose starting
address is in I1. I6 should point to the start of the result buffer in program
memory. I2, which is used as a down counter, must be initialized to the
length of the input data buffer (both buffers have the same length), and
M2 must be initialized to –1, to allow efficient counter manipulation. The
CNTR register should be set with the number of correlation samples
desired (N). The SE register, which controls output data scaling, must be
set to an appropriate value to shift the products, if necessary, into the
desired output format. (For example, if two 4.12 numbers are multiplied,
the product is a 7.23 number. To obtain a product in 9.21 format, the SE
register must be set to –2.) The modify registers M0, M4, M5, and M6
should all be set to one, and the circular buffer length registers must be set
to zero.
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The routine executes the corr_loop loop to produce the number of
correlation samples specified by the CNTR register. Address registers I0
and I4 are set to the starting values of the input data buffers. Each time the
loop is executed, I0 fetches the same input data, but the value of I4 is
moved forward to fetch the next data sample in the program memory
buffer. The CNTR register is then loaded with the length of the multiply/
accumulate operation required to produce the current term of the
correlation sequence; this length decreases each time the corr_loop loop is
executed because N–k–1 decreases as k increases. The data_loop loop
performs the multiply/accumulate operation. The result is then scaled to
maintain a valid format. During the scaling operation, the routine takes
advantage of multifunction instructions to update various pointers. I5,
which points to the start of the program memory buffer, is incremented,
and I2, which holds the length of the multiply/accumulate operation for
the next loop, is decremented. The values in MX0 and MY0 are extraneous
and are overwritten.

.MODULE Correlation;

{ Correlate Routine

Calling Parameters
I1 —> Data Memory Buffer L1 = 0
I2 —> Length of Data Buffer L2 = 0
I5 —> Program Memory Buffer L5 = 0
I6 —> Program Memory Result Buffer L6 = 0
M0,M4,M5,M6 = 1      M2 = -1
L0,L4 = 0
SE = scale value
CNTR = output buffer length

Return Values
Result Buffer Filled

Altered Registers
I0,I1,I2,I4,I5,I6,MX0,MY0,MR,SR

Computation Time
Output Length × (Input Length + 8 - ((Output Length - 1) ÷ 2)) + 2

}
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.ENTRY correlate;

correlate: DO corr_loop UNTIL CE;
I0=I1;
I4=I5;
CNTR=I2;
MR=0, MY0=PM(I4,M4), MX0=DM(I0,M0);
DO data_loop UNTIL CE;

data_loop:    MR=MR+MX0*MY0(SS),MY0=PM(I4,M4),MX0=DM(I0,M0);
MY0=PM(I5,M5), SR=LSHIFT MR1 (HI);
MX0=DM(I2,M2), SR=SR OR LSHIFT MR0 (LO);

corr_loop: PM(I6,M6)=SR1;
RTS;

.ENDMOD;

Listing 10.1  CorrelationListing 10.1  CorrelationListing 10.1  CorrelationListing 10.1  CorrelationListing 10.1  Correlation

10.310.310.310.310.3 LEVINSON-DURBIN RECURSIONLEVINSON-DURBIN RECURSIONLEVINSON-DURBIN RECURSIONLEVINSON-DURBIN RECURSIONLEVINSON-DURBIN RECURSION
The l_p_analysis routine, shown in Listing 10.2, calculates the coefficients
of the LPC synthesis filter and determines the pitch in approximately
30,000 cycles. This routine calls three other subroutines. First, the
correlation subroutine autocorrelates the input signal. The levinson
subroutine uses this autocorrelation sequence to find the LPC coefficients.
The pitch_decision routine determines the pitch by calling the pitch_detect
routine, which is presented in the next section.

The subroutines presented in this section calculate the LPC coefficients
using the Levinson-Durbin recursion equations:

i–1

ki´ = [rs(i) –  ∑  aj rs(i–j)] ÷ E
j=1

ai´ = ki´

a
j
´ = a

j 
– k

i
´

 
a

i–j
      j = 1 to i–1

E´ = (1–(kí )2) E

The LPC coefficients are the negatives of the k-values.

The correlation routine, shown in Listing 10.2, calls the correlate routine
presented in the previous section to compute the autocorrelation sequence
of the input data. The length of the sequence (N) is given by the parameter
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wndolength in the constant file, lpcconst.h. The autocorrelation of the
original input signal takes up the vast majority of the computation time,
almost 25,000 clock cycles.

The levinson subroutine, also shown in Listing 10.2, uses two data buffers
(a_ping, a_pong) to store the a-values from the previous iteration of the
recursion and the new a-values being computed in the current iteration, as
necessitated by the third equation in the Levinson-Durbin recursion. The
in_a pointer points to the start of the input buffer (old a-values) and the
out_a pointer points to the start of the output buffer (new a-values). The
locations of these pointers are swapped at the end of each iteration of the
recursion. On the next pass, new values (aj´) become old values (aj) and
the previous old values are overwritten by the newly calculated values.

The levinson subroutine calls the initialize routine to set up various
parameters for the recursion algorithm. The pointers to the a-value buffers
(in_a, out_a) are initialized. The SE register is set to an appropriate scaling
value. The last location of the output buffer is found by adding one less
than the number of LPC coefficients that will be produced (P–1) to the
starting location of the output data buffer; the resulting value is stored in
I1. This location is needed because the LPC synthesis routine, presented
later in this chapter, uses the coefficients in reverse order, and thus the
routine stores the coefficients beginning with the last location of the
output buffer. The location at which to store the pitch value is determined
by adding P to the starting location of the buffer; this value is stored in SI.
The 4.12 fixed-point representation for a one is stored in MF and AR; these
values are used to adjust the result in some multiplications. The first term
of the autocorrelation sequence of the input signal (r

s
(0)) is stored as the

startup value for the error (E).

The first pass of the recursion algorithm is executed outside of the
recursion subroutine in the pass_1 subroutine. Although it performs the
same operations as other passes, this pass requires much less processing,
since it computes only the first value. The pass_1 subroutine uses an
external divide routine (see Chapter 2) to divide the second term of the
autocorrelation sequence of the input signal, rs(1), by the initial value of E,
shifted left by three, to yield k1 in 4.12 format. By Levinson-Durbin
recursion, this is also a1. In this pass, there are no old a-values to
recalculate, so all that remains is to determine the new value of E. First,
the MR register is loaded with a 7.25 representation of a one (by
multiplying registers AR and MF, which were initialized to the necessary
values). The squared k1 value just calculated is subtracted from the MR
register value. This difference (1–ki

2) is then multiplied by the old E value
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at the same time that a1 is stored at the location in I0 and the first filter
coefficient (negated k1) is stored at the location in I1. The subroutine
finishes by storing the new E value and swapping the in_a and out_a
pointers to the a-value buffers.

The recursion subroutine produces the remaining P–1 filter coefficients,
one for each iteration of the durbin loop. To keep track of loop iterations,
the CNTR register is loaded with P–1 and the counting variable i, in
DM(I), is initialized to a one. Inside the durbin loop, pointers to the buffers
that contain the a-values and the rs values are set up. The loop_1 loop finds
the product of a previous a-value and the corresponding rs(i–j) value and
subtracts this product from rs(i); this operation is performed until all
previous i–1 a-values have been used. The result is divided by E to
produce the new ki. The loop_2 loop recalculates i–1 a-values, one per
iteration. It multiplies the old ai–j value from the DM(in_a) buffer (pointer
in I6) by ki and subtracts this product from the old ai value (pointer in I4).
The resulting new a-value is stored in the DM(out_a) buffer (pointer in I5).
The new value of E is calculated in the same way as in the pass_1 routine.
The quantity (1–ki

2) in MR is multiplied by the old value of E fetched from
data memory to produce the new E while ai and the filter coefficient are
being stored. The loop finishes by incrementing the counting variable i
and swapping the in_a and out_a pointers to the a-value buffers.

(listing continues on next page)

.MODULE Predictor;

{ This routine computes the LPC coefficients for the input data.

Calling Parameters
I0 —> Input Buffer L0 = 0
I1 —> Output Buffer L1 = 0
L2,L3,L4,L5,L6,L7 = 0

Return Values
Output buffer filled
k[10].....k[1], PITCH

Altered Registers
I0,I1,I2,I4,I5,I6,M0,M1,M2,M4,M5,M6,M7
AX0,AY0,AX1,AY1,AR,AF
MX0,MY0,MX1,MY1,MR,MF
SI,SE,SR

Computation Time
34,000 cycles (approximately)

}
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.INCLUDE <divide.mac>;

.INCLUDE <lpcconst.h>;

.VAR/DM/RAM a_ping[p], a_pong[p], dmhold[p];

.VAR/DM/RAM e, i, in_a, out_a;

.VAR/PM/RAM hold[length], zeroed[p], r[ptchlength];

.VAR/PM/RAM ra[p], re[ptchlength];

.EXTERNAL correlate, pitch_detect;

.INIT zeroed : <zero.dat>;

.ENTRY l_p_analysis;

l_p_analysis: CALL correlation;
CALL levinson;
CALL pitch_decision;
RTS;

correlation: AY0=I1;I1=I0;M1=1;
I4=^hold;M5=1;
CNTR=length;
DO trans UNTIL CE; {copy signal into PM}
   AX0=DM(I0,M1);

trans:    PM(I4,M5)=AX0;
SE=5;CNTR=ptchlength; {set parameters for correlate}
M6=1;M2=-1;M4=1;M0=1;
I5=^hold;I2=length;I6=^r;
CALL correlate;
RTS;

levinson: CALL initialize;
CALL pass_1;
CALL recursion;
RTS;

pitch_decision: AY0=^r; I0=^a_ping;
CALL pitch_detect;
RTS;

initialize: M0=0;M4=0;M6=-1; {set up pointers for recursion}
AX0=^a_ping;DM(in_a)=AX0;
AX0=^a_pong;DM(out_a)=AX0;
SE=3;
AX0=p-1;
AR=AX0+AY0;
I1=AR; {point to k buffer}
AX0=p;
AR=AX0+AY0;
SI=AR; {save pitch pointer}
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AR=H#1000;MY1=H#8000;
MF=AR*MY1 (SU); {MF = formatted one}
I4=^r;AX0=PM(I4,M5);
DM(e)=AX0; {E = r(0)}
RTS;

pass_1: AY1=PM(I4,M6); {compute k}
SR1=DM(e);
SR=LSHIFT SR1 (HI);
AX0=SR1;AY0=SR0;
divide(AX0,AY1);
MY0=AY0;
I0=DM(out_a);
MX0=AY0, MR=AR*MF (SS);
MY1=AX0, MR=MR-MX0*MY0 (SS);
AR=-AY0;
DM(I0,M0)=AY0, SR=LSHIFT MR1 (HI); {compute next E}
DM(I1,M2)=AR, MR=SR1*MY1 (SS);
DM(e)=MR1; {store next E}
SR1=DM(in_a);
SR0=DM(out_a);
DM(out_a)=SR1;
DM(in_a)=SR0;
RTS;

recursion: CNTR=p-1;
AX1=1;
DM(i)=AX1;
AX0=H#1000;
DO durbin UNTIL CE;
   I2=DM(in_a);I6=DM(in_a);
   I4=^r+1;I5=DM(out_a);M7=DM(i);
   MX0=PM(I4,M7), AR=PASS AX0;
   MY1=PM(I4,M6);
   MR=AR*MY1 (SS), MY0=PM(I4,M6), MX0=DM(I2,M1);
   CNTR=DM(i);
   DO loop_1 UNTIL CE; {compute k values}

loop_1:       MR=MR-MX0*MY0 (SS),MX0=DM(I2,M1),MY0=PM(I4,M6);
   SR=LSHIFT MR1 (HI);

AY1=SR1;
SR1=DM(e);
AY0=SR0, SR=LSHIFT SR1 (HI);
AX1=SR1;
divide(AX1,AY1); {divide by E}
I4=DM(in_a);
MX1=DM(I4,M5);
MODIFY(I6,M7);
MODIFY(I6,M6);
CNTR=DM(i);
MY0=AY0;
DO loop_2 UNTIL CE; {compute new a values}

(listing continues on next page)
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   MR=MX1*MF(SS), MX0=DM(I6,M6);
   MR=MR-MX0*MY0 (SS);
   SR=LSHIFT MR1 (HI), MX1=DM(I4,M5);

loop_2:    DM(I5,M5)=SR1;
MY1=DM(e);
I6=DM(out_a);
MX0=MY0, MR=AR*MF (SS); {MR = 1}
SR0=DM(I6,M7), MR=MR-MX0*MY0 (SS); {MR = 1-k 2}
AR=-AY0;
DM(I1,M2)=AR, SR=LSHIFT MR1 (HI);
DM(I6,M6)=AY0, MR=SR1*MY1 (SS);
SR=LSHIFT MR1 (HI);
DM(e)=SR1;
AY0=DM(i);
AR=AY0+1;
DM(i)=AR;
SR1=DM(in_a);
SR0=DM(out_a);
DM(in_a)=SR0;

durbin: DM(out_a)=SR1;
RTS;

.ENDMOD;

Listing 10.2  LPC Coefficient CalculationListing 10.2  LPC Coefficient CalculationListing 10.2  LPC Coefficient CalculationListing 10.2  LPC Coefficient CalculationListing 10.2  LPC Coefficient Calculation

10.410.410.410.410.4 PITCH DETECTIONPITCH DETECTIONPITCH DETECTIONPITCH DETECTIONPITCH DETECTION
The pitch detection routine is shown in Listing 10.3. Two separate
correlation operations (calls to the correlate subroutine shown earlier in
this chapter) are performed. The first call occurs in the coeff_corr routine to
autocorrelate the sequence of a-values, which were computed by the
Levinson-Durbin recursion routine in the previous section. The second
call occurs in the error_corr routine which cross-correlates the
autocorrelation sequence of the a-values with the autocorrelation of the
original input data to calculate the value of re(k), as given by the equation:

 P

re(k) =  ∑ ra(j) rs(j–k)               k = 0 to wndolength
j = 1

Because this equation is not a true cross-correlation, the calculation
requires a few variations from the normal execution of the correlate
routine. M4 is set to –1, not the usual 1, to scan the sequence rs(n)
backward instead of forward. To eliminate the possibility of generating
errors by using values of rs(n) in which n is less than zero, P zeros are
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appended to the beginning of the rs(n) data buffer. M2 is set to zero, so
that the number of multiplies remains the same instead of decreasing for
each execution of the loop.

In the pitch_period routine, the sequence re(n) is searched over the interval
from 3 to 15 milliseconds for the peak value. The starting point of the
search is given by ptchstrt, which has been set to the sample number that
corresponds to 3 milliseconds. The routine first determines whether re(0)
is positive or negative. If it is negative, the routine jumps to the nomaxabs
loop, which finds the negative value with the greatest magnitude. If it is
positive, the routine jumps to the nomax loop, which finds the positive
value with the greatest magnitude. After the peak value is found, if its
magnitude is greater than re(0), then we know that re(peak)/re(0) must be
greater than one; thus, the routine jumps to the compute label to compute
the pitch. Otherwise, re(peak) is divided by re(0) to determine if this value
is greater than 0.25. Only the first three bits are calculated because more
precision is not required. If re(peak)/re(0) > 0.25, the window is considered
voiced and the pitch is calculated by multiplying the peak position time
value by the sampling period (in iperiodh and iperiodl), which requires
fewer cycles than dividing by the sampling frequency. If re(peak)/re(0) ≤
0.25, the routine returns with a pitch of zero to indicated an unvoiced
window.

(listing continues on next page)

.MODULE pitching;

{ This routine computes the pitch period for a speech sample.
It is used in conjunction with a Linear Predictive Coder.

Calling Parameters
AY0 —> Autocorrelation buffer
I0 —> LPC Coefficient buffer L0 = 0
SI —> Pitch buffer
L1,L2,L3,L4,L5,L6,L7 = 0

Return Values
Pitch buffer filled

Altered Registers
I0,I1,I2,I4,I5,I6,M1,M2,M4,M5,M6,AX0,AX1,AY0,AY1,AR,AF
MX0,MX1,MY0,MY1,MR,MF,SI,SE,SR

Computation Time
approximately 1800 cycles

}
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.INCLUDE <lpcconst.h>;

.VAR/DM/RAM rahold[p];

.VAR/PM/RAM hold[p], ra[p], re[ptchlength];

.GLOBAL pitch_detect;

.EXTERNAL correlate;

pitch_detect: CALL coeff_corr;
CALL error_corr;
CALL pitch_period;
RTS;

coeff_corr: M1=1;M5=1;M2=-1;
I1=I0;I4=^hold;
CNTR=p;
DO move_coeff UNTIL CE; {copy coeff. to PM}

AX0=DM(I0,M1);
move_coeff: PM(I4,M5)=AX0;

I5=^hold;CNTR=p;
M0=1;M4=1;M6=1;I2=p;I6=^ra;
CALL correlate;
RTS;

error_corr: I0=^rahold;I4=^ra;
CNTR=p;
DO move_ra UNTIL CE; {copy r

a
 to DM}

AX0=PM(I4,M5);
move_ra: DM(I0,M1)=AX0;

SE=5;I1=^rahold;I5=AY0;CNTR=ptchlength;
M4=-1;M2=0;I2=P;I6=^re;
CALL correlate;
RTS;

pitch_period: I5=^re; {point to r
e
}

M7=ptchstrt;
MX0=M7;
AX0=PM(I5,M7);
AX1=PM(I5,M5), AR=ABS AX0;
CNTR=wndolength;
AY0=PM(I5,M5);
IF POS JUMP max;
DO nomaxabs UNTIL CE; {find largest neg. number}

AR=AX1-AY0;
IF LT JUMP nomaxabs;
AX1=AY0; {find peak value}
AX0=I5;
AY0=^re;
AF=AX0-AY0;
AR=AF-1;
MX0=AR; {MX0 = peak value}
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nomaxabs: AY0=PM(I5,M5);
JUMP pitch_compute;

max: DO nomax UNTIL CE;
AR=AX1-AY0; {find peak value}
IF GT JUMP nomax;
AX1=AY0;
AX0=I5;
AY0=^re;
AF=AX0-AY0;
AR=AF-1;
MX0=AR; {MX0 = peak value}

nomax: AY0=PM(I5,M5);
pitch_compute: M0=0;

I5=^re;
I1=SI;
AX0=PM(I5,M5), AR=PASS 0;
DM(I1,M0)=AR;
AY0=AR, AR=ABS AX0;
SR0=AR, AF=ABS AX1;
AR=SR0-AF; {r(0) < r(peak)?}
IF LE JUMP compute; {yes, compute pitch}
AF=PASS AX1; {no, find r(peak) ÷r(0)}
AX1=3;
DIVS AF,AX0;
DIVQ AX0;
DIVQ AX0;
AR=AX1 AND AY0; {r(peak) ÷r(0) < 0.25?}
IF EQ JUMP done_compute; {yes, pitch = 0}

compute: MY0=iperiodh; {no, compute pitch}
MR=MX0*MY0 (ss);
MR1=MR0;
MR0=0;
MY0=iperiodl;
MR=MR+MX0*MY0 (su);
SR=LSHIFT MR1 BY -1 (LO);
DM(I1,M0)=SR0;

done_compute: RTS;

.ENDMOD;

Listing 10.3  Pitch DetectionListing 10.3  Pitch DetectionListing 10.3  Pitch DetectionListing 10.3  Pitch DetectionListing 10.3  Pitch Detection
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The receiving end of the LPC system uses the recursive IIR lattice filter
routine presented in Chapter 5 to synthesize an approximation of the
original voice signal according to the the LPC voice model. The
coefficients of this filter are the negatives of the reflection coefficients (k-
values); the k-values were negated and stored in memory in the levinson
routine. The filter is driven by an excitation function based on the pitch
calculated by the pitch_detect routine. The gain factor is assumed to be one
in this example.

The l_p_synthesis routine shown in Listing 10.4 multiplies the pitch by the
sampling frequency to yield the pitch period, np. It fills the driving
function buffer with impulses at the pitch period, and zeros elsewhere. If
the window is unvoiced (pitch is zero), the synthesizer uses a driving
function of random data in a buffer called white_noise. You must initialize
this buffer before executing the routine. This can be done using the
uniform random number generator presented in Chapter 4.

Various parameters are then set to call the lattice_filter subroutine. Note
that the length registers L1 and L4 must be set to P, the number of k-
values; they are set to zeros after the routine has been executed to ensure
that their values do not interfere with any subsequent routines.

.MODULE Synthesizer;

{ Lattice Filter LPC synthesizer

Calling Parameters
I1 —> Coefficient Buffer L0,L1,L2,L3=0
I2 —> Output Buffer L4,L5,L6,L7=0

Return Values
Output Buffer Filled

Altered Registers
I0,I1,I2,I4,M0,M1,M4,M5,M6,M7,AX0,AY0,AX1,AY1,AR,AF
MX0,MY0,MY1,MR,L1,L4,SE

Computation Time
16,000 cycles (approximately)

}

.INCLUDE <lpcconst.h>;

.VAR/DM white_noise[length];

.VAR/DM/RAM pitch_driver[length];

.VAR/PM/RAM/CIRC delay[p];
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.EXTERNAL p_latt;

.INIT delay: <zero.dat>;

.INIT white_noise: <random.dat>;

.ENTRY l_p_synthesis;

l_p_synthesis: CALL set_driving;
CALL synthesis;
RTS;

set_driving: M0=1;
AX0=I1;
AY0=p;
AR=AX0+AY0;
I0=AR;
AX0=DM(I0,M0);
I0=^white_noise; {Point to random data buffer}
MX0=AX0, AR=PASS AX0;
IF EQ RTS; {If pitch = 0, return}
I0=^pitch_driver; {Compute pitch period}
MY0=samplefreq;
MR=MX0*MY0 (SS);
CNTR=length;
AY1=0;
AY0=MR1, AF=AY1+1;
AX1=impulse;
DO fill_buffer UNTIL CE; {Fill buffer with impulses at}

AX0=AY1, AF=AF-1; {the pitch period}
IF NE JUMP fill_buffer;
AX0=AX1, AF=AY0+1;

fill_buffer: DM(I0,M0)=AX0;
I0=^pitch_driver;
RTS;

synthesis: CNTR=length;I4=^delay; {Set parameters for lattice}
L1=p;L4=p;M1=-1;M4=1; {filter routine}
M5=-1;M6=3;M7=-2;AR=H#1000;
AX0=p-1;SE=3;
CAll p_latt;
L1=0;L4=0;
RTS;

.ENDMOD;

Listing 10.4  LPC SynthesizerListing 10.4  LPC SynthesizerListing 10.4  LPC SynthesizerListing 10.4  LPC SynthesizerListing 10.4  LPC Synthesizer



1010101010

372372372372372

Linear Predictive CodingLinear Predictive CodingLinear Predictive CodingLinear Predictive CodingLinear Predictive Coding

10.610.610.610.610.6 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES
Levinson-Durbin Recursion:
Rabiner, L. R. and Schafer, R. W. 1978. Digital Processing of Speech Signals.
Englewood Cliffs, N.J.: Prentice-Hall, Inc.

Pitch Detection:
Markel, J. D., and Gray, A. H., Jr. 1980. Linear Prediction of Speech. New
York: Springer-Verlag.


	Chapter 10: Linear Predictive Speech Coding
	10.1 Overview
	10.2 Correlation
	10.3 Levinson-Durbin Recursion
	10.4 Pitch Detection
	10.5 Linear Predictive Coding Synthesizer
	10.6 References


